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ABSTRACT

Big Data promises new scientific discovery and economic value.
Genetic algorithms (GAs) have proven their flexibility in many
application areas and substantial research effort has been dedicated
to improving their performance through parallelisation. In contrast
with most previous efforts we reject approaches that are based on
the centralisation of data in the main memory of a single node or
that require remote access to shared/distributed memory. We focus
instead on scenarios where data is partitioned across machines.

In this partitioned scenario, we explore two parallelisation mod-
els: PDMS, inspired by the traditional master-slave model, and
PDMD, based on island models; we compare their performance in
large-scale classification problems. We implement two distributed
versions of Bio-HEL, a popular large-scale single-node GA classifier,
using the Spark distributed data processing platform. In contrast to
existing GA based on MapReduce, Spark allows a more efficient im-
plementation of parallel GAs thanks to its simple, efficient iterative
processing of partitioned datasets.

We study the accuracy, efficiency and scalability of the proposed
models. Our results show that PDMS provides the same accuracy
of traditional BioHEL and exhibit good scalability up to 64 cores,
while PDMD provides substantial reduction of execution timeat a
minor loss of accuracy.
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1 INTRODUCTION

Big Data analytics is becoming increasingly important in the aca-
demic and business sectors as it helps to understand scientific phe-
nomena and supports effective decision making. Extracting knowl-
edge from such volumes of data is, however, challenging: as the size
of data produced increases rapidly, storage and processing require-
ments quickly grow beyond the capability of centralised solutions,
which become prohibitively expensive, requiring distributed infras-
tructure. This fostered the development of large-scale cloud com-
puting platforms such as those provided by Amazon and Google,
which promise affordable, reliable and scalable storage capacity and
processing power.

In addition, scalable analytics requires algorithmic techniques
that could benefit from those parallel infrastructures. Evolutionary
algorithms, and genetic algorithms (GAs) in particular, are an at-
tractive solution for big data analysis: first they are a flexible search
technique to address general optimisation tasks and have been ap-
plied successfully to problems in many different disciplines; second
their exploration of the solution space is inherently parallel, making
them good candidates for execution on parallel architectures.

GAs can find acceptable solutions in a reasonable time, however
they may need an exceedingly long time when dealing with large
or complex problems. Therefore, there has been substantial effort in
enhancing their speed, with GA parallelisation being studied exten-
sively since the 80’s leading to many successful implementations
capable of reducing the time to obtain good results.

This research work, starting from the 80s, laid down the funda-
mentals approaches to GA parallelisation, e.g. see surveys by Alba
et Al [1] and Cantu-Paz [4]; however most of these proposals focus
on time and quality improvements without considering the case of
large data volumes. The frequent assumption is that the training
dataset is readily available at each worker node, either through
replication or by making use of shared/distributed memory, which
is either impractical or inefficient for very large training datasets. A
few recent proposals address GA training in the case of distributed
datasets, but they are either based on ensemble approaches, such as
FlexGP [18] and DXCS [6], or assume frequent changes to the set of
worker nodes, typical of volunteer computing such as EC-Star [15].

In this paper, we focus instead on the case where data is parti-
tioned over multiple nodes in a cluster, i.e., that the data is physically
split into distinct parts, and all data access for fitness evaluation
are restricted inside a partition, while data movement is tightly
controlled by the system.

In terms of implementation, most distributed GA systems are
examples of specialised solutions, which are either not readily avail-
able [15], or not proven to scale to a large number of distributed
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nodes. In this paper we exploit Spark, a general-purpose large-
scale distributed processing paradigm which can process high data
volumes in parallel. With respect to MapReduce, another popular
distributed processing framework that has been used to implement
parallel GAs, Spark stands out for its more general programming
paradigm and efficient parallelisation of iterative jobs such as fit-
ness computation, thus being a good match for a parallel distributed
implementation of evolutionary algorithms.

We propose two parallel GA models which target partitioned data
processing: Partitioned-Data Master-slave (PDMS) and Partitioned-
Data Multiple-deme (PDMD) models, based the traditional Master-
slave and Multiple-deme models. In order to test our design, we
have selected BioHEL, a centralised GA-classifier and parallelised it
using our partitioned-data models. We implemented the resulting
classifiers on the Apache Spark platform and compared the two
according to performance and accuracy over multiple cluster sizes.
Our tests shows that the master-slave model noticeably reduces the
training time as more nodes are used, while holding the expected
accuracy of the original BioHEL. We also show that multiple-deme
model greatly outperforms the master-slave model with respect to
speed while maintaining good accuracy as more nodes are used.

The remainder of the paper is organised as follows: Section 2
covers the background in GA parallelisation, Section 3 introduces
our GA models, PDMS and PDMD and presents the basics of the
Spark system. Section 4 covers BioHEL and its parallel implementa-
tions using PDMS and PDMD on Spark, which are then evaluated
in Section 5. Finally, Section 6 covers related works and Section 7
concludes the paper, highlighting future research directions.

2 PARALLEL GENETIC ALGORITHMS

Genetic algorithms are a search and optimisation method inspired
by natural evolution: a set of candidate solutions (or part thereof) re-
produce, evolve and compete for survival similarly to individuals in
a population. Success in competition and reproduction is modelled
as a fitness function, a measure of the solution quality. Individuals
characteristics are encoded in chromosome-like data structures
and used for both fitness computation and for the application of
genetic operators: crossover, which mixes genetic material between
individuals and mutation which randomly mutate individuals.

Parallelisation is key to the success of genetic algorithms: as
GAs are applied to problems of increasingly larger scale in business,
science and engineering domains, there is a strong drive to reduce
the execution time required to obtain good quality solutions. As a
consequence, there are several well-established strategies, together
with some more recent techniques, to parallelise GAs.

There are three main traditional approaches to GA parallelisa-
tion [1]: master-slave (or global), coarse-grained (multiple demes)
and fine grained parallelisation. Each model distributes data and
computation tasks differently across different workers.

Master-slave model. In the master-slave model all individuals
belong to the same population, which is managed by a master
node. The master node is responsible for handling the selection
and genetic operators, however, it delegates to the workers (slaves)
the fitness computation task, i.e. the most expensive operation of
the GA. In particular, the master distributes each individual to a
worker for the evaluation of the fitness function, thus parallelising
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its computation: the slaves determine the fitness for the assigned
individuals on the training instances. Results are sent back to the
master node, and used to select individuals to pass to the next
generation. This approach leads to solutions of the same quality of
the sequential approach as the fitness evaluation is equivalent to
the sequential case and the selection and crossover operate across
all individuals in the (panmictic) population.

Multiple-deme model. The multiple-deme model, also known as
coarse-grained or island-model, takes GA parallelism a step further:
similarly to the master-slave model, individuals are assigned to
different nodes for fitness computation, but in addition, all evolu-
tionary steps (selection, crossover, and mutation) are also performed
among individuals assigned to the same node, i.e. within the same
sub-population (island). Since the (sub-)population is a subset of
the global population, this parallel GA approach converges faster
then a serial GA. To promote evolution, individuals are migrated
among islands according to a pre-defined policy. Since most of the
computation is parallel, multiple-deme models have less synchro-
nisation overhead, resulting in increased performance; however,
since evolution is not panmictic the quality of the final solution
could differ from sequential GAs.

Other parallelisation models. In the fine-grained model the pop-
ulation is distributed over a large topological mesh where each node
hosts one or a few individuals. While fine-grained approaches have
been successfully implemented on massively parallel hardware us-
ing e.g., MPI or GPGPU techniques, it is challenging to adapt these
techniques to a large-data scenario, given the high degree of com-
munication required between the different nodes. As a consequence
we do not consider such models here and we leave the exploration
of such techniques as a possible venue for future work.

3 PARTITIONED-DATA PARALLEL GA
MODELS

Parallel GAs were firstly introduced in the 80s-90s with a focus on
exploiting hardware parallelism to improve runtime performance,
before very large datasets became common. Parallelism helps in
achieving the performance necessary to process large datasets,
however, there has been little focus on the performance challenges
in accessing large data, with some notable exceptions, e.g., [12]. In
this section we first discuss the impact of large data on these models,
then we present two simple adaptations to large data scenarios,
finally, we introduce Spark, a large scale processing framework that
we used in the implementation.

The master-slave and multiple-deme models can achieve sub-
stantial speedups with respect to a sequential GA, however, they
were designed under the assumption of relatively small datasets. In
particular, in both models, each node would require access to the
complete dataset to perform fitness evaluations. This can be either
implemented by remote data access techniques such as distributed
shared memory (DSM) [14] or replication of the training dataset
on all nodes [11]. Unfortunately, in the case of very large datasets,
the first approach would result in substantial overhead, given that
each processor would need to repeatedly access all instances, and
the second approach is unfeasible as one machine cannot store the
complete dataset.
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Our proposed approach for GA parallelisation stems from the
following principles: (i) data must be kept in memory for fast access
required by GA iterative processing; (ii) data must be distributed, to
scale memory storage and access bandwidth, in addition to harness
distributed processing power, (iii) processors should be restricted
to local data access during GA iterations, and (iv) remote access
should be tightly controlled to reduce network contention.

The key strategy for large-scale GA parallelisation is to partition
the training dataset in the main memory of the distributed nodes,
and structure the computation and data access according to this
partitioning. This will result intwo parallelism schemes:

PDMS. The Partitioned-Data Master-Slave model is a typical master-
slave model where the master handles the core GA algorithm and
the slaves are responsible to compute the fitness for the population’s
individuals. In contrast to the typical master-slave model, where
the master sends different subsets of the population individuals to
different workers, in PDMS the master node sends a copy of the
complete population to all the slaves and then each slave computes
a partial fitness for the individuals on the local data partition. Then,
slaves send their results to the master which, in turn, aggregates all
partial fitness values and use them in the following GA algorithm
steps. As the master will be sending the population and collecting
the fitness values in every iteration, communication overhead can
be a drawback for this model.

It is worth mentioning that in this scenario it must be possible
to compute the global fitness by efficiently combining the partial
fitness computed on the different partitions, i.e. the fitness function
is required to be associative and commutative. In this way by co-
locating the computation of the partial fitness with the data in a
partition, and later combining the results to compute the global
fitness, PDMS would require less communication overhead than
providing remote access to the full dataset by each processor to
directly compute the global fitness.

PDMD. In the Partitioned-Data Multiple-Deme Model, each node
runs the complete GA on the local data partition, i.e. each sub-
population is initialised, evaluated and evolved only with respect
to the local data of that node. Occasionally, nodes exchange their
best individuals with randomly selected nodes to allow interaction
among individuals in different populations. Finally, a solution is
selected after an individual is globally nominated as the best in-
dividual. It is worth to mention that in such implementation as
individuals are not evaluated over the complete dataset, their fit-
ness values may not reflect their global quality. We will return to
this aspect when discussing the implementation (§ 4) and in the
evaluation where we examine PDMD solution quality (§ 5.2).

3.1 Spark

To support the implementation of PDMS and PDMD model in large-
scale scenarios, we build on top of Spark [20], a popular cluster com-
puting framework. With respect to MapReduce [8], Spark is a better
fit for in-memory iterative computations like those required for GA
training. MapReduce has been designed to support massively paral-
lel computations on disk-based datasets which could be efficiently
computed with a single pass over the input (e.g. web indexing).
Iterative jobs can be implemented as a pipeline of MapReduce jobs
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which are repeated until convergence, but that would require trans-
ferring input/intermediate results from and to an external storage
layer (typically a distributed filesystem such as GFS/HDES) at ev-
ery iteration. As GAs typically require a high number of iterations
to converge this would result in substantial overhead due to disk
access latency and throughput.

Spark can provide faster iteration on datasets that fit in the mem-
ory of distributed machines. Resilient Distributed Datasets (RDD)
are indeed Spark’s core abstraction: immutable, distributed, collec-
tion of objects. RDDs can be created from stored datasets or from
other RDDs by applying a rich set of functional transformations
such as map, aggregate, or join. RDDs can then be created to rep-
resent input datasets, and intermediate results at different iteration
steps can be represented by different RDDs. Developers can control
the persistence of RDDs e.g., by caching them in memory thus
allowing fast computation of RDDs in the next iteration.

Internally each RDD is partitioned and RDD transformations are
designed for efficient parallel computation across partitions: e.g.
filter(pred) can be executed in parallel in each partition to filter
RDD elements, and aggregate(start, seqOp, combOp) aggregates
elements in each partition first using a seqOp function (starting
from start) and then aggregates partial results from each partition
using function combOp.

Spark programs are executed in a distributed fashion by a driver
and a set of executor processes. The driver executes the serial part
of the code and distributes RDD operations tasks to the executors.
Partitions of cached RDDs are stored in the executors’ memory.

Finally Spark keeps track of RDD lineages: a fault during the
computation of an RDD operation would allow to recompute the
content of RDD in case of the failure of an executor. Spark allows to
checkpoint RDDs to disk to shorten the amount of recomputation
necessary to recover from a fault.

4 IMPLEMENTATION

Like the original master-slave and multiple-deme parallelisation
models, the principles of PDMS and PDMD can be applied to any
GA algorithm, however the resulting benefits would depend on
their reification in a specific parallel GA. To test both accuracy and
runtime performance of the data-partitioned approach, we selected
BioHEL, a single-node classifier for large datasets, and we turned it
into a distributed GA according to the PDMS and PDMD models. In
this section we first introduce BioHEL and explain its main work-
flow, then we show its adaptation according to the two proposed
models and their implementation using Spark’s primitives.

BioHEL. BioHEL (Bioinformatics-oriented Hierarchical Evolution-
ary Learning) [2] is a classifier designed to handle large and complex
data classification tasks such as protein structure prediction. Algo-
rithm 1 shows its general workflow: BioHEL adopts an iterative rule
learning algorithm (IRL) approach [7], which creates a classifier by
iteratively learning one rule at a time (lines 1-10) and adding it to
a rule list (line 8). Each rule is evolved through a generational GA
(findRules lines 11-20) evolved from a sample of the training set
(line 12). Several learning attempts are repeated with different seeds
(lines 4-5) and only the best candidate rule is selected (bestRule,
lines 21-27). The selected rule is then penalised to induce niche for-
mation in the search space. A common way to penalize the obtained
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Figure 1: Partitioned-Data GA Models.

rules is to delete the training examples that have been covered by
the selected rules (line 25). The iterative search for new rules stops
when it is no longer possible to find any rule where the associated
class is the majority class of the matched examples (lines 23-24).

BioHEL PDMS Implementation. The main goal of the PDMS
model is to speed-up the most costly step that is the fitness compu-
tation for the population’s individuals. All the evolutionary work
is handled by the Spark driver which sends the individuals across
the executors to compute the fitness. Each executor computes a
partial fitness based on the individuals in the local partition, while
the master node perform the aggregation.

The PDMS BioHEL implementation follows the main structure of
BioHEL, but with specialised findRulesPDMS and bestRulePDMS
functions. The training set is stored as an RDD (tSet, underlined, in
Algorithm 2) with instances equally partitioned across executors. In
findRulesPDMS (lines 1-10) a sample primitive is used to derive a
sample RDD from tSet, then collect is used to retrieve the sample
from the executors and make it available to the driver (line 2).
The fitness computation is then parallelised using the aggregate
function (lines 3,8): a copy of the population is transferred to each
executor and used in the partialFitness function to compute the
fitness of the population on the local tSet partition. In BioHEL the
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BioHEL (tSet):

ruleList = 0; stop = false;

while stop is false do

for repetition=1 to numRepetitions do
L candidates += findRules(tSet);

(bestRule, tSet) = bestRule(candidates, tSet);
if bestRule not null then
L ruleList += bestRule; candidates = 0;

B else stop = true;
return ruleList;
findRules(tSet):
pop = tSet.sample(N);
pop-fitness = doFitness(pop,tSet);
for iter = 1 to numlter do
offsp = pop.selection();
offsp.crossover();
offsp.mutation();
offsp.fitness = doFitness(offsp,tSet);
pop.replacement(offsp);
return pop.best();
bestRule(candidates,tSet):
bestRule = candidates.bestFitness();
matched = tSet.matchedBy(bestRule);
if bestRule.class = matched.majorityClass() then
tSet = tSet.removeMatched(bestRule);
L return (bestRule, tSet);

| else return (null, tSet);

Algorithm 1: BioHEL general workflow.

findRulesPDMS(tSet):
pop = tSet.sample(...).collect();
pop-fitness = tSet.aggregate (zeroes, partialFitness(pop),
mergeFitness);
for iter = 1 to numlIter do
offsp = pop.selection();
offsp.crossover();
offsp.mutation();
offsp.fitness=tSet.aggregate (zeroes,
partialFitness(offsp), mergeFitness);
pop.replacement(offsp);
return pop.best();
bestRulePDMS (candidates,tSet):
bestRule = candidates.bestFitness();
matchedCl = tSet.filter (_.matches(bestRule))
.map(_.class).countByValue();
if bestRule.class = majorityClass(matchedCl) then
tSet = tSet.filter (!_.matches(bestRule));
L return (bestRule, tSet);

| else return (null, tSet);
Algorithm 2: PDMS BioHEL.
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1 findRulesPDMD(tSet):
2 pop = 0; mig = 0;

3 for migration=1 to numMigrations do

4 pop = tSet.zipPartitions(pop, mig)(

5 (tSetPart, popPart, migPart)=

6 if popPart = 0 then

7 L popPart = tSetPart.sample(n);

8 popPart.replacement(migPart);

9 popPart.fitness=doFitness(popPart, tSetPart);
10 for iter = 1 to numiter/numMig do

11 offsp = popPart.selection();

12 offsp.crossover();

13 offsp.mutation();

14 offsp.fitness=doFitness(offsp,popPart);
15 popPart.replacement(offsp);

16 return popPart;
17 )
18 mig =pop.mapPartitions(best(n/2))

.repartition();

19 return pop.mapPartitions(best(2)).collect();

20 bestRulePDMD(candidates,tSet):

21 candidates.fitness=tSet.aggregate (zeroes,
partialFitness(candidates), mergeFitness);

22 bestRule = candidates.bestFitness();

23 matchedCl = tSet.filter (_.matches(bestRule))
.map(_.class).countByValue();

24 if bestRule.class = majorityClass(matchedCl) then
25 tSet = tSet.filter ( !_.matches(bestRule));

L return (bestRule, tSet);

27 else return (null, tSet);
Algorithm 3: PDMD BioHEL.

26

data-dependent part of the fitness function consists in computing
the confusion matrix of the rule to be evaluated, thus partialFitness
computes four integers for each rule: true-positives, false-positives,
true-negatives and false-negatives. Then a mergeFitness function
is used to aggregate the counters of each rule from each partition,
thus obtaining the total fitness.

bestRulePDMS (lines 11-17) is then used to select the best rule
among repetitions (line 12); and the stopping condition is evaluated
by comparing the class of the rule and the most frequent (majority-
Class line 14) of the classes of the matched instances (matchedCl,
computed using countByValue, map and filter, line 13). If the rule
is accepted a new tSet RDD is created by removing the instances
not matched by the selected rule (line 15).
BioHEL PDMD Implementation. In the multiple-deme model,
each island is an executor. In addition to the training instances
tSet, also the population pop and the incoming migrants mig are
represented by RDDs, partitioned across executors. The driver in-
structs each executor to evolve each sub-population in parallel
by invoking the zipPartitions function (line 4 in Algorithm 3).
zipPartitions allows to combine partitions of several RDDs that
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Parameter Value
crossover prob. Rule sets per ensemble 0.6
Selection algorithm tournament
Tournament size 4
Population size 500
Individual-wise mutation prob. 0.6
Default class policy MAJOR
Iterations 50
Expected value of #expressed att. in init. 15
Repetitions of rule learning process 2
Prob. generalize 0.1
Prob. specialise 0.1

Table 1: General Parameters of BioHEL.

are colocated on the same executor by providing a user-provided
function. This (anonymous) function (lines 5-16) first initialises the
population in the local partition (popPart) by taking a sample of size
n = N/numPartitions from the local training set (tSetPart, line 7),
then repeats the main evolutionary loop until migration. Finally
the population in the local partition popPart is returned (line 16)
becoming a partition of pop referenced by the driver (line 4). The
driver randomly redistributes the best half of the population in each
partition as migrants (line 18) which will be merged with the local
population at the next migration (line 8). After numMigrations the
best two individuals from each partition are collected by the driver
as candidate rules (line 19). Candidate rules for every repetition are
then evaluated globally (bestRulePDMD, line 22), the best is selected
and used for termination detection and filtering as before.

5 EVALUATION

In our experiments, we aim to investigate the influence of increasing
the cluster size on the efficiency of both PDMS and PDMD models
in terms of accuracy and runtime performance.

Next, we report our experimental settings, we discuss the results
for both PDMS and PDMD scalability, then we report the effect of
migration on PDMD accuracy and performance.

5.1 Experimental Setting

In order to train and test the PDMS and PDMD models, we used the
HEPMASS dataset (10M instances, 28 attributes, 2 classes) obtained
from https://archive.ics.uci.edu/ml/datasets.html, and KDD-cup99
(full version with 4.9M instances, 42 attributes, 23 classes) obtained
from https://www.openml.org/d/1110. For the BioHEL configura-
tion, we set the algorithm parameters using the same configuration
provided in [3], summarised in Table 1.

We run the experiments on a cluster with 17 servers, each with 2x
Intel Xeon E5520 CPUs running at 2.27GHz. Each server has 8 cores
and 12GB RAM. In order to test the scalability of the two models, we
ran configurations with different numbers of executors with data
equally partitioned between them (1 partition per executor), thus
resulting in an increasing parallelism level. We report the results for
both models using a cluster of 8, 16, 32, 64, and 96 executors, which
have been selected according to both memory limitations and the
number of processing units available. All results are averaged over
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Data | Model | P | R Accuracy | Time
8 | 685 | 81.63 £0.1 | 279572 +£993
16 | 69 £4 | 81.62 £0.1 | 140285 +989
Hep. 32 | 72 +5 | 81.44 +0.2 70142 +494
64 | 71 5 | 81.49 £0.1 32176 +£530
96 | 72 +5 | 81.40 £0.2 | 26553 +243
PDMS 8| 29+2 | 99.74 £0.0 38522 +£700
16 | 27 £2 | 99.70 £0.0 16677 £500
KDD 32 | 27 +3 | 99.70 £0.0 11494 +273
64 | 26 £3 | 99.67 £0.1 6076 +130
96 | 26 £3 | 99.67 £0.1 5625 + 70
8 | 45+1 | 80.13 £0.0 15577 £494
16 | 40 £2 | 79.92 +£0.2 4403 +212
Hep. 32 | 40 £2 | 79.75 +£0.2 2528 +144
64 | 39 +3 | 78.87 £0.3 1094 + 94
96 | 38 +3 | 78.63 £0.2 788 £ 60
PDMD 8 | 25+4 | 99.69 £0.0 4558 +500
16 | 21 £3 | 99.67 £0.2 1278 + 50
KDD 32 | 206 | 99.59 £0.0 783 £ 39
64 | 19+3 | 99.49 +0.1 310 £ 19
96 | 13 +5 | 93.26 £1.0 226 + 13

Table 2: PDMS and PDMD Scalability. P is number of parti-
tions, R is number of rules.

7 runs using 10-fold cross validation. We report average and 95%
confidence intervals.

5.2 Scalability

PDMS. Table 2 shows PDMS results as the parallelism level p is
increased. As expected, PDMS maintains a constant accuracy 81%
for Hepmass and 99.7% for KDD-cup which is in line with cen-
tralised BioHEL. This is due to the fact that, in PDMS, increasing
the number of partitions does not impact the accuracy of the fitness
computation, thus leading to the same solution quality. Figure 2
shows the speedup with respect to the execution time with 8 parti-
tions, i.e. Tg/Tp. PDMS shows a good scalability in general where
the processing time decreases as the cluster size increase. For Hep-
mass scalability is linear up to 64 cores, and sublinear at 96 cores
while for the smaller KDD-Cup it is sublinear starting from 32 cores.
The maximum speedup is 11X for 12x cores for Hepmass and 7x
for 12X cores for KDD-Cup. This drop in scalability is due to thread
contention and synchronisation overhead between the driver and
the executors to collect the fitness results.

PDMD. PDMD maintains a relatively good accuracy compared to
PDMS. For Hepmass, accuracy decrease of 1% up to 32 partitions,
and then settles at around —2.5% at 64 and 96 partitions. The re-
duction in accuracy is due to the fact that the fitness is computed
locally in each partition, thus leading to the discovery of fewer
rules and of potential lower quality. For KDD-Cup the accuracy
is close to the significance threshold up to 64 partitions but then
drops of 6.5% at 96. This increased drop is likely due to the nature of
the dataset, which has fewer instances, higher dimensionality and
higher number of classes. As seen in Figure 2, PDMD shows good
scalability up to 96 cores for both datasets, with a 20X speedup
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Figure 3: Impact of migration on PDMD accuracy.

for 12x cores. This super-linear scalability is due to two factors:
the reduction in the fitness computation time and the reduction in
synchronisation overhead. The fitness computation time decreases
quadratically: the size of both the local population and the local
training dataset decrease linearly with an increase in p, an effect
that is dominant at small p resulting in a quadratic time reduction
from 8 to 16 cores; as p increases however other linear factors start
to dominate, such as the filtering of the training set characteristic of
IRL which improves only linearly with the number of cores. Finally,
PDMD is also less affected by synchronisation overhead as islands
do not need to synchronise at every fitness evaluation, but only at
migration intervals.
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Dataset | P mig-8 mig-2 no-mig
16 | 80.30 £0.2 | 5851 £700 | 79.92 £0.2 | 4403 £420 | 78.81 £0.2 | 2792 +450
Hepmass 32 | 79.88 £0.2 | 3454 £260 | 79.75 £0.2 | 2528 +144 | 78.98 £0.2 | 1720 +250
64 | 78.77 £0.3 | 1453 £220 | 78.87 £0.3 | 1094 = 94 | 77.23 £0.5 777 = 70
96 | 78.42 £0.2 | 1174 £200 | 78.67 £0.2 788 £ 60 | 76.70 £0.5 603 = 30
16 | 99.70 £0.0 | 2033 170 | 99.67 £0.2 | 1278 £100 | 99.53 +£0.2 554 120
KDD 32 ] 99.59 £0.2 | 1126 £150 | 99.59 £0.0 783 £ 70 | 96.50 £0.8 499 = 69
64 | 99.49+0.2 | 512+ 70 | 99.49 +0.1 | 310+ 35 | 93.53 £0.8 | 173 + 40
96 | 96.75 £0.8 313+ 14 | 93.26 1.0 226 £ 26 | 90.86 £1.0 91+ 22

Table 3: Impact of migration on PDMD accuracy and execution time.

5.3 Migration

To study the influence of migration on PDMD accuracy and exe-
cution time we tested the impact of a change in the frequency of
migrations (numMigrations) while performing GA iterations. In ad-
dition to the default case, 2 migrations per 50 iterations (mig-2), we
tested with 8 migrations (mig-8) and with no migrations (no-mig).
We performed experiments for 16, 32, 64, and 96 parallelism levels
for both Hepmass and KDD-cup datasets (Table 3).

Accuracy results are shown in Figures 3a and 3b. For Hepmass
mig-2 improves accuracy of 1% for 16 and 32 partitions with respect
to no-mig, and of 2% for 64 and 96 partitions, while mig-8 does not
improve accuracy further. For KDD-Cup there are no differences
at 16 partitions, but at 32 and 64 partitions mig-2 is able to keep
the accuracy close to the maximum, improving accuracy by 4 — 6%
effectively negating the accuracy loss due to increased partitioning;
finally at 96 partitions mig-2 is no longer enough and mig-8 starts
providing benefits improving accuracy of 6% over no-mig.

Migration has a significant impact on runtime performance due
to synchronisation effects: mig-8 total execution time is 33 — 65%
higher than the default case, while no-mig, results in 23 -60% lower
execution time.

6 RELATED WORK

In this section, we review proposals for parallel genetic-based
machine learning (GBML) and in particular recent proposal that
approach parallel GMBL from the perspective of parallel data-
processing frameworks such as MapReduce and Spark.

EC-Star is a parallel computing framework which uses distributed
Genetic Programming (GP) model upon commercial volunteer re-
sources [15]. The model consists of Evolution Coordinators, Evolu-
tionary Engines, and Fitness Case Servers. Volunteer evolutionary
engines can independently enter or leave the framework at any time,
under the supervision of coordinators. Engines do not communicate
with each other but receive random data packages from fitness case
servers for fitness evaluation. Individuals are evolved locally and
exchanged with the coordinator for further mixing with individuals
evolved by other engines. EC-Star is designed for a totally asynchro-
nous scenario, where engines can join or depart from the network
in an unpredictable way and is thus difficult to achieve optimal data
partitioning across engines, which avoid multiple evaluations of a
candidate solutions over a data partition.

DXCS as an instance of distributed XCS data mining system [6].
XCS is a genetic based machine learning algorithm that applies

reinforcement learning (RL) techniques for rule learning. The DXCS
system consists of a number of clients and a single server. Each
client runs a complete XCS that is trained independently on its local
database. Then clients forward their XCS models with misclassified
and untrained instances to the server. The server holds copies of
all clients’ models and applies a knowledge probing approach [13]
to combine the local models. The server combines misclassified
and untrained instances and uses them as inputs for all copies of
XCS local models available at the server, and then the server trains
an XCS to learn the mapping between the output of these local
models and the target class. The paper reports experiments with
two clients and a server, which shows accuracy that is competitive
with a centralised XCS. DXCS uses a fused model approach where
several ensemble models are combined into a global model, however,
such approach tends to generate models which are more complex
to understand than those produced from a direct approach.

Model fusion is also used in Flex-GP, a large-scale genetic pro-
gramming cloud computing system [18]. It uses EC2 Amazon cloud
service as its infrastructure based on an island model implemented
on top of ECJ, an EC system written in Java. The experiments are
set up to keep a fixed number of individuals per island, thus in-
creasing the global population linearly as islands increase. The goal
is to obtain a better accuracy by increasing the use of computation
resources obtaining a 40% increase in accuracy for an increase com-
putation cost of 256x and a 3x increase in latency. The system has
been tested up to 350 nodes has been later redesigned to improve
scalability [9].

Parallelised GA using MapReduce/Spark. While the above sys-
tems are examples of custom parallel GA implementations other
recent parallel GA implementations are built on top of large-scale
data processing frameworks. MR-GEP [10] is a scalable parallel
evolutionary algorithm model based on MapReduce. Authors pro-
pose a hybrid model which consists of two layers. The upper layer
uses a coarse-grained computational model, while the lower layer
uses fine-grained and master-slave model. The population is di-
vided into a number of sub-population equivalent to the number
of processors "islands". Each node computes the fitness within a
map function. Then the processor applies the genetic operations
on its sub-population within a reduce function. The processors use
a global shared memory to share intermediate results (population).
MR-GEP proved to improve the speed up to 16 nodes.

Verma has addressed the challenge of using the MapReduce
model to scale simple and compact genetic algorithms [19]. The
algorithms’ fitness process is computed using map function and
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then the selection of best individuals is done using tournament
selection within a reduce function. At the end of every step, the
population’s individuals are stored on HDFS and two disk accesses
are needed for each iteration, impacting performance.

MRPGA extends the MapReduce model with a hierarchical reduc-
tion phase [5]. The proposed work uses MapReduce as a distributed
parallelised model to parallelise the GA algorithm. Each worker
within the system sub-evaluates a set of individuals and applies
the GA operations. Each individual represents a complete solution.
The system uses three MapReduce phases: i) a local map within
the worker is used to partially-evaluate individuals locally; 2) a
local reduce select the local optimum individual for this worker;
and 3) a global reduce selects the best individuals from all work-
ers. The complete process is repeated until the solution meets the
requirement set by the user. The results show that such approach
can scale-up the GA up to 20 workers after which the running time
settle and adding more workers doesn’t speedup the system.

Spark-based solutions benefits from utilising the memory of the
cluster to speed up iterative computations. Spark is used in [16] to
parallelise a GA for Pairwise Test Suite Generation. The parallelisa-
tion process is applied in two-phases: fitness evaluation and genetic
operations. The system mainly highlights the advantage of using
RDD to partition and apply the parallel spark operations on the
partitioned data. The followed procedure uses a map and collect op-
erations for each phase. The model is an example of parallel control
model where individuals are partitioned and the fitness and genetic
operations are applied in parallel on these partitions. However, in
this case the computation of the fitness function does not depend
on a large training set and thus this strategy is not appropriate for
our target scenario.

GenRBFN [17] is a Spark implementation of an Evolutionary
Computation algorithm to develop Radial Basis Function Networks
(RBEN). The goal of the work is to find the optimal network which
minimizes classification error and complexity. The implementation
uses map and reduce operations to compute the fitness for the
individuals. In the map phase every instance is evaluated by the
model and the result is compared with the real output, return 1 if
they are similar or 0 if they are different and in the reduce steps
results are added. GenRBFN was tested with up to four partitions,
with linear speedup.

7 CONCLUSION

We presented two partitioned data models for parallel GA, PDMD
and PDMS, to address big data classification problems. We used
the two proposed models to reimplement BioHEL, a popular large-
scale single-node GA classifier, using the Spark distributed data
processing platform under the assumption of data partitioning.
Our results show that the training time reduces as parallelisation
level increase. The PDMS scales-up linearly up to 64 nodes while
overhead starts to negatively affect the training speed when the
cluster size increases to 96 nodes. The PDMD model is substantially
faster than PDMS while maintaining relatively good accuracy. In
our experiments we found that two-migrations per rule enhance
the PDMD accuracy while maintaining good time performance.
In the future research, we plan to study the enhancement of
PDMD model using different migration methods. Moreover, we
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plan to study the influence of data filtering on accuracy and time
performance and therefore we will consider implementing other
GA strategies using the same environment settings. We also plan
to investigate the applicability of data-partitioned models beyond
classification tasks, e.g., to general GAs, GP and other machine
learning techniques.
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