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Abstract 

The emergence of big data has become a central theme in scientific and philosophical 

discussions. A main tenor in the literature is that big data can drastically change the way 

in which causal studies are conducted. My thesis aims to explore how big data can be 

used to establish causal relationships in the social sciences. The beginning of the thesis 

will focus on data-driven studies and will investigate some of the limitations that 

characterise this type of study. This analysis will lead me to identify three key challenges 

of big data for causal studies in the social sciences. The first challenge is how to overcome 

the limitations of data-driven causal studies. This challenge is motivated by the 

observation that, regardless of how sophisticated they are, causal data-driven methods 

can suffer from bias. The second challenge is how to understand the role of ethnographic, 

qualitative data in causal studies based on big data. This challenge appears vital in the 

social sciences, where some researchers remain hesitant about the use of data-driven 

methods and try to defend the importance of qualitative, ‘thick’ data. The third challenge 

is how to use big data, in the social sciences, to obtain evidence of causality that goes 

beyond correlations. This challenge is strongly associated with the idea that, in order to 

establish causation, both the presence of a correlation between the cause and the effect, 

and the presence of a mechanism linking the cause and the effect need to be established. 

This idea, originally proposed by Russo and Williamson (2007) and known by the name 

of the Russo-Williamson thesis, will be discussed in detail to provide a solution to the 

first challenge. I will argue that researchers should comply with such a thesis to overcome 

the limitations of data-driven causal studies in the social sciences. Next, I shall examine 

the discussions on mixed methods research to claim that qualitative ethnographic data can 

be used both to collect evidence of social mechanisms, and to help researchers to obtain 

a comprehensive understanding of the phenomenon under study. Finally, I shall argue 

that big data can be used, in specific circumstances, to collect evidence of entities and 

activities constituting causal mechanisms, and that big data might be used to identify 

sociomarkers, the social version of biomarkers, to trace causal processes that evolve over 

time. 
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Glossary 

Constitutive mechanisms: mechanisms that can explain the phenomena by describing 

the organizations of entities and activities that actualise the capacity making the 

phenomena-to-be-explained possible (p. 146) 

Etiological mechanisms: mechanisms that, through time, lead to the production of the 

phenomena-to-be-explained (p. 146) 

Mixed methods research (MMR): the combination of quantitative and qualitative 

methods in the same study (p. 77) 

Process tracing: approach to trace the causal chain connecting the putative cause and the 

putative effect (p. 140) 

Russo-Williamson Thesis (RWT): both the identification of a correlation, or difference-

making relationship, between the cause and the effect, and the identification of a 

mechanism linking the cause and the effect are required in order to establish causation (p. 

49) 

Thick data: in general described as ethnographic, qualitative data collected by 

researchers (not in automated way) and characterised by contextual complexity which 

help to recognise not only what people do, but also the reasons behind their activities (p. 

42) 
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1 Introduction 

1.1 The emergence of big data 

In this thesis, I aim to explore how big data have changed the way in which causal studies 

are conducted in the social sciences. Over the last few years, the term ‘big data’ has 

become pervasive, although in several discussions it is not clear what the difference 

between data and big data is. A careful analysis of the literature, indeed, shows that big 

data can be defined in different ways, depending on which aspect is highlighted (Kitchin 

& McArdle, 2016; Schutt & O’Neil, 2013, p. 24).  

One of the most popular claims on big data is that such data possess a cluster of 

characteristics that makes them different from traditional data. Among these features, the 

most important are claimed to be the so-called ‘Three V’s’: volume, velocity and variety 

(Laney, 2001). The first ‘V’, volume, can be interpreted in different ways: it might denote 

the amount of data produced, the size of each datum, or the total storage required by a 

dataset1. Velocity, furthermore, is considered another vital aspect of big data. With this 

term, researchers usually indicate the speed at which data are created and at which they 

can flow from one dataset to another. Finally, the third ‘V’, variety, stands for the 

numerous formats in which data can be collected. In the social sciences, for instance, 

relevant data might include structured data such as GPS coordinates and numerical 

indicators, and unstructured data like satellite images and videos2. 

After Laney’s proposal, four additional ‘Vs’ have been proposed in the literature to denote 

some characteristics or challenges of big data (Khan et al., 2014): validity, veracity, 

volatility and value. Validity is referred to the correct use of such data, while veracity 

concerns the truthfulness of data, that may contain bias and inaccuracies, or might be very 

noisy. Volatility denotes the extent to which data can remain available and reusable over 

time. Finally, value regards the type of value that can be attributed to data: obviously, 

data have value because they might provide scientific evidence, but it might also be 

argued that nowadays data have economic and ethical value. Data and the insights 

                                                           
1 In all these cases, what should count as a ‘large volume’ remains ambiguous, given that it depends on the 

ability to generate, store and disseminate data. What was considered a ‘large volume’ of data some decades 

ago, indeed, may not be defined as such nowadays. 
2 Data collected through qualitative studies are in general not included in the definition of big data. As I 

will examine in chapter 2, section 2.4, in the social sciences data collected through qualitative methods are 

in general considered ‘thick data’. 
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obtained from them can indeed be traded in the marketplace and can contain personal 

information on human subjects (for more on this discussion see Borgman, 2016; Kitchin, 

2014a; Mayer-Schönberger & Cukier, 2013).  

As argued by Kitchin and McArdle (2016), the features represented by such ‘Vs’ cannot 

be identified in all the datasets that are generally thought to contain big data. The analysis 

of existing big datasets, in fact, leads to the conclusion that it is impossible to find a cluster 

of features shared by all big data.  

Some examples can help to clarify this observation. First, datasets containing sound 

sensor data, in general considered big data, consist of amounts of data that are often 

smaller than the amounts contained in traditional census datasets. In this case, the amounts 

of data produced are not bigger than the amounts of traditional data. Second, in some 

cases (like for call records data and GPS data), the size of a big datum is similar, if not 

smaller, than the size of a traditional datum. Third, in numerous cases big data contained 

in datasets are not characterised by variety. Datasets containing data generated by sensor 

devices or financial data, for instance, generally contain only numeric, structured data.  

Overall, the ‘Vs approach’ provides a broad list of characteristics of big data from which 

researchers can benefit, and some key challenges that are now at the heart of several 

methodological and ethical discussions.  

In this thesis, I shall adopt the notion of big data I recently developed (Ghiara, 2016, p. 

32), according to which big data are in general produced through automated processes 

and, for this reason, can be created very frequently and almost in real time, as described 

by the “V” standing for velocity.  

My consideration can be combined with the observation that big data have significantly 

changed scientific practice. As proposed by Leonelli (2014b), the novelty of big data does 

not reside just in some features that big data have, but in two key changes that have 

characterised scientific research in the last two decades. The first change concerns the 

status attributed to data: data are now considered the outputs of scientific research rather 

than mere side products. To give some examples, new infrastructures such as Figshare 

and new funded projects such as Understanding Society 

(https://www.understandingsociety.ac.uk) have been developed with the explicit 

intention to disseminate data as research outputs in their own. The second change consists 

https://www.understandingsociety.ac.uk/
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in the development of approaches, infrastructures and skills to format, circulate, retrieve, 

use and interpret data. 

1.2 Big data and causal reasoning 

My thesis is focused on how big data are used and interpreted in studies aimed at 

explaining causal phenomena in the social sciences. This topic has recently been at the 

heart of several discussions in both the social sciences and philosophy of science. On the 

one hand, social scientists are wondering how to use the available data to explore causal 

phenomena and what challenges are associated with big data studies, on the other hand 

many philosophers of science are studying the links between big data and concepts such 

as causality and explanation. Questions on the use of big data in causal studies, hence, 

seem to offer fertile ground to develop scientifically-informed philosophical discussions 

that can, at the same time, both improve philosophical reflections and clarify scientific 

practices. 

The thesis combines philosophical discussions with scientific arguments and case studies. 

The starting point is the argument, supported both by philosophers and social scientists, 

that big data do not offer magical solutions to the challenges that characterise causal 

studies. Data-driven studies are based on inferential (and often automated) forms of 

reasoning: they use large amounts of data to create models from them. Yet, data-driven 

results face the same problems that have already been recognised before the emergence 

of big data. Some social scientists, furthermore, have added that often data-driven studies 

do not give due importance to qualitative, ethnographic data, although in the social 

sciences qualitative approaches have produced valuable insights when used to study 

causal relationships. 

These considerations will be analysed in detail in chapter 2, and will lead me to identify 

three key challenges of big data for causal studies in the social sciences: i) how to 

overcome the limitations of data-driven causal studies, ii) how to understand the role of 

qualitative, ethnographic data in causal studies based on big data, iii) how to use big data, 

in the social sciences, to obtain evidence of causality that goes beyond correlations.  

Together with chapter 2, chapters 3 and 4 constitute the first part of the thesis, and 

examine the first two challenges from a theoretical perspective, drawing some conclusion 

from conceptual discussions that can be found in the philosophical and social sciences’ 
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literature.  More specifically, chapter 3 discusses a way to overcome the limitations of 

data-driven causal studies, while chapter 4 clarifies how qualitative ethnographic data can 

improve causal studies based on big data. 

Chapter 5 and 6 constitute the second part of the thesis and provide a detailed analysis of 

two case studies. The case studies are used both to argue in favour of the claims discussed 

in Part I and to prepare the ground for the proposal that will be discussed in chapter 8 of 

Part III. 

Finally, chapter 7 and 8 compose the third part of the thesis. Such chapters are both 

focused on how big data can be used, in the social sciences, to obtain evidence of causality 

that goes beyond correlations. Chapter 7 explores the existing literature on constitutive 

mechanisms to discuss how constitutive mechanisms are conceptualised and how big data 

might help to study them. Chapter 8 starts by observing how data have been used in 

scientific research to trace etiological mechanisms, and then provides a new approach to 

collect evidence of etiological mechanisms through sociomarkers, the social version of 

biomarkers. 

Overall, the thesis offers three main take-home messages: first, regardless of how 

sophisticated they are, causal data-driven methods can suffer from bias and their results 

are in general insufficient to establish causation. To properly establish causation, it is 

necessary to use both evidence of a correlation between the cause and the effect, and 

evidence of the mechanism responsible for such a correlation.  

Second, the need for mechanistic evidence sheds light on one possible use of qualitative 

ethnographic data, that can be analysed to collect this type of evidence. Furthermore, 

qualitative ethnographic data, also called thick data, might be used to study different 

ontological categories such as those associated with local and general causation, and to 

study social phenomena from different epistemological perspectives. The importance of 

such data, therefore, should not be underestimated even in the era of big data. 

Third, studying big data does not necessarily mean finding mere correlations between the 

cause and the effect. Big data can be used to shed light on causal mechanisms, as I argue 

analysing the use of biomarkers. In the social sciences, the notion of sociomarkers might 

help researchers to understand how measures obtained from big data can be employed to 

trace etiological mechanisms. In rare circumstances, furthermore, big data might help to 

obtain evidence of constitutive mechanisms. 
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1.3 Methods 

My thesis is empirically grounded on the study of existing scientific projects such as 

Wood’s study on the reasons why peasants in El Salvador decided to join rebel 

movements (2003) (in chapter 4), Garip and Asad’s study concerning the phenomenon of 

Mexico–U.S. migration (2016) (in chapter 5), and in the analyses conducted within the 

project LIFEPATH’s about how socio-economic conditions influence health (in chapter 

6). The decision to use real-life scientific examples is consistent with the branch of 

philosophy of science known by the name of the ‘Philosophy-of-science in practice’, 

defined as: 

 “philosophy directly engaged with scientific research through interaction 

with scientists about philosophical problems” (Boumans & Leonelli, 2013, p. 

259) 

Since the aim of my thesis is to investigate real scientific challenges associated with big 

data, one of the first methodological considerations I had to address concerned the best 

strategy to select research projects. As Boumans and Leonelli argued, one of the pivotal 

aspects of the Philosophy-of-science in practice is the interaction with scientists: this idea 

led me to focus on two aspects that helped me to identify what I argue are good case 

studies. First, I considered whether the researchers involved in such projects were 

engaged in conceptual and methodological discussions. Second, I considered whether it 

was possible to receive feedback on my arguments from researchers involved in those or 

similar scientific projects. 

The former aspect (whether the researchers involved in such projects were engaged in 

conceptual and methodological discussions) helped me to select, among a list of putative 

case studies, those in which particular attention was spent on epistemological and 

conceptual questions. 

As for the latter aspect, in one case (the case study explored in detail in chapter 6), I 

managed to directly interact with the researchers involved in the project. Such interactions 

were informal discussions about the aim of their project and the methodological and 

conceptual challenges associated with it, and formal presentations during joint workshops 

(such as the Causality Workshop at Imperial College London), which allowed me to 

present my research findings and to get feedback on my interpretations. 
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In the other cases, I managed to obtain feedback from researchers working in the same 

fields by publishing my material in scientific journals. The material presented in chapters 

4 and 5 was published in one article in the Journal of Mixed Methods Research. During 

the reviewing process I received extensive comments from 3 anonymous reviewers and 

2 editors who conduct mixed-methods studies. The material presented in chapter 8, 

moreover, has been published in Longitudinal and Life Course Studies, and is the result 

of an interesting discussions with different researchers working both in epidemiology and 

in the social sciences. 

In general, the Philosophy-of-science in practice approach runs the risk of being 

contaminated with the problem of cherry-picked case studies. Selected case studies might 

be unrepresentative for different reasons (for instance, only those researchers more 

interested in conceptual questions might be interested in interacting with philosophers), 

and this might lead to inferential mistakes if the case studies are taken to be the illustrative 

cases of general scientific practices.  

Although it is extremely difficult (if not impossible) to completely rule out this problem, 

in my thesis I try to reduce the risk of cherry-picking in two ways. First, I selected 

different case studies from diverse disciplines in the social sciences. The quantity and 

variety of cases chosen help me to argue with more conviction that the claims proposed 

in this thesis can be applied to a broad range of research practices. Second, the claims 

proposed in the thesis are not proposed as descriptive claims that are applicable to all the 

possible scientific studies based on big data. Rather, they are proposed as possible (but 

not unique) ways to overcome some challenges of big data and are claimed to be based 

on careful considerations based on interesting case studies. 
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Part I  

Methodological debates in the social sciences and 

philosophy 

The emergence of big data has become a central theme in scientific and philosophical 

discussions. Both inside and outside academia, there has been growing interest in the 

potential of big data, as illustrated by the recent surge of dedicated funding, policies and 

journals. The main tenor of the discussion, shared by academics and non-academics, is 

that big data allow researchers to think and to do science in a new way.  

This idea has been sometimes intensified in the claim that, in the era of big data new 

statistical methods, rather than existing theories or new approaches to theorising, will 

drive the practice of science (Anderson, 2008; Mayer-Schönberger & Cukier, 2013). 

According to these authors, the massive amounts of data now available and the 

sophisticated algorithms that can be used for data analysis allow scientists to do 

something unprecedented: to use data for discoveries without taking into account any 

theoretical element about causation. Causal theories are claimed to be redundant for two 

reasons: first, sound explanations can be developed just examining the abundant 

correlations that can be found between data, consequently causal theories are no longer a 

guide for scientific research; second, big data are making scientists move away from 

aspiring to understand the reasons why something is happening. In the era of big data, 

scientists just aspire to understand what is happening: 

“Causality won’t be discarded, but it is being knocked off its pedestal as the 

primary fountain of meaning. Big data turbocharges non-causal analyses, 

often replacing causal investigations” (Mayer-Schönberger & Cukier, 2013, 

p. 68) 

However influential and exciting, the idea that a data-driven science does not need causal 

theories and causal investigations has been criticised by scientists and philosophers 

(Canali, 2016; Floridi, 2012; Kitchin, 2014a; Leonelli, 2014b; Titiunik, 2015), who have 

cast light on the limitations of big data and on the importance of causal reasoning. 
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Although these considerations have paved the way for a crucial debate on the use and 

novelty of big data, more work needs to be done to completely address the questions about 

big data. In particular, how to use big data in causal studies is still a matter of debate. The 

overall aim of my thesis is to offer a new answer to this question by examining how big 

data can be used for causal studies in the social sciences. Part I of the thesis, made of the 

next three chapters, will provide some clarifications about what problems and solutions 

have been discussed for causal discoveries in the social sciences and in the philosophy of 

the social sciences.  

Chapter 2 will start by illustrating one of the statistical methods used with big data for 

causal analysis, Bayesian Networks. This method will be described in detail to show one 

common way in which data are analysed quantitatively. Next, some of the problems that 

characterise data-driven studies will be described and applied to Bayesian Networks to 

clarify how such issues can emerge in real-life data-driven studies. To this, some 

considerations about the limitations of big data specifically in the social sciences will be 

added, and the notion of ‘thick’ data will be introduced. Overall, these discussions will 

lead to the identification of three key challenges of big data for causal studies in the social 

sciences: i) how to overcome the limitations of data-driven causal studies, ii) how to 

understand the role of qualitative, ethnographic data in causal studies based on big data, 

iii) how to use big data, in the social sciences, to obtain evidence of causality that goes 

beyond correlations. These challenges will be discussed in detail in section 2.5.  

Chapter 3 will provide a solution to the first challenge. It will be argued that evidential 

pluralism, in the formulation proposed by Russo and Williamson (2007), and now known 

by the name of the Russo-Williamson thesis, can offer a solution to the problems 

associated with causal data-driven studies in the social sciences. In order to comply with 

such a thesis, social scientists need to establish both a correlation between the putative 

cause and the putative effect, and a causal mechanism linking the cause and the effect and 

producing the statistical relationship between them. While some philosophers of the 

social sciences have shown scepticism about the usefulness of the Russo-Williamson 

thesis, I shall argue that it is not only useful, but also in line with how social scientists 

establish causation. 

Chapter 4 will tackle the second challenge by exploring the advantages of combining big 

and thick data in causal studies. I shall claim that, since thick data are in general defined 
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as qualitative data, the advantages of such a combination can be explored through the 

analysis of mixed methods research, based on the combination of quantitative and 

qualitative approaches. To begin with, I will show that, in mixed methods research, the 

aim is often to establish the presence both of a correlation and of a causal mechanism 

between the putative cause and effect, and that this is in accordance with the Russo-

Williamson thesis. In these terms, the use of qualitative data is in general justified by 

claiming that they allow for the identification of causal mechanisms. Next, I shall argue 

that qualitative data are also used to problematise quantitative findings: the combination 

of different types of data is used to mix different ontological categories and different 

epistemological assumptions. In this way, researchers can obtain a comprehensive 

understanding of the phenomenon under study. Thick data, I shall conclude, can hence be 

used both to collect evidence of social mechanisms, and to help researchers obtain a 

comprehensive understanding of the phenomenon under study.  

Overall, the following three chapters will help to clarify how the methodological 

discussions within the social sciences and philosophy of the social sciences communities 

can be associated with the challenges brought about by big data.    
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2 No magical solutions with big data 

2.1 Introduction  

Uncovering causal relationships is vital in many aspects of our daily life: we want to 

know what affects our health, what might exert an effect on a particular political system, 

what causes economic crises and so forth. It follows that causal discovery is a problem of 

interest in almost all the scientific disciplines. Over the last few years this interest has 

been associated with the discussions regarding the emergence of ‘big data’ and the 

possibility of automated forms of reasoning. From the beginning of this century, indeed, 

researchers inside and outside academia have experienced what has been called a ‘data-

deluge’. Everywhere we look, it is clear that the quantity of information available is 

soaring: to give an example, according to some IBM analysts and to the researchers at the 

International Data Corporation, the total amount of data in the world is now doubled every 

two years (Giczi & Szőke, 2018; Guo, 2017). 

Researchers from different disciplines have tried to find out the best ways to take 

advantage of this data deluge. Many have argued that new sophisticated data techniques 

can be used to infer patterns and regularities in the data (Jensen & Nielsen, 2007; 

Mazzocchi, 2015; Spirtes et al., 2000). Some philosophers, however, have shown that, in 

real-life scientific practice, there is no such a thing as a purely direct inductive approach 

(Leonelli, 2014b; Pietsch, 2016). Inferential reasoning from big data, it has been claimed, 

always requires some theoretical commitments concerning the phenomenon under 

investigation and the ways in which data are modelled. Many researchers, furthermore, 

have identified some problems that big data studies might be unable to tackle (see for 

instance Cartwright, 2007; Floridi, 2012; Hitchcock & Sober, 2004; Kitchin, 2014; 

Leonelli, 2014b; Raghupathi & Raghupathi, 2014; Titiunik, 2015).  

This debate does not represent a sharp division between those who affirm and those who 

reject the value of inferring patterns from big data. There is a general agreement, indeed, 

that new statistical methods can make a contribution to the analysis of data. What is seen 

with scepticism, instead, is the optimism of those who would like to pursue automated 

forms of scientific reasoning, where the roles played by human activities would be 

progressively reduced and algorithms would analyse data “better and faster than humans” 

(Jensen & Nielsen, 2007, p. 24). This position has often been identified with the 
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expression ‘data-driven science’, according to which inductive and automated forms of 

reasoning from data should be recognised as a crucial form of scientific inference 

(Leonelli, 2012a). The scepticism, moreover, is particularly strong when researchers 

discuss the use of big data for causal studies (Canali, 2016; Clark & Golder, 2015; 

Kitchin, 2014a; Leonelli, 2014a; Taylor et al., 2008; Titiunik, 2015; Triantafillou et al., 

2017). The reason motivating such a reaction is that even though statistical algorithms are 

becoming more and more sophisticated, there are some difficulties that still today might 

cause relevant bias in data-driven causal discoveries. The aim of this chapter is to explore 

such difficulties. 

The chapter is structured as follows: in section 2.2 I shall describe Bayesian Networks as 

an example of machine learning algorithms used to quantitively analyse data. I shall 

explain why Bayesian Networks can be considered an important statistical approach in 

the era of big data, and I will show how Bayesian Networks work and the assumptions 

built into such an approach. In section 2.3 I shall discuss some of the main problems that 

might threaten the correctness of machine learning’s analyses and for which the solution 

is not always obvious. More specifically, I will show how machine learning algorithms, 

in particular circumstances, can generate results that suffer from the so-called Simpson’s 

paradox, how the high dimensionality of data can have an impact on the capacity to build 

causal models, and how the quality of data and meta-data remains a challenge even with 

the most sophisticated algorithms. While such problems are not specific to Bayesian 

Networks, I shall discuss their impact on Bayesian Networks’ analyses to clarify how 

they can lead to biased results in real-life situations. Section 2.4 will describe another 

problem related to big data studies, namely the gap between big, often quantitative, data, 

and contextual ethnographic data and will show how social scientists are expressing their 

worries about the limited importance given to the latter type of data. In section 2.5, then, 

three different challenges of big data will be discussed: i) how to overcome the limitations 

of data-driven causal studies, ii) how to understand the role of qualitative, ethnographic 

data in causal studies based on big data, iii) how to use big data, in the social sciences, to 

obtain evidence of causality that goes beyond correlations. Section 2.6 will conclude the 

chapter by arguing that new philosophical investigations can help to overcome such 

challenges. 

Overall, the discussion of this chapter will provide some evidence in support of the idea 

that there are no ‘magical solutions’ with big data: machine learning algorithms can 
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enhance scientists’ capacity both to extract insights from data and to obtain information 

concerning specific causal relationships, but bias as well as lack of contextual knowledge 

might still threaten data-driven results. This observation will pave the way for further 

philosophical investigations to tackle the challenges proposed at the end of the chapter.  

2.2 Bayesian Networks  

In the last thirty years several techniques have been proposed to infer causal relationships 

from observational data, and a new interdisciplinary field, named “causal modelling”, has 

become particularly important in the study of causal inference. The end of the twentieth 

century, indeed, was characterised by an explosion of works on this topic, and several 

important contributions emerged both from fields such as statistics, philosophy and 

computer science, and from more subject-specific areas like epidemiology and 

econometrics (for more information see Hitchcock, 2009). 

Several sophisticated statistical approaches have been developed to analyse causal 

relationships in large datasets. Just to mention some of them, data are now analysed 

through the Principal Component Analysis, Diffusion Maps, Regression Analysis, the 

Granger Causality Approach, the Structural Equation Modelling and Bayesian Networks. 

In particular, the set of approaches known by the name of Bayesian Networks (BNs), 

given its capacity to handle uncertainty in complex domains3 (Constantinou & Fenton, 

2018) and the possibility of combining BNs with prior knowledge (Heckerman et al., 

1995), has become a popular approach in big data studies. New big data projects based 

on BNs strategies have been funded both in Europe and the U.S. (see for instance the 

project European funded project BAYES_KNOWLEDGE and the American project 

Learning Big Bayesian Networks), and many researchers have explored the applications 

of BNs machine learning algorithms to big data (see for instance Gogoshin et al., 2017; 

Tang et al., 2016; Wang et al., 2014).  

BNs were first developed in the 1980s, but gained popularity from the 1990s and 

continued to flourish to the present day thanks to some interdisciplinary discussions 

involving statisticians, computer scientists and philosophers (Korb & Nicholson, 2004; 

Neapolitan, 2004; Pearl, 1998, 2000; Spirtes et al., 2000; Williamson, 2005, 2010). A 

                                                           
3 In BNs the uncertainty concerning the model is represented by a probability distribution over the possible 

DAGs. 
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regular Bayesian Network consists of three components: a finite set V = {V1, ..., Vn} of 

variables, a directed acyclic graph representing the probability distribution of each 

variable ∈ V conditional on its parents, and the Markov Condition. 

A directed acyclic graph (DAG) consists of a set V = {V1, ..., Vn} of variables, that are 

used as nodes, and directed edges connecting some pairs of nodes, often called arrows. 

The graph is acyclic because there are no directed cycles standing for mutual relationships 

(for instance A → B, B → A), like the one represented in Figure 1. 

 

Figure 1. A directed acyclic graph (DAG). 

In BNs, researchers often make free use of the terminology of kinship to denote the 

different relationships between the vertices. In Figure 1, for instance, C has two parents 

(A and B, which are its direct causes), while D has 3 ancestors (A, B, C) and no children 

(therefore no descendants). 

The graph is linked to the probability distribution of each variable ∈ V conditional on its 

parents by means of the so-called Markov Condition, according to which any variable ∈ 

V is probabilistically independent of all other variables apart from its descendants, 

conditional on its parents.  

Often, graphs in BNs are given a causal interpretation and are called causal graphs. The 

key assumption behind this causal interpretation associates causal graphs with probability 

distributions and is formalised in the so-called Causal Markov Condition:  

Causal Markov Condition: Each variable is probabilistically independent of 

its non-effects, given its direct causes 

The Causal Markov Condition is part of the definition of causal BNs, and claims that, if 

we know the value of the direct causes, we should not consider the indirect causes. For 

instance, in Figure 1, D only depends on C, and it is causally independent of A and B 

once we conditionalise on its parent C by holding its value fixed. This condition must 



 

29 
 

always hold if the causal net is to be a BN model: if the Causal Markov Condition is not 

satisfied, the formalism cannot be interpreted as a Causal Bayesian Network.  

The Causal Markov Condition specifies how to obtain probabilistic independencies 

between variables. However, inferring causation from statistical data in a correct way 

requires also some knowledge about dependence relationships between variables. This is 

why, in causal BNs, researchers have proposed the Faithfulness Condition: 

Faithfulness Condition: All the probabilistic dependencies and 

independencies among V are derivable from the causal graph through the 

Causal Markov Condition 

According to the Faithfulness Condition, all probabilistic dependencies and 

independencies characterising the set of variables under study should be represented in 

the DAG, otherwise the distribution would be unfaithful to the DAG.  

It is important to specify that such a condition, unlike the Causal Markov Condition, does 

not have to necessarily hold in BNs: even if the Faithfulness Condition is not satisfied, 

the causal net can still be considered a Bayesian net. If the Faithfulness Condition is 

satisfied, however, researchers know that the dataset under study has exactly and only the 

probabilistic independencies shown in the DAG. In other words, the use of this condition 

has an important inferential advantage: through it, it is possible to say that the model 

generated from the data implies exactly the dependence and independence relations that 

are characterising the dataset under study. When the Faithfulness Condition is not 

satisfied, on the other hand, we cannot be sure that the model obtained represents all and 

only the dependencies that really characterise the set of variables. The consequence is 

that, if the Faithfulness Condition does not hold, we might be more likely to draw wrong 

conclusions about the causal relationships in our dataset. 

In the BNs literature, a stock example where the Faithfulness Condition is not satisfied is 

the DAG representing the relationships between the use of contraceptive pills, thrombosis 

and pregnancy (Hesslow, 1976, p. 291). On the one hand, contraceptive pills lower the 

chances of pregnancy; on the other hand, both contraceptive pills and pregnancy increase 

the probability of thrombosis, as illustrated in Figure 2. 

In this case, we have two paths. The first one goes from contraceptive pills to the 

reduction of the possibility of pregnancy and, hence, the reduction of the risk of 
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thrombosis (pills → - pregnancy →+ thrombosis). The second one goes from contraceptive 

pills to the risk of thrombosis (pills → + thrombosis). 

 

Figure 2. A directed acyclic graph (DAG) showing the causal 

relationships between contraceptive pill, pregnancy and thrombosis. 

Let us suppose that these two paths are perfectly balanced: the presence of the first path 

might hide the operation of the second path, and vice versa. The two paths would cancel 

each other, with the consequence that any probabilistic dependence between 

contraceptive pills and thrombosis would vanish (i.e. there would not be a probabilistic 

dependence between pills and thrombosis). Yet, since the DAG shows a path, the 

probabilistic distribution would be unfaithful to the DAG. 

In the statistical and philosophical literature, this and similar problems have been 

discussed in relation to data-driven methods such as BNs. Originally, BNs were 

conceived of as belief networks, and the probabilistic relationships were assumed to 

represent the appropriate degrees of belief for an agent given the data (Pearl, 1988). When 

BNs are used for machine learning algorithms, however, the probabilistic relationships 

are in general simply induced by the frequencies observed in the dataset. The DAGs used 

to infer causal relationships, consequently, are the result of data-driven analyses. In what 

follows, I shall discuss some of the general limitations that can undermine the usefulness 

of data-driven studies. Furthermore, to illustrate how these limitations can pose a threat 

to causal models in specific cases, I shall illustrate the ways in which they can cause bias 

in BNs. 

2.3 Problems with causal modelling 

2.3.1 Simpson’s paradox 

Suppose you are a doctor reading a paper on a promising new treatment that seems to be 

very effective. You are excited by the discovery, and you look up the data from the trials 

to learn more about that. You look at the data concerning male patients and find out that 
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actually there is no correlation between treatment and recovery. “Well”, you will probably 

think, “this drug must work very well for female patients”. Then you look at the data 

about women, and you discover that, also in this case, the treatment does not seem to be 

effective. How is this possible? How can a drug be bad both for male and female patients, 

but at the same time good for people? It is clearly problematic if two different analyses 

induce you to take two opposite actions (give or not the treatment) based on the same 

data. 

This problem is known by the name of ‘Simpson’s paradox’ and was discovered by the 

statistician Edward Simpson (1951), from whom it took its name. It is based on a 

statistical phenomenon according to which, in some datasets, subgroups with a common 

trend (for instance a negative trend) show the reverse trend (a positive trend) when they 

are aggregated. To illustrate this paradox, let us consider the example proposed by Meek 

and Glymour (1994, p. 1012). Suppose the data were collected from a study involving 

990 patients who divided themselves into a control group (610 patients) and a treatment 

group (380 patients). Table 1 shows the number of recoveries in the two groups:  

 Control Group Treatment Group 

Alive 260 240 

Dead 350 140 

Table 1. Survival rates in the control and treatment groups. 

By comparing the data about the control group and the treatment group in Table 1, it is 

possible to conclude that there is a positive association between treatment and survival. 

Indeed, while in the control group only 260/610 patients survived (43%), in the treatment 

group the survival rate was 63%. 

Suppose that now we look at the same data by distinguishing between male and female 

patients, as shown in Table 2 and 3.  

Male 

 Control Group Treatment Group 

Alive 160  40 
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Dead 320 80 

Table 2. Survival rates in the male population. 

Female 

 Control Group Treatment Group 

Alive 100 200  

Dead 30  60  

Table 3. Survival rates in the female population. 

In Table 2 it is possible to see that there is no correlation between treatment and recovery 

among males: in the treatment group 40/120 (33,3%) of patients survived, in the control 

group 160/480 (33,3%) of patients recovered from the disease. The percentage of 

recovery, hence, was the same both in the treatment group and in the control group. 

In Table 3, furthermore, it is shown that 200/260 (77%) of female patients who were 

treated survived, the same percentage that was found in the control group, where 100/130 

(77%) of the untreated women recovered. Overall, hence, there was no association 

between treatment and survival among both male and female patients. 

There is an explanation for this paradox: when data about women and men were 

aggregated, the percentage of recovery was calculated by taking into account the weighted 

average. In other words, the analysis considered how many patients were in each group. 

Given that women were more likely to recover and, in that specific situation, a larger 

proportion of women, if compared to the proportion of men, was treated, the results 

showed that the survival rate in the treatment group was higher than in the control group. 

Simpson’s paradox is not a rare problem that can be found only in fictional situations. In 

1973, the Associate Dean of the graduate school of the University of California Berkeley, 

by looking at the admission rate data, hypothesised that there was a sex bias in the 

admission process. The data were indeed shown in a table like Table 4, and it was clear 

that the denial rate among women was particularly high if compared to the denial rate 

among men.  
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Applicants Admitted Denied 

Female 1494 2827 

Male 3738 4704 

Table 4. Acceptance rates to the University of California Berkeley in 

1973. 

Some years later, in a famous paper, Bickel, Hammel and O’Connell (1975) explored the 

dataset, observing in detail the percentages of admission for each department. It was 

thanks to the data analysis performed department by department, that they were able to 

claim that there was no bias towards women in the admission process. Indeed, by 

considering the admission rate per department they generated a table similar to the 

following:  

Department Male Male Female Female 

 Applications Admissions Applications Admissions 

A 825 62% 108 82% 

B 560 63% 25 68% 

C 325 37% 593 34% 

D 417 33% 375 35% 

E 191 28% 393 24% 

F 191 28% 393 24% 

Table 5. Acceptance rates per department to the University of California 

Berkeley in 1973. 

As shown in Table 5, the problem with the admission rate was that female applicants 

tended to apply more to departments that were more difficult to get into, as the data about 

department C clearly illustrate. By considering the data properly partitioned, hence, it 

appears not only that there was not a bias against women, but that there was a small (but 

statistically significant) bias in favour of women.   
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While the examples described above are two of the most quoted examples of Simpson’s 

paradox, it can be noted that several gender bias studies and analyses of sports’ data have 

provided very nice examples of this phenomenon. For instance, it has been shown that 

evidence in support of gender bias in science funding is likely to suffer from this paradox 

(Albers, 2015). From the analysis of basketball’s data, in addition, researchers can claim 

that a team has the worse shooting in each category, and yet the best overall field goal 

percentage (Ma & Ma, 2011). In baseball, furthermore, a player A can have a higher 

batting average for three consecutive seasons if compared to another player B, and yet by 

combining the three seasons and considering how often each player played, the result is 

that player B has the higher average (Pearl & Mackenzie, 2018). More examples of this 

paradox, both in the natural and the social sciences, can also be found in Selvitella’s recent 

paper entitled ‘The ubiquity of the Simpson’s Paradox’ (2017). 

It is now possible to examine how Simpson’s paradox can cause bias in the specific case 

of BNs. Let us consider again the treatment example discussed above: the treatment 

apparently worked for the whole population but was ineffective when analysed in the 

male and female subpopulations. By analysing the overall population divided into a 

treatment and a control group, researchers would consider just two variables, T 

(treatment) and R (recovery), and would obtain a causal DAG showing an arrow between 

T (treatment) and R (recovery), as illustrated in Figure 3(a). This would lead them to give 

a causal interpretation to the arrow and to establish that the treatment causes recovery. 

The probabilistic dependence between T and R, however, is actually caused by the 

common cause G, gender, as illustrated in Figure 3(b). Due to the way in which the control 

and treatment groups are partitioned, the variable G might not be added in the dataset, 

with the consequence that the subset of variables analysed might lead scientists to infer a 

causal relationship that does not exist in reality. 

 

Figure 3. The possible DAGs between treatment, recovery and gender. 

3(a) illustrates the probabilistic dependence between T (treatment) and 

R (recovery), if G (gender) is not considered; 3(b) illustrates the 
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probabilistic dependencies between G (gender), T (treatment) and R 

(recovery). 

Someone might argue that Simpson’s paradox causes problems especially when 

researchers analyse small datasets, given that there is a major risk of not considering 

relevant variables. In big data studies, on the contrary, scientists are able to analyse 

simultaneously numerous variables, therefore the risk of ignoring important 

subpopulations could be drastically reduced. This consideration is particularly relevant in 

specific cases such as medical studies, where it is known that patients’ characteristics 

such as age and gender can influence physical conditions and recovery, and where such 

variables are generally available.  

In other cases, however, it might be difficult to imagine how to partition data or, in other 

words, what subpopulations could be relevant to the research question. Human behaviour 

studies, for instance, in general rely on heterogeneous observational data generated by 

subpopulations of different sizes. Such behavioural data can now be collected quite easily 

(for instance, data about consumer behaviours are now collected through the Internet and 

by platforms such as Amazon, while travel behaviours can be monitored through the use 

of geolocated data), but at the individual level they often appear very sparse and noisy. It 

is for this reason that researchers might prefer to aggregate data and to analyse behaviours 

at the population level. Some examples are the use of population-level data for online 

activities (such as shopping online) and for diurnal and seasonal mood rhythms (the 

changes in mood through the day or in different seasons) (Lerman, 2018).  

The problem that emerges, however, is that when hundreds or thousands of behavioural 

data are aggregated, it is not easy to identify the relevant subpopulations. In an online 

social network, for instance, a large number of variables such as sex, age, occupation, 

income, education, nationality, average online activities, the number of words per post, 

and the number of followers might be relevant in order to rule out the possibility of 

confounders. Some of these factors could be difficult to measure. Furthermore, such 

variables might be collected in different datasets, and getting access to them could be 

difficult or very expensive. In a similar situation, what to include or not would finally 

depend on the researchers’ decisions (with the risk of using inappropriate measures or 

ignoring important factors). Finally, even when all the possible relevant variables are 

available and easily measurable, scientists are not immune to inferential errors: too many 
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variables might indeed cause the curse of dimensionality, which is what I explore in the 

next section. 

2.3.2 High dimensional datasets   

Most of the datasets created in recent years are characterised by high dimensionality, an 

expression that refers to the situation in which a dataset is characterised by a large number 

of features. When the number of features is larger than the number of observations, 

datasets are characterised by the ‘curse of dimensionality’ (Bühlmann & Geer, 2011, p. 

1). Suppose we have a dataset containing 100 images (observations) with a high 

resolution. Each image is composed of thousands or even millions of pixels (in the case 

of Flickr, for instance, each image can contain 2048x2048 pixels), and each pixel within 

the image can be understood as a feature of the image. This means that we have a huge 

number of pixels (features) within each image (observation), and the total number of 

images is very small if compared to the total number of pixels. The database is hence 

characterised by high dimensionality. This kind of situation can be found in several 

contexts: financial datasets, for instance, can contain observations measured daily, hourly, 

even every minute or second, and for each time slice such datasets have hundreds of 

features. Similarly, social networks allow for the collection of hundreds of features for 

each individual using them. Scientific advancements in medicine, finally, have led to the 

current situation in which thousands of features are collected for each individual, instead 

of having, as in the past, a big sample with a low dimension (Zeng et al., 2016).  

It would be reasonable to hold the intuition that the analysis of high dimensional datasets 

through machine learning algorithms should offer more accurate results. In reality, 

however, it is very common that the opposite happens. When datasets are characterised 

by the curse of dimensionality, as the number of variables increases, the number of 

plausible combinations of variables explodes exponentially. This happens because a fixed 

number of data points become increasingly ‘sparse’ if the dimensionality is increased. 

Figure 4, for instance, represents two cases, one in which we have two dimensions, one 

in which we have three dimensions: when the dimensionality increases, also the number 

of sides increases. Consequently, while the data points in two dimensions are sufficient 

to find a pattern, the same data points in three dimensions are too sparse to enable 

researchers to select one pattern among all other possible patterns. 
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Let us consider the case of BNs: as the number of nodes increases, the size of the search 

space of the relationships between causal nodes grows exponentially in dimensions. If the 

number of data points, furthermore, is very small if compared to the number of nodes, the 

confidence in the probability dependences represented in the DAG becomes very low: in 

other words, we cannot be sure that the complex DAG we are observing represents the 

correct causal relationships between the nodes under study. 

 

Figure 4. Data points represented in two-dimension space and in three-

dimension space. 

A phenomenon closely related to the curse of dimensionality is the phenomenon known 

by the name of ‘overfitting’. When a new algorithm is developed, scientists use training 

data to train it. Overfitting occurs when the model produced by the algorithm is very 

accurate on the training data but is much less accurate on the real data. In Figure 5, for 

example, the curved line best follows the training data if compared to the dashed line, but 

it might be too dependent on such data. The algorithm producing the curved line, 

therefore, might have a higher error rate when used with new data. This happens because 

the set of training data points is too small if compared to the variables analysed, and the 

algorithm runs the risk of modelling not only the general patterns in the data, but also the 

idiosyncrasies of that specific data set that are unlikely to recur in further data (Hitchcock 

& Sober, 2004). This, hence, would cause the model to poorly perform when new data 

are analysed. For instance, in BNs overfitting typically takes the form of a fully linked 

DAGs, where the number of arrows is so high that all the nodes of the DAGs are linked 

to each other.  
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Figure 5. An example of overfitting (Silipo, 2007, p. 287). 

Such considerations bring to the fore what Floridi has called the ‘small pattern’ problem 

of big data (Floridi, 2012): the vast amount of information available entails that it can be 

more difficult than in the past to spot where the new relevant patterns lie. Given the 

growing number of dimensions available for each research question, for instance, how to 

select the dimensions that can really help both to uncover important patterns and to avoid 

the curse of dimensionality? To give an example, thousands of genes (features or 

parameters) are monitored for each person, but for a specific disease only a fraction of 

them are biologically relevant. It is crucial, hence, to identify those parameters (i.e. 

dimensions) that can be used for prediction and diagnosis.   

In the statistical and computer science literature several methods have been proposed to 

avoid the curse of dimensionality. One of the most common strategies is to reduce the 

dimensions of the datasets. Feature transformation techniques, for instance, are data pre-

processing methods that allow for the transformation of the original dimensions of a data 

set into a more compact set of features or parameters, maintaining at the same time as 

much information as possible (a typical example is Principal Component Analysis). 

Feature selection algorithms, on the other hand, are based on an alternative approach to 

dimension reduction and select among the available dimensions the most relevant subset 

of parameters. Finally, wrapper algorithms use the classification accuracy of some 

classifier as a criterion to reduce dimensionality (for more details see Cunningham, 2008; 

Guyon & Elisseeff, 2003).  

To avoid some risks associated with the curse of dimensionality and to select the right 

‘small patterns’, furthermore, in general researchers work with supervised machine 

learning algorithms, trained with labelled training datasets containing input objects and 

the desired output value attached to such objects. To give a simple example, an algorithm 

can learn to classify animals (such as dogs and cats) after being trained on a dataset 

containing photos properly labelled with the corresponding species and some identifying 

features.  

There are cases where researchers use unsupervised algorithms, that are thought to be 

able to recognise processes and patterns without any human guidance. However, in order 

to improve the reliability of data-driven results, in most of the cases researchers prefer to 

train the algorithm. In some situations, moreover, scientists’ knowledge is used also to 
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guide algorithms’ decisions after the training. As described above, for instance, in genetic 

studies each observation (such as each mRNA sample) can have hundreds or thousands 

of features (genes). Let us suppose researchers know that the expression of some specific 

genes depends on environmental conditions, but they are not sure about what gene 

expression varies under which conditions. To identify the most useful features, 

researchers are working on statistical techniques that can incorporate external information 

(for instance, a candidate list of relevant genes could already exist before and researchers 

could decide to give to such candidates a higher priority) (Liu et al., 2016). 

Despite the use both of supervised algorithms and of techniques to reduce the dataset’s 

dimensions, however, it is still difficult to rule out all the problems associated with the 

curse of dimensionality and overfitting. Racial algorithmic bias can offer some illustrating 

examples to understand the consequences of such problems.  

A case in point is that facial recognition algorithms are very likely to discriminate 

minorities, and that this problem is caused by the high dimensionality of the training 

datasets. This phenomenon is due to the fact that in the Western society the data used to 

train algorithms often over-represent one population (for instance white people) and 

under-represent minorities (like Afro-American people). Due to this under-

representation, the number of variables examined can be larger than the number of 

samples in the data. As a consequence, algorithms might start to overfit the data 

associated with the under-represented population, modelling also idiosyncrasies, as 

illustrated above in Figure 5. This can cause critical situations: to give an example, in 

some cases facial recognition algorithms are not able to categorise members of the under-

represented population as ‘persons’ because they do not have all the idiosyncrasies 

required by the algorithms to be classified in that way. This has led to controversial 

situations where recognition algorithms categorised members of the under-represented 

population as animals. 

2.3.3 Data and meta-data quality  

Imagine you have enormous amounts of data about what people search on the Internet. 

You assume that a relevant proportion of those people with flu-like symptoms would go 

to the web to look for information on what to do. Thanks to your data, you can select the 

search terms that people are more likely to use, and then build a sophisticated algorithm 
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to track where and with what frequency such search terms are used in a specific 

geographical area.  

This is exactly what happened when the Google Flu Trend project was developed in 2008. 

Google engineers used Google data to identify the search terms more likely to be 

correlated to flu by considering both the search queries trends from 2003 to 2007, and the 

real local patterns regarding the number of people with influenza-like illnesses in those 4 

years. In this way, they selected a list of 45 terms that people searched on the Internet 

during the flu peak weeks. The Google Flu Trend algorithm was then developed to 

identify when and where such terms were searched through Google4. As many studies 

have already reported (Butler, 2013; Lazer et al., 2014), the project was far from being a 

success. In 2009, the algorithm badly underestimated the Influenza Virus A (H1N1) 

Pandemic (Cook et al., 2011), while in 2010 it was demonstrated that the information 

coming from that algorithm had the same accuracy than the results obtained with a fairly 

simple projection forward based on traditional data (Lazer et al., 2014, p. 1203). 

As anyone can guess, the main problems of Google Flu Trend had to do with the initial 

assumption and the data used. It is indeed questionable whether so many people actually 

look for their symptoms and for information about influenza virus on the Internet, and it 

is even more questionable whether the quality of the data used was sufficiently high. 

These two problems are strictly linked one to the other: indeed, if only a small proportion 

of people looked for information about flu symptoms and remedies on Google, the data 

could be unrepresentative of the population under study. For instance, it might happen 

that only specific subpopulations (such as parents of new-born babies) search for flu 

symptoms on the Internet, while other members of the population (such as those aged 65 

and over) do not rely on the Internet but prefer to contact their doctors. 

After the failure of the program, furthermore, it turned out that the data selected and 

analysed through the algorithms had several problems. First, some scientists found out 

that Internet search behaviours changed during the Influenza Virus A (H1N1) Pandemic: 

the complications of that flu were different from the general influenza complications, 

consequently people searched for terms not included in the original Google Flu Trend list 

(Cook et al., 2011) and these data were not taken into account by Google Flu Trend. 

Second, the data-generating process used by Google was not stable: both this process and 

                                                           
4 Google never released the algorithm and the raw data behind Google Flu Trends. 
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the way in which Google recommended some searches were changed over time to 

improve Google’s service. The direct consequences were that data collected through 

different algorithms were not comparable, and that their reliability was affected by 

changes in search recommendations (Lazer et al., 2014). 

The description of this case helps me to highlight another problem for which, I argue, 

there are no magical solutions: even with the best algorithms, data need to be properly 

cleaned and curators need to organise them by attaching additional information known as 

meta-data. Such meta-data, in general, consist of detailed information concerning the 

origin of the data, the methods used to collect them, the research aims and the protocols 

used during the collection (Leonelli, 2014a; Taylor et al., 2008). If something goes wrong, 

if data are not sufficiently clean or if meta-data are not sufficiently detailed, even the best 

algorithms will not produce reliable results.  

In the Google Flu Trend example, for instance, two problems could have caused biased 

results. On the one hand, all or some data could have been biased. The quality of the data 

used by Google Flu Trend, consequently, would have been insufficient to ensure the 

reliability of the results. For example, the first algorithm used by Google might have 

generated low-quality data before being improved. To avoid this problem, researchers 

should have used only those data collected through the second (improved) algorithm.  

On the other hand, the problem could have been caused by the lack of information 

concerning the way in which data were collected. In such a case, the insufficient 

information ‘attached to’ the data would have been responsible for the failure of the 

program. Scientists could have avoided this problem by adding a new variable in the 

dataset to distinguish between the subgroup of data generated by means of the first 

algorithm and those data collected through the second algorithm, or curators might have 

properly used meta-data to put the dataset in order.  

In the literature, one of the earlier discussions on the core innovations brought in by the 

emergence of big data has been focused on the idea of messiness. According to some 

authors (Leonelli, 2014b; Mayer-Schönberger & Cukier, 2013) we should not 

underestimate the fact that big data are very messy, vary in quality and can be stored in 

so many different datasets. This means that, in order to assemble big data and make it 

possible to integrate them, it is in general required a huge amount of manual labour. 

Leonelli (2012b, 2014b) pointed out the importance of these human decisions by 
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describing the different problems that database curators can encounter when new 

biological databases are created. In other scientific fields, similar discussions emerged 

when the researchers responsible for new databases started to clarify how data are 

repaired, curated and documented. For instance, on the website of the UK Data Archive 

(http://www.data-archive.ac.uk) it is possible to read how curators clean and prepare the 

new data that will be added to the dataset.  

Curators spend a considerable amount of time on adding meta-data that are made 

available to datasets users. The assumption behind this kind of activity is that researchers 

need some information about their data before analysing them through machine learning 

algorithms. Meta-data can help researchers to avoid mixing data obtained in incompatible 

ways, like in the Google Flu Trend case, and can also allow researchers to assess the 

quality and the suitability of the data in relation to their specific research questions. For 

instance, researchers might decide to conduct new studies because they think that the 

method used to collect data is not sufficiently reliable, or might choose particular data 

because the research goal for which they were collected is very similar to the research 

question they are trying to answer. 

Adding meta-data, however, is not a trivial task. Due to the lack of standard terminology 

to describe how data are collected, capturing the relevant aspects of data production can 

be remarkably challenging. For instance, some experimental practices or algorithms’ 

characteristics might not be intelligible to researchers coming from different fields, or 

some pieces of information regarding the data collection process might be omitted even 

if, for certain purposes, they might be vital parameters (Leonelli, 2014a). Consequently, 

it is not rare to have datasets whose meta-data are partly incomplete, from which it follows 

that it is not rare to have data studies based on unsuitable data. This is one of the main 

reasons why, even with big data and machine learning algorithms, data quality can still 

threaten the possibility of good statistical results. 

Some examples can help to clarify this problem. In a famous work, Petricoin et al. (2002), 

reported having found a method to distinguish between serum samples from women with 

ovarian cancer, serum samples from healthy women and samples from women with a 

benign ovarian cancer. The algorithm used for the diagnosis was trained with molecular 

data obtained through mass spectrometry, called spectra. During the training it identified 

50 normal spectra and 50 cancer spectra, then it predicted 116 spectra, identifying 47 out 

http://www.data-archive.ac.uk/
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of 50 normal spectra, all the 50 cancer spectra and all the 16 benign spectra as ‘other’. 

The result was so exciting that the U.S. Congress was urged to increase the funding to 

develop the diagnostic test (Check, 2004). However, when Baggerly, Morris and 

Coombes (2004) tried to replicate the study, they did not obtain the same exciting results. 

It was finally discovered that the three types of spectra used by Petricoin et al. had been 

pre-processed differently, and such differences (that were not associated with the biology 

of cancer) were those recognised by the algorithm. 

Another case regards some studies that used racial data from the National Health Index 

to explore possible causal linkages to mortality. It was discovered that, in many occasions, 

the officials who completed the death certificate determined the racial status based on 

their own judgments rather than asking to the members of the family, and that relevant 

percentages of American Indians, Asian Pacific Islanders and Hispanics were identified 

into another racial category (Williams, 1999). The direct consequence of this problem 

was that any study based on such data could contain bias. 

Problems in data quality can have dramatic, even expensive consequences: in 1999 

NASA lost a Mars orbiter costing $125 million because engineers combined data 

measured with the metric system of millimetres and meters, with data measured with the 

Imperial system of inches, feet and pounds (De Veaux & Hand, 2005, p. 235). 

After the examples described above, it is easy to imagine a situation in which BNs, due 

to the bad quality of data or meta-data, could produce causal graphs with distorted 

relationships. Like in the other cases, the solution is not straightforward: the processes of 

data production and curation require careful examinations in order to avoid substantial 

mistakes like those described in this section.  

2.4 Big and thick data  

While the problems described above can be found in numerous disciplines, there is 

another aspect of the discussion about the role of big data for causal discoveries that 

deserves attention and that regards in particular the social sciences.  

Many social scientists have claimed that neither the increasing number of variables nor 

the existing computational techniques can solve the basic problems characterising causal 

inference. Such claims, however, have not been supported only by methodological 

discussions about problems like Simpson’s paradox. The main tenor of this literature is 
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that big data cannot provide the contextual understanding that is required to causally 

investigate a social phenomenon. 

In 2014, for instance, political scientists extensively discussed this limitations of data-

driven methods in a roundtable entitled ‘Big Data, Causal Inference, and Formal Theory: 

Contradictory Trends in Political Science?’ at the Annual Meeting of the Midwest 

Political Science Association. The discussion continued during a symposium with the 

same title, during which Titiunik (2015) argued that, to identify causal relationships, it is 

in general required to have both substantial background knowledge and contextual 

insights into the phenomenon under study. During the symposium, furthermore, Monroe 

et al. (2015) claimed that it is the responsibility of social scientists to take a central role 

in the big data studies, shaping the questions they want to answer through big data 

according to their contextual knowledge and establishing whether the answer can be 

convincing or not.  

Similar considerations were proposed also by other researchers who claimed that, if data 

are not embedded in contextual knowledge, data-driven studies are likely to obtain 

‘anaemic’ or unhelpful results (Bornakke & Due, 2018; Kitchin, 2014b). An example 

used to justify this claim is the way in which big data are analysed in smart cities studies. 

Often, it is argued, smart cities data-driven studies ignore the social theories and causal 

hypotheses proposed in the literature, with the consequence that data-driven results are in 

general reductionist and do not take into account the cultural and political dimensions that 

can influence certain individual behaviours (Kitchin, 2014b). 

According to some social scientists, finally, traditionally social sciences have given 

priority to the identification of causal mechanisms, while data-driven studies’ interest is 

in the recognition of stable associations and correlations, with the consequence that big 

data are now challenging the social sciences about the relevance of mechanistic 

discoveries (Ashworth et al., 2015; Iwashyna & Liu, 2014). 

What emerges from this overview is a general worry about the types of data used in big 

data research, and the approach employed to study such data. To balance this tendency 

towards data-driven studies, some researchers both inside and outside academia have 

developed the notion of ‘thick data’.  
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2.4.1 Thick descriptions, thick data and thick concepts 

The idea of ‘thick data’ emerged from the idea of ‘thick descriptions’, that goes back to 

Gilbert Ryle (1968) and Clifford Geertz (1973). Ryle argued that thick descriptions do 

not illustrate human activities just as bodily motions, but characterise them as activities 

with an intentional dimension. The best way to clarify this idea is to think about some of 

the examples proposed by Ryle. Let us suppose we see different boys winking for 

different reasons: the first boy winks involuntarily, the second one winks conspiratorially 

to a friend, and does it in a slow and conspicuous way. Finally, the third boy imitates the 

second boy to entertain his cronies: he winks awkwardly, but he is not himself clumsy. In 

these three cases, the same ‘thin’ description, ‘the boy winks’, can be applied. 

Nevertheless, if we want to distinguish between the three actions, we need to provide 

thick descriptions.  

Such descriptions were not conceptualised by Ryle as a list of different activities 

performed by the person. To give an example, the thick description of what the second 

boy does could not be a list of five separate things such as i) winking intentionally, ii) to 

a specific person, iii) with the aim to impart a message, iv) according to a common code, 

v) without the other friends being aware of it. Rather than being a set of different things, 

the activity performed by the second boy is understood by Ryle as a complex thing, that 

can be successfully performed only if all these aspects are successfully carried out. The 

difference between the simple activity of the first boy, and the complex activity of the 

second one is this success-failure condition (the second boy can wink successfully only 

if all those activities are fulfilled). Such a condition, finally, is what we should make 

explicit in our thick description. Geertz followed Ryle’s proposal, and argued that the aim 

of anthropology is to explain cultures and phenomena through thick descriptions (1973). 

Factual (thin) descriptions, Geertz argued, are not only insufficient to understand a 

culture, but can also be misleading: this is why anthropologists develop thick descriptions 

that can incorporate cultural information.  

Recently, these considerations have been used to discuss the notion of ‘thick data’5. Thick 

data are in general described as ethnographic data characterised by contextual complexity 

                                                           
5 It is interesting to observe that the notion of ‘thick descriptions’ proposed by Ryle and Geertz did not 

inspire only the idea of ‘thick data’. After Ryle’s and Geertz’s works, the idea of ‘thick descriptions’ was 

used to develop the notion of ‘thick concepts’ (Williams, 1985). The first proponent of this notion, 

Williams, argued that thick concepts are both world-guided and, due to the evaluation attached to them, 

action-guiding: their uses and applications are guided by people’s experiences and, at the same time, they 
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which help researchers to recognise not only what people do, but also the reasons behind 

their activities (Bornakke & Due, 2018, p. 2). The notion of ‘thick data’ has been proposed 

in contrast with the notion of big data: thick data, it is claimed, are in general collected 

by real individuals from small samples and are not produced through automated processes 

and characterised by high velocity (Blok & Pedersen, 2014; Bornakke & Due, 2018; 

Latzko-Toth et al., 2016).  

In addition, although the differences between big and thick data have not yet been 

explored in detail, one underlying assumption seems to be that thick data are mostly (if 

not only) qualitative. Onwuegbuzie and Leech (2007, p. 244), for instance, claimed that 

in qualitative research, new credibility can be gained by collecting thick data sufficiently 

detailed to enhance our understanding of certain phenomena. Blok and Pedersen (2014, 

p. 3), furthermore, argued that big and thick data need to be combined in order to fill the 

gap between ‘hard’ quantitative evidence and ‘soft’ qualitative data. This link between 

qualitative and thick data can be partly explained by the fact that the same notion of thick 

description was developed to explain the insights that can be obtained through 

ethnographic and qualitative methods such as participant interviews and field 

observations (Geertz, 1973; Ryle, 1968). It might be argued, furthermore, that dense, 

contextual information would be hardly contained in quantitative data.  

While in the introduction of this thesis I have observed that variety is one of the features 

that, according to the literature, characterise big data, it is worth noting that the type of 

unstructured data in general described in the literature are images, videos, audios and 

social media texts that are collected automatically with high frequency, with no need for 

qualitative social scientists. Thick data, instead, are described as contextual data produced 

by human observers embedded in particular contexts.   

To clarify what thick data are, let us consider some cases described in the literature. The 

first example of thick data discussed by social scientists is the example provided by Wang 

(2013), an ethnographer who worked for Nokia in 2009. During her period at Nokia, she 

conducted ethnographic works in China and she collected evidence supporting the idea 

that low-income Chinese consumers had begun to take an interest in smartphones, and 

                                                           
provide reasons for or against certain types of actions. In general, the immediate examples of thick concepts 

we imagine are ethical concepts such as courage and promise. It might be argued, however, that the notion 

of thick concepts can be applied also to other categories of concepts, such as to the aesthetic concepts (for 

instance elegant and gaudy) and epistemic concepts (like wise and relevant) (for more discussions see 

Kirchin, 2013). 
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would have willingly paid more than in the past for this new type of mobile phones. The 

conclusion of her work was that Nokia needed to change its business model: rather than 

producing niche products for high-income users, Nokia should have started to make 

affordable smartphones for low-income consumers. When it was informed, however, 

Nokia did compare the ethnographic evidence coming from the small sample studied by 

Wang with the quantitative data collected from millions of users, and concluded that it 

was better to ignore Wang’s observations because in the existing datasets there were no 

signs of such a trend. This surprised Wang and decisively influenced the future of Nokia 

given that, as we now know, Chinese smartphones sales started to grow exponentially 

some years later (Ma, 2017, p. xi).   

Another interesting study based on big and thick data can be found in Denmark, where 

the Faculty of Social Sciences at the University of Copenhagen and the Department of 

Informatics and Mathematical Modelling at the Danish Technical University have started 

a joint program called ‘The Copenhagen Social Networks Study’. Statisticians, computer 

scientists and social scientists have examined together data obtained by continuously 

recording social interactions among an entire university class made of more than 1000 

students. Using smart devices collecting Bluetooth data, GPS data and social networks 

data, researchers obtained a large dataset that was combined with thick observational data 

collected by an anthropologist ‘embedded’ in the class for an entire year. Big and thick 

data together, according to the principal investigators, offer the foundations for what they 

call ‘complementary social science’ (Blok & Pedersen, 2014, pp. 3–4). 

The discussions on thick data, in general, are in accordance with what proposed by The 

Copenhagen Social Networks Study researchers. There is indeed a shared assumption that 

thick and big data have complementary strengths and weaknesses. To give some example, 

Bornakke and Due (2018, p. 3) and Latzko-Toth, Bonneau, and Millette (2016, p. 201) 

argued for the complementary nature of thick and big data, and recognised that they are 

far from being the first to assert it. Despite the general agreement, the advantages 

associated with the combination of big and thick data are still partly unexplored. More 

specifically, how to use thick data in causal studies based on big data is still a challenge. 

2.5 Three challenges of big data  

The problems described above lead to three different challenges associated with causal 

studies based on big data in the social sciences.  
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The first challenge is how to overcome the limitations of data-driven causal studies. In 

section 2.3 I have described some of the issues that still threaten data-driven results: 

Simpson’s paradox, the curse of dimensionality and overfitting, the presence of low-

quality data. While numerous researchers are trying to develop a solution to such 

problems, a general agreement about the strategy to tackle them has not been found yet.  

The second challenge is how to understand the role of thick data in causal studies based 

on big data. This challenge is particularly relevant nowadays, since some researchers 

show hesitation towards the emergence of computational research programmes in the 

social sciences and try to defend the vital role of thick data. This challenge resembles the 

more general challenge concerning how, in causal studies, qualitative data can be used in 

combination with quantitative data to produce rich results. While the challenge 

concerning qualitative and quantitative data has been recently discussed within the mixed 

methods research community (a community of social scientists sharing the idea that the 

best way to conduct social research is by mixing quantitative and qualitative approaches), 

how the study of thick can be combined with big data to improve causal studies is still 

unexplored. 

The third challenge is how to use big data, in the social sciences, to obtain evidence of 

causality that goes beyond correlations. In general, big data are analysed through 

statistical methods to identify correlations between variables. It might be possible, 

however, to use big data to obtain mechanistic evidence. This possibility would allow 

researchers to study big data to obtain different forms of evidence in support of a causal 

claim. Until now, this possibility has not been directly explored in the traditional social 

sciences literature, where discussions on big data can be generally identified as statistical 

debates about the use of computational strategies (see for instance Monroe, 2013; Shu-

Heng, 2018), and as considerations about the use of big data to obtain social indicators 

and proxies (see di Bella et al., 2018). In philosophy, instead, some researchers have 

paved the way for novel discussions about the use of data in causal analyses. In particular, 

new philosophical discussions have emerged to examine how causal mechanisms can be 

studied, and how large-scale biological datasets can help to identify evidence of causal 

processes in social epidemiology (Baumgartner & Casini, 2017; Canali, 2016; Illari & 

Russo, 2016; Krickel, 2018; Vineis et al., 2017). 

These three challenges will guide my dissertation. The solution to the first challenge (how  
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to overcome the limitations of data-driven causal studies) will be offered in the next 

chapter. Chapter 3 will consider one epistemological account of causation, known by the 

name of the Russo-Williamson thesis, developed in philosophy of medicine, and will 

apply it to the social sciences. I shall argue that this epistemological account can reduce 

the risks of bias in causal analysis, then I shall explore whether the Russo-Williamson 

thesis can really be used in the social sciences, and whether it is in line with what some 

social scientists already do. Chapter 5 and 6, furthermore, will describe two real-life 

studies that comply with the Russo-Williamson thesis.   

In chapter 4, I shall analyse the debates in mixed methods research to identify the specific 

reasons why qualitative approaches and data are claimed to be important and 

complementary to quantitative approaches and data in social research. This analysis will 

be then used to clarify some of the ways through which qualitative thick data, if combined 

with big data, can improve causal studies in the social sciences. These considerations will 

be finally used to provide a solution to the second challenge.  

Finally, the solution to the third challenge will be articulated in chapters 7 and 8. Chapter 

7 will explore whether big data can be used to collect evidence of constitutive 

mechanisms, while chapter 8 will bring together the social epidemiological and 

philosophical literature to discuss how big data can help researchers to trace etiological 

processes. 

2.6 Conclusion 

Over the last few years, the excitement due to the rise of big data has been viewed with 

suspicion in philosophy, especially when the discussion was about causal discoveries. 

Numerous philosophers have indeed highlighted the vital role that researchers still play 

in the process of big data analysis (Canali, 2016; Floridi, 2012; Leonelli, 2014a). Similar 

doubts have been expressed in the social sciences, where several researchers have 

defended the role that thick data can play in the era of big data (Blok & Pedersen, 2014; 

Bornakke & Due, 2018; Latzko-Toth et al., 2016). 

These considerations have led me to identify three challenges that will be addressed in 

this dissertation: i) how to overcome the limitations of data-driven causal studies, ii) how 

to understand the role of qualitative, ethnographic data in causal studies based on big data, 

iii) how to use big data to obtain evidence of causality that goes beyond correlations. 
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These challenges will be investigated in relation to the social sciences, where big data 

from social networks, geolocation tools and digitalised activities are radically changing 

the kinds of information that social scientists can use. To answer the first question, in the 

following chapter I shall provide a detailed overview of one of the approaches through 

which researchers can strengthen their confidence in causal models: the approach known 

by the name of the Russo-Williamson thesis. 
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3 Taking the Russo-Williamson thesis seriously in the 

social sciences 

3.1 Introduction 

From economics to demography and political science, it is in general recognised that 

statistical models play a crucial role in the social sciences when the aim is to establish 

causal relationships. This role has become even more prominent after the emergence of 

big data, as it is shown by the growing body of computational social science research 

(Hox, 2017; Lazer et al., 2009). As described in chapter 2, however, several social 

scientists remain hesitant about the use of data-driven methods. When discussing the rise 

of big data, for instance, Clark and Golder (2015, p. 66) mentioned sampling populations, 

confounders and overfitting as some of the reasons why political scientists tend to have 

some reservations about data-driven studies. Similarly, many social scientists generally 

curb their enthusiasm about social media data and consider how sampling bias is likely 

to influence studies based on Twitter or Facebook information (Culotta, 2014; Mislove et 

al., 2011). To give an example, Gayo-Avello (2011) illustrated that sampling problems 

due to age bias can influence data studies aimed at predicting political elections from 

Twitter sentiment. To avoid such problems, contextual considerations, as well as the 

analysis of the adequacy of the results should, according to some social scientists, be a 

crucial part of the process of scientific inquiry (see for instance Bornakke & Due, 2018; 

Kitchin, 2014; Monroe et al., 2015; Titiunik, 2015). 

In this chapter I shall describe one strategy that can help social scientists to test the 

adequacy of data-driven results and that can be used to tackle some of the data-driven 

problems described in chapter 2: the approach known by the name of the Russo-

Williamson thesis (henceforth RWT), according to which a causal claim can be 

established only if it can be established that there is a correlation between the cause and 

the effect, and that there is a mechanism linking the cause and the effect that is responsible 

for such a correlation (Russo & Williamson, 2007). The applicability of Russo and 

Williamson’s idea was hugely debated in relation to biomedical research (Clarke et al., 

2014; Gillies, 2010; Illari, 2011; Weber, 2009; Williamson, 2018). In the social sciences, 

however, the debate has never been shaped rigorously, and while some philosophers and 

social scientists have advocated the use of different kinds of evidence for causal 
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discoveries (Brady & Collier, 2004; George & Bennett, 2005; Little, 2015; Moneta & 

Russo, 2014; Steel, 2004), Reiss (2009) and Claveau (2012), two philosophers of the 

social sciences, have criticised this approach. With this chapter, I aim to defend RWT 

from criticisms and to show its importance in the social sciences.  

The chapter is structured as follows. In section 3.2, I shall summarise what RWT is and I 

shall describe how this approach can be applied to the social sciences. In section 3.3, I 

shall reconstruct four main criticisms of this thesis proposed in the philosophy of the 

social sciences literature: namely i) RWT is not used in the social sciences, ii) RWT does 

not work, iii) causal concepts do not overlap and iv) there are better alternatives to RWT. 

In section 3.4, I shall provide a defence of RWT based on two general considerations: i) 

the strategy proposed by RWT is not infallible and contemplates exceptions, and ii) RWT 

appears perfectly in line with the research methods used in the social sciences. Section 

3.5, finally, will offer some examples in which RWT might solve problems of data-driven 

studies. Section 3.6 will conclude the chapter.  

3.2 The Russo-Williamson thesis 

The thesis proposed by Russo and Williamson requires both the identification of a 

correlation, or difference-making relationship, between the cause and the effect, and the 

identification of a mechanism linking the cause and the effect to establish causation. 

The origins of the distinction between difference-making and mechanistic relationships 

can be traced back to the philosophical discussions on causation that emerged in the 

second half of the twentieth century. On the one hand, in the so-called ‘difference-making 

accounts’, a causal claim is established when there is an appropriate difference-making 

relationship between the cause A and the effect B (see for instance Eells, 1991; Lewis, 

2004; Reichenbach, 1958; Suppes, 1970). Such a relationship is understood either as a 

probabilistic relationship (A causes B only if A raises the probability of the occurrence 

of B), or as a counterfactual relationship (A and B are actual events, and if A had not 

occurred, then B would not have occurred). Evidence in support of difference-making 

relationships is hence understood as any evidence proving that i) the effect would not 

occur if the cause did not occur; ii) the cause is correlated to the effect: evidence from 

randomised controlled trials, experiments or quantitative analyses counts in general as 

difference-making evidence. As an illustration, the claim that “smoking causes lung 

cancer” can be based on evidence showing that i) intervening on smoking behaviours 
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results in a decrease of cancer rates; ii) when smoking rates decrease, lung cancer rates 

decrease too; iii) smoking increases the probability of developing lung cancer. On the 

other hand, according to the mechanistic accounts, a causal relationship between A and 

B corresponds to a causal mechanism, or process, linking A and B. This idea has been 

spelt out in different ways: according to some philosophers (see for instance Dowe, 2007; 

1992; Reichenbach, 1958; Salmon, 1984, 1997), a causal mechanism is a spatio-temporal 

process that should be understood through the language and tools of physics, such as 

energy and momentum. According to others, (Craver, 2006, 2007; Glennan, 2002; 

Machamer et al., 2000) a causal mechanism is an organised system made of entities and 

activities. In these terms, for instance, the claim that “smoking causes lung cancer” can 

be supported by evidence of a sufficiently well understood biological mechanism made 

of entities (such as proteins and genes) and activities (such as protein expressions or 

genetic mutations) that links smoking and lung cancer. 

It is useful to expand a little more on RWT: this thesis requires evidence to support the 

claim “there is a correlation between the cause and the effect”, and evidence to support 

the claim “there is a mechanism linking the cause and the effect”6. In many cases, such a 

requirement is associated with the use of different kinds of studies. Indeed, while 

difference-making evidence is in general obtained through randomised controlled trials 

or statistical studies, evidence of mechanisms is often obtained through a broad group of 

mechanistic evidence-gathering methods, among which experiments, case studies and 

observational studies. It is however important to distinguish between types of evidence 

and types of evidence-gathering methods, because they do not always coincide. 

Mechanistic evidence is not necessarily collected through mechanistic evidence-

gathering methods, similarly difference-making evidence is not always obtained through 

randomised controlled trials or statistical studies. Illari (2011, pp. 5–6), to give an 

example, argued that mechanistic evidence can be obtained through repeated trials, as 

happened in the trials conducted by Crick et al. (1961) on chemical mutagens to crack the 

genetic code. There might be cases, consequently, where mechanistic claims are 

supported by evidence obtained from statistical studies or randomised controlled trials, 

and cases where correlational claims are supported by evidence collected in mechanistic 

                                                           
6 The amount of evidence should be sufficient to establish the presence of a correlation and the presence of 

a mechanism. In the case of mechanisms, mechanistic evidence is likely to be partial and to shed light only 

on some aspects of the mechanism. If researchers have good reasons to think that this information is 

sufficient, they might decide to establish the presence of the mechanism. 
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studies. The difference between types of evidence and types of methods is represented in 

Figure 6. 

 

Figure 6. RWT requires the collection of evidence supporting both the 

claim “there is a correlation between the cause and the effect”, and the 

claim “there is a mechanism linking the cause and the effect”. It does 

not require the use of difference evidence-gathering methods. 

Furthermore, it does not assume that mechanistic claims are supported 

only by mechanistic studies, and that correlational claims are supported 

only by statistical studies. A mechanistic claim, for instance, might be 

supported by evidence obtained through statistical studies or 

randomised controlled trials. 

3.2.1 The Russo-Williamson thesis in the health sciences 

Originally, Russo and Williamson put forward an account of evidential pluralism in the 

health sciences. They developed their thesis by considering what claims need to be 

established in causal studies, and did not explicitly discuss the methods required to 

establish such claims. In other words, they focused their attention on the top of Figure 6, 

without discussing pluralism of evidence-gathering methods. This point was further 

clarified by Illari (2011, pp. 3–6). 

While the collection of evidence supporting a probabilistic relationship was a process 

widely discussed in the medical sciences, where for a long time randomised controlled 

trials had been considered the ‘gold standard’ (Bothwell et al., 2016), how to understand 

the notion of evidence in support of a mechanistic relationship remained questionable. 

Recently, Williamson (2018) has clarified that, in their account, the term ‘mechanism’ 

can be understood broadly in three ways: i) as a complex system consisting of entities and 

activities organised in such a way that, together, they are responsible for the phenomenon 

under study (as described by Machamer et al., 2000); ii) as a mechanistic process through 
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time and space along which a signal is propagated (Dowe, 2007; Reichenbach, 1958; 

Salmon, 1997); iii) as a combination of a complex system and a process.  

Some examples can help to clarify this point. In his fascinating autobiography In search 

of memory (2006), Kandel described the discovery of the complex molecular system of 

long-term memory, organised in entities (neurons, proteins and genes) and activities (such 

as protein movements and gene expressions). As illustrated in Figure 7, an environmental 

stimulus such as the presence of a dangerous animal in the room activates the release of 

serotonin, that in turn acts on the sensory neuron to increase cyclic adenosine 

monophosphate and causes protein kinase A and MAP kinase to move to the nucleus, 

activate the binding protein CREB-1 (that activates gene expression ) and deactivate the 

binding protein CREB-2 (that suppresses gene expression). The activation of gene 

expression changes the function and the structure of the cell, facilitating in this way the 

growth of new synaptic connections. 

 

Figure 7. The complex molecular system of long-term facilitation 

composed of entities (neurons, proteins and genes) and activities (like 

protein movements and gene expressions) (Kandel, 2006, p. 204). 

Regarding the notion of causal processes, furthermore, a case in point is the propagation 

of an electrical signal from an artificial peacemaker to the appropriate part of the heart.   

The account proposed by Russo and Williamson was purely epistemological: RWT, they 

argued, is a thesis about how to properly establish a causal relationship. The 

epistemological account was proposed as both descriptive and normative. It is claimed to 
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be descriptive because it captures a typical approach used in the health sciences to 

establish causality. The International Agency for Research on Cancer, for instance, 

regularly brings together experts to establish whether particular exposures are 

carcinogenic to humans, and its overall evaluation is based on a variety of evidence, 

among which epidemiological (difference-making) studies and mechanistic information 

(Wilde & Parkkinen, 2017).  

It is claimed to be normative because it is needed to reduce considerably the risk of bias 

when causal claims are established (this point was confirmed by a later formulation of the 

thesis in Clarke et al., 2014). In chapter 2 I have discussed some of the reasons why 

machine learning algorithms (as well as other difference-making methods) might detect 

false correlations between variables: in some circumstances, sample bias might cause 

Simpson’s paradox and subgroups with a common trend might show the reverse trend 

when they are aggregated. In other situations, low-quality data or the curse of 

dimensionality can lead researchers to establish a correlation that does not exist in the 

underlying population, or the absence of relevant data might make scientists ignore an 

important variable that acts as a confounder. All these errors entail either the inference of 

a non-existent correlation (like in the case of low-quality data showing a correlation that 

would not exist if variables were correctly measured), or the inference of a non-existent 

causal relationship from an existing correlation (like in the case of confounders).  

Even causal studies based only on the presence of a causal mechanism might generate 

inferential mistakes, among which the most famous is the problem of ‘masking’. 

Establishing the presence of a causal mechanism is not sufficient to establish causation 

because there may also exist further counteracting mechanisms whose effects interact 

with (or mask) the effect of the first mechanism, with the consequence that any difference 

made through the established mechanism is cancelled out by these counteracting 

mechanisms (Illari, 2011). Steel, for instance, offered an example examining the 

relationship between exercise and weight loss: on the one hand, there is a well-known 

mechanism whereby exercise can cause more calories to be burned; on the other hand, 

exercise increases appetite, and this can lead people to eat more than usual (Steel, 2008, 

p. 68). In other words, the effect of one mechanism might mask the effect of the other. 

Establishing both the presence of a correlation and the presence of a causal mechanism 

can help to reduce these forms of errors, and this is why Russo and Williamson argued 
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that their thesis has a normative dimension. Establishing the presence of a causal 

mechanism, for instance, can allow researchers to uncover bias caused by Simpson’s 

paradox, or can help them to detect problems associated with the quality of data. 

Establishing the presence of a correlation, instead, can help to tackle the problem of 

masking by recognising whether the cause, via the established mechanism, does make a 

real difference to the effect. 

3.2.2 RWT in the social sciences 

Russo and Williamson developed their claim by considering how researchers infer 

causality in the health sciences, nevertheless they expressed their confidence in the 

possibility of extending the epistemological claim also to other domains. For, instance, 

they recognised that: 

“evidence in the social sciences is very diverse too. The social sciences look 

for mechanisms, which can be social, biological or mixed, and for 

dependencies between variables of interest [...]. Yet in using both mechanistic 

and probabilistic evidence scientists do not aim at establishing different 

causal claims” (Russo & Williamson, 2007, p. 169) 

According to this claim, when social scientists establish casual relationships, both 

difference-making and mechanistic claims are in general established. Like in the health 

sciences, various types of mechanistic evidence can be collected because social causal 

mechanisms can be conceptualised in different ways. Researchers might look for complex 

systems made of organised entities and activities, but they could also search for causal 

processes linking the cause and the effect through time and space. In particular situations, 

furthermore, they might find a combination of them.  

Unlike in the health sciences, however, it is difficult to find social phenomena that can be 

understood as causal processes à la Salmon (Dowe, 2007; 1992; Reichenbach, 1958; 

Salmon, 1984, 1997), given that most of the causal phenomena in the social sciences 

cannot be spelt out in terms of physical quantities. Values and beliefs, for instance, play 

often a crucial role in social phenomena, and are not associated with any physical object. 

When social scientists talk about causal processes, consequently, they often refer to a 

group or chain of events that leads to specific effects. Maxwell (2004a, p. 5), for instance, 

argued that causal processes are “processes by which some events influence others”, 
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while Little (2018, p. 415) described them as a combination of social conditions, 

constraints, or circumstances that together bring about a causal effect. 

An illustrating example that shows how a mechanism can be conceptualised as a causal 

process is offered by Skocpol’s political study (1979). By analysing social revolutions in 

France (1788-9), China (1911-1916) and Russia (1917), Skocpol developed a 

reconstruction of the common causal chain that led, in the three different contexts, to a 

revolution. The key steps of the causal chain were, according to her study, i) the growing 

of political pressure from more economically developed countries; ii) an agrarian 

economy (peasants as a major presence) and iii) a non-autonomous State (for instance, 

the dominant class had strong political leverage and could contrast the State’s decisions). 

Together, these factors caused a State breakdown. For instance, in China the breakdown 

followed the transfer of power to the regional level that had occurred in the final years of 

the old regime, before 1911. At the same time, iv) peasant autonomy and v) landlord 

vulnerability led to a massive peasant revolt. Together, finally, the State breakdown and 

the peasant revolt caused a social revolution, as illustrated in Figure 8.  

 

Figure 8. The causal process leading to social revolutions studied by 

Skocpol (1979). 

As concerns an example of an organised system with its own entities and activities, it is 

possible to analyse the structure of the well-known segregation mechanism studied by 

Schelling (1978). According to his studies, individual discriminatory preferences, all 

together, constitute the neighbourhood structure, that can in turn be characterised by a 

phenomenon of segregation. The initial mechanistic assumption is that the society is 

composed of individuals who belong to a specific group and who are able to discriminate 
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(i.e. to distinguish between their own group and other groups). In Schelling’s mechanistic 

model, all individuals will be happy to live in a mixed neighbourhood, but will be 

unhappy if they have minority status. By interacting with each other, each individual—

who is free to move if he is discontent with the composition of his neighbourhood—will 

look for the neighbourhood with the preferred composition. Of course, if an individual 

abandons his neighbourhood, his activity changes the composition of both his past and 

future neighbourhoods, with consequences for the others (for instance, some individuals 

of the same group, now in minority, might decide to leave their neighbourhood). Due to 

the continuous activities of the agents, everyone will end up living in segregated 

neighbourhoods. This would be a consequence of the simple individual preference not to 

live as a minority. In such a case a social mechanism consisting of entities (individuals) 

and activities (their movements between one neighbourhood and another), would produce 

the relevant effect on the state of segregation of a population. Figure 9 can help to 

illustrate it: each spot represents an individual. The overall group is composed of two 

groups (the red and the blue). After the first individual movements, all individuals react 

to them with the consequence that, in the end, the two groups are clearly divided. 

 

Figure 9. The complex social system of segregation. Figure from Cortez 

and Rica (2015, p. 64). 

From a normative point of view, evidence supporting the presence of either a complex 

mechanism or a spatio-temporal process, and evidence showing a difference-making 

relationship, would be required by RWT to establish a causal claim in the social sciences. 

3.3 Four criticisms of RWT 

Numerous causal studies in the social sciences apparently establish both correlational and 

mechanistic claims, however some philosophers argued that RWT does not work very 

well in such a field of study (Claveau, 2012; Reiss, 2009). Their criticisms are based both 
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on descriptive and normative observations and can be divided into 4 separate arguments. 

All these arguments are about the type of claims established and do not discuss pluralism 

of evidence-gathering methods. In other words, they focus only on the top of Figure 6. 

3.3.1 Against descriptive RWT: social scientists do not use it 

RWT contains a descriptive claim according to which scientists establish a difference-

making relationship as well as a mechanistic relationship between the cause and the effect 

when they establish causation. Claveau (2012) disagreed with this observation, and based 

his criticism on a concrete case study: the analysis of the causal relationships, across 

countries, between unemployment, the unemployment benefit system and the 

employment protection legislation. To examine RWT, the author reconstructed how 

economists established causal claims concerning the causes of unemployment (Claveau, 

2012, p. 808). 

Three causal relationships were accepted within the scientific community: (i) 

unemployment benefits increase unemployment, (ii) the strictness of the unemployment 

benefit eligibility conditions—linked to ‘job search intensity’—reduces unemployment, 

iii) the strictness of the employment protection legislation has no net effect on 

unemployment. The first and the third claims were supported by evidence of difference-

making relationships obtained through regression analyses, and by evidence of causal 

mechanisms collected by means of micro-data studies focused on potential causal 

pathways between the cause and the effect (such studies enable researchers to look, for 

instance, at the firing and hiring firms’ behaviours in cases of a stricter employment 

protection and of weaker legislation). Nevertheless, the second claim (“the strictness of 

the unemployment benefit eligibility conditions—linked to ‘job search intensity’—

reduces unemployment”) was established by identifying only the presence of a causal 

mechanism, without collecting difference-making evidence (Claveau, 2012, p. 812). 

Claveau argued that this happened because economists did not find a measure of the 

strictness of unemployment benefit eligibility (SUBE) that was comparable across 

countries: the most suitable measure was the cost of ‘active labour market policies’, or 

ALMPs, the system of programmes intervening in the labour market to help unemployed 

people find work. This variable, however, did not include only SUBE, but many other 

factors such as placement services and subsidised training (Claveau, 2012, p. 812). Given 

that the cost of ALMPs was not determined only by SUBE, this was recognised as a bad 
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proxy for it. Some economists tried to disaggregate ALMPs expenditures into five 

components, among which ‘Public Employment Service’, that was thought to be a good 

proxy for SUBE (Bassanini & Duval, 2006, pp. 81–83). The coefficient of that 

component, however, was proved to be very unstable, consequently any statistical 

analysis based on it was not accepted as good evidence of a different-making relationship. 

Due to this limitation, economists decided to establish a causal claim just considering 

some evidence obtained through mechanistic studies. This situation, hence, is in contrast 

with the descriptive form of RWT. 

3.3.2 Against normative RWT: RWT does not work 

Suppose we want to understand if watching violent TV programs causes violent 

behaviours. We start by searching for a causal mechanism, and we find out that, in a 

sample population, consumers identify themselves with aggressive characters and start 

confusing reality and fantasy, with the consequence that they begin to believe that the 

depicted scenarios are realistic. This, in turn, leads them to react violently even in real-

life situations. Now that we have evidence of a mechanism in support of our causal 

hypothesis, we look at the correlations between violent TV programs and violent 

behaviours in the total population under study, and we collect evidence of a difference-

making relationship. It seems, hence, that we can establish our causal claim. 

The problem, however, is that the correlation is actually brought about by a common 

cause that was not measured. In other words, the correlation that we are considering is 

spurious. This happens because, rather than having just one causal mechanism linking 

violent TV programs and violent behaviours, in the population under study there are two 

acting mechanisms that mask each other, as described in Figure 10. The second 

mechanism, for instance, might lower the violence in some of the consumers because TV 

consumption acts as a deterrent. In such a way, the effects of the two mechanisms cancel 

each other out and, if it were not for the spurious correlation, we would not find any 

difference-making relationship between violent TV programs and violent behaviours. 
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Figure 10. The relationship according to which watching violent TV 

programs increases violent behaviours is masked by another causal 

mechanism whereby watching violent TV programs decreases violent 

behaviours. The remaining probabilistic relationship between watching 

violent TV programs and violent behaviours is brought about by a 

common cause. 

This is the fictitious example proposed by Reiss (2009, p. 28) to justify his criticism: 

RWT does not work. Unlike Claveau’s analysis, this consideration poses a problem to the 

normative RWT claim. How can we say that social scientists should use RWT, if it can 

lead to incorrect causal claims like in the example above? 

3.3.3 Against normative RWT: non-overlapping causal concepts 

This first criticism proposed by Reiss is strictly linked to a second consideration, 

according to which different concepts of causation do not necessarily overlap. Reiss 

introduced this idea discussing the errors made in the violent TV programs example: 

“In our example, the hypothesis we can hope to establish or reject on the basis 

of statistical evidence is a probabilistic one: in a causally homogeneous 

population, is violence correlated with the consumption of violent TV 

programs? (Answer in the example: no.) Using mechanistic evidence, by 

contrast, we can hope to establish or reject a mechanistic hypothesis: is there, 

in some individuals, a continuous mechanism from “input variable”—TV 

consumption—to “output variable”—violence? (Answer in the example: 

yes.)” (Reiss, 2009, p. 31) 

To clarify his claim, Reiss described some common situations that are characterised by 

this problem: those where omissions have causal power, and those where there is a 

problem of masking. To begin with, he considered that there are several cases in the social 

sciences where omissions are claimed to cause phenomena: negligence in civil law, for 

instance, is in general understood as a failure to act, and is often claimed to be the cause 

of some effects (such as the complainant’s harm) even if it is impossible to find a physical 

mechanism between them. In addition, he observed, the presence of a mechanism does 

not exclude the possibility that the overall influence of the cause to the effect is null. 

Masking situations can hence be interpreted as cases where causal concepts do not 

overlap.  
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Reiss argued that, due to these situations, knowing that there is a correlation between X 

and Y should not allow us to conclude that, if the relationship is causal, there should also 

be a mechanism linking X and Y. Similarly, knowing that there is a mechanism should 

not allow us to infer that, if the relationship is causal, we should find also a correlation. 

Even in this case, Reiss’ criticism was directed against normative RWT: if this problem 

were proved to be true, RWT would be considered inadequate in the social sciences. 

Consequently, social scientists should not be asked to collect both evidence of 

mechanisms and evidence of difference-making relationships to establish causal claims. 

3.3.4 Alternatives to RWT: conceptual pluralism and conceptual monism 

Russo and Williamson observed that social scientists tend to establish the presence both 

of a correlation and of a mechanism to claim that the relationship between two factors is 

causal. This, according to them, cannot be explained by the existing monistic or pluralistic 

accounts of causality. On the one hand, existing accounts of conceptual monism would 

not be able to explain why more than one type of relationship is established, on the other 

hand existing accounts of conceptual pluralism would entail that scientists use different 

types of evidence to support different kinds of causal claim (evidence of correlation to 

support a causal claim that sees causation as a difference-making relationship, evidence 

of a mechanism to support a causal claim that sees causation as a mechanistic 

relationship). Neither monistic nor pluralistic accounts, if we consider the existing 

possibilities, would be able to account for the use of different types of evidence in support 

of a unique casual claim7.  

Both Reiss and Claveau criticised this argument, even if in diametrically opposed ways: 

Reiss defended conceptual pluralism, Claveau supported the use of conceptual monism 

in the social sciences.  

Starting from the consideration that the overlap between the presence of mechanisms and 

of correlations is only an empirical truth that needs to be confirmed a posteriori, Reiss 

concluded that we should not accept RWT. The best option we have is to accept that each 

causal method defines its own concept of causation: for statistical methods, “X causes Y” 

means that there is a correlation between X and Y, nothing more, while for a mechanistic 

approach “X causes Y” means that there is just a mechanism between the cause, X and 

                                                           
7 While Russo and Williamson argued for a metaphysical account of causality that they called the epistemic 

theory of causality, the form of evidential pluralism proposed by RWT does not say anything directly about 

the concept of causality that researchers should endorse (see also Williamson, 2018). 
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the effect, Y8. Evidence of a correlation and evidence of a causal mechanism, therefore, 

would not support the same causal claim, but different causal claims, one for each of the 

accounts used. To defend the applicability of his form of conceptual pluralism, 

furthermore, Reiss argued that the fact that social scientists do not specify the concept of 

causation they endorse should not be interpreted, like Williamson and Russo did, as a 

supporting factor in favour of the idea that there can be just one concept of causation 

bearing relationships with different kinds of evidence. Social scientists are pluralist 

regarding the concepts of causation, and this ambiguity has only caused equivocations. 

Claveau, on the contrary, argued that the use of RWT can be justified within a monistic 

account. He argued that it is very rare, in the social sciences, to conduct a good difference-

making study with quality high enough to rule out the risk of bias. It is for this reason, 

hence, that social scientists embracing a difference-making account in general prefer to 

use also evidence supporting the presence of a mechanism: 

“it would be an anomaly for the counterfactual-manipulationist account if 

other (mechanistic) evidence for a specific claim was demanded even though 

this same claim was already backed by the best difference-making evidence. 

This proposition has however little practical relevance since difference-

making evidence is perhaps never of the ‘perfectly adequate’ type” (Claveau, 

2012, p. 809) 

Both Reiss and Claveau disagreed with the claim that neither existing forms of conceptual 

monism nor existing forms of conceptual pluralism can account for the use of a plurality 

of evidence in a single study, but there is a fundamental difference between their 

objections. Reiss argued that scientists use different types of evidence to support different 

causal claims: conceptual pluralism was considered an alternative account that clarifies 

how social scientists use evidence. Claveau, instead, accepted that different types of 

evidence are used for a single causal claim, and justified such an approach highlighting 

the methodological limitations of the (monistic) difference-making account that, 

according to him, social scientists embrace when they study causality. In his view, until 

researchers will not be able to improve their methods, different kinds of evidence will be 

used to support a single causal claim. 

                                                           
8 Reiss recognised, however, that if the mechanism under study is the only one that links the two variables, 

scientists expect the variables to be correlated as well (Reiss, 2009, p. 30). 
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3.4 A defence of RWT in the social sciences 

In this section, I shall propose an answer to each criticism discussed above. To begin with, 

in section 3.4.1 I shall examine the descriptive claim according to which there are 

situations where social scientists do not establish the presence both of a difference-

making relationship and of a causal mechanism, and I will show that this criticism can be 

solved by arguing i) that researchers can establish the presence of a correlation without 

conducting statistical studies; ii) that researchers did not establish causation or that iii) 

normally social scientists comply with RWT, even if there are exceptions. In section 3.4.2 

I shall explain that RWT requires that researchers properly establish the presence of a 

correlation, and that such a thesis is claimed to lower the risk of methodological bias in 

causal studies. It is not expected, consequently, that RWT cancels all the possible 

inferential mistakes when a causal claim is properly established. This consideration can 

be used to answer Reiss’ criticism according to which RWT might lead researchers to 

establish wrong causal relationships. Next, in section 3.4.3 I shall argue that in general 

causal concepts overlap, while in section 3.4.4 I will show why RWT should be preferred 

to existing accounts of conceptual pluralism, and why it is possible to accept both RWT 

and existing forms of conceptual monism. A careful analysis of RWT and real examples 

from the social sciences will support my defences of RWT in the social sciences both at 

the descriptive and at the normative level.  

3.4.1 Social scientists comply with RWT  

Russo and Williamson’s descriptive claim is based on the observation that, in the social 

sciences, researchers tend to use a plurality of evidence to support and establish causal 

relationships. As described by Claveau himself, for instance, for two of the three causal 

claims established, economists collected both evidence of difference-making 

relationships and evidence of mechanistic relationships.  

From this claim, however, it cannot be excluded that, under particular circumstances, 

social scientists can establish a causal claim using just one type of study. As illustrated in 

Figure 6 in section 3.2, there are cases where either mechanistic studies can be used to 

establish correlations, or statistical studies can be used to establish the presence of 

mechanisms. Illari (2011, pp. 5–6), for instance, described a case where researchers 

established the presence of a mechanism by collecting evidence from repeated trials 

(Crick et al. 1961).  
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This consideration can be used to develop a possible answer to Claveau’s criticism. It 

could be argued that, in the case described by Claveau, the mechanistic studies conducted 

by researchers were sufficiently good to allow them to establish both the presence of a 

mechanism between the cause and the effect, and the presence of a correlation linking the 

cause to the effect. In the context described by Claveau, this answer seems plausible: 

economists established the presence of a mechanism using theoretical models, 

simulations, and micro-data studies conducted in several countries (see Fredriksson & 

Holmlund, 2006, pp. 370–377). In addition, some difference-making evidence was 

collected by means of randomised controlled trials. Although evidence from trials was 

not sufficient, according to researchers, to establish the presence of a correlation, the 

combination of this evidence with the set of information obtained through mechanistic 

studies could have been considered sufficient to establish the presence both of a 

mechanism and of a correlation.  

There is a second possible answer that can be offered to Claveau: due to the impossibility 

of establishing a correlation, economists did not establish the presence of a causal 

relationship but only argued that the strictness of the unemployment benefit eligibility 

conditions is likely to reduce unemployment. In the review of the literature published by 

Fredriksson and Holmlund (2006) cited by Claveau, for instance, the authors considered 

that the available evidence was not wholly conclusive and concluded that:  

“more stringent search requirements are likely to speed up transitions to 

employment” (Fredriksson & Holmlund, 2006, p. 377) 

If one of these two answers is accepted, then it might be possible to conclude that the case 

proposed by Claveau does not pose a problem for RWT.  

Someone, however, might reject both these answers, and might argue that economists 

actually established causation without having established correlations. This position 

would cause a problem to RWT because it would be understood as an exception, a case 

in which RWT did not hold. 

My answer to this argument would be twofold. On the one hand, I would consider that 

exceptions do not pose a real problem to RWT. While in their first discussion of RWT 

(2007), Russo and Williamson did not specify it, recently Williamson (2018) has clarified 

that normally, in order to establish a causal claim, one needs to establish both correlation 

and mechanism (Williamson, 2018, p. 1). It is hence possible to have cases where 
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causation is established even if either the presence of a mechanism or the presence of a 

correlation is not established. In these terms, Claveau’s case study can be accepted as one 

of the exceptions where a causal claim is established without establishing the presence of 

a difference-making relationship. 

On the other hand, I would argue that, as it will be explained in detail in section 4.3, 

Williamson has changed RWT having in mind some situations where either a difference-

making relationship or a causal mechanism does not exist. Claveau’s criticism, instead, 

simply shows a case where researchers were not able to collect sufficient evidence to 

establish correlation. Their decision to establish causation appears motivated by the fact 

that their good mechanistic studies and some (insufficient) difference-making evidence 

from randomised controlled trials led them to believe in the presence of an unmeasurable 

correlation. Although it remains possible that causation was actually studied without 

establishing the presence of a correlation, it seems more plausible that the combination 

of mechanistic evidence and evidence from randomised controlled trials allowed 

researchers to establish the presence of a correlation. 

It is important to note that my answer according to which the causal claim was actually 

established without establishing the presence of a difference-making relationship accepts 

Claveau’s case study as an exception. It is assumed that, generally, this practice is not 

used in causal studies. It is hence helpful to provide real cases that illustrate how, in 

general, causal relationships in the social sciences are established by establishing both the 

presence of a mechanism and the presence of a correlation. To begin with, we can analyse 

the causal debate about the relationship between natural resources and civil war. As 

explained by Ross (2004), several studies identified a strong correlation between natural 

resources and civil war in different cases. Collier and Hoeffler (1998), for instance, 

argued that states that massively export  primary commodities have a higher risk of civil 

war if compared to resource-poor states. Buhaug and Gates (2002), furthermore, 

discovered a strong correlation between the incidence of natural resources in the conflict 

zone, and the scope of the conflict (in terms of the conflict’s geographical area). Ross 

argued that statistical correlations cannot make a causal claim complete and persuasive, 

and considered that the correlation between natural resources and civil war could be 

spurious: 

“[…] both civil war and resource dependence might be independently caused 
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by some unmeasured third variable, such as a weak rule of law. A state where 

the rule of law is weak might be unable to attract investment in its 

manufacturing sector, and hence would depend more heavily on resource 

exports; this state might also face a heightened risk of civil war through a 

different process. The result could be a statistically significant correlation 

between resource dependence and civil war, even though neither factor would 

cause the other” (Ross, 2004, p. 36) 

It was this reason that motivated social scientists to look for causal mechanisms able to 

account for such a correlation. Since several mechanistic hypotheses were proposed in 

the literature, Ross verified their presence in thirteen cases of civil wars. He focused his 

attention on seven mechanistic hypotheses (to give an example, one of the hypotheses 

was that the availability of natural resources offers the population of resource-rich zones 

an incentive to form a separate state, and this increases the probability of civil war). He 

found out that five of these mechanisms operated in the cases under study, and identified 

also four unforeseen mechanisms linking resource wealth and civil war. The possibility 

of observing the hypothesised causal mechanisms at work led Ross to conclude that there 

was sufficient evidence in all the thirteen cases to support the claim according to which 

natural resource wealth is causally linked to civil conflicts (Ross, 2004, p. 61).  

Further examples of RWT in the social sciences will be discussed studying Wood’s study 

on the reasons why peasants in El Salvador decided to join rebel movements (2003) (in 

chapter 4), Garip and Asad’s study concerning the phenomenon of Mexico–U.S. 

migration (2016) (in chapter 5), and in the analyses conducted within the project 

LIFEPATH’s about how socio-economic conditions influence health (in chapter 6).  

Overall, Claveau’s criticism can be solved in three ways. First, it can be argued that 

researchers do not need a statistical study to establish the presence of a correlation 

between the cause and the effect. In this case, the mechanistic studies conducted by 

researchers were sufficiently good to allow economists to establish both a correlation and 

a mechanism between the cause and the effect. Second, it can be claimed that this case is 

perfectly consistent with RWT because, due to the lack of difference-making evidence, 

researchers did not establish causation but only claimed that the strictness of the 

unemployment benefit eligibility conditions is likely to reduce unemployment. Finally, if 

it is confirmed that researchers did not establish a correlation but established causation, it 
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might be argued that, in general, researchers need to establish the presence both of a 

correlation and of a mechanism in order to properly establish causation, but there can be 

exceptions. In such a context, Claveau’s example can be considered an exception.  

3.4.2 RWT works in the social sciences 

My answer to Reiss’ criticism is that RWT requires that, in order to properly establish 

causation, researchers properly establish the presence of a correlation and of a 

mechanism. In Reiss’ example, however, it can be argued that correlation was not 

properly established because the study did not allow researchers to claim that there was a 

probabilistic dependence between watching violent TV programs and violent behaviours 

conditional on potential confounders9 (Williamson, 2018, p. 4). Researchers did not rule 

out the possibility of confounders, otherwise they would have discovered the presence of 

the common cause responsible for the correlation. This consideration is sufficient to 

conclude that, in Reiss’ example, researchers did not properly establish correlation and, 

consequently, did not comply with RWT. Therefore, the inferential mistake described by 

Reiss is not due to RWT, and there is no reason to reject the normative dimension of 

RWT.  

Reiss might reply that there are cases where researchers properly establish a correlation 

after having ruled out all the possible confounders they were able to hypothesise. 

However, they may not have been able to imagine a specific possible confounder Z, with 

the consequence that they might not check if the probabilistic dependence between the 

cause and the effect is conditional on Z. This might lead them to establish the presence of 

a correlation between the cause and the effect even if the correlation is caused by Z.  

In this context, my response would be that RWT is a thesis about how to properly establish 

causation and to reduce the risk of bias. In some situations, researchers can conduct high-

quality studies, rule out the possibility of confounders and properly establish causation. 

Establishing causation, however, is fallible: it follows that researchers can properly 

establish a causal relationship that, in reality, does not exist. The normative dimension of 

RWT is based on the claim that evidence of difference-making relationships and evidence 

of mechanisms have different weaknesses, therefore through their combination scientists 

can reduce the probability of incorrect causal inferences (Illari, 2011, p. 146). It is not 

                                                           
9 It is important to specify that RWT does not require that researchers test all the confounders that can be 

found, but only to think about possible confounders and to verify their absence. Background information, 

in general, plays a vital role in this process. 
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claimed that RWT helps to rule out all possible inferential mistakes: properly establishing 

both the presence of a correlation and the presence of a mechanism does not guarantee 

the correctness of the causal inference, it only reduces the possibility of methodological 

bias that might lead to inferential mistakes.  

Consequently, even if Reiss could offer real-life examples in which causal relationships 

are properly established but there are inferential mistakes, this would not cause substantial 

problems to RWT. 

3.4.3 Overlapping causal concepts 

The possibility of having different non-overlapping causal concepts can be seen as a big 

obstacle to RWT. However, as I shall show, in at least some cases RWT can allow for 

situations where causality is apparently not accompanied by difference-making 

relationships, or a causal link does not act through a causal mechanism. 

Initially, Russo and Williamson did not address explicitly this problem, but Williamson 

(2018) has recently discussed it, admitting that RWT contemplates exceptions. Such 

exceptions, however, are rare enough not to pose a real problem to RWT. If we consider 

Reiss’s examples, moreover, it is arguable that at least one of the examples used in his 

paper should be understood as a real exception. 

Let us consider the case of masking. To begin with, it is curious to see that Reiss used 

this problem as a reason to reject RWT. It was exactly the problem of masking, indeed, 

one of the weaknesses described by the authors to show how the collection of different 

kinds of evidence could lead to less bias in causal inference. Discovering only one of two 

counteracting mechanisms linking X and Y would provide just a partial mechanistic 

explanation of the effect Y, and it would make impossible to claim either that the cause 

X has a positive or negative effect on Y, or that the cause X has a null effect on Y. 

The first response, hence, might be that masking does not necessarily entail that the two 

concepts of causation—mechanistic and difference-making—are not overlapping. Each 

acting mechanism exerts an effect and produces a difference-making relationship, the 

problem is that counteracting mechanisms and their probabilistic effects interact, and it 

might be then difficult to identify the difference-making relationships associated with 

every acting mechanism. In some cases, this difficulty can be overcome: in Reiss’s 

example, for instance, scientists would probably find a difference-making relationship 
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(i.e. watching violent TV programs increases violence) in the sample population used for 

the mechanistic study. This relationship, however, would be hidden in the total population 

because another part of that population shows exactly the opposite relationship (i.e. 

watching violent TV programs decreases violence).  

In other cases, two or more mechanisms can act in the same population, therefore it might 

be impossible to isolate their distinct probabilistic effects. I have mentioned above the 

example proposed by Steel (2008, p. 68): a person who does exercise causes calories to 

be burned; but can also cause her appetite to increase. If researcher considered a group of 

people, hence, it would be possible to find in each person involved in the study both the 

mechanism through which exercise reduces bodily fat by burning calories, and the 

mechanism whereby exercise increases bodily fat by increasing appetite and making a 

person eat more than usual.  

This, however, should not lead scientists to believe that there is a mechanism without a 

corresponding difference-making relationship. Rather than being cases where the causal 

concepts do not overlap, these could be understood as cases where scientists have failed 

to find evidence showing the distinct difference-making relationships.    

This first answer should be accompanied by a further consideration. The problem of 

masking has been discussed several times in the social sciences. I have already mentioned 

Steel’s example of exercise and weight-loss (Steel, 2008, p. 68), another example was 

proposed by Elster (1993), who observed that the ‘sour grapes mechanism’, according to 

which individuals’ desires are adjusted in accordance with the difficulties related to their 

achievement, is often masked by an opposite mechanism whereby people desire what they 

cannot have, precisely because it is impossible to have it.  

Unlike what argued by Reiss, in general, social scientists do not consider the claim “there 

is a mechanism linking X and Y” as sufficient to establish any kind of causation until the 

possibility of masking is ruled out. Also Claveau, for instance, claimed that: 

“since the causal claim was established solely with mechanistic evidence, it 

must mean that the specialists are quite confident in the reliability of 

mechanistic evidence for this specific claim—i.e., they don’t expect missing 

paths, general equilibrium effects and country heterogeneity to be major 

problems.” (Claveau, 2012, p. 812). 
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Social scientists are aimed at recognising when counteracting mechanisms act together. 

They do not want merely to discern one of them, they want to understand the conditions 

under which they act separately or together (see Elster, 1993, p. 2). This goal is clearly 

illustrated by the fact that one of the chapters of George and Bennet’s book Case Studies 

and Theory Development in the Social Sciences was used to develop new strategies to 

study the complex interactions between different, contrasting mechanisms (George & 

Bennett, 2005, pp. 233–262). 

It could be concluded that the fact that social scientists want to recognise when a 

mechanism is masked is in accordance with the idea that evidence in favour of a type of 

causal relationship (mechanistic, in this case) should entitle scientists to believe in the 

presence of another type of causal relationship (difference-making). Social scientists want 

to know that the mechanism shown by their evidence is not masked before establishing 

causation. The absence of masking phenomena, hence, would lead them to believe that 

there should be also a difference-making relationship between the cause and the effect. 

In addition, the absence of a difference-making relationship associated with the 

mechanism under study would lead social scientists to look for further counteracting 

mechanisms. 

Reiss’s masking example, once examined in depth, does not seem to be a case where the 

two causal concepts do not overlap. But what about causal relationships where the causes 

or the effects are omissions? 

Regarding omissions that cause something, while it is easy to find difference-making 

evidence in support of a causal claim such as “the omission X causes Y”, it is impossible 

to find processes linking omissions or absences and phenomena. From this, it would 

follow that there are some situations where the notion of cause as a difference-making 

relationship does not have a corresponding notion of cause as a mechanistic relationship. 

Reiss focused on the social sciences, but it should be noted that even in the health sciences 

there are several cases involving absences or omissions (for instance failing to treat a 

disease can cause the patient’s death). If Reiss were right, consequently, this would be a 

problem for RWT in general.  

As Williamson (2018) has recently discussed, however, there is a solution to this problem 

that can be applied to both these fields: in the case of absences or omissions, it can be 

argued that, if things had been different and if the cause had been present, it would have 
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been possible to find a mechanism between the present cause and the putative effect. For 

instance, diligence in civil law could, through a causal process, cause a positive effect on 

other people, while treating a disease could cause the recovery of the patient. Hence, even 

in the case of causally relevant omissions, where actual mechanisms cannot be found, it 

should be easy for scientists to establish the existence of counterfactual mechanisms. 

As concerns situations where the omission is not the cause, but the effect, the solution 

might be different. Let us consider some cases: the presence of an authority figure can 

cause in a person a lack of moral reasoning, failing a treatment might cause the absence 

of coagulation. In such cases, scientists might explore counterfactual mechanisms as 

suggested by Williamson (2018). This strategy, however, might involve complex 

transformations where, in order to consider real effects, the causes themselves have to be 

turned into omissions or absences. Alternatively, researchers can turn such omissions and 

absences into the presence of a phenomenon. For instance, the lack of moral reasoning 

caused by the presence of an authority figure can be described as a situation of total 

obedience to authority (the social psychologist Milgram called this condition the ‘agentic 

state’ (Milgram, 1974)). Hemophilia, moreover, is known as the condition in which a 

person's blood does not clot properly. This, hence, would allow scientists to establish the 

presence both of a difference-making relationship and of a mechanism between the cause 

and the effect. 

In general, causal relationships where omissions and absences are either the causes or the 

effects, allow scientists to collect, if not evidence of an existing causal mechanism, 

evidence of a counterfactual causal mechanism. It might be argued that particular cases 

do not enable scientists to collect real or counterfactual mechanistic evidence. In most of 

the cases, however, for a difference-making link, scientists can find a corresponding 

existing or counterfactual mechanism. The situations where this is not possible are so 

sporadic that it can be just claimed that, normally, causal concepts are overlapping.  

3.4.4 Overcoming conceptual pluralism and conceptual monism 

Two criticisms need to be addressed in this section. The first criticism is associated with 

a defence of conceptual pluralism and was proposed by Reiss in his analysis of RWT. 

The second criticism, supported by Claveau, is based on the assumption that conceptual 

monism can accommodate the use of a plurality of evidence.  
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Let us consider conceptual pluralism first. My response to Reiss’ discussion is that RWT 

is to be preferred to conceptual pluralism not only because it is not true that RWT does 

not work, but also because this is how social scientists use causal evidence to establish 

just one causal claim. In the social sciences, discussions on causality often start with the 

general consideration that “correlation does not imply causation”, and that the existence 

of a correlation and the identification of a mechanism support the same causal claim. A 

leading proponent of this idea was Elster, who claimed that: 

“Causal explanations must be distinguished from assertions about correlation. 

Sometimes we are in a position to say that an event of a certain type is 

invariably or usually followed by an event of another kind. This does not 

allow us to say that events of the first type cause events of the second” (Elster, 

1989, p. 5) 

More recently, George and Bennet discussed a very similar idea: 

“Case studies can also explore the possible causal mechanisms behind the 

correlations or patterns observed in statistical studies, providing a check on 

whether correlations are spurious or potentially causal and adding details on 

how hypothesised causal mechanisms operate.” (George & Bennett, 2005, p. 

34)  

The limitations of correlations were discussed also by Elsenbroich, who suggested that: 

“Seeing the social sciences as concerned with mechanisms means to not allow 

"black-box explanations" such as statistical correlations. Although statistical 

correlations can be used as evidence for causal associations, they are not an 

explanation in themselves as they do not lay open the "cogs and wheels" 

operating to produce the phenomenon in question.” (Elsenbroich, 2012, p. 5, 

emphasis added) 

Finally, a very similar point was proposed also by Friedrichs a couple of years ago: 

“Without an identifiable mechanism, covering laws and statistical 

correlations […] cannot be interpreted as causal.” (Friedrichs, 2016, p. 4) 

These and similar claims appear in contrast with Reiss’ descriptive argument according 

to which each causal method defines its own concept of causation. In general, social 
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scientists disagree with the idea that “X causes Y” can be interpreted just as “there is a 

correlation between X and Y”, nothing more. Similarly, their concern about masking 

suggests that, for many of them, it is not enough to establish the presence of a mechanism 

to establish causation. From a descriptive stance, hence, RWT is a feasible and accepted 

approach. 

From a normative perspective, furthermore, Reiss rejected RWT because the overlap 

between the presence of mechanisms and of correlations is, in his view, just an empirical 

truth that needs to be confirmed a posteriori. As I argued in section 3.4.3, however, cases 

where causal concepts do not overlap are very rare, especially if we include the existence 

of counterfactual mechanisms. Given that Russo and Williamson do not exclude that, in 

some cases, RWT might be impossible, it can be concluded that, in normal cases, there 

are not reasons to reject it. 

Furthermore, even if RWT were proved to be impossible, this would not allow for the 

conclusion that conceptual pluralism is the right solution in causal studies. Alternative 

accounts, such as monism (as described by Claveau), could be defended. It would be 

hence necessary to show why conceptual pluralism should be preferred. Similarly, the 

claim that social scientists already use different concepts of causation separately would 

require more examples: it is not clear what made Reiss believe that we should consider 

as ambiguous all the cases where social scientists seem to use a single notion of causation 

and different types of evidence. RWT, indeed, would fit perfectly those situations.  

Finally, Reiss claimed that the type of causal evidence to use should be determined on the 

basis of the purposes: prediction, for instance, is likely to require just a probabilistic 

account of causation (2009, p. 36). It might be accepted that there are situations 

(especially outside academia) where correlations are used alone to predict phenomena: 

consumer behaviours, for instance, can be predicted just analysing behavioural data, 

without establishing the presence of a mechanism. It could be added, however, that in 

such cases, researchers do not need to use causal concepts at all: probabilistic evidence 

is used to support a (non-causal) claim according to which an event X will happen in the 

future.   

It is now time to turn towards conceptual monism. The consideration proposed by 

Claveau, as the author himself recognised, does not reject the use of different types of 

evidence within a single study. Rather, Claveau argued that both difference-making and 



 

76 
 

mechanistic evidence can be used to support a single difference-making causal claim. His 

account allows RWT because, it is claimed, difference-making methods are not 

sufficiently reliable to produce evidence free from bias. Only if these methods improved, 

social scientists could stop using evidence of mechanisms. This, however, appears to be 

only a remote possibility, in Claveau’s words: 

“it would be an anomaly for the counterfactual-manipulationist account if 

other (mechanistic) evidence for a specific claim was demanded even though 

this same claim was already backed by the best difference-making evidence. 

This proposition has however little practical relevance since difference-

making evidence is perhaps never of the ‘perfectly adequate’ type” (Claveau, 

2012, p. 809) 

As already explained, RWT is not associated with a specific notion of causation. Both 

Russo and Williamson’s epistemic proposal, and Claveau’s justification based on an 

existing form of conceptual monism can hence be accepted as possible causal accounts 

that allow scientists to embrace RWT. 

3.4.5 Descriptive and normative RWT in the social sciences 

In the previous section I have provided some evidence in support of the claim that social 

scientists comply with RWT when establishing causation. As I discussed in section 3.2.1, 

however, RWT in the health sciences is not considered just a descriptive account. The 

normative dimension of the thesis is a crucial aspect that Russo and Williamson (2007) 

highlighted several times. This dimension appears particularly relevant also in the social 

sciences, especially given that most of the criticisms I have discussed above targeted it. 

As I discussed above, the criticisms of the normative dimension of RWT can be rejected. 

Moreover, the examination above of some methodological discussions in the social 

sciences has clarified that social scientists are well aware of problems such as 

confounding, overfitting and masking (Clark & Golder, 2015; Elster, 1993; George & 

Bennett, 2005; Steel, 2008). Due to the presence of such problems in the social sciences, 

I argue that the normative form of RWT applies to causal studies in the social sciences.  

Like in the health sciences, RWT is capable of discriminating between strong and weak 

causal knowledge, and can guide social scientists in determining in which circumstances 

a particular causal claim is properly established. The combination of evidence to support 
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the claim “there is a correlation between the cause and the effect”, and evidence to support 

the claim “there is a mechanism linking the cause and the effect”, indeed, reduces the 

possibility of bias that might lead to inferential mistakes and helps researchers to establish 

more reliable causal claims.  

3.5 RWT and big data 

Once it is accepted that RWT can be applied to the social sciences, it remains to explore 

how it can improve causal data-driven studies tackling some of the problems described 

in chapter 2. As I mentioned above, establishing the presence of a causal mechanism can 

allow researchers to uncover bias such as incorrect causal relationships produced by 

Simpson’s paradox or by low-quality of data. Some examples can help to illustrate this 

idea. 

Let us start with Simpson’s paradox. Over the last few years, numerous events have 

increased the public awareness of disproportionate police violence against minorities in 

the U.S. This phenomenon, furthermore, has been linked to disparities in the justice 

system, and many protests have risen in the country to ask statistics about disparities 

against minorities. Suppose some researchers decide to collect information about trials in 

the U.S. and to create a large dataset containing information about the type of assault, the 

race of the person accused of assault and the outcome of the trial (convicted or not 

convicted). Researchers analyse data about thousands of trials and discover not only the 

absence of discriminations against minorities, but also the presence of discriminations 

against white people in all types of assault. Before establishing a causal relationship 

between being white and having a high possibility of being convicted, however, they 

decide to look for possible causal mechanisms that might explain such a correlation.  

Through the use of mechanistic studies, they try to spot any evidence showing 

discriminations towards white people, but they do not find sufficient evidence to establish 

that there is a causal mechanism by which being white greatly increases the chance of 

conviction. However, they collect interesting evidence in support both of i) a mechanism 

of discrimination towards minority and ii) a mechanism by which having a white victim 

raises the chance of conviction. Due to these observations, researchers decide to add a 

new variable in their database: the race of the victim. This finally allows researchers to 

obtain an interesting result: it is right that white defendants have a higher overall 

conviction rate, but the reason is only that they mostly have white victims, and having a 
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white victim causes an increase in the possibility of conviction. If the overall group is 

divided into two subgroups (one in which the victim is part of a minority, and one in 

which the victim is white), it is possible to conclude that white defendants always have a 

lower conviction rate. In such a case, by collecting further evidence in support of these 

discrimination mechanisms, researchers could establish both the presence of causal 

mechanisms and the presence of correlation. These claims, consequently, would allow 

researchers to establish that being part of a minority is causally linked to a great chance 

of conviction. 

In this and similar cases, the RWT requirement to establish both correlation and 

mechanism can help researchers to spot problems linked to Simpson’s paradox. This idea 

has been proposed also by Kievit et al. (2013), who argued that: 

“to be able to draw causal conclusions, we must know what the underlying 

causal mechanisms of the observed patterns are, and to what extent the data 

we observe are informative about these mechanisms.” (Kievit et al., 2013, pp. 

2–3) 

and that the problems associated with Simpson’s paradox can be avoided: 

“by explicitly proposing a mechanism, determining at which level it is 

presumed to operate (between groups, within groups, within people), and then 

carefully assessing whether the explanatory level at which the data were 

collected aligns with the explanatory level of the proposed mechanism” 

(Kievit et al., 2013, p. 6) 

Another possible aspect that might cause biased results in a data-driven study is the low 

quality of data. This problem appears particularly relevant if applied to social networks 

data, which allow researchers to obtain massive amounts of information about a 

population that might be unrepresentative of the overall population and that might act 

differently online and offline. An illustrative case might be a study based on Twitter data 

whose aim is to understand how living in urban areas influences well-being. Let us 

suppose researchers collect thousands of geotagged tweets in two months, and identify 

some key terms linked to happiness such as ‘smile’, ‘happy’, ‘rainbow’ and ‘love’. This 

study allows them to state that living in urban areas positively influences happiness, if 

compared to the level of wellbeing in the countryside.  
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The search for a mechanism responsible for such a correlation, nevertheless, leads to 

conflicting evidence: researchers collect numerous information in support of a 

mechanism whereby living in urban areas increases the level of stress and causes a 

decrease of happiness. Consequently, researchers decide to search for further mechanisms 

that could mask the effect of that mechanism, causing the positive effect of living in urban 

areas, but decide also to examine more in detail the methods and data used in their study. 

In such a way they discover that the majority of Twitter users live in urban areas, with the 

consequence that people living in the countryside are unrepresented in the sample 

population. Furthermore, researchers might conclude that their method for identifying the 

inherent ‘happiness’ of a tweet is characterised by substantial errors (such as the inability 

to recognise sarcasm). While such a case is just a fictitious example, there are real causal 

studies that have been criticised for the low quality of the data used. To give an example, 

a Twitter data-driven study similar to the one described here has been published by 

Mitchell et al. (2013), and has been often criticised because of its unrepresentative sample 

population (see for instance Jensen, 2017; Malik et al., 2015). 

3.6 Conclusion 

In this chapter, I have argued that RWT is one of the solutions that social scientists can 

adopt to test the adequacy of data-driven results and to recognise bias in statistical 

analyses. To support the use of RWT, I have responded to the main criticisms concerning 

its application in the social sciences. I have identified four general issues discussed in the 

literature: i) RWT is not used in the social sciences, ii) RWT does not work, iii) causal 

concepts do not overlap and iv) there are better alternatives to RWT. 

I have shown that, in general, RWT is used successfully in the social sciences, and that it 

is supposed to reduce inferential mistakes, not to eliminate all of them. Next, I have 

explained that there are cases where, only prima facie, causal concepts do not overlap 

(like in the case of masking or in some cases of omissions). As for the alternatives to 

RWT, I have argued that Reiss’s argument is not sufficient to justify the claim that social 

scientists should embrace conceptual pluralism rather than RWT. Furthermore, I have 

highlighted that Claveau’s defence of monism does not rule out the possibility of using 

different types of evidence, therefore it can be considered a possible account for RWT. 

Finally, I have provided two examples in which RWT can allow for the recognition of 

errors in data-driven results.  
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4 Thick and big data: learning from mixed methods 

research 

4.1 Introduction 

The emergence of big data has in general been associated with the development of 

statistical tools able to identify causal relationships between quantitative variables. In the 

social sciences, characterised by a long tradition of both quantitative and qualitative 

approaches, this tendency has caused different reactions.  

As described in chapter 2, one of the emergent ideas is that studies based on big data 

cannot account for the importance of contextual, qualitative information in the social 

sciences: big data are in general analysed quantitatively, without considering the complex 

social contexts from which such data are collected. This idea has led some researchers to 

discuss the role played by ethnographic, qualitative data in causal studies, and to propose 

the notion of thick data in analogy with big data (see for instance Blok & Pedersen, 2014). 

Interestingly, thick and big data have not been dichotomised as conflicting forms of data: 

social scientists have argued for the equal importance of big and thick data, and for their 

combined use, especially when the aim is to uncover causal phenomena (Blok & 

Pedersen, 2014; Bornakke & Due, 2018; Curran, 2013; Ford, 2016; Latzko-Toth et al., 

2016). The underlying assumptions is that, while big data, mainly quantitative, can help 

to obtain statistical significance, to generalise a claim and to recognise the relevance of a 

phenomenon within a population; thick data, mainly qualitative, can be used to obtain 

contextual insights into a phenomenon. 

The proposal for a combined use of big and thick data goes in the same direction as the 

recent mixed methods research (MMR) approach, according to which qualitative and 

qualitative methods should be mixed to strengthen their results. However, while MMR 

researchers have spent the last few decades trying to clarify the ways in which quantitative 

and qualitative data can be combined and can complement each other, proponents of thick 

data have not clarified yet how thick data could improve data-driven studies. For this 

reason, in this chapter I shall examine the discussions in the MMR literature to find 

arguments in favour of the combination of quantitative (big) and qualitative (thick) data10. 

The underlying assumption guiding this examination is that, even if the terminology used 

                                                           
10 The material discussed in this chapter has been partly published in Ghiara (2019). 
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is sometimes different, some of the MMR discussions could be applied to the big/thick 

data debate to clarify how thick data can enhance data-driven studies. 

The chapter is organised as follows: in section 4.2, I shall describe how MMR is 

conducted and why MMR discussions can be used to examine the role of thick data in 

data-driven studies. In section 4.3 I shall argue that the study of both quantitative and 

qualitative data can often lead to the identification of a correlation and of a causal 

mechanism linking the putative cause and effect, as required by RWT. In this sense, 

hence, qualitative contextual data are used to gather evidence of a causal mechanism. In 

section 4.4 I shall observe that quantitative and qualitative data can be used together to 

combine different ontological categories and different epistemological perspectives. In 

section 4.5 I shall clarify that, from MMR discussions, it is possible to identify three 

different ways in which thick data can improve data-driven studies: thick data, when used 

with big data, can i) offer evidence of causal mechanisms, ii) explore ontological 

categories otherwise difficult to study just with big data and iii) cast light on some 

dimensions of social phenomena that would be invisible in typical big data studies. 

Section 4.6, finally, will conclude. 

The aim of the chapter is not to discuss the philosophical literature on pluralism and on 

case-based research, but to shed light on some philosophical insights that can be 

developed by considering methodological and conceptual discussions within the MMR 

community. A growing body of philosophical works on such topics is reaching social 

scientists and is discussed within scientific communities.  

For instance, philosophers such as Longino (1990), Giere (2006), Mitchell (2013), Chang 

(2014), and Ankeny and Leonelli (2016) proposed similar positions arguing that scientific 

research is in general based on various forms of pluralism about theories and methods, 

and the numerous references to their works clearly illustrate the impact of their 

philosophical analyses. In addition, philosophical analyses of how scientific 

generalisations can be based upon observational studies, such as those proposed by 

Morgan (2012) and Boumans (2015), have brought to the fore the question whether local 

cases can be used to establish general claims.  

While I share with all these authors the idea that questions about paradigms and case-

based research have an important philosophical dimension that has to be further 

investigated, in my chapter I will take a different approach. My aim will be to inform the 
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MMR debate casting light on how social scientists are using their quantitative and 

qualitative data. This, in turn, will help me to provide a solution to the second challenge 

proposed in chapter 2, namely how to understand the role of thick data in causal studies 

based on big data.  

This chapter will also help to bridge the gaps between i) social sciences’ discussions on 

MMR, ii) social sciences’ discussions on thick data and iii) philosophical discussions on 

causality (especially on RWT). On the one hand, it will establish that qualitative data in 

MMR, and thick data in new big data studies, if properly analysed, can help to recognise 

the presence of a causal mechanism, while quantitative data or big data are generally used 

to identify correlations between variables. On the other hand, it will claim that thick data, 

like qualitative data in MMR, can help researchers to develop a more comprehensive 

image of causal phenomena by offering insights from different ontological or 

epistemological perspectives.  

4.2 Mixed Methods Research  

Mixed methods research is the combination and integration of quantitative and qualitative 

methods in the same study. This type of study is not new in the social sciences (Maxwell, 

2016), and some of the earlier MMR studies are still considered prominent MMR 

examples. A case in point is the Hawthorne studies that explored whether people work 

more efficiently under various environmental conditions (Mayo, 1993; Roethlisberger & 

Dickson, 1964). By performing some studies at the Western Electric's factory at 

Hawthorne, a suburb of Chicago, researchers combined quantitative data coming from 

statistical analyses and qualitative data gathered through interviews and observational 

studies to analyse the factors affecting productivity. Researchers concluded that the 

workers' productivity was not only affected by the changes in physical conditions and in 

the workplace, but also by the awareness of being observed. 

Another similar example can be found in the Lynds’ Middletown studies that examined 

the ways in which the white population of a typical American city changed between 1890 

and 1925 (Lynd & Lynd, 1929, 1937). To understand how the economic growth and the 

process of industrialization influenced the citizens’ life in an ‘average’ mid-size 

American city, the authors conducted both interviews and statistical studies. This allowed 

them to identify some aspects of the daily life that changed due to an emerging ‘consumer 

culture’. 
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Both the Hawthorne and the Middletown studies are still cited as good exemplars of 

MMR studies (Biddle & Schafft, 2015; Denscombe, 2008; Hunter & Brewer, 2003). 

Despite this long tradition, however, it was only in the last few decades that social 

scientists began to consider MMR as a research methodology with a recognised name, a 

distinct identity and specific debates (Denscombe, 2008). In particular, the recent MMR 

literature has often discussed the possible ways in which quantitative and qualitative 

methods can be mixed. Tashakkori and Teddlie (2003), for instance, identified nearly 40 

types of MMR strategies that can be distinguished according to the way in which data are 

gathered, the relevance given to different types of methods, the purpose, and the priority 

assigned to diverse inferences coming from particular types of data.  

Among these MMR strategies, one of the most common approaches entails the collection 

of both quantitative and qualitative data. In this case, MMR studies can be characterised 

either by the concurrent use of data collection methods (employed to gather data of 

different types simultaneously), or by the chronological or sequential use of different 

data-gathering methods. The methods used to collect data, in addition, are in general 

associated with different types of data analysis. Generally, quantitative data are examined 

by means of quantitative, statistical methods, while qualitative data are explored 

qualitatively to clarify the insights obtained from contextual information.  

An illustrating example is the Child STEPS Effectiveness Trial (CSET) carried out by the 

Research Network on Youth Mental Health (Chorpita et al., 2013) and described in detail 

by Palinkas (2014). The project was focused on children aged between 8-13 who had 

been referred for treatment of problems involving depression, disruptive conduct, anxiety, 

or any combination of these. CSET involved ten clinical service organizations in 

Honolulu and Boston, 84 therapists, and 174 children. Therapists were assigned randomly 

to one of three groups: in the first group, children were treated with the usual treatment 

procedures; in the second and third groups, youth participants were treated with at least 

one of the following treatments: cognitive-behavioural therapy (CBT) for anxiety, CBT 

for depression, and behavioural parent training (BPT) for conduct problems. However, 

while in the second group therapists used full treatment manuals, in the third group they 

used a modular approach, which allowed them to develop targeted practices for each child 

by using only some of the treatments’ components. Children who met the study criteria 

were then assigned randomly to one of these three groups of therapists. 
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Quantitative data were collected from the trials and studied through regression analyses. 

The results showed that modular treatments had significantly superior outcomes in 

improving children’s behavioural health than standard treatment and usual care. In other 

words, the quantitative approach offered evidence of a strong correlation between 

modular treatments and improvements in children’s depression, disruptive conduct or 

anxiety. These results were used to inform some qualitative studies based on semi-

structured interviews and focus groups. These studies involved 38 therapists and were 

designed by following the quantitative findings obtained using regression analyses.  

Qualitative findings confirmed the correlation and provided causal evidence regarding 

some processes through which modular treatments can improve children’s behavioural 

health more than standard treatment and usual care. For instance, qualitative data cast 

light on the fact that protocols often did not meet the needs of the children and their 

parents, whereas modular treatments allowed therapists to identify with children the most 

immediate issues to address. This also helped to avoid treatments that children and parents 

would have been unable or unwilling to perform due to cultural and logistical reasons. 

Furthermore, qualitative approaches helped researchers to obtain detailed information 

about the therapists’ perception of their role and the relations between their convictions 

and their professional activities. Because of the therapists' belief in the importance of 

flexibility, for instance, it was found out that modular treatments increased the therapists’ 

motivation. Finally, modular treatments, the therapists argued, improved the therapeutic 

alliance with the children, with positive consequences at the psychological level (Palinkas 

et al., 2013).    

In this example and in similar causal MMR studies, quantitative and qualitative data 

appear to have different roles, and this diversity resembles the diversity that social 

scientists recognise between big and thick data. Quantitative data are numerical 

information used to identify correlations between variables, qualitative data contain 

contextual information that helps researchers to explore how the correlations emerged. 

The relevance of MMR for the thick data discussion, however, does not depend only on 

the fact that the quantitative/qualitative distinction is very similar to the big/thick data 

distinction. A more important parallel between the MMR discussions and the debates on 

thick data can be found by observing that in both cases the general aim is to convince 

quantitative researchers of the importance of qualitative data and approaches. MMR 

debates have emerged to defend the crucial role played by qualitative research in the 
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social sciences (Karasz & Singelis, 2009). For this reason, several discussions have been 

focused on the ways in which qualitative methods can advance quantitative studies in the 

social sciences. Likewise, proponents of thick data aim to cast light on the relevance of 

this form of information to counter the growing tendency to carry out purely quantitative 

big data studies (Latzko-Toth et al., 2016, p. 200).  

Furthermore, another aspect in support of the parallel between MMR discussions and the 

big/thick data debate is the fact that MMR researchers often refer to thick data and thick 

descriptions when they describe their qualitative findings. Williams (2013), for instance, 

described her research on career changes among people studying education in Australia 

and observed that: 

“A mixed methods approach was chosen as the most appropriate to answer 

my question. This would enable a picture of career change student teachers 

as a group to emerge from quantitative data, while the particular narratives 

and experiences of individual career changers […] would be gained through 

a more in-depth rich, ‘thick’ data set” (Williams, 2013, p. 19) 

Similar claims can be found also in Robinson and Medelson’s MMR study on multimedia 

content and the impact of online features on viewers’ attitudes (2012) and in Martin’s 

research on the development of affective skills in nursing students (2017). 

Together, these observations lead to the suggestion that MMR debates can offer useful 

insights to conceptualise the role that thick data might play in data-driven studies. 

4.3 Qualitative and thick data to establish causal mechanisms 

In MMR, one of the most common ideas proposed to support the importance of qualitative 

data is the claim according to which such data are needed in causal studies to identify 

causal mechanisms. To give an example, Weiss (1995) claimed that:  

“quantitative studies support an assertion of causation by showing a 

correlation between an earlier event and a subsequent event. An analysis of 

data collected in a large-scale sample survey might, for example, show that 

there is a correlation between the level of the wife’s education and the 

presence of a companionable marriage. In qualitative studies we would look 

for a process through which the wife’s education or factors associated with 
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her education express themselves in marital interaction.” (Weiss, 1995, p. 

179)  

More recently, Maxwell (2004a) discussed the role of different methods in education 

research and argued that:  

“qualitative methods have distinct advantages for identifying the influence of 

contextual factors that can’t be statistically or experimentally controlled, for 

understanding the unique processes at work in specific situations” (Maxwell, 

2004a, p. 9) 

The MMR literature is characterised by numerous similar claims, according to which 

qualitative approaches contribute to the identification of causal mechanisms or processes 

responsible for social phenomena (see also Cyr & Mahoney, 2016, p. 442; Fearon & 

Laitin, 2008, p. 1167; Yoshikawa et al., 2013, pp. 8–9). 

A parallel claim could be made in the case of thick data. Section 2.4.1 of chapter 2 has 

clarified that in the literature thick data are defined as mostly (if not only) qualitative. 

This, I explained, depends on the fact that the idea of thick data derives from the 

discussions on thick descriptions, that were claimed to be obtained through qualitative 

data such as interviews and field observations (Geertz, 1973; Ryle, 1968). It could be 

suggested, furthermore, that the dense information that, according to the thick data 

proponents, are provided by such data, could hardly be contained in numerical data. The 

qualitative nature of thick data allows for the parallel between what is said in MMR, and 

what could be said for thick data: in both cases, indeed, researchers consider qualitative 

information and its role in causal studies. Maxwell (2004b), for instance, by exploring 

how qualitative data can be used in causal studies, discussed the notion of rich data, that 

resonates with the notion of thick data, and claimed that: 

“Rich data […] are data that are detailed and varied enough that they provide 

a full and revealing picture of what is going on and of the processes involved 

(Becker 1970:51ff.). In the same way that a detailed, chronological 

description of a physical process (e.g., of waves washing away a sand castle 

or the observations of patient falls described above) often reveals many of the 

causal mechanisms at work, a similar description of a social setting or event 

can reveal many of the causal processes taking place.” (Maxwell, 2004b, p. 

254) 
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According to this position, the qualitative nature of some data in MMR and of thick data 

can help researchers to identify operating causal mechanisms responsible for specific 

causal phenomena. The contextual dimension of thick data, moreover, is consistent with 

some of the debates about the study of causal mechanisms in the social sciences. As 

argued by some researchers, indeed, contextual knowledge of social environments can be 

crucial to uncover causal mechanisms (Dalkin et al. , 2015; Falleti & Lynch, 2009; Steel, 

2004). Notably, one of the first examples used to describe the identification of a causal 

mechanism in the social sciences was the study conducted by the anthropologist 

Bronislaw Malinowski (1935) to explore whether the number of wives was causally liked 

to prosperity among Trobriand chiefs. As recognised by Steel, (2004), Malinowski 

managed to identify the causal mechanism responsible for the correlations between the 

number of wives and wealth by conducting observational studies and by living in close 

contact with the Trobriand people. The collection of what could be called ‘thick 

information’, helped Malinowski to identify two social practices: (i) brothers were 

required to donate generous gifts of yams to the households of their married sisters (when 

a sister married a chief, moreover, the gift was larger than usual); (ii) yams were the 

principal means by which a chief financed his political project. This information, 

consequently, allowed Malinowski to establish the presence of a causal process according 

to which the possession of more wives caused the ownership of more yams; and, in virtue 

of the practice, a chief with more yams was likely to have a greater influence among his 

society.  

Both qualitative data in MMR and thick data, consequently, can be associated with the 

collection of evidence of mechanisms. Nevertheless, while there is a general agreement 

that this type of evidence is important for causal studies, its relevance varies according to 

whether it is claimed that it would be better to establish the presence of a causal 

mechanism, or that it is necessary to establish such a presence in causal studies. 

In the former case it might be argued that, by providing evidence of causal mechanisms, 

qualitative data in MMR and thick data in big data studies help to develop more 

comprehensive causal explanations of social phenomena. This idea is sometimes 

discussed in the MMR literature, where it is claimed that the combination of quantitative 

and qualitative methods provides richer and more complete causal explanations (Shaffer, 

2018, p. 11). In this sense, the overall idea is that qualitative data offer further information 
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about causal relationships that can be established also collecting just correlational 

evidence. 

In the latter case, when qualitative methods make available evidence of mechanisms 

otherwise not accessible, the role of qualitative data is claimed to be essential in causal 

studies. There are several discussions in the MMR literature that support such a position. 

Libman (2012), for instance, argued that, in political science, researchers are in general 

sceptical about the use of pure statistical or econometric studies of causal phenomena. 

For this reason, the mixture of quantitative and qualitative approaches is essential in order 

to:  

“describe a possible causal mechanism, which would explain the link between 

variables, and also provide at least partial evidence in favor of this 

mechanism. This evidence can be derived from qualitative research […] 

econometrics as such is considered as merely an indication of possible 

existence of causal effects, but not as proof” (Libman, 2012, pp. 179–180) 

Similar ideas were suggested also by Trinchero (2014) and Barnes and Weller (2017), 

who discussed the aim of MMR and considered that: 

“If the research objective refers to establish the existence of a causal 

relationship between factors (as in the hypothesis “Motivation to learn can 

improve scholastic achievement”) […] quantitative experimental design can 

be useful to quantify the increase of scholastic achievement probably due to 

a corresponding increase of motivation, but how can we demonstrate that 

increase of scholastic achievement is really due to increase of motivation and 

is not imputable to other extraneous factors? The only way is to study the 

dynamics that led an increase of motivation to promote an increase of 

achievement. This is possible by a persistent engagement of the researcher in 

a qualitative in-depth inquiry on the field in which the experiment was 

performed, to reveal the processes underlying the causal relationship and the 

conditions under which this relationship may occur.” (Trinchero, 2014, p. 47) 

“Instead of using each method to provide separate evidence of the X/Y 

relationship, it [mixed methods research] envisages a division of labor among 

methods in which the large-N work estimates causal effects whereas the 

smaller-N work probes the validity of the large-N work’s underlying 
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assumptions. Here, combining methods improves our confidence in the 

underlying X/Y relationship not because the findings of the large-N and 

small-N analyses converge but rather because the small-N work demonstrates 

that the large-N work satisfies the requisites for causal inference” (Barnes & 

Weller, 2017, p. 1021) 

According to this position, evidence of mechanisms collected via qualitative methods in 

MMR studies or through thick data is crucial in order to establish causal relationships. 

This claim is very much in line with what I have argued in chapters 2 and 3: data-driven 

studies based only on quantitative analyses are likely to produce biased results. For this 

reason, even in the era of big data, causal studies in the social sciences should comply 

with RWT and, in order to establish causation, should collect both evidence of a 

correlation between the cause and the effect and evidence of a mechanism linking them. 

As observed in chapter 3, RWT does not say anything about the evidence-gathering 

methods that should be used to establish causal relationships. It is hence feasible that 

social scientists obtain the required evidence by analysing qualitative or thick data. 

This consideration casts light on the first way in which thick data can improve data-driven 

studies: if it is accepted that establishing causal mechanisms helps to test the adequacy of 

data-driven results and to recognise bias in statistical analyses, thick data can be claimed 

to provide evidence of causal mechanisms otherwise inaccessible algorithmically. 

4.4 Pluralistic debates in MMR 

Some of the pluralistic debates in MMR help to clarify further ways in which qualitative 

data, and eventually thick data, can improve causal studies. As said above, MMR is 

claimed to be based on the mixture of quantitative and qualitative methods within a single 

study. Many authors, however, have recognised that although in some cases MMR studies 

mix just methods (such as structured interviews and questionnaires), there are more 

complex situations where MMR studies are characterised by a mixture of different (and 

not always explicit) ontological or epistemological assumptions.  

Such discussions in MMR have often been shaped in terms of ‘mixing different 

paradigms’, where the term ‘paradigms’ is used to denote something very similar to the 

‘worldviews’ populating the social sciences that were first identified a few decades ago 
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by Guba and Lincoln (1994)11. Guba and Lincoln saw research paradigms as intrinsically 

associated with ontological, epistemological and methodological assumptions. When 

scientists embrace one paradigm, such assumptions provide an interpretative framework, 

or worldview, that defines the nature of the ‘world’, the possible relationships to the 

world, and the limits of legitimate inquiry (Guba & Lincoln, 1994, p. 108). In this context, 

MMR researchers have argued that the combination of quantitative and qualitative 

methods allows for the combination of different ontological or epistemological stances. 

This idea has emerged in different ways in the MMR literature.  

The debate about the dominant/less-dominant and the equal status designs in MMR is 

probably the most visible illustration of this idea. According to these discussions, the 

dominance of one method and one type of data in MMR can be reflected in the presence 

of a dominant ‘paradigm’ in the study. The dominant/less-dominant design is described 

as the situation in which, while conducting MMR studies, social scientists rely on a 

specific system of ontological and epistemological assumptions, while other systems (or 

‘paradigms’) are used to examine only small components of the whole studies. On the 

contrary, the MMR equal status design is referred to the situations where more ontological 

and epistemological stances, recognised as different paradigms, are considered equally 

relevant to a study (Creswell, 1994, p. 35; Tashakkori & Teddlie, 2003, p. 435).  

In addition, many MMR researchers have discussed the reasons why the combination of 

different ontological and epistemological assumptions could improve MMR studies. 

Greene (2006) considered such a combination as the main difference between mixed 

methods and multimethod studies, and argued that it is only through divergence and 

dissonance that MMR researchers can examine taken-for-granted understanding and 

problematise findings associated with a single ontological or epistemological perspective. 

Uprichard and Dawney (2016) took a similar position and observed that only a 

‘diffractive’ approach in MMR, that allows researchers to analyse phenomena through 

                                                           
11 Although this is not the aim of the chapter, it is worth mentioning that the discussion on paradigms 

proposed in the MMR community is particularly interesting because several MMR proponents have 

supported different interpretations of philosophical works such as those of Kuhn (1970). Johnson and 

Onwuegbuzie (2004), for example, started from Kuhn’s definition of paradigm to develop their notion of 

research paradigms as systems of ontological, epistemological, axiological and methodological beliefs, 

values, and assumptions that a community of researchers shares for what concerns the nature and conduct 

of research (see Johnson & Onwuegbuzie, 2004, p. 24). In addition, Morgan (2007) emphasized the way in 

which the Kuhnian notion of paradigm shifts could enhance our understanding of the changes occurring 

within the social science; and Denscombe (2008) claimed that Kuhn’s notion of paradigms as “communities 

of practice”, unlike many other concepts, manage to accommodate both the pragmatist underpinnings of 

MMR and the divergencies and diversity characterizing the MMR community. 
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different (ontological and epistemological) pathways, can lead researchers to fully 

understand complex social phenomena. Similarly, Johnson (2012) advocated what he 

called a ‘dialectical pluralism’ in MMR. He argued that such a metaparadigm would help 

researchers to appropriately listen to each research questions and purposes, and this would 

allow for the development of new workable wholes to study social phenomena.   

In general, these accounts are based on the idea that, in MMR, qualitative data enrich 

quantitative studies by shedding light on new unexplored perspectives. This is possible 

because, it is argued, qualitative and quantitative data are in general both collected and 

analysed via methods that entail different ontological and epistemological stances. There 

is an important caveat to this argument. The mixture of different philosophical 

standpoints in MMR might not lead to a clear integration: assumptions could be too 

different to be fully merged. This does not mean, however, that MMR researchers should 

avoid mixing ontological and epistemological accounts. To problematise findings and 

fully explore social phenomena, MMR researchers have argued, it is important to give 

voice to paradigmatic dissonances. For this reason, even in the case or irreducible 

divergences, qualitative and quantitative data should be combined (Johnson, 2012; 

Uprichard & Dawney, 2016).   

To explore whether such discussions can help to recognise other possible ways in which 

thick data might advance data-driven studies, the following sections will examine specific 

real-life MMR studies where ontological categories and epistemological perspectives 

were mixed. The analysis of such studies will help to clarify how the combination of big 

and thick data could produce similar results. 

4.4.1 Combining ontological categories 

In particular circumstances, the mixture of quantitative and qualitative data entails the 

combination of different ontological categories. Let us imagine we have a certain causal 

phenomenon we want to explore through a MMR study: probably, we will collect and 

analyse qualitative data to gain an in-depth understanding of the causal process that has 

led to the phenomenon, while we will collect and study quantitative data to verify whether 

the correlation between the putative causal factors and the effect is present in the context 

of study and, perhaps, even in a broader context. In other words, our qualitative data will 

enable us to claim that a single, complex, instance of causation exists; while our 

quantitative data will help us to understand how a causal phenomenon operates generally.  
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While for some researchers these are just considered two levels of causation that can be 

explored independently, according to others the difference between such notions is so 

great that they should be understood as two different categories of causation: one category 

of causation as a single, unique event, and one category of causation as a general 

relationship that can be found at the population level. The former category can be called 

‘singular causation’, the latter category is known by the name of ‘general causation’ (for 

more discussions on this, see Johnson et al., 2017).  

The difference between them is made evident in some discussions concerning general 

causations in the social realm. Discussing the possibility of finding general causation in 

the social world, Cronbach wrote: 

“Generalizations decay. At one time a conclusion describes the existing 

situation well, at a later time it accounts for rather little variance, and 

ultimately it is valid only as history. […] Propositions describing atoms and 

electrons have a long half-life, and the physical theorist can regard the 

processes in his word as steady. Rarely is a social or behavioural phenomenon 

isolated enough to have this steady-state property. Hence the explanation we 

live by will perhaps always remain partial […] and rather short lived.” 

(Cronbach, 1975, pp. 122–123) 

Similarly, Wolcott (1995) wrote: 

“How do you generalize from a qualitative study? [You] might answer 

candidly and succinctly, “You don’t.” That is a safe and accurate answer. It 

is the basis on which American anthropology was founded under Franz Boas. 

With an empiricism directed toward rigorous historical particularism, Boas 

insisted that no generalizations were warranted from the study of any 

particular society.” (Wolcott, 1995, p. 163) 

The same consideration has been proposed by Lincoln and Guba (2000), who have argued 

that social phenomena are characterised by local conditions that make it impossible to 

study general causation: the contextual differences from one situation to another are too 

relevant to allow for any form of generalisation. Generalising a causal explanation in the 

social sciences is, according to them, like crossing the same river twice. 
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What these authors have in common is the assumption that, when studying social 

phenomena, it is impossible to investigate the ontological category of general causation: 

unlike in the natural world, in the social realm this type of causation can seldom be found. 

In other words, the shared assumption is that in social phenomena causation does not 

operate both at the singular and general level, but only at the singular, local level. 

In many cases, even though such assumptions and such categories are not discussed when 

the MMR studies are conducted, their presence is tangible. Let us consider Wood’s study 

(2003) aimed at understanding why peasants in El Salvador decided to join rebel 

movements. To answer such a question, Wood decided to collect qualitative data by 

means of ethnographic interviews both with peasants and some members of the elite 

opposed to the peasants (i.e. landlords, military officers, government officials). The data 

collected from the interviews were explored to obtain a contextual understanding of the 

phenomenon through the personal and community histories of the individuals involved. 

The causal relationship explored in this way, hence, was completely embedded into a 

personal, social, political and historical system: as argued in the book, the decision to give 

a contribution to the insurgency was determined by specific personal and political 

circumstances, that led the peasants from different cultural backgrounds to fight for social 

justice. It was not a mere class conflict, and the civilian supporters were offered very few 

benefits during the insurgency (Wood, 2003, p. 158). Those who decided to join rebel 

movements were often motivated by the history of violence against family members and 

neighbours, by the brutality of the actions perpetrated by the Government and by personal, 

moral and affective benefits they received through participation (Wood, 2003, p. 

229,235). The ontological category of causation addressed through the case studies 

corresponded to a complex phenomenon existing at the local level: as argued by Wood, 

indeed, the causal processes identified through her analysis were all local, and interacted 

in intricate ways during the period of the civil war (Wood, 2003, p. 236). 

After having established the presence of this local and multifaceted causal relationship, 

Wood used the evidence obtained to develop a general hypothesis about the role that 

pleasure of agency could play in similar situations. Since qualitative data were not 

sufficient to address general causation, Wood obtained a set of quantitative data collected 

at the end of the war through a rural household survey, as well as elections data and some 

databases documenting the changes in agrarian property rights during and after the 

uprising to test her hypothesis according to which: 
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 “[…] long-subordinate social actors grant to the exercise of agency per se. 

To act in defiance of unjust authority, to claim recognition as equal subjects 

whose personhood needs be respected, to act effectively for the realization of 

essential interests, and to publicly assert the power of collective efficacy may 

be important reasons for the emergence of insurgent collective action 

elsewhere as well as in El Salvador” (Wood, 2003, p. 253) 

Quantitative data helped her to work on a formal quantitative model based on the 

dynamics of a coordination (assurance) game. The study of general causation, finally, led 

her to establish a dialogue with researchers of collective action and social movements, 

aimed at developing general causal explanations of social phenomena. 

Through the use of qualitative and quantitative data, Wood managed to explore the 

peasants’ participation in rebel movements in El Salvador by means of two different 

ontological categories of causation. On the one hand, by exploring qualitative data, she 

developed a causal narrative of the complex interactions of personal, historical and 

political factors that generated the specific phenomenon under study. Such a narrative 

was consistent with the ontological category according to which causation is a single and 

complex phenomenon that exists locally. On the other hand, by studying quantitative data, 

she provided a causal explanation of the general phenomenon whereby repression and a 

sense of agency can foster mobilization. This idea was in line with general causation, 

based on the assumption that a causal phenomenon can operate generally, and that its 

analysis can be used to explain and predict other similar phenomena.  

Wood’s study was based on the combination of ‘traditional’ qualitative and quantitative 

data, with no references to big and thick data, but it is not difficult to imagine a similar 

study based on large datasets and thick data. Big data are in general used to uncover 

regularities and causal relationships that can be generalised from the sample population 

to the population level (Shmueli, 2017). On the contrary, thick data are collected to 

analyse the specificity of certain phenomena, and the contexts from which they emerged 

(Latzko-Toth et al., 2016, p. 202).  

If we look for similar discussions in the thick data literature, it is rare to find clear claims. 

Marwick’s observation on the way in which quantitative (big data) studies and qualitative 

(thick data) analyses can help to understand how people use Twitter (2013), is one of the 
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most explicit claims that goes in the same direction of my proposal. Indeed, Marwick 

argued that: 

“Quantitative studies often determine connections and networks […] based 

on statistics and numbers. Instead, qualitative research seeks to understand 

meaning-making, placing technology use into specific social contexts, places, 

and times.” (Marwick, 2013, p. 119) 

In addition, Wang’s description of what happened with Nokia (2013) can offer some 

considerations about the use of different ontological categories in thick and big data 

studies. As described in chapter 2, Wang conducted ethnographic works in China for 

Nokia in 2009. She collected thick data providing evidence of a new phenomenon 

according to which low-income Chinese consumers were becoming willing to pay for 

more expensive smartphones. Nokia, however, did not find any similar pattern by 

analysing quantitatively its (big) data. It might be argued that the discrepancy emerged 

because Nokia was looking for a general causal pattern, while Wang was observing some 

contextual changes that, ultimately, led to the rise of a new phenomenon. The pattern 

explored by Wang, at the population level, was not statistically significant. In that specific 

context, however, such small changes triggered a causal chain that ended in a complete 

inversion of trend for the Chinese market. 

If such considerations are accepted, it can be concluded that thick data, when combined 

with big data, allow researchers to mix different ontological categories such as the 

categories of singular and general causation. 

4.4.2 Combining epistemological perspectives 

The quantitative/qualitative distinction of the social sciences descends largely from the 

difference between the epistemological questions at the heart of quantitative and 

qualitative studies. Most of the quantitative studies are underpinned by a specific account 

of what should be accepted as warrantable knowledge: scientists should conduct studies 

in which the distance between the observer and the observed is preserved with the aim to 

maintain objectivity. On the contrary, numerous qualitative researchers are in general 

committed to observing the world from the point of view of the actor, rather than 

maintaining any distance. Observers should be close enough to the object of study to gain 

a contextual understanding of the phenomenon, and objectivity is ruled out due to this 

proximity and to the fact that any form of knowledge is gained within a social context. 



 

96 
 

It follows that, when quantitative and qualitative approaches are combined, different 

epistemological perspectives can be embodied within a single study. To clarify how this 

combination can be achieved in mixed methods studies, let us consider one case that has 

been discussed over the last few years: the MMR assessment and evaluation of the 

program Eat Right! Be Fit! recently developed by some researchers of the Midwestern 

University. As described by Greene (2015), for the evaluation of the program researchers 

have decided that they will employ two worldviews characterised by different 

epistemological accounts: one, known by the name of post-positivism, aspiring to 

generalisable results based on structured quantitative evidence; and one called 

constructivism, based on the assumption that meaningful understanding should be 

contextual (Guba & Lincoln, 1994). To comply with such worldviews, researchers will 

conduct both a quasi-experiment and mini-case studies informed by unstructured 

ethnographic observations. Both methods (and worldviews) will be employed to assess 

the implementation of the program and evaluate its effects.  

Epistemologically, the quasi-experiment can assess the implementation of Eat Right! Be 

Fit! through the objective documentation of the nature and extent of activities done in the 

classrooms: each classroom schedule will be analysed, and the time spent doing physical 

activities will be systematically reported. Furthermore, researchers will collect data about 

how many children walk or bike to school, and the kinds of food eaten by them. The mini-

case studies, instead, will aim to understand whether and how the program has an impact 

on the classroom rhythms and learning by means of contextual explorations into the daily 

life of children (Greene, 2015, p. 612). 

The quasi-experiment, hence, will assess the quality of the program by considering only 

the program implementation, without taking into account the context in which the 

program is offered, and the reality perceived by the children involved in the program. On 

the contrary, these aspects will be at the centre of the mini-case studies, whose goal will 

be to capture how children perceive the program and its purposes. 

Similar epistemological discrepancies between such methods can be observed also 

regarding the decisions about the evaluation process. On the one hand, the quasi-

experiment study will collect standardised health measures such as the body mass index, 

that will be then compared to measures about the same children collected in the past, and 

to measures about children from the same area not involved in the program. The success 
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of the program, in this sense, is associated with the percentage of children obtaining 

specific values in some standard indicators of child health. The aim of the mini-case 

studies, on the other hand, will not be to capture the bodily changes obtained through the 

program, but to explore how children are engaged with it. To do so, researchers will 

interview children, teachers and parents to obtain insights into the way in which the 

program has an impact on the children’s life (Greene, 2015, p. 614).  

The epistemological assumptions behind these evaluation processes show substantial 

differences: the post-positivist worldview’s aim is to collect objective and generalisable 

evidence of the success of the program, the constructivist worldview’s goal is to develop 

an intersubjective understanding taking into account multiple realities such as those lived 

by the children and the teachers. Such differences could lead to divergent results: through 

the mini-case studies researchers might evaluate the program as successful, while the 

quasi-experiment might show the absence of bodily changes in the classrooms involved. 

As described in section 4.4, however, the idea that MMR should intentionally allow for 

disharmony to reach unforeseen insights is now shared and supported by many MMR 

proponents. This, furthermore, appears in line with one of the main purposes of MMR, 

known by the name of ‘initiation’: MMR studies can be conducted to find out paradoxes 

and conflicts that lead to a reframing of the research questions. This goal is often 

described using Rossman and Wilson’s words (1985, p. 633): “rather than seeking 

confirmatory evidence, this [initiation] design searches for the provocative”. 

Even in this case, it is difficult to find clear discussions of the epistemological 

perspectives used to study big and thick data. There are however some clues that seem to 

confirm the idea that the combination of big and thick data can entail the combination of 

different epistemological perspectives. To begin with, when describing the notion of rich 

data, that that resonates with the notion of thick data, Marx (2008) argued that: 

“Qualitative research is often described as having rich “thick description,” in 

the words of Clifford Geertz. Rather than merely recording events, people, 

and places, thick description seeks to present and explore the multifaceted 

complexities of the situation being studied, the intentions and motivations of 

the actors involved, and the context of the situation.” (Marx, 2008, p. 795) 

Similarly, Schultze and Avital (2011) observed that: 



 

98 
 

“For interviews to live up to their promise as a means of providing insights 

into people's life world and its meaning, the data that are generated need to 

be rich in such a way that they lend themselves to thick description […] 

qualitative studies include scenic details, participants' motivations and 

intentions, and the web of social relationships in which events happened and 

individuals took action. In other words, rich data are deeply implicated in 

bringing to life the human beings that are the center of social science 

research.” (Schultze & Avital, 2011, p. 3) 

Such claims cast light on the subjective dimension that can characterise thick data: thick 

data are not objective pieces of information, but data collected by observing the world 

from the point of view of the actors. It follows that, when combined with big data, they 

can give voice to different epistemological perspectives. 

4.5 Conclusion: lessons from MMR 

The discussions above show three different ways in which qualitative data can improve 

quantitative studies in MMR. First, qualitative data can be used to obtain evidence of the 

presence of causal mechanisms. Second, qualitative data can be used to explore 

ontological categories that would be difficult to study through quantitative data. Third, 

qualitative data can be collected and analysed from a different perspective with respect to 

how quantitative data are studied, therefore they can cast light on otherwise invisible 

dimensions of social phenomena.  

As I proposed in section 4.2, there are several similarities between MMR discussions and 

thick/big data discussions. To begin with, in both cases researchers want to explore the 

role and importance of qualitative data: many MMR researchers come from qualitative 

traditions and explore fruitful combinations of qualitative and quantitative data; similarly, 

proponents of thick data are convinced of the importance of qualitative and observational 

research. What is more, in some occasions MMR discussions and the thick/big data 

distinction partly overlap: some MMR proponents, indeed, justify the use of qualitative 

approaches by claiming that they allow for the collection of ‘rich’ or ‘thick’ data (Martin, 

2017; Robinson & Mendelson, 2012; Williams, 2013). 

If these similarities between MMR discussions and thick/big data debates are accepted, 

then MMR discussions can be used to cast light on some ways in which thick data can 
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improve data-driven studies. Like in MMR, it can be suggested that thick data, if 

combined with big data, enhance causal research in the social sciences through three 

pathways. 

First, thick data can be collected to find evidence supporting the presence of causal 

mechanisms. This possibility is often discussed in the MMR literature, where it is claimed 

that qualitative information can offer some insights into the mechanisms causing social 

phenomena. My suggestion is that thick data, thanks to their qualitative and contextual 

nature, can be easily used to find evidence of mechanisms. This use, furthermore, would 

be consistent with what I proposed in chapter 3: in order to overcome some limitations of 

big data studies, social scientists should establish the presence both of correlations and of 

causal mechanisms. In this context, thick data might help to comply with this requirement. 

Second, thick data can help researchers to focus on ontological categories that otherwise 

could be neglected. In the case of ontological categories of causation, I have shown that 

qualitative and quantitative data are in general used for different purposes: quantitative 

data are studied to explore general causation, according to which casual relationships exist 

at the population level and can be generalised; while qualitative data are used to establish 

causal claims linked to the category of singular causation, according to which causal 

relationships are local and unique events. Thick data, due to their qualitative and 

contextual nature, might be used to address singular causation. Big data, thanks to their 

volume, are likely to be used for general causation, to study how social phenomena 

function at the general level, apart from particulars. For this reason, it can be claimed that 

thick data might improve data-driven studies by allowing for the development of a full 

understanding of social phenomena.  

Third, another way in which thick data might help to develop a comprehensive 

understanding of social phenomena is by providing another perspective from which to 

analyse them. Quantitative data are in general collected and explored with the aim to 

maintain objectivity, and the same could be argued of big data. To begin with, a large 

amount of social data is now generated automatically through new devices: our Internet 

searchers can be transformed in data by means of new algorithms, our location data can 

be collected automatically from our mobile phone. Furthermore, also the analysis of big 

data is often conducted in an objective way, as it has been shown in the case of Bayesian 

Networks in chapter 2. Of course, both in the process of data collection and in the process 
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of data analysis numerous choices are made by technicians and researchers, and such 

choices are even more important when data are curated, as I have described in chapter 2 

(see also Leonelli, 2012a, 2014b). Nevertheless, the overall aim, when researchers use 

quantitative data, is to maintain a distance from the object under study. There is no room 

for the subjective meaning that researchers or individuals in the study would confer to 

such an object.  

Instead, thick data are collected exactly to gain a contextual understanding of phenomena, 

and are likely to be used to explore individuals' motivations and intentions (Marx, 2008; 

Schultze & Avital, 2011). Thanks to such data, researchers can obtain contextual insights, 

and can study how people perceive and interpret social phenomena. By adding thick data 

to data-driven studies, therefore, researchers might be able to develop a comprehensive 

understanding of social phenomena. As I described in section 4.4.2, furthermore, such a 

combination can help to explore further questions about the causal impact or the 

effectiveness of interventions. 

Overall, the parallel with MMR discussions helps to identify possible ways to use thick 

data to improve causal studies based on big data. There might be cases where thick data 

are combined with big data for other reasons not described here, or cases where two or 

three of the possibilities discussed in this chapter are considered as parts of the same 

general goal in single studies based on big and thick data. Furthermore, given the young 

and partly underdeveloped nature of the thick data/big data distinction, it is likely that 

future uses and combinations of such data will be analysed within the social sciences in 

the future. The aim of the discussion proposed in this chapter was simply to shed light on 

the relevance of thick data in the era of big data, and to provide fertile ground for future 

studies on the combination of thick and big data.  
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Part II 

Causal discoveries in practice 

In Part I, chapters 3 and 4 have helped to provide a solution to two of the challenges 

guiding this thesis, namely how to overcome the limitations of causal data-driven studies; 

and how to understand the role of thick data in causal studies based on big data. The 

considerations motivating the proposed solutions, however, have been mainly theoretical: 

rather than observing existing research studies, I have drawn my conclusion from some 

conceptual issues discussed in the literature. In this part of the thesis, instead, such 

challenges will be explored through two case studies. Such case studies will be used both 

to argue in favour of some of the discussions offered in Part I and to prepare the ground 

for the proposal that will be discussed in chapter 8 of Part III. 

On the one hand, the analysis of case studies will help to establish a strong relationship 

between the philosophical considerations proposed in Part I and the real practices in the 

social sciences. This is particularly relevant for chapter 5, based on the analysis of a MMR 

study. By discussing a real study in detail, it will be possible to argue that i) social 

scientists can comply with RWT, ii) qualitative data can provide evidence of mechanisms 

and iii) mixing qualitative and quantitative data can allow for the mixture of different 

ontological categories. These claims will hence support the discussions provided in 

chapter 3 and chapter 4. 

On the other hand, the project described in chapter 6 will pave the way for a detailed 

discussion on the role of biomarkers. This discussion will be crucial, then, to develop the 

general notion of markers and the concept of sociomarkers in chapter 8. As it will be 

argued in chapter 8, by using big data to obtain sociomarkers, social scientists might 

collect new evidence of social mechanism. The second case study, consequently, will 

provide useful observations to develop a solution to the last challenge of this thesis: how 

to use big data, in the social sciences, to obtain evidence of causality that goes beyond 

correlations. 

The case studies selected for this part of the thesis have two characteristics in common: 

they are both aimed at establishing causation, and they are both based on very large 

databases of data. However, while the study explored in chapter 5 is a MMR study, where 



 

102 
 

quantitative data are used in combination with qualitative data to establish both statistical 

and mechanistic relationships; the study discussed in chapter 6 uses a new conceptual 

framework to obtain evidence from big data.  

More precisely, chapter 5 will describe a traditional MMR study on the causes of the 

phenomenon of Mexico-U.S. migration, where quantitative data collected from 92,527 

individuals were analysed together with qualitative data to obtain both evidence of 

correlations and evidence of mechanisms (Garip & Asad, 2016). Quantitative data were 

analysed to establish a correlation between people’s ties to prior migrants and their 

decision to migrate, while qualitative data were used to identify three causal mechanisms 

responsible for such a statistical correlation. Together, quantitative data and qualitative 

data helped to recognise the causal relationship by which social networks influence 

migration. 

Chapter 6, instead, will examine a new epidemiological project called LIFEPATH. This 

project, like the mixed methods study, is based on large datasets of quantitative data, but 

what makes it an interesting case study is the novel approach characterising it, according 

to which data can be used to obtain markers. The analysis of LIFEPATH will be used to 

examine how biomarkers are identified by analysing biological data, and to develop a 

comprehensive definition of biomarkers. Such a discussion will then inform the 

discussion on sociomarkers in chapter 8. 
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5 Explaining migration through mixed methods: the 

phenomenon of Mexico-U.S. migration 

5.1 Introduction 

Human migration is often considered one of the most interesting social phenomena and 

is recognised as an essential area of contemporary research in the social sciences. In the 

second half of the twentieth century, international migration has become one of the main 

factors leading to social transformations and development in the world (Castles, 2000). 

After the Second World War, due to the post-war economic boom that stimulated massive 

labour migrations to the U.S. and Western Europe, international migration started 

expanding in volume and scope and became one of the main objects of study of the social 

sciences. International migration began to be considered a complex phenomenon, and 

numerous studies started exploring its causes, the continuity of migrant flows, its effects, 

the use of immigrants’ labour and the socio-cultural adaptation of migrants (Portes, 1997).  

In the studies on the determinants and continuity of migration, this phenomenon has in 

general been explained through the analysis of the socio-economic and political 

conditions characterising the home and the receiving countries. The central claims are 

that migrants could be ‘pushed out’ of their home countries because of the worsening 

economic conditions or political discontent. Conversely, migrants might also be ‘pulled 

into’ countries offering high wages, good health care, and stable and positive political 

conditions (Simpson, 2017). 

Over the last few decades, however, new network accounts have dominated the 

discussions about the reasons for growing migratory flows (Garni, 2010). Network 

theories are based on the assumption that, rather than looking at the socio-economic and 

political determinants that might initiate migration, researchers should focus on what can 

perpetuate migration in time and space (Massey et al., 1994). This idea is very much in 

line with the consideration according to which migration is one of those phenomena that, 

once initiated, tend to acquire a self-sustaining character (Garcia & Jutila, 1988). 

Empirical studies have provided support for such network theories: a case in point is the 

growing body of statistical studies showing that migration is more likely in communities 

already characterised by high levels of migration (Curran et al., 2005; Massey et al., 

1994). Despite the fact that there is a general agreement about the possible causal 
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influence of social networks on migration, statistical studies have not been considered 

sufficient to establish a causal claim due to the difficulty in identifying the mechanism 

responsible for that correlation. Some researchers have emphasised the role that 

normative pressures might have in sending communities, and the potential mechanism 

that might operate at that level (DiMaggio & Garip, 2012). According to a putative 

normative pressure mechanism, a society in which migration is valued positively would 

push individuals to conform to the society’s demand to avoid social sanctions. Other 

researchers have shed light on the crucial role that prior migrants can play by providing 

information or direct help to current migrants (Carrington et al., 1996). According to this 

second hypothesised mechanism, obtaining useful information from network peers can 

drastically reduce the cost of migration and can facilitate the process of migration.  

Unfortunately, quantitative empirical studies have not helped to answer the question 

about what causal mechanism generates the observed associations. To complicate the 

situation, both the normative pressure mechanism and the mechanism associated with the 

existence of network peers could alone provide an explanation of the correlations 

resulting from the analysis of migration data, but it could also be possible to explain the 

pattern as the result of the interactions between such (and further) mechanisms. The lack 

of evidence of mechanisms has caused ambiguity in the interpretation of correlational 

evidence (Garip & Asad, 2016, p. 1171), and this ambiguity motivated the mixed methods 

study described in this chapter. As I shall discuss, the quantitative analysis conducted by 

Garip and Asad (2016) helped them to collect new difference-making evidence 

supporting the claim that social networks influence migration, whereas qualitative 

methods allowed them to gather evidence in favour of the different hypothesised 

mechanisms described above. 

The chapter is structured as follow: section 5.2 will discuss the context and the 

mechanistic hypotheses motivating the mixed methods research. In particular, the section 

will provide a description of the three mechanistic hypotheses discussed in the literature. 

In section 5.3 I shall describe in detail how the mixed methods strategy was employed to 

explore such causal hypotheses. Section 5.4 will offer a review of the main results of the 

study, while section 5.5 will conclude. The overall argument defended in this chapter will 

be that the mixture of quantitative and qualitative approaches, in this particular study, 

helped not only to confirm the authors’ causal hypotheses at the contextual level, but also 
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to strengthen causal hypotheses at a more general level, where different cases of migration 

flows can be taken into account. 

5.2 Mechanistic hypotheses about Mexico–U.S. migration 

5.2.1 The phenomenon of Mexico–U.S. migration 

In their study, Garip and Asad (2016) employed a mixed methods strategy to explore the 

social mechanisms responsible for the growing Mexico–U.S. migration. Their research 

focused on a specific context that has attracted the attention of many researchers: the 

number of Mexican immigrants has indeed continuously increased over the past four 

decades, reaching, according to the Department of Economic and Social Affairs of the 

United Nations (2017), the current number of around 12.7 million of Mexican immigrants 

residing in the U.S., and making this flow the largest sustained migratory flow in the 

world. 

Mexican migration to the U.S. is far from being a new phenomenon. Historically it was a 

phenomenon of temporary migration, characterised by the migration of unauthorised 

workers in agriculture who, after a couple of years, returned home. The stream started in 

the 1900s, when U.S. labour recruiters approached people living in Central-Western 

Mexico to enrol new workers. 4.6 million Mexicans were recruited through the Bracero 

program for short-term farm work between 1942 and 1964 (Cornelius, 2001); a further 3 

million Mexicans moved to the U.S. without documents in the same period (Passel & 

Woodrow, 1987).   

From the 1990s, the population of Mexican migrants began to increase very fast. After 

border crossing became more difficult due to the increased border enforcement, this form 

of temporary migration was partly replaced by a new form of permanent migration, with 

the consequence that the rates of return migration started declining (Massey, 2005; Reyes, 

2004). The aspect that has attracted the attention of the authors, Garip and Asad, is that 

the growing number of migrants in the U.S. contributed to the emergence of strong social 

ties, that according to some hypotheses, might be crucial for migration. Each new migrant 

makes the social network connecting migrants in the U.S. to individuals in Mexico 

expand, and there is evidence that it causes an increase in individuals’ migration 

propensities (Fussell & Massey, 2004; Massey & Zenteno, 2000). Even though 

researchers have accepted the probabilistic relationship according to which social 
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networks increase the likelihood of migration, no agreement has been found about the 

particular mechanisms producing such a statistical correlation. The collection of evidence 

of mechanisms was the main purpose of Garip and Asad’s MMR study (2016). 

5.2.2 Three mechanistic hypotheses 

In their article, Garip and Asad (2016) disentangled and tested the presence of three 

different mechanistic hypotheses discussed in the literature. While quantitative data were 

analysed statistically to confirm the positive association established in the literature 

between individuals’ ties to prior migrants and their decision to migrate, qualitative data 

were studied to verify the presence of causal mechanisms.  

The mechanistic hypotheses tested in their paper were developed by the authors from the 

considerations proposed by DiMaggio and Garip (2012), who reviewed the literature on 

network effects and argued that three different general causal mechanisms were 

conceptualised in the literature: (i) social facilitation, (ii) normative influence, and (iii) 

network externalities. Such mechanisms were not just discussed in the context of 

migration, but were proposed as general mechanisms that can increase the probability of 

an individual to adopt a practice (DiMaggio & Garip, 2012, p. 95). Garip and Asad, hence, 

began their study by translating these three general mechanistic hypotheses into 

mechanistic hypotheses about migration. 

Social facilitation is the hypothesised mechanism according to which network peers, by 

providing information, increase the utility or reduce the cost or risk of a new practice 

(DiMaggio & Garip, 2012, p. 96). Such an effect has been described by Kohler et al. 

(2001) in women’s fertility decisions: when women are uncertain about the use of a new 

contraceptive device, information provided by friends who have already used it can 

reduce uncertainty. As for the decision to migrate, Garip and Asad (2016, pp. 1171–1172) 

hypothesised that network peers (such as family members and community members) can 

facilitate migration by providing useful information or by offering help that reduces the 

costs associated with migration. In Figure 11, I have tried to represent graphically the 

social facilitation mechanism. In order to operate, this mechanism requires a sufficient 

number of peers involved in the behaviour to exceed a threshold, under which the social 

facilitation effect is equal to zero. In other words, this social facilitation mechanism can 

be effective only if potential migrants know from similar situations that receiving help 

and information from network peers is likely to reduce the cost of migration. The effect 
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of this mechanism, furthermore, apparently increases at a declining rate with the number 

of peers: after having reached the threshold of peers engaging in the behaviour, the 

individual can obtain sufficient information without the need for further discussions with 

other peers (Kandel & Kao, 2006; Tilly, 2007). 

This mechanism, finally, might also generate further effects such as the decision of some 

young adults to give up potential opportunities in their home country to seek fortune 

abroad (Winters et al., 2001), or the imposition of non-consensual social obligations on 

prior migrants, who are forced to help new migrants once they arrive in the U.S. (Portes 

& Sensenbrenner, 1993). Rather than being part of the mechanism, however, these further 

effects act as its possible consequences: the reduced costs associated with migration might 

cause such effects. It is for this reason, that they are not represented in Figure 11. 

 

Figure 11. The social facilitation mechanism. 

The second plausible mechanism, known by the name of normative influence, was 

described as the mechanism operating through “the application of positive and negative 

sanctions upon network members” (DiMaggio & Garip, 2012, p. 108). The propensities 

to stop smoking or to start a diet, for instance, were described in the literature as the 

effects of normative influence. In the case of migration, such a mechanism is claimed to 

be based on the fact that the community can offer compensation or impose sanctions to 

encourage a type of behaviour. In Figure 12, I have illustrated this mechanism. In 

heterogeneous communities, some members might support the decision to migrate 

whereas others might disagree about it. In such a case, the final network effect would 

depend on the relative proportion of supporters versus opponents (Garip & Asad, 2016, 

p. 1172). Empirical studies on Mexico-U.S. migration have collected evidence supporting 

the presence of this mechanism. In diverse settings, indeed, researchers have underlined 

the importance of a ‘culture of migration’ (Cohen, 2004; Reichert, 1981; Wiest, 1973), 

where not only is migration associated with positive ideas, but it is also considered as a 

sort of rite of passage towards a delineation of the individual’s identity. 
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Figure 12. The normative influence mechanism. 

The third mechanism that might cause migration is based on the development of network 

externalities. In general, network externalities can be found in the case of communications 

technologies and can operate by increasing the value of a specific practice as if it were a 

function of the number of prior adopters. Software systems such as Adobe Acrobat, which 

dominates the market by offering Acrobat Reader away for free, began to be used by a 

large number of people, and this led more people to download them not to lose the 

connectivity with network members (Varian et al., 2004).   

If applied to migration, according to Garip and Asad, network externalities do not depend 

on the interaction between prior migrants and potential migrants, but are due to the fact 

that, when a considerable number of individuals move to another country, this 

phenomenon can produce important common institutionalised resources that might both 

reduce the cost or increase the value for those potential migrants who decide to leave their 

country, as described in Figure 13. Unlike the social facilitation mechanisms, the effect 

of this mechanism increases exponentially if the number of adopters grows, given that the 

maintenance of such resources depends on the size of the adopter group. Unlike the 

normative influence mechanism, moreover, this mechanism does not influence 

individuals’ motivation to migrate through sanctions or incentives, but facilitates the act 

of migrating or helps individuals to obtain greater benefits from migration. 

An example of a common resource generated through this mechanism is the organization 

of smugglers that helps undocumented migrants to cross the Mexico-U.S. border (Smith, 

2006). Moreover, the emergence of migrant enclaves and hometown associations to 

support migrants’ search for employment has often been associated with the presence of 

a large Mexican population in the country of destination (Goldring, 2004). It follows that 

the generations of such institutions could be seen as network externalities.  

 

Figure 13. The network externalities mechanism. 
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The contextual knowledge of the situation, as well as previous empirical studies, led Garip 

and Asad (2016) to hypothesise, in their analysis, the combined presence of all these 

mechanisms. As described in the next pages, quantitative and qualitative methods were 

hence employed together to test this hypothesis and to shed light on the specific nature of 

these mechanisms.   

5.3 Exploring causal mechanisms through mixed methods 

5.3.1 Quantitative data 

Garip and Asad started their study by analysing quantitative data coming from 124 

Mexican communities surveyed by the Mexican Migration Project 

(http://mmp.opr.princeton.edu) between 1982 and 2008. The communities were surveyed 

in the winter months, the period in which typically U.S. migrants visit their families in 

Mexico. In each community, researchers randomly selected the households to study, and 

asked individuals to reconstruct the timing of their first and last trip to the U.S. and to 

provide demographic information. In total, researchers obtained information about 92,527 

individuals.  

The pieces of information collected retrospectively were organised in a panel of data. In 

each year, researchers reconstructed individual traits going back in time until the age of 

15 years for each surveyed individual. The final individuals’ variables reconstructed in 

such a way were: age, sex, whether the individuals are household heads, the level of 

education, occupation (agriculture, manufacturing, or service sector), whether they have 

migrated in Mexico (an experience called ‘domestic migration’), household wealth 

(number of rooms in properties, land and business owned) and community type (rural or 

metropolitan) (Garip & Asad, 2016, p. 1175). 

Researchers began also to look for political, socio-economic, and demographic factors 

showing a correlation with an individual’s likelihood to migrate for the first time to the 

U.S. The variables collected for this purpose were: the inflation rate in Mexico, the ratio 

of available visas to Mexican migrants, the Mexico–U.S. trade (converted to constant 

US$ in 2000), the average hourly wage in the United States (in constant U.S. $ in year 

2000), the number of U.S. legal residents and of U.S. migrants (non-residents) in the 

household, and the migration prevalence (proportion of people who have ever migrated) 

in the community (Garip & Asad, 2016, p. 1175). 

http://mmp.opr.princeton.edu/
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Such variables were then analysed quantitatively through logistic regression, and a 

statistical model was developed to understand how the phenomenon of Mexico-U.S. 

migration operates generally. By controlling for education, occupation, household wealth, 

demographic characteristics and community type, the odds ratio of each political and 

socio-economic variable was measured, as illustrated in Figure 14. 

 

Figure 14. The odds ratio estimates. The black points represent the point 

estimate produced by the study, while the horizontal lines represent the 

95% confidence interval (the set of values within which you can be 95% 

sure the true value lies). The dashed line is placed at the value (1) where 

there is no association between the factor (for instance, ‘hourly wage in 

US’) and the effect (i.e. migration). For instance, the probability of 

migration does not rise significantly when the probability of available 

visas to Mexican migrants rises. Furthermore, the point estimate for 

‘migration prevalence in community’ is more likely to be the true value 

than the point estimate for ‘hourly wage in US’ (retrieved from Garip 

& Asad, 2016, p. 1175). 
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5.3.2 Qualitative data 

Qualitative data were collected after the analysis of quantitative data through 138 in-depth 

interviews conducted in 120 households in the summer months of 2011 and 2013. The 

interviews were conducted in Jalisco, a state in Central-Western Mexico famous for being 

a major sender of migrants to the United States and to host different types of migrants 

(young and old migrants, female migrants, educated migrants). Information obtained 

from the analysis of quantitative data informed the selection, in Jalisco, of those sites 

containing a large concentration of different migrant types (Garip & Asad, 2016, p. 1176). 

The first site selected was a rural village of around 1,000 people, whose migrants were 

male householders who started moving to the U.S. in the 1970s and early 1980s. The 

second site was a rural town with 3,000 inhabitants whose typical migrants were young 

men from wealthy families who migrated in the mid-1980s. The third community chosen 

for the study was an industrial town of 9,000 residents, from which both male and female 

individuals migrated (especially after the Immigration Reform and Control Act in 1986, 

which granted citizenship to undocumented migrants in the U.S. and allowed for family 

reunification). Finally, an urban neighbourhood in Guadalajara was selected as the fourth 

site due to the high percentage of educated male migrants who left Mexico in the mid-

1990s to work in manufacturing. 

For each community, around 35 households with at least one current or returned migrant 

have been interviewed. Overall, 166 individuals have been interviewed: 49 migrants, 49 

parents of migrants, 34 spouses of migrants and 34 relatives (siblings, nieces of migrants). 

The interviews were semi-structured, with open-ended questions concerning the 

circumstances associated with the decision to migrate. After the interviews, Garip and 

Asad interpreted qualitatively the information obtained with the aim to shed light on those 

personal opinions and personal events that influenced each migrant’s decision to leave 

Mexico to the U.S. for the first time. In such a way, researchers aimed at reconstructing 

the complex interrelations of factors that, together, led to the decision to migrate.  

5.4 Establishing causation  

Both the quantitative and qualitative analyses confirmed the salience of socio-economic 

factors for the decision to migrate. For many of the interviewed migrants, furthermore, 

the high pay in the U.S. was the main motivating factor. Almost all those interviewed 
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mentioned economic conditions or goals as the most important drivers of migration, but 

many also referred to migration as a chain of processes, where the first migrants in the 

community trigger others to leave to the U.S. as well. This qualitative result was 

confirmed by quantitative findings: like in similar quantitative studies, researchers found 

out that the odds of migrating were higher in communities with a high level of migration 

and in households with prior U.S. migrants (residents or non-residents) (Garip & Asad, 

2016, p. 1177). To uncover the mechanisms responsible for such associations, qualitative 

data collected from interviews were crucial. 

The most relevant operating mechanism, researchers discovered, was social facilitation: 

in 129 interviews migrants and relatives mentioned the help offered by others to cross the 

border or to find a job and an accommodation. Due to the risk associated with these tasks, 

many migrants clarified that they only relied on strong ties, and that such ties played a 

determinant role in their decision to migrate. For instance, a migrant’s wife considered 

how the presence of some relatives changed her husband’s perspective, making him think 

about the possibility of migrating: 

“An opportunity came up so that my siblings could help him—because 

nobody from his family was there—only my family. His cousins said they’d 

go with him, but they didn’t, so we called my sisters, and they said he could 

go with them. That’s why he left.” (Garip & Asad, 2016, p. 1180) 

From the interviews, researchers were also able to collect evidence of the presence of the 

normative influence mechanism. 51 interviews cast light on how communities and 

families often try to persuade the migrant to go by making very explicit their approval, 

while other respondents described the shame felt by migrants when their experiences and 

the expectations of their families do not match. The high expectations in the sending 

communities and families, furthermore, were powered by the decision made by migrants 

with negative experiences not to return or share their stories because of the shame felt. 

Some of them, even began to lie about their success, as reported by some respondents: 

“[…] they came and told stories that weren’t real. Really! “No, no, over there 

I have,” “Over there I am,” and they were all lies. […] When I left, I went 

with friends who had [spent] years over there and noticed that they hardly had 

anything to eat. They’ve been there for years, and the ones here thought they 

were millionaires over there, but it was all a lie.” (Garip and Asad 2016, 1182) 
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From the analysis of qualitative data, hence, researchers not only confirmed the presence 

of the hypothesised normative influence mechanism, but also realised that such a 

mechanism could both trigger the decision to migrate and act as a reinforcing mechanism 

leading to a very strong ‘migration culture’, as shown in Figure 15.   

 

Figure 15. The normative influence mechanism can both cause migrants 

to leave to the U.S., and reinforce the migration culture necessary for 

this mechanism. 

Finally, in 97 interviews researchers found evidence of the network externalities 

mechanism. Many migrants explained how they found a smuggler, or what kind of help 

they received from institutionalised resources. Due to the risks associated with trusting a 

smuggler, in 93 out of the 97 cases, this mechanism worked in tandem with the social 

facilitation mechanism, as many migrants decided to rely on their social ties to find a 

competent smuggler: 

“Everybody around [a nearby city] knows who the coyotes are. “Go with José. 

Go with that guy, look for him,” and then they [coyotes] ask, “Who sent you?” 

“Herbierto’s brother.” “Oh, OK. Let me talk to him.” “Luís, you sent such 

and such?” “Oh, OK, look after them.” So, trust. […] Even for finding a 

coyote you need to know people.” (Garip & Asad, 2016, p. 1183) 

In all these cases, qualitative data were used together with quantitative data to establish a 

causal relationship. As described by the authors, quantitative data alone would not have 

solved the puzzle concerning the reason for the correlation between migration behaviours 

among peers and the decision to migrate. This, consequently, would not have ruled out 

the doubts concerning the presence of a spurious correlation. Only through the analysis 
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of qualitative data, hence, researchers were able to establish that the correlation was 

actually due to certain causal links.  

On the other hand, however, qualitative data alone could not establish any causal link. 

Especially in the case under study, where the authors hypothesised more than one 

mechanism, it would have been possible to have masking phenomena, where more 

mechanisms interact and the operation of one mechanism ‘masks’ the operation of 

another mechanism, leading to a null net effect. To give an example, the normative 

influence mechanism might produce social incentives to migrate, while the network 

externalities mechanism might lead to the creation of hometown associations to support 

migrants’ search for employment. This second mechanism might provide support to those 

people who would like to migrate on the one hand, and might bust the myths about the 

ease with which migrants earn money and get successes in the U.S. on the other hand. 

The awareness that migration involves economic risks and does not automatically lead to 

a happier life, consequently, could cancel the effect of the ‘migration culture’. The overall 

effect of these two mechanisms, hence, might be null. 

Only considering together quantitative and qualitative evidence, hence, Garip and Asad 

were able to establish both the presence of causal mechanisms and of a net effect on 

Mexico-U.S. migration. In accordance with RWT this, finally, led the authors to establish 

a causal link between the presence of migrants among the Mexican family and 

community, and the individual’s decision to migrate to the U.S. from Mexico. 

5.4.1 General and singular causation 

In this sub-section I shall argue that the mixture of quantitative and qualitative data did 

not allow Garip and Asad just to establish the presence both of some mechanisms and of 

a correlation, but also helped them to combine different ontological categories, as 

described in chapter 4, section 4.4.1. My argument is that the causal relationship between 

the presence of migrants among the Mexican family and community, and the individual’s 

decision to migrate to the U.S. from Mexico was established by moving from the 

ontological category of general causation to the ontological category of singular 

causation. Let us consider again the MMR study conducted by Garip and Asad. 

To begin with, the first ontological categories involved in the study were both at the 

general level: researchers translated general hypotheses concerning the existence of 

network effects and of different causal mechanisms behind them into more precise (but 
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still general) hypotheses about the presence of such effects and mechanisms in migration 

flows. To give an example, the general hypothesis concerning network externalities is 

based on the assumption that they operate when the value of a practice is a function of 

the number of prior adopters (DiMaggio & Garip, 2012, p. 96). The general hypothesis 

can be applied to different contexts, such as communications technologies (if a software 

systemis used by a large number of people, more people will download it not to lose the 

connectivity with network members), languages (if a growing number of people speak a 

language, more people will decide to learn it and they will do it easily), fertility choices 

(choosing to have children and raising them is easier if there are friends who have kids), 

and divorce (the more divorced people there are in a social network, the more 

recommendations and suggestions are available for those who need them) (Booth et al., 

1991; Church & King, 1993; DiMaggio & Garip, 2012). Garip and Asad adapted this 

hypothesis to the specific context of migration, claiming that such externalities were 

based on the generation of institutionalised resources facilitating the adoption of the 

behaviour to new individuals. 

After this movement from general causation to a more specific general level, Garip and 

Asad translated the general causal hypotheses about migration into detailed general 

hypotheses regarding the specific context of Mexico-U.S. migration. Taking again 

network externalities as an example, for instance, in the specific case of Mexico-U.S. 

migration flow, network externalities mechanisms were hypothesised to operate through 

the emergence of smugglers for crossing the Mexico–U.S. border, and of migrant 

enclaves. Finally, to confirm the presence of such operating mechanisms in the specific 

context of Mexico-U.S. migration, Garip and Asad collected evidence at the local level. 

By means of qualitative interviews, the authors managed to establish the presence of at 

least one of such mechanisms in a significative number of local, singular cases.   

As I have illustrated in Figure 16, the causal study conducted by Garip and Asad, 

consequently, combined not only methods but also ontological categories: general 

causation at the most general level, general causation at the migration level, general 

causation at the Mexico-U.S. migration level, and singular causation regarding the local 

cases of Mexico-U.S. migration. The movement from general to singular causation 

illustrated in Figure 16 was made possible by the qualitative data collected by the authors, 

that helped to clarify the contextual factors influencing migration decisions in some 

specific cases of Mexico-U.S. migration. This context, according to the authors, was 
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studied by many in the literature just to establish a “positive association between 

individuals’ ties to prior migrants and their migration propensities” (Garip & Asad, 2016, 

p. 1185). The information collected through qualitative interviews in their study was 

claimed to be fundamental in order to take a step forward and uncover, in that context of 

Mexico-U.S. migration, the presence, in specific local cases, of the mechanisms 

responsible for that correlation. 

 

Figure 16. From general to singular causation. From a general 

hypothesis about the presence of network effects mechanisms, the 

authors moved to an intermediate general level in which they 

hypothesised the presence of such effects in migration flows. At this 

level, further details were added to the mechanistic hypotheses. Then, 

the authors moved to a more specified intermediate level of general 

causation, where the mechanistic hypotheses were adapted to the 

specific level of Mexico-U.S. migration. Finally, local mechanisms 

were hypothesised and established in singular instances of the 

migration flow from Mexico to the U.S. 
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Quantitative studies, in contrast, helped researchers to perform an opposite movement 

from singular causation to general causation: by analysing quantitatively the qualitative 

data obtained from the interviews, Garip and Asad discovered that in about 90% of the 

cases migrants described the operation of at least two mechanisms at the same time; and 

for more than 33% of the migrants interviewed, all three mechanisms worked together. 

Since qualitative data were collected from four very diverse Mexican communities to 

maximise the diversity of respondents (Garip & Asad, 2016, p. 1176), the quantitative 

results they obtained strengthened their confidence about the possibility of generalising 

the operation of the local mechanisms to further cases, not studied in the project, of 

Mexico-U.S. migration. In such a way, the movement from general network effects 

mechanisms to more contextual (but still general) network effects mechanisms in the case 

of Mexico-U.S. migration was confirmed by the generalisation of local mechanisms 

operating in singular, specific cases. 

The generalisation at the Mexico-U.S. migration level, then, was used to extend the claim 

that more than one of the network effects mechanisms described in the study might be 

responsible for migration flows also in other cases of migration:   

“By delineating the sources for interdependent migration choices, we provide 

a deeper understanding of migration as a social process, which is crucial for 

anticipating future flows and policy responses.” (Garip & Asad, 2016, p. 

1170) 

“By focusing on the social mechanisms underlying the network effects on 

migration, we can anticipate whether and how these effects may decline in 

size, or be reversed. In particular, the mechanisms we have identified—social 

facilitation, normative influence, and network externalities—generate a 

positive feedback loop as long as migration remains a successful enterprise, 

or at least is perceived as such, in sending communities.” (Garip & Asad, 

2016, p. 1185) 

In other words, first some general mechanistic hypotheses were adapted to the context of 

migration and then to the context of Mexico-U.S. migration, and qualitative data allowed 

researchers to claim that a singular, complex, instance of causation, involving three 

different mechanisms, exists in specific cases of Mexico-U.S. migration flow. Then, this 

result was used as a piece of evidence in support of the idea that such causal mechanisms 
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could operate generally not only in the case of Mexico-U.S. migration, but also in further 

cases of migration. Figure 17 represents this movement from singular causation to the 

different levels of general causation. 

Overall, the mixture of qualitative and quantitative data helped researchers to explore 

causation at different ontological levels, paving the way for further studies on the causal 

relationships between individuals’ ties to prior migrants and their decision to migrate in 

different cases of migration. 

 

Figure 17. From singular to general causation. From some contextual 

pieces of evidence showing the presence of the network effects 

mechanisms in local cases of Mexico-U.S. migration flow, the authors 

moved to the general Mexico-U.S. migration level and then to the 

general migration level to strengthen the hypothesis that the same 

mechanisms can operate also in other migration contexts. 

5.5 Conclusion 

The Mexico-U.S. Migration mixed methods study allowed researchers to establish the 

causal link responsible for a phenomenon that has been discussed many times over the 

last century. A large sample of quantitative data from the Mexican Migration Project 
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helped researchers to obtain difference-making evidence in support of the correlation 

between having network peers who migrated to the U.S. and the propensity to migrate to 

the U.S.; while in-depth qualitative data allowed researchers to establish the presence of 

three contextual network mechanisms influencing the decision to migrate in local 

instances of Mexico-U.S. migration. In such a way, Garip and Asad managed to establish 

causation in the context of Mexico-U.S. migration.  

While establishing general causation at the contextual level was the aim of the MMR 

study, it is worth noting that the mixture of quantitative and qualitative approaches did 

not help the authors just to confirm their causal hypotheses at the contextual level. On the 

one hand, the MMR study helped also to strengthen causal hypotheses at a more general 

level, where different cases of migration flows can be taken into account. In such a case, 

indeed, the statistical analysis of the information collected through qualitative interviews 

allowed for the recognition of the pervasive mixture of more network effects mechanisms 

together, and the prevalence of all three mechanisms. On the other hand, qualitative 

evidence allowed the authors to analyse singular causation and to establish the presence 

of local mechanisms in specific and unique instances of Mexico-U.S. migration. Overall, 

the case study described in this chapter offers a clear representation of a traditional piece 

of research aligned with RWT, and clarifies how the mixture of different methods and of 

different data can allow researchers to mix different ontological categories. 
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6 Big data in social epidemiology: the case of LIFEPATH 

6.1 Introduction 

LIFEPATH is an interesting project conducted by social epidemiologists and aimed at 

discovering the causal relationships between socio-economic factors and the development 

of diseases. The starting assumption is that factors external to the human body, such as 

socio-economic conditions, can trigger changes internal to the human body that in turn 

lead to the development of diseases. As a consequence, different factors both at the social 

and at the biological level are measured and studied within the project. In this chapter, I 

shall explore how LIFEPATH researchers use big data to uncover causal relationships 

between social and biological factors.  

LIFEPATH is a social epidemiology project, consequently it is based on the combination 

of rigorous epidemiological methods and theoretical insights from the social sciences. 

The ultimate goal is not to explain a social phenomenon: researchers in LIFEPATH want 

to establish the effects that social factors, such as social structure and environment, have 

on individual and population health. Given this aspect, someone could argue that other 

projects, focused more on social phenomena and less on biological factors, would be more 

relevant in the social sciences. My decision to use such a case study, therefore, needs to 

be clarified. To justify my choice, two considerations should be taken into account.  

First, LIFEPATH explores the effects of social factors, and this characteristic makes the 

project relevant to the social sciences. Several social scientists work on similar research 

questions, trying to establish the effects of social conditions on people’s life. Furthermore, 

as I shall describe, LIFEPATH studies comply with RWT. Hence, my answer to those 

who argue that other projects, focused less on biological factors, would be more relevant 

in the social sciences, would be that the relevance of LIFEPATH in the social sciences 

cannot be dismissed just because the final phenomena that LIFEPATH wants to explain 

deal with health outcomes.  

Second, what makes LIFEPATH particularly interesting if compared to other projects 

studying social factors, is the way in which the study is conducted. Not only are the 

datasets employed by LIFEPATH incredibly large (to examine the socio-economic 

factors that might be causally relevant to particular diseases, scientists use data from 7 

child cohorts and 11 adult cohorts), but to examine the changes at the biological levels, 
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scientists rely on a novel approach of data analysis that allows them to identify and use 

pieces of information known by the name of biological markers. The identification of 

markers is, as I shall suggest, a ground-breaking way to obtain causal evidence from big 

data.  

While in this chapter I shall describe how markers can be identified at the biological level, 

chapter 8 will suggest that similar markers can be used also at the social level. In other 

words, the description of LIFEPATH’s use of biomarkers will pave the way both for 

general considerations concerning the identification of markers and for a new proposal 

about the possibility of using not only biomarkers, but also sociomarkers.  

The chapter is structured as follows. In section 6.2 I shall present the ‘ancestors’ of 

LIFEPATH, EnviroGenomarkers and EXPOsOMICS, and the goals of the LIFEPATH 

project. In section 6.3, I shall examine how socio-economic data are collected and used 

within the project. In section 6.4, I shall focus on the use of biological data to obtain 

biomarkers. In particular, I shall first describe how biomarkers are used, and subsequently 

I shall explore how biomarkers are identified and conceptualised as intersecting signals. 

In section 6.5 I shall use the observations on biomarkers collected through the case study 

to propose a novel framework for biomarkers. I shall argue that what I will call a 

‘relational framework’, based on Leonelli’s proposal (2015), is needed for biomarkers to 

emphasise their nature, and I will claim that biomarkers are used both to develop new 

causal hypotheses and to collect evidence supporting them. It follows that the very notion 

of biomarkers is associated with causal reasoning, even if often this is not explicitly 

discussed when biomarkers are identified or used in new ways. Overall, these proposals 

will be used to offer a new definition of biomarkers. Section 6.6, finally, will conclude. 

6.2 LIFEPATH 

6.2.1 The origins of LIFEPATH 

LIFEPATH came into being thanks to two previous projects, whose methods and findings 

contributed to its development. The first ‘ancestor’ of LIFEPATH was the project called 

EnviroGenomarkers. That project, funded by the European Union, investigated the effects 

of environmental exposures on the development of various diseases. The main goal was 

to measure the effects of environmental agents on diseases through the evolution of 

biomarkers. Two underlying ideas were crucial in the EnviroGenomarkers project.  
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To begin with, to investigate the development of diseases, scientists considered the 

totality of environmental exposures affecting individuals during their lifetime. Such a 

totality, known by the name of ‘exposome’12 (Wild, 2012), comprises both ‘internal’ and 

‘external’ exposures. For instance, some metabolites contained in our biological fluids 

can act as ‘internal’ exposures, affecting inflammation, oxidative stress and various 

metabolic pathways. These metabolites, furthermore, can be affected by some ‘external’ 

environmental exposures, like radiation. 

In addition, the project EnviroGenomarkers was founded upon the concept of biomarkers 

produced through ‘-omic’ technologies. The nature of biomarkers will be discussed in 

detail in section 6.4, for the moment it is sufficient to know what ‘-omic’ technologies 

are, and what the term ‘biomarker’ represents. In EnviroGenomarkers, ‘-omic’ 

technologies are described as promising technologies able to find the missing links 

between exposome and disease. The main feature of ‘-omic’ technologies is their capacity 

to analyse vast sets of biological molecules, rather than a single biological structure (like 

a protein or gene). The emerging methods of measuring families of cellular molecules are 

known by the names of ‘genomics’, ‘transcriptomics’ (gene expression profiling), 

‘proteomics’ and ‘metabolomics’. 

In biology, the term ‘genome’ is used to refer to the whole hereditary information encoded 

in the DNA (or, for some viruses, in the RNA). To be more precise, the genome of an 

organism is the DNA sequence of one set of chromosomes. The study of an organism’s 

genome through ‘-omic’ technologies, aimed at understanding its complex function, is 

called genomics.  

Transcriptomics is the application of evolving technologies to scan the fifty thousand 

genes that we currently know are transcribed into RNA molecules from the three-billion-

letter human genome. Such mRNA transcripts in the cell reflect the genes that are actively 

expressed at any given time points. Measuring the expression of an organism’s genes at 

different time points, and in diverse tissues and conditions helps scientists to understand 

how genes are regulated, and how certain developmental pathways such as environmental 

stimuli responses are triggered (Debnath et al., 2010). 

                                                           
12 The concept was developed in parallel with the notion of ‘genome’, a term used to characterise the genetic 

material of an organism. The ‘exposome’ complements the genome by addressing both genetic and non-

genetic exposures.  
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Proteomics indicates the analysis of gene products, proteins, on a large scale. In general, 

proteomics allows scientists to study protein expression profiles, protein modifications 

and protein networks in relation to cell function and biological processes (Macaulay et 

al., 2005). 

Finally, metabolome refers to the complete set of small-molecule metabolites (such as 

metabolic intermediates, hormones and other signalling molecules, and secondary 

metabolites) that are found within a biological sample, such as a single organism 

(Debnath et al., 2010). Metabolomics, based on ‘-omic’ technologies, aims to 

comprehensively study the metabolome of cells, body fluids and tissues. 

In EnviroGenomarkers, the major contribution of ‘-omic’ technologies was through the 

identification of relevant biomarkers. Biomarkers are measures of elements or 

characteristics of the environment and the organism that help to understand biological 

processes. In a first step, ‘-omic’ technologies allow researchers to collect vast amounts 

of data on particular molecules (like DNA, metabolites) in individuals with specific health 

conditions. The dataset is then analysed to determine whether it is possible to obtain 

biomarkers, that in turn can be used in different ways: some biomarkers help to diagnose 

accurately the health disorder of the patient; other biomarkers are used to trace the course 

of a specific disease; another group of biomarkers is studied to obtain information about 

the risk of developing diseases. Some of these biomarkers, together, help scientists to cast 

light on causal processes starting with certain environmental exposures and ending in the 

emergence of diseases.  

The more recent ‘antecedent’ of LIFEPATH is the project EXPOsOMICS, whose main 

goal and methods were very similar to those of EnviroGenomarkers. EXPOsOMICS, 

based on the study of biomarkers and on the concept of exposome, acted as a bridge 

between EnviroGenomarkers, focused solely on the effects of environmental exposures, 

and LIFEPATH, interested in the causal link between socio-economic conditions and 

diseases. It was especially during this project, indeed, that scientists began to consider 

socio-economic factors as causally relevant to health conditions. As an example, in the 

article published by Vineis et al. (2017), EXPOsOMICS researchers stated that:   

“It is generally accepted that the majority of important chronic diseases are 

likely to result from the combination of environmental exposures to chemical 

and physical stressors and human genetics. There is also evidence that the 



 

124 
 

effects are location-specific and influenced by climatic, lifestyle and socio-

economic characteristics.” (Vineis, Chadeau-Hyam, et al., 2017, p. 143) 

If we consider EnviroGenomarkers, EXPOsOMICS and LIFEPATH, the hypothesis that 

health effects are caused by socio-economic characteristics was developed when 

scientists were conducting EXPOsOMICS, but was not tested in that project. Scientists 

in EXPOsOMICS focused their attention on the causal relationships between 

environmental exposures and diseases. While some exposures were thought to be caused 

by certain socio-economic conditions, researchers in EXPOsOMICS did not use socio-

economic indicators: the EXPOsOMICS datasets were made only of biological and 

exposure data (such as measures of chemicals in water or air). The causal relationship 

between socio-economic characteristics and health became then the heart of LIFEPATH, 

as we will see in the next section.  

6.2.2 The LIFEPATH project 

LIFEPATH is a big data project funded by the European Community and devoted to the 

investigation of the causal relationships between socio-economic factors and the 

development of diseases. Over the last few decades, many researchers have collected 

evidence that individuals from more disadvantaged socio-economic positions have higher 

mortality rates than people of the same age from higher socio-economic positions (Chetty 

et al., 2016; House et al., 2005; Mackenbach et al., 2008). Furthermore, studies have 

shown that such people are more likely to suffer from diseases and disabilities in their 

life. While the associations between socio-economic factors and health are often 

discussed within social epidemiology, the paths through which psychosocial and 

economic experiences trigger biological causes that ultimately influence health are still 

underdeveloped if compared to the biological pathways (Adler & Ostrove, 1999).   

The aim of LIFEPATH is to fill this gap by illuminating how social, environmental and 

economic conditions (like wealth, education, job and housing) may lead to short and long-

term health effects. In order to do this, researchers in LIFEPATH use both statistical 

analyses, exploring  correlations between certain socio-economic factors and some 

diseases (see d’Errico et al., 2017), and mechanistic studies aimed at finding the 

intermediate mechanisms and pathways through which socio-economic conditions 

influence organic parameters (see Vineis, Avendano-Pabon, et al., 2017). As 

reconstructed by Vineis, Illari and Russo (2017, p. 5), only when researchers confirm the 
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presence both of a difference-making relationship and of a mechanistic relationship 

between certain socio-economic factors and health conditions, causation is established. 

To establish correlations and mechanisms, furthermore, vast amounts of data concerning 

socio-economic factors and health conditions are required.  

Many of these data are analysed to find relevant correlations, and to identify 

intermediating markers that might allow researchers to recognise the processes linking 

socio-economic factors and biological changes. The aim of LIFEPATH is to trace the 

processes both at the social and biological levels, however social and biological factors 

are explored in different ways. On the one hand, the roles played by social factors, as we 

will see, are explored by using only the traditional socio-economic position indicators. 

On the other hand, the processes at the biological level are explored by means of 

biomarkers. It follows that, while the social components are analysed at a rather coarse-

grained level, the biological components of the mechanisms of health are explored at a 

fine-grained level.  

To identify biomarkers, scientists working in LIFEPATH follow the same approach used 

in EnviroGenomarkers and EXPOsOMICS: to begin with, they obtain new data by means 

of ‘-omic’ technologies adopting a holistic view of the molecules that make up cells, 

tissues or organisms (Horgan & Kenny, 2011). Then, they examine whether from such 

data it is possible to obtain biomarkers. In the next sections of this chapter, I shall explore 

how such biological markers are identified, and how they might enhance our 

understanding of causal processes. Before answering this question, however, it is 

important to clarify the strategies through which socio-economic and biological data are 

collected. 

6.3 Using socio-economic data in LIFEPATH    

Research on the social determinants of health requires the use of some measures of socio-

economic position. Although socio-economic position is at the heart of this kind of 

research, its study appears complicated by the fact that researchers have not yet agreed 

on a definition and on the best way to measure it. 

LIFEPATH uses educational, occupational, and income data in order to measure socio-

economic position and, subsequently, to study the causal relationship between socio-

economic position and the development of diseases. This choice is in line with the 
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epidemiological practice: traditionally, epidemiological studies use all three of these 

measures as indicators of a person’s socio-economic position.  

More specifically, in LIFEPATH education is measured in every cohort in a way that 

makes measures comparable across countries. Three levels are identified (d’Errico et al., 

2017): 1) primary and lower secondary school (during between 7 and 9 years and started 

immediately after the nursery), 2) higher secondary school (during 4 or 5 years and ending 

with a high school diploma level) and 3) tertiary education (any type of education 

received after high schools, like BSc, MSc, and further education). Educational data are 

useful for three different reasons. First, they allow researchers to classify all individuals 

in a society, regardless of the fact that they are active participants in the labour market 

(Galobardes et al., 2006). Second, such data help researchers to obtain information about 

childhood and adolescent socio-economic positions, given that education is in general 

strongly influenced by the resources of the family of origin. Third, with respect to the two 

other socio-economic measures, occupation and income, the level of education has the 

advantage of being unlikely to be caused by health conditions occurred in adulthood.  

The fact that educational data provide information about childhood and adolescent socio-

economic positions is considered particularly relevant because one of the hypotheses 

linking socio-economic conditions and health is that bad conditions in early life can affect 

the current health situation of a person and, at the same time, can increase the possibility 

of long-term effects in adulthood. The collection of educational data helps researchers to 

obtain information about people’s childhood, and such knowledge can be then used to 

verify whether there are strong correlations between low socio-economic conditions 

during childhood and diseases manifested many years later, especially in the cases in 

which the socio-economic conditions improved from childhood to adulthood.  

The third advantage of measuring education is based on the awareness that occupation 

and income might both affect health conditions and be influenced by poor health during 

adulthood. The use of occupational and income data, hence, might lead to a causal loop 

in which health conditions influence occupation and income, and occupation and income 

influence health conditions. Education, on the contrary, is affected by health conditions 

only in very specific cases and only in childhood. Consequently, statistical correlations 

to educational level can be analysed without the worry that health conditions in adulthood, 

rather than being an effect of education, are some of the causes influencing it.   
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As regards the occupation measurements, the conceptual reference of LIFEPATH is the 

European Socio-economic Classification (ESeC), that classifies occupations in ten 

ordinal categories, as shown in Table 6. Such categories are formed by grouping 

occupations with similar opportunities and ‘life chances’: as an example, one of the 

strategies used by researchers is to consider the similarity of employment relations and 

conditions. Occupational data are used in LIFEPATH not only to assess the socio-

economic conditions of the working individuals, but also to recognise the socio-economic 

conditions of children. In that case, parental occupation is assumed to influence children’s 

conditions through access to material resources (that determine material living standards), 

work privileges (i.e. social security), and toxic exposures (Galobardes et al., 2006). 

 

Table 6. The ten occupation categories of the European Socio-economic 

Classification (ESeC), retrieved from Rose and Harrison (2007, p. 464). 

Finally, personal income data are collected only in three cohorts, and in different ways. 

Consequently, before using income data, scientists need to make measures from different 

cohort comparable though a process of harmonisation. These data are collected having in 

mind a specific hypothesis, according to which income might influence health through 
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two paths: allowing people to obtain material resources for living (such as food, clothing 

and housing) and access to health care; and giving people the opportunity to participate 

in activities such as sport and cultural events.  

In the epidemiological research tradition, for a long time education, occupation and 

income measures have been used as if they were interchangeable, with the assumption 

that they represent exactly the same phenomenon. Only in the last 10 years this practice 

has been questioned and tested. A few studies such as that of Geyer et al. (2006), have 

recognised that education, income and occupation are only moderately correlated and 

have different strengths of relationship with different health outcomes. 

The consideration that such measures might represent different aspects of the socio-

economic position and that, therefore, the correlations between them might vary, led 

scientists to examine the relationships between the socio-economic indicators used in 

LIFEPATH. One of the first papers published by d’Errico et al. (2017), was specifically 

aimed at presenting the three socio-economic indicators employed in LIFEPATH and to 

compare their correlations to mortality. By analysing data from 518,061 participants, 

grouped in 18 cohorts (7 child cohorts and 11 adult cohorts), the authors obtained two 

relevant results. First, they discovered that, among men, mortality was not associated with 

the occupational class of the father. Second, they also considered that, among women, 

only education and occupation showed an association with mortality. Individual income 

and mortality in women were not associated, as there were cases in which women 

characterised by very low personal income lived longer than those women with a middle 

income. From such a result, researchers concluded that, for women, the use of their sole 

income data without considering those of their partners might cause misclassification of 

their social position. Women with low income might not need to work given their 

privileged position or the high income of their partners. More generally, furthermore, this 

result cast light on the difficulties associated with the choice of the most suitable socio-

economic indicators in specific contexts.  

6.4 Using biological data in LIFEPATH: the novel biomarker 

approach      

To identify correlations between socio-economic measures and health conditions, 

researchers obtain disease and mortality data from administrative information about each 
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cohort. In addition, LIFEPATH researchers collect vast amounts of biological data that 

are used to obtain biomarkers.  

In section 6.2.1, it has been said that biomarkers are measures of elements or 

characteristics of the organism. An illustrating example where biomarkers are 

successfully used to predict the incidence of certain diseases is the case of exposure to 

aflatoxin. Aflatoxin is a poisonous carcinogen produced by certain fungi which grow in 

soil, decaying vegetation, hay, and grains. Such fungi can contaminate some types of 

foods, such as rice and peanuts. If people eat these contaminated foods, they are exposed 

to aflatoxin. In the liver, aflatoxin is metabolised by CYP450 isoforms to form a reactive 

intermediate, AFB1-8,9-epoxide. This intermediate, furthermore, can form DNA adducts 

via covalent binding to the N7 atom of guanine. In this case, aflatoxin-N7-guanine 

adducts in serum are used as biomarkers of exposure to aflatoxin, while aflatoxin-N7-

guanine adducts in the liver are used as biomarkers of early biological effects (Egner et 

al., 2001).  

The biomarker approach is novel for three different reasons. First, traditionally 

epidemiology establishes correlations between population-level variables: those 

associated with the environment and those describing diseases. Biomarkers, on the 

contrary, allow researchers to go much smaller: not only the population-level factors 

themselves, such as environmental exposures, can be studied at the chemical level, but 

also their effects are now measured at the molecular level.  

Second, the aflatoxin example represents just one of the possible situations in which 

biomarkers are identified and used. The term ‘biomarker’, indeed, can be attributed to 

measures of different bodily entities and features. While some biomarkers are identified 

by measuring existing entities which are either parts of the body (like pancreas cells, 

biological fluids, insulin receptors) or found inside the body (as in the case of aflatoxin-

albumin adducts in serum), it is often the case that biomarkers are obtained measuring 

qualities of a bodily component. An illustrating example is urine’s colour, that can be 

measured through a Urine Color Chart (that attaches a number to a particular colour) and 

can be used as a quality biomarker of dehydration. In other circumstances, measures of 

bodily processes such as reduced insulin production can count as biomarkers.  

In all these cases, it is essential that the biomarker is objectively measurable. Thus, when 

researchers analyse qualities and processes, they have to establish how to attach numbers 
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to them: for instance, scientists might decide that blood glucose is observable through 

blood samples and might establish the best strategy to represent it numerically. Blood 

samples, hence, might be the means through which a specific quality is made observable 

and measurable. Moreover, there are cases where the entity, quality or process is so 

multifaceted and complex that, in order to measure it, researchers use a cluster of 

variables that need to have particular values. An example is the case of allostatic load, a 

process of ‘wear and tear’ experienced by the body during stressful situation (more details 

will be discussed in section 6.4.3): in this case, more than 25 biomarkers can be used to 

measure some aspects of the process, and quite often they are combined to obtain a single 

number associated with the process (Juster et al., 2010, pp. 10–11). 

It is important to note that not all the bodily qualities that can be measured qualify as 

biomarkers: as an example, the measure of a colour of a bodily component could be a 

biomarker of certain diseases, while the measure of the size and temperature of that 

component might not be relevant, therefore they would not be used as biomarkers.   

The third reason why the biomarker approach can be considered a novelty, is that 

biomarkers have to be linked to the causal process under study. Biomarkers are always 

biomarkers of something, in relation to a specific process, as I shall suggest in section 

6.5.1. The link between biomarkers and causal processes, however, can vary, as shown in 

Figure 18. Biomarkers can be directly involved in the causal process causing a specific 

event, as shown in Figure 18(a): we have seen, for instance, that measures of aflatoxin-

albumin adducts in serum are used as biomarkers of exposure to aflatoxin, and that such 

a presence is caused by exposure, and can produce causal effects in the body.  

In addition, biomarkers can be causally linked to (but not acting parts of) such a process, 

as illustrated in Figure 18(b): as an example, Vineis, Illari et al. (2017) considered that 

measures of tobacco stain on fingers might be used as a biomarker of lung cancer given 

that such a bodily quality is causally linked to smoking, a cause of lung cancer. A more 

realistic case is the use of the measure of HPRT hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) gene mutation as a surrogate for other target genes 

(such as mutated p53 gene) that are directly involved in the development of cancer. In 

this case, the biomarker is used to substitute another event or factor that is unmeasurable 

but directly involved as an acting part in the causal process, like in Figure 18(c). In other 

circumstances, the biomarker might be caused by an unmeasurable part of the process, 
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like in Figure 18(d): for instance, the process from an infectious agent to chronic 

inflammatory disease in general involves an immune response, which in turns produces 

inflammatory cytokines such as IL-17, IL-1 and IL-6. IL-6 also exerts an effect on the 

liver, where it induces the production of the C-reactive protein (CRP). In numerous cases, 

CRP measures are used as biomarkers of the inflammatory process leading to chronic 

inflammatory disease, even though CRP is just correlated to such a process because it is 

caused by IL-6. 

Finally, biomarkers can also be used as predictors of events when they cause the factors 

that trigger the causal processes, like in Figure 18(e): a case in point is the use of the 

human chorionic gonadotropin measure (the biomarker of pregnancy) to predict the 

possibility of the Ballantyne syndrome, a rare disorder affecting pregnant women. In such 

a case, the biomarker would be considered a background condition: a condition required 

for the cause to exert its effect.  

These possibilities help to distinguish between simple proxies and biomarkers. In order 

to have a proxy, it is sufficient to find a correlation between one unmeasurable factor and 

one measurable factor (the proxy). In order to have a biomarker, instead, it is necessary 

to consider the causal links between the biomarker and the other measurable and 

unmeasurable factors. Let us consider again the case of yellow fingers. The fingers’ 

colour might be measured and used as a proxy for smoking or for lung cancer without 

knowing the causal relationships between such factors. Moreover, yellow fingers might 

be used as a biomarker linked to (but not part of) the process from smoking to lung cancer 

once we find out that yellow fingers are caused by smoking (like in Figure 18(b)). Finally, 

it might be possible to use yellow fingers as a biomarker also in the case we discover that 

tar deposition itself, the cause of yellow fingers, is part of the process from smoking to 

lung cancer (like in Figure 18 (d)). 

 

Figure 18. Possible DAGs showing the position of biomarkers. (a) 

represents the situation in which the biomarkers B is part of the causal 

process linking the cause X and the effect Y. In (b), the biomarker B 

and the effect Y are both caused by X. In (c), the biomarker B and Z, 
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that is part of the process but cannot be measured, are both caused by 

X. In (d), the biomarker B is caused by the unmeasurable part of the 

process Z. In (e), B is a background condition of the process from X to 

Y.  

6.4.1 Defining biomarkers   

Two recent definitions of biomarkers have tried to describe what biomarkers are. In 2001, 

the International Programme on Chemical Safety, a joint venture established by the World 

Health Organization (WHO), the United Nations and the International Labor 

Organization, defined a biomarker as:  

“any substance, structure, or process that can be measured in the body or its 

products and influence or predict the incidence of outcome or disease” 

(International Programme on Chemical Safety, 2001, emphasis added)    

In the same period, the National Institute of Health Biomarkers Definition Working 

Group proposed a definition according to which a biomarker is: 

“a characteristic that is objectively measured and evaluated as an indicator 

of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention.” (Biomarkers Definitions Working 

Group, 2001, emphasis added) 

If we consider the novelties characterising biomarkers described above, it can be 

concluded that neither of these two definitions was able to fully address the nature and 

the function of biomarkers. While the International Programme on Chemical Safety’s 

definition emphasised that biomarkers can be substances, structures, or processes, without 

considering the possibility of using biological properties as biomarkers; the Biomarkers 

Definitions Working Group only recognised that any observable characteristic can be 

used as a biomarker.  

Moreover, such definitions did not address precisely the relationship between the 

biomarker and the effect produced by the causal process. Although the International 

Programme on Chemical Safety’s definition claimed that biomarkers influence or predict 

health outcomes, neither that definition nor the one proposed by the Biomarkers 

Definitions Working Group made explicit that diverse biomarkers can be related in 

different ways to the effect. Let us take Figure 18 illustrated above: in all those cases 
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biomarkers can predict the health outcome under study13, in some of them biomarkers can 

also influence it. If we consider a biomarker directly involved in the process, as in the 

case of Figure 18(a), such a biomarker would influence the effect and could be a perfect 

predictor of the outcome. In addition, a factor correlated to the outcome due to the 

presence of a common cause, as in Figure 18(b), or a marker correlated to an unmeasured 

part of the process like in Figure 18(c) and 18(d), would allow researchers to predict (but 

not to influence) the effect. Finally, if we consider a background condition, as illustrated 

in Figure 18(d), it is obvious that such a condition would influence the outcome (its 

presence is necessary to cause the effect). This condition, furthermore, would be 

correlated to the causal effect, therefore it could be used as a predictor.  

My proposal is that, in the biomarker definition, it is very useful to make explicit the 

possible ways in which biomarkers can be linked to the effect of the causal process under 

study; and if a definition omits this aspect, the reasons for the omission should be 

clarified. These different possibilities were not included in the two official biomarkers 

definitions, with the consequence that it is not easy to disambiguate the possible 

relationships between biomarkers and health effects. This omission, moreover, was not 

discussed or justified.  

As for the use of biomarkers as indicators of processes, in addition, the term ‘indicator’ 

is an umbrella term that alone does not clarify the nature of biomarkers. Although, 

generally, it might be argued that indicators are used to infer conclusions on the 

phenomenon of interest (the indicandum), how such conclusions are inferred is not 

specified in the definition14. 

Notably, furthermore, nothing was said about the use of biomarkers. It is true that some 

biomarkers are used to predict certain health outcomes, as recognised by the International 

Programme on Chemical Safety’s definition, however in other situations biomarkers are 

used to understand specific causal processes, like in the example described above of 

exposure to aflatoxin. While the Biomarkers Definitions Working Group’s claim 

according to which biomarkers act as indicators of biological processes appears to be 

based on the assumption that biomarkers might provide information about such processes, 

the functions that biomarkers could play was not really made explicit. To address these 

                                                           
13 For this reason biomarkers are often understood merely as predictive tools. 
14 In chapter 8 I will propose a more detailed discussion on the concept of indicators in the social sciences.  
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problems, the next sections will discuss in detail the process of biomarkers identification 

and how biomarkers are used. These discussions will then inform section 6.5, in which it 

will be proposed a new framework for biomarkers. 

6.4.2 From data collection to biomarkers: the process of biomarkers 

identification  

Thanks to new methods of data collection such as ‘-omic’ technologies, large amounts of 

biological data are now available to scientists. Among them, researchers have to identify 

the right biomarkers. The process of biomarkers identification is made complex by the 

fact that biomarkers can be obtained from numerous types of data: for instance, it has 

been said that biomarkers can be obtained from the study of gene expression profiling 

(transcriptomics), or by analysing the metabolites in a specified biological sample 

(metabolomics). Multiple biological samples, in addition, can be studied by scientists to 

obtain information on metabolites, for instance blood and urine are often examined when 

looking for biomarkers, while in certain circumstances tissue blocks are obtained and 

analysed for that purpose.  

Given that collecting biological data is often time-consuming and expensive, researchers 

need to narrow the list of biological data that might be used to obtain biomarkers in their 

specific study. It is for this reason that the search for biomarkers is generally informed by 

causal hypotheses and background knowledge. This consideration has been already 

explicated in some discussions about biomarkers. As an example, Jain (2015) suggested 

that: 

“For biomarkers to assume their rightful role, greater understanding of the 

mechanism of disease progression and therapeutic intervention is required.” 

(Jain, 2015, p. 87) 

A case in point illustrating the importance of causal hypotheses in the identification of 

biomarkers is the role played by Warburg’s hypothesis (1956) in the search for cancer’s 

biomarkers. Otto Warburg in the 1950s developed the causal hypothesis according to 

which, in contrast to normal differentiated cells (which rely on mitochondrial oxidative 

phosphorylation as the source for energy), cancer cells rely on anaerobic metabolism to 

generate the energy needed for cellular processes. Warburg’s hypothesis became the 

central idea guiding the search for cancer biomarkers: as an example, biomarkers such as 

altered redox balance and intra-tumoral metabolic interactions have been identified and 
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studied by examining extensively data on cancer central carbon metabolism15 in 

accordance with such a hypothesis. 

Causal knowledge and hypotheses might play a crucial role from the very first stage of 

the process of biomarkers identification, that is the selection of the level at which data 

should be collected to identify possible biomarkers. Once that choice has been made, 

some data are produced by certain ‘-omic’ technologies (like the mass spectrometry 

machines) and are cross-checked. For instance, in a serum profiling experiment 

conducted to reveal potential biomarkers of colorectal cancer, electrospray ionisation 

(ESI) tandem mass spectrometry was employed to quantitatively profile the 

concentrations of 26 amino acids that could potentially be used as biomarkers (Armitage 

& Barbas, 2014).  

It is important to clarify that ‘-omic’ data and biomarkers are not the same things: 

biomarkers can be obtained from ‘-omic’ data. To understand better this distinction, let 

us consider Figure 19, representing a mass spectrometry datum for an individual in the 

sample. The horizontal axis represents the m/z-value, where m stands for ion’s mass and 

z stands for the number of electrons taken from molecules to create single charged ions. 

The vertical axis represents the intensity or abundance of ion (the occurrence of a certain 

ion in relation to the occurrence of the most abundant ion). The peaks represented in 

Figure 19 stand for the charged ions originating from proteins in the sample. Such peaks 

allow researchers to detect the mass of the proteins, and from the mass researchers try to 

identify the specific protein molecules causing the peaks. For instance, Figure 19 shows 

a peak at a particular m/z value, 8000. Researchers then expect that there is a protein 

associated with the ion corresponding to that m/z value. If such a peak is found in many 

subjects (in other words, in a relatively large set of data), it is then possible to hypothesise 

that the peak could be used as a biomarker.  

In such a way, scientists’ set of data might be used to obtain a new biomarker. As already 

said above, in general, when a biomarker is identified, scientists need to obtain from their 

data a measure of an entity, quality or event.  

At the following stage of the process leading to the identification of biomarkers, scientists 

examine the correlations between the putative biomarkers obtained from their data, the 

                                                           
15 Central carbon metabolism employs a complex series of enzymatic steps to transform sugars into 

metabolic precursors (Noor et al., 2010). 
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measure concerning disease manifestations, and, in some cases, the measures of the 

putative cause producing the phenomenon (in the case of LIFEPATH, socio-economic 

indicators). In such a way, they start to select the biomarkers able to give information 

about the disease process.  

 

Figure 19: a mass spectrometry datum for an individual (Fushiki et al., 

2006, p. 359). 

Finally, scientists must select, among the list, those measures that might be used as 

markers of the phenomenon they want to study. Even at this stage, background knowledge 

as well as further evidence can guide scientists’ choice. For example, in the case of 

biomarkers of colorectal cancer, 11 of the 26 amino acids that were measured were 

initially selected through statistical analysis, and among them 10 had already been 

reported as potential colorectal cancer biomarkers. This background knowledge 

strengthened the idea that the measures of such amino acids could actually be used as 

colorectal cancer biomarkers (Armitage & Barbas, 2014).  

It is important to consider that the identification of a biomarker does not coincide with its 

validation. The criteria for validation are established according to the question that the 

study is intended to address and the level of certainty that is required for the result. Once 

the biomarker is established to be valid for the study, researchers examine whether the 



 

137 
 

biomarker is fit for the intended general use, and establish if the biomarker is ‘fit-for-

purpose’ (Hunter et al., 2010, p. 4).   

6.4.3 Biomarkers as intersecting signals 

The way in which biomarkers are identified casts light on an important difference between 

socio-economic indicators and biomarkers. Socio-economic indicators are generally used 

to illustrate a specific condition: they are meant to offer information about an individual's 

access to social and economic resources. Figuratively, they are like portraits representing 

the social condition of some individuals: they represent how wealthy a person is, the 

conditions in which the person works, and the social relationships that such a person has 

(I shall discuss this point in detail in chapter 8).  

On the contrary, biomarkers are, as the word says, just ‘markers’. Schulte and Perera 

(1993, pp. 13–14) described biomarkers in terms of ‘events’ in the continuum from 

exposure to disease; Chadeau-Hyam et al. (2011, p. 85), defined them as ‘possible 

intersecting signals’ representing parts of a process. It follows that more than one 

biomarker is generally required to gain a full understanding of the causal process under 

study, and that the role played by biomarkers is not to represent a situation, like in the 

case of socio-economic indicators, but to show the pathway taken by the process. An 

example can help us to understand this point. One of the main causal hypotheses in 

LIFEPATH is that experiencing stress and low socio-economic conditions over life might 

contribute to physiological dysregulations, that can be subsequently translated into certain 

diseases by means of prolonged activations of stress response systems (McEwen & 

Stellar, 1993). 

To study this causal process starting from socio-economic experiences and leading to 

diseases, scientists in LIFEPATH first examined the process through which the body 

adapts to stressful circumstances in order to maintain physiological stability, known by 

the name of allostasis. When compensatory physiological mechanisms are repeatedly 

activated, the body is likely to experience a physiological wear-and-tear called allostatic 

load. To investigate the phenomenon of allostatic load, researchers selected 14 markers 

concerning four physiological systems: some markers linked to the neuroendocrine 

system (like the salivary cortisol), some markers concerning the immune and 

inflammatory system (such as the insulin-like growth factor), certain markers associated 

with the metabolic system (as low-density lipoprotein) and some markers from the 
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cardiovascular and respiratory system (such as blood pressure) (Barboza Solís et al., 

2016).  

On the one hand, researchers examined how these markers were linked to low socio-

economic conditions during childhood by considering statistical correlations to parental 

occupation, income and education. Biomarkers were hence taken as signals representing 

the biological effects of stressful situations.  

On the other hand, scientists in LIFEPATH relied on a growing literature supporting the 

claims that such biomarkers contribute to the development of certain forms of diseases. 

For instance, measures linked to inflammatory and immune stress responses had been 

used to discover certain pathways leading to diseases such as cancer (Castagné et al., 

2016). Similarly, it is has been confirmed that people with a certain level of blood pressure 

are at risk of progressing to overt hypertension and cardiovascular diseases (Wang et al., 

2007). 

Biomarkers were hence used as signals of some mediating events (such as the secretion 

of cortisol) between the experience of chronic stress and the development of disease (like 

in Figure 18(a)). From the biological point of view, the use of biomarkers as intersecting 

signals was conceptualised by Vineis and Perera (2007), who provided the idea of a 

‘meet-in-the-middle’ approach. According to that original notion, the discovery that 

biomarkers, already known to be related to particular exposures (like stress in our 

example), are also involved in the development of certain diseases would support the 

causal claims linking exposures and diseases.  

From the philosophical point of view, the fact that biomarkers show the causal link 

connecting factors at different scales (from population-level factors such socio-economic 

experiences to individual-level factors like biological changes) has led some philosophers 

to claim that the concept of productive causality (i.e. how causes and effects are linked) 

requires reconceptualization (Illari & Russo, 2016). The classic approach to productive 

causality assumes that causality entails a physical connection between the cause and the 

effect. In general, it is assumed that a causal process is a continuum in spacetime allowing 

for the transmission or propagation of physical quantities (see also section 3.2.1). 

Reichenbach and Salmon developed the idea of productive causality and proposed that a 

process is causal if, and only if, was it marked, the mark would be transmitted to later 

stages of the same process (Reichenbach, 1958; Salmon, 1984).  
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Such a philosophical idea, however, is specifically tailored to physics and cannot clarify 

the role of biomarkers in causal studies. The process from socio-economic experiences to 

disease explored by means of biomarkers, indeed, involves non-physical aspects such as 

psychological events and factors. What follows is that it is not always possible to find a 

physical connection between the cause (socio-economic conditions) and the effect 

(disease). Furthermore, in biomarkers studies no marks are introduced to establish the 

causal nature of a process.  

By considering these limitations, Illari and Russo suggest that the detection of signals 

should be reconceptualised to accept that a marker might be something16 that is already 

transmitted by a causal process, rather than a ‘physics’ mark that should be introduced. 

This would appear in line with what is done in LIFEPATH, where researchers follow a 

longitudinal thread of marks (observing, for instance, that aflatoxin causes the formation 

of adducts, which in turn induce p53 mutations that are the same found in liver cancer). 

Biomarkers, in this sense, would be conceptualised as signals intersecting what is 

propagated from the cause to the effect.  

6.5 Learning from LIFEPATH 

The analysis of LIFEPATH as a case study has led me to investigate in detail the use of 

biomarkers in social epidemiology. In section 6.4.1, the two main definitions of 

biomarkers proposed by the International Programme on Chemical Safety and the 

National Institute of Health Biomarkers Definition Working Group have been discussed. 

I have considered that both these definitions only partly address the nature of biomarkers 

as measures of entities, qualities and events. Moreover, terms such as ‘predictors’ or 

‘indicators’ are vague enough to allow for different relationships between the health 

effects and the biomarkers, and do not specify the nature of biomarkers as ‘intersecting 

signals’. In sections 6.4.2, I have argued that causal knowledge and causal hypotheses are 

often crucial in order both to decide what biological data to collect and to identify 

biomarkers. In section 6.4.3, finally, I have used some LIFEPATH studies to clarify why 

biomarkers are conceptualised as intersecting signals. Taking into account all these 

                                                           
16 Illari and Russo have spelt out the idea of mark transmission in terms of ‘information transmission’. They 

have considered that in genome studies there is some possibility of a precise definition of information, 

given that genes are more clearly defined than ‘-omic’ measures. In biomarkers studies, on the contrary, 

information is still not well-defined.  
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considerations, this section will be devoted to the development of some original proposals 

concerning how biomarkers are used and should be defined. First, I shall argue that a 

biomarker can be considered as such only if it is possible to articulate the relationship 

between the biomarker and the causal process under study. Then, I shall claim that 

biomarkers are used both to develop hypotheses about certain causal processes and to 

establish the presence of some causal processes. 

6.5.1 Developing a relational framework for biomarkers 

In this sub-section, I shall propose a relational framework capable of casting light on the 

particularity of the function that biomarkers play in research. My intuition is built on 

Leonelli’s data relational framework (2015). Investigating the nature of data, Leonelli 

proposed:     

“[…] to view data as any product of research activities, ranging from artifacts 

such as photographs to symbols such as letters or numbers, which is collected, 

stored, and disseminated in order to be used as evidence for knowledge 

claims. […] Hence, any object can be considered as a datum as long as (1) it 

is treated as potential evidence for one or more claims about phenomena and 

(2) it is possible to circulate it [the object] among individuals […]. Within 

this relational framework, it is meaningless to ask what objects count as data 

in the abstract, because data are defined in terms of their function within 

specific processes of inquiry, rather than in terms of intrinsic properties. The 

question ‘what is data?’ can only be answered with reference to concrete 

research situations, in which investigators make specific decisions about what 

can be used as evidence for which claims.” (Leonelli, 2015, pp. 817–818) 

According to Leonelli’s framework, the definition of a datum is always associated with a 

particular purpose: any object produced by human interactions with research instruments 

can be considered a datum, but only if it is examined within specific research 

circumstances. The same consideration, I suggest, can be applied to biomarkers. Not all 

measures count as biomarkers in every particular study, as well as not all products of 

research activities count as data in a specific situation.  

This interpretation is in line with the process of biomarkers identification described in 

section 6.4.1. First, data produced through several data-collection techniques are collected 

(in general relying on causal knowledge and hypotheses); then, scientists have to apply 
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measurement procedures if the data obtained are not numeric, and next they have to 

understand whether such measures count as biomarkers or not. The only way to establish 

if biological measures count as biomarkers is by considering the specific research 

circumstances.  

To give an example, in a recent paper Vineis et al. (2013, p. 465) described how 

biomarkers were selected in a study of breast cancer. Researchers examined 96 cases of 

breast cancer and the genome-wide methylation profile associated with each patient: 

considering casual hypotheses and statistical analyses, they collected data about 10 CpG 

sites (regions of DNA where a cytosine nucleotide and a guanine nucleotide appear 

consecutively on the same strand of nucleic acid) and measured the methylation fractions, 

that were already known to be strongly associated with breast cancer onset. Next, they 

observed the associations between such methylation fractions and hundreds of diverse 

exposure items, looking for candidates exhibiting statistical associations only with 

reproductive factors (in particular, ever having breastfed and the age at menopause, two 

well-known risk factors). Their decision was motivated by the hypothesis according to 

which such types of exposure can trigger processes that, through the methylation fractions 

of some sites, lead to breast cancer. Only the methylation fractions of 4 of the 10 CpG 

sites were finally identified as possible biomarkers linking reproductive factors and the 

development of breast cancer. It should be considered that, from this study, it does not 

follow that the methylation fractions of the other 6 CpG sites cannot be used to find 

biomarkers in different situations. Furthermore, it might be plausible that the biomarkers 

selected by Vineis et al. are used also as biomarkers of other health phenomena, such as 

other forms of cancer. 

My proposal is that a measure can act as a biomarker of one causal phenomenon or of a 

variety of causal phenomena; and that anything that counts as a biomarker requires 

someone able to articulate the relationship between that biomarker and the causal process 

responsible for the phenomenon under study. To clarify this point, let us consider again 

Figure 18: my argument is that a measure can be said to be a biomarker of a particular 

phenomenon only if scientists can identify, among the five possibilities illustrated in 

Figure 18, which one properly represents the link between the biomarker and the 

phenomenon. In other words, biological measures become biomarkers when researchers 

develop causal hypotheses that allow them to locate the markers in specific positions in 
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relation to the causal processes responsible for the phenomena17. As recognised by 

Henderson et al. (1989), indeed: 

“The term ‘biomarker’ refers to the use made of a piece of information, rather 

than to a specific type of information” (Henderson et al., 1989, p. 65) 

For instance, in the study conducted by Vineis et al. (2013, p. 465), the methylation 

fractions of the 4 CpG sites selected were hypothesised to be the right biomarkers directly 

linking reproductive factors and the development of breast cancer, in a situation similar 

to Figure 18(a). 

The discussion on this feature can help in the development of an exhaustive definition of 

biomarkers. My first suggestion is that we can call a ‘biomarker’ any measure of a 

biological entity, quality or event that is used to obtain information about a specific 

biological process linking the cause A to the causal effect B. Any biomarker, in order to 

be used as such, must have the following characteristics: 1) can be objectively 

measurable, and 2) is linked to the causal process under study either because is directly 

involved in the process, or because is caused by the same causal factor A, or is caused by 

another unmeasurable biomarker involved in the process or is a background condition of 

the causal process (as illustrated in Figure 18). 

This definition would solve some of the limitations characterising the two official 

definitions of biomarkers currently used that have been discussed in section 6.4.1. Indeed, 

the definition clarifies what can count as biomarkers, and makes explicit the relationship 

the can exist between a causal process and the biomarker associated with it. It remains to 

understand, however, what kind of information biomarkers can provide. In the next 

section I shall address this question.  

6.5.2 Tracing causal processes 

If biomarkers work as ‘possible intersecting signals’ representing parts of an active 

process (Chadeau-Hyam et al., 2011), the identification of several biomarkers linked to 

the same phenomenon can help to trace the causal process of disease formation.  

At the methodological level, such an approach is in general called process tracing. This 

has been used as an umbrella term encompassing a variety of techniques (Gerring, 2006, 

                                                           
17 If it were enough to establish a correlation between the biomarker and one part of the process, there would 

be no difference between a proxy for the process and a biomarker. 



 

143 
 

p. 173), however they all share the core idea of concatenation: causal events are linked 

and form a causal chain connecting some variables to the causal effect under study. This 

idea is strongly associated with the philosophical interpretation of mechanisms as 

processes through time and space along which a signal is propagated (Dowe, 2007; 

Reichenbach, 1958; Salmon, 1997), as described in section 3.2.1. This means that, if 

researchers hypothesise that the factor C causes the effect E, they assume that C causes E 

through a set of causal steps, as described in Figure 20: 

 

Figure 20. The assumption behind process tracing is that the causal path 

from C to E is mediated through certain factors such as M1, M2 and M3. 

In the figure, the arrows represent causal links. 

It is easy to find a similarity with the way in which biomarkers are used: it has already 

been said that Schulte and Perera (1993, pp. 13–14) described biomarkers in terms of 

‘events’ in the continuum from exposure to disease; and that similarly the National 

Institute of Health Biomarkers Definition Working Group claimed that biomarkers are 

indicators of biological processes. The analogy between biomarkers and mediating 

factors M1, M2 and M3, furthermore, appears even more intuitive once we consider again 

Figure 18, where biomarkers can be used to get insights into the intermediate steps of the 

process from the putative cause to the effect, like in Figure 18(a), 18(c) and 18(d).  

There is, however, one aspect that needs to be clarified. So far, it has been claimed that 

biomarkers are used to ‘trace’, ‘discover’, ‘cast light on’ causal processes. These verbs, 

however, do not clarify if biomarkers are employed to develop hypotheses about such 

causal processes, or if they actually count as evidence for causal hypotheses. In the former 

case, biomarkers would help to identify where and how to collect evidence of such 

processes; in the latter case, biomarkers would provide evidence that might allow 

scientists to establish the presence of causal processes. 

The distinction between building and confirming causal hypotheses has been proposed 

within the process tracing literature: according to Bennett and Checkel, for instance, 

process tracing can be both ‘bottom-up’, aimed at developing causal hypotheses, and ‘top-

down’, aimed at testing hypotheses (Bennett & Checkel, 2015, p. 7). Similarly, Beach 

and Perderson (2013) recognised that different variants of process tracing can be 
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distinguished considering whether their goal is to develop or test theorised causal 

mechanisms. The same division, furthermore, is familiar in philosophy, where logical 

empiricists drew the distinction between the context of discovery and the context of 

justification (Reichenbach, 1949, pp. 433–434). 

If researchers have little prior knowledge of the phenomenon in question, process tracing 

is claimed to be performed through inductive studies, with the aim to build new causal 

hypotheses (Beach & Pedersen, 2013). In such a situation, researchers act as detectives: 

they start analysing events backward through time, like detectives try to piece together 

the last few hours of the victim's life. Due to the lack of prior knowledge, a massive 

amount of information is gathered: these pieces of information may or may not become 

components of the causal hypotheses. As for the situations where causal hypotheses 

already exist, process tracing proceeds more deductively: researchers try to translate 

theoretical expectations into observable implications or signals that should be found by 

exploring the process.  

Is it possible to establish whether biomarkers are used to develop or to test causal 

hypotheses? If we consider what I have argued in section 6.5.1, biomarkers can be used 

as such only if researchers can at least hypothesise the relationships between such 

biomarkers and the phenomenon. In this sense, almost all biomarkers studies can be 

characterised as process tracing studies aimed at building new causal hypotheses.  

The study conducted by Vineis et al. (2013, p. 465) described in section 6.5.1, for 

instance, was aimed at building new causal hypotheses about the process starting from 

certain types of exposure and leading to breast cancer. The identification of the 

methylation fractions of the 4 CpG sites, according to the authors, ‘lent credibility’ to the 

causal hypothesis according to which exposure to reproductive factors (in particular, ever 

having breastfed and the age at menopause) influences such methylation fractions, that in 

turn lead to the development of breast cancer. To confirm the presence of such a causal 

process, however, scientists would need further studies, which might in turn be based on 

biomarkers. Biomarkers, indeed, might offer useful evidence to test causal hypotheses.  

In the example described in section 6.4.2, for instance, the starting point was an existing 

causal hypothesis: experiencing stressful and low socio-economic conditions over life 

contributes to physiological dysregulations, that can be subsequently translated into 

disease by means of prolonged activations of stress response systems (McEwen & Stellar, 
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1993). To test the hypothesis, Barboza Solís et al. (2016) identified 14 signals that were 

hypothesised to be involved in the process. It was already known that such factors were 

linked to disease, but researchers expected that they were also correlated to low socio-

economic conditions. They tested the hypothesis examining the statistical correlations 

between these measures and parental occupation, income and education, and the final 

evidence supported their hypothesis.   

What follows from these examples is that biomarkers are used both to develop causal 

hypotheses concerning the causal pathways leading to health outcomes and to provide 

evidence for them. Of course, there are situations where biomarkers are just used to 

predict specific outcomes, and scientists have no interest in hypothesising or testing 

causal processes. Nevertheless, even in such cases researchers rely on the development 

and test of causal hypotheses concerning at least part of the causal processes. 

In some cases, for example, biomarkers are used as substitutes of clinical endpoints. 

When markers have this function, they are called ‘surrogate markers’, and are expected 

to predict how a patient feels, functions or survives (surrogate biomarkers are in general 

used to establish the causal effects triggered by clinical trials). As recognised by some 

authors (Fleming & DeMets, 1996; Katz, 2004), the correlation of the marker with the 

clinical enpoint is a necessary but not sufficient condition to confer the ‘surrogate’ status 

to a measure (a famous expression proposed by Fleming and DeMets (1996, p. 605) on 

this point is “a correlate does not a surrogate make”). Before using a marker as a surrogate, 

scientists need to: 

 “[…] understand the (biological) relationship between the surrogate and the 

clinical outcome. In other words, we need to know if and how the surrogate 

and the clinical presentation are intrinsically biologically related to one 

another […] there may be many pathophysiologic pathways that contribute to 

disease manifestations, and the surrogate may be “in” some, any, or none of 

these pathways” (Katz, 2004, p. 193) 

In order to use surrogate markers, consequently, the part of the process linked to the 

biomarkers and leading to the endpoint needs to be at least hypothesised. This aspect has 

already been discussed more than twenty years ago by Fleming and DeMets, who argued 

that, before using a surrogate biomarker, researchers need to have proper understanding 

both of the causal pathways of the disease and of the intervention’s mechanism (1996, p. 
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611). They identified, as illustrated in Figure 21, different possible relationships between 

the surrogate biomarkers and the causal process. In these terms, also the selection of 

surrogate biomarkers is based on the development or test of causal hypotheses.  

 

Figure 21. Possible relationships between the surrogate biomarker and 

the process causing the clinical outcome. Figure retrieved from Fleming 

and DeMets (1996, p. 606). 

In section 6.5.1, I have argued that any measure of a biological entity, quality and event 

that is used to obtain information about a specific biological process linking the cause A 

to the causal effect B can count as a biomarker.  

Overall, putting together all the considerations discussed in this chapter, I can now 

complete the definition of biomarkers in the following way: a ‘biomarker’ is any measure 

of a biological entity, quality or event that helps researchers to develop a causal 

hypothesis or to provide evidence for a hypothesised causal process linking the cause A 

to the causal effect B. Such knowledge can be used to enhance our understanding of the 

causal process, or to predict an effect according to what we know of the process. 

Furthermore, any biomarker must have the following characteristics: 1) can be objectively 

measurable, and 2) is linked to the causal process under study either because is directly 

involved in the process, or because is caused by the same causal factor A, is caused by 
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another unmeasurable factor involved in the process or is a background condition of the 

causal process. 

6.6 Conclusion 

In this chapter, I have described the LIFEPATH project to cast light on a novel approach 

through which biological data are used. I have explained where LIFEPATH comes from, 

and what is the main purpose of this project. Next, I have examined the data used within 

the project: the social data used to obtain measures that indicate people’s socio-economic 

position, and the biological data used to identify biomarkers. In the rest of the chapter, I 

have focused my attention on the concept and use of biomarkers. I have explained why 

biomarkers can be considered a novelty in epidemiology, and how they are identified and 

conceptualised. I have argued that the process of biomarkers identification requires causal 

knowledge and hypotheses, and that biomarkers are in general understood as the 

intersecting signals between exposure and health effects. In section 6.5, I have used the 

information collected by studying LIFEPATH to develop a more precise account of 

biomarkers. By following Leonelli’s data relational framework, in section 6.5.1 I have 

argued that every measure can act as a biomarker of one phenomenon or of a variety of 

phenomena, and that anything that counts as a biomarker requires someone able to 

conceptualise the relationship between that biomarker and the causal process under study. 

In section 6.5.2, finally, I have claimed that biomarkers are used both to hypothesise the 

presence of some causal processes, and to test them. In conclusion, putting together all 

these considerations, I have developed a new definition of biomarkers illuminating all the 

characteristics that biological measures need to have in order to count as biomarkers. 

According to this definition, causal reasoning is the key aspect differentiating biomarkers 

from usual indicators and proxies: when biomarkers are identified and used, researchers 

cannot avoid answering causal questions about the phenomenon to be explained and the 

link between it and the selected biomarkers. 
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Part III 

Big data for causal discoveries 

The notion of mechanism belongs to the everyday causal vocabulary of all social 

scientists. To give an example, social psychologists discuss multiple social mechanisms 

through which individuals acquire normative beliefs to conform to the expectations of 

their peers so as to obtain social approval and avoid not being accepted. Similarly, 

political scientists focus on institutional and voting mechanisms leading to the creation 

of legislative outcomes. Economists, furthermore, identify market-related mechanisms 

causing resource allocation, price discovery, assignment of property rights and many 

other things besides.  

As discussed in chapter 3, there are different ways in which social scientists can 

conceptualise causal mechanisms in scientific research. Researchers might understand 

mechanisms in terms of complex systems made of organised entities and activities, but 

they could also consider mechanisms as causal processes linking the cause and the effect 

through time and space. This distinction is partly aligned with another distinction made 

in the philosophical literature on causal mechanisms, according to which mechanisms can 

be thought either to ‘constitute’ the phenomena-to-be-explained or to ‘produce’ the 

outcomes. In the former case, mechanisms are called constitutive and are claimed to 

constitute the phenomena, in the latter case, mechanisms are called etiological and are 

claimed to cause the phenomena under examination. 

In the social sciences’ debates, the distinction between these types of mechanisms is often 

not explored in detail. Nevertheless, depending on whether mechanisms relative to 

particular phenomena are understood as constitutive or etiological, researchers can search 

for different types of evidence in order to establish their presence. In the case of 

constitutive mechanisms, researchers need to collect enough evidence to support the 

claim that the constitutive relevant parts of a mechanism actualise the capacity that makes 

possible the phenomenon-to-be-explained. Regarding etiological mechanisms, 

researchers need to find evidence of the process producing the effect under study. 

This part of the thesis has a twofold aim. On the one hand, by providing a clear discussion 

about the different ways in which constitutive and etiological mechanisms are 
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conceptualised, this part will clarify how social scientists can study different types of 

mechanisms. On the other hand, the distinction between these forms of mechanisms will 

be used to develop possible solutions to the third challenge guiding this thesis, namely 

how big data can be used, in the social sciences, to obtain evidence of causality that goes 

beyond correlations. In particular, in these chapters I will study how to obtain evidence 

of mechanisms from big data. 

The next two chapters are characterised by different approaches. In chapter 7, I shall use 

the existing literature on constitutive mechanisms to discuss how constitutive 

mechanisms are conceptualised and how big data might help to study them. The existing 

discussions on constitutive mechanisms are concerned with metaphysical questions and 

make use of very complex formalisations. I shall offer a less formalised account that 

attempts to bridge the gap between such metaphysical discussions and the questions of 

how to obtain evidence of mechanisms. The account I will propose, however, will only 

partially succeed in dealing with the methodological challenges social scientists in 

general have to overcome when they collect evidence of mechanisms. In the last sections 

of chapter 7, I shall examine this problem. I shall argue that, in order to contribute to the 

scientific debate on big data and causality, it is important to provide philosophical 

accounts that are well-informed about scientific procedures and problems. These 

observations will lead me to conclude that, although social scientists might be able, under 

specific circumstances, to identify constitutive relevant parts of social mechanisms, the 

philosophical account of constitutive mechanism can only moderately contribute to 

clarifying how big data can be used in scientific research to collect evidence of causality 

that goes beyond correlations.    

Chapter 8 will be based on a different approach. The starting point will be the detailed 

observation of how data have been used in scientific research to trace etiological 

mechanisms. Combining the discussion about how social scientists use social data, with 

the analysis of biomarkers of chapter 6, I shall develop a scientifically‐informed 

philosophical discussion on the use of markers to trace etiological mechanisms. This 

account, I shall argue, is not only consistent with some scientific procedures, but might 

also improve the way in which big data are used in causal studies.  
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7 Uncovering constitutive mechanisms with big data 

7.1 Introduction 

A constitutive mechanism is in general understood as a mechanism made of certain 

relevant parts that make the phenomenon-to-be-explained possible. How to account for 

constitutive mechanisms is a current topic in philosophical debates, however little has 

been said about how to link this debate to social scientists’ mechanistic discussions. My 

aim in this chapter is to fill this gap by providing a tentative account of constitutive 

relevance that works with simple examples of social mechanisms, and to use such an 

account to provide a solution on how to use big data to obtain evidence of constitutive 

mechanisms.  

This chapter is motivated by three considerations. First, there are social phenomena that 

have the typical characteristics of constitutive mechanisms. The economic phenomenon 

known by the name of rebound effect, for instance, is in general described as a constitutive 

mechanism whereby increased energy efficiency leads to growing energy consumption 

and offsets any energy saving (Herrmann-Pillath, 2015). Such a phenomenon is made 

possible by the activities of its constitutive parts: the individuals who, thanks to the 

increased energy efficiency, increase their demand for energy (with a corresponding 

change in demand at the macro level) and the individuals who decide to spend the money 

saved thanks to the energy efficiency on other goods that require, in turn, energy (with a 

corresponding increased energy consumption at the macro level). As I shall discuss in 

this chapter, further examples might be the activities performed by a social organisation, 

Schelling’s mechanistic model of segregation, and firms’ behaviours.  

Second, the philosophical debate on constitutive relevance has become very complex over 

time, and the use of formalisations makes it difficult for non-expert readers to follow the 

discussion. While, in order to discuss the existing accounts of constitutive relevance, I 

shall need to use such formalisations, in my account I will try to limit them to make my 

proposal as comprehensible as possible.  

Third, the way in which constitutive mechanisms are understood in the social sciences 

can have important moral implications. A simple example is the case of a clandestine cell 

system like a terror cell: in such a case, an accurate constitutive relevance approach is 

essential in order to identify all and only the constitutive parts of the cell. 
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The idea according to which constitutive mechanisms have constitutive parts that make 

the phenomenon-to-be-explained possible entails that such parts do not cause the 

phenomenon. The general assumption behind the notion of constitutive mechanisms, 

indeed, is that there are no causal relationships between the constitutive parts and the 

phenomenon performed by the mechanism. This assumption is justified by three different 

observations. 

First, the behaviour of constitutive parts and that of the whole phenomenon are 

overlapping, whereas in the case of causation the cause and the effects are distinct and 

non-overlapping. Second, the behaviour of components occurs during the behaviour of 

the mechanism as a whole, while it is in general recognised that causes precede their 

effects. Third, causation in general implies asymmetry (causes produce their effects, not 

vice versa), but the relationship between a component and the behaviour of a mechanism 

as a whole is always symmetrical: one cannot intervene to change the value of the whole 

without changing the value of at least one component.   

To illustrate these points, let us consider a social constitutive mechanism. Perhaps the 

most obvious example is a social organisation consisting of an organised group of 

individuals linked through a structured set of relationships to each other. As a result of its 

members interacting with each other, a social organisation can have an impact on the 

world that its members alone would not have if they were not parts of such an 

organisation. A good example is an orchestra that has the power to produce Ravel’s 

Boléro because its components—the conductor and the players with their instruments—

inter-relate in an organised way. If these components were not organised into an orchestra, 

the conductor and the players with their instruments would not have the causal power to 

produce that harmonious music. Furthermore, the playing orchestra does not cause the 

execution of Ravel’s Boléro: the execution is not the final stage of a causal sequence, but 

a phenomenon constituted by the whole activities of the conductor and the players with 

their instruments. 

More specifically, if we consider the relationship between the orchestra and one of its 

components, the trumpet player X, it can be claimed that this relationship does not appear 

causal because it is impossible to isolate the behaviour of its trumpet player X from the 

behaviour of the orchestra: such behaviours overlap. Similarly, the orchestra and the 

trumpet player X act at the same time: if the trumpet player X begins to play at the right 
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time, it is impossible to say that he started playing his part of Ravel’s Boléro, and only 

later the orchestra began to play the trumpet part of Ravel’s Boléro. Finally, the only way 

to change the behaviour of the orchestra (i.e. the act of the orchestra playing Ravel’s 

Boléro) is to change either the behaviour of one of its players, or the behaviour of the 

conductor. It is not possible to change the activity of the orchestra playing Ravel’s Boléro 

without intervening on one of its components. 

If social scientists want to collect evidence about the mechanism producing a 

phenomenon such as the execution of Ravel’s Boléro, they have to ask what kinds of 

more basic entities and behaviours can, taken together, possibly result in the 

phenomenon-to-be-explained. Next, they have to verify whether the mechanism is 

actually made of such entities and behaviours. The first part of the chapter will explore in 

detail how, according to the literature, the relevant constitutive entities and behaviours of 

a mechanism can be recognised. This analysis will lead me to discuss some of the 

limitations associated with the major accounts of constitutive relevance, and to provide a 

novel account. After having discussed my proposal, I shall argue that, especially when 

the phenomenon-to-be-explained is not a causal capacity but an actual phenomenon, big 

data can improve our ability to collect evidence about the constitutive entities responsible 

for it. This possibility, however, is limited to the situations where it is possible to use the 

constitutive relevance account. In the social sciences, indeed, there are several cases 

where such an account is not feasible or helpful to uncover the operations of causal 

mechanisms. Overall, moreover, the formalisations used in the general discussions on 

constitutive relevance and the distance between such discussions and scientific practices 

might pose some challenges if the aim is to clarify how big data studies on constitutive 

mechanisms are or can be conducted.  

The chapter is structured as follows: in section 7.2 I shall describe Craver’s mutual 

manipulability account and I shall discuss the problems associated with such an account 

and some of the solutions that have been proposed in the literature. In section 7.3 I shall 

analyse in detail three recent proposals for constitutive relevance: Baumgartner and 

Casini’s abductive theory of constitution, Krickel’s causation-based account for 

constitutive relevance, and Baumgartner, Casini and Krickel’s horizontal surgicality 

account. The description of these proposals will be accompanied by a thorough study of 

their methodological and conceptual limitations. In section 7.4 a new constitutive 

relevance account, called the extended horizontal surgicality account, will be proposed, 
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and in 7.5 this account will be used to explore whether big data can enhance our ability 

to collect evidence of mechanisms. In section 7.6 I will explore under which conditions 

the extended horizontal surgicality account can be used to collect evidence of social 

constitutive mechanisms. Finally, section 7.7 will provide a general consideration about 

the usefulness of the discussions on constitutive relevance to overcome the third challenge 

guiding this thesis, namely how big data can be used to collect, in the social sciences, 

evidence of causality that goes beyond correlations. Section 7.8 will conclude the chapter.  

7.2 Craver’s mutual manipulability approach  

The most prominent account of how to identify the constitutive parts of a mechanism is 

Carl Craver’s mutual manipulability approach to constitutive relevance (2007). 

According to Craver, if we want to identify the relevant parts that constitute the 

phenomenon, the first step is to exclude what acts just as a background condition and 

what has only sterile effects.  

To illustrate what a background condition is, we can consider the presence of oxygen in 

the theatre in which the orchestra plays Ravel’s Boléro: without oxygen, certainly the 

orchestra could not play, nevertheless the presence of oxygen is in general not considered 

a constitutive part of the causal capacity of the orchestra. It is important to note that the 

identification of background conditions is pragmatic and generally based on the 

assumption that such conditions (like the presence of oxygen in a room) are in general 

stable (Franklin-Hall, 2015). 

The concept of sterile effects is more complex: let us imagine that the orchestra playing 

Ravel’s Boléro is composed of players playing their instruments, and that the activity of 

playing an instrument causes to the trumpet player the immediate reddening of his face. 

This reddening does not produce any change in the other components of the orchestra, 

and even if it causes an effect on the other players (perhaps some players could smile 

because of that), the changes it produces make no difference to the orchestra playing 

Ravel’s Boléro. Consequently, the reddening is considered a sterile effect.  

The illustration of this possible scenario is proposed in Figure 22. Let us take S to be the 

mechanism as a whole (the orchestra); Ψ the behaviour of S that is to be explained (the 

activity of the orchestra playing Ravel’s Boléro), X one of the entities composing the 

mechanism (the trumpet player), and Φ1 and Φ2 the activities exhibited by X (playing the 
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trumpet and reddening the face). The expression X’s Φ1-ing means that the entity X is 

exhibiting the behaviour Φ1, while the expression S’s Ψ-ing means that the mechanism S 

is exhibiting the behaviour Ψ. The dotted line represents the constitutive relationship, 

while the arrow represents a causal link. X’s Φ2-ing (the reddening face) is not 

constitutive of S’s Ψ-ing. It is just a sterile effect.                             

 

Figure 22. The representation of a constitutive mechanism. While X’s 

Φ1-ing (the player’s activity of playing the trumpet) is constitutive of 

S’s Ψ-ing, the effect of X’s Φ1-ing, X’s Φ2-ing is not constitutive of S’s 

Ψ-ing. X’s Φ2-ing is just a sterile effect. 

After having ruled out parts acting as background conditions or producing only sterile 

effects, in Craver’s view, scientists should test whether the component and the 

phenomenon are mutually manipulable through an ideal intervention. The notion of ideal 

interventions was developed by Woodward and Hitchcock (2003, pp. 12–13) and has 

been widely used in the literature on constitutive mechanisms. According to this notion, 

an intervention I on an acting entity represented by the variable A is defined with respect 

to a second acting entity represented by the variable B, and is ideal if it meets the 

following conditions: 

1) I causes A; 

2) I is not causally relevant to B through a route that excludes A. That is, any 

directed causal path from I to B goes through A: I does not directly cause B 

and does not cause any cause of B except for A and other possible causes built 

into the connection I − A – B; 

3) I is not correlated to any variable Z that causes B and that is on a directed 

path that does not go through A; 
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4) I acts as a switch for all other variables that cause A. That is, certain values 

of I are such that when I attains those values, A ceases to depend on the values 

of other variables that cause A and instead depends only on the value taken 

by I. 

Imagine we want to intervene on A, the trumpet player playing in the orchestra, with 

respect to B, the orchestra playing Ravel’s Boléro. We intervene by making the trumpet 

player stop playing by tying his arms. Such an intervention is ideal because: 

1) our intervention causes A, a change in the trumpet player’s behaviour; 

2) our intervention is not causally relevant to the orchestra playing Ravel’s Boléro 

through any route that excludes A, the trumpet player who plays Ravel’s Boléro. 

In other words, our intervention does not change the behaviour of the orchestra 

through alternative routes involving other parts, such as the behaviour of the 

conductor or the behaviour of other players; 

3) if, due to our intervention, the behaviour of the orchestra is changed by any other 

part Z (for instance by another player) this change goes through A, the trumpet 

player who plays Ravel’s Boléro; 

4) our intervention makes A, the trumpet player playing Ravel’s Boléro, depend only 

on the fact that we have tied his arms: his behaviour no longer depends on his 

ability to read the music, to blow or to move his fingers on the trumpet to 

reproduce the notes written on the music sheet. 

If we take S to be the mechanism as a whole (in the example, the orchestra); Ψ the 

behaviour of S that is to be explained (the execution of Ravel’s Boléro), X one of the 

entities composing the mechanism (the trumpet player with the trumpet), and Φ the 

activity performed by X (the execution of the trumpet part of Ravel’s Boléro), we are now 

able to understand Craver’s mutual manipulability account, consisting in two 

manipulative steps: 

“(Mutual Manipulability) X’s Φ-ing and S’s Ψ-ing are mutually manipulable 

iff: 

1) there is an ideal intervention on X’s Φ-ing with respect to S’s Ψ-ing that 

changes S’s Ψ-ing; 
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2) there is an ideal intervention on S’s Ψ-ing with respect to X’s Φ-ing that 

changes X’s Φ-ing.” (Craver 2007b, 153). 

It is possible to illustrate this account by using again the example of the orchestra. The 

trumpet player and the orchestra are mutually manipulable iff:  

1) it is possible to ideally intervene on the trumpet player with respect to the orchestra 

playing Ravel’s Boléro, for instance making him stop playing, and to cause also a change 

in the phenomenon of the orchestra playing Ravel’s Boléro (namely, the trumpet’s part 

will not be played, therefore the Boléro will be partly played); 

2) there is an ideal intervention on the orchestra playing Ravel’s Boléro that makes the 

trumpet player modify his behaviour, for instance such an intervention could make him 

stop playing. 

Note that the mutual manipulability account entails ideal interventions, where an 

intervention I on X’s Φ-ing with respect to S’s Ψ-ing is ideal if and only if X’s Φ-ing 

changes only due to the influence of I, S’s Ψ-ing is not changed by I directly and all the 

other variables are held fixed.   

The first justification behind the notion of mutual manipulability is that bottom-up ideal 

interventions (interventions on X’s Φ-ing with respect to S’s Ψ-ing) cannot rule out the 

possibility that X’s Φ-ing is just a background condition. Furthermore, ideally intervening 

on S’s Ψ-ing with respect to X’s Φ-ing does not exclude the possibility that X’s Φ-ing is 

just correlated to the intervention: Craver (2007, p. 151), for instance, observed that in 

brain studies an intervention on the mechanism performing a cognitive task can increase 

blood flow even if the increase in blood flow is not a constitutive part of the mechanism 

performing such a task. As a consequence, only if X’s Φ-ing and S’s Ψ-ing are mutually 

manipulable, scientists can establish that X’s Φ-ing is constitutive of S’s Ψ-ing.  

7.2.1 Two problems for the mutual manipulability approach 

Recently, Craver’s mutual manipulability approach has been subject to criticism 

(Baumgartner & Gebharter, 2016; Leuridan, 2012). Since the notion of ideal interventions 

is a tool developed to uncover causal relationships, while constitutive relevance is said to 

be a non-causal relation, it has been argued that Craver’s use of such a notion is not 

appropriate. Craver himself supported the idea that constitutive relations are non-causal, 
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nevertheless his appeal to ideal interventions, under Woodward’s assumptions, inevitably 

entails causal relationships.  

In the interventionist account, a variable A can be considered a (direct) cause of a variable 

B if it is possible to satisfy some requirements about the intervention I on A with respect 

to B. The requirements listed, however, are the same used by Craver in his mutual 

manipulability account, namely: 1) A changes only due to changes in I; 2) I does not 

change B directly; 3) there is not a further variable Z that is not on the causal path between 

I and A that is changed by I and influences B; and 4) I is not probabilistically correlated 

to a further variable Z that causes B over a path not going through A (Woodward, 2005; 

Woodward & Hitchcock, 2003).  

This consideration has been mentioned by certain researchers (Baumgartner & Gebharter, 

2016; Leuridan, 2012; Romero, 2015) to show the problem characterising Craver’s 

proposal: while the notion of an ideal intervention is described as an intervention on A 

with respect to B to characterise what it is for A to cause B, the use of such a notion in 

Craver’s mutual manipulability account is aimed at showing that there is a non-causal 

constitutive relevance relationship between A and B. 

There is another criticism, moreover, of the mutual manipulability account: even 

accepting that ideal interventions can be used to identify non-causal relationships, it 

appears impossible to ideally intervene on a constitutive mechanism. According to 

interventionism, if there is a correlation between two variables A and B when an 

intervention is performed, the correlation is always due either to the fact that one of the 

variables causes the other, or to the fact that the intervention is a common cause of them. 

Now, if A is a constitutive part of B, it should be impossible for one variable to cause the 

other. As a consequence, the only remaining option is that the intervention is a common 

cause of A and B. This solution, however, is clearly in contrast with the definition of an 

ideal intervention, because an ideal intervention on A with respect to B cannot cause B.  

To address these issues, diverse adjustments and solutions have been proposed. First, 

according to some (Harinen, 2014; Leuridan, 2012), given that constitutive relationships 

satisfy the interventionist criteria for causation, the problem can be solved by accepting 

that constitutive relevance turns out to be a causal relation. While this solution might 

allow for the use of the notion of ideal interventions to describe constitutive relevant parts, 

it leads to a further problem. In the introduction it has been observed that i) the behaviour 
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of the constitutive parts and that of the phenomenon are always overlapping, ii) the 

behaviour of such parts occurs during the behaviour of the mechanism as a whole, and 

iii) the relationship between these parts’ behaviours and the behaviour of a mechanism as 

a whole is always symmetrical. All these observations have been used by other 

researchers to reject the claim that constitutive relevance is a causal relation. In line with 

these authors, this chapter is focused on the solutions based on the assumption that 

constitutive relevance is not a causal relationship. 

Certain authors have proposed adjustments to save the non-causal nature of constitutive 

relevance. For instance, Woodward himself (2014, pp. 333–334) has offered a modified 

account of ideal interventions, often called ideal* interventions, that can be spelt out in 

these terms: 

I is an ideal* intervention on A with respect to B if, and only if, I satisfies the 

following conditions: 

1) I causes A; 

2) any directed path from I to B goes through A or through a variable A* 

which is related to A in terms of constitutive relevance; 

3) I is (statistically) independent of every cause of B which is neither located 

on a path through A nor on a path through a variable A* which is related to 

A in terms of constitutive relevance; 

4) I acts as a switch for all other variables that cause A. That is, certain values 

of I are such that when I attains those values, A ceases to depend on the values 

of other variables that cause A and instead depends only on the value taken 

by I. 

In other words, as shown in Figure 23, an intervention I on A with respect to B is ideal* 

if the intervention changes B, while all other variables that are not on the causal path 

between I, A and B are kept fixed, except for those variables that I, A and B non-causally 

depend on (like A* in Figure 23), that can change (Woodward, 2014).  
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Figure 23. The ideal* intervention I can be a common cause of A and 

A* because they are related by a non-causal dependency relation. 

This notion of ideal* intervention, however, was implicitly linked by Woodward to 

another modified notion, according to which A is a cause of B only if there is a possible 

ideal* intervention on A with respect to B. This modified notion, although was not 

presented by Woodward in an explicit formulation, was highlighted and made explicit by 

Baumgartner and Gebharter, who drew the following conclusion from Woodward’s 

assumptions: 

“A is a cause of B with respect to the variable set V if and only if there 

possibly exists an ideal* intervention on A with respect to B, when all 

variables in V that are not on a causal path from A to B and are not related in 

terms of supervenience to A or B are held fixed, such that the value or the 

probability distribution of B changes.” (Baumgartner & Gebharter, 2016, p. 

745) 

Although, apparently, the notion of ideal* intervention accommodates constitutive 

relevance relationships, the problem about the nature of the relationship between a 

component and the mechanism’s phenomenon-to-be-explained remains unsolved both 

within the ideal and ideal* intervention frameworks. Indeed, the way in which ideal* 

interventions are defined leads to the conclusion that, if an ideal* intervention is 

performed on a mechanism’s phenomenon with respect to its acting component, and the 

acting component is changed because of that, the acting component and the mechanism’s 

phenomenon should be considered causally related. The problem emerges because in such 

a case we are not intervening on a variable with respect to another variable, but we are 

intervening on a mechanism’s phenomenon with respect to its acting component18. Figure 

                                                           
18 According to Woodward and Hitchcock (2003, pp. 12–13) an ideal or ideal* intervention on an acting 

entity is always defined with respect to a second acting entity.  
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24 clarifies the difference: in Figure 24(a) we intervene on the acting entity A with respect 

to the acting entity B, the intervention changes also A* because A* is related to A by a 

non-causal dependency relation. We can hence conclude that there is a causal relationship 

between A and B, and there is a non-causal relationship between A and A*. In Figure 

24(b), we intervene on A, the mechanism exhibiting the phenomenon, with respect to its 

component A*. As a consequence, the relationship between A and A* appears both 

constitutive and causal (Baumgartner, 2013).  

 

Figure 24. In ideal* interventions, the relationship between A and its 

acting component A* appears both constitutive and causal. In (a) the 

ideal* intervention on A with respect to B can be a common cause of A 

and A* because they are related by a non-causal dependency relation; 

in (b) the ideal* intervention is on A with respect to its acting 

component A*. Even if A* is constitutive of A, if the ideal* intervention 

changes A* it follows that there is a causal relationship between A and 

A*.  

Another solution has been proposed by Romero (2015), who has defined constitutive 

relevance not in terms of ideal interventions but in terms of fat-handed19 interventions 

(i.e. common causes of two or more variables): every intervention on the phenomenon is 

a fat-handed intervention on the phenomenon and at least one component, every 

intervention on a component is a fat-handed intervention on the component and the 

phenomenon. Similarly, Baumgartner and Gebharter (2015) have claimed that, in order 

to establish constitutive relevance, scientists should find out that every intervention on 

the phenomenon is a fat-handed intervention on the phenomenon and at least one of its 

components.  

Finally, three recent proposals have been discussed by Baumgartner and Casini (2017), 

Krickel (2018), and by these three authors together (Baumgartner et al., 2018). To begin 

                                                           
19 The expression ‘fat-handed’ is used to denote something that ‘grabs’ several things at the same time. A 

fat-handed intervention cannot change one variable without necessarily modifying other variables. 
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with, Baumgartner and Casini further develop the concept of fat-handed interventions. 

Krickel’s account, instead, is based on the idea that only if we distinguish between parts 

acting in different spatio-temporal regions and between different temporal sequences 

involved in the phenomenon-to-be-explained, we will be able to identify what acts as a 

relevant constitutive part. Their latest proposal, finally, partly combines such ideas in a 

new horizontal surgicality account. In the next section, these three proposals will be 

described and analysed in detail. 

7.3 Three recent proposals 

7.3.1 Baumgartner and Casini’s abductive theory of constitution 

Baumgartner and Casini (2017) have developed their account from the consideration that 

all interventions on a constitutive mechanism should be fat-handed. In other words, rather 

than considering, as Craver, the possibility of top-down and bottom-up interventions on 

mechanisms as the main feature of constitution, Baumgartner and Casini claim that the 

impossibility of such interventions is the key feature of constitutive relevance. 

The authors suggest that there is a difference between the so-called top-down and bottom-

up interventions. Every intervention on the mechanism’s behaviour S’s Ψ-ing entails a 

change in one behaviour Φ of one of its constituents X (that means, every cause of S’s Ψ-

ing necessarily is a common cause of S’s Ψ-ing and at least one constituent’s behaviour 

X’s Φ-ing). However, not every intervention on the behaviour of a constitutive part X’s 

Φ-ing entails a change in the phenomenon S’s Ψ-ing. In other words, it is impossible to 

conduct top-down interventions on S’s Ψ-ing without changing X’s Φ-ing, but it is 

possible to intervene with a bottom-up intervention on X’s Φ-ing without changing S’s 

Ψ-ing. 

Bottom-up interventions are possible for two reasons. To begin with, it may happen that 

the change of the behaviour Φ of X is not relevant to S’s Ψ-ing, because there are two 

values X’s Φ1-ing and X’s Φ2-ing that constitute the same value of S’s Ψ-ing. A case in 

point is an intervention on the behaviour Φ of a constitutive part X that replaces one of 

its relevant aspects with respect to S’s Ψ-ing with another aspect that can constitute the 

same value of S’s Ψ-ing and X’s Φ-ing. Moreover, another possibility is that the 

behaviour we are changing is not actually constitutive of the behaviour under study. Φ 

might be a sterile effect performed by the constitutive part X. If we consider the orchestra 
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example, it has been said above that the activity of playing an instrument might cause in 

the trumpet player the immediate reddening of his face, and that this reddening can be 

considered a sterile effect because it does not produce any relevant change in the 

behaviours of the other components of the orchestra and in the orchestra playing Ravel’s 

Boléro. This means that we might intervene on this sterile effect, for instance by reducing 

the reddening, without producing any change on the phenomenon-to-be-explained, the 

orchestra playing Ravel’s Boléro.   

By considering these options, a first caveat proposed by Baumgartner and Casini (2017, 

p. 226) is the elaboration of a redundancy-free requirement, that is spelt out in the 

following way:  

“1) Every cause of S’s Ψ-ing is a common cause of S’s Ψ-ing and at least one 

X’s Φi-ing20 in the set of the constitutive parts X’s Φ-ing. 

2) No proper subset X’s Φ-ing \ { X’s Φi-ing}is common-cause coupled with 

S’s Ψ-ing—more precisely, for any X’s Φi-ing in X’s Φ-ing, there exists at 

least one cause of S’s Ψ-ing, which is not a common cause of S’s Ψ-ing and 

any X’s Φi-ing in X’s Φ-ing \ { X’s Φi-ing}”. (Baumgartner & Casini, 2017, 

p. 226) 

Imagine we intervene on the orchestra playing Ravel’s Boléro by making the trumpet 

player stop playing: our intervention causes both a change in the orchestra playing Ravel’s 

Boléro (the orchestral piece will be just partially played), and a change in the trumpet 

player’s behaviour, X’s Φi-ing (he will not play the trumpet’s part). Now, imagine we 

have a subset made of the behaviours of the constitutive parts except for the behaviour 

Φi-ing of the trumpet player X. This subset would contain the other behaviours exhibited 

by the trumpet player, the conductor and the other players. The redundancy-free 

requirement is met if there is not a component of this subset (that is, a different behaviour 

exhibited by the same player, another player, or the conductor) that is always changed 

when we intervene on the orchestra by changing the trumpet player. In other words, there 

is at least one occasion in which our intervention on the orchestra changes the trumpet 

player’s behaviour without changing any other behaviour exhibited by the same 

component and by the other components of the orchestra. In such a way, it is possible to 

                                                           
20 The variable Φi is taken to represent the specific behaviour Φi exhibited by one entity X. We can then 

find expressions such as X’s Φi -ing, meaning that the entity X is exhibiting the behaviour Φi.     
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rule out the possibility that we are considering a sterile effect as a constitutive part, 

because a sterile effect is always changed together with another behaviour of the subset 

containing all the constitutive parts’ behaviours. 

Although the redundancy-free requirements are considered a first step towards the 

identification of constitutive relevant parts, such conditions allow effects of a mere 

common cause to be considered linked by a constitutive relevance relation. It appears 

difficult to distinguish between an intervention that simply causes a change in two factors 

not linked by a constitutive relationship, and an intervention on one constitutive part of 

the phenomenon and the phenomenon itself. These two situations are easily 

distinguishable by observing Figure 25. Figure 25(a) represents two interventions, IΨ and 

IΦ, on the phenomenon S’s Ψ-ing and the behaviour Φ1 of one of its constitutive parts, X; 

while Figure 25(b) illustrates two interventions, IΨ and IΦ, that cause a change in two 

factors, S’s Ψ-ing and X’s Φ1-ing, whose only links are the common causes IΨ and IΦ.   

 

Figure 25. Possible scenarios with the redundancy-free requirements. 

(a) represents two interventions, IΨ and IΦ, on the phenomenon S’s Ψ-

ing and the behaviour Φ1-ing of one of its constitutive parts, X; while 

(b) illustrates two interventions, IΨ and IΦ, that cause a change in two 

factors, S’s Ψ-ing and X’s Φ1-ing, whose only links are the common 

causes IΨ and IΦ.   

For this reason, Baumgartner and Casini propose what they call the unbreakability 

condition. Let us consider the variables set containing the possible interventions on S’s 

Ψ-ing. The expansion of this set would lead coincidental common-cause couplings to be 

broken due to the recognition that is possible to surgically intervene on S’s Ψ-ing. As 

illustrated in Figure 26, while variables linked through a constitutive relevance relation 

would persist across all variable set expansions, in the case of coincidental common-cause 



 

164 
 

couplings, such expansions sooner or later would introduce a new intervention InΨ that 

would allow for surgical changes on S’s Ψ-ing. 

 

Figure 26. The unbreakability condition. (a) represents the situation in 

which S’s Ψ-ing and X’s Φ1-ing are both changed by the intervention 

IΨ, even if there is not a constitutive relationship between them. (b) 

illustrates the moment in which the intervention InΨ, added to extend the 

set of the interventions on S’s Ψ-ing, breaks this coupling by causing a 

change in S’s Ψ-ing and not in X’s Φ1-ing. 

By considering all these requirements together, the authors offer their ‘abductive theory 

of constitution’ (2017, pp. 228–229). Their theory can be formalised in the following 

way: 

X’s Φ-ing is constitutively relevant to S’s Ψ-ing if, and only if, there exists a variable set 

V containing S’s Ψ-ing and a proper subset of V, X’s Φ-ing made of all the behaviours 

of the components, such that all of the following conditions are satisfied: 

“1) Parthood. For every complex instance of X’s Φ-ing, there is an instance 

of S’s Ψ-ing such that the former is part of the latter. 

2) Coupling. 

i) Every cause of S’s Ψ-ing in V is a common cause of S’s Ψ-ing and at least 

one X’s Φi-ing in X’s Φ-ing. 

ii) for no Xi’s Φi-ing in X’s Φ-ing does X’s Φ-ing \ { Xi’s Φi-ing }comply 

with 2.i). 
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3) No De-Coupling. The Coupling of X’s Φ-ing and S’s Ψ-ing cannot be 

broken (invalidated) by extending V adding new interventions on S’s Ψ-

ing21.” (Baumgartner & Casini, 2017, pp. 228–229)   

To clarify this formalisation, we can consider again the example of the orchestra playing 

Ravel’s Boléro. In that situation, we can say that the trumpet player’s behaviour is 

constitutively relevant to the orchestra’s behaviour if there is a variable set V containing 

the variable representing the orchestra’s behaviour, the variables representing the possible 

interventions on the orchestra’s behaviour, and a subset of the constitutive parts’ 

behaviours containing the variables representing all the players’ and the conductor’s 

behaviours such that: 

1) For every specific behaviour of a constitutive part, there is at least one 

instance of the phenomenon of the orchestra playing Ravel’s Boléro such that 

the constitutive part exhibiting the behaviour is part of the orchestra playing 

Ravel’s Boléro. 

2i) Every intervention on the orchestra playing Ravel’s Boléro causes both a 

change in the orchestra’s behaviour and a change in at least one trumpet 

player’s behaviour belonging to the subset of the constitutive parts’ 

behaviours; 

2ii) If we consider the subset containing all the behaviours of all the parts 

except for that specific trumpet player’s behaviour, there is not a component’s 

behaviour belonging to this subset that is always changed when an 

intervention changes both the orchestra playing Ravel’s Boléro and that 

trumpet player’s behaviours. 

3) Even if we extend the variables in V by considering further interventions 

on the orchestra playing Ravel’s Boléro, the coupling between the trumpet 

player’s behaviour and the orchestra’s behaviour cannot be broken: it will still 

                                                           
21 In the formulation of the No De-Coupling (NDC) requirement for constitutive relevance, Baumgartner 

and Casini (2017, pp. 228–229) do not define the variable set V, but claim that the No De-Coupling 

condition is met if the coupling of X’s Φ-ing and S’s Ψ-ing cannot be broken (invalidated) by extending V, 

that means, by adding new components X’s Φ-ing. Given that the addition of new constituents would not 

lead to the finding of surgical interventions on S’s Ψ-ing, I have taken V to contain also the possible 

interventions on S’s Ψ-ing. My decision is supported by the fact that, before presenting their formalised 

NDC condition, Baumgartner and Casini discuss a figure in which the variable set V contains S’s Ψ-ing, 

the components X’s Φ-ing, and the possible interventions on S’s Ψ-ing (Baumgartner & Casini, 2017, p. 

227). 
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be impossible to surgically intervene on the phenomenon of the orchestra 

playing Ravel’s Boléro in the same way (with respect to the trumpet player’s 

behaviour) without changing the trumpet player’s behaviour. 

In order to find constitutive relevance relationships, the abductive theory of constitution 

requires testing for unbreakable common-cause coupling. This requirement is very 

challenging: the ways of intervening on a phenomenon S’s Ψ-ing and on the behaviours 

of the potentially constitutive relevant parts of the constitutive set X’s Φ-ing must be 

systematically changed to expand V and check whether, outside V, there exist surgical 

causes that break the common-cause coupling of X’s Φ-ing and S’s Ψ-ing. 

Baumgartner and Casini consider that, of course, it is not feasible to conduct all the 

possible interventions on S’s Ψ-ing because this would require an infinite expansion of 

the variable set. As a consequence, they claim that, after many attempts, the constitutive 

relevance relationship can only be abductively inferred, after having inductively inferred 

the satisfaction of the Coupling and No De-Coupling requirements.  

Although the main limitation of the abductive theory of constitution has been claimed to 

be the unfeasibility of such requirements and the necessary use of induction and 

abduction, in the next section I will focus on another limitation, the fact that, in particular 

situations, the “fat-handed” nature of interventions on constitutive mechanisms makes 

really difficult to address cases of multiple realizations. 

7.3.1.1 Multiple realizations and bottom-up intervention 

The main reason that has led Baumgartner and Casini to propose their account is that, 

since every intervention on a constitutive mechanism is fat-handed, it is impossible to 

distinguish between bottom-up and top-down interventions. In the case of constitutive 

mechanisms, indeed, such a distinction is far from being clear.  

Let us go back to the example of the orchestra playing Ravel’s Boléro: changing the 

mechanism’s behaviour S’s Ψ-ing means changing the behaviour of the orchestra, that is 

the activity of playing Ravel’s Boléro. To change that, the only possibility is to change 

the behaviour of at least one of the components of the orchestra, for instance by stopping 

the activity of the trumpet player X1. In such a way, we are changing both the 

mechanism’s behaviour S’s Ψ-ing and the behaviour Φ1 exhibited by its component X1. 

Now, let us assume that in the orchestra there is a trumpet player X2 ready to start 
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exhibiting the behaviour Φ1 if and only if the first trumpet player X1 is unable to play (that 

means, X1 is unable to perform the behaviour Φ1). This situation is a case of multiple 

realization: the change of one constitutive part does not lead to a change of the whole 

phenomenon because other parts can compensate that change. In other words, even a 

relevant change in the behaviour Φ1 of X1 would not affect S’s Ψ-ing because another 

part X2 exhibiting the behaviour Φ1 would take the place of the relevant part we have 

changed.  

If the trumpet player X2 immediately takes the place of the trumpet player X1 when we 

make X1 stop playing, we will have an ambiguous situation in which, even though we 

wanted to change S’s Ψ-ing (i.e. the behaviour or the causal capacity of the orchestra), 

we just changed X1’s Φ1-ing. In other words, apparently, we performed a bottom-up 

intervention rather than a fat-handed intervention. When there is X2 ready to start 

exhibiting the behaviour Φ1 if X1 is stopped, it is actually impossible to perform fat-

handed interventions on S’s Ψ-ing and X1’s Φ1-ing, even though X1’s Φ1-ing is 

constitutive of S’s Ψ-ing.  

It is important here to recall what we have said in section 7.3.2: we cannot intervene on 

S’s Ψ-ing without changing also at least the behaviour of one constitutive part, X’s Φ-

ing, but there is the possibility that we intervene on X’s Φ-ing without changing S’s Ψ-

ing. Indeed, surgical interventions on X’s Φ-ing are possible because we could make the 

constitutive entity X change its behaviour Φ in a way that does not affect S’s Ψ-ing, or 

we could change a behaviour that is not actually constitutive of the phenomenon under 

study (X’s Φ-ing might indeed be a sterile effect always coupled with another behaviour 

of the same or of a different part).  

According to Baumgartner and Casini’s account, in a case of multiple realization we 

would arrive at the following conclusions: 

1) Since the top-down intervention on S’s Ψ-ing changes only X1’s Φ1-ing, while S’s 

Ψ-ing remains unchanged, the intervention fails the Coupling condition and 

should be interpreted as a bottom-up intervention on X1’s Φ1-ing. The 

consequence is that X1’s Φ1-ing should not be considered a constituent of S’s Ψ-

ing. 
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2) Since the behaviour Φ1 of the trumpet player X2 would only be caused by 

interventions on Ψ that change also X1’s Φ1-ing, X2’s Φ1-ing does not satisfy the 

redundancy-free requirements and should be interpreted as a sterile effect.  

In cases of multiple realizations, hence, Baumgartner and Casini’s account does not allow 

us to claim that either X1’s Φ1-ing before the intervention or X2’s Φ1-ing after the 

intervention can be considered constitutive of S’s Ψ-ing. 

7.3.2 Krickel’s account: the causation-based constitutive relevance 

Recently, Krickel has developed a new solution to the problems related to constitutive 

relevance. Her starting point is the assumption that constitutive mechanisms entail both 

entities and activities. She then considers that the use of just one variable to represent the 

phenomenon is not consistent with the fact that phenomena often consist of changes over 

time. For this reason, she proposes to distinguish between spatial entity-involving 

occurrents and temporal entity-involving occurrents, where both kinds of parts are 

themselves acting entities. Temporal entity-involving occurrents and spatial entity-

involving are defined as follows: 

“An acting entity E1 is a temporal entity-involving occurrent of another 

acting entity E2 iff: 

1) the entity involved in E1 is identical with the entity involved in E2; 

2) the activity involved in E1 begins later and ends earlier than the activity 

involved in E2, or the former begins simultaneously with the latter and ends 

earlier than the latter, or the former begins later than the latter and ends 

simultaneously with the latter.” (Krickel, 2018, p. 64) 

“An acting entity E1 is a spatial entity-involving occurrent of another acting 

entity E2 iff: 

1) the entity involved in E1 occupies a proper sub-region of the 

spatiotemporal region occupied by the entity involved in E2; 

2) the activity involved in E1 occurs during the activity involved in E2.” 

(Krickel, 2018, p. 64) 

To give an example, Krickel considers the phenomenon consisting of the mouse 

navigating the Morris water maze: a mouse put in the water maze has to escape from 
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water by successfully navigating and thereby locating a hidden platform. If we have to 

recognise spatial entity-involving occurrents, we can consider the mouse’s muscles 

moving, or the hippocampus generating spatial maps while the mouse is navigating. They 

are spatial entity-involving occurrents constituting the acting-entity under study (the 

mouse navigating the Morris water maze). Furthermore, the mouse being put into the pool 

in a particular area of the water maze, the mouse swimming for a while in one direction 

in another area of the water maze, swimming in another direction in another area of the 

water maze, and finally finding the platform, can be described as temporal entity-

involving occurrents of the phenomenon. 

Figure 27 illustrates this distinction: one the one hand, a phenomenon is constituted by 

spatial entity-involving occurrents that occupy sub-regions of the acting entity, like a); on 

the other hand, a phenomenon is also constituted by temporal entity-involving occurrents 

that involve the same acting entity of the phenomenon itself, but that occupy limited time 

intervals, like b).  

 

Figure 27. Spatial entity-involving occurrents and temporal entity-

involving occurrents. a) represents a spatial entity-involving occurrent 

that occupies a sub-region of the acting entity; b) represents a temporal 

entity-involving occurrent that involves the same acting entity of the 

phenomenon but that occupies a limited time interval. 

The idea proposed by Krickel is that spatial entity-involving occurrents and temporal 

entity-involving occurrents of the same acting entity, if occurring in different spatio-

temporal regions, can causally interact. The justification for their causal interactions is 

that entity-involving occurrents that occur in different spatio-temporal regions can be 

wholly distinct events. 
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On the basis of this observation, Krickel has developed a new account of constitutive 

relevance, called causation-based constitutive relevance, based on the notion of ideal* 

interventions and defined as follows: 

“X’s Φ-ing is constitutively relevant for S’s Ψ-ing iff: 

1) X’s Φ-ing is a spatial entity-involving occurrent of S’s Ψ-ing, 

2) there is a temporal entity-involving occurrent of S’s Ψ-ing that is a cause 

of X’s Φ-ing, and 

3) there is a temporal entity-involving occurrent of S’s Ψ-ing that is an effect 

of X’s Φ-ing.” (Krickel, 2018, p. 64) 

To formulate this causation-based constitutive relevance in terms of interventionism, 

Krickel needs to represent the different acting entities by variables: she represents X’s Φ-

ing by the variable Φi, and the temporal entity-involving occurrents of S’s Ψ-ing by Ψ1 

and Ψ2. If Woodward’s interventionist account is then applied to her notion, it follows 

that condition 2) is satisfied if and only if there is a variable Ψ1=ψ1 for which it is true 

that there is an ideal or ideal* intervention on Ψ1 with respect to Φi=φi that changes Φi 

while all other variables not on the causal path between Ψ1 and Φi are kept fixed except 

for variables that Ψ1 and Φi non-causally depend on. Condition 3) is satisfied if and only 

if there is a variable Ψ2=ψ2 for which it is true that there is an ideal or ideal* intervention 

on Φi=φi that changes Ψ2 while all other variables not on the causal path between Φi and 

Ψ2 are kept fixed except for variables that Ψ2 and Φi non-causally depend on.  

Let us consider again the mouse navigating the Morris water maze for a period of time 

going from t1 to t4. Krickel focuses on the question of whether the hippocampus’s activity 

at t3 is constitutively relevant to that phenomenon (2018, p. 65). To answer that question, 

it should be verified at first that there is a temporal entity-involving occurrent of the 

mouse’s navigation behaviour for which it is true that, had there been an ideal* 

intervention on that temporal entity-involving occurrent with respect to the 

hippocampus’s activity at t3, then the hippocampus’s activity at t3 would have been 

different. Second, it should be verified the existence of a temporal entity-involving 

occurrent of the mouse’s navigation behaviour for which it is true that, had there been an 

ideal* intervention on the hippocampus’s activity with respect to that temporal part, the 

temporal entity-involving occurrent would have been different.  
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According to Krickel, condition 2) might be satisfied if one could imagine that had there 

been an ideal* intervention on the entering of the mouse into the maze at t1 (e.g. a change 

in the location of where the mouse was put into the maze), then the hippocampus’s 

activity would have been different at t3 (e.g. different neural representations in the 

hippocampus would have been active). In addition, condition 3) could be satisfied if there 

was an ideal* intervention on the hippocampus’s activity at t3 so that the mouse’s finding 

the platform at t4 would have been different (e.g. it would have found the platform later). 

While Krickel claims that her proposal can save the mutual manipulability approach, in 

the next pages I will discuss four limitations of her account. 

7.3.2.1 Causation between entity-involving occurrents requires parts occupying 

different temporal regions 

Let us consider some possible scenarios based on Krickel’s account. Intuitively, the 

general case described by Krickel is the situation where we ideally or ideally* intervene 

on the temporal entity-involving occurrent of S’s Ψ-ing at t1, this causes a change in the 

spatial entity-involving occurrent X’s Φ-ing at t2, which consequently leads to a change 

in the temporal entity-involving occurrent of S’s Ψ-ing at t3, like in Figure 28. In this 

situation, we would not have problems because spatial entity-involving occurrents and 

temporal entity-involving occurrents of the same acting entity, if occurring in different 

spatio-temporal regions, are wholly distinct events and can causally interact. 

 

Figure 28. The general case described by Krickel. A temporal entity-

involving occurrent of S’s Ψ-ing at t1 is a cause of X’s Φ-ing at t2, and 

there is a temporal entity-involving occurrent of S’s Ψ-ing at t3 that it is 

an effect of X’s Φ-ing at t2. 
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There are further scenarios, however, that pose a problem to Krickel’s account. Although 

in her paper Krickel clarifies in different occasions that, in order to be causally dependent, 

entity-involving occurrents must occur in different spatio-temporal regions, her definition 

of causation-based constitutive relevance does not rule out that a temporal region can be 

occupied by both spatial and temporal entity-involving occurrents. More specifically, the 

definition of spatial entity-involving occurrents entails that such parts occupy just sub-

regions of the spatiotemporal region, while the definition of temporal entity-involving 

occurrents entails that they occupy the whole spatial region and occur at a sub-region of 

the temporal region. Consequently, while a spatial entity-involving occurrent and a 

temporal entity-involving occurrent will never occupy the same spatial region, it might 

happen that they occupy the same temporal region.  

This observation causes a counterexample if applied to the conditions for constitutive 

relevance. On the one hand, X’s Φ-ing is claimed to be constitutively relevant to S’s Ψ-

ing iff: (i) X’s Φ-ing is a spatial entity-involving occurrent of S’s Ψ-ing, (ii) there is a 

temporal entity-involving occurrent of S’s Ψ-ing that is a cause of X’s Φ-ing, and (iii) 

there is a temporal entity-involving occurrent of S’s Ψ-ing that is an effect of X’s Φ-ing. 

On the other hand, the temporal regions of such parts are not specified, with the 

consequence that it might happen that the same temporal region is shared by the spatial 

entity-involving occurrent X’s Φ-ing and its putative cause, the temporal entity-involving 

occurrent of S’s Ψ-ing (as in Figure 29); or by the spatial entity-involving occurrent X’s 

Φ-ing and its putative effect, the temporal entity-involving occurrent of S’s Ψ-ing (as 

illustrated in Figure 30). 

As described above, Krickel uses the notion of ideal or ideal* interventions to establish 

causation: considering Figure 29, for instance, we can establish that S’s Ψ-ing at t1 is a 

cause of X’s Φ-ing at t1 iff there is an ideal or ideal* intervention on S’s Ψ-ing at t1 with 

respect to X’s Φ-ing at t1 that changes the value of X’s Φ-ing at t1 given that all other 

causes of X’s Φ-ing at t1 that are not on the causal path between I, S’s Ψ-ing at t1, and X’s 

Φ-ing at t1 are kept fixed at their actual values (except for variables that I, S’s Ψ-ing at t1, 

and X’s Φ-ing at t1 non-causally depend on). 

Since, as argued in section 7.2, ideal and ideal* interventions allow for causal 

relationships between one entity and its constitutive parts, the ideal or ideal* intervention 

on S’s Ψ-ing at t1 with respect to X’s Φ-ing at t1 would not be problematic in 
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interventionist terms. My argument is that such a conclusion, however, would be in 

contrast with the idea that causation cannot be established if the spatial entity-involving 

occurrent X’s Φ-ing and the temporal entity-involving occurrent of S’s Ψ-ing share the 

same temporal region because in that situation they are not wholly distinct events.  

 

Figure 29. A temporal entity-involving occurrent of S’s Ψ-ing at t1 is 

the cause of X’s Φ-ing at t1. 

 

Figure 30. A temporal entity-involving occurrent of S’s Ψ-ing at t2 is 

the effect of X’s Φ-ing at t2. 

7.3.2.2 Do we need temporal entity-involving occurrents? 

The observations proposed in section 7.3.2.1 can be used to identify another problem of 

Krickel’s account. Since a spatial entity-involving occurrent and a temporal entity-

involving occurrent can share the same temporal region, it is likely that each temporal 

entity-involving occurrent (that is characterised by the same entity of the whole 

mechanism) is constituted by spatial entity-involving occurrents.  Figure 31 helps to 

clarify this situation: the temporal entity-involving occurrents at t1, t2, and t3 are all 

constituted by spatial entity-involving occurrents sharing the same temporal regions.  
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Figure 31. The temporal entity-involving occurrents at t1, t2, and t3 are 

all constituted by spatial entity-involving occurrents sharing the same 

temporal regions. 

If we intervene with an ideal* intervention on the temporal entity-involving occurrent at 

t1 with respect to the spatial entity-involving occurrent at t2, our intervention will always 

change both the temporal entity-involving occurrent at t1 and at least one of its constitutive 

spatial entity-involving occurrents at t1. Similarly, if we intervene on the spatial entity-

involving occurrent at t2 with respect to the temporal entity-involving occurrents at t3, our 

intervention will always change also one spatial entity-involving occurrent at t3. The 

problem is that, with ideal* intervention, it is impossible to establish whether we are 

intervening on the temporal entity-involving occurrent at t1 with respect to the spatial 

entity-involving occurrent at t2, or whether we are intervening on the spatial entity-

involving occurrent at t1 with respect to the spatial entity-involving occurrent at t2. In 

other words, due to the fat-handed nature of an ideal* intervention, we do not know where 

to locate it. It is hence questionable whether Krickel’s account needs temporal entity-

involving occurrents, or whether we could spell out her proposal just in terms of spatial 

entity-involving occurrents in different time regions of the phenomenon-to-be-explained.  

7.3.2.3 Multiple realizations and the absence of ideal interventions 

As described in section 7.3.1.1, the account proposed by Baumgartner and Casini might 

cause problems when constitutive mechanisms are characterised by multiple realizations. 

A similar problem can be found also in Krickel’s account of causation-based constitutive 

relevance. If we applied Krickel’s proposal, it would follow that those parts characterised 

by multiple realizations should not be considered as constitutive parts. The reason is that, 

in order to establish constitutive relevance, it should be verified that there is an ideal or 

ideal* intervention on X’s Φ-ing at tn that changes S’s Ψ-ing at tn+1 while all other 
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variables not on the causal path between X’s Φ-ing at tn and S’s Ψ-ing at tn+1 are kept 

fixed except for variables that X’s Φ-ing at tn and S’s Ψ-ing at tn+1 non-causally depend 

on. An intervention on X’s Φ-ing at tn that causes another spatial entity-involving 

occurrent Y’s Φ-ing to replace X’s Φ-ing, as happens in the case of multiple realizations, 

would maintain S’s Ψ-ing at tn+1 unchanged, with the consequence that it would not be 

considered an ideal or ideal* intervention. The direct consequence would be that a 

possible causal relationship between X’s Φ-ing at tn and S’s Ψ-ing at tn+1 would be 

excluded. Furthermore, it would be established that X’s Φ-ing does not meet the 

requirement for constitutive relevance. 

7.3.2.4 Constitutive mechanisms without activities 

In section 7.3.2 I have observed that Krickel’s starting point is the assumption that 

constitutive mechanisms entail both entities and activities. According to this position, 

mechanisms merely characterised by a disposition cannot be described as mechanisms. 

There are different counterexamples, however, that might lead to the conclusion that there 

are systems characterised only by causal capacities that should be considered 

mechanisms. 

A clear case in point that illustrates a situation in which we have a causal disposition is 

an unexploded bomb. The bomb is not exhibiting any behaviour, therefore the 

phenomenon Ψ (that is, the bomb exploding) is just dispositional. Additionally, the 

bomb’s components are not engaged in any activity. Overall, however, we can claim that 

the components’ behaviours are potential, and that this is enough to claim that the bomb 

is a mechanism, given that it has the causal capacity to explode. 

A similar example is the case of an unwound watch S. It could be claimed that the watch 

is a mechanism because it has the dispositional causal capacity Ψ to indicate the right 

hour, and that its components X1, X2, X3, X4 (for instance the gears and the hands) are 

constitutive parts that potentially can exhibit the constitutive behaviours Φ1, Φ2, Φ3 and 

Φ4.  

Another example from the social sciences is the componential system whereby the central 

bank can influence the money supply through the potential activities of some financial 

entities (for instance, certain entities can buy or sell government securities; influence 

interest rates; or change the reserve requirement). This complex system of entities and 
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potential activities can be considered a mechanism even if the central bank is not 

influencing in any way, in a specific moment, the money supply. 

Similarly, we could claim that the orchestra S ready to start playing Ravel’s Boléro is a 

mechanism because it has the disposition to do Ψ (that is, to play) and that, even though 

its components (the players and the conductor) are not acting, potentially they can exhibit 

the activities required to constitute the phenomenon Ψ. 

Overall, all these examples suggest that constitutive mechanisms do not necessarily 

require actualised behaviours to be defined as such. If a constitutive mechanism is not 

engaged in any activity, however, it is difficult to distinguish between different time 

regions. Consequently, it might be argued that Krickel’s proposal is not adequate to 

include constitutive mechanisms characterised by dispositional behaviours. 

7.3.3 Baumgartner, Casini and Krickel’s latest proposal: horizontal 

surgicality 

Very recently, Baumgartner, Casini and Krickel have developed together another 

proposal that combines some of their previous ideas and tackles some of the problems I 

have discussed above. Starting from Baumgartner and Casini’s account, the authors 

recognise that only when an intervention causes simultaneous changes both in the 

phenomenon-to-be-explained and in one of its parts, such changes can be considered as 

revealing of constitution22.  

In the horizontal surgicality approach proposed by Baumgartner, Casini and Krickel, this 

observation is associated with the assumption that it is possible to find constitutive parts 

of a phenomenon on every possible lower level without gaps between levels. By 

considering the example of the orchestra playing Ravel’s Boléro, such an assumption 

would require that an intervention on the orchestra changes not only the behaviour of one 

of its players, but also one of the constitutive parts of the player (such as his respiratory 

system), and other constitutive parts in lower levels (such as the pulmonary circulation). 

Together, such ideas are used to develop the principle of universal constitution 

(Baumgartner et al., 2018, p. 5), that can be spelt out in this way:   

                                                           
22 Simultaneously changes in parts and phenomena are claimed by the authors to be non-causal because 

causes always temporally precede their effects. 
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Universal constitution. Every (change in a) state of any (non-fundamental) 

phenomenon S’s Ψ-ing is necessarily and simultaneously realised by (a 

change in) the state of at least one constituent X’s Φ-ing of S’s Ψ-ing on every 

lower level, such that S’s Ψ-ing ≠ X’s Φ-ing. 

The requirement of simultaneous changes rules out the possibility of recognising sterile 

effects as constitutive parts since producing such effects would require time. Furthermore, 

producing simultaneous changes in the phenomenon-to-be-explained and one of its parts 

through an intervention would entail either that the intervention can change both the 

phenomenon and the part along a single causal path (I→ S’s Ψ-ing → X’s Φ-ing), or that 

the intervention changes them through two different causal pathways, and it is 

consequently a common cause of the phenomenon-to-be-explained and one of its parts 

(S’s Ψ-ing  I → X’s Φ-ing). Since the possibility of a single causal path is ruled out by 

the fact that there cannot be causal relationships between a phenomenon and its 

constitutive parts, the only possible explanation of simultaneous changes is that the 

responsible interventions are fat-handed (Baumgartner et al., 2018, p. 5).  

Baumgartner, Casini and Krickel add a further requirement for constitutive relevance: 

every fat-handed intervention is a direct cause of at most one behaviour on every level 

lower than S’s Ψ-ing. In other words, it is impossible that an intervention on S’s Ψ-ing 

changes simultaneously both X1’s Φ1-ing and X2’s Φ2-ing, or X1’s Φ1-ing and X1’s Φ2-

ing that can be found at the same level (for this reason, interventions are called surgical). 

This requirement rules out the possibility that the intervention is just a common cause 

changing the phenomenon-to-be-explained and an acting part that is not constitutively 

relevant. Indeed, every time we intervene on a constitutive mechanism we necessarily 

change both the phenomenon and the behaviour of a constitutive acting part of the 

mechanism. Therefore, if the intervention does not change only the acting part under 

study X1’s Φ1-ing, but also X1’s Φ2-ing or another acting entity at the same level, X2, we 

can establish that X1’s Φ1-ing is not constitutive of the phenomenon.  

Together, such requirements form the ‘horizontal surgicality account’, according to which 

I is a horizontally surgical intervention variable on a part X’s Φ-ing with respect to S’s 

Ψ-ing iff: 

1) I is a cause of X’s Φ-ing; 
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2) If I causes changes in both X’s Φ-ing and S’s Ψ-ing, these changes occur 

simultaneously; 

3) I is a direct cause of at most one behaviour on every level lower than S’s Ψ-ing.  

The authors, finally, claim that X’s Φ-ing is a constitutive part of S’s Ψ-ing iff23: 

1) The instances of X’s Φ-ing are spatiotemporal parts of instances of S’s Ψ-ing; 

2) There exists a (possible) horizontally surgical intervention I on X’s Φ-ing with 

respect to S’s Ψ-ing that causes changes in both X’s Φ-ing and S’s Ψ-ing. 

7.3.3.1 A solution to the problem of multiple realizations 

Even if the authors did not discuss this aspect, the recognition that constitutive relations, 

unlike causal relations, do not require time, is the key point that helps us to solve the 

problem of multiple realizations. Let us consider again the example of the orchestra 

playing Ravel’s Boléro. If during the concert we change the trumpet player’s behaviour 

by tying his arms, we will change simultaneously (even if just for a very short time) the 

behaviour of the orchestra. After a very short moment, the substitute will start playing to 

replace the behaviour of the tied trumpet player, and the orchestra’s behaviour will return 

to the condition it had before the intervention. In such a situation, the causal relationship 

between the behaviour of the first trumpet player and the substitute will take time. 

Figure 32 helps to clarify this point: if we use Krickel’s style of representing constitutive 

mechanisms, it is possible to distinguish between different temporal intervals (t1 and t2) 

and between different spatiotemporal parts of the phenomenon. We can identify the 

spatiotemporal part X1 characterised by the behaviour Φ1, and the spatiotemporal part X2 

characterised by the behaviour Φ1 that could replace X1’s Φ1-ing. Let us imagine we 

intervene on X1’s Φ1-ing at t1 with respect to S’s Ψ-ing, immediately X1 and S will change 

their behaviours Φ1 and Ψ. After that, at t2, X2 will change (activate) its behaviour Φ1 to 

replace the (identical) behaviour of X1 at t1. 

What follows is that, if we require that the intervention I causes simultaneous changes in 

the phenomenon-to-be-explained and the constitutive part, we will be able to identify 

constitutive parts even in cases of multiple realizations. 

 

                                                           
23 Baumgartner, Casini and Krickel formalised their proposal differently, for further detail see Baumgartner, 

Casini and Krickel, 2018, p. 9-12. 
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Figure 32. A case of multiple realization. If we consider the mechanism 

S, we can distinguish between the spatiotemporal part X1 that 

simultaneously changes behaviour due to the intervention I at t1, and the 

spatiotemporal part X2 whose activity Φ1 is caused by X1’s Φ1-ing at t2. 

7.3.3.2 Two limitations: parthood and dispositional phenomena 

There are two conceptual limitations in the account proposed by Baumgartner, Casini and 

Krickel.  

The first limitation that can be found is that, like in their previous proposals, the horizontal 

surgicality account requires that the constitutively relevant entities of the mechanism are 

physical parts of the mechanism. There are at least two scenarios, however, in which this 

requirement cannot be met even if the entities under study are constitutive of the 

phenomenon-to-be-explained. 

In the first scenario there are clear physical entities that can be considered parts of the 

mechanism exhibiting the phenomenon-to-be-explained, but some constitutive entities 

are external to the mechanism. An example is the action potential mechanism exhibiting 

the phenomenon of muscle contraction, that comprises also an external neuronal signal 

(see Kaiser & Krickel, 2016). This situation is not new in the philosophical debate: Craver 

himself recognised that mechanisms “frequently transgress compartmental [physical] 

boundaries” (Craver, 2007, p. 141). In such cases, in order to claim that these external 

entities are parts of the mechanism, we have to modify the ways in which the physical or 

spatial boundaries of the constitutive mechanism are drawn. 

The second scenario is more complex and involves a phenomenon exhibited by a 

mechanism that is not a physical object. Above it has been suggested that clear examples 

of social constitutive mechanisms can be found in the discussions on social organisations, 
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in general defined as the articulations “of different parts which perform various functions” 

(Ogburn & Nimkoff, 1964, p. 9). Such articulations are not necessarily physical objects: 

in several situations social organisations are abstract concepts that can be understood only 

by determining which entities should be considered as components.  

An example often used to clarify this observation is the social organisation that we call 

‘family’. Although there are some rules to establish whether someone is a family member 

(we can examine whether the persons are linked by blood, marriage or adoption), the idea 

about what individuals constitute a family varies across the world. There are societies in 

which the concept of family is nuclear: only parents and children are members of a family. 

Other societies extend the boundaries and consider also other relatives as members of the 

family. Since a family is not a physical object, the boundaries are invisible and contextual: 

if a person is asked to mention the individuals who are parts of her family, the answer 

will depend on the concept of family she has. The direct consequence of this observation 

is that, in some cases, researchers are required to establish by definition (analytically) the 

boundaries of the mechanism, and their decisions are likely to be influenced by cultural 

and subjective considerations (this point will be discussed in detail in section 7.6). In such 

situations, it is impossible to establish definitively whether an entity is or is not a 

mechanism’s part.  

Overall, hence, the parthood condition can cause conceptual and methodological 

problems when used for constitutive relevance because: 

1) When the mechanism at the macro level is a physical mechanism, it could happen 

that external entities, not belonging to that physical mechanism, exhibit activities 

constitutive of the phenomenon-to-be-explained, as for the action potential 

mechanism. 

2) In the social sciences it is likely to find situations in which the mechanism 

exhibiting the phenomenon at the macro level is not a physical object with well-

defined boundaries, but an intangible mechanism whose boundaries are 

determined analytically (by definition), like in the case of the family. 

There is a further limitation of the horizontal surgicality account: like in the previous 

proposals, this account does not allow for constitutive mechanisms with a dispositional 

behaviour (a detailed discussion has been provided in section 7.3.2.4).  
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7.4 An extended horizontal surgicality account  

In this section, I shall propose some changes to the horizontal surgicality account both to 

tackle the conceptual limitations described above and to offer a philosophical proposal 

with as few formalisations as possible. To begin with, the parthood problem can be easily 

addressed by removing the first requirement for constitutive relevance, namely that the 

instances of X’s Φ-ing are spatiotemporal parts of instances of S’s Ψ-ing, and by talking 

about constitutive relevant entities.  

Furthermore, to make explicit that we are considering both actualised and dispositional 

phenomena, it is possible to modify the formalisation proposed by Baumgartner, Casini 

and Krickel in their various account by using ‘X’s Φ-able’ to refer to the entity X 

characterised by either an actualised or dispositional causal capacity Φ, and ‘S’s Ψ-able’ 

to symbolise the potential or actualised phenomenon Ψ characterising S.  

When the phenomena-to-be-explained are dispositional, a new problem arises. Let us 

imagine that we have the orchestra ready to play Ravel’s Boléro, with the trumpet player 

and his substitute. In a first scenario, illustrated in Figure 33(a), we intervene on the 

trumpet player X1’s Φ1-able by tying his arms, and we do not realise that there is a second 

trumpet player X2’s Φ1-able ready to transform his potential behaviour Φ1 into an actual 

behaviour when needed. In such a situation, we might conclude that our intervention does 

change simultaneously both the potential behaviour of the trumpet player X1’s Φ1-able 

and the potential behaviour of the orchestra S’s Ψ-able (in other words, the trumpet player 

and the orchestra would lose their casual capacity). In a second scenario, described in 

Figure 33(b) we are aware of the presence of the second trumpet player X2’s Φ1-able. We 

intervene on the potential behaviour of the first trumpet player X1’s Φ1-able but we realise 

that this intervention does not change simultaneously also the causal capacity of the 

orchestra because the substitute X2’s Φ1-able can transform his potential behaviour Φ1 

into an actual behaviour when needed (when the orchestra starts performing Ravel’s 

Boléro). In this second case, the intervention looks like a bottom-up intervention.  

In the former scenario, we would arrive at the right conclusion (X1’s Φ1-able is 

constitutive of S’s Ψ-able) ignoring the presence of X2’s Φ1-able. In the second scenario, 

we would conclude that X1’s Φ1-able is not constitutive of S’s Ψ-able. In both cases, 

however, the situation would be very different if we intervened once the behaviour Ψ was 

actualised. Indeed, regardless of whether we are aware of the presence of X2’s Φ1-able or 
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not, an intervention on the acting mechanism S’s Ψ-able would change simultaneously 

both the actualised X1’s Φ1-able and S’s Ψ-able, as illustrated in Figure 32 above, while 

the ‘activation’ of X2’s Φ1-able would take time. In other words, when the phenomenon-

to-be-explained is dispositional, the problem of multiple realizations can put our 

conclusion about the constitutive relevance of an entity on the wrong track. When the 

phenomenon-to-be-explained is actualised, instead, we do not have to worry about the 

problem of multiple realizations. 

 

Figure 33. An extended horizontal surgicality account. In (a) the S is 

just a dispositional behaviour and we do not see X2’s Φ1-able. When we 

intervene on X1’s Φ1-able, consequently, we think that we change 

simultaneously also the potential behaviour Ψ of the orchestra S. In (b), 

we know that there is X2’s Φ1-able, consequently we realise that our 

intervention on X1’s Φ1-able is just a bottom-up intervention because 

the potential behaviour Ψ of the orchestra S is not changed.  

Consequently, this issue can be solved by changing the second requirement in the 

following way: if the behaviour Ψ of S were actualised, there would exist a (possible) 

horizontally surgical intervention I on X’s Φ-able with respect to S’s Ψ-able that would 

cause changes in both X’s Φ-able and S’s Ψ-able. 

This solution allows researchers to clearly determine if an entity is constitutive of a 

mechanism when the mechanism is exhibiting the phenomenon-to-be-explained, while it 

can be used as a thought experiment with mechanisms characterised by dispositional 

behaviours. Overall, the changes I have proposed so far lead to the following extended 

horizontal surgicality account:  

I is a horizontally surgical intervention variable on X’s Φ-able with respect to S’s Ψ-able 

iff: 

1) I is a cause of X’s Φ-able; 
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2) If I causes changes in both X’s Φ-able and S’s Ψ-able, these changes occur 

simultaneously; 

3) I is a direct cause of at most one behaviour on every level lower than S’s Ψ-able. 

X’s Φ-able is constitutive of S’s Ψ-able iff: 

1) X is an entity with the dispositional or actualised behaviour Φ; 

2) If the behaviour Ψ of S were actualised, there would exist a (possible) horizontally 

surgical intervention I on X’s Φ-able with respect to S’s Ψ-able that would cause 

changes in both X’s Φ-able and S’s Ψ-able. 

7.5 Big data and constitutive mechanistic evidence 

Now that I have established how to identify constitutive relevant entities, it is time to 

explore whether big data can be used to find them and to collect constitutive mechanistic 

evidence. From the big data’s description provided in the introduction of the thesis, it 

emerges that the time interval between a data collection and another, thanks to new 

sophisticated devices, can often be reduced to a few milliseconds; and that it is now 

possible to collect information regarding a huge amount of entities. It follows that big 

data might help researchers to monitor every small change both in the phenomenon-to-

be-explained and in the behaviours of all the possible constitutive entities. Such capacities 

are crucial in order to verify if changes in the phenomenon and in the constitutive entity 

happen simultaneously and if there are changes in further behaviours at the same level as 

the constitutive entity we are studying.  

The use of big data to find constitutive relevant entities through the extended horizontal 

surgicality account might provide useful mechanistic evidence especially when the 

phenomenon-to-be-explained is actualised. Let us consider again the example of the 

orchestra playing Ravel’s Boléro. Through big data, researchers can measure all the 

behaviours of the putative components belonging to a specific level. For instance, 

researchers can monitor all the behaviours of the components and of the conductor of the 

orchestra. If the behaviour of the orchestra is actualised, furthermore, big data can help to 

detect changes in how Ravel’s Boléro is played. In such a way, it would be possible to 

establish if an intervention on the trumpet player simultaneously changes also the 

behaviour exhibited by the orchestra while all the other behaviours are maintained 

unchanged.  
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The example of the orchestra used so far, however, runs the risk of being too simplistic. 

Social constitutive mechanisms are often made of numerous entities and are much more 

complex than an orchestra with just one trumpet player. Let us consider a real traditional 

symphonic orchestra: this in general is not made of one, but of eight trumpet players. In 

a traditional orchestra playing Ravel’s Boléro, hence, if we made one of the trumpet 

players stop playing, there would be seven other trumpet players still playing their parts. 

In this situation, should we say that our intervention on the behaviour Φ1 of the trumpet 

player X1 changes the phenomenon Ψ under examination, namely the orchestra playing 

Ravel’s Boléro? 

Let us assume the other members of the orchestra do not notice what happens to the 

trumpet player and keep playing. Due to the presence of the other trumpet players, the 

change in the phenomenon might be imperceptible to the human ear. However, big data 

could help us to monitor every micro-change in the phenomenon-to-be-explained. In the 

case of an orchestra with eight trumpet players, for instance, we might collect sound 

intensity data and, during the intervention on the trumpet player, observe a reduction in 

the decibel level. It might be argued, hence, that big data could improve our ability to 

determine whether an intervention on the behaviour of a (putative) constitutive entity 

changes simultaneously also the behaviour of the phenomenon-to-be-explained.  

Another example can illustrate this possibility: the constitutive mechanism exhibiting the 

phenomenon of segregation. In chapter 3, section 3.2.2, I have described Schelling’s 

mechanistic model of segregation, where the individuals of a population can be 

understood as the relevant constitutive entities of the mechanism. By interacting with 

each other, each free individual will look for the neighbourhood with the preferred 

composition. Since if an individual abandons his neighbourhood, his activity changes the 

composition of both his past and future neighbourhoods, other individuals might react to 

such changes and decide to change their neighbourhood as well. Due to the continuous 

activities of the agents, everyone will end up living in segregated neighbourhoods. Even 

in this case, if we changed the behaviour of one of the individuals (for instance, if we 

made him move to another neighbourhood), we would simultaneously change also the 

phenomenon of segregation. Consequently, it would be possible to establish that the 

individual is constitutive of the phenomenon-to-be-explained. It is important to note that 

a change in the phenomenon-to-be-explained might be almost insignificant for the 

phenomenon itself, which could continue to exist despite having been modified. There 
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might be, indeed, two values S’s Ψ1-ing and S’s Ψ2-ing whose differences are so minor 

that both are considered to be the same phenomenon. For the phenomenon of segregation, 

for instance, the change of an individual’s behaviour might not drastically change the 

phenomenon itself, that most likely will continue to exist. Observing such minor changes, 

however, helps us to identify the constituents of the phenomenon-to-be-explained.  

The situation is much more complicated when we look for constitutive entities in a 

mechanism with a dispositional phenomenon. In such a case, the extended horizontal 

surgicality account requires the use of a thought experiment to imagine what would 

happen if the phenomenon were actualised. The possibility of thought experiments, in 

general, is not improved by the availability of big data. There is, nevertheless, a particular 

situation in which big data might help researchers to conduct such an experiment. If the 

phenomenon in question has been actualised in the past and data on the activity have been 

collected, the availability of such data could provide useful insights on the dispositional 

phenomenon-to-be-explained. Let us imagine again we are studying the orchestra ready 

to play Ravel’s Boléro, before it starts playing its concert. Big data would help us to 

monitor the entities that we think might be constitutive of the dispositional phenomenon, 

but such data would not measure changes in the causal capacity of such entities. Similarly, 

we would not be able to measure anything about the dispositional phenomenon-to-be-

explained.  

In this condition, mechanistic background knowledge is crucial for reasoning on 

disposition, and often is the only source available to think of mechanisms with 

dispositional phenomena. However, let us imagine we have a video of the same orchestra 

playing Ravel’s Boléro some days before the concert we are going to listen. We can verify 

that in the present we are observing the same entities that were recorded in the past. The 

data we can collect from the video, hence, can help us to conduct our thought experiment 

and to answer the question about constitutive relevance.  

Overall, the extended horizontal surgicality account might be used by social scientists to 

identify constitutive relevant entities of mechanisms manifesting actualised behaviours. 

In very rare situations, moreover, the account could be used to find the constituents whose 

dispositional behaviours could make the phenomenon-to-be-explained possible. There 

are further aspects, however, that should be discussed when considering how to use big 

data to collect evidence of constitutive mechanisms. To begin with, it is questionable 
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whether social scientists could really use such an account when studying social 

phenomena. In addition, the practicality of this approach seems to be weakened by the 

distance between the approach and existing scientific research. These aspects are those 

that I shall examine next. 

7.6 On the usefulness and feasibility of this account 

In section 7.5 I have argued that there might be some situations where researchers can 

use the extended horizontal surgicality account and, through big data, identify the 

constitutive entities of a mechanism. There are, however, some observations that need to 

be discussed in relation to the feasibility of such an approach in the social sciences. I 

argue that there are different problems that might emerge when we use the extended 

horizontal surgicality account to study social mechanisms. 

First, in section 7.3.3.2 it has been observed that often social mechanisms (such as social 

organisations) do not have physical boundaries and that, consequently, their borders are 

established by definition, analytically, according to cultural beliefs or norms. The lack of 

material boundaries in social mechanisms can lead to an important consequence: 

researchers can refer social phenomena to mechanisms that are not taken to be unified 

wholes, but composite systems.  

To clarify the difference between these two possibilities, let us consider some examples. 

The phenomenon of pain can be referred both to the person (in psychological terms) and 

to the composite system made of neural activities. Similarly, the behaviours of the cells 

can be referred both to the cells as proper entities, and to the operations of their 

components, the cell organelles. On the contrary, in several cases social phenomena can 

only be referred to the activities of their constituents. If we consider a social phenomenon 

such as a riot, for instance, its definition necessarily requires information about the 

interrelations between individuals and their motivations. As recognised by Ramström 

(2018, pp. 372–373), there might be cases when we consider only the macro-level 

characteristics of the phenomenon: if we looked at a protesting group of Buddhist monks 

from a helicopter, we would just observe a square-shaped, slow-moving, and orange 

acting entity. Nevertheless, if we did not have information about the individuals 

constituting such an entity, their activities and their intentions, we would not be able to 

establish that such a phenomenon is a political protest, or even that the acting entity is 

performing a social phenomenon at all.  
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In this and similar cases, the usefulness and feasibility of any constitutive account, 

including the extended horizontal surgicality account, is questionable. A strategy to 

decompose and localise the different entities that make possible a phenomenon can 

provide useful insights only if we are not sure about the role played by such entities. The 

question motivating the use of the extended horizontal surgicality account should be “is 

the potential or actualised behaviour of this entity constitutive of the phenomenon-to-be-

explained?”. When the phenomenon is, by definition, composed of the behaviours of such 

entities, researchers using the extended horizontal surgicality account can only confirm 

what has already been established analytically. In these situations, consequently, 

monitoring an intervention on a constitutive entity (either with or without big data) does 

not advance our understanding of the phenomenon-to-be-explained. 

Second, in order to use the extended horizontal surgicality account, social scientists need 

to decide how to distinguish between the different organisational levels of the mechanism, 

and unfortunately there are not precise rules on how to decompose this type of 

mechanism. 

This issue has been recognised by different philosophers: Levins (1970), Kauffman 

(1971) and Wimsatt (2007) in several occasions argued that complex mechanisms in the 

social sciences (and, in some cases, also in the life sciences) can be decomposed in a 

number of different ways and it is often impossible to establish which one is the best. This 

problem, they claimed, is due to the fact that the division between levels is not guided by 

ontological considerations, but by explanatory reasons. In the social sciences this issue is 

made very evident when we consider non-physical entities. Let us consider the example 

of the central bank, treated as an entity with the capacity to influence the money supply. 

Such a phenomenon is related to the activities of some of its components (open money 

markets, auctions and regulative legislation), that cannot be spatially located. As a 

consequence, it is arguable whether they should all be considered at the same level or not. 

In other cases, when dealing with individuals’ activities, different researchers might use 

different ways to locate individuals’ actions, individuals’ beliefs and social norms. The 

absence of precise ways to decompose constitutive mechanisms poses a challenge to the 

extended horizontal surgicality account because it requires that the intervention I is a 

direct cause of at most one behaviour on every level lower than the level of the 

phenomenon-to-be-explained. If researchers do not agree on the level on which different 
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entities should be located, it is not possible to establish whether this requirement is 

satisfied or not.  

Third, even if researchers study a phenomenon generated by a constitutive mechanism 

understood as a whole, and there is an agreement about where to locate all the entities 

that might compose the mechanism, there is a further challenge that they need to 

overcome in order to apply the Extended Horizontal Surgicality: they have to find a way 

to surgically intervene on the mechanism and its constitutive entity.   

While experimental studies might allow, in specific (and, arguably, rare) circumstances 

to intervene on biological phenomena, in the social sciences it is very difficult to 

surgically intervene on the phenomena-to-be-explained. Simple cases like the orchestra’s 

example lend themselves well to this kind of approach, but most of the phenomena studied 

by social researchers are too complex to allow for surgical interventions, especially when 

the mechanisms might be constituted by non-physical acting entities such as social norms 

and individual’s beliefs. When the intervention is not feasible, this account cannot be used 

to collect real evidence of the mechanism, but can nevertheless provide a heuristic 

(understood as a research guide or rule of thumb) for how to uncover some mechanistic 

information. 

By considering these three observations together, it can be argued that, for social 

phenomena, the extended horizontal surgicality account can improve our understanding 

of the mechanism or of the phenomenon-to-be-explained only when: 

1) constitutive mechanisms are taken to be unified wholes; 

2) there is a general agreement on the level at which constitutive entities should be located 

(in this way, it is possible to establish if the intervention I is a direct cause of at most one 

behaviour on every level lower than the level of the phenomenon-to-be-explained); 

3) it is possible to conduct a surgical intervention on the phenomenon-to-be-explained 

(otherwise, the Extended Horizontal Surgicality account can only be used as a heuristic 

to think about the mechanism and the phenomenon under study).  

There are particular cases where these requirements can be met. A case in point is the 

analysis of a firm’s behaviour as the output of a mechanism made of routines. As 

recognised by several evolutionary economists (Becker et al., 2005; Nelson & Winter, 

1982; Vromen, 2011), firms are in general conceptualised as wholes whose behaviours 
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are made possible by the operation of several routines such as business and advertising 

strategies, through procedures for hiring and firing, and policies about investment, 

research and development. Such routines are understood as multi-person phenomena 

themselves, involving the actions and interactions of different individuals, and there is a 

strong agreement in the literature about the difference between such organisational levels 

(the level of the firm’s phenomenon-to-be-explained, the routines’ level and the 

individuals’ level). Not only there is a general agreement on the level at which constitutive 

entities should be located, but routines can also be changed by means of interventions. A 

firm’s hiring routine, for instance, might be changed in order to accomplish the same task 

(hiring people) with less effort and in less time (Feldman, 2000). A change in such a 

routine could maintain the other routines unaltered (thus, would be horizontally surgical) 

and might cause simultaneously a change in the firm’s behaviour24. Intervening on an 

organisational routine to investigate its role in a firm’s phenomenon-to-be-explained, 

consequently, is feasible and might allow researchers to collect useful evidence of the 

mechanism under study.  

In numerous other circumstances, however, such requirements cannot be met, and the 

extended horizontal surgicality account can only be used to think mechanistically about 

social phenomena.  

7.7 General consideration 

There is a final observation that, I argue, is important to discuss. Although Craver’s 

original account of constitutive mechanisms was informed by real neuroscientific studies 

and was aimed at providing a practical set of norms to identify the constituents of a 

mechanism, the philosophical discussions on constitutive mechanisms have, with time, 

turned away from scientific practices, developing accounts focused on metaphysical 

questions that could hardly be applied.  

Such philosophical accounts are meant to provide a discussion concerning what 

interventions on constitutive mechanisms are. Their aim is not to discuss the main 

methodological challenges that social scientists have to solve in order to collect evidence 

of constitutive mechanisms. The use of scientific examples has been replaced by the use 

                                                           
24 As recognised by Becker et al. (2005, p. 1): “a central proposition of routine theory is that organizations 

change what they are doing and how they are doing it by changing their routines”. 
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of increasingly complex formalisations, which have little to do with how researchers 

study constitutive mechanisms nowadays.  

Attempts to improve the current accounts of constitutive mechanisms to provide a useful 

approach to scientific practitioners, consequently, face one main challenge: the distance 

between such discussions and scientific practices weakens the possibility of using these 

discussions to clarify how scientific studies on constitutive mechanisms are or should be 

conducted. This, in turn, makes difficult to overcome the third challenge guiding this 

thesis, namely how to use big data, in the social sciences, to obtain evidence of causality 

that goes beyond correlations (in this case, evidence of constitutive mechanisms). 

While the emergence of new philosophical accounts, over the last decades, has helped to 

cast light on the importance of establishing the presence of causal mechanisms, how to 

establish such a presence in the social science is still partly unexplored in the philosophy 

of the social sciences. To fill this gap, I argue, is important to develop philosophical 

accounts that dynamically interact with scientific research. In the next chapter, I shall try 

to do it by developing a new approach to trace etiological mechanisms.  

7.8 Conclusion 

In this chapter, I have investigated whether big data can be used to collect evidence of 

social constitutive mechanisms. The first part of the chapter has described and analysed 

the existing proposals to uncover constitutive relevant entities of a mechanism. To begin 

with, I have shown that Craver’s mutual manipulability account, despite having the merit 

of having paved the way for more detailed discussions on constitutive mechanisms, has 

two conceptual limitations that Craver has not managed to solve. After having described 

some of the solutions to the mutual manipulability account’s problems proposed in the 

literature, I have analysed in detail three recent proposals for constitutive relevance.  

I have observed that the first proposal, Baumgartner and Casini’s abductive theory of 

constitution, is not able to account for the problem of multiple realizations. Next, I have 

argued that the second proposal, Krickel’s causation-based account for constitutive 

relevance, is characterised by several conceptual and methodological limitations 

associated with the notion of temporal entity-involving occurrents, the phenomenon of 

multiple realizations, and the assumption that constitutive mechanisms always entail 

activities. Finally, I have described the most recent approach for constitutive relevance 
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proposed by Baumgartner, Casini and Krickel: the horizontal surgicality account. I have 

shown that this account, thanks to the observation that constitution, unlike causation, does 

not take time, can solve the problem of multiple realizations. I have nevertheless argued 

that two limitations still pose some problems to this account: on the one hand, constitutive 

entities are required to be parts of the mechanism, but there are cases where this 

requirement is hardly met; on the other hand, the account does not allow for dispositional 

constitutive mechanisms. 

By taking into account these problems, in section 7.4 I have developed an extended 

horizontal surgicality account, which does not have a parthood requirement and allows 

for dispositional constitutive mechanisms. I have then used such an account to investigate 

how to use big data to collect evidence of mechanisms. My analysis has led me to 

conclude that big data can be very helpful especially when the phenomenon-to-be-

explained is actualised, and that in some circumstances (when data on the same 

phenomenon have been collected in the past) big data can improve our studies also when 

the phenomenon-to-be-explained is dispositional.  

Next, I have observed that, in the social sciences, there are many restrictions regarding 

the feasibility and usefulness of this account. The extended horizontal surgicality account 

can help researchers to collect useful evidence only when constitutive mechanisms are 

taken to be unified wholes; there is a general agreement on the level at which constitutive 

entities should be located; and it is possible to conduct a surgical intervention on the 

phenomenon-to-be-explained. While in some cases, like for firms’ routines, such 

requirements can be met, there are numerous social mechanisms that, due to such 

restrictions, cannot be studied through the extended horizontal surgicality account.  

Finally, I have discussed a general observation: there is a distance between the existing 

discussions on constitutive relevance and the scientific practices aimed at uncovering 

causal mechanisms. Due to this distance, it is questionable if any of the existing 

constitutive relevance accounts can be used to clarify how scientific studies on 

constitutive mechanisms are or should be conducted (and, consequently, how big data 

might help to collect evidence of constitutive mechanisms). More scientifically-informed 

accounts, I have suggested, might provide more useful insights into the ways in which 

big data can be used to collect evidence of mechanisms. 
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8 Tracing etiological mechanisms: the role of 

sociomarkers 

8.1 Introduction 

Most of the phenomena studied in the social sciences evolve over time and can be 

analysed in terms of causal processes: phenomena such as economic crises, the 

emergences of civic associations, and the outbreaks of wars can be understood as the 

outcomes produced by etiological mechanisms. On this perspective, collecting evidence 

of mechanisms entails tracing the processes25 causing the phenomena-to-be-explained. 

As I observed in chapter 6, section 6.5.2, at the methodological level this approach is 

known by the name of process tracing and is associated with the idea of identifying the 

causal chain connecting the events that, ultimately, lead to the phenomenon under study. 

Process tracing has been often used and discussed by social scientists and philosophers 

of the social sciences (Beach & Pedersen, 2013; Bennett & Checkel, 2015; Ruzzene, 

2014). In political science, for instance, process tracing is in general considered an 

approach casting light on the way in which a process is triggered in an actual situation. In 

psychology, it has been associated with experimental techniques aimed at reconstructing 

the pathways from information processing approaches to individuals’ choices (Ford et al., 

1989). In anthropology and sociology, Malinowski’s study (1935) has been discussed as 

an exemplary case (Goldthorpe, 2016). Malinowski tested a hypothesised process linking 

the number of wives and wealth among Trobriand chiefs: according to such a process, the 

primary form of wealth in Trobriand society consisted of yams, and every man was 

required to offer an annual contribution of yams to the husbands of his married sisters. 

Consequently, in Trobriand society the more wives a man had, the wealthier he was26.  

In chapter 6 I have argued that process tracing can be used to trace also biological 

processes and that the use of biomarkers in causal studies, especially when aligned with 

the ‘meet-in-the-middle’ approach, can be conceptualised in these terms. By analysing 

                                                           
25 In this chapter, etiological mechanisms and processes will be used as synonyms to represent causal chains 

linking causes and effects through time and space. 
26 Although this study was the first example of process tracing proposed by Steel (2004), who argued that 

Malinowski found a chain of causation from one variable to another, it might be argued that this mechanism 

can be better conceptualised as a constitutive mechanism, rather than as an etiological mechanism. 
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some biomarkers studies, indeed, I have shown that biomarkers are used to find the 

intermediate events between exposure and disease. 

In this chapter, I shall start from the analysis of LIFEPATH to propose a novel way to 

trace social processes based on the use of markers at the social level27. As I will explain, 

the novelty resides in the way in which data are used to obtain evidence to establish the 

presence of a particular causal process. Rather than using data to represent social 

phenomena, such pieces of information can be used to identify markers to trace the 

etiological mechanisms linking the putative causes to the putative effects.  

My analysis will start by considering how social data are used at the moment in causal 

studies. In section 8.2 I shall claim that social phenomena are in general studied by means 

of indicators and proxies, and I will examine the differences between such measures. 

Next, in section 8.3 I shall argue that the use of indicators and proxies does not allow 

researchers to uncover the mechanisms responsible for statistical associations with social 

factors, and I will argue that social measures and biomarkers are used in very different 

ways. This discussion will lead me to develop a general notion of markers and, in section 

8.4, to adjust this notion to provide a notion of sociomarkers. Sections 8.5 and 8.6 will 

then provide two examples of sociomarkers. In section 8.5, I shall propose an example of 

sociomarkers that might help to understand how the social can ‘get under the skin’ 

causing biological changes. In section 8.6, I will consider how data from sociometric 

badges might be used as sociomarkers to trace social mechanisms. In section 8.7 I shall 

discuss how markers at the individual level can be used to collect evidence of mechanisms 

operating at the population level, while in section 8.8 I will argue that big data might be 

used to obtain sociomarkers. Section 8.9, finally, will conclude.    

8.2 Measuring the social 

It is evident that any causal study involving factors at the social level requires the use of 

data to measure them. How to measure social factors, however, is a matter of debate, 

especially considering that not all social factors are conceptualised in the same way.  

                                                           
27 The material discussed in sections 8.2, 8.3, 8.4, 8.5 and 8.7 has been partly published in Ghiara and Russo 

(2019). Section 8.2, 8.3, 8.4 and 8.5 were originally developed by me and then discussed with Federica 

Russo, while section 8.7 is the result of a joint work with Federica Russo. The material originally developed 

by Federica Russo and published in Ghiara and Russo (2019) is not used in this thesis. 
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Some concepts refer to certain qualitative or quantitative characteristics that things have, 

such as the average age at marriage in a specific country, the number of minors in a 

neighbourhood, and the average female pay rate. Other concepts categorise things 

according to several loosely interconnected features, as in the case of well-being, poverty 

and socio-economic position. To give an example, the gross domestic product (GDP) per 

capita has been used to represent the individual standard of living in a country. As Martha 

Nussbaum highlighted, however, GDP is not able to represent all the relevant aspects that 

should be considered when measuring such a standard. An emblematic case is the case of 

South Africa under Apartheid, which, despite having a high GDP per capita, was 

characterised by serious inequalities that threatened the welfare of a considerable group 

of citizens (Nussbaum, 2013, p. 47). 

When concepts cover specific features, the selection of the methods used to generate 

accurate and precise measures is more straightforward and such measures are generally 

direct. There is no need to develop indirect measurement procedures: as an example, in 

order to know how many women live in a neighbourhood, researchers can directly count 

them. On the other hand, when a concept is multifaceted, the choice of the measurement 

procedures is controversial and is likely to entail the sacrifice of some of its aspects. The 

GDP example illustrates this point, but another example might be the concept of socio-

economic position, which is thought to refer both to material and social resources and 

assets, and to individuals’ rank or status in a social hierarchy (Krieger, 2001). The 

measurement procedure is in general indirect and requires the selection of indicators. In 

this case, researchers have two options: they can either develop/choose various indicators 

to measure all the dimensions characterising such a concept, or they can select more 

precisely only some of the features constituting the concept and measure them, accepting 

to ignore the other dimensions characterising the concept. The selected features, then, can 

be measured by means of aggregate variables, developed by aggregating several 

indicators. 

It should be noted that this distinction between simple and multifaceted concepts does not 

correspond to the distinction between observable and unobservable things. Although 

certain simple concepts can be directly observed (like a person’s sex28), there are cases 

where observation cannot be performed with precision (as in the case of age). As for sex, 

                                                           
28 In rare situations, determining sex might be difficult because some individuals have a naturally occurring 

intersex variation and show both female and male biological characteristics. 
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any doctor is able to assign biological sex to a person by considering observable bodily 

characteristics. Age, instead, is not always easily observable. In the case of young 

individuals applying for international protection without proper birth documentation, for 

instance, physicians use measures obtained through wrist radiographs and clavicle 

computerised tomography to estimate age (Sauer et al., 2016). 

The fact that some concepts are not easily observable has a great impact on the social 

sciences, as measuring them appears challenging. Researchers tackle this problem 

through the use of proxies. Unlike indicators, proxies are not supposed to represent 

concepts. A proxy is a measure that correlates to the unobservable or unmeasurable 

concept under study sufficiently highly to be used as its predictor (Sapsford, 2006, p. 

145).  

Some examples can clarify this point: let us consider the way in which researchers study 

socio-economic position. In low-income countries, given the shortcomings of available 

data, the presence or absence of night-time lights visible from space is increasingly used 

as a proxy for the concept of socio-economic position (Chen & Nordhaus, 2011). In the 

UK, moreover, this notion is often examined through the use of the Free School Meal 

Eligibility proxy (Hobbs et al., 2007) and the council tax band (Howe et al., 2012). The 

number attached to the presence of night-time lights in a specific zone, the Free School 

Meal Eligibility and the council tax band are not supposed to represent the concept of 

socio-economic position. Rather, given the absence of available measures representing it, 

researchers use alternative data to obtain information about that concept.   

The adequateness of indicators and proxies entails, hence, different questions. As for 

direct and indirect measures used as indicators, researchers have to establish if the 

measures correctly represent the phenomena. In other words, they have to examine the 

adequateness of the relation between the concept and the numerical measurement. 

The idea that social indicators represent social phenomena has been proposed by many 

researchers. Reading discussions on social indicators, it is easy to find claims such as: 

“The purpose of indicator-building is to represent the complex reality – the 

state of a society, its social, economic and ecological connections, and their 

development – by means of an informative indicator”  (Radermacher, 2005, 

p. 163) 
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“Indicators represent—select, depict, condense, and summarize—conditions, 

processes, relationships, structures, and other phenomena” (Woodson, 2007, 

p. 135) 

“Indicators differ substantially with regard to their ability to numerically 

represent the phenomenon they are said to represent” (Gerrets, 2015, p. 155) 

In the case of a proxy, adequateness requires the correlation between the proxy and the 

phenomenon to be sufficiently high. These distinctions are illustrated in Table 7. 

 

Table 7. A recap of the terms used in the literature, where they apply 

and their purpose. 

Recently, some researchers have argued that big data may offer both reliable proxies of 

social indicators and new reliable indicators (di Bella et al., 2018). According to this view, 

big data are useful because they provide new information that can, in turn, be used to 

measure traditional indicators and proxies. The use of night-time satellite images can help 

to clarify this point: without such data, it might be very difficult to obtain reliable 

measures on people’s socio-economic condition in developing countries. Traditional 

indicators, indeed, require survey data that are often not available in such countries. In 

this way, satellite data allow to measure a proxy that is likely to be the only measure 

associated with people’s socio-economic condition in such countries. This measure, 

nevertheless, is just a new proxy that has the same characteristics of a traditional proxy 

(like the council tax band proxy in UK): the correlations between them and the direct 

measure of poverty appear to be sufficiently high and stable. In the rest of this chapter, I 
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shall investigate whether big data can be used to obtain not just indicators or proxies, but 

a new type of evidence of etiological mechanisms. 

8.3 More than correlations: learning from LIFEPATH 

When researchers conduct causal studies, in general social phenomena are analysed 

through social indicators and proxies, which are then used to establish correlations. Some 

examples of this approach can be found in the case studies discussed in chapter 5 and in 

chapter 6. When Garip and Asad (2016) studied the phenomenon of Mexico-U.S. 

migration, they used indicators and proxies measuring political, socio-economic, and 

demographic factors to find significant correlations to individuals’ likelihood to migrate.  

Similarly, in LIFEPATH researchers study the social determinants of health by measuring 

three aspects of socio-economic position (education, occupation, and income) and using 

such measures as indicators. Such indicators are then used to find statistical associations 

with biological factors. In such a way, researchers manage to accumulate a large and 

compelling body of evidence demonstrating that socio-economic factors are correlated to 

a wide range of health outcomes. Unfortunately, however, often the use of socio-

economic indicators and proxies does not help to uncover the causal mechanisms behind 

such correlations. 

The case of LIFEPATH is particularly interesting because it is possible to compare the 

way in which researchers use socio-economic indicators with the way in which 

researchers study biomarkers. As I have argued in chapter 6, biomarkers can be used to 

trace the biological mechanisms leading to the formation of diseases. Socio-economic 

indicators, nevertheless, can only be correlated to such mechanisms. Considering this 

difference, it might be questioned whether, like in the case of biological data, also social 

data can be used as ‘picking up signals’ to trace etiological mechanisms at the social level.  

8.3.1 Towards a general notion of markers 

In chapter 6, I have argued that, traditionally, epidemiology established correlations 

between population-level variables: those associated with the environment and those 

describing diseases. The identification of biomarkers, instead, allows researchers to go 

much smaller. Not only the population-level factors themselves, such as air pollution, can 

be studied at the chemical level, but also their effects are now measured at the molecular 
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level. By considering all these factors together, researchers can finally reconstruct the 

process leading to disease and establish causal links between exposure and disease.  

The analysis of markers at the biological level has led me to observe, in section 6.5.1, 

that: i) a biomarker can be any measure of a biological entity, quality or event; ii) a 

biomarker is objectively measurable; iii) a biomarker is linked to the causal process under 

study either because is directly involved in the process, or because is caused by the same 

causal factor A, is caused by another unmeasurable factor involved in the process or is a 

background condition of the causal process (as illustrated in Figure 18); iv) a biomarker 

helps researchers to develop a causal hypothesis or to provide evidence for a hypothesised 

causal process linking the cause A to the causal effect B. 

I can now try to adjust these features to develop a general notion of markers, that can be 

applied to different domains. If we consider scientific research in general, it can be said 

that it is aimed at developing causal explanations of phenomena: researchers do not only 

aim to claim that some factors are correlated, they want to establish that some factors are 

causally linked and want to explain how something can cause something else. While the 

recognition that there is a causal link can be obtained through different methods; typically, 

the ‘how’ question is answered by considering the etiological mechanism linking the 

putative causal factor to the effect. To do so, researchers have to detect something that 

can help them to identify the link.  

When the causal process appears to be particularly complex, researchers might trace it by 

means of some markers. These markers are clues, signals to detect in order to trace the 

chain linking the putative cause to the final outcome (Illari and Russo 2016). In many 

cases markers are not just measures of ‘objects out there’: they can be measures of actual 

entities, but can also be just measures of specific characteristics or events offering some 

insights into the causal process under study. In all these cases, when something is used as 

a marker, it should be possible to objectively measure it. Similarly, in order to use 

something as a marker, researchers should be able at least to hypothesise the reason for 

the correlation between the marker and the phenomenon under study: in general, such a 

correlation is due to one of the situations represented in Figure 18 of chapter 6. Markers, 

finally, are always defined by the function they have in a particular process of inquiry: 

nothing is a marker per se, and any measure of an entity, quality or event can become a 
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marker if researchers think that it can help to develop a causal hypothesis or to provide 

evidence for a hypothesised causal process. 

While biological markers are often used as signals to trace processes that happen at the 

biological level, the use of data at the social level is still based on the traditional category 

of direct measurements, indicators and proxies. My argument is that, even at the social 

level, it is possible to pick up signals of causal processes. I call these signals sociomarkers. 

8.4 Sociomarkers  

Sociomarkers are markers, signals at the social level that allow for the recognition of a 

causal process. Sociomarkers can hence be used to trace both entire processes at the social 

level, and mixed processes consisting of both social and biological factors. As I shall 

discuss, a sociomarker might be for example the measure of a specific type of emotional 

and physical abuse in childhood that helps researchers to reconstruct the causal process 

from social factors at the population-level, such as the family’s socio-economic position, 

to health outcomes. Sociomarkers, furthermore, might be the measures obtained from 

behavioural data in the workplace that allow for the reconstruction of the causal process 

from gender diversity in the workplace to the discrepancy between men and women in 

senior positions. 

Above, I have argued that the key characteristic of markers is that they are always markers 

of something. In the social sciences, this feature allows for the distinction between 

sociomarkers, indicators and proxies. When something is measured to be used as an 

indicator, it is supposed to represent the phenomenon under study. When something is 

measured to be used as a proxy, furthermore, it is sufficient to know that it is correlated 

to the phenomenon under study. On the contrary, when researchers want to use a measure 

as a sociomarker, it is not required that the sociomarker represents a phenomenon, and it 

is not sufficient to establish a correlation to the phenomenon.  

It is important to note that, to shift from the notion of social indicators and proxies to the 

concept of sociomarkers, there is no need to obtain new measures: those already used as 

indicators and proxies can indeed be used as markers. What is required is a change in the 

way in which the measures are employed. The aim, when using sociomarkers, is to pick 

up signals to reconstruct the process from the putative cause to the effect, in analogy with 

how biomarkers help to pick up signals from exposure to disease at the biological level.  
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Like biomarkers, there are five general situations in which we can use sociomarkers. Let 

us consider again Figure 18 of chapter 6. First, a sociomarker can be part of the process 

from the cause to the effect. For instance, in chapter 5 I have described the mechanism 

whereby a society characterised by a ‘migration culture’ can offer compensation to the 

members who decide to migrate, and this can cause more people to migrate. In such a 

case, a sociomarker measuring how such a migration culture is translated into behavioural 

factors might help social scientists to trace the causal process leading to the phenomenon 

of migration, as illustrated in Figure 18(a). Second, a sociomarker and the outcome under 

study might be caused by the same cause, as showed in Figure 18(b). In such a situation, 

the sociomarker is not part of the process, but it is one of the effects caused by the cause 

producing also the outcome under study. For example, let us imagine researchers want to 

understand if relational disorders in adulthood are caused by household dysfunctions in 

childhood. They might know that the putative cause (household dysfunctions in 

childhood) is likely to produce, among other things, low scores at school in childhood. 

Even if researchers do not think that low scores at school are directly involved in the 

process from household dysfunctions in childhood to relational disorders in adulthood, 

they could still use score measures to get insights into the hypothesised causal process 

(for instance, such a sociomarker could strengthen the hypothesis concerning the presence 

of household dysfunctions). Furthermore, this marker might be very helpful in the case 

described by Figure 18(c), where an event or a factor that is part of the process cannot be 

observed, but the correlation between this and another measurable event or factor allows 

for the use of such an event or factor, not directly involved in the process, as a 

sociomarker. For instance, measures of low school scores in childhood could be used as 

a sociomarker to replace another unmeasurable event playing an active role in the causal 

process. Fourth, there might be an unmeasurable factor in the process that influences 

something (a putative marker) outside the process, like in Figure 18(d). Let us consider 

the ‘hikikomori syndrome’, a form of severe social withdrawal characterised by 

adolescents and young adults who decide to live as recluses in their parents’ homes, 

without working or studying for months or years. In such a case, researchers might be 

interested in the process that, from performance anxiety, leads to the ‘hikikomori 

syndrome’. Researchers might hypothesise that bullying experiences at school could act 

as a mediating sociomarker, but might not be able to measure them. However, they could 

also hypothesise that such experiences would influence academic performance (that is not 

thought to be part of the process) and might hence use the measure of changes in academic 
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performance as a sociomarker. Fifth, the sociomarker might be the background condition, 

or the cause of the putative cause leading to the observed effect, as illustrated in Figure 

18(e).  

 

Figure 18, retrieved from chapter 6, section 6.4. X and Y represent the 

putative cause and effect, B represents the sociomarker. 

8.5 Sociomarkers in health mechanisms  

8.5.1 Exploring socio-biological processes  

It is a common causal claim that certain diseases arise from a set of risks identified at the 

behavioural and social level, such as people’s smoking, dietary habits and social norms  

(Galea & Link, 2013). Lung cancer, for instance, is caused by smoking, but smoking is 

influenced by social networks, advertising and social norms (Christakis & Fowler, 2008). 

It is also generally accepted that the health of populations is shaped by certain ‘social 

determinants’ like social ties, poverty, and low education (Braveman & Gottlieb, 2014; 

Wilkinson et al., 2003). Despite this broad core of agreement, however, social and 

behavioural factors are seldom brought into the etiological discussion of mechanisms of 

health. 

This is partly because social factors are thought to provide merely a classification of the 

parts of the population more at risk. Their relevance is associated with categorization, not 

explanations. Furthermore, even when it is accepted that social factors play an active role 

in the development of disease, how to integrate socio-behavioural and biological variables 

to develop all-encompassing models of disease causation remains a matter of debate. For 

a long time, researchers have considered that biological and social factors are difficult to 

be integrated due to a conceptual barrier. This assumption is still evident in the linguistic 

use of terms such as “proximal” and “distal” causes, or biological and wider determinants 

of health (Kelly et al., 2014, p. 309), and in some discussions where the relevance of 

social factors is reduced to people's risky behaviours that may affect health (Kelly & 

Russo, 2017). 
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In the last few decades, many have appealed to a new integrated model of disease 

causation, where biological and social factors are considered equally relevant to the causal 

understanding of health (Kelly et al., 2014; Russo, 2009; Vineis & Kriebel, 2006). In an 

editorial accompanying the reprint of their famed article “Actual Causes of Death in the 

United States” (McGinnis & Foege, 1993) the authors themselves considered that: 

“[…] it is also important to better capture and apply evidence about the 

centrality of social circumstances to health status and outcomes” (McGinnis, 

2004, p. 1264) 

This and similar positions offered a raison d’être for those social epidemiological studies, 

like LIFEPATH, putting at the heart of their investigations how social factors might 

influence health. Nevertheless, attempts to enhance our understanding of the social 

component of health have been often downgraded by the increasing gap between the 

progress in biological research and the progress in social research. Indeed, while from the 

biological point of view the striking technological improvements have contributed to 

enhancing the mechanistic understanding of disease; at the social level the progress has 

not been as fast (Kelly et al., 2014). 

This brings us to the present, when the biological component of the mechanisms of health 

is explored at a fine-grained level, but the social component is analysed at a rather coarse-

grained level29. As I have discussed in chapter 6, socio-economic position is in general 

measured by using three descriptive social indicators: income, occupation, and 

educational level. The studies based on such indicators have provided useful information, 

and yet they suffer from substantial limitations. The main problem deals with the kind of 

knowledge that can be derived from this approach: the analysis of the socio-economic 

indicators highlights that socio-economic factors are relevant to health, however it does 

not establish why this is the case. In other words, while these measures can show that 

there are robust correlations between specific socio-economic conditions and health, they 

                                                           
29 It should be noted that I use the expression “coarse-grained” to define only the way in which the social 

dimension of health is often studied in social epidemiology. My intention is not to categorise all social 

studies as coarse-grained, neither I want to argue that this is the aspect that allows researchers to identify 

the differences between the natural and the social sciences. I am aware that there are several considerations 

to take into account when the social and the natural sciences are compared, and that they differ in many 

respects. In what follows, I only suggest one way to overcome one limitation characterising certain social 

epidemiological studies. 
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are not sufficient to uncover the mechanisms through which such socio-economic 

conditions affect health. 

8.5.2 Tracing processes through sociomarkers: the ACEs example 

My suggestion is that the limitation described above can be tackled by using 

sociomarkers. Sociomarkers can be employed to trace social processes and can help to 

find the missing links between social factors at the population-level (such as the family’s 

socio-economic position) and health factors at the individual-level (such as inflammatory 

biomarkers). The combination of sociomarkers and biomarkers, in this way, can finally 

help researchers to uncover these mixed etiological mechanisms whereby ‘the social’ 

influences health.  

More specifically, the combination of sociomarkers and biomarkers might enable 

researchers to identify all the key stages of a mixed mechanism of disease, from the social 

components triggering the mechanism, to certain key events involving social or biological 

components, to the biological factors leading to the final outcome. In such a way, 

researchers might avoid the problematic situations in which detailed reconstructions of 

the biological processes of health are linked to the social domain only through the 

correlations between some biomarkers and very coarse-grained social variables. 

Recently, researchers have begun to use the label ‘markers’ for socio-economic measures 

in a rudimentary way. For instance, measures such as birth weight, household income, 

education, maternal smoking during pregnancy, mother’s body mass index and mother’s 

age at birth, known to affect health conditions, were used to explore how the link between 

socio-economic position and health is mediated by certain social pathways (Barboza Solís 

et al., 2016; Davillas et al., 2017; Shin et al., 2018). It is exactly when such measures are 

used, I argue, that a precise conceptualisation of sociomarkers is needed. 

Let us consider an example: it is known that a low socio-economic position in early life 

is correlated to poor health and increased mortality in adulthood (Anda et al., 2006). In 

chapter 6 I have observed that, at the biological level, the effects of childhood conditions 

on health appear to be brought about by changes in the systems responsible for 

maintaining physiological stability, also known by the name of allostatic systems  

(Danese & McEwen, 2012).  
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At the social level, furthermore, an increasing number of projects on life chances and 

well-being have started focusing on the notion of ‘life course’ that was originally 

developed by some sociologists such as Cain (1964) and Elder (1976). The notion of ‘life 

course’ has been used in sociology to investigate how disadvantaged conditions in 

childhood may influence physical health in adulthood. Sociologists have often taken 

inspiration from Merton’s analysis of cumulative advantage (also known by the name of 

‘the Matthew effect’), according to which early distinction in scientific research might 

lead to further honour and opportunities (Merton, 1968). Merton’s analysis was not 

focused on health, it simply highlighted the challenges faced by individuals who did not 

have an auspicious scientific start. Many researchers of the life course, however, used the 

notion of accumulation to theorise how, in general, negative conditions might produce 

further negative outcomes. This consideration has been also incorporated in the 

‘cumulative inequality theory’, which combines elements of the cumulative advantage 

theories (Dannefer, 2003; DiPrete & Eirich, 2006), of life course theories (Elder, 1998) 

and of stress process theories (Pearlin et al., 2005). Overall, in sociology several accounts 

prioritise childhood as a pivotal life stage leading to adult health (Ferraro et al., 2016), 

and claim that early inequalities might lead to discrepancies in how people are exposed 

to factors that could compromise health. 

To detect ‘social’ signals of the process leading to health outcomes, some researchers 

have used the so-called Adverse Childhood Experiences (ACEs) (Ferraro & Shippee, 

2009). This expression describes certain stressful or traumatic events that can be 

experienced by children whilst growing up. The original ACEs study was conducted by 

the Centers for Disease Control and Prevention (CDC) in collaboration with the American 

integrated managed care consortium Kaiser Permanente (Felitti et al., 1998). In this study, 

researchers developed a list of 10 categories of childhood adverse experiences, as shown 

in Table 8: 

Adverse Childhood Experiences 

Emotional abuse  Physical neglect  

Physical abuse Emotional neglect 

Contact sexual abuse Not raised by both biological parents  
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Mother treated violently  Household member was imprisoned 

Household member was alcoholic or drug 

user  

Household member was chronically 

depressed, suicidal, mentally ill, or in a 

psychiatric hospital 

Table 8. Categories of adverse childhood experiences. 

Measures of ACEs have all the characteristics required to be used as sociomarkers.  

ACEs measures can be employed to identify some key stages connecting social factors at 

the population-level, such as the family’s socio-economic position, and biological factors 

at the individual-level (biomarkers). In such a way, they can help to establish how socio-

economic determinants exert an impact on health by means of biological mechanisms.  

More specifically, this is possible for two reasons. One the one hand, at the population-

level, ACEs appear to be more prevalent among children in low-income families: in the 

U.S., for instance, data from the National Survey of Children's Health (NSCH) showed 

that children in low- and middle-income families are more than 2 times as likely to 

experience 2 or more ACEs compared to children from high-income families (Halfon et 

al., 2017). This prevalence, hence, supports the idea that socio-economic condition during 

childhood could affect health through these adverse experiences. On the other hand, 

several studies have provided evidence of the associations between ACEs and allostatic 

load biomarkers, inflammatory biomarkers and cancer biomarkers (Barboza Solís et al., 

2015; Kelly-Irving et al., 2013; Tietjen et al.,2012). Such correlations support the idea 

that ACEs could be the link connecting ‘the social’ and ‘the biological’, as described by 

Danese and McEwen (2012):  

“adverse childhood experiences are likely to signal high levels of 

environmental threat and to trigger adaptive responses in the nervous, 

endocrine, and immune systems in children” (Danese & McEwen, 2012, p. 

31) 

ACEs, hence, offer much more information than traditional socio-economic indicators: 

rather than providing a representation of certain conditions, they help, through an 

approach very similar to Vineis and Perera’s ‘meet-in-the-middle’ approach (2007), to 

investigate the etiological mechanisms whereby social conditions can get under the skin. 
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There is a caveat that needs to be discussed. Someone may argue that, rather than being 

markers of the etiological process from socio-economic circumstances to health changes, 

ACEs identify the real ‘social’ causes of health: ACEs would not be picking up signals 

of the process starting from socio-economic conditions, they would be the real social 

factors with a causal power, as described in Figure 34. 

This ambiguity is due to the fact that there is little evidence of the causal process from 

socio-economic circumstances to ACEs: until now, it has been only demonstrated that 

children in low- and middle-income families are more likely to experience ACEs (Halfon 

et al., 2017). To solve this problem, the only solution would be to identify new 

sociomarkers in the process between socio-economic circumstances and ACEs. For 

instance, it might be hypothesised that low socio-economic circumstances lead to family 

economic pressure, that causes parents to increase their working hours and to reduce 

parental supervision on children, with the consequence that children experience physical 

and emotional neglect. In this case, measuring family economic pressure, parents’ 

working hours and children supervision might help to obtain new sociomarkers and to 

trace the process from socio-economic circumstances to ACEs. 

 

Figure 34. Someone might claim that ACEs are not, like biomarkers 

(B), signals of the process from socio-economic conditions (SEC) to 

health outcomes (HO), as shown in (a). ACEs are the causes of the 

process that, passing through biomarkers (B), could lead to health 

outcomes (HO). In a similar situation, socio-economic conditions 

(SEC) might only be correlated to ACEs, without being their cause, like 

in (b).    

It is worth noting that researchers who trace a process from A to B are in general aimed 

at developing interventions on such a process to change B. Intervening on the process 

does not entail only intervening on the cause A. Markers help researchers to detect some 

key stages of the process that, if changed, might lead to a different outcome. It follows 
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that both the primary causal factor and markers can be the target of intervention. Let us 

consider the impact of childhood conditions on health: in order to develop an intervention, 

researchers might take into account population-level and individual-level social factors, 

such as the socio-economic conditions of the family during childhood and individual 

experiences of neglect and abuse. Similarly, they might consider biological factors, such 

as the maintenance of physiological stability. All these dimensions (population, 

individual, social and biological) could be relevant for the purposes of policy 

interventions. 

8.6 Identifying sociomarkers from sociometric badges’ data  

The development of new data collection devices might provide new pieces of information 

that can be used as sociomarkers. A case in point is the development of sociometric 

badges. Sociometric badges are sensor packed devices with the size of a smartphone, able 

to generate fine-grained data for analysing patterns concerning face-to-face social 

interaction, non-verbal communication and turn-taking. Data produced by means of 

sociometric badges are called by Pentland (2008) ‘honest signals’: behavioural signals 

that humans unknowingly exchange and that might express their aim and emotional state. 

My proposal is that sociometric badges’ data share some important characteristics with 

biomarkers and can be used to identify signals or markers within specific research 

contexts. Sociometric badges appear to collect information mainly about events and 

characteristics.  Such data, indeed, can help researchers to examine characteristics such 

as speech features, physical proximity to other people, and the length of time certain 

individuals spend talking face-to-face. Moreover, they can cast light on events such as 

the use of particular body movements and gestures (Pentland, 2008, p. 102). Like in the 

case of biomarkers, hence, sociometric badges’ data provide information not only about 

entities, but also about certain characteristics and events. 

It is important to note that, as for the ACEs example, measures from sociometric badges 

can count as sociomarkers if they are used in a specific way. As already highlighted, 

nothing is a sociomarker per se. The same measures can be used as simple indicators, 

representing specific characteristics of a concept, or as proxies. For instance, a measure 

of a specific body movement can be used as an indicator of aggressive behaviours if the 

measure is thought to represent such aggressive behaviours. Similarly, the same measure 

could be used as a proxy for autism spectrum (for instance, some body movements such 



 

208 
 

as hand flapping are known to be associated with autism) if it is thought that the measure 

is highly correlated to autism. When used as sociomarkers, measures from sociometric 

badges’ data are used to detect a causal process at crucial points. As argued above, in this 

sense sociomarkers are not thought to be just correlated to the causal process, and 

researchers do not aim to represent a part of this process by using sociomarkers.  

To examine how measures from sociometric badges’ data can be used as sociomarkers, 

let us imagine a hypothetical causal study whose aim is to answer the question ‘why fewer 

women than men end up in senior positions?’. The question might be motivated by the 

observation that gender diversity in the workplace is in general correlated to the number 

of women ending up in senior positions.  

Gender diversity cannot be represented only by the number of men and women in the 

workplace. This is in general understood by social scientists as a complex concept 

involving different aspects such as demographic diversity (like the age and the marital 

status of women and men having the same position) (Riach et al., 2014) and functional 

diversity (such as differences in education, in hierarchical levels and roles, and in 

leadership styles) (Humbert & Guenther, 2017; Tost et al., 2012). Due to the multifaceted 

nature of this concept, researchers use in general aggregate variables to measure it.  

To trace the putative process from gender diversity to the number of women ending up in 

senior positions, researchers can use measures from sociometric badges’ data as 

sociomarkers. They can collect individual-level measures on aspects such as relevant 

speech features (like how many times a person interrupts another person), the time spent 

in face-to-face conversations, the voice’s tone, the physical proximity to other people. In 

order to use such measures as sociomarkers, then, researchers need to hypothesise their 

position in relation to the causal process under study.  

To give an example, researchers might hypothesise that a low number of women in the 

workplace leads men to behave differently with women than with other men, for instance 

interrupting women more often than other men. This might cause women to avoid 

expressing their opinions during business meetings, and might also lead them to network 

only with other women. Since there are fewer senior women, however, women would not 

network upwards, and men in senior positions might observe that such women do not 

have the self-confidence needed to be promoted. In this case, sociomarkers such as the 

measure of the times a person interrupts another person and the measure of the time spent 
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in face-to-face conversations would be located in the process, as in figure 18(a). Other 

sociomarkers might be outside the process (as in Figure 18(b), 18(c), 18(d)): the amount 

of time that women spend on individual work, for instance, might be influenced by the 

fact that networking with a smaller group of person requires less time, and the rest of the 

time is spent on individual work. In this case, the amount of time spent on individual work 

would be the effect of the choice to network only with women, as in Figure 18(d). 

8.7 Population and individual level 

In this chapter, I have mentioned several times the distinction between population and 

individual levels. In this section, my aim is to investigate better how such levels are 

linked, and why it is important to distinguish between them. Let us start with the level at 

which measurements are performed. 

In scientific research, it is possible to distinguish between individual-level measures, 

measuring individual characteristics, and aggregate measures, that summarise some of 

the characteristics of the individuals composing a group and that can be developed, in 

some cases, aggregating several individual-level measures (Illari & Russo, 2014, p. 43). 

An example of an aggregate measure is, for instance, a measure of socio-economic 

position obtained aggregating educational, income and occupational measures. An 

example of individual-level measure is, instead, the income of each individual in the 

sample.  

If we consider biomarkers and sociomarkers, most of the time30 they are located at the 

individual level. Biomarkers, for instance, are often identified measuring biosamples of 

real, particular patients. Similarly, ACEs are identified by examining real individuals: 

they can be experienced only by real, individual children (this is particularly relevant if 

we consider that, for each individual, adverse childhood experiences can vary in duration, 

timing, and type, and that individual characteristics can lead to very different responses 

to very similar adversities). Sociometric badges, finally, monitor specific individual 

behaviours.  

Yet, such individual-level measures are studied to say something at the population level. 

In biomarkers studies, for instance, researchers obtain biomarkers from individual-level 

                                                           
30 There are cases in which biomarkers are aggregate measures. As I have discussed in section 6.4, allostatic 

load is measured by using more than 25 biomarkers, and quite often such indicators are combined to obtain 

a single aggregate variable (Juster, McEwen, & Lupien, 2010, pp. 10–11). 
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data (bio-samples pertain to individuals); but they make an epidemiological study out of 

it. This, in the early days of molecular epidemiology created tension in the field. As 

Schulte put it, it might sound an oxymoron to do epidemiology with molecular data (1993, 

p. 10). Like Schulte, I argue that this is not the case, and I claim that, to disambiguate the 

problem, it is necessary to rethink the relation between population- and individual-level 

causal knowledge in markers studies.   

In the case of biomarkers the change of the scale of measurement, the size of the sample 

and the way in which inferences from ‘-omics’ analyses are made, allow researchers to 

use individual-level markers to make inferences about the population, in order to 

understand population-level phenomena. In analogy with the study of biomarkers, also 

sociomarkers can be used to trace social process at the individual level. Such studies, 

however, can help researchers to gain understanding of the social mechanisms that 

operate at the individual level, but within a group or population. In both cases, hence, 

researchers can collect evidence of population-level mechanisms by measuring 

individual-level markers31. 

The use of individual-level markers does not exclude the use of aggregate variables or of 

multi-level methods that use both population- and individual-level measures. In some 

cases, for instance, it could be possible to use population-level sociomarkers that describe 

the role of structural causes (this would go into the same direction as Galea and Link’s, 

according to which epidemiology is ‘all social’ (Galea & Link, 2013, p. 844)). 

8.8 From big data to markers 

The notion of sociomarkers, I suggest, is useful to shed light on how big data can be used 

in the social sciences. More specifically, this concept helps to clarify how big data can 

contribute to uncovering etiological mechanisms operating in the social realm, in parallel 

with how biological data can help to uncover etiological mechanisms operating at the 

biological level.  

                                                           
31 Although these considerations might appear in line with the approach known by the name of 

methodological individualism, it is important to consider that my proposal is that sociomarkers can be 

measured to trace etiological processes. Methodological individualists, instead, are in general interested in 

constitutive mechanisms, where the constitutive parts are claimed to be the individuals, whose actions and 

organizations can constitute macro-level phenomena. An illustrating example is the segregation mechanism 

studied by Schelling and described in section 3.2.2. 
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Let us compare biomarkers and sociomarkers: in both cases, we can establish that most 

of the data used to identify markers can be defined as big data. By considering the 

example above and in chapter 6, it is possible to say that both datasets containing data 

from ‘-omic’ technologies, and the collection of data generated through sociometric 

badges, are characterised by large volume and are in general collected through automated 

processes. To give an example, transcriptomics allows researchers to obtain information 

about fifty thousand genes transcribed into RNA molecules. Similarly, sociometric 

badges can produce datasets containing thousands of measures: in their study, for 

instance, Lepri et al. (2012) collected 15725.35 hours of bodily activity, 15894.63 of 

audio data and thousands of Bluetooth detections concerning the proximity between 

devices. Moreover, thanks to new automated forms of data collection such data can 

potentially be characterised by ‘high velocity’ (in terms of the speed with which data can 

be shared, and the frequency of incoming data that need to be processed). Indeed, when 

using novel technologies like ‘-omic’ methods and sociometric badges, researchers can 

collect huge amounts of information in very short periods of time, and the time interval 

between one collection and another can be really short. 

Claiming that big data can be used to identify markers, however, does not entail denying 

that the same data can be used properly to measure proxies or indicators. The same 

measures, in different research contexts, might be used to represent a phenomenon or to 

trace a mechanism. Furthermore, it is perfectly possible to use traditional data to obtain 

sociomarkers, like in the case of ACEs data. My argument is that the novel idea of 

sociomarkers can help to answer the question of whether big data can be used, in the 

social sciences, to obtain evidence of causality that goes beyond correlations. While this 

possibility does not emerge in a clear way when big data are used to obtain indicators and 

proxies, when researchers use big data to identify sociomarkers, they obtain evidence of 

etiological mechanisms. 

This consideration, I suggest, can also provide a useful answer to the question of what 

should be done of all available data in the social sciences. While in some cases new data 

can be used to obtain more accurate indicators and proxies, in some occasions the amount 

of data could be so vast that collecting new data might not improve the way in which 

social factors are measured and represented. New data, however, if used to identify 

markers, could help to trace new key stages of causal processes. 
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8.9 Conclusion 

This chapter has provided an answer to the question of whether big data can be used, in 

the social sciences, to obtain evidence of etiological mechanisms. At the beginning of the 

chapter, I have argued that social phenomena are in general studied by means of indicators 

and proxies. Such types of measures can help researchers to identify correlations, but in 

general cannot be used to uncover the causal mechanisms responsible for them. 

By considering the differences between biomarkers and social indicators and proxies, I 

have observed that it might be possible to use social data to obtain sociomarkers. To 

clarify what sociomarkers are and how they can be used, I have described two examples. 

First, I have argued that measures of adverse childhood experiences can be used to trace 

the causal processes that, from low socio-economic position, can lead to the development 

of diseases. Second, I have suggested that measures obtained from sociometric badges’ 

data might be used as sociomarkers to uncover causal processes operating in the 

workplaces. In both these examples, I have argued, researchers can use individual-level 

sociomarkers to make inferences about the population. Finally, I have suggested that the 

notion of sociomarkers can be particularly helpful to understand how to use big data in 

causal studies. Not only, indeed, the examples I have examined support the idea that big 

data can be used to obtain sociomarkers, but this observation might also provide an 

answer to the question on what should be done of all available data in the social sciences. 

Rather than using big data to measure new indicators and proxies and, in turn, to identify 

new correlations or to confirm the presence of correlations already studies, big data might 

be used to find some key stages of etiological mechanisms. 

 

 

 

  



 

213 
 

9 Conclusion 

The aim of this thesis was to investigate how big data are changing the ways in which 

causal studies are conducted in the social sciences. In chapter 2 I have clarified that big 

data do not provide magical solutions to tackle some of the methodological challenges 

typical of causal studies (such as confounding, Simpson’s paradox and overfitting), and 

that data quality and interpretation might still cause problems in causal studies. Such 

observations have then been used to identify three key challenges concerning the use of 

big data in the study of social phenomena: i) how to overcome the limitations of data-

driven causal studies, ii) how to understand the role of thick data in causal studies based 

on big data, iii) how to use big data, in the social sciences, to obtain evidence of causality 

that goes beyond correlations. 

9.1 Overcoming the limitations of data-driven causal studies 

I have provided a solution to the first challenge in chapter 3, where I have argued that 

most of the problems characterising data-driven studies can be tackled by complying with 

the Russo-Williamson thesis, according to which causation can be established only if it 

is possible to identify both a correlation between the cause and the effect, and a 

mechanism linking the cause and the effect. I have argued that RWT can be used in the 

social sciences, and I have defended it from criticisms.  

More specifically, I have identified four criticisms discussed in the literature: i) RWT is 

not used in the social sciences, ii) RWT does not work, iii) causal concepts do not overlap 

and iv) there are better alternatives to RWT. To answer such criticisms, I have observed 

that, in general, RWT is used successfully in the social sciences, and that it is supposed 

to reduce inferential mistakes, not to cancel all of them. I have next argued that the cases 

where causal concepts do not overlap are rare and can be solved by thinking 

counterfactually, and that RWT is the approach most consistent with how social scientists 

establish causal relationships. I have finally described some examples where the 

identification both of a correlation and of a mechanism between the cause and the effect 

might help to uncover data-driven problems such as Simpson’s paradox and low-quality 

data. 

9.2 Thick data   
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I have explored the use of thick data in chapter 4, starting from some of the observations 

discussed in the mixed methods research literature. The parallel between MMR and thick 

data discussions is justified by a couple of observations: both MMR and thick data 

researchers aim to cast light on the role and importance of qualitative data, in addition 

there are different cases where the qualitative/quantitative distinction and the thick 

data/big data distinction overlap. Starting from such a parallel, I have claimed that, as for 

qualitative data in MMR, thick data in new big data studies can help scientists to collect 

evidence to establish causal claims. Indeed, while big data are generally studied to 

identify correlations between variables, thick data can be analysed to collect evidence of 

mechanisms. The combination of big and thick data, hence, can be used to meet the 

requirements of RWT. 

Furthermore, I have proposed that thick data, like qualitative data in MMR, can also be 

used to obtain a more comprehensive image of causal phenomena. On the one hand, thick 

data might allow researchers to mix different ontological categories such as the categories 

of singular and general causation. While in chapter 4 this observation has been supported 

by analysing Wood’s study (2003) on the reasons why peasants in El Salvador decided to 

join rebel movements, the detailed case study analysed in chapter 5 has provided clearer 

evidence on how such ontological categories can be combined within a single study. On 

the other hand, thick data are collected by observing the world from the point of view of 

the actors. Consequently, they can be used to examine phenomena from an 

espistemological perspective that is different from the one used in general in data-driven 

studies, where the general aim is to maintain the distance from the object under study. 

9.3 Big data and evidence of mechanisms  

In the third part of the thesis, I have proposed two discussions to overcome the third 

challenge (how to use big data, in the social sciences, to obtain evidence of causality that 

goes beyond correlations). The first discussion, offered in chapter 7, deals with the notion 

of constitutive mechanisms, according to which the constitutive entities and activities of 

a mechanism are those that actualise the capacity that makes the phenomenon-to-be-

explained possible. Current research on constitutive mechanisms is mostly philosophical, 

and is focused on metaphysical questions that are investigated through formal 

discussions. I have examined such discussions and I have developed a new account 

starting from the existing ones with the aim to tackle some methodological challenges 
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that social scientists have to overcome when they study constitutive mechanisms. I have 

argued that, while in specific cases big data might help social scientists to use this account 

to collect evidence of constitutive mechanisms, in numerous cases this account is not 

feasible. The limitations of this and of any similar account, I have observed, are partly 

associated with the nature of social mechanisms. In several cases, indeed, social 

mechanisms are not taken to be unified wholes, but composite systems whose constituents 

are defined analytically and whose organisational levels are not clearly separated. 

Applying this account, furthermore, is made more difficult by the fact that it should be 

possible to intervene (through horizontally surgical interventions) on the mechanism and 

its constitutive entities. Such interventions, in the case of social mechanisms, are often 

unfeasible. Finally, I have observed that any attempt to improve the current accounts of 

constitutive mechanisms to provide a useful approach to scientists faces one main 

challenge: due to the distance between such discussions and scientific practices, it is 

difficult to clarify how social scientists collect, or should collect, evidence of constitutive 

mechanisms. These observations have led me to conclude that a more scientifically-

informed discussion might provide more insights into how social scientists can obtain 

evidence of mechanisms.  

The second answer to the third question is more scientifically-informed and has been 

developed by analysing a real-life research programme, LIFEPATH, which has been 

discussed in chapter 6. The analysis of how LIFEPATH researchers use biological 

markers to trace etiological mechanisms has been used as a theoretical basis to develop 

the concept of social markers, that, according to my proposal, can be used to trace social 

processes. I have suggested that sociomarkers, like biomarkers, can help researchers to 

pick up signals of social processes or of social-to-biological processes. I have finally 

argued that the notion of sociomarkers is useful to clarify how big data can be used in the 

social sciences. In addition to being used to obtain indicators or proxies, big data can be 

used to identify markers, like in the case of the identification of sociomarkers from 

sociometric badges’ data. 

The challenges associated with causal studies based on big data are at the heart of several 

discussions both in philosophy and in the social sciences. To tackle them, it is often 

essential to work both on conceptual problems and on methodological issues associated 

with scientific practices. With my thesis, I hope to pave the way for further 

interdisciplinary discussions on the use of big and thick data to study causal phenomena.  
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