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Abstract. We present a multidomain spectral approach for Fuchsian ordinary
differential equations in the particular case of the hypergeometric equation.

Our hybrid approach uses Frobenius’ method and Moebius transformations

in the vicinity of each of the singular points of the hypergeometric equation,
which leads to a natural decomposition of the real axis into domains. In each

domain, solutions to the hypergeometric equation are constructed via the well-

conditioned ultraspherical spectral method. The solutions are matched at the
domain boundaries to lead to a solution which is analytic on the whole com-

pactified real line R∪∞, except for the singular points and cuts of the Riemann

surface on which the solution is defined. The solution is further extended to
the whole Riemann sphere by using the same approach for ellipses enclosing

the singularities. The hypergeometric equation is solved on the ellipses with

the boundary data from the real axis. This solution is continued as a har-
monic function to the interior of the disk by solving the Laplace equation in

polar coordinates with an optimal complexity Fourier–ultraspherical spectral
method. In cases where logarithms appear in the solution, a hybrid approach

involving an analytical treatment of the logarithmic terms is applied.

1. Introduction

Gauss’ hypergeometric function F (a, b, c, z) is arguably one of the most impor-
tant classical transcendental functions in applications, see for instance [19] and ref-
erences therein. Entire chapters are dedicated to it in various handbooks of math-
ematical functions such as the classical reference [1] and its modern reincarnation
[16]. It contains large classes of simpler transcendental functions as degeneracies, for
example the Bessel functions. Despite its omnipresence in applications, numerical
computation for a wide range of the parameters a, b, c, z is challenging, see [18] for
a comprehensive recent review with many references and a comparison of methods,
and [3] for additional approaches to singular ODEs. This paper is concerned with
the numerical evaluation of the hypergeometric function F (a, b, c, z), treated as a
solution to a Fuchsian equation. This class of equations further includes examples
such as the Lamé equation, see [1], to which the method can be directly extended.
The focus here is on the efficient computation of the hypergeometric function on the
compactified real line R∪{∞} and on the Riemann sphere C̄, not just for individual
values of z. The paper is intended as a proof of concept to study efficiently global
(in the complex plane) solutions to singular ODEs (in these approaches, infinity
is just a grid point and large values of the argument are treated as values in the
vicinity of the origin) such as the Heun equation and Painlevé equations.

The hypergeometric function can be defined in many ways, see for instance [1].
In this paper we construct it as the solution of the hypergeometric differential
equation

(1) x(1− x)y′′ + (c− (1 + a+ b)x)y′ − aby = 0

Date: June 5, 2019.
Key words and phrases. hypergeometric function; singular differential equations; spectral

methods.

1



2 S. CRESPO, M. FASONDINI, C. KLEIN, N. STOILOV, C. VALLÉE

with F (a, b, c, 0) = 1; here a, b, c ∈ C are constant with respect to x ∈ R. Equation
(1) has regular (Fuchsian) singularities at 0, 1 and infinity. The Riemann symbol
of the equation is given by

(2) P

 0 1 ∞
0 0 a z

1− c c− a− b b

 ,

where the three singularities are given in the first line. The second and third lines
of the symbol (2) give the exponents in the generalized series solutions of equation
(1): If ξ is a local parameter near any of these singularities, following Frobenius’
method (see again [1]), the general solution can be written for sufficiently small |ξ|
in the form of generalized power series

(3) y = ξκ1

∞∑
n=0

αnξ
n + ξκ2

∞∑
m=0

βmξ
m

if the difference between the constants κ1 and κ2 (corresponding to the second and
third lines of the Riemann symbol (2) respectively) is not integer; the constants
(with respect to ξ) αn and βm in (3) are given for n > 0 and m > 0 in terms
of α0 and β0, the last two being the only free constants in (3). It is known that
generalized series of the form (3) have a radius of convergence equal to the minimal
distance from the considered singularity to one of the other singularities of (1).
Note that the form of the solution in (3) implies that at the singularities, only one
condition can be given in general though the equation is of second order where
on generic points, two initial or boundary conditions need to be given in order to
identify a unique solution.

Note also that logarithms may appear in the solution if the difference of the
constants κ1 and κ2 is integer. In the first part of the paper, we do not consider
such cases and concentrate on the generic case

(4) c, c− a− b, a− b /∈ Z.

Solutions with logarithms will be discussed in section 4 using a hybrid approach,
i.e., the logarithmic will be addressed analytically, and just the analytic part of the
solution is constructed numerically.

It is also well known that Moebius transformations (in other words elements of
PSL(2,C))

(5) z 7→ αz + β

γz + δ
, α, β, γ, δ ∈ C, αδ − βγ 6= 0,

transform one Fuchsian equation into another Fuchsian equation, the hypergeomet-
ric one (1) into Riemann’s differential equation, see [1]. Moebius transformations
can thus be used to map any singularity of a Fuchsian equation to 0.

The goal of this paper is to construct numerically the hypergeometric function
F (a, b, c, x) for in principle arbitrary values of a, b, c, and for arbitrary x ∈ C̄,
and this with an efficient numerical approach showing spectral accuracy, i.e., an
exponential decrease of the numerical error with the number of degrees of freedom
used. We employ a hybrid strategy, that is we use Moebius transformations (5)
to map the considered singularity to 0, and we apply a change of the dependent
variable so that the transformed solution is just the hypergeometric function in the
vicinity of the origin, but with transformed values of the constants a, b, c. This is
similar to Kummer’s approach, see [1], to express the solutions to the hypergeo-
metric equation in different domains of the complex plane via the hypergeometric
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function near the origin1. We thus obtain 3 domains covering the complex plane,
each of them centered at one of the three singular points of (1). The dependent
variable of the transformed equation (1) is then transformed as y 7→ ξκiy, i = 1, 2,
where the κi are the exponents in (3). This transformation implies that we get yet
another form of the Fuchsian equation which has a solution in terms of a power
series. This solution will then be constructed numerically.

This means that we solve one equation in the vicinity of x = 0, and two each in
each of the vicinities of 1 and infinity. Instead of one form of the equation, we solve
five PSL(2,C) equivalent forms of (1). This will be first done for real values of x.
Since power series are in general slowly converging because of cancellation errors,
see for instance the discussions in [18], we solve instead each of the 5 equivalent
formulations of (1) subject to the condition y(ξ = 0) = 1 (in an abuse of notation,
we use the same symbol for the local variable ξ and the dependent variable y in
all cases) with spectral methods. Spectral methods are numerical methods for the
global solution of differential equations that converge exponentially fast to analytic
solutions. We shall use the efficient ultraspherical spectral method [17] which, as
we shall see, can achieve higher accuracy than traditional spectral methods such
as collocation methods because it is better conditioned. Solutions in each of the
three domains are then matched (after multiplication with the corresponding factor
ξκi , i = 1, 2) at the domain boundaries to the hypergeometric function constructed
near x = 0 to obtain a function which is C1 at these boundaries (being a solution
of the hypergeometric equation then guarantees the function is analytical if it is
C1 at the domain boundaries). Thus we obtain an analytic continuation of the
hypergeometric function to the whole real line including infinity.

Solutions to Fuchsian equations can be analytically continued as meromorphic
functions to the whole complex plane (more precisely, they are meromorphic func-
tions on a Riemann surface as detailed below). Since the Frobenius approach (3) is
also possible with complex x, techniques similar to the approach for the real axis
can be retained: we consider again three domains, each of them containing exactly
one of the three singularities and the union of which is covering the entire Riemann
sphere C̄. On the boundary of each of these domains we solve the 5 equivalent forms
of (1) as on the real axis with boundary data obtained on R. Then the holomor-
phic function corresponding to the solution in the interior of the studied domain
is obtained by solving the Laplace equation with the data obtained on the bound-
ary. The advantage of the Laplace equation is that it is not singular in contrast to
the hypergeometric equation. It is solved by introducing polar coordinates r, φ in
each of the domains and then using the ultraspherical spectral method in r and a
Fourier spectral approach in φ (the solution is periodic in φ). Since the matching
has already been done on the real axis, one immediately obtains the hypergeometric
function on C̄ in this way.

The paper is organized as follows: in section 2 we construct the hypergeometric
function on the real axis. In section 3 the hypergeometric function is analytically
continued to a meromorphic function on the Riemann sphere. Non generic cases of
hypergeometric equation are studied in section 4. In section 5 we consider examples
for interesting values of a, b, c, x in (1). In section 6 we add some concluding remarks.

1The Kummer group of symmetries of the hypergeometric equation is essentially generated by
Moebius transformations which leave the set of singularities 0, 1, ∞ invariant; note that such a

symmetry does not exist for Fuchsian equations with four singularities, but our approach can still
be applied as discussed in section 6.
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2. Numerical construction of the hypergeometric function on the
real line

In this section we construct numerically the hypergeometric function on the
whole compactified real line. To this end we introduce the following three domains:
domain I: local parameter x, x ∈ [−1/2, 1/2],
domain II: local parameter t = 1− x, t ∈ [−1/2, 1/2],
domain III: local parameter s = −1/(x− 1/2), s ∈ [−1, 1].
In each of these domains we apply transformations to the dependent variable such
that the solutions are analytic functions on their domains. Since we shall approxi-
mate the solution using Chebychev polynomials that are defined on the unit interval
[−1, 1], we map the above intervals [xl, xr] to [−1, 1] via xl(1− `)/2 + xr(1 + `)/2,
` ∈ [−1, 1]. For these equations we look for the unique solutions with y(0) = 1
since the solutions are all hypergeometric functions (which is defined to be 1 at the
origin) with transformed values of the parameters, as showed by Kummer [1]. This
means we are always studying equations of the form

(6) a2(`)y′′ + a1(`)y′ + a0(`)y = 0, ` ∈ [−1, 1], y(0) = 1,

where a2(`), a1(`) and a0(`) are polynomials and a2(0) = 0. At the domain bound-
aries, the solutions are matched by a C1 condition on the hypergeometric function
which is thus uniquely determined (the hypergeometric equation then implies that
the solution is in fact analytic if it is C1 at the domain boundaries). To illustrate
this procedure we use the fact that many hypergeometric functions can be given in
terms of elementary functions, see for instance [1]. Here we consider the example

(7) F (a, b, c, x) = (1− x)−a, a = −1/3, b = c = 1/2.

The triple a, b, c is thus generic as per condition (4). More general examples are
discussed quantitatively in section 5, non generic cases in section 4.

2.1. The ultraspherical (US) spectral method. The recently introduced ul-
traspherical (US) spectral method [17] overcomes some of the weaknesses of tradi-
tional spectral methods such as dense and ill-conditioned matrices. The key idea
underlying the US method is to change the basis of the solution expansion upon
differentiation to the ultraspherical polynomials, which leads to sparse and well-
conditioned matrices, as we briefly illustrate below.

Since the solutions we compute are analytic, they have convergent Chebychev
series [22],

(8) y =

∞∑
j=0

yjTj(`), Tj(`) = cos[j arccos(`)], ` ∈ [−1, 1].

The differentiation operators in the US method are based on the following relations

involving the ultraspherical (or Gegenbauer) orthogonal polynomials, C
(λ)
j (`):

dTj
d`

=

{
jC

(1)
j−1 j ≥ 1

0 j = 0
,

dC
(λ)
j

d`
=

{
2λC

(λ+1)
j−1 j ≥ 1

0 j = 0
, λ ≥ 1.

Hence, differentiations of (8) give

(9) y′ =

∞∑
j=0

(j + 1)yj+1C
(1)
j (`) and y′′ = 2

∞∑
j=0

(j + 2)yj+2C
(2)
j (`).

Therefore, if we let y denote the (infinite) vector of Chebychev coefficients of y,

then the coefficients of the {C(1)
j } and {C(2)

j } expansions of y′ and y′′ are given by
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D1y and D2y, respectively, where

D1 =


0 1

2
3

. . .

 and D2 = 2


0 0 2

3
4

. . .

 .

Notice that the expansions in (8) and (9) are expressed in different polynomial

bases ({Tj}, {C(1)
j }, {C

(2)
j }). The next steps in the US method are (i) substitute (8)

and (9) into the differential equation (6) and perform the multiplications a2(`)y′′,

a1(`)y′ and a0(`)y in the {C(2)
j }, {C

(1)
j } and {Tj} bases, respectively, and (ii)

convert the expansions in the {Tj} and {C(1)
j } bases to the {C(2)

j } basis.

Concerning step (i), consider the term a0(`)y and suppose that a0(`) =
∑∞
j=0 ajTj(`),

then

a0(`)y =

∞∑
j=0

ajTj(`)

∞∑
j=0

yjTj(`) =

∞∑
j=0

cjTj(`),

where [17]

(10) cj =

{
a0y0 + 1

2

∑∞
k=1 akyk j = 0

1
2

∑j−1
k=0 aj−kyk + a0yj + 1

2

∑∞
k=1 akyk+j + 1

2

∑∞
k=0 ak+jyk j ≥ 1.

Expressed as a multiplication operator on the Chebychev coefficients y, (10) be-
comes c =M0[a0(`)]y, where M0[a0(`)] is a Toeplitz plus an almost Hankel oper-
ator given by
(11)

M0[a0(`)] =
1

2





2a0 a1 a2 a3 · · ·

a1 2a0 a1 a2
. . .

a2 a1 2a0 a1
. . .

a3 a2 a1 2a0
. . .

...
. . .

. . .
. . .

. . .


+



0 0 0 0 · · ·

a1 a2 a3 a4 . .
.

a2 a3 a4 a5 . .
.

a3 a4 a5 a6 . .
.

... . .
.

. .
.

. .
.

. .
.




.

For all the equations considered in this section (i.e., for the computation of the
hypergeometric function on the real axis), a0(`) is either a zeroth or first degree
polynomial and hence aj = 0 for j > 0 or j > 1. In the next section, when
we consider the computation of F (a, b, c, z) in the complex plane, a0(`) will be
analytic (and entire), in which case a0(`) can be uniformly approximated to any
desired accuracy by using only m coefficients aj , j = 0, . . . ,m − 1 for sufficiently
large m (m = 36 will be sufficient for machine precision accuracy in the next
section). Therefore if n > m, then the multiplication operator (11) is banded with
bandwidth m−1 (i.e., m−1 nonzero diagonals on either side of the main diagonal).

In a similar vein, the multiplication of the series a2(`)y′′ and a1(`)y′ can be
expressed in terms of the multiplication operators M2[a2(`)] and M1[a1(`)] oper-

ating on the coefficients of y′′ (in the {C(2)
j } basis) and y′ (in the {C(1)

j } basis), i.e.,

M2[a2(`)]D2y and M1[a1(`)]D1y. If we represent or approximate a2(`) and a1(`)
with m Chebychev coefficients, then, as with M0[a0(`)], the operators M2[a2(`)]
and M1[a1(`)] are banded with bandwidth m − 1 if n > m. The entries of these
operators are given explicitly in [17].
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For step (ii), converting all the series to the {C(2)
j } basis, we use

Tj =


1
2

(
C

(1)
j − C

(1)
j−2

)
j ≥ 2

1
2C

(1)
1 j = 1

C
(1)
0 j = 0

, C
(1)
j =


1

1+j

(
C

(2)
j − C

(2)
j−2

)
j ≥ 2

1
2C

(2)
1 j = 1

C
(2)
0 j = 0

,

from which the operators for converting the coefficients of a series from the basis

{Tj} to {C(1)
j } and from {C(1)

j } to {C(2)
j } follow, respectively:

S0 =


1 − 1

2
1
2 − 1

2
1
2 − 1

2
. . .

. . .

 , S1 =


1 − 1

3
1
2 − 1

4
1
3 − 1

5
. . .

. . .

 .

Thus, the linear operator

L :=M2[a2(`)]D2 + S1M1[a1(`)]D1 + S1S0M0[a0(`)],

operating on the Chebychev coefficients of the solution, i.e., Ly, gives the coeffi-

cients of the differential equation (6) in the {C(2)
j } basis.

The solution (8) is approximated by the first n terms in its Chebychev expansion,

y ≈ ỹn :=

n−1∑
j=0

yjTj(`),

that satisfies the condition ỹn(0) = 1. To obtain an n × n linear system for these
coefficients, the∞×∞ operator L operator needs to be truncated using the n×∞
projection operator given by

Pn = (In,0),

where In is the n× n identity matrix. The n− 1× n truncation of L is Pn−1LP>n ,
which is complemented with the condition ỹn(0) = 1. Then the n×n system to be
solved is

(12)

 T0(0) T1(0) · · · Tn−1(0)

Pn−1LP>n




y0

y1

...
yn−1

 =


1
0
...
0

 ,

where Tj(0) = cos(jπ/2). We construct the matrix in (12) by using the functions
provided in the Chebfun Matlab package [7]. Chebfun is also an ideal environment
for stably and accurately performing operations on the approximation ỹn (e.g.,
evaluation (with barycentric interpolation [4]) and differentiation, which we require
in the following section when matching the solutions at the domain boundaries).

2.2. Domain I. Figure 1 gives the results for solving (1) for the test example (7)
on the interval [−1/2, 1/2]. For comparison purposes, a Chebychev collocation, or
pseudospectral (PS) method [21] is also used. In contrast to the US spectral method
in which the operators operate in coefficient space, in the PS method the matrices
operate on the solution values at collocation points (e.g., the Chebychev points (of
the second kind) cos(jπ/n), j = 0, . . . , n). These matrices can be constructed in
Matlab with Chebfun or the Differentiation Matrix Suite [25].

The top-left frame shows the almost banded structure of the matrix in the system
(12), which can be solved in onlyO

(
m2n

)
operations using the adaptive QR method

in [17]. On the real axis the system (12) can be solved in O (n) operations since
then, as we shall see, m ≤ 4; in the complex plane, the value of m depends on the
required precision. Since the adaptive QR algorithm is not included in Matlab, we
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express the solution to the almost banded system (12) in terms of banded systems
by using the Sherman–Morrison formula; the banded systems are then solved with
Matlab’s backslash command. The PS method, by comparison, yields dense linear
systems.

The top-right frame shows the magnitude of the n = 40 Chebychev coefficients of
the solution obtained with the US and PS methods. As expected, the magnitudes
decrease exponentially with n since the solution is analytic on the interval.

The bottom-left frame shows the maximum error of the computed solution ỹn
on the interval [−1/2, 1/2], which can be accurately approximated in Chebfun.
The solution converges exponentially fast to the exact solution for both methods,
however, the US method stably achieves almost machine precision accuracy (on
the order of 10−16) while the PS method reaches an accuracy of around 10−13 at
n = 25 and then the error increases slightly as n is further increased.

The higher accuracy attainable by the US method and the numerical instability
of the PS method are partly explained by the condition numbers of the matrices
that arise in these methods (see the bottom-right frame). In [17] it is shown that,
provided the equation has no singular points on the interval, the condition number
of the US matrices grow linearly with n and with preconditioning the condition
number can be bounded for all n. By contrast, the condition numbers of collocation
methods increase as O

(
n2N

)
, where N is the order of the differential equation.

Since equation (1) has a singular point on the interval, we find different asymptotic
growth rates of the condition numbers (by doing a least squares fit on the computed
condition numbers): O (n), O

(
n2
)

and O
(
n4.17

)
for, respectively, preconditioned

US matrices (using the diagonal preconditioner in [17]), the US matrices in (12)
(with no preconditioner) and PS matrices. We find that, as observed in [17], the
accuracy achieved by the US method is much better than the most pessimistic
bound based on the condition number of the matrix—hardly any accuracy is lost
despite condition numbers on the order of 103. As pointed out in [17], while a
diagonal preconditioner decreases the condition number of the US matrix, solving a
preconditioned system does not improve the accuracy of the solution if the system
is solved using QR. This agrees with our experience that the accuracy obtained
with Matlab’s backslash solver does not improve if some digits are lost by the US
method. Hence, all the numerical results reported in this paper were computed
without preconditioning.

2.3. Domain II. Next we address domain II with x ∈ [0.5, 1.5], where we use the
local parameter t = 1− x, in which (1) reads

(13) t(1− t)u′′ + (a+ b+ 1− c− (1 + a+ b)t)u′ − abu = 0.

The solution corresponding to the exponent 0 in the symbol (2) is constructed as in
domain I with the US method. There does not appear to be an elementary closed
form of this solution for the studied example, which is plotted in Figure 2. The
results obtained for (13), and also for the three equations remaining to be solved,
(14), (16) and (17), are qualitatively the same as those in Figure 1 and therefore
we do not plot the results again.

The solution proportional to tc−a−b is constructed by writing u = tc−a−bũ(t).
Equation (13) implies for ũ the equation

(14) t(1− t)ũ′′ + (c− a− b+ 1− t(2c− a− b+ 1))ũ′ − (b− c)(a− c)ũ = 0.

The solution to (14) with ũ(0) = 1 is ũ = 1 since b = c for the test problem and it
is recovered exactly by the US method.
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Figure 1. The performance of the ultraspherical (US) spectral
method and a Chebychev collocation, or pseudospectral (PS)
method for the solution of the hypergeometric equation (1) on the
interval [−1/2, 1/2] with y(0) = 1, a = −1/3 and b = c = 1/2.

Remark 2.1. The appearance of the root tc−a−b in u = tc−a−bũ indicates that the
solution as well as the hypergeometric function will in general not be single valued
on C, but on a Riemann surface. If the genericness condition (4) is satisfied, this
surface will be compact. If this is not the case, logarithms can appear which are
only single valued on a non-compact surface. To obtain a single valued function on a
compact Riemann surface, monodromies have to be traced which can be numerically
done as in [11]. This is beyond the scope of the present paper. Here we only
construct the solutions to various equations which are analytic and thus single
valued on their domains. The roots and logarithms appearing in the representation
of the hypergeometric function built from these single valued solutions are taken to
be branched along the negative real axis. Therefore cuts may appear in the plots
of the hypergeometric function.

2.4. Domain III. For x ∼ ∞, we use the local coordinate s = −1/(x− 1/2) with
s ∈ [−1, 1]. In this case we get for the hypergeometric equation

(15)
s2

4
(s− 2)(s+ 2)y′′ + sy′

[
s2

2
+

(
c− a+ b+ 1

2

)
s+ a+ b− 1

]
− aby = 0.
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Writing y = sav, we get for (15)

s

4
(s− 2)(s+ 2)v′′ + v′

[
(a+ 1)

s2

2
+

(
c− a+ b+ 1

2

)
s+ b− a− 1

]
+ a

[
c− a+ b+ 1

2
+
s

4
(a+ 1)

]
v = 0.

(16)

The hypergeometric equation (1) is obviously invariant with respect to an inter-
change of a and b. Thus we can always consider the case <b > <a. The solution of
(15) proportional to sb can be found by writing y = sbṽ and exchanging a and b in
(16) (b− a is not an integer here because of (4)),

s

4
(s− 2)(s+ 2)ṽ′′ + ṽ′

[
(b+ 1)

s2

2
+

(
c− a+ b+ 1

2

)
s+ a− b− 1

]
+ b

[
c− a+ b+ 1

2
+
s

4
(b+ 1)

]
ṽ = 0.

(17)

The solution to (16) with v(0) = 1 and a = −1/3, b = c = 1/2 is v = (1+s/2)1/3,
see Figure 2. The solution ṽ to (17) with ṽ(0) = 1, also plotted in Figure 2, does
not appear to have a simple closed form.
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Figure 2. The computed solutions to equations (1), (13), (14),
(16) and (17), all with the condition y(0) = 1 and parameter val-
ues a = −1/3, b = c = 1/2, the building blocks for the numerical
construction of the hypergeometric function on the real axis. Ac-
curacy on the order of machine precision is achieved for each of
these solutions with, respectively, n = 28, n = 28, n = 1, n = 30
and n = 27 Chebychev coefficients.

2.5. Matching at the domain boundaries. In this section, we have so far shown
(for the studied example) that we can compute solutions for each respective domain
to essentially machine precision with about n = 30 Chebychev coefficients per
domain. These solutions are analytic functions and are also the building blocks for
the general solution to a Fuchsian equation, as per Frobenius (3). Note that in this
approach infinity is just a normal point on the compactified real axis, thus large
values of |x| are not qualitatively different from points near x = 0.
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The construction of these analytic solutions allows us to continue the solution
into domain I, which is just the hypergeometric function, to the whole real line,
even to points where it is singular. This is done as follows: the general solution to
the hypergeometric equation (1) in domain II has the form

(18) yII(t) = αu(t) + βtc−a−bũ(t),

where α and β are constants. These constants are determined by the condition
that the hypergeometric function is differentiable at the boundary x = 1/2 (which
corresponds to t = 1/2 since t = 1− x) between domains I and II:

(19) y(1/2) = yII(1/2), y′(1/2) = y′II(1/2)
dt

dx
= −y′II(1/2).

The derivative of the numerical solutions at the endpoints of the interval can be
computed using the formulæ T ′j(1) = j2 and T ′j(−1) = (−1)j+1j2. Alternatively,
Chebfun can be used, which implements the recurrence relations in [15] for com-
puting the derivative of a truncated Chebychev expansion. In the example studied,
we find as expected α = 0 and β = 1 up to a numerical error of 10−16.

Remark 2.2. If c− a− b ∈ Z which is here excluded by (4), it is possible that the
second solution is not linearly independent. This would lead to non-unique values
of α and β in (19).

In the same way the hypergeometric function can be analytically continued along
the negative real axis. The general solution in domain III can be written as

(20) yIII = γsav(s) + δsbṽ(s),

with γ and δ constants. Again linear independence of these solutions is assured by
condition (4). The matching conditions at x = −1/2 (which corresponds to s = 1
since s = −1/(x− 1/2)) are

(21) y(−1/2) = yIII(1), y′(−1/2) = y′III(1)

[
ds

dx

]
x=−1/2

= y′III(1).

For the studied example we find as expected γ = 1 and δ = 0 with an accuracy
better than 10−16. Note that the hypergeometric function is in this way analytically
continued also to positive values of x ≥ 3/2, but this does not imply that the
function is continuous at x = 3/2 as can be seen in Figure 3. The reason is
the appearance of roots in the solutions, see Remark 2.1, which leads to different
branches of the hypergeometric function (Matlab chooses different branches of the
functions tc−a−b = t1/3 and sa = s−1/3 in domains II and III, respectively, causing
the discontinuity in the imaginary part of the solution in Figure 3).

It can be seen in the top-right frame that full precision is attained on the interval
except in the vicinity of x = 1 since the singularity causes function evaluation to
be ill-conditioned in this neighborhood. The second row of Figure 3 illustrates the
computed hypergeometric function and the error in the s-plane (recall that s ∈
[−1, 0] is mapped to x ∈ [3/2,+∞) and s ∈ (0, 1] is mapped to x ∈ (−∞,−1/2])).
We have thus computed the hypergeometric function for the test example on the
whole compactified real line to essentially machine precision. To recapitulate, this
required the solution of five almost banded linear systems of the form shown in
Figure 1, followed by the imposition of continuous differentiability at the domain
boundaries as in (19) and (21).
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Figure 3. The hypergeometric function F (−1/3, 1/2, 1/2, x) in
the x and s planes (column 1), numerically constructed from the
solutions in Figure 2, and the relative error (column 2).

3. Numerical construction of the hypergeometric function in the
whole complex plane

In this section, the approach of the previous section is extended to the whole
complex plane. Again three domains are introduced each of which exactly contains
one of the three singular points 0, 1, and infinity, and which cover now the whole
complex z plane. To keep the number of domains to three and in order to have
simply connected boundaries, we choose ellipses as shown in Figure 4:
- domain I: interior of the ellipse given by <z = A cosφ, =z = B sinφ, φ ∈ [−π, π].
- domain II: interior of the ellipse given by <z = 1 + A cosφ, =z = B sinφ, φ ∈
[−π, π].
- domain III: exterior of the circle <z = 1/2 + R cosφ, =z = R sinφ, φ ∈ [−π, π],

where R = B
√

1− 1/(4A2).
Thus each of the ellipses is centered at one of the singular points. The goal is to
stay away from the other singular points since the equation to be solved is singular
there which might lead to numerical problems if one gets too close. As discussed in
[12, 13], a distance of the order of 10−3 is not problematic with the used methods,
but slightly larger distances can be handled with less resolution. We choose A and
B such that the shortest distances between the boundaries of domains I, II and III
and the singular points are equal. In the s-plane, the singular points z = 0 and
z = 1 are mapped to, respectively, s = 2 and s = −2 and the domain boundary
is a circle of radius 1/R centred at the origin, and thus we require, for a given
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1/2 < A < 1, that B is chosen such that

(22) 1−A = 2− 1

R
, R = B

√
1− 1/(4A2) ⇒ B =

1

(A+ 1)
√

1− 1/(4A2)
.

For example, in Figure 4, A = 0.6 (the parameter value we use throughout) and
thus the shortest distance from any domain boundary to the nearest singularity
is 0.4. This allows us to cover the whole complex plane whilst staying clear of
the singularities. There are parts of the complex plane covered by more than one
domain, the important point is, however, that the whole plane is covered.

-0.5 0 0.5 1 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. Domains for the computation of the hypergeometric
function: domain I is the interior of the ellipse centered at z = 0,
domain II is the interior of the ellipse centered at z = 1, and do-
main III is the exterior of the dashed circle centered at z = 1/2.

The solution in each of the ellipses is then constructed in 3 steps:

i) The code for the real axis described in the previous section is run on larger
domains than needed for a computation on the real axis only in order
to obtain the boundary values of the five considered forms of (1) at the
intersections of the ellipses with the real axis.

ii) On the ellipse, the equivalent forms of (1) of the previous section are solved
in the considered domain with boundary values given on the real axis, again
with the US spectral method.

iii) The obtained solutions on the ellipses serve as boundary values for the
solution to the Laplace equation in the interior of the respective domains.
In this way, the solutions on the real axis are analytically continued to the
complex domains. As described below, the Laplace equation is solved by
representing the solution in the Chebychev–Fourier basis, which reduces
the problem to a coupled (on an ellipse) or uncoupled (on a disk) system of
second-order boundary value problems (BVPs) which we again solve with
the US method.

In the last step the matching described in subsection 2.5 provides the hypergeomet-
ric function on the whole Riemann sphere built from the constructed holomorphic
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function in the three domains. As detailed below, this can be achieved as before with
spectral accuracy as will be again discussed for the example F (−1/3, 1/2, 1/2, z).

3.1. Domain I. In domain I, the task is to give the solution to equation (1) with
y(0) = 1. In step i) the solution is first constructed on the interval x ∈ [−A,A]
which yields F (a, b, c, A) with the US method detailed in the previous section. We
find for the example problem that n = 40 is sufficient to compute the solution to
machine precision.

In step ii), the ODE (1) with x replaced by z is solved on the ellipse

(23) z(φ) =
A+B

2
exp(iφ) +

A−B
2

exp(−iφ), φ ∈ [−π, π]

as an ODE in φ,

(24) zφz(1− z)yφφ +
[
z2(1− z) + (c− (1 + a+ b)z)z2

φ

]
yφ − abz3

φy = 0,

where an index φ denotes the derivative with respect to φ, and where z is given
by (23). We seek the solution to this ODE with the boundary conditions y(φ =
−π) = y(φ = π) = F (a, b, c,−A). Since the solution is periodic in φ, it is natural
to apply Fourier methods to solve (24). The Fourier spectral method, which we
briefly present, is entirely analogous to the US spectral method—indeed it served
as the inspiration for the US spectral method—but simpler since it doesn’t require
a change of basis. Note that all the variable coefficients in (24) are band-limited
functions of the form

∑m
j=−m aje

ijφ with m = 3. As in the US method, we require
multiplication operators to represent the differential equation in coefficient space.
Hence, suppose a(φ) =

∑m
j=−m aje

ijφ and y(φ) =
∑∞
j=−∞ yje

ijφ, then

a(φ)y(φ) =

m∑
j=−m

aje
ijφ

∞∑
j=−∞

yje
ijφ =

∞∑
j=−∞

cje
ijφ,

where

cj =

j+m∑
k=j−m

aj−kyj , j ∈ Z,

or

c =M[a(φ)]y :=



. . .
. . .

am · · · a−m
am · · · a−m

am · · · a−m
. . .

. . .





...
y−1

y0

y1

...

 .

In the Fourier basis the differential operators are diagonal:

D1 = i



. . .

−1
0

1
. . .

 , D2 = D2
1,

and thus in coefficient space equation (24) without the boundary conditions becomes
Ly = 0, where

L :=M[a2(φ)]D2 +M[a1(φ)]D1 +M[a0(φ)],
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and a2(φ), a1(φ) and a0(φ) denote the variable coefficients in (24). To find the
2n + 1 coefficients of the solution, yj , j = −n, . . . , n, we need to truncate L, for
which we define the (2n+ 1)×∞ operator

P−n,n = (0, I−n,n,0) .

The subscripts of the (2n+ 1)× (2n+ 1) identity matrix I−n,n indicate the indices

of the vector on which it operates, e.g., P−n,ny = [y−n, . . . , yn]
>

. Then the system
to be solved to approximate the solution of (24) is

(25)

 (−1)−n (−1)1−n · · · (−1)n

P−n,n−1LP>−n,n


 y−n

...
yn

 =


F (a, b, c,−A)

0
...
0

 .

In Figure 5, (24) is also solved with a Fourier pseudospectral (PS) method [25],
which operates on solution values at equally spaced points on φ ∈ [−π, π). The
Fourier and Chebyshev PS methods used in Figure 5 lead to dense matrices whereas
the Fourier and Chebyshev spectral methods give rise to almost banded linear sys-
tems with bandwidths 3 and 35, respectively. The almost banded Fourier spectral
matrices (25) have a single dense top row whereas the US matrices have two dense
top rows (one row for each of the conditions y(φ = −π) = y(φ = π) = F (a, b, c, A)).

Note that the Fourier methods converge at a faster rate than the Chebychev
methods. This is to be expected since generally for periodic functions Fourier
series converge faster than Chebychev series by a factor of π/2 [20]. Again the US
method achieves the best accuracy and, as before, this is due to the difference in
the conditioning of the methods, as shown in the right frame of Figure 5.

Unlike the equations solved in section 2, (24) has no singular points on its do-
main, and thus the condition numbers of the Chebyshev PS and US matrices grow
at different rates than in Figure 1. We find that, as shown in [17], the condition
numbers of the US matrices grow linearly with n and the preconditioned US matri-
ces have condition numbers that are bounded for all n. The condition numbers of
the Fourier PS, Chebychev PS and Fourier spectral matrices grow as, respectively,
O
(
n2.4

)
, O
(
n4.5

)
and O

(
e0.56N

)
(where N = 2n+ 1, the number of Fourier coeffi-

cients of the solution in (25)2), according to a least squares fit of the data. Figure 5
shows that the exponential ill-conditioning of the Fourier spectral matrices results
in a rapid loss of accuracy for large enough N . The ill-conditioning could be due
to the boundary condition imposed in the first row of (25), which is not standard
in periodic problems, however we do not have a satisfactory explanation.

In step iii), in order to analytically continue the hypergeometric function to
the interior of the ellipse, we use the fact that the function is holomorphic there
and thus harmonic. Therefore we can simply solve the Laplace equation in elliptic
coordinates

(26) z(r, φ) =
A+B

2
r exp(iφ) +

A−B
2

r exp(−iφ), r ∈ [0, 1], φ ∈ [0, 2π].

In these coordinates, the Laplace operator reads

r2∆ =

(
1

A2
− 1

B2

)[
1

2
cos 2φ

(
r2∂rr − r∂r − ∂φφ

)
+ sin 2φ (∂φ − r∂rφ)

]
+

1

2

(
1

A2
+

1

B2

)(
r2∂rr + r∂r + ∂φφ

)
.

(27)

2In Figure 5, the results for the Fourier spectral method are plotted against N and not n, as
the axis label indicates.
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Figure 5. Numerical solution of the hypergeometric function
F (−1/3, 1/2, 1/2, x) on the ellipse (23); on the left the maximum
relative error on the ellipse decreases exponentially with n, and
on the right the growth of condition numbers of the matrices
of the preconditioned US method, the US method, the Fourier
PS method, the Chebychev PS method and the Fourier spec-
tral method are, respectively, bounded for all n, linear, O

(
n2.4

)
,

O
(
n4.5

)
and O

(
e0.56N

)
, where N = 2n+ 1.

Notice that (27) simplifies considerably on the disk (if A = B), which results
in a more efficient numerical method. However, using ellipses allows us to increase
the distance between the domain boundaries and the nearest singularities and we
have found that, if the closest singularity is sufficiently strong, this yields more
accurate solutions compared to using disks. For the test problem (7), where the
exponent of the singularity at z = 1 is c−a− b = 1/3, we have found that using an
ellipse as opposed to a disk improves the accuracy only by a factor slightly more
than two. However, for an example to be considered in section 5 (the first three
rows of Table 2) where the exponent at z = 1 is c− a− b = −0.6, using an ellipse
(with A = 0.6 in (22)) yields a solution that is more accurate than the solution
obtained on a disk (with parameters A = B = 0.7574 . . ., obtained by solving (22)
with A = B) by two orders of magnitude.

Another possibility, which combines the advantages of ellipses (better accuracy)
and disks (more efficient solution of the Laplace equation), is to conformally map
disks to ellipses as in [2]. However, we found that computing this map (which
involves elliptic integrals) to machine precision for A = 0.6 in (22) requires more
than 1200 Chebyshev coefficients. This is about four times the number of Cheby-
shev coefficients required to resolve the solution in Figure 5. In addition, the first
and second derivatives of the conformal map, which are needed to solve the hy-
pergeometric equation (1) and also (13)–(14) on ellipses, involve square roots and
this requires that the right branches be chosen. Hence, due to the expense and
complication of this approach we did not pursue it further.

Yet another alternative is to use rectangular domains, where the boundary data
have to be generated by solving ODEs on the 4 sides of each rectangle. Then the
solution can be expressed as a bivariate Chebychev expansion. A disadvantage of
this approach, noted in [5], is that the grid clusters at the four corners of the domain
which decreases the efficiency of the method.

To obtain the numerical solution of the Laplace equation on the ellipses, we use
the ideas behind the optimal complexity Fourier–Ultraspherical spectral method
in [23, 24] for the disk. Since the solution is periodic in the angular variable φ, it
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is approximated by a radially dependent truncated Fourier expansion:

(28) y ≈ ŷm(r, φ) :=

m/2−1∑
k=−m/2

uk(r)eikφ, r ∈ [−1, 1], φ ∈ [−π, π).

As suggested in [23, 21], we let r ∈ [−1, 1] instead of r ∈ [0, 1] to avoid excessive
clustering of points on the Chebychev–Fourier grid near r = 0. With this approach
the origin r = 0 is not treated as a boundary. Since (r, φ) and (−r, φ + π) are
mapped to the same points on the ellipse, we require that

(29) ŷm(−r, φ+ π) = ŷm(r, φ).

On the boundary of the ellipse we specify ŷm(1, φ) = ỹn(φ), where ỹn(φ) is the
approximate solution of (24) obtained with the US method. Suppose that ỹn(φ)
has the Fourier expansion ỹn(φ) =

∑∞
k=−∞ γke

ikφ. Using the property (29), the
boundary condition ŷm(1, φ) = ỹn(φ) becomes

(30) uk(1) = γk, uk(−1) = (−1)kγk, k = −m/2, . . . ,m/2− 1.

Substituting (28) into (27), we find that the Laplace equation r2∆ŷm = 0 reduces
to the following coupled system of BVPs, with boundary conditions given by (30):

1

4

(
1

A2
− 1

B2

){
r2u′′k−2 − [1 + 2(k − 2)] ru′k−2 + (k − 2) [(k − 2) + 2]uk−2

}
+

1

2

(
1

A2
+

1

B2

){
r2u′′k + ru′k − k2uk

}
+

1

4

(
1

A2
− 1

B2

){
r2u′′k+2 − [1 + 2(k + 2)] ru′k+2 + (k + 2) [(k + 2)− 2]uk+2

}
= 0,

(31)

for k = −m/2, . . . ,m/2− 1, where uk = 0 if k < −m/2 or k > m/2− 1. Note that
on a disk (A = B) the system (31) reduces to a decoupled system of m BVPs. The
BVPs are solved using the US method, as in section 2. Let

(32) T0 = S1S0, T1 = S1M1[r]D1, T2 =M2[r2]D2,

where the operators in (32) are defined in section 2. Let u(k) denote the infinite
vector of Chebychev coefficients of uk, then in coefficient space (31) becomes

1

4

(
1

A2
− 1

B2

)
{T2 − [1 + 2(k − 2)] T1 + (k − 2) [(k − 2) + 2] T0}︸ ︷︷ ︸

=L(k−2)

u(k−2)

+
1

2

(
1

A2
+

1

B2

){
T2 + T1 − k2T0

}
︸ ︷︷ ︸

=M(k)

u(k)+

1

4

(
1

A2
− 1

B2

)
{T2 − [1 + 2(k + 2)] T1 + (k + 2) [(k + 2)− 2] T0}︸ ︷︷ ︸

=R(k+2)

u(k+2) = 0.

(33)

The operators L(k−2),M(k) and R(k+2) defined (33) are truncated and the bound-
ary conditions (30) are imposed as follows to obtain a linear system for the first n
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Chebychev coefficients of uk, i.e., Pnu(k), for k = −m/2, . . . ,m/2− 1:

(34)

 L
(k−2)
n M

(k)
n R

(k+2)
n



Pnu(k−2)

Pnu(k)

Pnu(k+2)

 =


γk

(−1)kγk
0
...
0

 ,

where

L(k−2)
n =

 0 · · · · · · 0
0 · · · · · · 0
Pn−2L(k−2)P>n

 , R(k+2)
n =

 0 · · · · · · 0
0 · · · · · · 0
Pn−2R(k+2)P>n

 ,

and

M (k)
n =

 T0(1) T1(1) · · · Tn−1(1)
T0(−1) T1(−1) · · · Tn−1(−1)

Pn−2M(k)P>n

 .

The equations (34) can be assembled into two nm/2 × nm/2 block tridiagonal
linear systems: one for even k and another for odd k (recall that Pnu(k) = 0 for
k < −m/2 or k > m/2 − 1). The systems can be further reduced by a factor of
2 by using the fact that the function uk(r) has the same parity as k [23] because
of the property (29). That is, if k is even/odd, then uk is an even/odd function
and hence only the even/odd-indexed Chebychev coefficients of uk are nonzero (and
thus one of the two top rows imposing the boundary conditions in (34) may also
be omitted) . Then the equations (34) are reduced to two nm/4 × nm/4 block
tridiagonal linear systems in which each off-diagonal block is tridiagonal and the
diagonal block is almost banded with bandwidth one and a single dense top row.
On a disk, e.g., on domain III, only the diagonal blocks of the system remain and
the equations reduce to m times n/2×n/2 tridiagonal plus rank one systems, which
can be solved in O(n) operations with the Sherman-Morrison formula [23] resulting
in a total computational complexity of O (mn).

Solving the above system, the first n Chebychev coefficients of uk, where k =
−m/2, . . . ,m/2− 1, are obtained which are stored in column k of an n×m matrix
X of Chebychev–Fourier coefficients. Then the solution expansion (28) is approxi-
mated by

(35) ŷm(r, φ) ≈
m/2−1∑
k=−m/2

n−1∑
j=0

Xj,kTj(r)e
ikφ, r ∈ [−1, 1], φ ∈ [−π, π).

Figure 6 shows the exponential decrease in the magnitude of Xj,k for the solution
on domain I of the test problem (7) with m = 188. Notice that k ranges over only
k = −20, . . . 93 = m/2− 1 instead of k = −m/2, . . . ,m/2− 1 since we only set up
the systems (34) for k such that |γk| is above machine precision. We use Chebfun
(which uses the Fast Fourier Transform (FFT)) to compute the Fourier coefficients
γk of the function ỹn on the domain boundary obtained in step (ii).

To evaluate the Chebychev–Fourier expansion (35) at the set of nrnφ points
(ri, φj), i = 1, . . . , nr, j = 1, . . . , nφ, where 0 ≤ ri ≤ 1, −π ≤ φj < π, we form the
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Figure 6. The magnitude of the Chebychev–Fourier coefficients
of the hypergeometric function F (−1/3, 1/2, 1/2, z), obtained by
solving the Laplace equation on domain I.

nr × 1 and nφ × 1 vectors r and φ and compute the nr × nφ matrix T0(r) T1(r) · · · Tn−1(r)

X


exp(−m/2φ>)

exp((−m/2 + 1)φ>)
...

exp((m/2− 1)φ>)

 .

The columns Tj(r) are computed using the three term recurrence relation Tj+1 =
2rTj − Tj−1, with T0 = 1 and T1(r) = r. Alternatively, the expansion can be
evaluated using barycentric interpolation [4] in both the Chebychev and Fourier
bases (which also requires the Discrete Cosine Transform and FFT to convert the
Chebychev–Fourier coefficients to values on the Chebychev–Fourier grid) or by using
Clenshaw’s algorithm in the Chebychev basis [15] and Horner’s method in the
Fourier basis.

Figure 7 shows the maximum relative error on domain I, as measured on a
500×500 equispaced grid on (r, φ) ∈ [0, 1]× [−π, π), as a function of n, the number
of Chebychev coefficients of uk(r), k = −m/2, . . . ,m/2− 1, for m = 188.

3.2. Domains II and III. For the remaining domains and equations, the approach
is the same: equations (13) and (14) are first solved on [−A,A] (with u(0) = 1 =
ũ(0)), then on the ellipse centred at z = 1 shown in Figure 4 and finally the Laplace
equation is solved twice on the same ellipse but with different boundary data.
Equations (16) and (17) are first solved on [−1/R, 1/R] (with v(0) = 1 = ṽ(0)),
then on the disk centred at z = 1/2 shown in Figure 4, which is mapped to a disk
of radius 1/R in the s-plane, and finally the Laplace equation is solved twice on a
disk in the s-plane with different boundary data. The results are very similar to
those obtained in Figures 5 and 7.

Since the solutions constructed in the present section are just analytic contin-
uations of the ones on the real axis of the previous section, the hypergeometric
function is built from it as in subsection 2.5. Even the values of α, β in (18)–(19)
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Figure 7. Spectral convergence of the Ultraspherical–Fourier
spectral method to F (−1/3, 1/2, 1/2, z) on domain I.

and γ, δ in (20)–(21) are the same and can be taken from the computation on the
real axis. Thus we have obtained the hypergeometric function in the three domains
of Figure 4 which cover the whole Riemann sphere. The computational cost in
constructing it is essentially given by inverting five times the matrix approximating
the Laplace operator (27), which can be performed in parallel (the one-dimensional
computations are in comparison for free).

The relative error is plotted in Figure 8 for the test problem in the z and s
planes. Note that in the left frame that the error is largest close to the singular
point z = 1 (due to the ill-conditioning of function evaluation in the vicinity of the
singularity, as mentioned in the previous section).

Figure 8. The relative error on domain I and domain II in the
z-plane (left) and on domain III in the s-plane (right) for the ap-
proximation of F (−1/3, 1/2, 1/2, z) computed with the multido-
main spectral method. Recall that the s-plane corresponds to large
z, the ‘far field’, since s = −1/(z − 1/2).
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4. Degenerate cases

In this section we consider cases where the genericness condition (4) is not satis-
fied, i.e., where at least one of c, c− a− b, b− a is an integer. We shall also discuss
an example in which these parameters are a distance of 0 < ε � 1 from integer
values. In the degenerate cases logarithms can appear in the solution which are not
well approximated by the polynomials applied in the previous sections. Therefore
we propose in this section a hybrid approach based on an analytical treatment of
the logarithmic terms and an approximation as before of the analytic parts of the
solution. The approach is illustrated with an example.

4.1. General approach for degenerate cases. The hypergeometric equation
(1) can be written in standard form

(36) y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

where

(37) p(x) =
c

x
+
c− (1 + a+ b)

1− x
, q(x) =

−ab
x(1− x)

.

Let x = 0 be a regular singularity and κ1, κ2 with <κ1 ≥ <κ2 in (3) be the roots of
the characteristic equation. Then it is well known (see for instance [16, section 2.7]
and references therein) that for M := κ1 − κ2 ∈ Z, the solutions do not necessarily
have the form (3). There is always a solution of the form

(38) y1(x) = xκ1

∞∑
n=0

αnx
n,

where one can always choose α0 = 1. This solution can be obtained numerically as
discussed in the previous sections. A linearly independent solution y2 to (37) can
be obtained for a given solution y1 via

(39) y2(x) = y1(x)

∫ x

x0

ds

y2
1(s)

exp

(
−
∫ s

x0

p(t)dt

)
,

where c1, c2 and x0 are constants. The integral in (39) takes the form

(40)

∫ x ds

y2
1(s)

exp

(
−
∫ s

p(t)dt

)
= a0

x−M

−M
+ . . .+ aM lnx+

∞∑
n=0

aM+1+n
xn+1

n+ 1
.

Remark 4.1. Formula (39) is not convenient for a spectral method in numerical
applications if c is not an integer since the integrand is not an analytic function of
x. As can be seen in (40) the integrand is singular for x = 0 if c ∈ Z and might have
further singularities at the zeros of y1. Thus formula (39) is not directly suited for
a numerical approach, but of theoretical importance (see, however, the remarks in
section 6).

The solution y2 has in this case the well known form

(41) y2(x) = r(x) + Cy1(x) lnx,

where r(x)/xκ2 is an analytic function, and where C is a constant.
This allows us to use the following approach: we put y = xκ2 ỹ where ỹ satisfies

with (36) the equation

(42) ỹ′′ + p̃(x)ỹ′ + q̃(x)ỹ = 0,

where p̃(x) = p(x) + 2κ2/x and q̃(x) = q(x) + p(x)κ2/x+ κ2(κ2 − 1)/x2. Similarly
we write y1(x) = xκ1 ỹ1(x) where we choose ỹ1(0) = 1. Then we can put ỹ =
r̃ + CxM ỹ1(x) lnx. Equation (42) implies that r̃ satisfies

(43) r̃′′ + p̃(x)r̃′ + q̃(x)r̃ = CS(x),
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where

(44) S(x) = (1− 2κ1 − p(x)x)xM−2ỹ1 − 2xM−1ỹ′1.

For the two cases we have to consider this implies:

• M = 0: the only boundary condition to be imposed is r̃(0) = 0, the constant
C in (43) is C = 1.
• M > 0: we impose the boundary conditions

(45) r̃(0) = 1, r̃(M)(0) = 0.

The constant C in (44) follows from a Taylor expansion of the integrand in
(40),

(46)
xM+1

y2
1(x)

exp

(
−
∫ s

p(t)dt

)
= α0 + α1x+ . . .+ αMx

M + . . . , C = −MαM
α0

.

The Taylor coefficients can be computed in standard way via differentiation. Since
y1 can have zeros, this is best done locally in the vicinity of x = 0 by using again
barycentric interpolation.

Alternatively, C can be computed by substituting the following expansions into
(43) and matching coefficients:

p(x) =

∞∑
k=−1

pk+1x
k, q(x) =

∞∑
k=−2

qk+2x
k, r̃ =

∞∑
k=0

r̃kx
k, ỹ1 =

∞∑
k=0

ŷkx
k.

Here we have used the fact that since (36) is a Fuchsian ODE, p(x) and q(x) have
a pole of order at most one and two, respectively, at the origin. By also using that
the critical exponents κ1 and κ2 are roots of the indicial equation

Q(κ) = κ (κ− 1) + p0κ+ q0,

we find that C can be computed as follows for M ≥ 1:

(47) C = − 1

M

M−2∑
j=0

(M − 1− j)pj+1r̃M−1−j +
M−2∑
j=−1

(qj+2 + κ2pj+2)r̃M−2−j

 ,

where we have set r̃0 = 1, r̃M = 0 and r̃k, k = 1, . . . ,M − 1 are computed from the
recursion

r̃k+2 =
−1

(k + 2)(k −M + 2)

 k∑
j=0

(k + 1− j)pj+1r̃k+1−j +

k∑
j=−1

(qj+2 + κ2pj+2)r̃k−j

 ,

for k = −1, . . . ,M − 3.

Remark 4.2. The important point of this approach is that r̃ is an analytic function
of x, and that S(x) does not contain logarithms. Thus one has to solve as before
a singular ODE, this time with an analytic inhomogeneity S(x) in order to obtain
analytical solutions. The logarithms which can appear in the solutions to the
original ODE (36) have been taken care of analytically. A numerical approximation
is as in the previous sections just needed for analytic functions.

4.2. Hypergeometric solution in the various domains. Below we apply this
approach to cases for the hypergeometric equation where logarithms may appear
in the various domains introduced before.
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4.2.1. Domain I (vicinity of 0). In this case logarithms can appear if c ∈ Z. Since
we are interested in the hypergeometric function F (a, b, c, z) defined as a solution
to (1) with F (a, b, c, 0) = 1, the only not yet addressed case is c a non-positive
integer. Note that the hypergeometric series in terms of which the hypergeometric
function can be given is not defined in this case. But we can still identify a solution
to the hypergeometric equation with the condition F (a, b, c, 0) = 1 in this case. We
put MI = 1− c and y = xMI ỹ. The hypergeometric equation (1) implies for ỹ

(48) x(1−x))ỹ′′+ (2− c− (a+ b+ 3− 2c)x)ỹ′+ ((c− 1)(1 + a+ b− c)− ab)ỹ = 0.

In the considered case ỹ has an analytic solution with ỹ(0) = 1 which we construct
as before. Then we put y = rI + CIx

MI ỹ lnx and solve

(49) x(1− x)r′′I + (c− (1 + a+ b)x)r′I − abrI = CISI ,

with the conditions rI(0) = 1, r
(MI)
I (0) = 0, where

(50) SI = −2(1− x)xMI ỹ′ − xMI−1ỹ(MI − (a+ b+ 2MI)x).

The constant CI follows as in (46) or (47) from a Taylor expansion.

4.2.2. Domain II (vicinity of x = 1). We again introduce the variable t = 1 − x.
According to (2), logarithms can appear in the solutions of the hypergeometric
equation near x = 1 if c − a − b = MII is an integer. There are two cases to be
distinguished:
If MII ≤ 0, equation (13) has an analytic solution u1(t) with u1(0) = 1. We put

ũ = r̃II + C̃IIt
−MIIu1(t) ln t and get from (14)

(51) t(1− t)r̃′′II + (c−a− b+ 1− t(2c−a− b+ 1))r̃′II − (b− c)(a− c)r̃II = C̃II S̃II ,

where

(52) S̃II = −2t−MII (1− t)u′1 + t−MII−1(MII + (c−MII)t)u1

and solve the equation with the condition u(0) = 0 for MII = 0 and u(0) = 1,

u(−MII)(0) = 0 for MII < 0. The constant C̃II is computed as in (46) or (47) via
a Taylor expansion.

If MII > 0, equation (14) has an analytic solution ũ1(t) with ũ1(0) = 1. We put
u = rII + CIIt

MII ũ1 ln t and get from (49)

(53) t(1− t)r′′II + (a+ b+ 1− c− (1 + a+ b)t)r′II − abrII = CIISII ,

with the conditions rII(0) = 1, r
(MII)
II (0) = 0, where

(54) SII = −2tMII (1− t)u′1 + tMII−1((c+MII)t−MII)u1.

The constant CII is determined as in (46) or (47) via a Taylor expansion.

4.2.3. Domain III (vicinity of infinity). In domain III, we use again the local vari-
able s = −1/(x − 1/2). Logarithms can appear in the solutions to the hypergeo-
metric equation if MIII = b−a is an integer (we recall that we choose <b = <a > 0
without loss of generality). In this case equation (17) has an analytic solution ṽ1(s)
with ṽ1(0) = 1. We put v = rIII + CIIIs

MIII ṽ1 ln s and get from (16)

s

4
(s− 2)(s+ 2)r′′III + r′III

[
(a+ 1)

s2

2
+

(
c− a+ b+ 1

2

)
s+ b− a− 1

]
+ a

[
c− a+ b+ 1

2
+
s

4
(a+ 1)

]
rIII = CIIISIII ,

(55)
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with the conditions rIII(0) = 0 if MIII = 0 and rIII(0) = 1, r
(MIII)
III (0) = 0 if

MIII > 0, where
(56)
SIII = −1/2sMIII (s2−4)ṽ′1−sMIII−1ṽ1(s2/4(2MIII+2a+1)+(c−(a+b+1)/2)s−MIII).

The constant CIII is determined as in (46) or (47) via a Taylor expansion.

4.3. Example F (2, 3, 5, x). The above approach can be illustrated with the explicit
solution for the hypergeometric equation (1) for a = 2, b = 3 and c = 5. It can be
shown by direct calculation that the equation has in this case the general solution

(57) y(x) = C1
2x− 3

x4
+ C2

(
8(2x− 3)

x4
ln(1− x) +

4x2 − 6x− 27

x4

)
,

where C1, C2 are arbitrary constants. As can be seen, the general solution has
logarithmic singularities for x = 1 and x = ∞. We discuss the solutions in the
various domains of the previous subsection for this example.

Domain I:
Since c > 1, there are no contributions to the hypergeometric functions proportional
to lnx. Choosing C1 and C2 in an appropriate way, one finds

(58) F (2, 3, 5, x) =
12(2x− 3)

x4
ln(1− x) +

6x− 36

x3
.

Note that this is an analytic function near x = 0 with F (2, 3, 5, 0) = 1.
Domain II:

We have c− a− b = MII = 0. The analytic solution u1(t) reads in this case

(59) u1(t) =
2t+ 1

(t− 1)4
.

Writing ũ = r̃II + u1(t) ln t (one has C̃II = 1), we find

(60) r̃II(t) = − t(t+ 14)

2(t− 1)4
.

Domain III:
We have b− a = MIII = 1. The analytic solution ṽ1 reads

(61) ṽ1(s) =
16(s+ 1)

(s− 2)4
.

Writing v = rIII + CIII ṽ1(t) ln s with CIII = 4, we find

(62) rIII(s) = −4
16s(s+ 1) ln(1 + s/2) + 39s2 + 8s− 4

(s− 2)4
.

4.4. Numerical implementation and tests. In subsection 4.2 we presented a
hybrid approach to degenerate cases for the hypergeometric equations which re-
sulted in a set of equations with regular singularities as studied in the previous
sections. The same approaches as there can and will be applied since we only
construct analytic solutions for which the used spectral methods are very efficient.
The only difference to the not degenerate cases is that the studied ODEs now have
source terms which are, however, also analytic.

Thus we apply the ultraspherical method also here which means that equations
of the form (43) are approximated by a linear system (cf. (12))

(63)


T0(0) T1(0) · · · Tn−1(0)

T
(M)
0 (0) T

(M)
1 (0) · · · T

(M)
n−1 (0)

Pn−2LP>n




y0

y1

...
yn−1

 =

 1
0

Pn−2S1S0CS

 ,
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where S denotes the Chebychev coefficients of the source term of the equation. If
M = 0, the first equation of this linear system is removed and Pn−2 is replaced by
Pn−1 so that one more row of the truncated operators is included.

For the example F (2, 3, 5, x) detailed in the previous subsection, we achieve
accuracy of the order of machine precision for the computation of (58), (59) and
(61), which are solutions of homogeneous equations. Figures 9 and 10 show the
source terms of the inhomogeneous equations (51) and (55) and the accuracy of the
computed solutions.

We found (by doing an empirical fit of the condition numbers) that the condition
numbers of the matrices in (63) grow as O

(
n3
)

and O
(
n2.7

)
for the solutions in

Figures 9 (domain II) and 10 (domain III), respectively. For the homogeneous equa-
tions on domain II (equation (13)) and domain III (equation (17)), the condition
numbers grew as O

(
n1.5

)
and O

(
n1.8

)
, respectively.

A notable feature of the error curves in Figure 9 and especially Figure 10 is that
there is a noticeable difference between the exact error (in blue) and the estimated
error obtained from the computed solutions. In addition, the exact error is smooth
while the estimated error contains more random noise (indicative of rounding error).
This suggests that the source terms magnify the error by a factor that is determined
by the magnitude of the source terms.

t
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

S
I
I

-70

-60

-50

-40

-30

-20

-10

0

10
Domain II

t
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
rr

o
r

10-17

10-16

10-15

10-14

10-13

10-12
Domain II

Figure 9. Left: the source terms of (51), SII , with a = 2, b = 3
and c = 5. Right: the error in the computed solution; the red
curve is the exact error while the blue curve is an estimate of
the error obtained by subtracting the computed solution with n−
1 Chebychev coefficients from the one with n coefficients. The
error at a point on the interval is taken to be the minimum of the
absolute and relative error at that point.

The matching of the solutions can be done as in subsection 2.5, the only change
being that the logarithms appearing have to be included in the matching conditions.
Since the logarithms are all bounded at the domain boundaries, there is no problem
in determining them and their derivatives there. The continuation of the analytic
functions r to the complex plane is done as in section 3: the equations of subsection
4.2 are solved on the ellipses introduced in Fig. 4 to get boundary data there. With
these data the Laplace equation is solved for the interior of the ellipses which gives
an analytic continuation of the functions r to the complex plane. The complete
solution follows then from (41) by including the logarithmic terms.

Although we do not consider nearly degenerate cases in general (i.e., when at
least one of the critical exponents in (4) is at most a distance of 0 < ε � 1 from
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Figure 10. The same as Figure 9 but for the solution of (55) on domain III.

an integer), we consider in Figure 11 what happens if we perturb the parameter
a 7→ a + ε in the example above (a = 2, b = 3, c = 5). If we use the generic
approach described in the previous sections, then as ε becomes smaller, accuracy
is lost because the condition numbers of the linear systems for the Chebyshev
coefficients (12) and for the connection constants α, β, γ, δ, (18)–(21) can become
very large3. If we use the method described in this section for nearly degenerate
cases, we in effect ignore ε and round the parameters to the nearest integer. The
accuracy of this approach depends on the sensitivity of the solution to perturbations
of the parameters. For the example in Figure 11, the solution changes linearly with
ε and the crossover point where the method for degenerate cases is more accurate
than the method for generic, non-degenerate cases is close to ε = 10−7. At this
crossover point our approaches only attain 6-digit accuracy; thus, the methods
in [18] should be considered for higher accuracy.

5. Examples

In this section we consider further examples. The interesting paper [18] discussed
challenging tasks for different numerical approaches and gave a table of 30 test cases
for 5 different methods with recommendations when to use which. Note that our
approach is complementary to [18]: we want to present an efficient approach to
compute a solution to a Fuchsian equation, here the hypergeometric one, not for
a single value, but on the whole compactified real line or on the whole Riemann
sphere, and this for a wide range of the parameters a, b, c. To treat particularly
problematic values of a, b, c, z (e.g., nearly degenerate and large parameter values),
it is better to use the codes discussed in [18]. For generic values of the parameters,
the present approach and the codes discussed in [18, 26] produce similar results.

Below we present cases of [18] with parameters a, b, c which are generic within
the given numerical precision and that can thus be treated with the present code to-
gether with additional examples along the lines of [18]. We define ∆F := |Fnum(a, b, c, z)−
Fex(a, b, c, z)|/|Fex(a, b, c, z)|, where we use Maple with 30 digits as the reference
solution.

We first address examples with real z and give in Table 1 the first 3 digits of
the exact solutions, the quantity ∆F and the number of Chebychev coefficients n.

3The next section gives an example where the condition numbers of the system (12) become
large. For the example considered in Figure 11, for ε = 10−1, 10−5, 10−10, the condition numbers

of the system (18)–(19) are on the order of 104, 108 and 1013, respectively, and those of (20)–(21)
are on the order of 106, 1014 and 1024, respectively.
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Figure 11. A comparison of the accuracy of the generic, or non-
degenerate approach (described in the previous sections) and the
method for degenerate cases (outlined in this section) for nearly
degenerate cases. The nearly degenerate parameters are a = 2 + ε,
b = 3 and c = 5. The error is measured at the points x = 3/4
(domain II) and x = −1 (domain III). Domain I is not considered
because for these parameter values, the methods are identical.

a, b, c, z F (a, b, c, z) ∆F n

−0.1, 0.2, 0.3, 0.5 0.956 1.2 ∗ 10−16 30

−0.1, 0.2, 0.3, 1.5 0.904 + 0.179i 6.1 ∗ 10−16 30

−0.1, 0.2, 0.3, 100 1.365 + 0.400i 4.7 ∗ 10−16 30

2 + 8i, 3− 5i,
√

2− iπ, 0.25 −3.670− 4.764i 7.9 ∗ 10−15 50

2 + 8i, 3− 5i,
√

2− iπ, 0.75 6882.463− 6596.555i 8.3 ∗ 10−15 50

2 + 8i, 3− 5i,
√

2− iπ, −10 −0.0166− 0.0067i 7.5 ∗ 10−15 50

2 + 200i, 5− 100i, 10 + 500i, 0.8 −4.103 + 6.013i 5.9 ∗ 10−15 70

2.25, 3.75, −0.5, −1 −0.631 4.3 ∗ 10−12 50

2 + 200i, 5, 10, 0.6 (1.4997 + 5.771i) ∗ 10−7 2.4 ∗ 10−10 160

1, 3, 7, 0.25 1.122 5.0 ∗ 10−16 30

1, 3, 7, 0.75 1.537 1.3 ∗ 10−12 50

1, 3, 7, −3 0.462 9.5 ∗ 10−12 50

Table 1. Examples for the hypergeometric function compared to
a multiprecision computation in Maple for real z.

It can be seen that a relative accuracy of the order of 10−10 can be reached even
when the modulus of the hypergeometric function is of the order of 10−7.

For the results in Table 2 in which the argument z is complex, the number of
(i) Chebychev and (ii) Fourier coefficients of the solutions on the ellipses and (iii)
the number Chebychev coefficients of the radial Fourier coefficients uk(r) are in the
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a, b, c, z F (a, b, c, z) ∆F

0.1, 0.2, −0.3, −0.5 + 0.5i 1.027− 0.013i 2.3 ∗ 10−16

0.1, 0.2, −0.3, 1 + 0.5i 1.037− 0.153i 6.4 ∗ 10−16

0.1, 0.2, −0.3, 5 + 5i 1.102 + 0.0288i 1.6 ∗ 10−15

4, 1.1, 2, exp(iπ/3) −0.461 + 0.487i 4.0 ∗ 10−14

4, 1.1, 2, 1 + 5i −0.0183 + 0.0436i 9.1 ∗ 10−14

4, 1.1, 2, −5 + 5i 0.0216 + 0.0255i 9.1 ∗ 10−14

2/3, 1, 4/3, exp(iπ/3) 0.883 + 0.50998i 4.0 ∗ 10−15

2/3, 1, 4/3, 2i 0.562 + 0.373i 7.1 ∗ 10−15

2/3, 1, 4/3, 1 + i 0.740 + 0.740i 4.5 ∗ 10−15

2/3, 1, 4/3, 100i 0.041 + 0.0609i 8.7 ∗ 10−15

Table 2. Examples for the hypergeometric function compared to
a multiprecision computation in Maple for complex z.

same ballpark as those required for the test problem (roughly 300, 110 and 40 for
(i), (ii) and (iii), respectively (see Figures 5, 6 and 7)).

To illustrate some of the limitations of our approach, we consider the parameter
values a = 1/10− 10i, b = 1/5− 10i, c = 3/10 + 10i. For these parameters, machine
precision is achieved on domains I and II, however, on domain III only 5-digit
accuracy is obtained for the solution of (16), as shown in Figure 12. We estimate
the relative error of the computed solution with n Chebyshev coefficients, vn(s), by
comparing it against v80(s) for n = 10, . . . , 60. The accuracy of the estimated errors
were confirmed by comparing them to errors obtained from a few high-precision
values of v(s) computed with Maple.

For these parameter values, the equation (16) is ill-conditioned in the sense that
small perturbations in the initial conditions and parameter values lead to much
larger changes in the solution and this shows up in the large condition numbers in
Figure 12. One could reduce the severe ill-conditioning by using more sub-domains.

Not only is (16) highly ill-conditioned, but also the connection relations (20) and
(21) for γ and δ. With high-precision computing, it was found that the 2×2 system
(21) has a condition number on the order of 1024 and thus all accuracy is lost for
the connections constants (and consequently also for the solution on domain III) in
IEEE arithmetic.

For larger parameter values such as these, computing the hypergeometric func-
tion as the solution to a differential equation can lead to highly ill-conditioned
systems in which case it is better to use the alternative approaches (e.g., recurrence
relations) in [18].

6. Outlook

In this paper we presented a spectral approach for the construction of the Gauss
hypergeometric function on the whole Riemann sphere. We also addressed degen-
erate cases not satisfying the conditions (4) where logarithms can appear in the
solution. The approach we give is based on a Taylor expansion of a solution of the
hypergeometric equation, see section 4. In a finite precision setting, even with the
well conditioned ultraspherical differentiation matrices, this approach is essentially
limited to roughly 10th derivatives. If higher values of an integer difference between
the characteristic roots are to be treated, different techniques are necessary. One
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
10-2

100

102

104

106

108

1010

1012

0 10 20 30 40 50 60
10-20

10-15

10-10

10-5

100

105

1010

10 15 20 25 30 35 40 45 50 55 60
10-6

10-4

10-2

100

102

104

10 15 20 25 30 35 40 45 50 55 60
104

106

108

1010

1012

1014

Figure 12. The limited accuracy of the ultraspherical method
for the solution of (16) for the parameter values a = 1/10 − 10i,
b = 1/5− 10i, c = 3/10 + 10i; the results for (17) are similar.

possibility is given by the Puiseux expansion technique of [13] based on the Cauchy
formula which can directly be applied to the integrand of (40). This can be applied
in the vicinity of the singularity to essentially machine precision. On the remaining
part of the studied domain, which does by definition not contain any singularities, a
standard ODE can be solved, and the matching of the solutions is done as discussed
before. This approach will be explored elsewhere in order to keep the presentation
here coherent.

One ingredient of our approach was essentially Kummer’s relations, see chapter
15.10 of [16], which allows for the representation of the solution to the hypergeomet-
ric function in the vicinity of each of the singularities 0, 1,∞ via the hypergeometric
function near 0. Kummer’s group of 24 transformations is generated by

(64) z 7→ z

z − 1
, z 7→ 1− z

and appropriate rescalings of the hypergeometric function. Though these mappings
in the z-plane are not equivalent to the ones used in this paper, the latter can be
of course generated by the Kummer transformations. The important point is that
Kummer’s group uses Moebius transforms (5) which leave the points 0, 1, and
infinity invariant as a set. We did not use this property which leaves the approach
open to generalizations to Fuchsian equations with 4 singularities.

One motivation of this work was to present an approach for general Fuchsian
equations such as the Heun equation, see [16],

(65) w′′(z) +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
w′(z) +

αβz − q
z(z − 1)(z − a)

w(z) = 0,
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where α+β+1 = γ+δ+ε and the Lamé equation which is a special case of the Heun
equation (see [16]). The latter equation represents a significant challenge with rich
potential benefits—see for example [9] for problems related to computation of the
Heun function and its application to general relativity. In the case of a Fuchsian
equation with 4 singularities, the Moebius degree of freedom can only be used to
fix 3 of the singularities to be 0, 1, infinity, the fourth denoted by a in (65) can only
be restricted to for instance a disk of radius 1/2 around the origin. Thus there is
no analogue to Kummer’s symmetry group for such equations, but our approach
can still be applied with the only change that different Heun equations (i.e., with
a singularity ã as a result of the used Moebius transform) need to be solved. The
main change here is that a fourth singularity makes the introduction of a fourth
domain necessary which in addition has to be treated for all possible values of a.
Thus it will be necessary to address also almost degenerate situations where a ∼ 0
which can be done in principle as in the context of Riemann surfaces in [11].

The techniques used to study the hypergeometric function as a meromorphic
function on the Riemann sphere are also applicable to Painlevé transcendents as
discussed in [8, 14]. These nonlinear ordinary differential equations (ODEs) also
have a wide range of applications, see [6] and references therein. The similarity
is due to the fact that Painlevé transcendents are meromorphic functions on the
complex plane as is the case for the solutions of Fuchsian equations. Note that
nonlinearities only affect the solution process on the real line and on the ellipses in
the complex plane, i.e., one-dimensional problems. The only truly two-dimensional
method, the solution of the Laplace equation for the interior of the ellipses, is
unchanged for the Painlevé transcendents since the latter will be in general mero-
morphic as well. This replaces the task of solving a nonlinear ODE in the complex
plane (which ultimately requires the solution of a system of nonlinear algebraic
equations) with a linear PDE (which requires the solution of a linear system). The
study of such transcendents, also on domains containing poles in the complex plane
as in [10], with the techniques outlined in this paper will be also subject to further
research. Combining the compactification techniques of the present paper and the
Padé approach of [10], it should be possible to study domains with a finite number
of poles.
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