Kent Academic Repository

Panopoulou, Ekaterini and Souropanis, loannis (2019) The role of technical indicators in exchange rate forecasting. Journal of Empirical Finance, 53 . pp. 197-221. ISSN 0927-5398.

Downloaded from
https://kar.kent.ac.uk/75519/ The University of Kent's Academic Repository KAR

The version of record is available from
 https://doi.org/10.1016/i.jempfin.2019.07.004

This document version

Author's Accepted Manuscript

DOI for this version

Licence for this version

CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

Accepted Manuscript

The role of technical indicators in exchange rate forecasting

Ekaterini Panopoulou, Ioannis Souropanis

PII: S0927-5398(19)30059-3
DOI: https://doi.org/10.1016/j.jempfin.2019.07.004
Reference: EMPFIN 1124
To appear in: Journal of Empirical Finance

Received date: 5 October 2017
Revised date: 21 May 2019
Accepted date: 10 July 2019

Please cite this article as: E. Panopoulou and I. Souropanis, The role of technical indicators in exchange rate forecasting. Journal of Empirical Finance (2019), https://doi.org/10.1016/j.jempfin.2019.07.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The Role of Technical Indicators in Exchange R te Forecasting

Ekaterini Panopoulou*\& Ioannis Sourop ${ }^{\text {¹1s }}$
Kent Business School, University of Kent, Canterbury ${ }^{\text {I nite }}$ ' Kingdom

Abstract

Forecasting exchange rates is a subject of wide interesu ${ }^{\text {}}$? both academics and practitioners. We aim at contributing to this vivid researcı \smile rea br highlighting the role of both technical indicators and macroeconomic predictors in :-recasting exchange rates. Employing monthly data ranging from January 1974 to Decr , for fix widely traded currencies, we show that both types of predictors provide valua ${ }^{\circ} \mathrm{l}$ e information about future currency movements. To efficiently summarise the inı, rmo content in candidate predictors, we extract the principal components of each oroup of predictors. Our findings suggest that combining information from both technical nu ators and macroeconomic variables significantly improves and stabilises exchange $\quad \cdots f_{n}$ casts versus using either type of information alone.

JEL classification: C53, C58, F ${ }^{\text {¹ }}$ G17
Keywords: exchange rate pr dictabi ty; principal components; forecast combination; technical indicators; macroecoromuc ${ }^{{ }^{\text {י1 }} \text { D }}$.amentals

[^0]
Highlights

- We highlight the role of both technical indicators and macroeconor , ル .redictors in forecasting exchange rates.
- We show that both types of predictors provide valuable inforr atic , 1 about future currency movements.
- We employ principal components and combination forecasti . ${ }_{0}^{+}$ech. . ұues.
- Our strategy significantly improves and stabilises exchangf ratf rortiasts.

The Role of Technical Indicators in Exchange R te Forecasting

May 21, 2019

Abstract

Forecasting exchange rates is a subject of wide intesst to h ch academics and practitioners. We aim at contributing to this vivid research area ν_{0}. highlighting the role of both technical indicators and macroeconomic predictors in tu casti g exchange rates. Employing monthly data ranging from January 1974 to December $\cap 14$ for six widely traded currencies, we show that both types of predictors provide : . uavie information about future currency movements. To efficiently summarise the informatio. content in candidate predictors, we extract the principal components of each grc 'p 1 predictors. Our findings suggest that combining information from both technice ${ }^{*}$ indici + ors and macroeconomic variables significantly improves and stabilises exchange rate . rt . \cdot sts versus using either type of information alone.

JEL classification: C53, C58, F31, G17
Keywords: exchange rate prer ... hility; principal components; forecast combination; technical indicators; macroeconc nic func umentals

1 Introduction

Exchange rate forecasting is one of the most fascinating and academically vivid resaarch areas. The large number of currency crises during the past years have stimula ed fad challenged the existing academic literature. Numerous researchers tried to answer th ^gen *ic question "Can exchange rates be predicted and under what assumptions?" This qu tion . d to a continuous effort for identification of deterministic relationships, primarily bet veer economic fundamentals and exchange rates. In a very influential paper, Meese and Rognff $\left(190^{n}\right)$ claim that structural models cannot outperform the random walk model, giving 1 se to he disconnect puzzle of exchange rates from fundamentals.

Rossi (2013) provides a comprehensive literature revier or exc 'ange rate forecasting showing that the choice of predictors is important for a goo' forerm \quad, along with the type of the forecasting models and the evaluation methods emploved, col cluding that none of the predic-
 and time periods. Mark (1995) and more recently Chen - d Chou (2010) claim that exchange rates can be predicted in the long run, in contrast tu Molodtsova and Papell (2009), who find mixed evidence of exchange rate predictability at, w. lent on the predictor under consideration. Engel, Mark and West (2008) adopt \rightsquigarrow int esting approach focusing on the impact of expectations of fundamentals and find that ϵ. Dt tations of future monetary conditions play an important role in determining current 'xcinage rates. A stream of the literature focuses on capturing non-linearities in the predictive models and employ methodologies such as neural networks (see Sermpinis, Stasinakis .nd L. nis, 2014; Gradojevic, 2007; Preminger and Franck, 2007; Qi and Wu, 2003; Kuan and Liu, 190 」), genetic programming (see Sermpinis, Stasinakis, Theofilatos and Karathanasopor os, .015), markov switching models (see Panopoulou and Pantelidis, 2015; Dunis, Laws and Seı. nir ss, 2011; Dueker and Neely, 2007; Engel, 1994), nearest neighbor regressions (see Gr $\ldots\urcorner v$, 1999) etc. However, linear models tend to outperform non linear ones in general (Romi 2013). More recent approaches aiming at capturing uncertainty and time-varying predict bbil^{2} y in a Bayesian framework deliver encouraging results (see Byrne, Korobilis and Ribeiro 2016, ? ${ }^{\circ} 18$).

Apart from macr ecc 10 m c predictors stemming from exchange rate fundamentals, technical indicators are an 'ditic. 1 tool mainly used by professionals. Despite the fact that many technical indicat rs have been in use for more years than the most prominent macroeconomic models (Brock 「aku - nok and LeBaron, 1992; Neely and Weeler, 2011; Park and Irwin, 2007), academia ha paid ttle attention. Gehrig and Menkhoff (2006) suggest that both technical analysis and on ${ }^{\text {'n. }}$. now analysis have gained ground during the last decades at the expense of fundamen \checkmark ls. AD a matter of fact, this relatively new forecasting approach has been reported to produce sign. ${ }^{\top}$ cant statistical and economic gains when applied to equity, bond and exchange rate markets (Buncic and Piras, 2016; Lin, 2018; Neely, Rapach, Tu and Zhou, 2014; Goh, Jiang, Tu and Zhou, 2013; Neely and Weller, 2011; Neely, Weller and Ulrich, 2009; De Zwart,

Markwat, Swinkels, van Dijk, 2009; Park and Irwin, 2007), but with unstable , jerformance over time (Olson, 2004; De Zwart, Markwat, Swinkels and van Dijk, 2009). ${ }^{1}$ A re enu 'omprehensive review including numerous technical indicators over a large period of tim Hsu, Taylor and Wang (2016) provides evidence of their performance in both developed .nd smerging markets. The authors find that technical indicators exploit irrationalities in the 1 n ncla. markets; hence, they are able to generate statistically significant and profitable sar sas. In addition, the authors argue that more volatile currencies are able to deliver equa ${ }^{\text {¹ }} \mathrm{v}$ profitable excess returns to less volatile ones, if the latter are subject to leverage. In a Amlar manner, Zarrabi, Snaith and Coakley (2017) employ 7,650 rules on six widely traded cl rencie and find that there are profitable opportunities, which do not persist over time as \dagger^{\dagger},e pertormance of technical trading rules fluctuates throughout the sample. Their findings sın ort io's (2004) adaptive market hypothesis more than the efficient markets hypothesis.

Theoretical support in favor of the technical indica re gre recently based on the following arguments. First, due to the difference in the respu se tıming of the investors (Han, Zhou and Zhu, 2016), it takes time for the prices to ε "uo wo cheir efficient level (Lo, 2004). For example, during the recent crisis, the stock market w.s trending downwards for almost two years before reaching the bottom. Second, invt tr is are not always rational and are subject to cognitive biases, rules of thumb, herding $\cdot^{`}$ 'avı ${ }^{\wedge}$ and overconfidence. These irrationalities create or maintain ongoing trends and momen ums (Daniel, Hirshleifer and Subrahmanyam, 1998). Third, information is expensive and - at presumably available to all, leading to heterogeneity among traders and deviations from implied efficient market prices. Fourth, technical analysis can be viewed as a method ,f learn gg (Menkhoff and Taylor, 2007) rather than chaotic behavior, given its popularity am ong p. - itioners (Menkhoff, 2010). Fifth, technical analysis is so popular among practitione s tf at c eates observed self-fulfilling outcomes (see among others Menkhoff, 2010; Neely, W .ller aı. ${ }^{\text {T }}$ Ulricht, 2009; Menkhoff and Taylor, 2007; Cheung and Chinn, 2001 and Taylor an (Aı n. 1992). Large scale trades, based on signals, distort prices from the efficient level, m kı g fundamentals lose predictive ability. Finally, exchange rates are affected by Central Banı.' i terventions (Charles, Darné and Kim, 2012). LeBaron (1999) and Silber (1994) find a f ssit've currelation between central bank intervention and profitability of technical analysis. D^{-1} int rventions are able to create trends or alter expectations on fundamentals. Menk' 'orf and 'aylor (2007) claim that interventions distort markets and technical traders profit fro, , this inefficiency". Reitz and Taylor (2008) give a different perspective by arguing in far sr of a coordination channel from central banks to restore exchange rates when departing frc η their fundamental values.

In this naner, we use monthly data from January 1974 to December 2014 in order to construct forecasts fo. $\mathrm{c} x$ widely traded currencies; namely the British Sterling, Japanese Yen, Norwegian Krone, Swiss Tranc, Australian Dollar and Canadian Dollar. The base currency is the US

[^1]Dollar, which is fairly standard in the literature. Our set of predictors inclur' ss both the most widely used macroeconomic (fundamental) predictors and technical indice or Fundamental predictors stem from the Uncovered Interest Rate Parity, Purchasing Po . . . Parity, Monetary fundamentals and Taylor rules. ${ }^{2}$ The technical indicators we employ ai a] o the most widely employed in both academia and industry. These are simple moving averå mu.nentum, relative strength index and exponential moving average rules. Following tr e_{L}; $\operatorname{rrature}$ we employ the Random Walk (RW) model as benchmark and evaluate the perfor. - a ce by the out-of-sample R^{2} statistic and the MSFE-adjusted statistic (Clark and West, _u07)

The contribution of this paper to the exchange rate foreca ting li erature is that it brings together and evaluates the information that can be extraf ed from the most commonly used macroeconomic predictors and that of technical indicators , n. mc thly basis over an extensive period of time. In addition, it provides a comparative ana. sis of the two groups of predictors and the respective combined forecasts and principal cu n moner s extracted from each group. In order to get a better insight on the sources of predicta ${ }^{\cdot} \cdot{ }^{1}$ ity, we check the performance over time with the use of the cumulative difference between t^{t} nucan squared forecast errors of the random walk model and the candidate predictive model identin, 'ng certain time periods when the rivals fail to outperform the benchmark. Interestingly, ${ }^{+\mathrm{h}}$ se periods seem to be closely connected to key developments in exchange rate markets. ©rr t. dings suggest that combining information from both technical indicators and macroeconc nic variables (amalgam forecasts) significantly improves and stabilizes exchange rate forec $a^{+}+$s versus using either type of information alone. Following, among others Abhyankar, Snnno and Valente (2005), Della Corte, Sarno and Tsiakas (2009), Della Corte and Tsiakas (20.2); Li, Tsiakas and Wang (2015); Ahmed, Liu and Valente (2016), we assess the economic vf lue or \urcorner forecasting strategy for two levels of risk aversion and find that our amalgam for cas s d liver sustainable economic benefits in comparison to their rivals, consistent with ${ }^{\dagger}$ ne sta. © ical evaluation. Finally, we test whether our findings remain robust by changing de - valuation period, forecast horizon and extending the number of currencies by consideri. . dditional developed and emerging countries.

The remainder of the aer is organized as follows. In Section 2 we present the candidate predictors. The first ,art of tue section is related to macroeconomic/ fundamental predictors and the second to ten ${ }^{\wedge}$ ral indicators. Section 3 presents the predictive models, the forecast construction and ne evaluation methods. In Section 4 we report the out-of-sample statistical evaluation findin ${ }_{\varepsilon}$ s, whi $\stackrel{\text { Section }}{ } 5$ outlines our economic evaluation framework and results. Section 6 pres ints the robustness tests and Section 7 concludes the paper.

[^2]
2 Candidate predictors

2.1 Fundamental predictors

Following the literature that links exchange rates with macroeconomic f_{y}, damentals (Engel and West, 2005; Molodtsova and Papell, 2009, 2012; Byrne, Korobilis a.d kıbeiro, 2016), we employ 13 predictors, denoted by $x_{i, t}, i=1, . ., 13$. We briefly descr se h口m below.

1. The first candidate predictor is given by the uncoverederesı Rate Parity (IRP) as follows:

$$
\begin{equation*}
x_{1, t}=i_{t}-i_{t}^{*} \tag{1}
\end{equation*}
$$

where i_{t} is the nominal interest rate in the domestic cuuntr and i_{t}^{*} denotes the nominal interest rate for the foreign country. ${ }^{3}$
2. The second predictor is given by the deviation of tau nominal exchange rate from the Purchasing Power Parity (PPP) condition:

$$
\begin{equation*}
x_{2, t}=\lambda_{t}-\mu_{t}^{*}-s_{t} \tag{2}
\end{equation*}
$$

where $p_{t}\left(p_{t}^{*}\right)$ is the logarithm of domes ic (foreign) national price levels and s_{t} is the logarithm of the nominal exchange ra' ${ }^{\text {a }}$.

3 The third predictor relates to $\dagger^{\dagger} \therefore$ xible price version of the monetary model, known as Frenkel-Bilson (FB) model (r. rese ar d Rogoff, 1983). Under the assumption that PPP holds, the FB predictor is is follow

$$
\begin{equation*}
x_{3}=a\left(m_{n}-m_{t}^{*}\right)-b\left(y_{t}-y_{t}^{*}\right)+c\left(i_{t}-i_{t}^{*}\right)-s_{t} \tag{3}
\end{equation*}
$$

where $m_{t}\left(m_{t}^{*}\right)$ is tr a lc ; of the domestic (foreign) money supply, $y_{t}\left(y_{t}^{*}\right)$ is the log of the domestic (foreign) Ic ' output, proxied by the Industrial Production Index (IPI) and s_{t} is the log of the r mi al exchange rate. Due to first degree homogeneity of relative money supply, the paraı. ster $a=1$ (see Meese and Rogoff, 1983; Mark and Sul, 2001; Rapach and Wohar 2002; Rossi, 2013). We further assume that the income elasticity of money demand anc the ir eerest rate semi-elasticity are 1 , thus $b=c=1$.

4 Under he assu nption that both PPP and IRP hold, we get the basic form of the monetary model, dt....d as BMF: ${ }^{4}$

$$
\begin{equation*}
x_{4, t}=a\left(m_{t}-m_{t}^{*}\right)-b\left(y_{t}-y_{t}^{*}\right)-s_{t} \tag{4}
\end{equation*}
$$

[^3]where a and b are also assumed to be equal to 1 .

Candidate predictors x_{5} to x_{13} are all Taylor rule variants (Taylor, 1093). saylor rules unveil the mechanism with which each central bank determines the shor ${ }^{+}$-ter +1 nominal interest rate by taking into account variables, such as the inflation rate, the \sim rge \quad inflation rate and the percentage deviation of actual real GDP from an estimate of it r tent.ll level. Assuming that both the domestic and the foreign central bank employs a T_{ε} lor rule and IRP holds, the general form of our Taylor rule predictors is given by the respr 'ive u°. erences of short-term interest rates, as follows:

$$
\begin{equation*}
x_{t}=i_{t}-i_{t}^{*}=a_{0}+a_{1} \pi_{t}-a_{1}^{*} \pi_{t}^{*}+a_{2} g_{t}-a_{2}^{*} g_{t}^{*}+{ }_{3} e^{+}+a i_{t-1}-a_{4}^{*} i_{t-1}^{*}+\eta_{t} \tag{5}
\end{equation*}
$$

where $\pi_{t}\left(\pi_{t}^{*}\right)$ is the domestic (foreign) inflation rate, $g_{t}\left(y_{t}\right.$, is the domestic (foreign) output gap, e_{t} is the real exchange rate, i.e. $e_{t}=s_{t}-p_{t}+p_{t}^{*}$, a. ${ }^{\prime} \eta_{t} \mathrm{j}$ the error term. The output gap is measured as the (percentage) deviation of real outpu. from an estimate of its potential level and is computed with the use of the Hodrick-Presu ${ }^{+} \mathrm{t}$ filter. At each point of the out-of-sample period, equation (5) is re-estimated to give the ~rodicto (in general form) as follows:

$$
\begin{equation*}
x_{t}=\hat{\varphi}_{0}+\hat{\varphi}_{1} \pi_{t}-\hat{\varphi}_{1}^{*} \pi_{t}^{*}+\hat{\varphi}_{2} g_{t}-\hat{\imath}_{9}^{*} y_{t}^{*}+\hat{\varphi}_{3} e_{t}+\hat{\varphi}_{4} i_{t-1}-\hat{\varphi}_{4}^{*} i_{t-1}^{*} \tag{6}
\end{equation*}
$$

Several specifications, nested in equation «么, give rise to our predictors. ${ }^{5}$ First, Taylor rules can be homogeneous or heterogeneous depending on the response of central Banks to deviations from inflation rate, output gap and intert. t rate targets. If $\hat{\varphi}_{1}=\hat{\varphi}_{1}^{*}, \hat{\varphi}_{2}=\hat{\varphi}_{2}^{*}, \hat{\varphi}_{4}=\hat{\varphi}_{4}^{*}$, the rule is homogeneous, otherwise, the.$^{-1} \mathrm{j}$ heterogeneous. Second, Central Banks may want to avoid abrupt changes in the 1 , vel of interest rates and choose to follow a smoothing interest rate adjustment policy, i.e. $\hat{\zeta}_{4} \neq \bigcap$ a $\downarrow \hat{\varphi}_{4}^{*} \neq 0$. Finally, if Central Banks do not take into account possible deviations $A^{\text {he }}$ e real exchange rate from its targeted level, so that $\hat{\varphi}_{3}=0$, the specification is called symm ${ }^{\sim}$ ric ($\hat{\varphi}_{3} \neq 0$ for asymmetric). Specifically, we employ the following predictors:
5. the homogeneo s as y mmetric Taylor rule without interest rate smoothing and fixed weights (HOAfw):

$$
\begin{equation*}
x_{5, t}=\hat{\varphi}_{1}\left(\pi_{t}-\pi_{t}^{*}\right)+\hat{\varphi}_{2}\left(g_{t}-g_{t}^{*}\right)+\hat{\varphi}_{3} e_{t} \tag{7}
\end{equation*}
$$

The par neters $\left[\hat{\varphi}_{1}, \hat{\varphi}_{2}, \hat{\varphi}_{3}\right]$ are set equal to $[1.5,0.1,0.1]$ (Engel, Mark and West, 2008; Chen a id Cho i, 2010; Beckmann and Schüssler, 2016; Della Corte and Tsiakas, 2012).
6. the on o reous symmetric Taylor rule without interest rate smoothing (HOS):

$$
x_{6, t}=\hat{\varphi}_{1}\left(\pi_{t}-\pi_{t}^{*}\right)+\hat{\varphi}_{2}\left(g_{t}-g_{t}^{*}\right)
$$

[^4]7. the homogeneous symmetric Taylor rule with interest rate smoothing (T.OSS):
\[

$$
\begin{equation*}
x_{7, t}=\hat{\varphi}_{1}\left(\pi_{t}-\pi_{t}^{*}\right)+\hat{\varphi}_{2}\left(g_{t}-g_{t}^{*}\right)+\hat{\varphi}_{4}\left(i_{t-1}-i_{t-}^{*}\right. \tag{8}
\end{equation*}
$$

\]

8. the homogeneous asymmetric Taylor rule without interest rate sı nothı 3 (HOA):

$$
\begin{equation*}
x_{8, t}=\hat{\varphi}_{1}\left(\pi_{t}-\pi_{t}^{*}\right)+\hat{\varphi}_{2}\left(g_{t}-g_{t}^{*}\right)+\mathfrak{r}_{2} e_{t} \tag{9}
\end{equation*}
$$

9. the homogeneous asymmetric Taylor rule with interest rite smo thing (HOAS):

$$
\begin{equation*}
x_{9, t}=\hat{\varphi}_{1}\left(\pi_{t}-\pi_{t}^{*}\right)+\hat{\varphi}_{2}\left(g_{t}-g_{t}^{*}\right)+\psi \cdot e_{t} \quad \varphi_{k}\left(i_{t-1}-i_{t-1}^{*}\right) \tag{10}
\end{equation*}
$$

10. the heterogeneous symmetric Taylor rule without intere: ${ }^{\text {s }}$ rate smoothing (HES):

$$
\begin{equation*}
x_{10, t}=\hat{\varphi}_{1} \pi_{t}-\hat{\varphi}_{1}^{*} \pi_{t}^{*}+4 . \imath_{t}-\hat{\varphi}_{2} g_{t}^{*} \tag{11}
\end{equation*}
$$

11. the heterogeneous symmetric Taylor rule viun arest rate smoothing (HESS):

$$
\begin{equation*}
x_{11, t}=\hat{\varphi}_{1} \pi_{t}-\hat{\varphi}_{1}^{*} \pi_{t}^{*}+v_{2}{ }_{2}^{*}-\hat{\varphi}_{2} g_{t}^{*}+\hat{\varphi}_{4} i_{t-1}-\hat{\varphi}_{4}^{*} i_{t-1}^{*} \tag{12}
\end{equation*}
$$

12. the heterogeneous asymmetric Taylor rus without interest rate smoothing (HEA):

$$
\begin{equation*}
x_{12, t}=\hat{\rho}_{1} \pi_{t}-\hat{\varphi}_{1}^{*} \pi_{t}^{*}+\hat{\varphi}_{2} g_{t}-\hat{\varphi}_{2} g_{t}^{*}+\hat{\varphi}_{3} e_{t} \tag{13}
\end{equation*}
$$

13. the heterogeneous asymme i. Ta lor rule with interest rate smoothing (HEAS):

$$
\begin{equation*}
x_{13, t}=\hat{\varphi}_{1} \pi_{t} \quad \hat{\varphi}_{1}^{*} \pi_{t}^{*}+\hat{\varphi}_{2} g_{t}-\hat{\varphi}_{2} g_{t}^{*}+\hat{\varphi}_{3} e_{t}+\hat{\varphi}_{4} i_{t-1}-\hat{\varphi}_{4}^{*} i_{t-1}^{*} \tag{14}
\end{equation*}
$$

2.2 Technical Indica rs

Technical rules can k' sp it in oo two broad categories; charting and mechanical methods. Charting is the oldest m hod ι° 'he two and relies on graphs of historical prices over a specific time period. Chartists use sul jective criteria to understand and identify patterns in spot prices. On the other hand mennical rules, which are the focus of our study, generate buy/sell signals based on sim le or x ore complex mathematical functions of past and current data. We employ a few well-know. uechanical rules, such as moving average rules, momentum indicators and

[^5]change subject to past prices, while relative strength indices take into account ooth the velocity and magnitude of directional price movements.

More in detail, we employ eleven technical indicators based on four si ${ }_{4}$. $\frac{1}{}$ and widely used trend following rules. The first rule is a moving-average ($M A$) rule tha, re' erates buying and selling signals comparing the moving averages of a long period with a su vt pt.iod. This rule is formed as follows:

$$
x_{i, t}=\left\{\begin{array}{l}
1 \text { if } M A_{s, t} \succeq M A_{l, t} \\
0 \text { if } M A_{s, t} \prec M A_{l, t}
\end{array}\right\}, M A_{j, t}=(1 / j) \sum_{i=1}^{j-1} S_{t-\imath} \text { for } j=s, l
$$

where S_{t} is the spot exchange rate and s, l denote the shor and ${ }^{1}$ ng period, respectively. The $M A$ rule aims at identified changes in spot price trends. $\mathrm{L}_{\text {, cons ruction, the indicator shifts }}$ more rapidly when it is created in the short-run, as recen u rice changes have comparatively more weight. For example, if during one period prices i. reasf, then $M A_{s}$ gets a faster upward trend and if it exceeds (crosses) $M A_{l}$, it creates a buy signal, and vice versa. We consider s equal to $[1,2,3]$ months and l equal to $[9,12]$ mont. and denote the related rule by $M A(s, l)$.

The second rule we apply is the momentur (MON) technical indicator (see, for example, Buncic and Piras, 2016 and Neely, Rapach, T_{l}.nd Zhou, 2014). The signal is generated according to the relationship of current price. . ${ }^{\text {:th }}$ h he past prices, as follows:

$$
x_{i, t}=\left\{\begin{array}{c}
\text { if } S_{t} \succeq S_{t-k} \\
0 \text { if } S_{t} \prec S_{t-k}
\end{array}\right\}
$$

If current prices are higher than $k \mathrm{p}$ riods b fore, then a buy signal is generated, and vice versa. We set the k month lag equal to 9,12] a \ldots, denote the related predictors by $\operatorname{MOM}(k)$.

The third rule is the Relati. ${ }^{5}$ irer sth Index (RSI). ${ }^{7}$ This rule is a momentum oscillator that measures the speed and hange u. price movements by taking into account the magnitude of recent gains or losses. It vakes . lues between 0 to 100 and is given by the following formula:

$$
x_{i, t}=100-\frac{100}{1+\frac{M A_{t}^{(n)}\left(d c_{t}\right)}{M A_{t}^{(n)}\left(u c_{t}\right)}}
$$

where $M A_{t}^{(n)}$ der stes the n-period Moving Average of upclose or downclose measures, defined as:

$$
u c_{t}=\left\{\begin{array}{cc}
\Delta S_{t} \text { if } \Delta S_{t}>0 \\
0 & \text { otherwise }
\end{array}\right\} \text { and } d c_{t}=\left\{\begin{array}{cc}
-\Delta S_{t} \text { if } \Delta S_{t}<0 \\
0 & \text { otherwise }
\end{array}\right\}
$$

The higher the value of the index, the more intense the signal is regarding the presence of overbought conditions in the market, and vice versa. We employ two versions of the index for

[^6]$n=[7,14]$, i.e. 7 and 14 months.
The last rule we apply is the Exponential Moving Average (EMA). T iis . - le gives more weight on the more recent observations and as a result it responds fast ${ }_{\mu}{ }^{\circ} \mathrm{n}$ recent changes. The signals are generated by comparing the EMA of a long period with ${ }^{\text {ha }}$ of a short period, similar to the case of the simple MA, i.e.
\[

x_{i, t}=\left\{$$
\begin{array}{l}
1 \text { if } E M A_{s, t} \succeq E M A_{l, t} \\
0 \text { if } E M A_{s, t} \prec E M A_{l, t}
\end{array}
$$\right\}, E M A_{t}=\left(S_{t}-E M A_{t-} \quad * m+E M A_{t-1}\right.
\]

where m is a weighting multiplier, or else an accelerator, given $\because m=\frac{2}{j+1}$ where $j=s, l$. The $E M A(s, l)$ rule we employ sets $s=5$ and $l=12$.

3 Predictive Models, Forecast Construct on and Evaluation

In this section, we describe the forecasting approaches re follow. One step ahead forecasts are generated by continuously updating the estima: ${ }^{\circ} \mathrm{n}$ window, i.e. following a recursive (expanding) window. ${ }^{8}$ More specifically, we div: . ${ }^{1}$. total sample of T observations into an in-sample portion of the first M observations aı. an out-of-sample portion of $P=T-M$ observations used for forecasting. The estima iu. window is continuously updated following a recursive scheme, by adding one observat. $\tau_{1} \Sigma^{+}+$. e estimation sample at each step. Proceeding in this way through the end of the out-of-sampı period, we generate a series of P out-of-sample forecasts for the exchange rates retu as.

3.1 Univariate models

Our empirical analysis is base i on simple linear predictive model:

$$
\begin{equation*}
\Delta s_{i, t+1}=a_{i}+\beta_{i} \Delta x_{i, t}+u_{i, t+1} \tag{15}
\end{equation*}
$$

where $\Delta s_{i, t+1}$ is the 1 -monu. \log return of the exchange rate, $\Delta x_{i, t}$ are the candidate predictors i, in first differences, wi,h $i=1, . ., 13$ for macroeconomic predictors and $i=14, \ldots, 24$ for technical indicators, a_{i}, β_{i} are cot an to be estimated and $u_{i, t+1}$ is the error term. Typically, equation (15) is estimated by lea t squares at each point of the out-of-sample period giving one-month ahead forecasts as follor s;

$$
\begin{equation*}
\Delta \hat{s}_{i, t+1}=\hat{a}_{i}+\hat{b}_{i} \Delta x_{i, t} \tag{16}
\end{equation*}
$$

[^7]
3.2 Principal Component models

In order to incorporate information from multiple variables/predictors, we est. ate predictive regressions based on principal components. Extracting principal om onents is a simple technique that summarizes and extracts information from a large gic n of variables and at the same time reduces dimensionality. Via principal components, し.r set of predictors $\Delta \mathbf{x}_{t}=\left(\Delta x_{1, t}, \ldots, \Delta x_{N, t}\right)$ are transformed to new uncorrelated va abl ${ }^{\circ}, \hat{r}_{t}^{j}=\left(\hat{F}_{1, t}^{j}, \ldots, \hat{F}_{N, t}^{j}\right)$. We consider three pools of predictors, $j=E C O N, T E C H, A L L$. to macroeconomic/fundamental predictors, technical indicators or the entire set of predic ors taı n_{n} together, respectively. In practice, we need to take into account the first few K principaı ${ }^{\circ} \mathrm{mm}^{r}$ snents which incorporate most of the predictors' information. To this end, at each F jint II_{1} the out-of-sample period, we select the optimal number of components (K) via the ${ }^{\text {Schwarz }}{ }^{\top}$ formation Criterion (SIC). ${ }^{9}$ The monthly out-of-sample forecasts of principal componen. models extracted from the j-th pool of predictors are denoted as $P C-E C O N, P C-\uparrow\llcorner 工 H$ and $P C-A L L$ and are given by the following equation:

$$
\begin{equation*}
\Delta \hat{s}_{t+1}^{(j)}=\hat{a}+\sum_{k=1}^{K} \hat{b}_{k} \hat{F}_{k, t}^{(j)} \quad f_{c} \cdot \jmath-\Xi C O N, T E C H, A L L \tag{17}
\end{equation*}
$$

where $\hat{F}_{k, t}^{(j)}$ is the k-th principal component of $\imath \boldsymbol{\text { he }} \boldsymbol{\jmath}$-th pool of predictors recursively estimated until time t, \hat{a} and \hat{b}_{k} are constants estimate. via reast squares and K is the SIC-selected number of principal components.

3.3 Combined Forecasts

Another popular approach aim. r.t rf lucing model uncertainty and efficiently incorporating information from a large set of pott-ıtial predictors is forecast combination (see, inter alia, Timmermann, 2006; De Zwart, 1 'rrkwat, Swinkels and van Dijk, 2009; Rapach, Strauss and Zhou, 2010; Beckmann a d : chüssler, 2016; Buncic and Piras, 2016). We employ the simplest combination scheme prop $-d$ in the literature, namely the naive equally weighted one and employ it for the thre se s of predictors considered. Specifically, the combination forecasts are given by the following : rm .a;

$$
\begin{equation*}
\hat{c}_{\hat{a}^{(j}+1}^{(j)}=\sum_{i=1}^{N_{j}} \frac{1}{N_{j}} \Delta \hat{s}_{i, t+1}^{(j)} \quad \text { for } j=E C O N, T E C H, A L L \tag{18}
\end{equation*}
$$

where $\Delta \hat{s}^{(j)}$. is tue combined forecast of the respective group j, N_{j} is the number of predictors included in r oup $j\left(N_{E C O N}=13, N_{T E C H}=11\right.$ and $\left.N_{A L L}=24\right)$ and $\Delta \hat{s}_{i, t+1}^{(j)}$ is the forecast

[^8]computed from predictor i that belongs to the group j. We refer to these forec sts as $P O O L-j$.
Finally, we create an amalgamation of forecasts (see Rapach and Strar is, . ${ }^{2} 12$; Meligkotsidou, Panopoulou, Vrontos and Vrontos, 2014). Specifically, we combir he POOL-ALL and $P C-A L L$ forecasts computed from the forecast combination ari pr ncipal component approaches under a naive combination scheme and form a new forecası, $F C^{\prime}-A M A L G$. This forecasting strategy can prove beneficial in the event that inform dic concained in the two forecasting approaches is discrete. ${ }^{10}$

3.4 Statistical evaluation

We evaluate the forecasting ability of our proposed model / sr . ifications by comparing their forecasting performance relative to the random walk (RW) model. which sets $\beta_{i}=0$ in equation (15). This model is the standard benchmark in the literatu. on exchange rate predictability since the seminal work of Meese and Rogoff (1983). "Ne $\mathrm{f}_{\text {rst }}$ calculate the Campbell and Thompson (2008) out-of-sample $R^{2}\left(R_{O O S}^{2}\right)$ metric as $\mathrm{t}_{\bullet}{ }^{\circ}$ ขws;

$$
\begin{equation*}
R_{O O S}^{2}=1-\frac{M S_{\perp} \Gamma_{q}}{M:\left\ulcorner L_{R W}^{\prime}\right.} \tag{19}
\end{equation*}
$$

$R_{O O S}^{2}$ measures the proportional reduction i. Teaı 2 Square Forecast Error (MSFEq) of the q competing model/ specification relative to that of the RW ($M S F E_{R W}$). If $R_{O O S}^{2}>0$ then the proposed model has better forecasting ability than the benchmark.

To test for the statistical significano of forecast improvements we employ the Clark and West (2007) MSFE - adjusted st tistic. This statistic is suitable for comparisons of nested models, as it accounts for addition l l paran ${ }^{n}$ ter estimation (bias) introduced by the larger model. In our case, the benchmark RV m,del is nested in all competing specifications. The test is calculated as follows:
$M S F E$-adjusted $\left.=\left(\frac{1}{P}\right) \sum_{t=M+1}^{\Gamma-1}\left\{\left(\Delta s_{t+1}-\Delta \hat{s}_{t+1}^{(R W)}\right)^{2}-\left[\left(\Delta s_{t+1}-\Delta \hat{s}_{t+1}^{(q)}\right)^{2}-\left(\Delta \hat{s}_{t+1}^{(R W)}-\Delta \hat{s}_{t+1}^{(q)}\right)^{2}\right]\right\}\right\}$
where P is the num ser of cut-of-sample forecasts, M is the number of in-sample observations, T is the total nu nk of observations and q is the proposed model under consideration. The null lypotht is of the test is $H_{0}: M S F E_{R W} \leq M S F E_{q}$ against the alternative $H_{1}: M S F E_{R W}-M^{c} F E_{q}$. Clark and West (2007) show that critical values based on the standard nor nal di ' ribution can provide a good approximation to the distribution of the test.

Following, $\mathrm{rmor}^{\text {s }}$ others, Meligkotsidou, Panopoulou, Vrontos and Vrontos (2014); Neely, Rapach, ú Thou (2014); Bergman and Hansson (2005); Rapach and Wohar (2002), we use encompa sing tests in order to check whether the principal components and the combined forecasts contain distinct information or encompass each other. Specifically, consider forming a

[^9]composite forecast, $\hat{r}_{c, t+1}$, as a convex combination of model A forecasts, $\hat{r}_{A}{ }_{+1}$, and the ones of model B, $\hat{r}_{B, t+1}$, in an optimal way so that $\hat{r}_{c, t+1}=\lambda_{A} \hat{r}_{A, t+1}+\lambda_{B} \hat{r}_{B, t-1}, \ldots+\lambda_{B}=1$. If the optimal weight attached to model A forecasts is zero $\left(\lambda_{A}=0\right)$, th \ldots nodel B forecasts encompass model A forecasts in the sense that model B contains a sign. ${ }^{\text {icca }}$, tly larger amount of information than that already contained in model A. Harvey, Leybour. ॰ anc Newbold (1998) developed the encompassing test, denoted as $E N C-T$, based on t'e a mroach of Diebold and Mariano (1995) to test the null hypothesis that $\lambda_{A}=0$, againsu +r e alternative hypothesis that $\lambda_{A}>0$. Let $u_{A, t+1}=r_{t+1}-\hat{r}_{A, t+1}, u_{B, t+1}=r_{t+1}-\hat{r}_{B, t} 1$ denote the forecast errors of the competing models A and B, respectively and define $d_{t+1}=\left(u_{B .+1}-u_{A, t+1}\right) u_{B, t+1}$. The $E N C-T$ statistic is given by:
$$
E N C-T=\sqrt{P} \frac{\bar{d}}{\sqrt{\widehat{!\pi r}(d)}}
$$
where \bar{d} is the sample mean, $\widehat{\operatorname{Var}}(d)$ is the sample-varionn. of $\left\{d_{s+1}\right\}_{s=M}^{T-1}$ and P is the length of the out-of-sample evaluation window. The $E N C-1,-$ 'atistic is asymptotically distributed as a standard normal variate under the null hypothe is. su improve the finite sample performance, the authors recommend employing Studen ${ }^{\star} \cdot t$ a tribution with $P-1$ degrees of freedom. To render a model as superior in forecasting c blucy, one also needs to test whether model A forecasts encompass model B forecasts ($\lambda_{B} \div 0$) yy employing the $E N C-T$ statistic based on $d_{t+1}=\left(u_{A, t+1}-u_{B, t+1}\right) u_{A, t+1}$. When both null hypotheses are rejected, then the competing models contain discrete information abou the future and an optimal convex $\left(\lambda_{A}, \lambda_{B} \in(0,1)\right)$ combination forecast can be formed. $\mathrm{I}_{\mathrm{n}} \mathrm{f}$ ie event that none of the hypotheses of interest is rejected, both models contain si nile information and the competing models are equivalent in terms of forecasting ability. Vhen. n^{\prime} of the null hypotheses is rejected, then the respective model forecasts dominate tr \therefore recasts of the competing model.

4 Empirical Fin. Ti.ags

In this section we F nvi e a brief description of the data used in the empirical analysis and discuss key develo ${ }^{r}$...ents \cdots the exchange rate market. Next, we present our findings regarding the statistical ev luation of our forecasting approaches. We also describe the performance of predictors/ m^{-1} ls $u .{ }^{2}$ time, as well as the factors driving it.

4.1 Data

Our sample - Jnsists of monthly post-Bretton Woods data spanning from January 1974 to December 2014. We employ six of the most frequently traded currencies among industrialized economies that float freely; namely the British Sterling (GBP), the Japanese Yen (YEN), the

Swiss Franc (CHF), the Norwegian Krone (NOK), the Australian Dollar (AU'ر) and the Canadian Dollar (CAD). Following the standard convention in the literature, we mploy the US dollar as the base currency. Our main datasources are the OECD, IMF \& ... FRED databases. Exchange rate returns are log-returns computed from differences in the ${ }^{1} \mathrm{~g} g$ spot prices. Price levels are proxied by the Consumer Price Index (CPI) and inflation ra. \wedge^{ς} ar calculated from the y-o-y growth rates of prices. We employ the industrial producti n i idex and the M3 monetary aggregate for the income and money supply levels. Interest ra ar are short-term rates. In order to estimate the output gap, we apply the Hodrick-Prescot ${ }^{+}$Ilter on whe monthly industrial production index. The data sources and codes of the variables .mploy d are presented in Table 1. ${ }^{11}$

[TABLE 1 AROUND H•RE]

Table 2 (Panel A) presents the descriptive statist.- of ne exchange rate returns under consideration. Over the period under examination, \AA^{\top} TD has the highest return (for a US investor), while CAD is the least volatile one. On $\downarrow . \imath$ other hand, CHF and YEN are associated with significant negative returns of -0.24% and $\cap 17 \%$ per month, respectively. CAD and AUD are the most leptokurtic ones, while YEN and $\mathrm{C}_{1}{ }^{\boldsymbol{T}}$ are negatively skewed.
[TABLE 2 Ak JUND HERE]
In order to get a better understanding of the evolution of exchange rates over time, we plot the respective spot exchange rates ir Figu e 1. Overall, the post-Bretton Woods era (1973) is marked with events that significantly \sim ffect d exchange rate markets such as the establishment of the Exchange Rate Mechanisr (Er.M, 1979) in Europe, the Plaza Accord (1985), the United States productivity boom in the 'sc' th ERM crisis (1992-1994), and finally the recent financial turmoil in 2008. A closer lc \therefore at Figure 1 shows that at the early 80's, USD experienced an intense appreciation for a few years exerting pressure on all the exchange rates we consider. This depreciation is mor : pr nounced for GBP, NOK, CHF and AUD, while milder for YEN and CAD. The Plaza Accu ${ }^{+}$in 1985 triggered a sharp depreciation of the US dollar. This behavior of the US rolle is haracterized as the "dollar cycle" by Qi and Wu (2003). ${ }^{12}$ This trend dies out a fewr yeu` rater followed by a relatively stable period until 1992-1994, when the ERM crisis ; ad the events of Black Wednesday in September 1992 flamed uncertainty in the exchange rate \ldots. t , triggering another appreciation of the USD. In the nineties, the fast growth of th \geqslant US e onomy in relation to the other developed countries led to an increased demand for L : ace ts (both private equities and bonds), which in turn led to a continuous dollar apt ect vin until 2001 (Blanchard, Giavazzi and Sa, 2005). The burst of the dotcom

[^10]bubble in 2001 led to another prolonged period of dollar depreciation until rou hly the outburst of the financial crisis in 2008，a year flagged by the collapse of Lehmann Brr iht．in September and the vast quantitative easing program of the Fed two months later．reover，the recent financial crisis coincides with a huge rise in the crude oil and commodit，nr ees in general that seem to also have an impact on the currency market（see，inter alia，Liza．ㄱo aıı 1 Mollick，2010）． A spillover effect between commodities and the US dollar has been oc imented（Akram，2004） and currencies，such as NOK，CAD and AUD，are found to be lin ${ }^{\circ}-a$, with commodity prices （see among others Ferraro，Rogoff and Rossi，2015）．It is notew rthy that both YEN and CHF seem to be immune to the recent financial crisis．As far as CH is cor cerned，uncertainty over the eurozone outlook has triggered a huge overvaluation of une currency，considered as a safe haven and resulting in further appreciation．Finally，the $\mathrm{Ja}_{1}{ }^{\wedge}$ ，．ese IEN has further depreciated during 2013 following the announcement of an＂aggressive－＇onetary easing＂program that was expected to double money supply and push the excha．re rate aven lower．

4．2 Out－of－sample performance

One step ahead forecasts are generated by cor noncly updating the estimation window，i．e． following a recursive（expanding）window．More ：ecifically，we divide the total sample of $T=$ 492 observations（January 1974 to December $\left\llcorner\mathcal{1}^{\circ} \stackrel{\wedge}{\prime}\right.$＇into an in－sample portion of the first $M=60$ observations（January 1974 to December－ハーっ」 〕lan out－of－sample portion of $P=T-M=432$ observations used for forecasting（January 19r：to December 2014）．${ }^{13}$

Table 3 reports the out－of－sampl pte ${ }^{\text {＇}}$ rmance $\left(R_{O O S}^{2}\right.$ and level of statistical significance） of the proposed models／specificatic ©．Th ：Table is divided into four Panels．Panel A shows the forecasting performance of th $;$ indiviaual predictors．Panels B and C report the pooled and principal components forecasts（ \because uat ons（18）and（17））．Specifically，Panel B presents the performance of principal cor ．onent turecasts extracted from two distinct groups of predictors； macroeconomic predictors and tec．ical indicators，as well as the corresponding combined fore－ casts．Panel C reports th ；re ited forecasts extracted from both macroeconomic predictors and technical indicators，a^{1} ong ith the respective combined forecasts．Finally，Panel D presents the results for the ar alg of forecasts．

［TABLE 3 AROUND HERE］

Our findir wilı respect to individual predictors（Table 3，Panel A）suggest that a few predictors pr svide ci nsistently superior forecasts（relative to RW）irrespective of the currency under consideravivi．Overall，the best predictors in terms of $R_{O O S}^{2}$ are $B M F, P P P, M A(1,9)$ ， $R S I(7)$ an，$V S I(14)$ ．Depending on the currency，the best predictor varies．For example，for

[^11]GBP，YEN and CHF，the highest $R_{O O S}^{2}$ is attained by $P P P$ ，while for NOK a ad AUD $R S I(14)$ emerges as the most accurate one．${ }^{14}$

More in detail，regarding macroeconomic predictors，$B M F$ and $P P P$ ．．prove forecasts in all currencies under consideration，while $I R P$ and $P P P$ in three out of ix currencies；namely GBP，NOK and CHF．Taylor rules emerge as the worst performing pı dicto $\boldsymbol{\iota}_{\perp}$ ．In particular， among this set of predictors the best performing ones are $H O A f w$ ar $\downarrow \downarrow$ 有 A improving forecasts in all currencies but YEN and CAD．However，five Taylor rule varı $n t$ ，are useful in predicting AUD and to a lesser extent CHF．On the other hand，most r arrenries tend to be predicted by technical indicators．$M A(1,9), R S I(7)$ and $R S I(14)$ eme re as sperior as they improve forecasts in all currencies under examination，followed by $M_{\wedge}(1.1 亡), M A(2,9)$ and $M O M(12)$ ． It is interesting to note that the highest $R_{O O S}^{2}$ values a a uchi ved by the $R S I$ predictors exceeding 4.5% in all cases．

Overall，our findings so far suggest that both indivi ${ }^{1}$ י＇al ma roeconomic predictors and tech－ nical indicators can help forecasting exchange rates $w^{\circ}+\mathrm{h}$ tne overall performance of technical indicators being superior to that of macroeconon－preutctors．However，since a considerable amount of uncertainty exists with respect to the choice f the predictor，we next check whether combined forecasts and principal components for a a cs can deliver a more consistent and reliable performance．Panel B reports the related $\mathrm{f}_{1} \cdot{ }^{\prime}: \eta g \mathrm{n}$ ．With the exception of the $P C-E C O N$ predictors for CAD，combined forecasts and p．incipal components ones extracted from both groups of predictors are associated with hig．nositive $R_{O O S}^{2}$ values which are statistically sig－ nificant at the 1% level．For $P O O L-\square C O N, R_{O O S}^{2}$ values range from 0.98%（CAD）to 5.65% （AUD），while the respective values for $P C-E C O N$ are 3.50%（NOK）and 11.04%（AUD）． Interestingly，both POOL－TECH aı ${ }^{\prime}$＇${ }^{\prime} C-T E C H$ are superior to $P O O L-E C O N$ and $P C-E C O N$ ，with a few excer ion ．Sr ecifically，$P C-T E C H$ improves forecast accuracy by 2.40%（CAD）to 6.95%（NOF）and $\Im ノ O L-T E C H$ by $1.33 \% ~(\mathrm{CAD})$ to 4.80%（CHF）．

Next，we consider comb nea ${ }^{\text {© }}$ recasts and principal components extracted from the entire set of predictors，shown „I Danel C．Combined forecasts generated from all the predictors $(P O O L-A L L)$ show sto ${ }^{\text {nif }}$ cant predictive accuracy，since $R_{O O S}^{2}$ values range from 1.18% to 5.10% and are statist；allv sigıificant at the 1% level．More importantly，principal components extracted from the fuı．i．forr ation set $(P C-A L L)$ dominate all specifications considered so far． For GBP，YEN，N UK a 1 CHF，$R_{O O S}^{2}$ values are almost equally high at $6.06 \%, 6.49 \%, 7.76 \%$ and 6.67% ，respe tively．Even for CAD that was hard to predict so far，we get a respectful value of $3.63{ }^{\sigma}{ }_{\mathrm{J}}$ ．As expected，the corresponding value for AUD increases to 12.05% ．Finally， when combir ng bot $\perp P O O L-A L L$ and $P C-A L L$ into a＇grand＇forecast $(F C-A M A L G)$ ， our findirm（Panel D）point to increased forecasting benefits for GBP，YEN and CHF，since $R_{O O S}^{2}$ rises ‘ $7.81 \%, 6.81 \%$ and 7.57% ，respectively．For NOK and AUD，$R_{O O S}^{2}$ are quite high

[^12]at 7.38% and 10.17% respectively, although they are lower than the $P C-A L$ counterparts of 7.76% and 12.05%.

Overall, there is compelling evidence so far that macroeconomic pre in ors and technical indicators work complementarily, i.e. they include different types of infc me ion that is mainly exploited by principal components, in contrast to combined forecasts. -rrth cmore, amalgam forecasts seem to offer a superior and consistent performance across t te ilaiorlty of the exchange rates considered. In order to shed light on these issues, we report m_{L}. ncompassing test results in Table 4.

[TABLE 4 AROUND HERF]

Focusing on principal components, we observe that no $\varsigma C-T E C H$ encompasses $P C-$ $E C O N$, with the exception of CAD, and no $P C-E C O N$ elı \urcorner mpasses any $P C-T E C H$, with the exception of AUD. Hence, $P C-T E C H$ and $\left.P C \cdot E C^{\prime}\right) N$ contain discrete information about the future for the majority of currencies. Recalı hat AUD is the only currency where $P C-E C O N$ delivers significantly higher $R_{O O S}^{2}$ va' ${ }^{\prime}$ 'es than $P C-T E C H$ and $P C-T E C H$ delivers a positive $R_{O O S}^{2}$ for CAD as opposed norative one for $P C-E C O N$. Looking at the combined forecasts, our findings suggest that ${ }^{`}$ r r all currencies, apart from AUD, $P O O L-$ $T E C H$ encompasses $P O O L-E C O N$ (ana nu' vice versa), i.e. $P O O L-T E C H$ contain information beyond that provided by $P C \because, \square C O N$. In the case of AUD, $P O O L-E C O N$ encompasses $P O O L-T E C H$. These findings onfirm our earlier ones. In a nutshell, $P O O L-$ TECH outperforms both POOL - $-\imath^{\imath N}$ and POOL - ALL for all currencies, except for
 and $P C-A L L$. We find that $P(, O I-九 L L$ does not encompass $P C-A L L$ for any currency, whereas, the respective test rev r^{\prime} 's th it $P C-A L L$ encompasses $P O O L-A L L$ for NOK, CAD and AUD. These curre sies are the ones for which $F C-A M A L G$ does not outperform $P C-A L L$. Overall, our results con - borate the complementarity between information embedded in the two types of predi tor: that can enhance foreign exchange predictability further.

4.3 What drive th s forecasting performance?

The statistical eve' ation Iour candidate predictors showed that technical indicators perform better than macı jecono ic predictors and that the two groups of predictors contain different types of inform tion inat is exploitable if we extract principal components from all candidate predictors. l ence, ${ }^{`} C-A L L$ constitutes a fairly strong forecasting strategy. Moreover, the 'grand' predictu. $\quad{ }^{\prime}$ ' $-A M A L G$ demonstrates better forecasting ability when $P O O L-A L L$ and $P C-A L_{\perp}$ dr nut encompass each other. In this section, we check whether the corresponding performance . consistent over time or our results tend to be sensitive to particular periods of time. As reported in section 4.1, there are various historical periods considered as rather important for the course of exchange rates. To this end, we report the difference between
the cumulative squared prediction error of the benchmark and the respectiv predictor. Over times of increase in this metric, the benchmark model is outperformed by the "ival, and vice versa. In addition, since the metric is by default constructed as a cumulat; c lifference between squared errors, a positive end-of-period value points to a better out-of- $\sim \mathrm{m}$, le performance of the candidate specification over the RW benchmark model.

We begin the analysis with GBP. Figure 2 presents the three jes neriorming predictors $(P P P, R S I(14)$ and $B M F)$ and the three worst performing ones ($\Lambda^{-}{ }^{\prime}$), $H E A$ and $M A(3,12)$). As shown in Figure 2, the best performing predictors tend to ou perform ihe benchmark almost throughout the entire period under consideration. However, he pre lictors experience some boosts in their performance, closely related to significant er its around those periods. Specifically, these periods are during mid-1985, at the second halt $\ddagger \perp 992$ and the second half of 2008, coinciding with the Plaza Accord, the events of Black Wec esuay ending in the withdrawal of British sterling from the ERM mechanism, and finally, the rec nt financial crisis. It seems that the respective predictors react quicker than the benctu ark auring periods of crisis and abrupt changes. Excluding the turbulent periods, the be: imman and the candidate predictors do not deviate significantly in terms of squared errors nver tilı.. Quite importantly, while $\operatorname{RSI}(14)$ is overall one of the best individual predictors, wt h; ve to note that during the period between mid-1992 to mid-2001, $\operatorname{RSI}(14)$ is outperforı. ' ' by the benchmark pointing to a quite unstable performance. Its performance further picks up vith the outburst of the financial crisis, where significant gains are observed. Turning to the worst performing predictors, we observe that this is quite erratic showing some gains in the beginning of the out-of-sample period, but failing to adapt for the most part of the samr te.

'IIC JRE 2 AROUND HERE]

Since our focus is on alt native ways of summarizing predictor information, we report in Figures $3-8$ the performance of $工 O O L-j, P C-j$ and $F C-A M A L G$ (for $j=E C O N$, $T E C H, A L L)$ for all thr cur encies considered. Figure 3 shows the respective performance for GBP. Overall, it is evirent at combined forecasts and $F C-A M A L G$ have a much smoother increasing path over 1 me in c \quad mparison to principal components. All specifications benefit from crises but in calm nerı' 's. they display either modest improvements (POOL) or even losses $(P C)$ in forecast ng acc racy if compared to the benchmark. The performance over time for $P O O L-E C O N, \wedge^{\wedge},-T E C H$ and $P O O L-A L L$ is more or less similar. Likewise, the paths of $P C-j$ ar suite similar. In particular, $P C-T E C H$ manages to generate better forecasts during periodi of cr sis but loses predictability during relatively tranquil periods, in contrast to $P C-E C$ 』r $\because \int-A L L$ is much smoother than $P C-T E C H$, but at the same time, suffers during perio , s when returns do not fluctuate extensively. Observing closer the performance of $F C-A M A L G$ that generates the highest $R_{O O S}^{2}$ performance, we note that $F C-A M A L G$ follows a stable and increasing path with jumps during the 1992 and 2008 turmoils.

[FIGURE 3 AROUND HERE]

Next we turn to the respective results for YEN (Figure 4). As the figure show, combined forecasts maintain a stable upward trend throughout the whole period. Nei her the YEN depreciation at the beginning of the sample, nor the ten-year appreciation atu- the Plaza Accord until 1995 seem to affect the forecasting superiority of combined fore ${ }^{\sim}{ }^{\circ} \mathrm{sts} \mathrm{c}$ - or the benchmark. On the other hand, although principal components deliver higher $l_{O C}^{2}$ vaiues than combined forecasts and benefit from peaks and troughs, they are not consisteı . ${ }^{1} \mathrm{v}$ better than the RW. While the performance of $F C-A M A L G$ is obviously smoothes it is s. $1 l$ affected by the abrupt changes of $P C-A L L$. What is intriguing in this feature is th. ${ }^{+} P^{\prime} \rho O L-A L L$ corrects the bad performance of $P C-A L L$ during the period 2004 to 201.9 w. en combined.

 path beating the benchmark in all periods followed bv a s. nificant jump at the outburst of the 2007-2009 crisis. Among the principal components inder consideration, $P C-E C O N$ suffers from losses at the beginning of the period that an - arsed during the recent financial crisis. $P C-T E C H$ outperforms the RW until 199r whe a five-year period of failures begins, ending in 2001. As far as $P C-A L L$ is concerned, it ^ an ges to neutralize the losses of $P C-E C O N$ at the beginning of the sample and those $u_{1} \square^{\circ}-\quad-E C H$ at the period 2001-2008 and maintains a positive performance throughout the remainng periods. The path for $F C-A M A L G$ does not differ significantly from that of ${ }^{\prime} O O_{\llcorner }-A L L$, exhibiting superior and stable performance over time.

FIr ${ }_{r}$ UR E 5 AROUND HERE]

The next currency consi .t. \checkmark d CHF (Figure 6). Among the combined forecasts reported, the smoothest is $P O O L-1^{\top} L$. The most noticeable features are the strong upward trends after 1992 for all specification an the negative trend after 2011 for principal components forecasts. Overall, $P C$ forecasts ppear more volatile that the $P O O L$ ones. On the other hand and similar to our findings so fa $F^{\prime}-1 M A L G$ rises steadily without any significant failures.

[FIGURE 6 AROUND HERE]

 and $P C-A i L$ dem nstrate some common patterns. There is no sizeable forecast improvement over the benchı... until 2007, when we start to observe a prolonged period of sizable benefits until the $\epsilon \cdot d$,t tne sample. Extracting principal components from macroeconomic predictors shows the wo st performance with a negative trend for almost the full out-of-sample period. $F C-A M A L G$ neither beats nor is beaten by RW for the entire period until October 2008 when it picks up and significantly outperforms the benchmark up to the end of the sample.

[FIGURE 7 AROUND HERE]

The last currency under consideration is AUD, illustrated in Figure ${ }^{\bullet}$ Apparently, our models benefit from the 1986 and 2008 AUD depreciations. Similar to th cu rencies considered so far, principal components appear to follow more volatile paths t. an cu mbined forecasts, although they provide more sizable forecasting gains. The perform ${ }^{\text {e }}$ or ${ }^{F} C-A M A L G$ is quite similar to the $P O O L$ ones, attaining a positive increasing atr throughout the out-ofsample period.

[FIGURE 8 AROUND HERE]

Summarizing our findings, we note that our proposed Σ_{1} cific ations can exploit periods of turbulence much more efficiently than the benchmark (wu should not neglect that the RW with drift is by construction a slow adjusting predic ${ }^{\sim}$ una le to capture abrupt changes). Aggregating predictor information via combination of pu led and principal components forecasts ($F C-A M A L G$) can deliver not only superior fu ${ }^{\circ}$ casts in terms of $R_{O O S}^{2}$ but also forecasts that can consistently beat the RW without bej~c cigniticantly affected by long or short swings in exchange rates.

5 Economic Evaluation

5.1 Univariate Portfolio Allo an'on

So far, we have evaluated the statistica' ${ }^{\prime}$ ign ficance of our proposed specifications. We now focus on the economic performance of sur nodels, since statistical significance does not always imply profitability. ${ }^{15}$ We follow the nos, recr nt literature (e.g. Buncic and Piras, 2016; Ahmed, Liu and Valente, 2016; Panopor - and Pantelidis, 2015; Della Corte and Tsiakas, 2012; Thorton and Valente, 2012; Della Crite, Sarno and Tsiakas, 2009) and focus on the maximization of the investor's expected, iilit . The investor relies on the information given by the one-monthahead forecasts of our propu . d specifications (equations (16), (17) and (18)) to rebalance her portfolio, which is cr np red oo the portfolio created by the benchmark RW forecasts.

We assume that ${ }^{+}$he $\mathrm{m}_{1} \cdot$ stor is US based and allocates part of (or the entire) her portfolio to the US risk free ε iset (g_{1} ing return i_{t}) and the rest on the risk free asset of the foreign country. In this case, har rec... is the sum of the foreign risk free rate $\left(i_{t}^{*}\right)$ and the realized exchange rate return. 'hus, t_{1} e only risk the investor is exposed to are fluctuations of the exchange rates. Specifically, the in stor re-balances her portfolio every month in the out-of-sample period and allocates $\mathrm{\imath}$ e f , u wing portion of her wealth $\left(w_{t}\right)$ to the risky (foreign) asset:

[^13]$$
w_{t}=\left(\frac{1}{\gamma}\right)\left(\frac{\hat{r}_{t+1}}{\hat{\sigma}_{t+1}^{2}}\right)
$$
where γ is the risk aversion coefficient, \hat{r}_{t+1} denotes the expected return r ithr investment in the risky asset and is calculated as the sum of the foreign risk free rate $\left(i_{t}^{*}\right.$, and he forecast of the exchange rate return, i.e. $\hat{r}_{t+1}=i_{t}^{*}+\Delta \hat{s}_{t+1}$, and $\hat{\sigma}_{t+1}$ is the forecas ${ }^{*}{ }^{c}$ the ariance computed by calculating the variance of the actual exchange rate returns r de a rulling window of 60 observations. Intuitively, higher values of γ correspond to a mor isk a rrse investor, resulting in lower exposure to the foreign risky position. We conduc the e: periment for two levels of risk aversion $\left(\gamma=2\right.$ and 5). ${ }^{16}$ Consistent with the litera ${ }^{+\cdots}{ }^{\cdots}{ }_{\sim}{ }^{\circ}$. Welch and Goyal, 2008; Ferreira and Santa Clara, 2011; Ahmed, Liu and Valente, 2) 16^{\prime}, tr \geqslant weights are winsorized, i.e. $-1 \leq w_{t} \leq 2$ in order to prevent extreme and unrealistic \ldots vest . . its and also to allow for 200% leverage and 100% short sales. Under this setting, the optim lly constructed portfolio return over the out-of-sample period is equal to
$$
r_{p, t+1}=w_{t}\left(i_{t}^{*}+\Delta s_{t+1}+\left(1-w_{t}\right) i_{t}\right.
$$

In order to assess the economic value of the can ${ }^{1}$ date predictors, we calculate the Certainty Equivalent Return ($C E R$) as follows;

$$
C E R=\hat{,}-\frac{1}{2} \gamma \hat{\sigma}_{p}^{2}
$$

where \hat{r}_{p} is the average return of tı. portf, lio (equal to $\left.\frac{1}{P} \sum_{t=0}^{P-1}\left(r_{p, t+1}\right)\right)$ and $\hat{\sigma}_{p}^{2}$ is the variance of the investor's portfolio over t'e c at-ot-sample period. The difference between the $C E R$ of the proposed specification and the of he benchmark (denoted as $\triangle C E R$) can be interpreted as the maximum fee that t^{\prime}.. investor is willing to pay in order to switch from the RW to the competing model. To tost the suatistical significance of $\Delta \mathrm{CER}$, we compute the p -value of Δ CER relying on the as mpt ,tic properties of functional forms of the estimators for means and variances (see also, JC'Json • nd Korbie (1981), Memmel (2003) and DeMiguel, Garlappi and Uppal (2009)). ${ }^{17}$

[^14]
5.2 Multivariate Portfolio Allocation

We also evaluate the economic significance of our strategies by forming a porttu*) of the six risky foreign assets and the US risk-free asset. Similarly to the univariat cas : the US investor dynamically rebalances the weights of each asset at the end of each period. order to maximize the portfolio returns by solving the following problem:

$$
\begin{gathered}
\max _{w_{t}} \hat{r}_{p, t+1 \mid t}=\mathbf{w}_{t}^{\top} \hat{\mathbf{r}}_{t+1}+\left(1-\mathbf{w}_{t}^{\top} \boldsymbol{\iota}\right) i_{+} \\
\text {subject to }\left(\sigma_{p}^{*}\right)^{2}=\mathbf{w}_{t}^{\top} \Sigma_{t+1 \mid t} \mathbf{w}_{t}
\end{gathered}
$$

where $\hat{r}_{p, t+1}$ is the expected portfolio return, $\hat{\mathbf{r}}_{t+1}$ is a $6: 1 \mathrm{v}^{\prime}-\mathrm{c} \cdot$ of expected exchange rate returns, σ_{p}^{*} is the target conditional volatility of the port ${ }^{\circ}$ olio retr ins and $\Sigma_{t+1 \mid t}$ is a 6×6 conditional variance-covariance matrix calculated as $\Sigma_{t+1 \mid t}=\left(\mathbf{r}_{t+1}-\hat{n}_{t+1}\right)\left(\mathbf{r}_{t+1}-\hat{\mathbf{r}}_{t+1}\right)^{\prime}$. The expected return of the risky asset is equal to the return of tho to io riskless asset plus the return of the exchange rate, calculated by $E_{t}\left[r_{t+1}\right]=i_{t}^{*}+\hat{r}_{t+1}$. 1 . a 6×1 vector of ones. Following Li, Tsiakas and Wang (2015), we set $\sigma_{p}^{*}=10 \%$. The $s l_{11}$ ion to the optimization problem gives the following weights on the risky assets:

$$
\left.\mathbf{w}_{t}=\frac{\hat{\sigma}_{p}^{*}}{\sqrt{\nearrow}} \Sigma_{t+|l| t)^{1}}^{\hat{亏}^{t}+1}-\iota i_{t}\right),
$$

where $\hat{\mathbf{r}}_{t+1}-\boldsymbol{\iota} i_{t}$ is the 6 x 1 vector of excess re $\cdot \cdot \mathrm{rns}, \boldsymbol{\iota}$ is a 6 x 1 vector of ones, and $C_{t}=\left(\hat{\mathbf{r}}_{t+1}-\right.$ $\left.\boldsymbol{\iota} i_{t}\right) \Sigma_{t+1 \mid t}^{-1}\left(\hat{\mathbf{r}}_{t+1}-\boldsymbol{\iota} i_{t}\right)$. As previously, ve insorize the weights as $-\boldsymbol{\iota} \leq \mathbf{w}_{t} \leq 2 \boldsymbol{\iota}$.

The investor at the end of each, oriod, eceives a realized return equal to

$$
r_{r}+\mathbf{w}_{t}^{\top}\left(\mathbf{r}_{t+1}-\boldsymbol{\iota} i_{t}\right)+i_{t} .
$$

We assess the economic val e ci \quad ur forecasts by computing the out-of-sample performance fee $(\triangle C E R)$ for two levels $\mathrm{c}^{\circ} \cdot \mathrm{k}$ aversion, $\gamma=[2,5]$. We also report the annualized portfolio excess return and annua rec volatility, denoted as (\%) μ and (\%) σ, before and after accounting for transaction costs. Ne follo.i Chang and Osler (1999) and Neely, Weller and Dittmar (1996) that use 5 basis poirt (${ }^{1}$,ps) per change of position. ${ }^{18}$ Finally, we report the Sharpe Ratio (SR) of the portfolio gi en by

$$
S R=\frac{\overline{r_{p}-i_{t}}}{\sigma_{p}}
$$

$\left.\begin{array}{llll}1 & -1 & -\gamma \hat{\sigma}_{p, i} & \imath v p, R W\end{array}\right]\left[\begin{array}{cccc}\hat{\sigma}_{p, i}^{2} & \hat{\sigma}_{p, i, R W} & 0 & 0 \\ \hat{\sigma}_{p, i, R W} & \hat{\sigma}_{p, R W}^{2} & 0 & 0 \\ 0 & 0 & 2 \hat{\sigma}_{p, i}^{4} & 2 \hat{\sigma}_{p, i, R W}^{2} \\ 0 & 0 & 2 \hat{\sigma}_{p, i, R W}^{2} & 2 \hat{\sigma}_{p, R W}^{4}\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ -\gamma \hat{\sigma}_{p, i} \\ \gamma \hat{\sigma}_{p, R W}\end{array}\right]$.

[^15]where $\overline{r_{p}-i_{t}}$ is the portfolio's average excess return and σ_{p} is the standard deviation of the corresponding returns. We compute SR for each predictive model and tes, in statistical significance based on the asymptotic distribution of the difference in SRs r_{μ} een the proposed model and the RW benchmark. ${ }^{19}$ We also evaluate a Naive Portfolio (s ~ 5 eMiguel, Garlappi and Uppal, 2009) formed ignoring the related exchange rate forecasts. . . this ase, the investor forms an equally weighted portfolio containing $N=7$ assets (inclv dur : the US risk free asset as well), so each asset is given a weight of $1 / N$.

5.3 Economic Evaluation Findings

Table 5 reports the annualized $\triangle C E R$ fees related to the u .var ${ }^{\circ}$. ? portfolios. Our findings are discussed with two perspectives; the first is connected to the perfe mance of the models against the Random Walk, and the second is linked to the perform nce of the models by increasing the level of risk aversion. Overall, our findings are con. ${ }^{\text {iste' }}$. with the statistical evaluation findings. For currencies that proved hard to predict, s. \quad h as YEN and CAD, we get either negative $\triangle C E R$ or small positive values. In adu ${ }^{\circ}+\mathrm{ion}$, we observe that models performing poorly in terms of $R_{O O S}^{2}$ do also in terms of $\Delta \simeq ロ$

[TABLE $5 \ldots \mathrm{U}_{1}$ D HERE]

With respect to individual predictors, we mute that $P P P, R S I(7)$ and $R S I(14)$ provide statistically significant $C E R$ gains irrespective of the currency under consideration and risk aversion degree. In general, technj al inc cators do not generate negative $\Delta C E R$ values as frequently as macroeconomic predicto - E pecially in the cases of CAD and AUD, all technical indicator strategies outperform 'ne ${ }^{1}$ enchmark, which however are not statistically significant. The performance of $P P P$ is uts $n d^{\prime} n g$ as it delivers substantial gains ranging from 3.21% (CAD) to $16 \%(\mathrm{GBP})$ in $\mathrm{t}^{\prime} \mathrm{t}$ 'ase of for $\gamma=2$. In addition, macroeconomic predictors fail significantly to generate pritive fees for YEN and NOK, irrespective of the level of risk aversion. With respect to $t^{1} e$ le el of risk aversion, we observe that in the majority of cases, the performance of almost all pre 'ictors deteriorates when risk aversion increases.

Turning to the $\mathrm{p} \cdot \mathrm{rfo}$ mar ce of combined and principal components forecasts, we note that
 (AUD) and 11.2% for ${ }^{\circ} C-T E C H$ (GBP). More importantly, $P C-T E C H$ forecasts are associated with subu....tial gains that range from 2.17% (1.87\%) for CAD to 11.21% (9.82%) for GBP for $\gamma=2 \gamma=5$). For almost all currencies, principal components generate higher

[^16]performance fees than combined forecasts. In addition, a further piece of e idence regarding the superiority of technical indicators is given by comparing $P C-E C O N$ tu ${ }^{D} C-T E C H$. We observe that $P C-T E C H$ outperform $P C-E C O N$ for four curre $\sim \mathrm{s}$ out of six. The results are qualitatively the same when we compare combined forecasts.

The most interesting feature of Table 5 is Panel C, where we report \therefore res.lts for POOL$A L L$ and $P C-A L L$ with $P C-A L L$ generating high economic ga ns, irrespective of the level of risk aversion. Except for CHF, the aforementioned model is able ~ esult in higher economic gains than the other principal components. These gains reach ${ }^{1}$ t. 07% tor GBP and 13.79% for AUD. Even in the case of YEN for $\gamma=5$, where eight out of th. teen m acroeconomic predictors and four out of eleven technical indicators generate losses, $\quad \subset-A L L$ delivers essential gains, equal to 376 basis points. With respect to $P O O L-A L L$ ‥ obsf ive that this strategy favors more a relatively less risky investor, pointing to gains for $1 \iota^{\cdot r}$ out of six currencies. The results for the combination of these two predictors, as shown : Panel D, are very promising, although the respective gains do not outperform $P C-A L L$ for `ny currency. $F C-A M A L G$ generates sizable utility gains of 11.9% and 8.41% for $\gamma=2$ un and AUD, respectively.

Turning to the multivariate asset allocation frame. . rk, our findings, reported in Table 6, clearly support our proposed forecasting approac. os Smilar to the univariate evaluation, $P P P$, $R S I(7)$ and $R S I(14)$ generate the highest utı \because - gat s (over the benchmark random walk) which can reach 776 bps (after transaction costc) per vear for $\gamma=2$. As expected, annualized mean returns are quite high and exceed 18% per $y \wedge$ r. Overall, more risk averse investors are willing to pay higher fees in order to have acconc to our forecasts in these cases. Pooling information of macroeconomic variables or technic 1 indice tors results in utility gains that range from 182 bps (POOL-ECON, $\gamma=2$) to 244 'ps (\downarrow フ $L-T E C H, \gamma=2$). In these cases, SRs exceed one and are statistically greater thr a the brachmark RW. More importantly, pooling information from both sets of predictors a nieves : nilar performance to $P O O L-T E C H$, making it a valid alternative strategy not as scla ${ }^{\prime}$ d with uncertainty over the predictor set choice. Contrary to our univariate evaluat' su findings, $P C-E C O N$ and $P C-T E C H$ do not provide any statistically significant $y . n$ the investor after accounting for transaction costs. However, $P C-A L L$ is superior to $P C-E C O N$ and $P C-T E C H$ along with $P O O L-A L L$ generating positive $\Delta C E R s$ of $3 .{ }^{\prime}$ ', ps s ad higher than the benchmark SR value of 1.18. More importantly, our proposed am gam forecasts are superior to all aforementioned sets of forecasts providing the investor with $\cdot \mathrm{n}$ ann alized return that exceeds 15% and is associated with a significant SR of 1.22 , while $\sim E R$ gans exceed 409 bps. Finally, Panel C of Table 6 reports the performance of the naive $/ / N$ pol folio, which provides gains of 202 bps for a risk averse investor; albeit not statisticallur cignucant and is associated with losses for a less risk averse investor. To conclude, our univarı . and multivariate economic evaluation findings suggest that by exploiting the information fr. m the two groups of predictors we are able to provide sizable economic gains.
[TABLE 6 AROUND HERE]

6 Robustness tests

In this section we assess further the statistical performance of the candidate predıtors/ specifications by conducting a series of robustness tests. First, we consider alte ative forecasting horizons. Second, we change the beginning of the evaluation period to Tanu vv 1990 and January 2000. Third, we employ an extended dataset of developed and er _.. ring - untries' exchange rates and test whether our findings pertain to this dataset as well

6.1 Alternative forecast horizons

Table 7 reports our findings for alternative forecast horizons operitically, we consider h-monthahead forecasts for $h=[3,6,12]$. Our results show that si ${ }^{+}$. .tice significance weakens as we move to higher forecast horizons. This effect is more pronu nced for technical indicators, since by construction they are trend following predictors $n d$ pas trends have less impact as we move further. However, when aggregating the informa ' ${ }^{\text {i }}$ ' ${ }^{\prime}$ content in all candidate predictors via $F C-A M A L G, P C-A L L$ and $P O O L-A L$. we sulil attain a very good performance for all currencies and especially for the 3 - and 6 - month tor cast horizons.

More in detail, for the 3-month-ahead forecas s our findings remain qualitatively similar to the benchmark one-month forecasts. Technu i ind ators perform better than macroeconomic predictors, especially for combined and principaı components forecasts. By comparing POOL$j, P C-j$ and $F C-A M A L G$, we observe that the best performing predictors are $F C-A M A L G$ for GBP, which generates out-of-sampl- R^{2} OSS values of $3.15 \%, P C-T E C H$ for YEN (1.79%), $P C-T E C H$ for NOK $(2.47 \%), P O) L-E \uparrow O N$ for CHF (1.78\%) , PC-ALL for CAD (2.04\%) and $P C-A L L$ for AUD $(2.11 \%$. It in i teresting to note that $F C-A M A L G$ outperforms both $P C-A L L$ and $P O O L-\perp L I$ in.$l l$ currencies considered with the exception of CAD.

Turning to the 6 -month fr ecasti, we observe that the forecasting ability of most technical indicators deteriorates signi ıcaı. ${ }^{1} \mathrm{v}$. while the deterioration in the forecasting ability of macroeconomic predictors is nr \circ at intense. The predictors that yield the best performance are $F C-A M A L G$ for GBr ${ }^{(153 \%}$), FC-AMALG for YEN (0.32%), PC -TECH for NOK (0.52%), $P O O L-E C O N^{\top}$ for $\mathrm{CHF}(0.69 \%), F C-A M A L G$ for CAD (1.48\%) and PC - ALL for AUD (0.56%).

Finally, for t^{l} \& 12 -month horizon we note that technical indicators are outperformed by the benchmark $\mathrm{w}^{\text {th }}$ the exception of a few cases. Interestingly, despite the bad performance of individual vechnical indicators, $P C-T E C H$ still beats $P C-E C O N$. Specifically, the best perform ng mo lel for GBP is $P C-E C O N(1.62 \%), P C-T E C H$ for YEN (1.62%), $P C-T F \sim H$ for NOK (0.09%), FC - AMALG for CHF (1.36\%), FC - AMALG for CAD (1.01%) an ${ }^{\prime}{ }^{3} C-T E C H$ for AUD (0.09%). It is interesting to note that $F C-A M A L G$ loses gradually its superiority over $P C-A L L$ and $P O O L-A L L$, but still manages to deliver accurate forecasts.

[TABLE 7 AROUND HERE]

Overall, the performance of individual technical indicators deterioratoc as the forecasting horizon increases (in line with the results of Menkhoff and Taylor, 2007. Par . and Irwin, 2007; Neely and Weller, 1999). However, principal components, combined and . malgam forecasts improve forecastability lending support to our main finding that bot.. ${ }^{+}$ech.. al indicators and macroeconomic fundamentals incorporate useful information.

6.2 Alternative evaluation periods

The next check we perform is to evaluate the robustness r. our model to changes in the out-of-sample period. We consider two more evaluation peric ' by etting the beginning of our forecasts to January 1990 and January 2000, respectively.

Our findings, when the out-of-sample period starts in Jant ary 1990 are reported in Table 8 and remain qualitatively similar to the long out-of-san ${ }_{1_{t}}{ }^{1}$ e, period. The predictors that provided statistical significant results remain robust and s. we or them even enhance their forecasting ability. For example, macroeconomic predictore for GL? display improved forecasting performance. $P C-A L L$ outperforms both $P C-E C T J$ and $P C-T E C H$, with the exception of GBP and AUD. In addition, $F C-A M A L G$ en arges as superior for GBP, YEN and CHF. However, we observe that $P C-E C O N$ and $P C^{\prime} O L-E C O N$ perform even better in this more recent period.

[TA BLE ¿ AROUND HERE]

Next, we focus on the more recert period (out-of-sample forecasts begin in January 2000). Our findings, reported in Table ? sug, est that our proposed specifications remain robust to this part of the sample. Sp ifically, $P C-A L L$ shows improved forecast accuracy for NOK (12.08%), CAD (5.41%), GBP ($3.6 . \%$) and AUD (14.53%), relative to $P O O L-A L L$, while the opposite is true for YEN ind CHF. More importantly, $F C-A M A L G$ still provides statistically significant forecasts and hig forecast accuracy ranging from 2.05% (YEN) to 11.10% (AUD).

[TABLE 9 AROUND HERE]

6.3 Extendec curr ncy dataset

In this subse tion, e check whether our forecasting strategy survives when tested on an extended set of c. \quad rer 1 les including both developed and emerging markets. Specifically, we include 13 additic `a1 • u._ncies; namely the Colombian peso (COP), Danish krone (DKK), Eurozone's euro (EUR) - Indian rupee (INR), Malaysia ringgit (MYR), Mexican peso (MXN), New Zealand dollar (NZD), Peruvian sol (SOL), Philippine peso (PHP), South African rand (ZAR), Swedish

[^17]krona (SEK) and Thai baht (THB) and Brazilian real (BRL). Data were collf ted from several sources (given in Table 1) such as Datastream, FRED, IMF, OECD and C \quad nı. 1 Banks databases. In Table 2 (Panel B) we report the related descriptive statistics ung with the start date of the sample period which is the month/year that each currency $s . r t / d$ to float freely or entered a crawling peg.

Table 10 (left panel) reports the results for DKK, EUR, MYR, \angle A 3 ana SEK for the out-of-sample period that begins in January 1979 and ends in Decembt. or 14 . Overall, our findings are consistent with our main dataset pointing to superior forf asting ability of the technical indicators employed. To this end, pooling or extracting inforı ation com the set of technical indicators always leads to statistically significant positive ${ }_{\circ} \mathrm{OO}^{\text {r. }}$. Un the other hand, pooling information about fundamentals leads to benefits in all c.n enci s but MYR and extracting the related factors benefits only EUR and ZAR. More in n_{\perp} רrtantly, when both predictor sets are employed (Panel E), $R_{O O S}^{2}$ are positive and stat. +ically ,ignificant for all currencies but MYR and POOL - ALL. PC - ALL is associated n: th mgher $R_{O O S}^{2}$ values reaching 8.47% for DKK, followed by 7.11% for SEK. Consequent ${ }^{`}$, vur pıoposed amalgam approach succeeds in improving forecasts in all currencies generating impı vements ranging from 2.57% to 7.13%. Turning to the shorter out-of-sample period st. $\mathrm{rt}^{\prime} \mathrm{ig}$ in 1990 (right Panel), our findings are qualitatively similar. In this set of results w. 'so c dd NZD, since data are available. Overall, Panels D, E and F convey the same message. Information from both sets of predictors via principal components or amalgam forecast renerate superior forecasts for all currencies at hand.

[TA」ㄷ. ${ }^{\text {T }}$ ir AROUND HERE]

Despite the short out-of-sar nle „eri»d of Table 11 (out-of-sample period begins in January 2000), we are able to come in o somu ery interesting conclusions. The Table contains an adequate number of currencies, thir . ${ }^{2}$ in total, from both emerging and developed markets, from almost every geographice a ntinent. Overall, we observe that aggregating information from both sets of predictors $w \cdot{ }^{1}$ s positively for all currencies with the exception of COP, MXN, PHP, THB and BRI, wh ich are all currencies of developing countries. On the other hand, the remaining develor $n \mathrm{cr}$ rencies, i.e. INR, MYR, SOL and ZAR benefit from both macroeconomic and ter anical iniormation aggregation as depicted in the positive and statistically significant $R_{O O S}^{2}$ f $F C-A M A L G, P C-A L L$ and $P O O L-A L L$. Finally, our findings with respect to th developed countries, i.e. DKK, EUR, NZD and SEK, are similar to our main set up and p omote the use of either technical indicators or both sets of predictors. Specifically, R_{C}^{2}, for $\varphi C-A L L$ range from 5.58% (NZD) to 11.66% (SEK) and for FC-AMALG from $5.10 \%^{\text {「 }}, \mathrm{ZD}$) to 9.22% (SEK). Overall, our forecasting approach succeeds in all developed countries, whıs evidence is mixed for the developing ones.
[TABLE 11 AROUND HERE]

6.4 Further Robustness Tests

We also check whether a specification including common information across curreni ? can prove valuable in forecasting exchange rates. Since all currencies we employ a e d nominated in US dollar, we employ US macroeconomic and financial variables as candidate redictors. To save space, we report our findings in the online Appendix to accompany orr pa ${ }^{\circ}{ }^{\circ}{ }^{\circ}$ r. Overall, this set of variables fails to consistently outperform the Random Walk ber hm an Consequently, PC, POOL and amalgam forecasts fail to greatly improve the related forec ${ }^{-1}$ ts. Extracting principal components appears inferior to pooling information and longer norizo. s become even harder to predict. Finally, in unreported results, we also consider kitchen ink .odels of macroeconomic predictors, technical indicators and the full set of variable. T^{\prime}. गerformance of these models is inferior to the random walk and as a consequence, our forecasti. g approaches are superior to these alternative benchmarks. ${ }^{21}$

7 Conclusions

The importance of forecasting exchange rates $\epsilon \ldots J_{\sim}$ heyond academia, to policymakers, practitioners and international financial market nartic ants. In our study, we use the most widely used macroeconomic predictors and technical ' $\eta \mathrm{i} \cdot$ 'avors in order to construct reliable exchange rate forecasts against the Random Walk inn. ark. Overall, our findings suggest that both groups of predictors can provide superior forec. sts. However, technical indicators demonstrate superior predictive ability, irrespecti e or '`eing used individually, in a forecast combination or a principal components framework. More mportantly, forecasts generated from the first few principal components of the two ats predictors do not encompass each other, suggesting that these predictors capture differem ${ }^{+}$, per of information and work complementarily. In this respect, forecasts constructed f noloying principal components of the whole information set, both fundamental and technical can fur ${ }^{\prime}$ er improve predictability reaching 12.05% over the random walk benchmark. Finall, wt propose a forecasting strategy generated by the combination of combined and principa ${ }^{1}$ con nonents forecasts from the entire group of predictors. Our findings suggest that in the c ses hat combined and principal components forecasts from the full information set do not encon. $\mathfrak{\prime}$ s each other, this approach is superior to its rivals and outperforms the random walk moder by 10.17%.

Interestinglv, $t_{2} \backsim$ fir ncial turmoils of 1994 and 2008 enhance the predictability of our models, as they end tc be more flexible than the benchmark and adjust faster during crisis periods. Our pı nosf \downarrow approaches tend to outperform the random walk throughout the entire out-of-sar Due : : iod delivering increasing and relatively smooth performance signalling that the investor hould take into account both types of predictors in order to consistently benefit. Indeed, our economic evaluation findings show that the combined use of technical indicators

[^18]and macroeconomic predictors can provide significant gains irrespective of tr $\mathfrak{3}$ currency under consideration. Our findings are robust to the evaluation period, forecast hor zon and pertain to an extended dataset of currencies from both developed and emerging mar s.

References

[1] Abhyankar, A., Sarno, L. \& Valente, G., 2005. Exchange rates and fund amentais: evidence on the economic value of predictability. Journal of International Ecr norr.cs, 66(2), pp.325348.
[2] Ahmed, S., Liu, X., \& Valente, G., 2016. Can currency-base 1 r1 1- factors help forecast exchange rates?. International Journal of Forecasting, 32(1), $\mathrm{p}_{\mathrm{r}}-\mathrm{f}-97$.
[3] Akram, Q.F., 2004. Oil prices \& exchange rates: Norweg an evic ance. The Econometrics Journal, 7(2), pp.476-504.
[4] Bai, J., \& Ng, S. 2002. Determining the number of fa + is ir approximate factor models. Econometrica, 70(1), pp.191-221.
[5] Beckmann, J. \& Schüssler, R., 2016. Forecasting rxcın nor rates under model and parameter uncertainty. Journal of International Money and Fin. nce, 60(3), pp.267-288.
[6] Bergman, U.M. \& Hansson, J., 2005. Real exchaı乞? rates and switching regimes. Journal of International Money and Finance, 24(1), pr 121-138.
 w11137). National Bureau of Econoin •, n... arch.
[8] Brock, W., Lakonishok, J. \& LeRaron, B., 1992. Simple technical trading rules \& the stochastic properties of stock r turns. 'ournal of Finance, 47(5), pp.1731-1764.
[9] Buncic, D. \& Piras, G.D., 2r 16. Hete.ogeneous agents, the financial crisis \& exchange rate predictability. Journal of Tn " rati nal Money and Finance, 60, pp.313-359.
[10] Byrne, J.P., Korobilis, 'J. ^ Ribeiro, P.J., 2018. On the sources of uncertainty in exchange rate predictability. Ir a cational Economic Review, 59(1), 329-357.
[11] Byrne, J.P., Korohilis,). \& Ribeiro, P.J., 2016. Exchange rate predictability in a changing world. Journal c. In ${ }^{+}$rnational Money and Finance, 62, pp.1-24.
[12] Campbell, J. 1., \& 1..ompson, S. B., 2008. Predicting excess stock returns out of sample: Can anythir weat he historical average?. Review of Financial Studies, 21(4), pp.15091531.
[13] Chang, ' K., \& Osler, C. L., 1999. Methodical madness: Technical analysis and the irrat in: itw of exchange-rate forecasts. The Economic Journal, 109(458), pp.636-661.
[14] Charles, 1., Darné, O., \& Kim, J. H., 2012. Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates. Journal of International Money and Finance, 31(6), pp.1607-1626.
[15] Chen, S.S. \& Chou, Y.H., 2010. Exchange Rates and Fundamentals: Evi ence from LongHorizon Regression Tests. Oxford Bulletin of Economics and Statistics 74, 1), pp.63-88.
[16] Cheung, Y.W. \& Chinn, M.D., 2001. Currency traders and exchs age :ate dynamics: a survey of the US market. Journal of International Money and Firanct, ${ }^{9} 0(4)$, pp.439-471.
[17] Clark, T. E., \& West, K. D., 2007. Approximately normal tests f f e e. . ${ }^{\text {all predictive accuracy }}$ in nested models. Journal of Econometrics, 138(1), pp.291-31ı.
[18] Daniel, K., Hirshleifer, D., \& Subrahmanyam, A., 1998. I ivestor psychology and security market under-and overreactions. Journal of Finance, 53(6), E^{-1} J39-1885.
[19] DeMiguel, V., Garlappi, L., \& Uppal, R., 2009. Optimı... vers s naive diversification: How inefficient is the $1 / \mathrm{N}$ portfolio strategy?. The Review ©. Financial Studies, 22(5), pp.19151953.
[20] De Zwart, G., Markwat, T., Swinkels, L. \& van niil. . ., 2009. The economic value of fundamental and technical information in emerging $\cup \cdot r$ rency markets. Journal of International Money and Finance, 28(4), pp.581-604.
[21] Della Corte, P., Sarno, L. \& Tsiakas, I., 2 \& M Al economic evaluation of empirical exchange rate models. Review of Financial St $\because \because(9)$, pp.3491-3530.
[22] Della Corte, P. \& Tsiakas, I., 2012. Statistical and economic methods for evaluating exchange rate predictability. Han ،book , f exchange rates, pp.221-263.
[23] Diebold, F.X. \& Mariano, R S., 199. Comparing predictive accuracy. Journal of Business and Economic Statistics, 10 (2), pp 153-263.
[24] Dueker, M. \& Neely, ‥J., 2007. Can Markov switching models predict excess foreign exchange returns?. Jr ur 'al of Banking and Finance, 31(2), pp.279-296.
[25] Dunis, C.L., Laws, J. . Sermpinis, G., 2011. Higher order and recurrent neural architectures for tradins the EUR/USD exchange rate. Quantitative Finance, 11(4), pp.615-629.
[26] Engel, C., $1^{\text {r y }}$. Can the Markov Switching Model forecast exchange rates?. Journal of Internationa. Econc nics, 36(1-2), pp.151-165.
[27] Engel, (., Mar., N.C. \& West, K.D., 2008. Exchange rate models are not as bad as you think ($\mathrm{Nu} . \mathrm{w}^{10}$ 318). NBER Macroeconomics Annual 2007, pp.381-441.
[28] Engel, r. \& West, K.D., 2005. Exchange rates and fundamentals. Journal of Political Economy, 113(3), pp.485-517.
[29] Ferraro, D., Rogoff, K. \& Rossi, B., 2015. Can oil prices forecast exchan ,e rates? An empirical analysis of the relationship between commodity prices and exch ing. rates. Journal of International Money and Finance, 54, pp.116-141.
[30] Ferreira, M.A., \& Santa-Clara, P., 2011. Forecasting stock market retu. 's: The sum of the parts is more than the whole. Journal of Financial Economics, 1 nn(3), no.514-537.
[31] Gencay, R., 1999. Linear, non-linear and essential foreign ex. 1 ge rate prediction with simple technical trading rules. Journal of International Ec nomirs, 47(1), pp.91-107.
[32] Gehrig, T. \& Menkhoff, L., 2006. Extended evidence on t_{\ldots}. 1 of technical analysis in foreign exchange. International Journal of Finance an I Er Jll mics, 11(4), pp.327-338.
[33] Goh, J., Jiang, F., Tu, J., \& Zhou, G., 2013. Forecia 'ing government bond risk premia using technical indicators. Available at SSRN: ht ι_{\perp} : $\mathrm{c}: / / \mathrm{ss}$, a.com/abstract $=1914227$.
[34] Gradojevic, N., 2007. Non-linear, hybrid exchange ra ? modeling and trading profitability in the foreign exchange market. Journal of Econ - nic Dynamics and Control, 31(2), pp.557574.
[35] Han, Y., Zhou, G., \& Zhu, Y., 2016. ' 'rerı ! factor: Any economic gains from using information over investment horizorn? Jo rnal of Financial Economics, 122(2), pp.352375.
[36] Harvey, D.S., Leybourne, S.J. \& New. old, P., 1998. Tests for forecast encompassing. Journal of Business and Economic Su. H isti $/$ s, 16(2), pp.254-259.
[37] Hsu, P.H., Taylor, M.P. \& ${ }^{\top} \operatorname{ar} \mathrm{g}, \mathrm{Z}, 2016$. Technical trading: Is it still beating the foreign exchange market?. Jourr al of lıu rnational Economics, 102, pp.188-208.
[38] Jobson, J. D. \& Korki- B. M., 1981. Performance hypothesis testing with the Sharpe and Treynor measures. ${ }^{\text {T }}$ he ournal of Finance, 36(4), pp.889-908.
[39] Kuan, C.M. \& I .u, 7., 1995. Forecasting exchange rates using feedforward and recurrent neural networks. © irn .l of Applied Econometrics, 10(4), pp.347-364.
[40] LeBaron, B. 1999. Technical trading rule profitability and foreign exchange intervention. Journal of ${ }^{\top}$ att $t_{\text {_..... }}$ ional Economics, 49(1), pp.125-143.
[41] Li, J., I. iakas. i. \& Wang, W., 2015. Predicting exchange rates out of sample: Can econom: - mdamentals beat the random walk?. Journal of Financial Econometrics, 13(2), pp. 293- ${ }^{\imath}+1$.
[42] Lin, Q., 2018. Technical analysis and stock return predictability: An aligned approach. Journal of Financial Markets, 38, pp.103-123.
[43] Lizardo, R.A. \& Mollick, A.V., 2010. Oil price fluctuations and US dolls : exchange rates. Energy Economics, 32(2), pp.399-408.
[44] Lo, A. W., 2004. The Adaptive Market Hypothesis: Market Efficienc fro an Evolutionary Perspective. Journal of Portfolio Management, 30(5), pp.15-29.
[45] Mark, N.C., 1995. Exchange rates and fundamentals: Evidence ,n 1 mor-horizon predictability. American Economic Review, pp.201-218.
[46] Mark, N.C. \& Sul, D., 2001. Nominal exchange rates and n onetar. fundamentals: evidence from a small post-Bretton Woods panel. Journal of Internatı ~… Economics, 53(1), pp.2952.
[47] Meese, R.A. \& Rogoff, K., 1983. Empirical exchange ra, ` models of the seventies: Do they fit out of sample?. Journal of International Econoı ics, \(1^{\text {¹ }}\) (1), pp.3-24. [48] Meligkotsidou, L., Panopoulou, E., Vrontos, I n \& V. „ntos, S.D., 2014. A quantile regression approach to equity premium prediction. Jou. nal of Forecasting, 33(7), pp.558-576. [49] Memmel, C., 2003. Performance hypothesis '`,ting with the Sharpe ratio. Finance Letters 1, pp.21-23.
[50] Menkhoff, L., 2010. The use of technica. anaıysis by fund managers: International evidence. Journal of Banking and Finance, 34(11), pp.2573-2586.
[51] Menkhoff, L. \& Taylor, M.P., 2ᄂ ${ }^{\wedge} 7$. Thr obstinate passion of foreign exchange professionals: technical analysis. Journal c. Economic Literature, 45(4), pp.936-972.
[52] Molodtsova, T. \& Pape ${ }^{1}$, D.ı- 2009. Out-of-sample exchange rate predictability with Taylor rule fundament \& s. ¿ ©ırnal of International Economics, 77(2), pp.167-180.
[53] Molodtsova, T. \& P pel D.H., 2012, August. Taylor rule exchange rate forecasting during the financial crisis In . GER International Seminar on Macroeconomics 2012 (pp. 55-97). University of Ct_{\star} сая 」 Press.
[54] Nazário, R. 7. F'., o Sılva, J. L., Sobreiro, V. A., \& Kimura, H., 2017. A literature review of technical nalysi on stock markets. The Quarterly Review of Economics and Finance, 66, pp. $1^{11} \boldsymbol{\jmath}$ - 26
[55] Neely, C.. R pach, D.E., Tu, J. \& Zhou, G., 2014. Forecasting the equity risk premium: the r^{\prime} 'e 1 w. whnical indicators. Management Science, 60(7), pp.1772-1791.
[56] Neely, C.s. \& Weller, P.A., 1999. Technical trading rules in the European monetary system. Journal of International Money and Finance, 18(3), pp.429-458.
[57] Neely, C.J. \& Weller, P.A., 2011. Technical analysis in the foreign exchang market. Federal Reserve Bank of St. Louis Working Paper No. 2011-001B.
[58] Neely, C.J., Weller, P.A \& Dittmar, R., 1996. Is technical analysis j. th foreign exchange market profitable? A genetic programming approach. Journal of Financ. ${ }^{1}$ and Quantitative Analysis, 32, pp.405-426.
[59] Neely, C.J., Weller, P.A. \& Ulrich, J.M., 2009. The adaptive m. n. ets hypothesis: evidence from the foreign exchange market. Journal of Financial anr Quantitative Analysis, 44(02), pp.467-488.
[60] Olson, D., 2004. Have trading rule profits in the cu ren y_{\perp} arkets declined over time?. Journal of Banking and Finance, 28(1), pp.85-105.
[61] Orphanides, A., 2008. Taylor rules. In The New Talgrav Dictionary of Economics, New York, NY: Palgrave Macmillan, pp.362-369.
[62] Orphanides, A., 2003. Historical monetary pollu- analysis and the Taylor rule. Journal of Monetary Economics, 50(5), pp.983-1022.
[63] Panopoulou, E. \& Pantelidis, T., 2015. . ime switching models for exchange rates. The European Journal of Finance, 21(12) nn.1し 23-1069.
[64] Park, C.H. \& Irwin, S.H., 2007. What do we know about the profitability of technical analysis?. Journal of Economic Jurve, , , 21(4), pp.786-826.
[65] Preminger, A., \& Franck, R, 200'. orecasting exchange rates: A robust regression approach. International Jour. $11 r_{1}$ FC ecasting, 23(1), pp.71-84.
[66] Qi, M., \& Wu, Y., 2003 +'nlinear prediction of exchange rates with monetary fundamentals. Journal of Empir: ${ }^{\sim}$ al Finance, 10(5), pp.623-640.
[67] Rapach, D.E., Straus. J.K. \& Zhou, G., 2010. Out-of-sample equity premium prediction: Combination for cas's and links to the real economy. Review of Financial Studies, 23(2), pp.821-862.
[68] Rapach, D.1 \& St. auss, J.K., 2012. Forecasting US state-level employment growth: An amalgam ${ }^{2}$: ${ }^{\text {on }} u_{\Gamma}$ rioach. International Journal of Forecasting, 28(2), pp.315-327.
[69] Rapach, ワ.E. \& Wohar, M.E., 2002. Testing the monetary model of exchange rate determine in. new evidence from a century of data. Journal of International Economics, 58(2), pp.359- ${ }^{-} 55$.
[70] Reitz, S., \& Taylor, M. P., 2008. The coordination channel of foreign exchange intervention: A nonlinear microstructural analysis. European Economic Review, 52(1), pp.55-76.
[71] Rossi, B., 2013. Exchange rate predictability. Journal of Economic Titerature, 51(4), pp.1063-1119.
[72] Sermpinis, G., Stasinakis, C. \& Dunis, C., 2014. Stochastic and s enet c neural network combinations in trading and hybrid time-varying leverage effects. Jou_ al of International Financial Markets, Institutions and Money, 30, pp.21-54.
[73] Sermpinis, G., Stasinakis, C., Theofilatos, K. and Karathanasu - ^los, A., 2015. Modeling, forecasting and trading the EUR exchange rates with hyk I^{d} rolling genetic algorithmsSupport vector regression forecast combinations. Europe n Jou nal of Operational Research, 247(3), pp.831-846.
[74] Silber, W. L., 1994. Technical trading: when it worı and w'en it doesn't. The Journal of Derivatives, 1(3), pp.39-44.
[75] Taylor, J.B., 1993, Discretion versus policy rules . . practice. In Carnegie-Rochester conference series on public policy (Vol. 39, pp.15 314). North-Holland.
[76] Taylor, M.P. \& Allen, H., 1992. The use ot cinnical analysis in the foreign exchange market. Journal of International MoneJ ${ }^{\prime}$ nd \perp 'nance, 11(3), pp.304-314.
[77] Thorton, D. L., \& Valente, G., $2012 \cap_{n+1}{ }^{c}$ Sample Predictions of Bond Excess Returns and Forward Rates: An Asset Allocation $\stackrel{\text { rspectives. Review of Financial Studies, 25(10), }}{\text { 2 }}$, pp. 3141 .
[78] Timmermann, A., 2006. Forecasu © ' ıbinations. Handbook of Economic Forecasting, 1, pp.135-196.
[79] Welch, I., \& Goyal, A., ~ 108. A cumprehensive look at the empirical performance of equity premium prediction. Review ι° Financial Studies, 21(4), pp.1455-1508.
[80] Zarrabi, N., Snaith, S.. \& Coakley, J., 2017. FX technical trading rules can be profitable sometimes!. Inter ıationaı Review of Financial Analysis, 49, pp.113-127.

Table 1: Dataset and sources

Country	Nominal Exchange Rates	Industrial Production Index	Money Supply
Australia	FRED,EXUSAL	OECD,AUSPROINDQISM ${ }^{\text { }}$ I	OECD,MANMM101AUM189S
Canada	FRED, EXCAUS	OECD,CANPROINDMISMEı	OECD,MANMM101CAM189S
Japan	FRED,EXJPUS	OECD,JPNPROINDMISM ${ }^{\text { }}$	IMF,MYAGM2JPM189S
Norway	FRED,EXNOUS	OECD,NORPROINDN	Norges Bank
Switzerland	FRED,EXSZUS	OECD, CHEPROIND)IST , EI	OECD,MABMM301CHM189S
UK	FRED,EXUSUK	FRED, GBRPROINDMı MEI	FRED,MABMM402GBM189N
US	-	FRED,IND KO	IMF,MYAGM2USM052S
Denmark	FRED,EXDNUS	FRED, DNKPRO NDMIS IEI	FRED,MANMM101DKM189S
Eurozone	FRED,EXGEUS+EXUSEU	IMF,EA28+FA1: 1 IP 1 X	IMF,FM3_SA_EUR
Malaysia	FRED,EXMAUS	IMF AIP ${ }^{\text {wr }}$	IMF,FM1_XDC
South Africa	FRED,EXSFUS	DATASTREt. ${ }^{\text {N }}$ JAII PRODH	IMF,FM1_XDC
Sweden	FRED,EXSDUS		FRED,MABMM301SEM189S
New Zealand	FRED,EXNZUS	FRED,NZLPk ${ }^{\text {² }}$ NDQISMEI	FRED,MABMM301NZM189S
Colombia	IMF,ENDE_XDC_USD_RATE		IMF,FM2_XDC
India	FRED,EXINUS	${ }^{\text {™ }}$, „ı ${ }^{\text {P }}$-IX	FRED,MANMM101INM189S
Mexico	IMF,ENDE_XDC_USD_RATE	TMı. AIP_IX	FRED,MABMM301MXM189S
Peru	IMF,ENDE_XDC_USD_RATE	DA.. ${ }^{\text {STREAM,PECIND..G }}$	DATASTREAM,PEM0CURRA
Philippines	IMF,ENDE_XDC_USD_RATE	IM ${ }_{\text {L }}$, AIPMA_IX	IMF,FM3_XDC
Thailand	IMF,ENDE_XDC_USD_RATE	^MF,PPPI_IX	IMF,FM1_XDC
Brazil	IMF,ENDE_XDC_USD_RATE	FR. 1 , BRAPROINDMISMEI	IMF,FM1_XDC
Country	Interest Rates	onsumer Price Index	
Australia	OECD,IRLTLT01CHM156N	UnCD, CCRETT01AUM661N	
Canada	IMF,INTGSTCAM193N	-ECD, CANCPIALLMINMEI	
Japan	IMF,INTGSTJPM1935	OECD,JPNCPIALLMINMEI	
Norway	OECD,IRLTLT01NOM ${ }^{\text {º }}$ 6́ $\mathrm{N}^{\text {a }}$	OECD,NORCPIALLMINMEI	
Switzerland	OECD,IRLTLT01CHM1っ N	OECD,CHECPIALLMINMEI	
UK	FRED,INTGSTGB $/ 119^{\circ} \mathrm{N}$	OECD,GBRCPIALLMINMEI	
US	FRED,INTGSBU ${ }^{\text {¢ }}$ リ1 ${ }^{\prime} 3 \mathrm{~N}$	OECD,USCPIALLMINMEI	
Denmark	IMF,FIMN PPA	FRED,DNKCPIALLMINMEI	
Eurozone	IMF,EA19, F , ${ }^{\text {²,PA }}$	IMF,EA19,AMPLITUD	
Malaysia	IMF,FIGB_PA	IMF,PCPI_IX	
South Africa	FRED,INT ${ }_{\text {/ }}^{\text {d }}$ ¢ 7 AM193N	IMF,PCPI_IX	
Sweden	IMF 4IG s_PA	FRED,SWECPIALLMINMEI	
New Zealand	OECD, NZI STIN `TOTPC_PAM & FRED,NZLCPIALLQINMEI & \\ \hline Colombia & 'MF \({ }^{\text {IID_PA }}\) & IMF,PCPI_IX & \\ \hline India & IMF,FIGB_` ${ }_{\text {- }}$-FII M_PA+FID_PA	IMF,PCPI_IX	
Mexico	FRF-, IN'1. ${ }^{\text {- }}$ [MXM193N	FRED,MEXCPIALLMINMEI	
Peru	IM. , FID_PA	IMF,PCPI_IX	
Philippines	IMF FITB_PA	IMF,PCPI_IX	
Thailand	ıvıF,FID_PA	IMF,PCPI_IX	
Brazil	MF,FITB_PA	IMF,PCPI_IX	

Notes: The data for theu six currencies are collected for the period January 1973 to December 2014. The sample period for the remaining currenc. 's su ... in the month they adopted the free floating scheme.

Table 2: Descriptive statis'ıcs

	Mean	Median	Standard deviation	Skewness	Kurtosis	Ma	Min	ACF (1)	Starting Date
Panel A									
GBP	0.08	0.03	2.42	0.25	$\cdot 67$	11.08	-9.52	0.35	01:1974
YEN	-0.17	0.01	2.72	-0.46	3.88	8.07	-10.52	0.32	01:1974
NOK	0.05	0.02	2.43	0.36	1 ;	12.95	-6.33	0.36	01:1974
CHF	-0.24	-0.13	2.87	-0.02	3.69	11.69	-8.24	0.28	01:1974
CAD	0.03	0.00	1.42	$\bigcirc 60$	1.36	11.29	-6.01	0.26	01:1974
AUD	0.12	-0.08	2.60	- 29	8.87	17.31	-7.12	0.33	01:1974
Panel B									
DKK	0.11	0.01	2.55	9.75	5.76	13.81	-7.12	0.38	01:1974
EUR	-0.16	-0.05	3.06	$\bigcirc 5$	42.01	8.52	-36.51	0.25	01:1974
MYR	0.07	0.00	1.81	0.95	27.65	15.12	-14.48	0.27	09:1975
ZAR	0.58	0.10	3.42	0.97	9.72	19.15	-13.38	0.33	06:1974
SEK	0.11	0.01	2.55	0.75	5.76	13.81	-7.12	0.38	01:1974
NZD	0.07	0.08	2.75	0.51	5.63	14.34	-8.11	0.34	06:1979
COP	0.50	0.59	3.16	-0.03	5.61	13.08	-12.49	0.18	01:1991
INR	0.27	0.05	1.f 5	0.71	6.01	6.56	-5.94	0.32	01:1994
MXN	0.60	0.02	48	4.48	45.34	43.41	-16.42	0.03	12:1994
SOL	0.46	0.03	2.14	2.13	15.03	14.55	-7.04	0.34	10:1991
PHP	0.22	0.05	?. 50	1.47	9.77	14.28	-8.48	0.11	01:1993
THB	0.12	-0.20	3.0	0.24	23.11	21.78	-24.66	0.18	07:1997
BRL	0.48	0.51	- 5.54	3.31	29.92	49.48	-18.16	0.01	02:1995

Notes: Panel A shows the su mar statistics of the six currency returns considered in the main out-of-sample exercise for the total sample period (Jarıary , 74 to December 2014). Panel B reports the same statistics for the currencies used in the robustness section. The st f t date of use dataset is reported in the last column of the table. The statistics presented are the mean, median, standard $\boldsymbol{r} \mathrm{via}^{+}$on, s^{\star} ewness, kurtosis, maximum, minimum and first order autocorrelation.
Table 3: Out-of-sample Performance

Macroecone	Predictor	Technical Indicators											
Predic ${ }^{+}$	$\sim \sim^{\text {D }}$	YEN	NOK	CHF	CAD	AUD	Predictor	GBP	YEN	NOK	CHF	CAD	AUD
Panel A: B ar ate Predict ${ }^{\text {c- }}$ Regression Forecasts													
IRP	$\sim_{1}{ }^{* *}$	-0. 38	1.23 ***	1.18**	-1.05	-0.28	MA(1,9)	2.29 ***	1.95***	0.80***	2.09***	0.03*	0.91**
FB	2.07*	-0.41	- 93 ***	1.81***	-1.09	-0.03	MA(1,12)	0.45**	$1.74{ }^{* * *}$	2.04***	0.70**	0.15	0.38***
BMF	$8.64 * * *$	r. 81	$2.0^{-}{ }^{*} *$	$6.54 * * *$	$4.57^{* * *}$	10.19***	MA $(2,9)$	0.36*	0.84**	0.72**	1.59***	0.25	0.28
PPP	$9.77^{* * *}$	10.5.***	$122^{* * *}$	$707 * * *$	5.52***	10.16***	MA(2,12)	-0.53	-0.59	1.15**	2.72***	0.17	-0.27
HOAfw	1.42 ***	0.11	'. 62	1.4,***	0.01	5.27***	MA $(3,9)$	-0.18	-0.03	0.87**	2.42***	-0.33	0.32
HOS	-0.03	-1.27	0.02	J. 44	-0.57	6.63 ***	MA $(3,12)$	-0.90	-0.60	0.00	0.16	-0.45	1.01**
HOSS	0.28	-0.92	-0.49	0.27	-七. 68	0.03	$\operatorname{MOM}(9)$	-0.69	-0.43	1.60***	0.04	-0.02	0.06**
HOA	-0.83	0.42*	0.35	1.48*	-0.5	7.89***	MOM(12)	$0.45{ }^{* * *}$	0.07*	0.47	$2.28 * * *$	0.25	-0.98*
HOAS	0.34	-0.86	-0.49	0.2 。	-0,5	0.09	RSI(7)	7.30***	9.11***	$11.38^{* * *}$	6.61***	$4.53^{* * *}$	9.83***
HES	-1.12	0.02	0.32	-0.18	- . 39	4.68***	RSI(14)	8.73***	$9.68{ }^{* * *}$	$13.05^{* * *}$	6.56***	4.80***	10.34***
HESS	0.42*	-0.69	-0.35	0.32	-0.0	0.0°	EMA (5,12)	0.29*	0.41*	-0.07	-0.03	0.09	0.70
HEA	-0.97	0.38	1.46**	$1.46{ }^{* * *}$	0.41*	7.65 *							
HEAS	0.03	-0.65	-0.21	0.25	-0.58	--. 05							
Panel B: Principal Components and Combination Forecasts per Group (Macro vs $\bar{T}_{\text {clı }}$													
POOL-ECON	3.60 ***	$2.68^{* * *}$	$3.05^{* * *}$	4.19***	0.98***	5.65***	POOL CF CH	4 J2**	4.30 ***	4.65***	4.80***	1.33***	4.10***
PC-ECON	$4.35{ }^{* * *}$	$3.53^{* * *}$	3.50 ***	$5.93 * * *$	-0.22	11.04***	PC-TECH	J. 0 -**	r.18***	$6.95 * * *$	5.13 ***	2.40 ***	$6.47^{* * *}$
Panel C: Principal Components and Combination Forecasts per Group (All predictors)													
POOL-ALL	4.19***	$3.53^{* * *}$	3.92 ***	4.60***	1.18***	5.10***							
PC-ALL	$6.06{ }^{* * *}$	$6.49^{* * *}$	$7.76{ }^{* * *}$	$6.67 * * *$	$3.63^{* * *}$	$12.05^{* * *}$							
Panel D: Amalgam Forecasts													
FC-AMALG	7.81***	6.81 ***	$7.38^{* * *}$	$7.57 * * *$	$2.70^{* * *}$	10.17***							

Notes: The table reports the $R_{O O S}^{2}$, which measures the reduction in $M S F E_{i}$ relative to the MSFE of the benchmark RW model. The bivariate pre ictive regress' $\boldsymbol{\mu}$ ' 'recast in Panel A is given by: $\Delta s_{t+1}=a_{i}+b_{i} \Delta x_{i, t}$, where $x_{i, t}$ is each of the 24 predictors, taken individually. PC-ECON, PC-TECH and PC-ALL forecasts are given b- the formula of equation (17), such as: $\Delta \hat{s}_{t+1}^{(j)}=\hat{a}_{i}+\Sigma_{k=1}^{K} \hat{b}_{k} F_{k, t}^{(j)} . F_{k, t}^{(j)}$ is the recursively calculated, to time t , kth principal component extracted from the 13 macroecons nic predictors $(j=E C O N), 11$ technical rules $(j=T E C H)$ and 24 regressors taken together $(j=A L L)$ for $k=1, \ldots, K$. Panel D is estimated by taking the naive combined forecasts of PC-ALL and POOL-ALL. We apply the CW-statistic, which tests the null that the benchmark forecast MSFE is less or equal to the regressor's forecast MSFE against the one-sided alternative that the RW's forecast MSFE is greater to the MSFE of its rival. "***", "**" or "*" indicate significance at the level of $1 \%, 5 \%$ and 10%, respectively, of the MSFE-adjusted statistic.

Table 4: HLN - c. mpass test

HLN (1998)	G3P	YEN	NOK	CHF	CAD	AUD
POOL-ECON encompasses POOL-T ${ }^{\text {a }}$ (0.10	0.00	0.00	0.05	0.05	0.87
POOL-TECH encompasses POOL-ECL ${ }^{\top}$	0.64	0.96	0.95	0.55	0.72	0.00
PC-ECON encompasses PC-TECH	0.00	0.00	0.00	0.00	0.00	0.12
PC-TECH encompasses PC-EC'JN	0.00	0.04	0.03	0.00	0.80	0.00

Notes: The table reports the p-v dues or he HLN(1998) test.
Table 5: Univariate Economic Evaluation

Predictor	$\Delta \mathrm{CER}, \gamma=2$						$\Delta \mathrm{CER}, \gamma=5$					
	GBP	YEN	NOK	CHF	CAD	AUD	GBP	YEN	NOK	CHF	CAD	AUD
Panel A: Macroeconomic predictors												
RW	-7.33	4.27	-2.97	6.17	-4.85	-8.43	-5.98	2.88	-3.41	4.62	-5.36	-7.26
IRP	1.36	-1.65	1.23	1.77	0.28	0.83	1.62*	-1.19	1.12	1.57	0.21	0.39
FB	2.03	-1.66	1.88	2.24	0.28	1.02*	2.19**	-1.20	1.89*	1.87	0.21	0.60
BMF	$1119 * * *$	2.65	1.23	4.55**	1.85*	$12.33^{* * *}$	$11.62^{* * *}$	2.77	1.78*	4.61 **	1.63 *	$9.78{ }^{* * *}$
PPI	$15.9^{* * * *}$	$6.23^{* * *}$	$12.10^{* * *}$	$5.36{ }^{* * *}$	$3.21{ }^{* * *}$	$10.32^{* * *}$	$13.47^{* * *}$	5.79***	10.81 ***	$4.92{ }^{* * *}$	$2.96{ }^{* * *}$	$9.12{ }^{* * *}$
HOAfw	$1 .{ }^{1}$	-0.37	1.17	-0.07	0.24	6.57 ***	1.47 *	-0.23	1.97*	0.47	0.14	$5.16{ }^{* * *}$
HOS	-r 10	-1.46	-0.35	-0.49	-0.33	7.83 ***	0.28	-0.88	-0.45	-0.42	-0.34	$6.46{ }^{* * *}$
HOSS	. 33	-r ob	-0.13	0.48	0.49	-0.05	1.67*	-0.61	-0.29	0.43	0.56	0.46
HOAfw	6. ${ }^{-7}$	\checkmark - 4	-0.28	$1.42^{* *}$	-0.16	$9.72^{* * *}$	1.03	0.36	-0.34	$1.06{ }^{* *}$	0.00	$6.85 * * *$
HOAS	1.49	-0.42	-0. 5	0.52	0.36	-0.03	$1.97 * *$	-0.46	-0.26	0.47	0.48	0.50
HES	-0.31	ᄂ. ${ }^{19}$	ก 9	-0.71	-0.38	$5.06{ }^{* * *}$	-0.08	0.27	0.22	-0.58	-0.44	$3.92{ }^{* * *}$
HESS	1.70	-0.34	-0.16	4.57	0.32	-0.04	2.11 **	-0.31	-0.15	0.50	0.39	0.37
HEA	1.18	0.16	0.64	1. ${ }^{*}$ *	0.79	$6.48{ }^{* * *}$	0.31	0.27	0.60	0.85*	0.24	$5.62{ }^{* * *}$
HEAS	0.31	-0.35	-0.04	j.v.	, 21	0.07	0.24	-0.34	0.04	0.46	0.31	0.42
POOL-ECON	$2.72^{* * *}$	0.29	1.58**	1.0. **	$127{ }^{* * *}$	$4.26^{* * *}$	$3.51^{* * *}$	0.31	$1.98 * * *$	$1.74 * * *$	0.88**	3.45 ***
PC-ECON	$10.00^{* * *}$	1.43	1.64	$5.54 * *$	$0.6{ }^{\circ}$	$11.1^{* *}$	$8.64 * * *$	1.41	1.94	$5.70^{* * *}$	0.71*	$9.26^{* * *}$

$\mathrm{MA}(1,9)$	$3.64 * * *$	1.04	1.42	1.01	0.54	. . 04	9.8 **	0.76	1.05	0.94	0.61	0.74
MA(1,12)	1.89 **	0.42	1.83 *	0.75	0.67 *	$3.65 * *$	¢ f **	0.26	$1.84 * *$	0.44	0.50	3.13 ***
$\mathrm{MA}(2,9)$	1.71 **	0.07	0.62	1.61 **	0.21	0.36	1	$\bigcirc \mathrm{J7}$	0.38	1.23 *	0.11	0.15
$\mathrm{MA}(2,12)$	-0.35	-0.33	0.70	$2.44{ }^{* * *}$	0.51	0.65	-0. 0	J. 2	0.34	$2.08^{* * *}$	0.44	0.61
$\mathrm{MA}(3,9)$	1.18	0.06	0.68	1.35	0.23	0.89	0.47	0.4	$0{ }^{\text {re }}$	1.15	0.22	0.39
MA(3,12)	0.36	0.00	-0.16	0.23	0.15	2.07 ***	0.03	-0. ${ }^{1} 0$	49	0.10	0.10	1.49*
$\operatorname{MOM}(9)$	0.03	-0.02	0.80	-0.38	0.42	$1.54 *$	-0.08	-0.16	0.s ${ }^{1}$	-ヶ 96	0.19	1.12
$\operatorname{MOM}(12)$	1.43*	-0.26	0.25	1.76**	0.71	1.89 **	1.12	-0.14	$\bigcirc .0$	1.38^{*} "	0.43	1.49*
RSI(7)	$14.36{ }^{* * *}$	6.66 ***	$9.08^{* * *}$	4.31**	$2.65 * *$	$12.42^{* * *}$	12.24***	5.82 ***	8.69***	$3.98{ }^{* * * *}$	$3.6{ }^{* * *}$	$11.20^{* * *}$
RSI(14)	14.61 **	$6.58{ }^{* * *}$	9.60 ***	$4.48^{* *}$	3.03 ***	$10.11^{* * *}$	$12.41^{* * *}$	5.91 ***	$9.54^{* * *}$		2. 2 ?	9.44***
$\operatorname{EMA}(5,12)$	1.20	0.39	-0.12	-0.08	0.45	1.09**	0.61	0.27	-0.32	-0. 1	0.2^{\prime}	0.68
POOL-TECH	$4.68^{* * *}$	0.64	$2.88^{* *}$	2.43 ***	0.95*	2.53 ***	$4.85 * * *$	0.85	3.10 ***	$2.16{ }^{* * *}$	0.7	,
PC-TECH	$11.21^{* * *}$	$3.97{ }^{* *}$	$5.58^{* * *}$	$3.49^{* *}$	$2.17{ }^{* *}$	$7.55^{* * *}$	$9.82 * * *$	$3.68^{* *}$	6.23 ***	$3.11^{* *}$	$1.87^{* * *}$	$7.24 * * *$

| POOL-ALL | $3.46^{* * *}$ | 0.18 | $2.23^{* * *}$ | $2.00^{* * *}$ | $0.94^{* *}$ | $3.24^{* * *}$ | $4.30^{* * *}$ | 0.65^{*} | $2.63^{* * *}$ | $2.04^{* * *}$ | $0.78^{* *}$ | $2.84^{* * *}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{PC-ALL}$ | $14.37^{* * *}$ | $4.59^{* *}$ | $7.93^{* * *}$ | $5.37^{* * *}$ | $2.59^{* *}$ | $13.79^{* * *}$ | $12.38^{* * *}$ | $3.76^{* *}$ | $7.58^{* * *}$ | $4.91^{* * *}$ | $2.38^{* * *}$ | $11.59^{* * *}$ | Panel D: Amalgam Forecasts

| FC-AMALG | $11.90^{* * *}$ | 1.60 | $3.73^{* *}$ | $3.49^{* *}$ | $2.22^{* *}$ | $8.41^{* * *}$ | $10.80^{* * *}$ | 2.09^{*} | $5.57^{* * *}$ | $3.60^{* * *}$ | $1.81^{* * *}$ | $7.95^{* * *}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Notes: The table reports the portfolio performance for a mean-variance investor with relative risk aversion coefficient $\gamma=2$ and $\gamma=5$, who rebalances her portfolio between the risky asset and the risk free asset. The investor uses either the Random Walk with drift model or the forecasts generated by the proposed approaches. For each level of risk aversion we compute the measures for the forecasts of the 13 macroeconomic predictors and 11 technical indicators, PC-ECON, PC-TECH, PC-ALL and FC-AMALG. \triangle CER is the annualized difference of the Certainty Equivalent Return for the investor that uses our proposed approaches instead of the RW model. "***", "**" or "**" denote statistical significance at the $1 \%, 5 \%$ and 10% level, respectively.

Table 6: Multivariate Economic Evaluation

Predictor	$\begin{gathered} \Delta C E R_{t c} \\ \gamma=2 \end{gathered}$	$\begin{gathered} \Delta C E R_{t c} \\ \gamma=5 \end{gathered}$	(\%) $\mu_{t c}$	$(\%) \sigma_{t c}$	$S R_{t c}$	$\begin{gathered} \Delta \mathrm{CER} \\ \gamma=2 \end{gathered}$	$\begin{gathered} c \\ \hline \mathrm{CER} \\ \gamma \quad 5 \end{gathered}$	SR
Panel A: After Transaction Costs						Panel $ر$: 1 ¢o Transaction Costs		
RW	1.01	1.01	11.61	12.89	0.90	1.01	1.01	0.92
IRP	-1.38	-1.57	10.35	13.36	0.77	- ${ }^{\text {n }} 48$	-0.67	0.86
FB	-1.71	-1.90	10.02	13.34	0.75	-0.1 ${ }^{\text {r }}$	-0.84	0.85
GMF	-0.46	-0.24	11.00	12.33	0.89	$1 / 6$	2.02	1.10
PPP	$7.74 * * *$	7.56 ***	19.46	13.33	1.46 ***	$9.7 u^{* *}$	9.59***	$1.64 * * *$
HOAfw	-2.79	-2.84	8.85	13.02	0.68	- 49	-1.52	0.80
HOS	-0.86	-0.86	10.75	12.91	0.83	013	0.15	0.93
HOSS	-0.88	-0.75	10.63	12.52	r.oj	-0.37	-0.23	0.91
HOA	-3.00	-2.74	8.43	12.18	$0.6{ }^{\text {r }}$	-1.76	-1.48	0.81
HOAS	-0.83	-0.69	10.68	12.50	U. 85	-0.31	-0.16	0.91
HES	-0.13	-0.16	11.50	13.00	ᄂ. 88	0.64	0.61	0.96
HESS	-0.81	-0.68	10.71	12.55	0.8	-0.29	-0.17	0.91
HEA	-0.99	-0.92	10.57	12.6 '	$\bigcirc 3$	0.24	0.33	0.95
HEAS	-0.50	-0.41	11.04	12.63	0.87	-0.05	0.05	0.93
POOL-ECON	$1.82{ }^{* *}$	$1.84 * *$	13.42	$12 .{ }^{\circ}$	1.04**	2.43 ***	$2.47^{* * *}$	1.11 ***
PC-ECON	-2.68	-2.60	8.88	1060	0.70	-0.51	-0.40	0.89
MA $(1,9)$	-0.32	-0.29	$11.2{ }^{\text {® }}$	+. 78	0.88	1.25	1.31	1.02
MA $(1,12)$	-0.40	-0.23	11.16	12. i 2	0.89	1.12	1.32	1.04
MA $(2,9)$	0.13	0.26	11.66	$1 亡 .56$	0.93	1.25	1.39	1.04*
$\mathrm{MA}(2,12)$	-1.68	-1.56	$9 .{ }^{5}$	12.55	0.78	-0.75	-0.62	0.88
MA $(3,9)$	-1.85	-1.65	9.62	12.34	0.78	-0.85	-0.63	0.88
MA $(3,12)$	-1.10	-1.07	- .48	12.79	0.82	-0.49	-0.44	0.89
$\operatorname{MOM}(9)$	-1.23	-1.26	10. 0	12.96	0.80	-0.25	-0.27	0.90
$\operatorname{MOM}(12)$	-2.53	-2.57	9.0	12.96	0.70	-1.48	-1.50	0.80
RSI(7)	$6.58{ }^{* * *}$	$6.4{ }^{\text {r** }}$	10.31	13.33	$1.37 * * *$	$8.57^{* * *}$	$8.45{ }^{* * *}$	$1.56{ }^{* * *}$
RSI(14)	$7.76{ }^{* * *}$	7. ${ }^{* *}$	19.48	13.30	1.46 ***	9.62 ***	$9.52^{* * *}$	$1.64 * * *$
EMA (5,12)	-1.47	-1.57	10.20	13.11	0.78	-0.79	-0.87	0.85
POOL-TECH	$2.44^{* * *}$	$2.4 \mathrm{u}^{* * *}$	14.07	13.00	$1.08{ }^{* * *}$	$3.34 * * *$	3.33 ***	1.17 ***
PC-TECH	2.31	2.29	13.93	12.93	1.08	$4.31 * * *$	$4.35 * * *$	1.26 ***
POOL-ALL	2.34 *	$2.30^{* * *}$	13.97	13.00	1.07 ***	$3.01^{* * *}$	2.99 ***	$1.15{ }^{* * *}$
PC-ALL	$3.7{ }^{\text {¢ ** }}$	- $65{ }^{* *}$	15.37	13.02	1.18*	$5.84 * * *$	$5.82 * * *$	$1.37 * * *$
AMALG	4.1.**	4.09 ***	15.74	12.94	$1.22^{* * *}$	$5.74 * * *$	5.76 ***	1.37 ***
Panel C: Naive	ortfol ${ }^{\circ}$							
1/N	-9.45	2.02	0.16	1.52	0.10			

Notes: The ti sle rep rts the portfolio performance for a mean-variance investor with relative risk aversion coefficient $\gamma=2$ and $\gamma=5$, who invests her portfolio in the risky assets and the risk free asset. The investor uses either the Rana - ${ }^{-}$alk with drift model or the forecasts generated by the proposed approaches to rebalance her portfo $\quad . \quad$. \quad ach level of risk aversion we compute the measures for the forecasts of the 13 macroeconomic predictors $\mathrm{a}_{4}+11$ technical indicators, PC-ECON, PC-TECH, PC-ALL and FC-AMALG. \triangle CER is the annualized differenc in the Certainty Equivalent Return for the investor that uses our proposed approaches instead of the RW model. SR is the annualized Sharpe ratio values. μ denotes the annualized portfolio excess return in percentage points and σ denotes the annualized standard deviation in percentage points. The subscript tc denotes that we account for transaction costs equal to 5 basis points. In Panel B, we do not account for transaction costs. In Panel C, we show the economic performance of the Naive Portfolio, according to which the investor equally weights her wealth among the risky assets. "***", "**" or "*" denote statistical significance at the $1 \%, 5 \%$ and 10% level, respectively.
Table 7: Robustness tests: Alternative Forecast Horizons

Predictor	$\mathrm{h}=3$						$\mathrm{h}=6$						$\mathrm{h}=12$					
	GBP	YEN	NOK	CHF	CAD	AUD	GBP	YEN	NOK	CHF	CAD	AUD	GBP	YEN	NOK	CHF	CAD	AUD
Panel A: Macroeconomic predictors																		
IRP	1.55**		0.47**	0.99**	-1.15	-0.22	1.21**	-2.17	0.13	0.09	-0.70**	-0.54	1.02*	-2.28	0.05	0.36	-0.38*	-0.40
FB	1.84**	-1. 3	-Q**	1.40**	-1.13	-0.06	1.36**	-2.03	0.24	0.29*	-0.62**	-0.54	1.14*	-2.19	0.06	0.58*	-0.34*	-0.43
BMF	1.97***	2. $5^{* *}$	0.46	2.89***	1.57***	$2.23 * * *$	-0.77	-0.12**	0.09	1.28***	1.24**	0.07	-2.06	1.26***	-0.73	1.23***	0.25	-0.58
PPP	2.71***	4. 1^{*} *	2.86 ***	*	1.99**	1.38**	0.59**	-0.19**	0.40*	0.57**	1.00**	0.02	-0.53*	1.97***	-0.49	0.91**	0.03	-0.52
HOAfw	0.05	-0.07	$1{ }^{\text {\% *** }}$	$0.37{ }^{\text {² }}$	-0.37	0.05	-0.48	-0.20	0.23 *	0.22	-0.38	-0.57	-2.48	-0.23	-0.06	0.26	0.18	-0.48
HOS	-0.75	-1.94	-0.34	-0.27	-0.0	0.81*	-0.70	-1.68	-0.85	-0.40	-0.49	-0.32	-2.57	-1.54	-1.06	0.21	-0.36	-0.25
HOSS	0.43	-1.28	-0.55	J4	ก. 47	ก.76	0.05	-1.97	-0.47	-0.64	-0.43**	-0.48	0.92*	-1.52	-0.27	-0.08	-0.07*	-0.18
HOA	-1.12	-0.06	-0.21	0.30	-0.21	2.1. ***	-0.39	-0.41	-0.52	-0.26	-0.38	0.16	-1.74	-0.45	-0.75	0.58**	-0.39	-0.16
HOAS	0.49*	-1.26	-0.60	-0.33	9. 44	-,	78	-1.80	-0.49	-0.64	-0.41*	-0.47	0.98*	-1.48	-0.26	-0.09	-0.06*	-0.17
HES	-0.82	-0.15	0.56**	0.02	0.96 *	1.57***	0.05**	-0.29	-0.38	-0.19	0.49*	0.56	-0.25**	-0.34	-0.82	0.28	0.75**	0.05
HESS	0.69*	-0.82	-0.49	-0.35	-0.24*	-0.76	0.26	- 87	-0.49	-0.64	-0.18**	-0.48	1.13*	-0.78	-0.33	-0.06	0.11**	-0.18
HEA	-0.59	-0.26	0.57	0.48	2.14***	3.49* ${ }^{\text {c }}$	0.0	-0.10	-0.45	-0.19	1.24**	1.66***	0.30**	-0.35	-0.74	0.81**	0.70*	0.16
HEAS	0.79*	-0.84	-0.41	-0.36	-0.24*	-0.94	0. \%	-0.8	-1 44	-0.65	-0.19**	-0.53	1.06*	-0.70	-0.33	-0.09	0.09**	-0.26
POOL-ECON	1.55***	0.84**	0.91***	1.78***	0.85***	1.12**	1.47**	C. 6	$\bigcirc 34$	39**	0.93***	0.13	1.45**	0.11	-0.11	1.01***	0.66***	-0.06
PC-ECON	0.37	-0.83	-0.57	0.90***	-0.43	0.87**	0.95**	-0.4u	-0.45	1.83	-0.42***	-0.02	1.62**	-0.55	-0.63	0.46*	0.06**	-0.13
Panel B: Technical Indicators																		
MA(1,9)	0.01	0.55*	0.80**	1.57***	-0.64	0.33*	-0.73	-0.35	-0.01	-0.6	1.66	. 03	-0.62	-0.26	-0.13	-0.15	-0.80	-0.06
MA(1,12)	-0.21	0.31*	0.62	0.26*	-0.46	0.43**	-0.82	-0.44	-0.28	-0.41	-0. ${ }^{\text {u }}$	- 20	-0.63	-0.05	-0.10	0.02	-0.68	-0.41
MA $(2,9)$	-0.38	-0.21	0.29	0.36*	-0.73	0.22*	-0.75	-0.54	-0.24	-0.63	-0.2)	-18	J.55	-0.53	-0.26	-0.02	-0.62	-0.27
MA $(2,12)$	-0.51	-0.44	0.35	0.47*	-0.56	-0.21**	-0.85	-0.72	-0.19	-0.27	-0.62	-1	-0.69	-0.64	-0.15	0.24	-0.35	-0.78
MA $(3,9)$	-0.56	-0.66	-0.12	-0.25	-0.84	-0.12	-0.83	-0.42	-0.14	-0.50	-0.76	-0.30	-0.74	, 10	-0.29	-0.14	-0.64	-0.30
MA (3,12)	-0.52	-0.39	-0.24	-0.16	-0.67	-0.50*	-0.74	-0.68	-0.26	-0.48	-0.82	-0.46	-nr.	- 48	-0.29	-0.14	-0.44	-0.62
$\operatorname{MOM}(9)$	-0.50	-0.20	0.23	-0.02	-0.52	0.63*	-0.78	-0.51	-0.15	-0.33	-0.69	-0.31	-0.80	-0.s	-0.19	-0.08	-0.20	-0.28
MOM(12)	-0.93**	-0.02	0.58*	0.16	-0.41	-0.69	-1.38	0.35*	-0.20	-0.02	-0.28	-0.40	-1.03		-0.20	0.1	-0.29	-0.65
RSI(7)	1.48***	3.25***	$3.67 * * *$	1.65***	1.42**	1.82***	0.65**	-0.05	$1.24 * * *$	-0.06*	0.25	0.35	-1.28*	1.64**	0.06	$\bigcirc \pm 2^{*}$	0.29	0.38*
RSI(14)	$2.86 * * *$	3.90***	$3.88 * * *$	1.83***	1.53***	1.96***	1.40***	0.14**	1.14***	0.21**	0.38*	0.61*	-1.39**	2.29***	- 0.18	J. co** $^{\text {* }}$	$0 . ?$	0.50*
EMA (5,12)	0.41**	0.92**	-0.24	-0.42	-0.77	-0.41	-0.31	0.79**	-0.38	-0.92	-0.68	-0.18	-0.35	1.09**	-0.26	-0.59	44	38
POOL-TECH	1.86 ***	1.36***	$1.44 * * *$	1.47 ***	0.00	1.15***	0.38	0.31	0.24	0.10	-0.24	0.01	0.56*	1.15***	-0.02	0.50*	-0.	,
PC-TECH	0.62***	1.79***	2.47 ***	1.09***	0.29	2.11***	-0.29*	-0.12	0.52	-0.42	-0.18	0.51*	-1.00 **	$1.62^{* * *}$	0.09	0.81**	-6. 55	0.09*

Panel C: All predictors Taken Together

Table 8: Robustness Test : Out-of-sample period begins in 1990

Macroeconomic Variar ${ }^{\prime}$ '		Technical Indicators											
Predictor	CsP	- EN	NOK	CHF	CAD	AUD	Predictor	GBP	YEN	NOK	CHF	CAD	AUD
Panel A: Bivariate Preaict ve Regrf, sion ${ }^{\text {Jorecasts }}$													
IRP	2.06 **	0.75**	$2.21 * * *$	- 21 **	-0.21	0.06	MA (1,9)	$3.79 * * *$	$0.41^{* *}$	$0.58^{* *}$	0.86 ***	$0.85 * *$	$1.34^{* * *}$
FB	2.67 **	1.06 **	- 2^{*}	1.85 *	-0.23	$0.41^{* * *}$	MA $(1,12)$	0.31*	0.59**	$2.75{ }^{* * *}$	-0.23*	0.75 **	0.76 ***
BMF	$9.51^{* * *}$	$2.74 * * *$	$3.38{ }^{* *}$	$4 .{ }^{\text {r }} t^{* * *}$	$5.44^{* * *}$	$10.16^{* * *}$	$\mathrm{MA}(2,9)$	0.63*	1.21 **	1.19*	$2.39^{* * *}$	$0.54 *$	$0.66^{* *}$
PPP	$9.39^{* * *}$	$9.97^{* * *}$	$13.19{ }^{* *}$.	5.21	6.4, ***	$11.57^{* * *}$	$\mathrm{MA}(2,12)$	-1.09	-0.19	1.19 **	$1.27^{* * *}$	0.46 *	-1.01
HOAfw	$2.24^{* * *}$	-0.28	3.09 ***	$1.03 * *$	024	5.58 ***	MA $(3,9)$	-0.65	0.44	$1.15{ }^{* *}$	$1.46{ }^{* * *}$	-0.07	0.25
HOS	0.71	-0.20	0.25	-0.29	0.36	$6.56{ }^{* * *}$	$\mathrm{MA}(3,12)$	-2.19	-0.17	0.09	0.33	-0.32	-0.11
HOSS	-1.16	-0.14	0.16	0.39	-0.6	J.16	$\operatorname{MOM}(9)$	-0.96	-0.23	1.52	0.02	0.15	-1.69
HOA	-1.19	1.07 ***	0.63	$2.64 * * *$	-0.32	8. ${ }^{\text {- }}$ ***	$\operatorname{MOM}(12)$	$0.32^{* *}$	0.09	0.52	$3.04 * * *$	0.53	$1.27{ }^{*}$
HOAS	-1.19	-0.17	0.15	0.39	-0.67	C. ${ }^{19}$	RSJ)	$6.57 * * *$	8.08***	$13.13 * * *$	$5.62 * * *$	$5.09^{* * *}$	9.41***
HES	-0.73	0.14	0.79*	-0.21	-0.44	5.53 rn*	$\mathrm{R}^{\ulcorner }$(14)	7.87 ***	$8.55^{* * *}$	$15.01^{* * *}$	$5.57 * * *$	5.33 ***	$10.56^{* * *}$
HESS	-1.23	-0.36	0.15	0.44	-0.66	0.19	${ }^{T} \mathrm{M}_{1}\left({ }^{\prime}, 1^{\prime}\right)$	0.02*	0.58*	-0.15	0.00	0.25	1.39*
HEA	-0.20	0.95**	$2.64 * *$	$2.44 * * *$	0.59*	8.89***							
HEAS	-0.96	-0.39	0.17	0.42	-0.60	0.21							
Panel B: Principal Components and Combination Forecasts per Group (Macro vs Tech)													
POOL-ECON	3.16 ***	$2.68^{* * *}$	$3.34^{* * *}$	$3.48^{* * *}$	$1.08^{* * *}$	$6.03^{* * *}$	POOL-TECH	4.48*..*	$4.31 * *$	5.6 ${ }^{* * *}$	$4.51^{* * *}$	1.57 ***	3.71 ***
PC-ECON	$5.17{ }^{* * *}$	$5.43^{* * *}$	$5.52^{* * *}$	4.70***	-0.12	$12.74^{* * *}$	PC-TECH	4.96***	rr**	ᄀ. $8 \iota^{\text {k }}$ **	$3.98{ }^{* *}$	$3.33^{* * *}$	5.62 ***
Panel C: Principal Components and Combination Forecasts per Group (All predictors)													
POOL-ALL	3.96 ***	$3.53^{* * *}$	$4.25^{* * *}$	$4.08^{* * *}$	$1.32 * * *$	$5.10^{* * *}$							
PC-ALL	$3.71^{* * *}$	$6.22^{* * *}$	$10.21^{* * *}$	4.90***	$4.34^{* * *}$	$12.25^{* * *}$							
Panel D: Amalgam Forecasts													
FC-AMALG	$6.40^{* * *}$	$6.75{ }^{* * *}$	$8.63^{* * *}$	$5.97 * * *$	$3.11^{* * *}$	$10.09^{* * *}$							

[^19]Table 9: Robustness Test : Out-of-sample period begins in 2000

Macroeconomic Variar'^		Technical Indicators											
Predictor	C.sP	, EN	NOK	CHF	CAD	AUD	Predictor	GBP	YEN	NOK	CHF	CAD	AUD
Panel A: Bivariate Predict ve Regrf sion - orecasts													
IRP	0.55	-0.16	0.78*	- 15	-0.41	0.11**	MA(1,9)	$3.88{ }^{* * *}$	-4.22	1.16**	$1.07{ }^{* *}$	1.10**	1.10**
FB	0.99	-0.15	-..0**	-5.5	-0.43	$0.52^{* * *}$	MA $(1,12)$	0.14	-0.05	$3.97 * * *$	-0.49	0.72 **	2.69 ***
BMF	$7.34^{* * *}$	-7.52	$3.81{ }^{\text {k }}$	-0 8 ***	¢ $27^{* * *}$	$11.55^{* * *}$	MA $(2,9)$	0.22	0.41	1.40*	1.14**	0.75*	0.86**
PPP	8.53 ***	4.83 ***	$12.88^{* * *}$	$112{ }^{1}$	7.2 ***	$13.14^{* * *}$	MA $(2,12)$	-0.24	0.00	1.41*	0.98**	0.71**	-0.46
HOAfw	$2.67{ }^{* *}$	-0.92	$3.66{ }^{* *}$	-1.88	0 ,7*	5. $88^{* * *}$	MA $(3,9)$	0.26	1.08*	1.30*	1.51**	-0.04	0.51
HOS	1.06	1.04*	0.57	-0.34	J. 35	$7.43^{* * *}$	MA $(3,12)$	-0.15	0.06	0.06	0.82**	-0.19	1.13
HOSS	-0.13	-0.02	0.28	-0.23	-0.2.	- 0.0	$\operatorname{MOM}(9)$	-1.50	-0.14	2.81**	0.01	0.20	-0.52
HOA	-1.55	1.58**	1.07*	$2.34 * * *$	-0.37	10 , $7^{* * *}$	$\operatorname{MOM}(12)$	-1.12	-0.49	0.61	0.33 **	0.61	2.17 *
HOAS	-0.14	-0.04	0.29	-0.25	-0.28	-¢ 1	RSI ${ }^{\prime}$,	$4.76{ }^{* * *}$	$-2.33 * *$	$13.50{ }^{* *}$	1.71***	$5.74 * * *$	$10.61^{* * *}$
HES	-0.49	0.76*	1.28	-0.52	-0.48	5.75 *ッ*	R'. (4)	7.51 ***	-0.80***	$15.72^{* * *}$	1.43 ***	6.01 ***	$11.65^{* * *}$
HESS	-0.10	-0.18	0.25	-0.22	-0.26	0.02	F.L ($5.5,1^{\circ}$)	2.82	-0.46	-0.14	-1.46	0.29	$2.04 *$
HEA	-0.20	1.47**	$3.09^{* *}$	1.84**	0.83 **	$10.65^{* * *}$							
HEAS	-0.06	-0.20	0.29	-0.24	-0.22	0.03							
Panel B: Principal Components and Combination Forecasts per Group (Macro vs Tech)													
POOL-ECON	3.03***	1.73 ***	$3.31^{* * *}$	1.21*	1.32***	6.43 ***	POOL-TECH	3.59*i	2.18**	b. ${ }^{\text {a }}$ ***	3.32***	$1.75{ }^{* * *}$	$4.00^{* * *}$
PC-ECON	$7.27^{* * *}$	0.09*	$7.66{ }^{* * *}$	-2.96*	0.07	$13.75{ }^{* * *}$	PC-TECH	$3.38^{* * *}$		${ }^{1} 0.25{ }^{* * *}$	1.33 ***	$3.78^{* * *}$	8.23***
Panel C: Principal Components and Combination Forecasts per Group (All predictors)													
POOL-ALL	$3.45{ }^{* * *}$	2.08***	$4.34 * * *$	2.31***	$1.53^{* * *}$	5.43 ***							
PC-ALL	$3.66{ }^{* * *}$	$-1.97 * *$	$12.08^{* * *}$	$0.06^{* * *}$	5.41 ***	$14.53^{* * *}$							
Panel D: Amalgam Forecasts													
FC-AMALG	$5.44^{* * *}$	$2.05^{* *}$	$9.47^{* * *}$	2.69 ***	3.75 ***	$11.10^{* * *}$							

[^20]Notes: The table reports the $R_{O O S}^{2}$ values for each currency. For further details see Table 3.

Predictor	DKK	EUR	MYR	ZAR	SEK	DKK	EUR	MYR	NZD	ZAR	SEK
OOS period starts in 1979						OOS starts in 1990					
Panel A: Bivariate Predictive Regression Forecasts, ECON											
IRR	-0.10	$1.17 * * *$	-0.43	-0.56	$0.68^{* *}$	0.02	$1.34 * * *$	0.03	0.69**	-0.40	$1.45{ }^{* *}$
FB	-0.13	1.90 ***	-0.44	-0.75	$1.28^{* * *}$	-0.01	2.13 ***	0.00	0.93 **	-0.43	$2.12{ }^{* * *}$
GMF	3.50 ***	$4.22^{* * *}$	-0.39	$1.06{ }^{* * *}$	$4.54^{* * *}$	$3.88^{* * *}$	4.08***	0.08	$7.24{ }^{* * *}$	$0.52^{* *}$	$5.49^{* * *}$
PPP	$8.55^{* * *}$	$5.22^{* * *}$	-4.58	$10.49^{* * *}$	$14.94^{* * *}$	8.61***	3.53 ***	-5.50	10.40***	$10.78^{* * *}$	$16.40{ }^{* * *}$
HOAfv	「.u.*	2.56 **	-0.42	0.49*	$1.14{ }^{* *}$	0.41	2.37 ***	-0.26	$2.45{ }^{* * *}$	0.84*	1.16**
HOS	-0.10	-0.40	-0.36	-0.29	-0.29	-0.04	-0.14	-0.20	0.36	-0.48	-0.41
HOSS	-0.09	-U. ${ }^{7}$	-0.33	-0.35	-1.52	-0.04	-0.59	0.17	-0.45	0.17	-0.24
HOA	$\bigcirc .9$	0.4**	-0.69	-0.39	-0.14	-0.09	-0.46	-0.30	1.50 **	-0.56	-0.19
HOAS	-0.06	-0.28	- 29	-0.36	-1.58	-0.02	-0.59	0.24	-0.49	0.18	-0.23
HES	-0.39	U.7 ${ }^{-}$	-0.3	-0.28	-0.15	-0.11	-0.58	-0.20	0.13	-0.36	-0.24
HESS	-0.15	-0.b:	-0.')	-0 41	-1.72	-0.04	-0.60	0.42	-0.18	0.13	-0.22
HEA	-0.17	0.93 **	-r. 51	1.06	0.35	-0.08	0.15	-0.24	0.75*	$0.36{ }^{* *}$	0.40
HEAS	-0.14	-0.37	-0.02	-0,8	1.86	-0.03	-0.64	0.38	-0.26	0.02	-0.21
POOL-ECON	$1.62{ }^{* * *}$	$2.55^{* * *}$	0.50	1.93 **	$2.7{ }^{\text {¢ }} * *$	$1.65{ }^{* * *}$	$2.05^{* * *}$	0.68	$3.08^{* * *}$	$2.09^{* * *}$	$3.24 * * *$
PC-ECON	0.06	$6.63^{* * *}$	-0.16	$1.59^{* * *}$	$47^{* * *}$	0.21	$6.25{ }^{* * *}$	0.22	$4.35{ }^{* * *}$	$3.44^{* * *}$	8.01***
Panel C: Bivariate Predictive Regression Forecasts, TECH											
MA(1,9)	$2.07^{* * *}$	0.21 **	0.89***	0.30	2.07 ***	2.33*	$0.5{ }^{\circ}$	1.00 ***	-1.29	1.27 **	2.33 ***
MA (1,12)	$2.59^{* * *}$	$1.22^{* * *}$	$0.38{ }^{* * *}$	$1.38{ }^{* * *}$	$2.59^{* * *}$	2.93 ***	$11 e^{* *}$	¢-j***	-1.98	1.81 ***	2.93 ***
MA $(2,9)$	$1.85 * * *$	$0.54^{* *}$	$0.13 *$	0.30 **	$1.85{ }^{* * *}$	$1.99^{* *}$	0.64*	J. (L	. 1.17	0.24	1.99**
$\mathrm{MA}(2,12)$	$1.15{ }^{* *}$	-0.02	$0.70^{* * *}$	0.18	$1.15{ }^{* *}$	$1.58{ }^{* *}$	$0.49{ }^{*}$	$0.2{ }^{*}$	-1.55	0.38*	$1.58{ }^{* *}$
MA $(3,9)$	0.62*	0.23	-0.15	0.06	0.62*	0.86*	$0.57^{* *}$	$0 . C$	-0.71	0.14	0.86*
$\mathrm{MA}(3,12)$	$1.10{ }^{* *}$	0.36*	0.50**	0.00	$1.10{ }^{* *}$	$1.64 * *$	$0.64 * *$	$0.92{ }^{* *}$	$-1 .{ }^{\text {P }}$ +	-1 06	$1.64 * *$
$\operatorname{MOM}(9)$	1.73 ***	$0.73^{* *}$	0.56 ***	-0.53	1.73 ***	$2.05^{* *}$	0.95**	$0.18^{* * *}$	- 35	-0.37	$2.05 * *$
$\operatorname{MOM}(12)$	0.04*	1.40 ***	-0.87	0.19	$0.04 *$	0.84*	$2.15{ }^{* * *}$	0.07	0.07	J. ${ }^{5}$	0.84*
RSI(7)	$4.59^{* * *}$	$1.98{ }^{* * *}$	$3.14{ }^{* * *}$	1.40 ***	4.59***	$5.67 * * *$	2.07 ***	2.97 ***	$2.96{ }^{* * *}$	1. $0^{* *}$	$53^{* *}$
RSI(14)	$6.64 * * *$	3.53 ***	$0.14{ }^{* * *}$	$3.97 * * *$	$7.23{ }^{* * *}$	7.95***	$3.72^{* * *}$	$0.25^{* * *}$	$5.06{ }^{* * *}$	3. $\iota^{* * * *}$	-1.5**
$\operatorname{EMA}(5,12)$	$2.10^{* * *}$	$0.35^{* *}$	-0.94	0.30*	$1.83 * * *$	$2.96{ }^{* * *}$	0.66 **	0.17*	$1.36{ }^{* *}$	0.79**	$2.50^{* *}$
Panel D: Principal Components and Combination Forecasts, TECH											
POOL-TECH	$3.76{ }^{* * *}$	1.89 ***	$1.57^{* * *}$	1.10 ***	$3.87^{* * *}$	4.55 ***	$2.17 * * *$	$1.47^{* * *}$	1.87 ***	$1.38^{* * *}$	4.63 ***
PC-TECH	$7.54^{* * *}$	$3.31^{* * *}$	2.80 ***	$1.51^{* * *}$	$7.59^{* * *}$	$9.18^{* * *}$	4.19 ***	2.33 ***	$-0.13 * * *$	$1.98{ }^{* * *}$	$9.24{ }^{* * *}$
Panel E: Principal Components and Combination Forecasts, All Predictors Taken Together											
POOL-ALL	2.72 ***	$2.33^{* * *}$	1.08	1.59 ***	$3.39^{* * *}$	$3.11^{* * *}$	$2.18{ }^{* * *}$	1.11	$2.65{ }^{* * *}$	1.81 ***	$3.98{ }^{* * *}$
PC-ALL	$8.47^{* * *}$	5.03 ***	$3.10^{* * *}$	$2.31^{* * *}$	7.11***	$10.56^{* * *}$	5.50 ***	$3.48^{* * *}$	$4.07^{* * *}$	3.81 ***	$11.84^{* * *}$
Panel F: Amalgam Forecasts											
AMALG	$6.59{ }^{* * *}$	4.61 ***	$2.57^{* * *}$	$2.83 * * *$	$7.13 * * *$	$8.06{ }^{* * *}$	$4.79^{* * *}$	$2.70^{* *}$	$4.64 * * *$	$4.21^{* * *}$	$9.69^{* * *}$

Table 11: Out-of-sample Estimates for Additional Currencies; Out-of-sample period begins in 2000

Panel A: Bivariate Predictive Regression Forecasts, ECON													
Predictor	COP	DKK	EUR	INR	MYR	MXN	NZD	SOL	PHP	ZAR	SEK	THB	BRL
IRR	0.06	0.02	1.79**	0.09	0.09	0.61*	0.39	1.75***	-1.74	-0.02	0.30	0.01	0.69***
FB	0.05	-0.01	2.73***	0.10	0.05	0.67*	0.65	1.73 ***	-1.72	-0.13	0.92*	0.05	0.70***
GMF	-0.79	$3.36{ }^{* *}$	$4.39^{* * *}$	-1.13	0.09	-8.28	9.12***	1.53***	0.86*	0.38	$5.27{ }^{* * *}$	2.79***	-2.81
PPP	0.10	$6.84^{* * *}$	7.57***	4.80**	10.26***	-4.18	11.72***	1.87	-0.79	9.28***	12.81***	3.42 ***	-0.38
HOAfw	1.24	ग. 18	2.45**	0.39	-0.71	0.39*	$2.40^{* * *}$	4.91***	1.01*	1.02*	0.64	-1.6	0.39*
HOS	-0.45	-0.0-	-0.09	-0.35	-0.15	0.28	0.53	2.87***	0.95*	-1.03	-0.23	-15.14	0.49
HOSS	?.44	04	0.15	0.02	-0.17	0.53***	-0.27	2.23 ***	-1.98	0.25	-0.07	-1.09	0.34**
HOA	-1.u8	- 1.07	0 \%	-0.18	-0.22	-1.72	1.68**	2.27 ***	1.18*	-1.24	-0.37	-11.8	0.97
HOAS	-0.46	(78	16	-0.03	-0.27	0.60***	-0.32	$2.32^{* * *}$	-1.91	0.25	-0.05	-1.23	0.28*
HES	-0.03	-0.15	-1.20	- - . 5	-0.48	1.19**	0.16	2.50 ***	0.61	-0.96	-0.06	-5.25	-0.01
HESS	-0.37	0.11	${ }^{1} 13$	-0.0	-0.59	0.35*	0.06	2.30 ***	-1.81	0.25	-0.05	-0.46	0.21**
HEA	-0.72	-0.13	1.20	-u. 22	-. ${ }^{4}$	$1.37^{* *}$	0.81*	2.39***	-0.1	1.47**	-0.37	-1.57	0.27
HEAS	-0.35	0.10	0.16	-0.08	-0.51	0.36*	-0.01	$2.28 * * *$	-1.81	0.18	-0.03	-2.03	0.23**
Panel B: Principal Components and Combination Fo casts. $\overline{\text { ¢ }}$													
POOL-ECON	0.04	1.41 ***	2.91***	0.60**	1. $\overline{\text { *** }}$. 05	3.29***	$2.65 * * *$	0.31	1.89***	2.66 ***	-0.56	0.33
PC-ECON	-0.62	0.27	10.49***	0.26	-0.82	-3.16	5.37***	2.61 ***	-0.3	3.06**	$5.84^{* * *}$	-4.96	0.23
Panel C: Bivariate Predictive Regression Forecasts, TECH													
MA(1,9)	-0.95	0.55*	1.74**	4.05**	3.93***	-0.93	-. 42	,.81	-2.76	1.30*	0.55*	-1.16	-4.35
MA (1,12)	-0.28	3.53**	0.78**	$2.44 * *$	2.81 ***	-0.89	-0.9	$0.6{ }^{-}$	-1.51	1.99**	3.53 **	-1.29	-0.7
MA (2,9)	-0.84	$2.22^{* *}$	1.95**	0.85**	-1.38	-0.74	-1.29	. $\mathrm{Lb}^{\prime \prime}$	-r	0.25	$2.22^{* *}$	-0.59	-6.01
MA (2,12)	-0.23	2.80 **	1.51**	4.84**	$3.12{ }^{* *}$	-0.73	-0.46	1.26**	J. 0	r. 41	2.80 **	-19.8	-3.06
MA $(3,9)$	0.92	1.86**	1.31*	2.43 **	-0.46	-0.47	-1.42	0.78*	-0.7	J. 1	1.86**	-3.57	-7.43
MA $(3,12)$	1.60*	2.45**	1.92**	0.52*	2.85 **	-0.64	-0.43	1.54***	-0.2	-r J 7	2.45**	0.38	-3.9
$\operatorname{MOM}(9)$	-0.41	$3.25{ }^{* *}$	2.93 **	$1.37{ }^{* *}$	1.41*	-0.43	1.33**	2.15 ***	-2.36	-. 25	3. ${ }^{* *}$	-13.39	-1.42
MOM(12)	0.19	-1.59	1.51**	0.32	0.76**	-1.68	0.40*	$2.27^{* * *}$	-0.67	0.2	-1.0)	-182	-1.01
RSI(7)	0.86	5.17***	$4.44^{* * *}$	4.97***	$3.22^{* * *}$	-3.22	$3.13{ }^{* * *}$	1.28**	-0.46	0.57	5.17*	-0.37	-1.3
RSI(14)	-0.15	4.02**	$3.94 * * *$	1.72*	-13.93**	-1.35	5.73 ***	0.89	-0.93	3.09***	3.	-0.39*	${ }^{\text {^ }} 53$
EMA(5,12)	0.06	3.32^{*}	1.49**	-0.35	0.70	-0.25	2.01**	2.76 ***	-0.23	0.73**	3.09**	-6.08	-2.7\%
Panel D: Principal Components and Combination Forecasts, TECH													
POOL-TECH	0.75	$4.21^{* * *}$	3.76***	$3.25^{* * *}$	2.84 ***	-0.01	$1.67{ }^{* * *}$	1.90 ***	-0.11	$1.17^{* * *}$	$4.22^{* * *}$	-0.4	-r 23
PC-TECH	1.32	9.79***	7.77***	7.80***	5.41***	-1.32	0.65**	1.36 **	-0.98	1.76**	9.80 ***	-2.32	-6.62

Panel E: Principal Components and Combination Forecasts, All Predictors Taken Together

POOL-ALL	0.43	$2.82^{* * *}$	$3.40^{* * *}$	$1.90^{* * *}$	$2.04^{* * *}$	0.01	$2.63^{* * *}$	$2.35^{* * *}$	0.29	$1.59^{* * *}$	$3.47^{* * *}$	-0.21	0.28
PC-ALL	0.57	$10.71^{* * *}$	$9.54^{* * *}$	$7.94^{* * *}$	$3.77^{* *}$	0.26	$5.58^{* * *}$	$2.65^{* * *}$	-0.14	$4.61^{* * *}$	$11.66^{* * *}$	-5.78	0.14
Panel F: Amalgam Forecasts													
AMALG	0.56	$7.87^{* * *}$	$8.17^{* * *}$	$5.89^{* * *}$	$4.17^{* * *}$	0.15	$5.10^{* * *}$	$2.57^{* * *}$	0.45	$4.54^{* * *}$	$9.22^{* * *}$	-2.48	0.26
Notes: The table reports the $R_{O O S}^{2}$ values for each currency. For further details see Table 3.													

ACCEPTED MANUSCRIPT

Figure(s)

Notes: Figure 1 presents the time series of the six spot exchange rates (vs USD).

Notes: The Figure plots the cumulative squared error difference between the benchmark and the best and worst performing predictors. The best performing predictors are PPP, $\mathrm{RSI}(14)$ and BMF , and the worst performing ones are HES, HEA and MA $(3,12)$.

ACCEPTED MANUSCRIPT

Figure 3: GBP forecasts (PC, POOL, AMALG)
200
Notes: The Figure plots the cumulative squared error difference between the RW benchmark and the Combined forecasts (POOL-j), Principal Components (PC-j) and amalgam forecasts. $j=$ ECON for macroeconomic predictors, $j=T E C H$ for technical Indicators and $j=A L L$ for all individual predictors taken together.

Notes: See notes in Figure 3.
(
Figure 6: CHF forecasts (PC, POOL, AMALG)

Notes: See notes in Figure 3.

Notes: See notes in Figure 3.
Figure 8: AUD forecasts (PC, POOL, AMALG)

[^0]: ${ }^{*}$ Corresponding author. Ekaterin; Pan pou' su, Kent Business School, University of Kent, Canterbury CT2 7FS, United Kingdom, Tel.: 00441227 ~ 146 , Email: A.Panopoulou@kent.ac.uk.

[^1]: ${ }^{1}$ Early contributions to the field include Taylor and Allen (1992) and Cheung and Chinn (2001) among others.

[^2]: ${ }^{2}$ For a coheı ηt app oach on Taylor rules, see among others Orphanides, 2003 and 2008; Molodtsova and Papell, 2000. Byrne, мorobilis and Ribeiro, 2016 and 2018.

[^3]: ${ }^{3}$ In what follows, $" * "$ denotes the variable in the foreign country.
 ${ }^{4}$ For a more detailed discussion, see Rapach and Wohar, 2002.

[^4]: ${ }^{5}$ For a detailed discussion on Taylor rules, see Molodtsova and Papell (2009, 2012).

[^5]: ${ }^{6}$ For a compı hensive review of technical indicators see Zarrabi, Snaith and Coakley (2017), Nazário, Silva, Sobreiro and Kimura, (2017) and Hsu, Taylor and Wang (2016).

[^6]: ${ }^{7}$ See, for example, Buncic and Piras, 2016.

[^7]: ${ }^{8}$ In the 1 bus an section we also include different out-of-sample periods and alternative forecast horizons.

[^8]: ${ }^{9}$ For alternative ways of principal components' selection, see Bai and Ng (2002). Neely, Rapach, Tu and Zhou (2014) select K via the adjusted R^{2}.

[^9]: ${ }^{10}$ We address this issue in Section 3.4 where we present the test for model encompassing.

[^10]: ${ }^{11}$ Table 1 alsc presents the datasources for an extensive set of currencies employed in the robustness section (Section 6.3).
 ${ }^{12}$ The authors attribute the inability of non-linear models to forecast accurately exchange rates to this phenomenon.

[^11]: ${ }^{13}$ In the robusıness section we also include different out－of－sample periods，alternative forecast horizons and an extended currency dataset．

[^12]: ${ }^{14}$ Our findings with respect to macroeconomic predictors are in line，among others，with Li，Tsiakas and Wang （2015），Della Corte and Tsiakas（2012）．

[^13]: ${ }^{15}$ Even modes, statistically significant out-of-sample performance or small $R_{O O S}^{2}$ values may have significant gains (Buncic and Piras, 2016 and Neely, Rapach, Tu and Zhou, 2014; Della Corte and Tsiakas, 2012).

[^14]: ${ }^{16}$ Abhyankar, Sarn wad Vanate (2005) set $\gamma=[2,5,10,20]$; Neely, Rapach, Tu and Zhou (2014) set $\gamma=5$; Buncic and Piras $(2,16)$ set $=6$; Panopoulou and Pantelidis set $\gamma=[2,5]$.
 ${ }^{17}$ Let the vector of nomen's be $u=\left(r_{p, i}, r_{p, R W}, \sigma_{p, i}^{2}, \sigma_{p, R W}^{2}\right)$ and their estimates $\hat{u}=\left(\hat{r}_{p, i}, \hat{r}_{p, R W}, \hat{\sigma}_{p, i}^{2}, \hat{\sigma}_{p, R W}^{2}\right)$. The difference . the certainty equivalent return of the predictor i and the benchmark is given by the funct in $f\left(u,=\left(\hat{r}_{p, i}-\frac{1}{2} \gamma \hat{\sigma}_{p, i}^{2}\right)-\left(\hat{r}_{p, R W}-\frac{1}{2} \gamma \hat{\sigma}_{p, R W}^{2}\right)\right.$ and the asymptotic distribution of the function calc lated as $\sqrt{T}(f(\hat{u})-f(u))$ with a distribution $N\left(0, \frac{\partial f}{\partial u}{ }^{\top} \Theta \frac{\partial f}{\partial u}\right)$, where $\Theta=$ $\left[\begin{array}{cccc}\hat{\sigma}_{p, i}^{2} & \hat{\sigma}_{-i, R W} & 0 & 0 \\ \hat{\sigma}_{p, i, R W} & \hat{n}_{n, R,}^{2} & 0 & 0 \\ 0 & 0 & 2 \hat{\sigma}_{p, i}^{4} & 2 \hat{\sigma}_{p, i, R W}^{2} \\ 0 & 0 & \hat{\sigma}_{p, R W}^{4}\end{array}\right]$.

 The variance of the distribution is given as follows; $\sigma^{2}=\frac{\partial f}{\partial u}{ }^{\top} \Theta \frac{\partial f}{\partial u}=$

[^15]: ${ }^{18}$ Neely, Wel ${ }^{r}$ and Ulricht (2009) argue that "Since the mid-1990s, electronic trading has lowered transaction costs...Recently, spot market participants have faced spreads of 2 bps or less for transactions in the $\$ 5$ million to $\$ 50$ million range." The authors assume a linear decline from 10 bps in 1973 to 1.88 bps in 2005 . In our case, we assume that the costs are stable over the entire sample period to 5 bps .

[^16]: ${ }^{19}$ Specifir ${ }^{-1 \mathrm{l}_{\mathrm{v}}}$ we test whether the Sharpe ratio of the benchmark is equal to its rival, so that $H_{0}: \frac{\hat{r}_{p, i}}{\hat{\sigma}_{p, i}}-\frac{\hat{r}_{p, R W}}{\hat{\sigma}_{p, R W}}=$ 0 . The respec iv \lrcorner test statistic is given by $\hat{z}=\frac{\hat{\sigma}_{p, R W} \hat{r}_{p, i}-\hat{\sigma}_{p, i} \hat{r}_{p, R W}}{\sqrt{\theta}}$, where

 $$
 \theta=\frac{1}{P}\left(2 \hat{\sigma}_{p, i}^{2} \hat{\sigma}_{p, R W}^{2}-2 \hat{\sigma}_{p, i} \hat{\sigma}_{p, R W} \sigma_{i, R W}+\frac{1}{2} \hat{r}_{p, i}^{2} \hat{\sigma}_{p, R W}^{2}+\frac{1}{2} \hat{r}_{p, R W}^{2} \hat{\sigma}_{p, i}^{2}-\frac{\hat{r}_{p, i} \hat{r}_{p, R W}}{\hat{\sigma}_{p, i} \hat{\sigma}_{p, R W}} \sigma_{i, R W}\right)
 $$

[^17]: ${ }^{20}$ Data prior to its inception are proxied by the Deutche mark.

[^18]: ${ }^{21}$ This set of results is available from the authors upon request.

[^19]: Notes: The table reports the $R_{O O S}^{2}$ values for each currency. For further details see Table 3. The out-of-sample period begins in January 1990 .

[^20]: Notes: The table reports the $R_{O O S}^{2}$ values for each currency. For further details see Table 3. The out-of-sample period begins in January 2000.

