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Abstract

This paper extends the complete subset linear regression framework to a quantile re-

gression setting. We employ complete subset combinations of quantile forecasts in order

to construct robust and accurate equity premium predictions. We show that our approach

delivers statistically and economically signiÖcant out-of-sample forecasts relative to both

the historical average benchmark, the complete subset mean regression approach and the

single-variable quantile forecast combination approach. Our recursive algorithm that se-

lects, in real time, the best complete subset for each predictive regression quantile succeeds

in identifying the best subset in a time- and quantile-varying manner.
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1 Introduction

The issue of forecasting equity returns is one of the most widely discussed topics in the

Önance literature mainly due to its central role in asset pricing, portfolio allocation and

evaluation of investment managers. The in-sample predictive ability of a quite exhaustive

list of potential predictors that typically contains valuation ratios, various interest rates

and spreads, distress indicators, ináation rates along with other macroeconomic variables,

indicators of corporate activity, etc. was the focus of the earlier studies.1 However, since

the seminal contribution of Goyal andWelch (2008) who show that their long list of predic-

tors can not deliver consistently superior out-of-sample performance, attention has turned

to the development of improved forecasting methods in order to establish the empirical

validity of equity premium (proxied by excess returns) predictability. To mention a few,

Campbell and Thompson (2008) show that when imposing simple restrictions, suggested

by economic theory, on predictive regressionsí coe¢cients, the out-of-sample performance

improves (see also Ferreira and Santa-Clara, 2011). Ludvigson and Ng (2007) and Neely,

Rapach, Tu and Zhou (2014) adopt a di§usion index approach, which can conveniently

track the key movements in a large set of predictors, and Önd evidence of improved equity

premium forecastability.2

In an attempt to reduce both model uncertainty and parameter instability, Rapach,

Strauss and Zhou (2010, RSZ henceforth) employ forecast combinations of univariate eq-

uity premium models and Önd that combinations of individual single variable predictive

regression models signiÖcantly beat the historical average forecast. Building on RSZ,

Meligkotsidou, Panopoulou, Vrontos and Vrontos (2014, MPVV henceforth) incorporate

the forecast combination methodology in a quantile regression setting. Their quantile re-

gression approach allows them to cope with the non-linearity and non-normality patterns

1Commonly used valuation ratios are the dividend price/dividend yield ratio (see for example, Fama
and French, 1988, 1989), the earnings price ratio (Campbell and Shiller, 1988, 1998), and the book-to-
market ratio (Kothari and Shanken, 1997). Another strand of the literature includes macroeconomic/
Önancial variables such as ináation rates, short-term and long-term interest rates along with term and cor-
porate bond spreads in the set of predictors (see e.g. Fama and Schwert, 1977; Campbell and Vuolteenaho,
2004; Campbell, 1987; Fama and French, 1989; Ang and Bekaert, 2007). A comprehensive list of variables
that serve as predictors can be found in Goyal and Welch (2008).

2Rapach and Zhou (2012) o§er a detailed review on the issue of equity return predictability.
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that are evident in the relationship between stock returns and potential predictors. Eq-

uity premium forecasts are produced by combining a set of predictive quantile regressions

in either a Öxed or time-varying manner. A novel forecast combination method based on

complete subset regressions is put forward by Elliott, Gargano and Timmermann (2013,

EGT henceforth). The authors propose combining forecasts from all possible linear re-

gression models that keep the number of predictors Öxed. Their empirical application on

equity premium predictability shows that subset combinations of up to four predictors

generates superior forecast accuracy.

This paper proposes a new forecasting approach based on complete subset quantile

regressions. SpeciÖcally, we extend the framework of EGT to a quantile regression setting

and adopt the methodology of MPVV in order to produce robust and accurate equity

premium forecasts. Our proposed methodology merges three strands of the literature

on out-of-sample forecasting and, as shown, exploits the beneÖts emerging from each

one. First, we exploit the ability of the quantile regression setting to produce robust and

accurate point forecasts. Second, we reduce model uncertainty and parameter instability

by employing quantile forecast combinations. Finally, we employ complete subset quantile

regressions which induces shrinkage to the respective estimates and further helps reduce

the e§ect of parameter estimation error.

To be more speciÖc, our forecasting framework is rooted in quantile predictive re-

gressions, which have attracted a vast amount of attention since the seminal paper of

Koenker and Bassett (1978). Incorporating the forecast combination approach (see RSZ)

into our quantile regression setting helps reduce model uncertainty and deals with para-

meter instability.3 MPVV propose two alternative ways to generate forecasts within the

quantile regression setup. The Örst approach proceeds by Örst constructing robust point

forecasts from a set of quantile predictions all of which are based on the same predictive

variable. Next, it combines the robust forecasts obtained from di§erent predictors using

several existing combination methods in order to produce a Önal point forecast. The

second approach consists of Örst combining all the predictions of the same quantile ob-

3Timmermann (2006) provides a detailed review on forecast combination methodologies.
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tained from di§erent single predictor model speciÖcations, in order to produce combined

quantile forecasts. Then, robust point forecasts are obtained by operating either a Öxed

or a time-varying weighting scheme on the combined quantile forecasts.

The methodologies discussed so far employ single variable models in either a linear or

a quantile regression framework. EGT abstract from the single predictor models and pro-

pose combining forecasts from all possible linear regression models that keep the number

of predictors Öxed. Their approach introduces a complex version of shrinkage to the re-

spective estimates which helps reduce the e§ect of parameter estimation error. EGT show

that the amount of shrinkage induced on least squares estimates from subset regressions

is a function of the number of variables included in the model (k) and the total number

of available predictors (K ). Given that the amount of shrinkage depends on all the least

squares estimates, it varies with each coe¢cient. Moreover, this methodology can cure

the omitted variable bias especially in cases with strongly positively correlated regres-

sors. The authors propose constructing forecasts based on a simple averaging scheme of

all the possible models employed keeping the numbers of regressors Öxed. In this pa-

per, we extend the framework of EGT and MPVV to the quantile predictive regression

framework discussed above. Similarly to EGT, we utilize information from all the pre-

dictors simultaneously in order to produce combined quantile forecasts from all quantile

regressions that keep the number of predictors Öxed. We also abstract from the simple

averaging schemes and introduce several existing combination schemes into our setting.

Then, the obtained quantile forecasts are synthesized to produce robust point forecasts

of the variable of interest.

The empirical Öndings of both EGT and the present paper suggest that the predictive

performance of subset regressions highly depend on the value of k. A further contribution

of this paper is the development of a recursive algorithm for selecting k in real time, based

on the past history of excess returns and predictive variables. The proposed algorithm is

a likelihood-based method that chooses the best complete subset for a given quantile and

is áexible enough to allow for variability of the selected value of k across quantiles. In this

way, our approach incorporates information on the best subset for each quantile of the
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return distribution in real time and these ëoptimalí quantile forecasts are appropriately

combined to deliver robust equity premium forecasts.

To anticipate our key results, we Önd that our complete subset quantile regression

framework achieves superior predictive performance, both in statistical and economic

evaluation terms. More in detail, our proposed approach can lead to an out-of-sample R2

of 5.64% (relative to the historical average benchmark) as opposed to 4.10% of the subset

linear regression approach of EGT, 4.06% of the quantile combination approach of MPVV

and 3.58% of the linear combination approach of RSZ. Our Model ConÖdence Set (MCS;

Hansen, Lunde and Nason, 2011) and associated statistical signiÖcance results further

complement and reinforce our Öndings. SpeciÖcally, the superiority of our methodology

over the methodologies of EGT, MPVV and RSZ is evident as neither the linear single-

variable or subset models, nor the quantile single-variable subset models are included in

MCS. Tests of equal predictive ability indicate that while in a linear regression framework,

subsets of two variables (k = 2) perform better than the remaining speciÖcations, in our

quantile regression framework subsets of either two or three variables (k = 2; 3) emerge

as superior. Our real time recursive algorithm for selecting k across quantiles of returns

succeeds in identifying the ëcorrectí value of k which is both time-varying and quantile-

varying. When evaluating our forecasts from an economic perspective and speciÖcally

for a mean-variance investor, we also need return volatility forecasts, which we construct

using the interval approximation approach of Pearson and Tukey (1965) and a set of

predictive quantiles. Our economic evaluation results suggest that an investor that adopts

our framework can gain sizeable beneÖts which range from 3.58% to an impressive 5.69%

per year relative to a naive strategy based on the historical benchmark performance.

The outline of the paper is as follows. Section 2 describes the complete subset regres-

sion framework of EGT and introduces its extension to the quantile regression framework.

The proposed methodology for robust estimation of the central location of the distribu-

tion of returns is outlined in Section 3. Section 4 presents our empirical Öndings, while

section 5 describes the proposed methodology for the recursive selection of the number

of predictors. Section 6 outlines the economic evaluation framework and presents the
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associated Öndings. Section 7 summarizes and concludes. Supplementary material is

included in the Appendix (available from the authors upon request).

2 Complete Subset Quantile Regressions

2.1 Complete subset regressions

EGT propose a new method for combining forecasts based on complete subset regressions.

For a given set of potential predictors, the authors propose combining forecasts from

all possible linear regressions that keep the number of predictors Öxed. For K possible

predictors, there are K univariate models and nk;K = K!=((K!k)!k!) di§erent k!variate

models for k " K: The set of models for a Öxed value of k is referred to as a complete

subset and the authors propose using equal-weighted combinations of the forecasts from

all models within these subsets indexed by k.

More in detail, suppose that we are interested in forecasting the equity premium, de-

noted by rt, using a set of K predictive variables. First we consider all possible predictive

mean regression models with a single predictor, i.e. k = 1; of the form

rt+1 = (i + )ixit + "t+1; i = 1; : : : ; K; (1)

where rt+1 is the observed excess return on a stock market index in excess of the risk-free

interest rate at time t + 1, xit are the K observed predictors at time t, and the error

terms "t+1 are assumed to be independent with mean zero and variance .2. Similarly, a

regression of rt+1 can be run on a particular subset of the regressors and then average

the forecasts across all k dimensional subsets to provide the forecast for the variable

of interest, where k " K: EGT show that while subset regression combinations bear

similarities to a complex version of shrinkage, they do not reduce to shrinking OLS

estimates. Rather the coe¢cient that controls shrinkage depends on all OLS estimates,

the dimension of the subset and the number of included predictors. Only in the case of

orthonormal regressors does subset regression reduce to ridge regression. Moreover, the
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amount of shrinkage imposed on each coe¢cient di§ers with the coe¢cient at hand. More

importantly, the authors show that in the case of strongly correlated predictors, subset

regression can remedy the omitted variable bias and improve forecasts. While the authors

use equal-weighted combinations of forecasts within each subset along with approximate

Bayesian Model Averaging, alternative weighting schemes can be employed. To this end,

we also employ the Median, the Trimmed Mean, the Discount Mean Squared Forecast

Error (DMSFE) of Stock and Watson (2004) along with the Cluster combining method,

introduced by AiolÖ and Timmermann (2006).4

2.2 Complete subset quantile regressions

The above linear subset regression speciÖcation can only predict the mean and not the

entire distribution of returns in the event that the joint distribution of rt+1 and xit is

not bivariate Gaussian and, therefore, their relationship is not linear. We adopt a more

sophisticated approach to equity premium forecasting by employing predictive quantile

regression models (Koenker and Bassett, 1978) and incorporating the complete subset

combination framework of EGT in our quantile regression setting. The proposed approach

is designed as follows.

First, consider single predictor quantile regression models (k = 1) of the form

rt+1 = $
(#)
i + %

(#)
i xit + "t+1; i = 1; : : : ; K; (2)

where + 2 (0; 1) and the errors "t+1 are assumed independent from an error distribution

g# (") with the +th quantile equal to 0, i.e.
R 0
!1 g# (")d" = + . Model (2) suggests that the

+th quantile of rt+1 given xit is Q# (rt+1jxit) = $
(#)
i + %

(#)
i xit, where the intercept and the

regression coe¢cients depend on + . The %(#)i ís are likely to vary across + ís, revealing a

larger amount of information about returns than the predictive mean regression model

(Equation 1). Estimators of the parameters of the linear quantile regression models in

(2), $̂i
(#); %̂

(#)

i , can be obtained by minimizing the sum
PT!1

t=0 /#

#
rt+1 # $i(#) # %

(#)
i xit

$
;

4To keep the analysis clear, Appendix A.1 provides a detailed description of the formation of these
weighting schemes.
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where !! (u) is the asymmetric linear loss function, usually referred to as the check func-

tion,

!! (u) = u (# ! I(u < 0)) =
1

2
[juj+ (2# ! 1)u] : (3)

In the symmetric case of the absolute loss function (# = 1=2) we obtain estimators of

the median predictive regression models. A parametric approach to inference on the

quantile regression parameters arises if the error distribution gp(") is speciÖed. The error

distribution that has been widely used for parametric inference in the quantile regression

literature is the asymmetric Laplace distribution (for details, see Yu and Moyeed, 2001)

with probability density function

g! (") =
#(1! #)
*(!)

exp

!
!
j"j+ (2# ! 1)"

2*(!)

"
; 0 < # < 1; *(!) > 0: (4)

For # = 1=2; corresponding to the median regression, (4) becomes the symmetric Laplace

density. A likelihood function can be formed by combining T independent asymmetric

Laplace densities of the form (4), i.e.

L(!)
#
r1:T j0i(!); 1

(!)
i ; *

(!)
$
=

%
#(1! #)
*(!)

&T
exp

(
!
1

*(!)

T!1X

t=0

!!

#
rt+1 ! 0i(!) ! 1

(!)
i xit

$)
:

(5)

Then (5) can be used for likelihood based inference for the parameters 0i(!); 1
(!)
i ; *

(!);

for example for maximum likelihood estimation. The maximization of this likelihood

function with respect to 0i(!); 1
(!)
i is equivalent to minimizing the expected asymmetric

linear loss, while the ML estimator of *(!) is b*(!) = 1
T

PT!1
t=0 !!

#
rt+1 ! 0(!) ! 1

(!)
i xit

$
.

Similarly to the predictive mean regression case, the quantile regression (Equation 2) of

rt+1 can be run on a particular subset (k) of the regressors K; k # K, with the aim to

produce quantile forecasts of the equity premium.5

5The advantage of the parametric approach to inference is that it enables us to compare di§erent
quantile regression models, corresponding to di§erent subsets of predictors, using criteria based on the
likelihood function, for example the Bayesian Information Criterion (BIC) or Bayesian model comparison.
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2.3 Forecasting Approaches based on Complete Subset Quan-

tile Regression

We construct equity premium point forecasts by combining quantile forecasts obtained

from a set of complete subset regressions (k ! variate models with k " K): For each k;

nk;K regressions are run in order to predict the , th quantile of the distribution of the next

periodís excess return (rt+1). Next, two approaches are explored in order to combine these

quantile forecasts into a point forecast that is robust to non-normality and non-linearity.

The Örst approach, which we name Robust Forecast Combination approach (RFC)

proceeds by Örst combining the quantile forecasts across all values of , into point forecasts

for each complete subset of predictors. We employ Tukeyís (1977) and Gastwirthís (1966)

three-quantile estimators and the Öve-quantile estimator of Judge, Hill, Gri¢ths, Lutke-

pohl and Lee (1988) along with their time-varying counterparts developed in MPVV. This

step yields nk;K point forecasts which are further combined in order to reduce uncertainty

risk associated with each subset of the predictive variables. Except for the simple av-

eraging scheme, suggested by EGT, we also employ the Trimmed Mean, the Median,

the Discount Mean Squared Forecast Error (DMSFE) of Stock and Watson (2004) along

with the Cluster combining method, introduced by AiolÖ and Timmermann (2006). These

combining schemes utilize the Mean Squared Forecast Error (MSFE) as a loss function.

The second approach, which we name Quantile Forecast Combination (QFC) consists

of Örst combining the predicted , th quantiles across all di§erent subsets (k) of predictors

(nk;K model speciÖcations). With the exception of the Mean, Trimmed Mean and Median

combining methods, the existing combination methods are not appropriate for combining

predictor information in the quantile regression context. To this end, the MSFE loss

function has to be replaced by a metric based on the asymmetric linear loss function

(Equation 3). Following MPVV, we employ the Discount Asymmetric Loss Forecast

Error (DALFE) and the Asymmetric Loss Cluster (AL Cluster) in order to construct

subset quantile forecasts. This step yields a set of quantile forecasts (one for each , j),

which are then combined into Önal robust point forecasts using either a Öxed or a time-
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varying weighting scheme (see next section).6

3 Point Forecasts based on Regression Quantiles

Robust point estimates of the central location of a distribution can be constructed as

weighted averages of a set of quantile estimators employing either Öxed or time-varying

weighting schemes. Lima and Meng (2017) provide a theoretical explanation for the use of

combination of conditional quantiles to approximate the conditional mean forecast. The

authors also argue that since the low-end (high-end) quantiles produce a downwardly (up-

wardly) biased forecast of the conditional mean, approximating the mean via conditional

quantiles combines oppositely biased predictions, and these biases cancel each other out.

3.1 Point Forecasts based on a Fixed Weighting Scheme

For a given model speciÖcation or a given complete subset that has been used for produc-

ing quantile forecasts, robust point forecasts can be constructed as weighted averages of

a set of quantile forecasts. First, we employ standard estimators with Öxed, prespeciÖed

weights of the form

r̂t+1 =
X

"2S

p" r̂t+1(#);
X

"2S

p" = 1;

where S denotes the set of quantiles that are combined, r̂t+1(#) denotes the quantile

forecasts associated with the #th quantile and r̂t+1 is the produced robust point fore-

cast. Here the weights represent probabilities attached to di§erent quantile forecasts,

suggesting how likely to predict the return at the next period each regression quantile is.

We consider Tukeyís (1977) trimean, the Gastwirth (1966) three-quantile estimator

and the Öve-quantile estimator, suggested by Judge, Hill, Gri¢ths, Lutkepohl and Lee

6Details of the combining schemes are given in Appendix A.2.
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(1988) given, respectively, by the following formulae

FW1: brt+1 = 0:25r̂t+1(0:25) + 0:50r̂t+1(0:50) + 0:25r̂t+1(0:75)

FW2: brt+1 = 0:30r̂t+1(1=3) + 0:40r̂t+1(0:50) + 0:30r̂t+1(2=3):

FW3: brt+1 = 0:05r̂t+1(0:10) + 0:25r̂t+1(0:25) + 0:40r̂t+1(0:50) + 0:25r̂t+1(0:75) + 0:05r̂t+1(0:90):

3.2 Point Forecasts based on a Time-varying Weighting Scheme

Relaxing the assumption of a constant weighting scheme seems to be a natural exten-

sion. A number of factors, such as changes in regulatory conditions, market sentiment,

monetary policies, institutional framework or even changes in macroeconomic interrela-

tions (Campbell and Cochrane, 1999; Menzly, Santos and Veronesi, 2004; Spiegel, 2008;

Dangl and Halling, 2012) can motivate the employment of time-varying schemes in the

generation of robust point forecasts.

The variable of interest, rt+1, is predicted using an optimal linear combination pt=[p";t]"2S

of the quantile forecasts r̂t+1(%) given by

r̂t+1 =
X

"2S

p";tr̂t+1(%);
X

"2S

p";t = 1:

The weights, pt, are estimated recursively using a holdout out-of-sample period con-

tinuously updated by one observation at each step. Optimal estimates of the weights

are obtained by minimizing the mean squared forecast errors, Et(rt+1 ! r̂t+1)2; under an

appropriate set of constraints. Our optimization procedure is the analogue of the con-

strained Granger and Ramanathan (1984) method for quantile regression forecasts (see

also Timmermann, 2006; Hansen, 2008; Hsiao and Wan, 2014). SpeciÖcally, we employ

constrained least squares using the quantile forecasts as regressors in lieu of a standard

set of predictors. The time-varying weights on the quantile forecasts bear an interesting

relationship to the portfolio weight constraints in Önance. In this sense we constrain

the weights to be non-negative, sum to one and not to exceed certain lower and upper

bounds in order to reduce the weightsí volatility and stabilize forecasts. In our empir-
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ical application, we employ three time-varying speciÖcations which may be viewed as

the time-varying counterparts of our FW1-FW3 schemes. More speciÖcally, FW1 with

time-varying coe¢cients becomes

TVW1: brt+1= p0:25;tr̂t+1(0:25) + p0:50;tr̂t+1(0:50) + p0:75;tr̂t+1(0:75);

pt = argmin
pt
E[rt+1!(p0:25;tr̂t+1(0:25) + p0:50;tr̂t+1(0:50) + p0:75;tr̂t+1(0:75))]

2

s:t: p0:25;t+p0:50;t+p0:75;t= 1; 0:20 " p0:25;t" 0:40; 0:40 " p0:50;t" 0:60; 0:20 " p0:75;t" 0:40:

Similarly, the FW2 and FW3 schemes with time-varying coe¢cients become

TVW2 : brt+1= p1=3;tr̂t+1(1=3) + p0:5;tr̂t+1(0:50) + p2=3;tr̂t+1(2=3);

TVW3 : brt+1= p0:10;tr̂t+1(0:10) + p0:25;tr̂t+1(0:25) + p0:5;tr̂t+1(0:50)+

+p0:75;tr̂t+1(0:75) + p0:90;tr̂t+1(0:90);

where the weights are estimated in a similar fashion to FW1.

4 Empirical Öndings

4.1 Data, forecast construction and forecast evaluation

The data we employ are from Goyal and Welch (2008) who provide a detailed description

of transformations and datasources.7 The equity premium is calculated as the di§erence

of the continuously compounded S&P500 returns, including dividends, and the Treasury

Bill rate over the sample period 1947:Q1 to 2017:Q4 (T = 284 observations). Following

the line of work of Goyal and Welch (2008), RSZ and Ferreira and Santa-Clara (2011),

out-of-sample forecasts of the equity premium are generated by continuously updating the

estimation window, i.e. following a recursive (expanding) window. More speciÖcally, our

estimation window starts with T0 =32 observations from 1947:Q1 to 1954:Q4 and expands

by one quarter at a time as we move forward. The out-of-sample forecasts start from

7The data are available at http://www.hec.unil.ch/agoyal/. We thank Prof. Goyal for making them
available to us.
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1955:Q1 to 2017:Q4, corresponding to P =252 observations. In addition, constructing our

time-varying robust forecasts and several forecast combination schemes require a holdout

period to estimate the weights. To this end, we use the Örst P0 =40 observations from

the out-of-sample period as an initial holdout period (1955:Q1 to 1964:Q4), which also

expands periodically. In the end, we are left with a total of 212 post-holdout out-of-

sample forecasts available for evaluation. Our out-of-sample forecast evaluation period

corresponds to the ëlongí one analyzed by Goyal and Welch (2008) and RSZ.

The 12 economic variables employed in our analysis are related to stock-market char-

acteristics, interest rates and broad macroeconomic indicators. With respect to stock

market characteristics, we employ the Dividendñprice ratio (log), D/P, the di§erence be-

tween the log of dividends paid on the S&P 500 index and the log of stock prices (S&P

500 index), where dividends are measured using a one-year moving sum; Dividend yield

(log), D/Y, the di§erence between the log of dividends and the log of lagged stock prices;

Earningsñprice ratio (log), E/P, the di§erence between the log of earnings on the S&P

500 index and the log of stock prices, where earnings are measured using a one-year

moving sum; Book-to-market ratio, B/M, the ratio of book value to market value for the

Dow Jones Industrial Average and Net equity expansion, NTIS, the ratio of twelve-month

moving sums of net issues by NYSE-listed stocks to total end-of-year market capitaliza-

tion of NYSE stocks. Turning to interest-rate related variables, we employ Öve variables

ranging from short-term government rates to long-term government and corporate bond

yields and returns along with their spreads. These are the Treasury bill rate, TBL, the

interest rate on a three-month Treasury bill (secondary market); Long-term return, LTR,

the return on long-term government bonds; Term spread, TMS, the di§erence between

the long-term yield and the Treasury bill rate; Default yield spread, DFY, the di§erence

between BAA- and AAA-rated corporate bond yields; Default return spread, DFR, the

di§erence between long-term corporate bond and long-term government bond returns;

To capture the overall macroeconomic environment, we employ the ináation rate, INFL,

calculated from the CPI (all urban consumers) and the investment-to-capital ratio, I/K,

the ratio of aggregate (private nonresidential Öxed) investment to aggregate capital for
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the entire economy.8 Table 1 presents the descriptive statistics of the equity premium and

the candidate predictors. On average, the quarterly equity premium reaches 1.7%, with

a standard deviation of 7.7% and maximum and minimum values of 19.2% and -31.1%,

respectively. In addition, the related distribution shows departures from normality as

suggested by the negative skewness and excess kurtosis. Similar characteristics pertain

with respect to the candidate predictor variables, the majority of which are leptokurtic

and positively skewed.

[TABLE 1 AROUND HERE]

The natural benchmark forecasting model is the historical mean or prevailing mean

(PM) model, according to which the forecast of the equity premium coincides with the

constant in the linear regression model (1) when no predictor is included, i.e. k = 0.

As a measure of forecast accuracy, we employ the out-of-sample R2 computed as R2OS =

1! MSFEi
MSFEPM

; where MSFEi is the Mean Square Forecast Error associated with each of

our competing models and speciÖcations and MSFEPM is the respective value for the

PM model, both computed over the out-of-sample period. Positive values are associated

with superior forecasting ability of our proposed model/speciÖcation. Given that point

estimates of the R2OS are sample dependent, we need to evaluate the statistical signiÖcance

of our forecasts. To this end, we employ both the Clark and West (2007) (CW) and the

Diebold and Mariano (1995) (DM) test to compare our models/ speciÖcations.9

The following subsections present an illustration of our proposed complete subset

quantile regression approach to equity premium forecasting. The aim of our analysis is to

assess the predictive ability of the proposed forecasting approaches and to compare their

performance against that of alternative approaches used in the literature. SpeciÖcally,

we examine the potential beneÖts of the subset quantile regression forecasts based on k-

variate model forecasts (k " 2) under various combination methods (e.g. Mean, Median,

Trimmed Mean, DMSFE, Cluster) relative to using subset linear regression forecasts

8Following EGT, we exclude the log dividend earnings ratio and the long term yield in order to avoid
multicollinearity.

9A brief description of the Clark and West (2007) test and the Diebold and Mariano (1995) test is
given in Appendices B.1 and B.2. Note that the CW test is intended to compare nested linear models,
while the DM is more appropriate when comparing forecasts generated by non-nested models.
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based on k-variate models as proposed in EGT or relative to several combination methods

of univariate linear and/or quantile models as proposed in MPVV. To this end, we also

test the forecasting accuracy of our proposed methodology relative to that of MPVV

by adding as a benchmark the linear and subset quantile regression forecasts based on

k-variate model forecasts for k = 1. Finally, we also employ the Model ConÖdence Set

(MCS) approach of Hansen, Lunde and Nason (2011) to reveal the models with superior

predictive ability without specifying a benchmark model. A MCS is a subset of models

that contains the best model with a given level of conÖdence. The excluded models

are viewed as signiÖcantly inferior models. Models with a larger MCS p!value show

stronger predictive ability. We consider the signiÖcance (conÖdence) level of 10% (90%)

and calculate the MCS p!values based on the range statistic using the circular block

bootstrap and MSFE as loss function. Hansen, Lunde and Nason (2011) argue that

with informative data, the model conÖdence set consists only of the best model, whereas

less informative data may result in a MCS with more than one model.10

4.2 Complete Subset Linear Regression Models

Before discussing the out-of-sample performance of the forecasts obtained by subset linear

regressions under various combination schemes, we Örst present the forecasting ability of

candidate predictor variables in a linear setting. Table 2 (second column) presents the

related R2OS statistics relative to the historical average benchmark model for the out-

of-sample period 1965:1-2017:4. The third and fourth column of the Table present the

p-values from the CW and DM tests, respectively. Our Öndings conÖrm the consensus in

the literature with respect to the scarce equity premium predictability. SpeciÖcally, only

four variables, D/Y, DFR, INFL and I/K generate positive R2OS statistics, of which only

D/Y and I/K are statistically signiÖcant on the basis of the CW test.11

[TABLE 2 AROUND HERE]

Table 3 presents the R2OS statistics of all subset regressions relative to the historical

10We thank the Associate Editor and an anonymous reviewer for these suggestions.
11TBL is also statistically signiÖcant at the 5% level, although the related R2OS is negative. This case

can occasionally arise since the CW statistic is testing the one-sided null hypothesis of equal predictive
accuracy in population, while the reported R2OS values reáect Önite-sample performance.
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average benchmark model (Panel A) and to the univariate subset (k = 1; Panel B). The

second column of the Table reports the R2OS generated by simply averaging the forecasts

(Mean combination method) produced by subset linear regressions for various values of k:

This experiment coincides with the framework of EGT and suggests that the subset linear

regression with k = 2 generates the largest R2OS value (3.84%). Similarly to EGT, subset

regression forecasts with k ! 6 produce positive R2OS values, while the out-of-sample

forecasting ability of subsets deteriorates markedly for k " 7.

[TABLE 3 AROUND HERE]

Next, we focus on alternative (to the Mean) combination methods such as the Me-

dian, Trimmed Mean, DMSFE and the Cluster combining schemes within the subset

linear regression approach. Overall, the largest R2OS values occur for the k = 2 subset,

with the exception of the Cluster schemes where the largest R2OS occur for k = 1. For

these subsets (k = 2 or k = 1), most of the combining methods produce statistically

signiÖcant positive R2OS values, while four of them, namely the Median, Trimmed Mean,

DMSFE(0.9) and DMSFE(0.5) provide higher values of R2OS than that of the best (k = 2)

subset regression based on the Mean combination scheme. A comparison of the di§erent

combination techniques suggests that the DMSFE(0.5) scheme, which penalizes more re-

cent forecasting accuracy, ranks Örst followed by the Median combination scheme. These

methods provide the highest R2OS values of 4.29% and 4.24%, respectively. To ascertain

whether the forecasting models have a statistically signiÖcant di§erence in their out-of-

sample performance, we also report the MCS Öndings. SpeciÖcally, bold indicates the

best models that belong to the MCS. Out of 90 models, only 8 appear to be superior,

excluding both the benchmark historical average model and the linear univariate subset

models (k = 1); which coincides with the RSZ setup. The best performing models are

the Mean, Median, Trimmed Mean, DMSFE (0.9) and DMSFE (0.5) for k = 2 and Me-

dian, Trimmed Mean, DMSFE (0.5) for k = 3: Turning to Panel B that reports the R2OS

statistics of all subset regressions for (k > 2) relative to the univariate subset regression

forecasts (k = 1), we have to note that positive R2OS are associated with k = 2 and 3

for all but the cluster methods and additionally for k = 4 for the Median and Trimmed
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Mean combining methods. Statistical signiÖcance via the DM test, though, prevails only

for the Median method and for subsets of 2 predictors. Relying on the CW test, we Önd

that the majority of the models with positive R2OS statistics are statistically signiÖcant

at the 10% level.

4.3 Complete Subset Quantile Regression Models

4.3.1 Robust Forecast Combination approach

Table 4 reports the R2OS statistics and the respective p-values of the CW and DM tests

for the subset quantile regression models based on the RFC approach for the three Öxed

weighting schemes, i.e. the FW1 scheme (Panel A), the FW2 scheme (Panel B) and the

FW3 scheme (Panel C). Results are reported for various combination methods, namely

the Mean, Median, Trimmed Mean, DMSFE and Cluster, based on k = 1 to k = 12

subset quantile regression forecasts. As previously, bold denotes the models that belong

to the MCS and Panels D-F report the R2OS statistics of all subset regressions for (k > 2)

relative to the univariate subset regression forecasts (k = 1). To save space, we report

the related Ögures for k up to 7. The full set of results is available in Appendix G.

Several Öndings emerge from this analysis. First, we observe that combining the

forecasts of a subset of k = 3 quantile regression models produces higher R2OS values

for almost all the combination methods with the exception of the Cluster(3) method

(for which k = 4 emerges as superior) for all Öxed weighting schemes. Second, for this

subset, i.e. k = 3, all the combination methods based on the robust quantile regression

models generate higher R2OS values than the corresponding combining methods based

on the best k = 2 subset linear regression models, indicating the superior forecasting

ability of the proposed RFC quantile approach. Third, a comparison of the di§erent

combination methods suggests that the Median combination technique outperforms the

alternative combination methods for all FW schemes, generating R2OS values of 5:34%;

5.20% and 5:24%, respectively. Depending on the combination method and FW scheme,

a small portion of models belong in the MCS (69 out of 298). In the majority of cases,

this involves models generated for subsets of k = 2 to k = 5: As previously, cluster
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combinations prove inferior to even simpler methods such as the Mean or Median ones.

Finally, even univariate subset forecasts combined via the DMSFE (0.5) method belong

to the superior set of models. Testing for the improvements of our approach over MPVV,

Panels D-F of Table 4 report the respective R2OS values along with the CW and DM

p!values. For the majority of cases, subsets of k greater than or equal to two and less

than six generate positive R2OS values. However, these are signiÖcant (on the basis of the

DM test) only for the cases of k = 2 for all FW schemes and combining methods with

the exception of the Cluster combination methods and DMSFE (0.5).

[TABLE 4 AROUND HERE]

Next, we present the out-of-sample performance of the subset quantile regression

forecasts relative to the benchmark Prevailing Mean model based on the time-varying

weighting schemes TVW1-TVW3 (Table 5, Panels A-C). Three combination methods can

be used in the time-varying weighting framework; the Mean, Median and the Trimmed

Mean. Based on the results of Table 5, we observe that the largest R2OS values occur for

k = 2 or k = 3 subsets. For these subsets (k = 2 and k = 3), all the combining methods,

i.e. the Mean, Median and Trimmed Mean, generate statistically signiÖcant positive R2OS

values, which are higher than the corresponding R2OS values of the combining methods

based on the best (k = 2) subset linear regression model (see Table 3). For these best

subsets, the Median and the Trimmed Mean combination methods seem to outperform

the Mean combination scheme since they produce higher R2OS values. The most striking

result is the R2OS statistic of 5:64% obtained by the Median combination of forecasts of

the k = 2 subset quantile regression models under the TVW1 scheme. Subsets of 2 and 3

variables belong to the MCS for TVW1 and TVW2 scheme along with k = 4 for TVW2

and the mean and Trimmed mean combination methods. On the other hand, TVW3

that involves a Öner grid of quantiles, contributes to MCS with only two speciÖcations;

namely the Median and Trimmed Mean for k = 2 and k = 3; respectively. Turning to

the k = 1 benchmark (Panels D - F), we note that subsets of up to 4 or 5 variables

can improve forecasting performance as they are associated with positive R2OS values.

However, judging from the related DM p-values, only subsets of k = 2 appear statistically
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superior for all combining methods on the basis of the TVW1 scheme and for the Median

and Trimmed Mean for the remaining time varying schemes.

[TABLE 5 AROUND HERE]

4.3.2 Quantile Forecast Combination approach

We turn our attention to the results of the subset quantile regression models based on

the QFC approach. Table 6 reports the out-of-sample performance of the subset quantile

regression forecasts obtained by the QFC approach using Öxed weighting schemes (FW1-

FW3). The results of Table 6 (Panel A - Panel C) indicate that high positive R2OS values

are obtained by using k = 2, k = 3 and k = 4 subsets for all weighting schemes FW1-FW3.

In particular, for k = 3 subsets all of the combining methods produce the highest positive

R2OS values, which are larger than those of the best (k = 2) subset linear regression model

(see Table 3) and similar or even higher than the corresponding R2OS values of the best

(k = 3) subset quantile regression forecasts based on the RFC approach (see Table 4).

Among the various combination methods, the Median combination scheme ranks Örst,

since, for the best k = 3 subset, generates the highest R2OS values ranging from 5:43% for

FW3 to 5:56% for FW2 scheme. Second ranks the DALFE(0.5) method which produces

R2OS values ranging from 5:12% for FW2 to 5:25% for the FW1 scheme. The MCS Öndings

suggest that forecasts generated for k = 3 are optimal for all combining methods, but

AL Cluster(3) and AL Cluster(2) for FW2 and FW3 forecasts. In the majority of cases,

subsets of 2 and 4 variables also belong to MCS. Panels D-E report our Öndings for

the k = 1 benchmark o§ering support to the proposed subset quantile approach over

the univariate MPVV one. Similarly to our RFC approach, QFC-FW forecasts improve

forecasts for subsets up to 5 or 6 depending on the combining method/scheme employed,

as suggested by the positive R2OS values. Judging from the DM p!values, using k = 2

o§ers statistically signiÖcant improvements for all methods but the Cluster ones. In the

case of FW3, the Median combination scheme for k = 3 is also marginally signiÖcant.

[TABLE 6 AROUND HERE]

Finally, Table 7 (Panels A-C) presents the results obtained by the subset QFC ap-
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proach using time-varying weighting schemes (TVW1-TVW3). Three combination meth-

ods, namely the Mean, Median and Trimmed Mean, are used in this approach. Based

on the results of Table 7, we observe that the subset quantile regression forecasts with

k = 2 for QFC-TVW1 and QFC-TVW3 and with k = 3 for QFC-TVW2 generate the

highest positive R2OS values. For these subsets (k = 2 or k = 3), the Median combina-

tion method outperforms the Mean and the Trimmed Mean combination schemes since

it generates higher R2OS values. More importantly, the QFC-TVW1 approach based on

the Median combination of k = 2 subsets of predictors produce the highest R2OS of 5:58%

among the di§erent forecasting approaches considered in our analysis (see Table 7, Panel

A). Less than 15% (14/103) of the QFC-TVW models generate forecasts that belong to

the MCS. These optimal models are mainly associated to two-variable subsets with the

exception of TVW3 and the Mean and Trimmed Mean combining methods. Subsets of

k = 3 join the best set of models for TVW2 and TVW1 for the Median and Trimmed

mean combinations. For these combination schemes and TVW2 even k = 4 joins the set

of best models. Turning to our comparisons with the MPVV approach (Panels D-F), we

have to note that improvements to R2OS values prevail for subsets of up to k = 4 relative

to k = 1; which are statistically signiÖcant for the majority of combination/weighting

schemes for k = 2:12,13

[TABLE 7 AROUND HERE]

4.4 Global MCS and summary

To further consolidate our Öndings, we also report MCS results employing all the fore-

casting models discussed above, i.e. the benchmark historical mean, the linear univariate

models, the subset linear regression models for all k and combination methods along

with the FW/ TVW RFC and QFC subset quantile models. Table 8 outlines the mod-

12We also evaluated the performance of our forecasting approaches by plotting the di§erence of the
cumulative sum of squared errors (DSSE) of the null (historical mean) minus the cumulative sum of
squared errors of the alternative proposed models. Overall, this set of results (reported in Appendix C)
points to superiority of our approaches, which is consistent over time as shown by the upward sloping
curve for the most part of the out-of-sample period.
13We also considered an alternative forecasting approach based on forecast encompassing (Appendix

B.3). Our Öndings, reported in Appendix D, are qualitatively similar to our benchmark case involving
all the candidate predictors and point to superiority of our quantile forecasting methods.
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els, along with their MCS p!values and the associated R2OS values. Overall, 21 models

appear superior and belong to the MCS with associated p!values greater than 0.958.

As such, we are more that 95% sure that this set of models are superior to the ones

excluded. Several interesting Öndings emerge from this set of results. First, neither the

benchmark historical mean, nor the linear single-variable or subset models are included

in MCS. This is evidence of the superiority of our methodology over the methodologies

of EGT and RSZ. Second, no single-variable subsets of models (k = 1) appear in MCS,

which provides evidence in favor of our framework over the linear RSZ and the MPVV

one. Third, only quantile subset models with k = 2 and 3 are included and the asso-

ciated R2OS values are greater than 5%. Fourth, our QFC approach ranks Örst as two

thirds of the optimal models belong to this approach as opposed to one third from the

RFC method. Similarly, the Öxed weighting schemes appear superior to the time-varying

ones. However, the best performing model is the RFC-TVW1 with the median combining

scheme for k = 2: Finally, in more than half of the cases, the associated superior forecasts

are generated with the Median combining scheme followed by the Trimmed mean and

DALFE/DMSFE (0.5).

[TABLE 8 AROUND HERE]

4.5 Explaining the BeneÖts of the RFC and QFC Forecasts

In order to show the beneÖts of our subset quantile forecasts (RFC and QFC speciÖca-

tions), we decompose the MSFE of all forecasting models into two parts: the forecast

variance and the squared forecast bias, along the lines of EGT, Lima and Meng (2017)

and RSZ. The MSFE is calculated as 1
P!P0

T!1X

t=T0+P0

(rt+1 ! brt+1)2 and the unconditional

forecast variance as 1
P!P0

T!1X

t=T0+P0

 
brt+1 ! 1

P!P0

T!1X

t=T0+P0

brt+1

!2
where P ! P0 is the total

number of out-of-sample forecasts. The squared forecast bias is computed as the di§er-

ence between MSFE and forecast variance. Figure 3 shows the relative forecast variance

and squared forecast bias for the single-predictor models (green points in the scatter

plot), the Historical Average (purple point in the scatter plot with label HA), the mean
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combination linear model (k = 1) of RSZ and subset linear model (k = 2) of EGT (or-

ange points in the scatter plot with labels L1 : L2), the 21 MCS models (red points in

the scatter plot with labels M1 : M21) and their analogues for k = 1 (blue points in

the scatter plot with labels K1 : K21). The labels for the MCS models follow the order

they are presented in Table 8; for example, M21 corresponds to the best model (highest

R2OS), i.e. RFC TVW1 with median combining scheme and k = 2; while K21 denotes the

respective k = 1 model. The relative forecast variance (squared bias) is calculated as the

di§erence between the forecast variance (squared bias) of the ith model and the forecast

variance (squared bias) of the benchmark historical average model. Points along the dot-

ted straight line show model forecasts with the same MSFE as the HA benchmark, while

points to the left (right) of the line show models that are superior (inferior) to the HA

benchmark. Overall, a model exhibits strong predictability if it can produce forecasts

in which the reduction in bias is greater than the increase in variance, relative to the

HA forecast (a relation well-known in the literature as the bias-variance trade-o§). It is

clear that our proposed models in the cluster M11, M13, M16, M20, M21 signiÖcantly

outperform the k = 1 mean combination of RSZ, the k = 2 subset combination of EGT

and the respective analogues for k = 1 proposed by MPVV, as they substantially reduce

the squared forecast bias at the expense of a very small increase in forecast variance.

These models are QFC FW3 Median k = 2, QFC FW1 Median k = 2, QFC TVW2

Median k = 2, QFC TVW1 Median k = 2 and RFC TVW1 Median k = 2: It is worth

noting that a median combining scheme is employed in all these speciÖcations with k = 2;

a QFC approach is used in four out of Öve cases and a TV weighting scheme in three

out of Öve cases. The rest of the models identiÖed by MCS form a second cluster which

reduces substantially the forecast bias at the expense of a moderate increase in forecast

variance. The main message from this plot is that our subset quantile forecasting models

identiÖed by MCS yield a sizable reduction in the forecast bias while keeping variance

under control. In this way, they show improved forecast accuracy over HA, EGT, MPVV

and RSZ.

[FIGURE 1 AROUND HERE]
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4.6 Multiple hypothesis testing

Since we use multiple tests and multiple models to judge equity premium forecastability,

it is not surprising that we have numerous cases with signiÖcant tests at conventional

signiÖcance levels. The issue of multiple hypothesis testing is quite common in the sta-

tistics literature and in particular in applications related to genetics where thousands of

genes are tested for speciÖc features; however, it is still relatively new in the Önance liter-

ature. Recent contributions include Harvey, Liu and Zhu (2016), Harvey and Liu (2018),

Rapach, Strauss, Tu and Zhou (2019) who focus mainly on the in sample signiÖcance of

potential factors/ variables. Multiple testing in an out of sample framework has received

far less attention (see McCracken and Sapp (2005)). We follow Rapach, Strauss, Tu and

Zhou (2019) and control for multiple testing using the Benjamini and Hochberg (2000)

adaptive procedure. More in detail, Benjamini and Hochberg (1995) address multiple

testing by controlling for the False Discovery Rate (FDR), i.e. the ratio of false rejections

over total rejections. The authors develop a popular step up procedure to control FDR

based on adjusted p-values. This procedure works well when the respective p!values are

either independent or positively (regression) dependent (Benjamini and Yekutieli, 2001).

However, when the number of true null hypotheses is less than the rejected null hypothe-

sis ("0 = m0

m
), the Benjamini and Hochberg (1995) procedure controls FDR at low levels.

To this end, Benjamini and Hochberg (2000) adapt the procedure to the data by adjust-

ing p-values with a conservative estimate of "0: Simulations in Benjamini, Krieger and

Yekutieli (2006) show that this adaptive procedure performs well in terms of FDR control

and power, even in the case of dependent p!values.

Figure 2 reports our Öndings when controlling for multiple testing across all 1698 DM

and CW outcomes. We show the Örst 1032 elements of both the unadjusted p!values

and the related adjusted p!values based on the Benjamini and Hochberg (2000) adaptive

procedure. Based on the unadjusted p!values, there are 22 (897) rejections of the null at

the 1% (5%) signiÖcance level. When we control for multiple testing via the FDR adjust-

ing the p!values, the related rejections of the null are equal to 0 and 909, respectively.

Our results indicate that at a signiÖcance level of 3.66%, the lines of adjusted and un-
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adjusted p!values cross and beyond this level, adjusted values are below the unadjusted

ones favoring more of our proposed speciÖcations. For example, at the 10% level, an

additional 10 models provide rejections of the null of equal forecasting ability. Overall,

our forecasting framework survives multiple-testing control and is not simply an artifact

of data mining.

[FIGURE 2 AROUND HERE]

5 Real time Selection of k

Our empirical Öndings (Section 4) suggest that the predictive performance of our subset

quantile regression approach depends on the choice of the value of k. Therefore, it is

important to develop a real time algorithm of selecting k recursively, based on the past

history of excess returns and predictive variables, in order to produce ëoptimal forecastsí.

Our likelihood-based (Bayesian) algorithm is áexible enough to allow for variability of

the selected k across quantiles and, therefore, information on the best complete subset

for each quantile of the return distribution can be incorporated within our approach.

The experiment we conduct is naturally designed in the context of our QFC forecasting

approach. At each time point in the out-of-sample period, indexed by t+ 1, we compute

the posterior probabilities of all values of k (k 2 f1; 2; :::; Kg), based on the data up to

time t, for a set of quantiles. Then, for each quantile, ' ; we select the most probable value

of k and produce a quantile forecast at time t+1, r̂t+1('); based on the selected complete

subset. These quantile forecasts are then combined according to the Öxed weighting and

time-varying weighting schemes of Section 3 in order to produce ëoptimalí QFC forecasts

in real time.14

Table 9 reports the out-of-sample performance of the ëoptimalí QFC forecasts based

both on Öxed weighting schemes (FW1-FW3) and time-varying weights (TVW1-TVW3),

under both prior speciÖcations considered (i.e. )=1/2 (Panel A) and )=1/3 (Panel B)).

The results of Table 9 reveal that our likelihood-based approach to selecting k in real time

14To save space, the details of the algorithm are presented in Appendix E. Appendix F plots the
selected values of k over the out-of-sample period.
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is extremely successful, since the values of R2OS obtained under all weighting schemes and

for all combining methods are very high. Regarding the Öxed weighting schemes, the

largest R2OS values are obtained for the Median combining method, being in all cases

close to or higher than 4%, with the highest value being equal to 4.46% (for the FW2

scheme, under "=1/2). In accordance with our statistical signiÖcance results (Table 6),

the DALFE(0.5) method ranks second with R2OS values very close to those obtained by

the Median combining method. It is interesting to note that the results of the recursive

k-selection exercise are quite robust across the combining methods considered, apart

from the AL Cluster(3) method. Moreover, it appears that the FW2 scheme constantly

outperforms the other two schemes of producing robust point forecasts based on Öxed

weights. Similar Öndings pertain with respect to our TVW forecasts. More in detail, the

largest R2OS value (4.67%) is obtained for the Median combining method and the TVW2

scheme under "=1/3. Overall, the TVW2 scheme constantly outperforms the other two

time-varying weighting schemes and in this framework results are better in the case that

the prior probability of inclusion is set to 1/3. This may be attributed to the fact that

some very large values of k are selected throughout the holdout period, possibly due to

weak likelihood information, especially in the case of "=1/2. Our MCS Öndings also point

to superiority of "=1/3 as several models appear optimal. These are generally linked to

the Median combining method and either FW2 or TVW2 weighting schemes.

[TABLE 9 AROUND HERE]

6 Economic Evaluation

Campbell and Thompson (2008) and RSZ suggest that even small predictability gains,

in a statistical sense, can give an economically meaningful degree of return predictability

providing increased portfolio returns for a mean-variance investor that maximizes ex-

pected utility. We follow this utility-based approach within this stylized asset allocation

framework in order to rank the performance of competing models in a way that captures

the risk return trade-o§.
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Consider a risk-averse investor who constructs a dynamically rebalanced portfolio

consisting of the risk-free asset and one risky asset. Her portfolio choice problem is how

to allocate wealth between the safe (risk-free Treasury Bill) and the risky asset (stock

market), while risk stems from the uncertainty over the future path of the stock market

(both in terms of future returns and the uncertainty surrounding them). This approach

involves only one risky asset and as such it can be thought of as a standard exercise of

market timing in the stock market. In a mean-variance framework, the solution to the

maximization problem of the investor yields the following weight (wt) on the risky asset

wt =
Et(rt+1)

$V art(rt+1)
=

brt+1
$V art(rt+1)

;

where Et and V art denote the conditional expectation and variance operators, rt+1 is

the equity premium and $ is the Relative Risk Aversion (RRA) coe¢cient that controls

the investorís appetite for risk (Campbell and Viceira, 2002; Campbell and Thompson,

2008; RSZ). The conditional expectation Et(rt+1) of each model is given by the ëoptimalí

forecast from the speciÖc model, brt+1; and the variance, V art(rt+1) is calculated using

four alternative ways. The Örst method we employ is the ten-year rolling window of

quarterly returns (b(21;t+1). The remaining volatility forecasts are constructed using the

interval approximation approach of Pearson and Tukey (1965). SpeciÖcally, we employ

the following approximations to conditional standard deviation based on symmetrical

quantiles as follows:

b(2;t+1 =
brt+1(0:99)! brt+1(0:01)

4:65
; (6)

b(3;t+1 =
brt+1(0:975)! brt+1(0:025)

3:92
; (7)

b(4;t+1 =
brt+1(0:95)! brt+1(0:05)

3:25
: (8)

The denominators in the above formulae are based on the central distances between

estimated quantiles under Pearson curves which are slightly di§erent from a Gaussian

curve. The forecasts for the quantiles of interest are based on the combination of quantile
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forecasts within the kth complete subset, with the values of k being optimally selected at

each point of time employing our proposed selection algorithm. Optimal weights depend

on both the conditional mean and variance and as a result on the respective forecasts

each model/ speciÖcation gives. In this setting the optimally constructed portfolio gross

return over the out-of-sample period, Rp;t+1; is equal to Rp;t+1 = wt ! rt+1 + Rf;t;where

Rf;t = 1+rf;t denotes the gross return on the risk-free asset from period t to t+1:15 Over

the forecast evaluation period the investor with initial wealth of Wo realizes an average

utility of

U =
Wo

(P " P0)

"
P!P0!1X

t=0

(Rp;t+1)"
+

2

P!P0!1X

t=0

(Rp;t+1 "Rp)2
#
; (9)

where Rp;t+1 is the gross return on her portfolio at time t+ 1: At any point in time, the

investor prefers the predictive model that yields the highest average realized utility.16

The economic value of our modeling approaches is assessed by comparing their av-

erage utility to the corresponding value obtained under the benchmark prevailing mean

model. Our results are reported in the form of the annualized Certainly Equivalent Re-

turn (CER), i.e. the return that would leave an investor indi§erent between using the

prevailing mean forecasts versus the forecasts produced by one of our proposed approaches

and is calculated as follows:

CER = 'U = U i " UPM ; (10)

where U i is the average realized utility over the out-of-sample period of any of our

competing models/ speciÖcations (i) and UPM is the respective value for the prevail-

ing mean (PM) model. If our proposed model does not contain any economic value, CER

is negative; while positive values of the CER suggest superior predictive ability against

the PM benchmark.

We assume that the investor dynamically rebalances her portfolio (updates the weights)

quarterly over the out-of-sample period employing the forecasts given by the QFC ap-

15We constrain the portfolio weight on the risky asset to lie between 0% and 150% each month, i.e.
0 # wt # 1:5:
16We standardize the investor problem by assuming Wo = 1:
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proach and our selection algorithm for ! = 1=2 and ! = 1=3: Similarly to Section 4 and

5, the out-of-sample period of evaluation is 1965:1-2017:4 and the benchmark strategy

against which we evaluate our forecasts is the PM model. For every model/speciÖcation

we calculate the CER associated with each strategy calculated from Equation (10) setting

RRA ($) equal to 3. Table 10 reports our Öndings for the aforementioned prior speci-

Öcations. Panels A-C and Panels D-F report CER in annualized percentage points for

the Öxed weighting schemes and the time-varying weighting schemes, respectively under

the alternative variance forecasts. The columns labeled %1 refer to the rolling variance

forecast, while %2 to %4 refer to the robust subset variance forecasts given by equations

(6)-(8). CER1 and CER2 refer to the prior speciÖcations of ! = 1=2 and ! = 1=3;

respectively.

The most striking feature of Table 10 is the robustness of beneÖts generated to an

investor willing to adopt our modelling approaches which range from 3.58% to an impres-

sive 5.69% per year. More in detail, the maximum CER is attained when the DALFE

(0.5) FW2 scheme is employed in conjunction with a robust variance forecast given by

(7) and a prior of ! = 1=3; which penalizes large values of subsets. On the other hand,

the minimum CER, albeit quite high, is attained under the FW scheme when the AL

Cluster (3) FW3 scheme is employed combined with the rolling variance forecast and the

same prior speciÖcation. Overall, the TVW schemes appear superior to their FW coun-

terparts. The minimum beneÖts to an investor increase to 4.16% when TVW schemes are

employed compared to 3.58% under FW speciÖcations. When comparing the alternative

prior speciÖcations, the prior of ! = 1=2 appears superior as it leads to greater gains

in the majority of the approaches considered. In accordance with our Öndings from the

statistical evaluation of the forecasts obtained under alternative combination methods,

the DALFE(0.5) combining method emerges as the optimal one when FW schemes are

considered, while the Median one generates the highest CERs among the TVW schemes.

With respect to the alternative conditional variance speciÖcations, we have to note that

the proposed robust subset variance forecasts add signiÖcant economic value within our

asset allocation framework. Further beneÖts are achieved when either %2 or %3 (given
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by equations (6)-(7)) are employed as opposed to !4 which employs closer to the central

location quantile forecasts.

[TABLE 10 AROUND HERE]

7 Conclusions

In this study we propose a complete subset quantile regression approach to equity pre-

mium prediction. Our approach is based on the combination of the quantile forecasts, or

the robust point forecasts, across complete subsets of model speciÖcations that keep the

number of predictors, k, Öxed. Forecast combination is based on several well-established

combining methods, while robust and accurate forecasts of the equity premium are con-

structed as weighted averages of a set of quantile forecasts by employing either Öxed or

time-varying weighting schemes. An important contribution of this study is the develop-

ment of a likelihood-based method for selecting the value of k recursively. The proposed

algorithm is able to identify the best subset for predicting each quantile of the return dis-

tribution in real time, based only on the past history of the data. Then, these ëoptimalí

quantile forecasts are combined to produce robust equity premium forecasts.

The results of our study are very promising. Our Öndings suggest that our complete

subset quantile regression framework achieves superior predictive performance relative

to the historical average benchmark, the combination approach, and the subset linear

regression approach, both in statistical and economic evaluation terms. More importantly,

our economic evaluation results suggest that a mean-variance investor that adopts our

framework can gain sizable beneÖts which range from 3.58% to an impressive 5.69% per

year relative to a naive strategy based on the historical benchmark performance.

An interesting avenue for future research is to extend our framework to a quantile

on quantile one (see for example, Gupta, Pierdzioch, Selmi and Wohar, 2018). In this

respect, we would be able to capture the entire dependence between the equity premium

distribution and the distribution of the candidate predictors, while in the present setting

we can only capture the response of equity premium to candidate predictors at various
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points of its distribution.17
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Table 1. Descriptive Statistics
V ariable Mean Median Standard Deviation Kurtosis Skewness Min Max Q5 Q95

Equity Premium 0.02 0.03 0.08 4.92 -0.94 -0.31 0.19 -0.12 0.12
D=P -3.49 -3.46 0.44 2.36 -0.18 -4.49 -2.60 -4.26 -2.81
D=Y -3.47 -3.45 0.44 2.43 -0.18 -4.50 -2.58 -4.24 -2.80
E=P -2.76 -2.81 0.45 5.50 -0.65 -4.81 -1.77 -3.39 -2.01
B=M 0.54 0.52 0.25 2.48 0.47 0.13 1.20 0.18 1.02
NTIS 0.01 0.02 0.02 3.94 -1.02 -0.05 0.05 -0.02 0.04
TBL 0.04 0.04 0.03 4.17 0.94 0.00 0.15 0.00 0.09
LTR 0.02 0.01 0.05 6.12 0.99 -0.15 0.24 -0.06 0.10
TMS 0.02 0.02 0.01 3.19 -0.14 -0.04 0.05 0.00 0.04
FDY 0.01 0.01 0.00 8.38 1.91 0.00 0.03 0.00 0.02
DFR 0.00 0.00 0.02 15.70 0.32 -0.12 0.16 -0.03 0.03
INFL 0.01 0.01 0.01 6.49 0.53 -0.04 0.05 0.00 0.03
I=K 0.04 0.03 0.00 2.59 0.39 0.03 0.04 0.03 0.04

Notes: The Table reports the descriptive statistics for the Equity Premium and the predictors used.

Table 2. Out-of-sample performance of univariate regression models
V ariable R2

OS CWpv DMpv

D=P -0.11 0.06 0.52
D=Y 0.02 0.05 0.50
E=P -1.16 0.31 0.66
B=M -2.05 0.48 0.81
NTIS -2.16 0.65 0.91
TBL -2.00 0.04 0.63
LTR -0.97 0.27 0.66
TMS -2.55 0.06 0.71
DFY -2.52 0.71 0.89
DFR 0.05 0.14 0.49
INFL 0.47 0.22 0.40
I=K 2.55 0.01 0.22

Notes: The Table reports the out-of-sample R2 statistic with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2017:4. Statistical
signiÖcance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted statistic (CWpv) and the Diebold and Mariano (1995) test
(DMpv).



Table 3. Out-of-sample performance of complete subset linear regression models
Panel A: Historical Average Benchmark

Mean Median Trimmed Mean DMSFE(1) DMSFE(0:9) DMSFE(0:5) Cluster(2) Cluster(3)

k R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv

1 2.82 0.00 0.01 2.43 0.00 0.00 2.69 0.00 0.01 2.83 0.00 0.01 2.86 0.00 0.02 3.59 0.01 0.03 2.40 0.01 0.09 1.19 0.08 0.30
2 3.84 0.00 0.05 4.24 0.00 0.02 3.97 0.00 0.04 3.78 0.00 0.05 3.86 0.01 0.05 4.29 0.01 0.07 2.27 0.03 0.21 0.20 0.11 0.47
3 3.66 0.01 0.13 3.83 0.00 0.12 3.78 0.01 0.12 3.56 0.01 0.14 3.70 0.01 0.13 3.94 0.01 0.15 1.60 0.03 0.33 0.32 0.06 0.47
4 2.78 0.01 0.25 2.49 0.01 0.28 2.81 0.01 0.25 2.67 0.01 0.26 2.80 0.01 0.25 3.00 0.01 0.25 1.22 0.03 0.39 0.08 0.04 0.49
5 1.52 0.01 0.37 1.01 0.02 0.42 1.47 0.01 0.38 1.43 0.02 0.38 1.48 0.02 0.38 1.68 0.02 0.37 0.16 0.03 0.49 -1.10 0.05 0.58
6 0.06 0.02 0.50 -0.53 0.02 0.54 -0.02 0.02 0.50 -0.02 0.02 0.50 -0.09 0.02 0.51 0.13 0.02 0.49 -1.43 0.04 0.59 -2.94 0.05 0.67
7 -1.58 0.03 0.60 -2.44 0.03 0.65 -1.68 0.03 0.61 -1.66 0.03 0.61 -1.84 0.03 0.61 -1.59 0.03 0.59 -3.41 0.05 0.68 -4.90 0.06 0.74
8 -3.45 0.04 0.69 -4.09 0.04 0.72 -3.57 0.04 0.70 -3.54 0.04 0.70 -3.80 0.04 0.70 -3.49 0.04 0.68 -5.76 0.06 0.76 -6.73 0.07 0.78
9 -5.67 0.05 0.77 -5.43 0.04 0.76 -5.85 0.05 0.78 -5.77 0.05 0.77 -6.06 0.05 0.77 -5.65 0.05 0.75 -8.03 0.07 0.81 -8.83 0.07 0.82
10 -8.38 0.06 0.83 -10.66 0.08 0.86 -8.65 0.06 0.84 -8.47 0.06 0.84 -8.73 0.06 0.83 -8.22 0.06 0.82 -11.36 0.08 0.86 -10.65 0.07 0.85
11 -11.76 0.07 0.89 -13.89 0.08 0.90 -12.24 0.07 0.89 -11.82 0.07 0.89 -11.97 0.08 0.88 -11.44 0.07 0.87 -13.82 0.09 0.90 -13.86 0.10 0.90
12 -15.99 0.09 0.93

Panel B: k = 1 Benchmark

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 1.05 0.08 0.18 1.86 0.03 0.09 1.31 0.06 0.15 0.97 0.09 0.20 1.03 0.09 0.18 0.73 0.15 0.27 -0.13 0.37 0.54 -1.00 0.55 0.75
3 0.86 0.11 0.34 1.44 0.05 0.30 1.11 0.09 0.32 0.75 0.12 0.36 0.86 0.11 0.34 0.36 0.18 0.43 -0.82 0.35 0.63 -0.88 0.34 0.65
4 -0.05 0.13 0.51 0.06 0.08 0.49 0.12 0.11 0.49 -0.17 0.14 0.52 -0.06 0.14 0.51 -0.61 0.20 0.58 -1.21 0.26 0.64 -1.13 0.23 0.63
5 -1.34 0.16 0.64 -1.45 0.10 0.63 -1.25 0.14 0.62 -1.44 0.17 0.65 -1.42 0.17 0.65 -1.98 0.23 0.70 -2.30 0.25 0.70 -2.33 0.24 0.70
6 -2.84 0.19 0.74 -3.03 0.13 0.72 -2.79 0.16 0.72 -2.94 0.20 0.74 -3.03 0.20 0.74 -3.59 0.26 0.78 -3.92 0.27 0.77 -4.18 0.27 0.78
7 -4.53 0.21 0.81 -4.99 0.15 0.80 -4.49 0.18 0.80 -4.62 0.22 0.81 -4.84 0.23 0.81 -5.37 0.29 0.84 -5.95 0.30 0.83 -6.17 0.29 0.83
8 -6.46 0.23 0.86 -6.68 0.16 0.85 -6.44 0.20 0.85 -6.56 0.24 0.86 -6.86 0.25 0.86 -7.34 0.31 0.88 -8.36 0.33 0.87 -8.02 0.29 0.86
9 -8.74 0.25 0.89 -8.06 0.14 0.86 -8.78 0.22 0.89 -8.85 0.26 0.90 -9.18 0.27 0.89 -9.59 0.33 0.91 -10.68 0.33 0.89 -10.14 0.30 0.88
10 -11.53 0.27 0.92 -13.41 0.22 0.92 -11.65 0.24 0.92 -11.63 0.28 0.92 -11.94 0.29 0.92 -12.25 0.35 0.93 -14.09 0.38 0.93 -11.98 0.29 0.90
11 -15.00 0.29 0.95 -16.72 0.21 0.94 -15.35 0.26 0.94 -15.08 0.30 0.95 -15.27 0.31 0.95 -15.59 0.37 0.95 -16.62 0.38 0.95 -15.24 0.35 0.94
12 -19.36 0.32 0.97

Notes: The Table reports the out-of-sample R2 statistic with respect to the prevailing mean (PM) benchmark model and the k = 1 benchmark for the out-of-sample period
1965:1-2017:4. Statistical signiÖcance for the R2OS statistic is based on the p-value of the Clark and West (2007) out-of-sample MSFE-adjusted statistic (CWpv) and the Diebold
and Mariano (1995) test (DMpv). Bold indicates that the model belongs to MCS.



Table 4. Out-of-sample performance of Robust Forecast Combination (RFC) approach-Fixed weighting (FW) schemes
Panel A: RFC-FW1 (Historical Average Benchmark)

Mean Median Trimmed Mean DMSFE(1) DMSFE(0:9) DMSFE(0:5) Cluster(2) Cluster(3)

k R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv

1 2.40 0.01 0.04 1.84 0.02 0.07 2.19 0.01 0.05 2.50 0.01 0.04 2.56 0.01 0.04 3.56 0.01 0.04 2.76 0.01 0.05 1.71 0.06 0.22
2 4.47 0.00 0.03 4.88 0.00 0.01 4.63 0.00 0.02 4.47 0.00 0.03 4.50 0.00 0.03 4.85 0.00 0.06 3.33 0.01 0.13 2.27 0.03 0.25
3 5.03 0.00 0.06 5.34 0.00 0.06 5.18 0.00 0.06 4.97 0.00 0.07 5.03 0.00 0.07 5.04 0.00 0.11 3.56 0.01 0.17 2.58 0.02 0.25
4 4.66 0.00 0.13 4.61 0.00 0.15 4.73 0.00 0.13 4.57 0.00 0.13 4.66 0.00 0.13 4.55 0.00 0.17 3.29 0.01 0.22 2.77 0.01 0.26
5 3.67 0.00 0.22 3.49 0.00 0.24 3.66 0.00 0.22 3.58 0.00 0.23 3.67 0.00 0.22 3.52 0.00 0.25 2.84 0.01 0.28 1.85 0.01 0.36
6 2.41 0.00 0.33 2.12 0.00 0.35 2.36 0.00 0.33 2.33 0.00 0.33 2.39 0.00 0.33 2.24 0.01 0.35 1.77 0.01 0.38 1.15 0.01 0.42
7 1.06 0.01 0.43 0.38 0.01 0.47 1.01 0.01 0.43 0.98 0.01 0.43 1.01 0.01 0.43 0.90 0.01 0.44 0.46 0.01 0.47 -0.27 0.01 0.52

Panel B: RFC-FW2 (Historical Average Benchmark)

1 2.29 0.01 0.06 1.47 0.03 0.14 2.13 0.01 0.07 2.38 0.01 0.06 2.41 0.01 0.06 3.30 0.01 0.06 2.66 0.01 0.06 0.82 0.13 0.37
2 4.30 0.00 0.04 4.65 0.00 0.01 4.48 0.00 0.03 4.32 0.00 0.04 4.34 0.00 0.04 4.70 0.00 0.08 3.44 0.02 0.13 1.82 0.05 0.30
3 4.95 0.00 0.07 5.20 0.00 0.06 5.09 0.00 0.07 4.90 0.00 0.07 4.95 0.00 0.08 4.94 0.00 0.12 4.06 0.01 0.14 2.80 0.02 0.23
4 4.63 0.00 0.13 4.69 0.00 0.14 4.69 0.00 0.13 4.56 0.00 0.14 4.65 0.00 0.14 4.52 0.00 0.18 3.87 0.01 0.19 3.10 0.01 0.24
5 3.71 0.00 0.22 3.65 0.00 0.24 3.68 0.00 0.23 3.64 0.00 0.23 3.75 0.00 0.23 3.61 0.00 0.26 3.40 0.00 0.25 2.48 0.01 0.32
6 2.49 0.00 0.32 2.16 0.00 0.35 2.42 0.00 0.33 2.43 0.00 0.33 2.53 0.00 0.33 2.43 0.00 0.34 2.45 0.01 0.33 1.68 0.01 0.39
7 1.02 0.00 0.43 0.34 0.01 0.48 0.96 0.00 0.44 0.96 0.00 0.44 1.05 0.01 0.43 1.02 0.01 0.44 0.89 0.01 0.45 0.46 0.01 0.47

Panel C: RFC-FW3 (Historical Average Benchmark)

1 2.60 0.00 0.02 1.99 0.01 0.04 2.35 0.01 0.03 2.68 0.00 0.02 2.71 0.00 0.02 3.64 0.01 0.03 2.38 0.02 0.08 2.08 0.05 0.18
2 4.58 0.00 0.02 4.98 0.00 0.01 4.73 0.00 0.02 4.56 0.00 0.02 4.57 0.00 0.03 4.92 0.00 0.05 2.90 0.02 0.16 2.00 0.04 0.27
3 5.07 0.00 0.06 5.24 0.00 0.06 5.22 0.00 0.05 4.98 0.00 0.06 5.02 0.00 0.07 5.08 0.00 0.10 3.11 0.01 0.19 2.09 0.02 0.29
4 4.62 0.00 0.12 4.50 0.00 0.14 4.69 0.00 0.12 4.52 0.00 0.13 4.59 0.00 0.13 4.55 0.00 0.16 3.04 0.01 0.23 2.41 0.01 0.29
5 3.60 0.00 0.22 3.27 0.00 0.25 3.58 0.00 0.22 3.50 0.00 0.23 3.56 0.00 0.23 3.50 0.00 0.25 2.43 0.01 0.31 1.45 0.01 0.39
6 2.32 0.01 0.33 2.00 0.01 0.35 2.27 0.01 0.33 2.23 0.01 0.33 2.26 0.01 0.34 2.23 0.01 0.35 1.29 0.01 0.41 0.60 0.01 0.46
7 0.99 0.01 0.43 0.37 0.01 0.47 0.93 0.01 0.44 0.91 0.01 0.44 0.90 0.01 0.44 0.91 0.01 0.44 0.02 0.01 0.50 -0.79 0.02 0.55

Panel D: RFC-FW1 (k = 1 Benchmark)
k R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 2.12 0.01 0.04 3.10 0.00 0.02 2.50 0.01 0.03 2.03 0.02 0.05 1.98 0.02 0.05 1.34 0.07 0.16 0.59 0.19 0.36 0.57 0.17 0.36
3 2.69 0.02 0.12 3.56 0.01 0.12 3.06 0.02 0.11 2.54 0.02 0.13 2.53 0.02 0.13 1.53 0.06 0.25 0.83 0.10 0.37 0.89 0.10 0.35
4 2.31 0.02 0.23 2.82 0.01 0.24 2.60 0.02 0.22 2.13 0.03 0.25 2.15 0.03 0.24 1.02 0.07 0.37 0.55 0.08 0.43 1.08 0.07 0.36
5 1.30 0.03 0.37 1.67 0.01 0.36 1.50 0.03 0.36 1.11 0.03 0.38 1.14 0.04 0.38 -0.05 0.08 0.50 0.09 0.07 0.49 0.14 0.08 0.49
6 0.01 0.04 0.50 0.28 0.02 0.48 0.18 0.03 0.48 -0.17 0.04 0.52 -0.18 0.04 0.52 -1.37 0.09 0.62 -1.01 0.07 0.58 -0.57 0.07 0.55
7 -1.37 0.05 0.61 -1.49 0.02 0.61 -1.20 0.04 0.59 -1.55 0.05 0.62 -1.59 0.05 0.62 -2.76 0.10 0.71 -2.36 0.08 0.67 -2.02 0.08 0.64

Panel E: RFC-FW2 (k = 1 Benchmark)

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 2.06 0.02 0.05 3.22 0.00 0.02 2.40 0.01 0.05 1.99 0.02 0.06 1.97 0.02 0.06 1.45 0.07 0.15 0.81 0.17 0.32 1.01 0.11 0.26
3 2.72 0.02 0.12 3.78 0.01 0.11 3.02 0.02 0.12 2.58 0.02 0.13 2.60 0.02 0.13 1.70 0.06 0.24 1.44 0.08 0.29 2.00 0.04 0.18
4 2.40 0.02 0.23 3.26 0.01 0.21 2.61 0.02 0.23 2.23 0.03 0.24 2.29 0.03 0.24 1.26 0.06 0.35 1.25 0.06 0.35 2.30 0.02 0.21
5 1.45 0.03 0.36 2.22 0.01 0.32 1.58 0.03 0.35 1.29 0.03 0.37 1.37 0.03 0.36 0.32 0.07 0.47 0.77 0.05 0.42 1.68 0.03 0.33
6 0.20 0.04 0.48 0.70 0.01 0.45 0.29 0.03 0.48 0.05 0.04 0.50 0.12 0.04 0.49 -0.90 0.07 0.58 -0.21 0.05 0.52 0.87 0.03 0.43
7 -1.31 0.04 0.60 -1.15 0.02 0.58 -1.20 0.04 0.59 -1.45 0.05 0.61 -1.40 0.05 0.60 -2.36 0.08 0.67 -1.82 0.06 0.63 -0.36 0.04 0.53

Panel F: RFC-FW3 (k = 1 Benchmark)

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 2.03 0.01 0.04 3.05 0.00 0.02 2.44 0.01 0.04 1.93 0.02 0.05 1.90 0.02 0.06 1.33 0.07 0.15 0.53 0.20 0.37 -0.08 0.30 0.52
3 2.53 0.02 0.13 3.31 0.01 0.14 2.94 0.02 0.12 2.37 0.03 0.14 2.37 0.03 0.14 1.49 0.07 0.25 0.75 0.12 0.38 0.01 0.20 0.50
4 2.07 0.03 0.25 2.56 0.01 0.26 2.40 0.02 0.24 1.89 0.03 0.27 1.92 0.03 0.26 0.95 0.07 0.38 0.68 0.08 0.41 0.34 0.11 0.46
5 1.02 0.04 0.39 1.30 0.02 0.39 1.26 0.03 0.38 0.85 0.04 0.41 0.87 0.04 0.41 -0.14 0.09 0.52 0.05 0.08 0.49 -0.65 0.11 0.57
6 -0.28 0.05 0.53 0.00 0.02 0.50 -0.08 0.04 0.51 -0.45 0.05 0.54 -0.46 0.06 0.54 -1.47 0.10 0.63 -1.11 0.09 0.59 -1.51 0.11 0.62
7 -1.65 0.06 0.63 -1.66 0.03 0.62 -1.45 0.05 0.61 -1.82 0.06 0.64 -1.86 0.07 0.64 -2.84 0.12 0.72 -2.42 0.09 0.67 -2.93 0.11 0.70

Notes: See Notes in Table 3.



Table 5. Out-of-sample performance of Robust Forecast Combination (RFC) approach-Time-varying weighting (TVW) schemes
Historical Average Benchmark k = 1 Benchmark

Panel A: RFC-TVW1 Panel D: RFC-TVW1
Mean Median Trimmed Mean Mean Median Trimmed Mean

k R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv

1 3.42 0.00 0.01 2.52 0.00 0.01 3.26 0.00 0.00 - - - - - - - - -
2 4.79 0.00 0.02 5.64 0.00 0.00 4.94 0.00 0.02 1.41 0.04 0.09 3.20 0.00 0.01 1.74 0.03 0.08
3 4.84 0.00 0.07 4.96 0.00 0.07 4.97 0.00 0.06 1.46 0.06 0.24 2.50 0.01 0.18 1.77 0.04 0.22
4 4.14 0.00 0.15 3.81 0.00 0.18 4.22 0.00 0.15 0.75 0.07 0.40 1.32 0.02 0.36 0.99 0.05 0.37
5 2.94 0.01 0.26 2.65 0.01 0.29 2.95 0.01 0.26 -0.50 0.09 0.56 0.14 0.03 0.49 -0.32 0.07 0.53
6 1.52 0.01 0.38 1.37 0.01 0.40 1.49 0.01 0.39 -1.97 0.10 0.68 -1.18 0.03 0.60 -1.82 0.08 0.66
7 0.09 0.01 0.49 -0.25 0.01 0.52 0.07 0.01 0.50 -3.46 0.11 0.76 -2.85 0.04 0.70 -3.29 0.09 0.75

Panel B: RFC-TVW2 Panel E: RFC-TVW2

1 3.44 0.00 0.00 2.40 0.00 0.00 3.26 0.00 0.00 - - - - - - - - -
2 4.72 0.00 0.02 4.97 0.00 0.01 4.89 0.00 0.02 1.33 0.05 0.12 2.63 0.01 0.05 1.68 0.04 0.10
3 4.92 0.00 0.07 4.94 0.00 0.07 5.06 0.00 0.06 1.54 0.06 0.24 2.60 0.02 0.19 1.86 0.04 0.22
4 4.33 0.00 0.15 4.23 0.00 0.16 4.39 0.00 0.15 0.92 0.06 0.38 1.87 0.02 0.32 1.17 0.05 0.36
5 3.22 0.00 0.25 3.14 0.00 0.26 3.21 0.00 0.25 -0.23 0.07 0.52 0.75 0.02 0.44 -0.06 0.05 0.51
6 1.87 0.01 0.37 1.69 0.01 0.38 1.83 0.01 0.37 -1.63 0.08 0.64 -0.73 0.02 0.56 -1.48 0.06 0.62
7 0.29 0.01 0.48 -0.31 0.01 0.52 0.29 0.01 0.48 -3.26 0.08 0.74 -2.78 0.03 0.69 -3.07 0.07 0.72

Panel C: RFC-TVW3 Panel F: RFC-TVW3

1 3.06 0.01 0.04 2.13 0.02 0.10 2.72 0.01 0.05 - - - - - - - - -
2 4.35 0.00 0.03 4.66 0.00 0.02 4.41 0.00 0.03 1.32 0.04 0.11 2.59 0.00 0.02 1.74 0.02 0.07
3 4.46 0.00 0.08 4.38 0.00 0.09 4.57 0.00 0.08 1.44 0.05 0.24 2.30 0.01 0.18 1.90 0.03 0.20
4 3.75 0.01 0.17 3.26 0.01 0.21 3.82 0.01 0.16 0.71 0.06 0.40 1.16 0.02 0.37 1.13 0.04 0.36
5 2.61 0.01 0.28 2.18 0.01 0.32 2.60 0.01 0.28 -0.47 0.07 0.55 0.05 0.03 0.50 -0.12 0.05 0.51
6 1.24 0.01 0.40 0.99 0.01 0.42 1.20 0.01 0.41 -1.88 0.08 0.67 -1.16 0.03 0.60 -1.56 0.06 0.64
7 -0.18 0.01 0.51 -0.69 0.02 0.55 -0.21 0.01 0.51 -3.34 0.09 0.76 -2.88 0.03 0.71 -3.01 0.06 0.73

Notes: See Notes in Table 3.



Table 6. Out-of-sample performance of Quantile Forecast Combination (QFC) approach-Fixed weighting (FW) schemes
Panel A: QFC -FW1 (Historical Average Benchmark)

Mean Median Trimmed Mean DALFE(1) DALFE(0:9) DALFE(0:5) AL Cluster(2) AL Cluster(3)

k R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv

1 2.40 0.01 0.04 1.65 0.02 0.09 2.14 0.01 0.05 2.45 0.01 0.04 2.49 0.01 0.04 3.09 0.01 0.04 2.45 0.01 0.07 2.69 0.01 0.08
2 4.47 0.00 0.03 5.10 0.00 0.01 4.62 0.00 0.02 4.47 0.00 0.03 4.52 0.00 0.03 4.89 0.00 0.04 3.82 0.01 0.08 3.15 0.01 0.15
3 5.03 0.00 0.06 5.44 0.00 0.05 5.20 0.00 0.06 5.00 0.00 0.06 5.08 0.00 0.07 5.25 0.00 0.08 4.64 0.00 0.10 3.87 0.01 0.15
4 4.66 0.00 0.13 4.68 0.00 0.14 4.76 0.00 0.12 4.61 0.00 0.13 4.70 0.00 0.13 4.76 0.00 0.14 4.28 0.00 0.16 3.67 0.01 0.21
5 3.67 0.00 0.22 3.72 0.00 0.22 3.71 0.00 0.22 3.62 0.00 0.22 3.70 0.00 0.22 3.72 0.00 0.23 3.32 0.00 0.25 2.74 0.01 0.30
6 2.41 0.00 0.33 2.29 0.00 0.33 2.39 0.00 0.33 2.36 0.00 0.33 2.42 0.00 0.33 2.41 0.00 0.33 1.90 0.01 0.37 1.33 0.01 0.41
7 1.06 0.01 0.43 0.73 0.01 0.45 1.03 0.01 0.43 1.02 0.01 0.43 1.04 0.01 0.43 1.03 0.01 0.43 0.50 0.01 0.47 -0.07 0.01 0.50

Panel B: QFC -FW2 (Historical Average Benchmark)

1 2.29 0.01 0.06 1.28 0.05 0.17 2.02 0.01 0.08 2.32 0.01 0.06 2.37 0.01 0.06 2.91 0.01 0.05 2.33 0.01 0.10 3.21 0.01 0.09
2 4.30 0.00 0.04 4.89 0.00 0.01 4.43 0.00 0.03 4.30 0.00 0.04 4.35 0.00 0.04 4.72 0.00 0.05 3.72 0.01 0.10 3.23 0.01 0.15
3 4.95 0.00 0.07 5.56 0.00 0.05 5.10 0.00 0.07 4.92 0.00 0.07 4.99 0.00 0.07 5.12 0.00 0.09 4.54 0.00 0.11 4.01 0.01 0.15
4 4.63 0.00 0.13 4.77 0.00 0.14 4.71 0.00 0.13 4.60 0.00 0.14 4.69 0.00 0.14 4.68 0.00 0.16 4.50 0.00 0.15 3.93 0.00 0.20
5 3.71 0.00 0.22 3.76 0.00 0.23 3.72 0.00 0.22 3.68 0.00 0.23 3.78 0.00 0.22 3.73 0.00 0.24 3.77 0.00 0.23 3.29 0.00 0.27
6 2.49 0.00 0.32 2.36 0.00 0.34 2.46 0.00 0.33 2.46 0.00 0.33 2.56 0.00 0.32 2.51 0.00 0.33 2.68 0.00 0.32 2.20 0.00 0.36
7 1.02 0.00 0.43 0.62 0.01 0.46 1.00 0.00 0.43 0.99 0.00 0.43 1.08 0.00 0.43 1.08 0.00 0.43 1.20 0.00 0.43 0.74 0.01 0.46

Panel C: QFC -FW3 (Historical Average Benchmark)

1 2.60 0.00 0.02 1.81 0.01 0.05 2.32 0.01 0.02 2.64 0.00 0.02 2.65 0.00 0.02 3.24 0.00 0.02 2.50 0.01 0.06 2.67 0.01 0.07
2 4.58 0.00 0.02 5.09 0.00 0.01 4.71 0.00 0.02 4.57 0.00 0.02 4.59 0.00 0.02 4.92 0.00 0.04 3.82 0.01 0.07 3.10 0.01 0.13
3 5.07 0.00 0.06 5.43 0.00 0.05 5.24 0.00 0.05 5.03 0.00 0.06 5.08 0.00 0.06 5.24 0.00 0.07 4.52 0.00 0.09 3.71 0.01 0.15
4 4.62 0.00 0.12 4.65 0.00 0.13 4.73 0.00 0.12 4.57 0.00 0.13 4.63 0.00 0.13 4.66 0.00 0.14 4.10 0.00 0.16 3.47 0.01 0.21
5 3.60 0.00 0.22 3.62 0.00 0.22 3.63 0.00 0.22 3.54 0.00 0.22 3.58 0.00 0.22 3.54 0.00 0.24 3.08 0.01 0.26 2.48 0.01 0.31
6 2.32 0.01 0.33 2.16 0.01 0.34 2.30 0.01 0.33 2.27 0.01 0.33 2.27 0.01 0.33 2.20 0.01 0.35 1.62 0.01 0.38 1.05 0.01 0.43
7 0.99 0.01 0.43 0.62 0.01 0.46 0.95 0.01 0.43 0.95 0.01 0.43 0.91 0.01 0.44 0.82 0.01 0.45 0.25 0.01 0.48 -0.37 0.01 0.52

Panel D: QFC -FW1 (k = 1 Benchmark)
k R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 2.12 0.01 0.04 3.51 0.00 0.01 2.53 0.01 0.03 2.07 0.01 0.04 2.08 0.02 0.05 1.85 0.03 0.08 1.40 0.08 0.17 0.47 0.19 0.38
3 2.69 0.02 0.12 3.85 0.01 0.10 3.12 0.01 0.11 2.62 0.02 0.12 2.66 0.02 0.12 2.23 0.03 0.17 2.24 0.04 0.18 1.22 0.08 0.31
4 2.31 0.02 0.23 3.07 0.01 0.22 2.68 0.02 0.21 2.22 0.02 0.24 2.27 0.03 0.24 1.73 0.04 0.29 1.88 0.04 0.28 1.01 0.07 0.38
5 1.30 0.03 0.37 2.10 0.01 0.32 1.60 0.02 0.35 1.20 0.03 0.38 1.24 0.03 0.37 0.65 0.05 0.43 0.89 0.04 0.41 0.05 0.07 0.50
6 0.01 0.04 0.50 0.65 0.02 0.45 0.25 0.03 0.48 -0.09 0.04 0.51 -0.08 0.04 0.51 -0.70 0.06 0.56 -0.57 0.05 0.55 -1.39 0.08 0.61
7 -1.37 0.05 0.61 -0.94 0.02 0.57 -1.14 0.04 0.59 -1.47 0.05 0.62 -1.49 0.05 0.62 -2.12 0.07 0.66 -2.00 0.06 0.64 -2.83 0.08 0.68

Panel E: QFC -FW2 (k = 1 Benchmark)

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 2.06 0.02 0.05 3.66 0.00 0.02 2.46 0.01 0.04 2.03 0.02 0.05 2.03 0.02 0.06 1.87 0.03 0.09 1.42 0.09 0.18 0.02 0.28 0.49
3 2.72 0.02 0.12 4.33 0.00 0.08 3.14 0.01 0.11 2.66 0.02 0.13 2.69 0.02 0.13 2.28 0.04 0.18 2.26 0.04 0.18 0.83 0.09 0.36
4 2.40 0.02 0.23 3.54 0.01 0.19 2.75 0.02 0.22 2.33 0.02 0.23 2.38 0.02 0.23 1.83 0.04 0.29 2.22 0.03 0.25 0.74 0.06 0.41
5 1.45 0.03 0.36 2.51 0.01 0.30 1.74 0.02 0.34 1.39 0.03 0.36 1.44 0.03 0.36 0.85 0.04 0.42 1.47 0.03 0.36 0.08 0.06 0.49
6 0.20 0.04 0.48 1.09 0.01 0.42 0.46 0.03 0.46 0.14 0.04 0.49 0.19 0.04 0.48 -0.40 0.05 0.53 0.36 0.03 0.47 -1.04 0.06 0.58
7 -1.31 0.04 0.60 -0.67 0.02 0.55 -1.04 0.03 0.58 -1.37 0.04 0.60 -1.32 0.04 0.60 -1.88 0.06 0.64 -1.15 0.04 0.58 -2.56 0.06 0.66

Panel F: QFC -FW3 (k = 1 Benchmark)

1 - - - - - - - - - - - - - - - - - - - - - - - -
2 2.03 0.01 0.04 3.35 0.00 0.02 2.45 0.01 0.03 1.98 0.02 0.05 1.99 0.02 0.05 1.73 0.04 0.09 1.36 0.07 0.16 0.44 0.20 0.38
3 2.53 0.02 0.13 3.69 0.01 0.10 2.99 0.02 0.11 2.45 0.02 0.14 2.49 0.02 0.13 2.07 0.04 0.19 2.06 0.04 0.19 1.07 0.10 0.33
4 2.07 0.03 0.25 2.89 0.01 0.23 2.47 0.02 0.23 1.98 0.03 0.26 2.03 0.03 0.26 1.46 0.05 0.32 1.63 0.04 0.30 0.82 0.08 0.40
5 1.02 0.04 0.39 1.85 0.02 0.34 1.34 0.03 0.37 0.93 0.04 0.40 0.95 0.04 0.40 0.31 0.06 0.47 0.59 0.05 0.44 -0.20 0.09 0.52
6 -0.28 0.05 0.53 0.36 0.02 0.47 -0.02 0.04 0.50 -0.37 0.05 0.53 -0.39 0.05 0.54 -1.08 0.08 0.60 -0.90 0.07 0.58 -1.66 0.10 0.63
7 -1.65 0.06 0.63 -1.21 0.03 0.59 -1.40 0.05 0.61 -1.74 0.06 0.64 -1.80 0.06 0.64 -2.51 0.09 0.69 -2.31 0.08 0.67 -3.12 0.10 0.71

Notes: See Notes in Table 3.



Table 7. Out-of-sample performance of Quantile Forecast Combination (QFC) approach-Time-varying weighting (TVW) schemes
Panel A: QFC-TVW1 (Historical Average Benchmark) Panel D: QFC-TVW1 (k = 1 Benchmark)

Mean Median Trimmed Mean Mean Median Trimmed Mean

k R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv

1 3.68 0.00 0.01 3.14 0.00 0.00 3.42 0.00 0.01 1 - - - - - - - - -
2 4.83 0.00 0.03 5.58 0.00 0.01 5.03 0.00 0.02 2 1.20 0.06 0.14 2.52 0.01 0.04 1.67 0.04 0.09
3 4.51 0.00 0.09 4.82 0.00 0.08 4.73 0.00 0.08 3 0.87 0.10 0.34 1.74 0.03 0.27 1.36 0.07 0.28
4 3.84 0.01 0.17 3.89 0.01 0.18 3.95 0.00 0.17 4 0.17 0.10 0.48 0.78 0.04 0.42 0.55 0.07 0.43
5 2.61 0.01 0.29 2.69 0.01 0.29 2.64 0.01 0.29 5 -1.11 0.11 0.62 -0.46 0.05 0.54 -0.80 0.09 0.58
6 1.23 0.01 0.41 1.12 0.01 0.42 1.21 0.01 0.41 6 -2.54 0.12 0.72 -2.08 0.06 0.67 -2.29 0.09 0.70
7 -0.25 0.01 0.52 -0.28 0.01 0.52 -0.27 0.01 0.52 7 -4.08 0.12 0.80 -3.52 0.06 0.74 -3.81 0.10 0.77

Panel B:QFC-TVW2 (Historical Average Benchmark) Panel E: QFC-TVW2 (k = 1 Benchmark)

1 3.76 0.00 0.00 3.04 0.00 0.00 3.46 0.00 0.00 1 - - - - - - - - -
2 4.86 0.00 0.02 5.41 0.00 0.01 5.02 0.00 0.02 2 1.14 0.07 0.17 2.45 0.02 0.07 1.63 0.04 0.12
3 4.93 0.00 0.07 5.50 0.00 0.06 5.13 0.00 0.07 3 1.21 0.08 0.29 2.54 0.02 0.20 1.74 0.05 0.24
4 4.21 0.00 0.16 4.46 0.00 0.15 4.31 0.00 0.15 4 0.47 0.09 0.44 1.46 0.03 0.36 0.88 0.06 0.40
5 3.00 0.01 0.27 3.18 0.01 0.26 3.06 0.01 0.27 5 -0.79 0.10 0.58 0.14 0.04 0.49 -0.41 0.07 0.54
6 1.69 0.01 0.38 1.70 0.01 0.38 1.70 0.01 0.38 6 -2.15 0.10 0.69 -1.38 0.04 0.61 -1.82 0.07 0.65
7 0.14 0.01 0.49 -0.35 0.01 0.52 0.16 0.01 0.49 7 -3.76 0.10 0.77 -3.50 0.05 0.72 -3.42 0.08 0.74

Panel C: QFC-TVW3 (Historical Average Benchmark) Panel F:QFC-TVW3 (k = 1 Benchmark)

1 2.82 0.01 0.08 2.34 0.02 0.07 2.59 0.02 0.08 1 - - - - - - - - -
2 4.26 0.00 0.05 4.96 0.00 0.02 4.47 0.00 0.04 2 1.48 0.03 0.10 2.69 0.01 0.03 1.93 0.02 0.06
3 4.34 0.00 0.09 4.59 0.00 0.09 4.57 0.00 0.08 3 1.56 0.05 0.23 2.31 0.02 0.19 2.03 0.03 0.19
4 3.70 0.01 0.18 3.75 0.01 0.18 3.78 0.01 0.17 4 0.90 0.05 0.38 1.44 0.02 0.34 1.22 0.04 0.35
5 2.37 0.01 0.30 2.59 0.01 0.29 2.37 0.01 0.31 5 -0.47 0.07 0.55 0.26 0.03 0.48 -0.22 0.05 0.52
6 0.90 0.01 0.43 0.92 0.01 0.43 0.88 0.01 0.43 6 -1.98 0.08 0.67 -1.45 0.04 0.62 -1.76 0.06 0.65
7 -0.58 0.01 0.54 -0.68 0.01 0.55 -0.61 0.01 0.54 7 -3.51 0.08 0.76 -3.09 0.04 0.71 -3.29 0.06 0.74

Notes: See Notes in Table 3.



Table 8. Global MCS
Method Scheme Combination Scheme Subset k R2

OS MCSpv

QFC TVW2 Trimmed Mean 3 5.13% 0.958
RFC FW3 DMSFE(0.5) 3 5.08% 0.958
RFC FW1 Trimmed Mean 3 5.18% 0.958
RFC FW1 DMSFE(0.5) 3 5.04% 0.958
QFC FW1 Trimmed Mean 3 5.20% 0.958
QFC FW2 DALFE(0.5) 3 5.12% 0.958
RFC FW3 Trimmed Mean 3 5.22% 0.958
QFC FW3 Trimmed Mean 3 5.24% 0.958
QFC FW3 DALFE(0.5) 3 5.24% 0.958
RFC FW3 Median 3 5.24% 0.958
QFC FW3 Median 2 5.09% 0.958
QFC FW1 DALFE(0.5) 3 5.25% 0.958
QFC FW1 Median 2 5.10% 0.958
RFC FW1 Median 3 5.34% 0.958
QFC FW3 Median 3 5.43% 0.958
QFC TVW2 Median 2 5.41% 0.958
QFC FW1 Median 3 5.44% 0.958
QFC TVW2 Median 3 5.50% 0.995
QFC FW2 Median 3 5.56% 0.995
QFC TVW1 Median 2 5.58% 0.995
RFC TVW1 Median 2 5.64% 1.000

Notes: The Table reports the models that belong to the Model ConÖdence Set (MCS),Method denotes if the method used is Robust Forecast Combination (RFC) or Quantile
Forecast Combination (QFC), Scheme denotes the Fixed Weighting (FW) or the Time-Varying Weighting (TVW) scheme employed, Subset k denotes the number of predictors
used in the subset, R2OS denotes the out-of-sample R

2 statistic of the speciÖc method and MCSpv denotes the associated p-value of the MCS test.

Table 9. Out-of-sample performance of the ëoptimalí QFC forecasts
Panel A: 6 = 1=2

Mean Median Trimmed Mean DALFE(1) DALFE(0:9) DALFE(0:5) AL Cluster(2) AL Cluster(3)

R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv R2
OS CWpv DMpv R2

OS CWpv DMpv

FW1 3.86 0.00 0.15 4.20 0.00 0.14 3.98 0.00 0.15 3.82 0.00 0.16 3.90 0.00 0.16 4.10 0.00 0.17 3.42 0.01 0.21 2.67 0.01 0.27
FW2 4.14 0.00 0.15 4.46 0.00 0.14 4.22 0.00 0.15 4.11 0.00 0.15 4.19 0.00 0.15 4.25 0.00 0.17 3.92 0.00 0.18 3.26 0.01 0.24
FW3 3.73 0.00 0.16 4.02 0.00 0.14 3.84 0.00 0.15 3.68 0.01 0.16 3.73 0.01 0.16 3.88 0.01 0.18 3.11 0.01 0.22 2.31 0.02 0.30
TVW1 2.80 0.01 0.23 3.09 0.01 0.21 2.90 0.01 0.22
TVW2 3.71 0.01 0.17 4.03 0.00 0.16 3.82 0.01 0.17
TVW3 2.85 0.01 0.22 3.26 0.01 0.19 2.91 0.01 0.22

Panel B: 6 = 1=3

FW1 3.12 0.01 0.14 3.56 0.01 0.10 3.24 0.01 0.13 3.11 0.01 0.15 3.17 0.01 0.15 3.46 0.01 0.16 2.87 0.02 0.19 1.77 0.03 0.31
FW2 3.71 0.01 0.11 4.28 0.00 0.07 3.81 0.00 0.11 3.70 0.01 0.11 3.80 0.01 0.11 4.06 0.01 0.13 3.73 0.01 0.14 2.92 0.01 0.22
FW3 3.17 0.01 0.14 3.50 0.01 0.10 3.29 0.01 0.12 3.15 0.01 0.14 3.17 0.01 0.14 3.42 0.01 0.15 2.75 0.02 0.20 1.69 0.04 0.32
TVW1 2.83 0.02 0.19 3.37 0.01 0.14 3.02 0.02 0.18
TVW2 4.06 0.01 0.10 4.67 0.00 0.06 4.21 0.01 0.09
TVW3 2.68 0.02 0.20 2.85 0.02 0.18 2.72 0.02 0.19

Notes: The Table reports the out-of-sample R2 statistic of the Quantile Forecast Combination (QFC) approach under Öxed (FW) and time-varying weighting (TVW) schemes
with respect to the prevailing mean (PM) benchmark model for the out-of-sample period 1965:1-2017:4. Statistical signiÖcance for the R2OS statistic is based on the p-value of
the Clark and West (2007) out-of-sample MSFE-adjusted statistic (CWpv) and the Diebold and Mariano (1995) test (DMpv):



Table 10. Economic evaluation of the ëoptimalí QFC forecasts
Panel A: FW1 Panel D: TVW1

!1 !2 !3 !4 !1 !2 !3 !4

CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2 CER1 CER2

Mean 4.81 4.22 5.22 4.62 5.12 4.82 4.81 4.46 4.57 4.34 4.80 5.06 5.10 5.28 4.91 4.74
Median 4.94 4.45 5.46 4.72 5.46 4.95 5.18 4.48 4.76 4.70 5.26 5.46 5.58 5.49 5.39 5.08
Trimmed Mean 4.84 4.28 5.26 4.59 5.18 4.84 4.79 4.47 4.59 4.42 4.86 5.12 5.11 5.33 4.90 4.81
DALFE(1) 4.80 4.24 5.22 4.73 5.15 4.91 4.81 4.49
DALFE(0:9) 5.01 4.43 5.43 4.88 5.31 4.96 4.92 4.71
DALFE(0:5) 5.25 4.86 5.53 5.39 5.44 5.47 5.26 5.36
AL Cluster(2) 4.67 4.19 5.18 5.05 5.15 5.14 5.12 5.26
AL Cluster(3) 4.28 3.70 4.81 4.75 5.02 4.98 5.10 5.26

Panel B: FW2 Panel E: TVW2
Mean 4.81 4.56 5.43 4.87 5.35 5.07 4.96 4.93 4.70 4.67 5.24 5.15 5.21 5.43 5.06 5.03
Median 4.94 4.94 5.48 4.89 5.53 5.18 5.15 4.99 4.78 4.92 5.45 5.42 5.36 5.48 5.05 5.08
Trimmed Mean 4.84 4.63 5.47 4.86 5.41 5.09 5.01 4.98 4.72 4.72 5.33 5.22 5.25 5.47 5.05 5.08
DALFE(1) 4.80 4.57 5.41 4.97 5.37 5.12 4.95 4.95
DALFE(0:9) 5.04 4.78 5.60 5.14 5.54 5.30 5.16 5.19
DALFE(0:5) 5.16 5.09 5.58 5.54 5.55 5.69 5.33 5.65
AL Cluster(2) 4.96 4.48 5.51 5.29 5.49 5.48 5.57 5.71
AL Cluster(3) 4.57 4.09 5.20 5.08 5.44 5.40 5.59 5.67

Panel C: FW3 Panel F: TVW3
Mean 4.70 4.19 5.03 4.55 4.98 4.84 4.78 4.35 4.44 4.16 4.75 5.03 5.10 5.19 4.86 4.55
Median 4.83 4.31 5.36 4.72 5.37 4.82 5.22 4.44 4.66 4.35 5.07 5.17 5.44 5.27 5.23 4.71
Trimmed Mean 4.73 4.23 5.12 4.53 5.03 4.84 4.79 4.38 4.44 4.19 4.77 5.04 5.09 5.20 4.82 4.58
DALFE(1) 4.69 4.20 5.07 4.64 5.00 4.91 4.79 4.39
DALFE(0:9) 4.87 4.36 5.23 4.76 5.11 4.91 4.85 4.55
DALFE(0:5) 5.13 4.80 5.41 5.29 5.28 5.28 5.08 5.20
AL Cluster(2) 4.45 4.03 4.95 4.82 4.86 4.85 4.77 4.84
AL Cluster(3) 4.04 3.58 4.53 4.55 4.63 4.66 4.70 4.87

Notes: CER denotes the Certainty Equivalent Return (reported in annualized percentage points) that an investor with mean-variance preferences and risk aversion coe¢cient
of three would gain when employing the alternative speciÖcations. CER1 and CER2 correspond to the selection of the best subset k on the basis of a prior of % = 1=2 and
% = 1=3; respectively. The weight on stocks in the investorís portfolio is restricted to lie between zero and 1:5.



Figure 1: Scatterplot of forecast variances and squared forecast biases
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Notes: We depict the Historical Average (purple point), the k=1 model of Rapach, Strauss and Zhou
(2010) and k=2 of EGT (orange points with labels L1:L2), the 21 MCS models (red points with labels
M1:M21) and their analogues for k=1 (blue points with labels K1:K21). The other points correspond to
the individual predictive regression model forecasts.

Figure 2: Multiple hypothesis testing
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Notes: The figure depicts the first 1032 elements for the sequence of ordered p-values for testing the
significance of R2

OS . The solid line delineates unadjusted p-values. The dashed line delineates adjusted
p-values based on the Benjamini and Hochberg (2000) adaptive procedure.


