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—— Abstract
Transient gradual typing imposes run-time type tests that typically cause a linear slowdown. This
performance impact discourages the use of type annotations because adding types to a program
makes the program slower. A virtual machine can employ standard just-in-time optimizations to
reduce the overhead of transient checks to near zero. These optimizations can give gradually-typed
languages performance comparable to state-of-the-art dynamic languages, so programmers can add
types to their code without affecting their programs’ performance.
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1 Introduction

“It is a truth universally acknowledged, that a dynamic language in possession of a

good user base, must be in want of a type system.” ) .
with apologies to Jane Austen.

Dynamic languages are increasingly prominent in the software industry. Building on
the pioneering work of Self [20], much work in academia and industry has gone into making
them more efficient [13, 14, 66, 24, 23, 25]. Just-in-time compilers have, for example, turned
JavaScript from a naively interpreted language barely suitable for browser scripting, into a
highly efficient ecosystem, eagerly adopted by professional programmers for a wide range of
tasks [44].

A key advantage of these dynamic languages is the flexibility offered by the lack of a
static type system. From the perspective of many computer scientists, software engineers,
and computational theologists, this flexibility has the disadvantage that programs without
types are more difficult to read, to understand, and to analyze than programs with types.
Gradual Typing aims to remedy this disadvantage, adding types to dynamic languages while
maintaining their flexibility [16, 48, 50].

There is a spectrum of different approaches to gradual typing [22, 28]. At one end —
“pluggable types” as in Strongtalk [17] or “erasure semantics” as in TypeScript [8] — all types
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are erased before the execution, limiting the benefit of types to the statically typed parts
of programs, and preventing programs from depending on type checks at run time. In the
middle, “transient” or “type-tag” checks as in Reticulated Python offer first-order semantics,
checking whether an object’s type constructor or supported methods match explicit type
declarations [49, 11, 46, 60, 29]. Reticulated Python also supports an alternative “monotonic”
semantics which mutates an object to narrow its concrete type when it is passed into a more
specific type context. At the other end of the spectrum, behavioral typechecks as in Typed
Racket [59, 57], Gradualtalk [3], and Reticulated Python’s proxies, support higher-order
semantics, retaining types until run time, performing the checks eagerly, and giving detailed
information about type violations as soon as possible via blame tracking [63, 2]. Finally,
Ductile typing dynamically interprets a static type system at runtime [7]. Unfortunately,
any gradual system with run-time semantics (i.e. everything more complex than erasure)
currently imposes a significant run-time performance overhead to provide those semantics
[56, 62, 42, 6, 45, 55, 29, 30].

The performance cost of run-time checks is problematic in itself, but also creates perverse
incentives. Rather than the ideal of gradually adding types in the process of hardening a
developing program, the programmer is incentivized to leave the program untyped or even
to remove existing types in search of speed. While the Gradual Guarantee [50] requires that
removing a type annotation does not affect the result of the program, the performance profile
can be drastically shifted by the overhead of ill-placed checks. For programs with crucial
performance constraints, for new programmers, and for gradual language designers, juggling
this overhead can lead to increased complexity, suboptimal software-engineering choices, and
code that is harder to maintain, debug, and analyze.

In this paper, we focus on the centre of the gradual typing spectrum: the transient,
first-order, type-tag checks as used in Reticulated Python and similar systems. Several
studies have found that these type checks have a negative impact on programs’ performance.
Chung, Li, Nardelli and Vitek, for example, found that “The transient approach checks types
at uses, so the act of adding types to a program introduces more casts and may slow the
program down (even in fully typed code).” and say “ "transient semantics. . .is a worst case
scenario. . ., there is a cast at almost every call" [22]. Greenman and Felleisen find that
the slowdown is predictable, as transient checking “imposes a run-time checking overhead
that is directly proportional to the number of [type annotations] in the program™” [28], and
Greenman and Migeed found a “clear trend that adding type annotations adds performance
overhead. The increase is typically linear.” [29)].

In contrast, we demonstrate that transient type checks can be “almost free”. In our
demonstration, we insert gradual checks naively for each gradual type annotation. Whenever
an annotated method is called or returns, or an annotated variable is accessed, we check
types dynamically, and terminate the program with a type error if the check fails. Despite
this simplistic approach, a just-in-time compiler can eliminate redundant checks—removing
almost all of the checking overhead—resulting in a performance profile aligned with untyped
code.

We evaluate our approach by adding transient type checks to Moth, an implementation
of the Grace programming language built on top of Truffle and the Graal just-in-time
compiler [67, 66]. Inspired by Richards et al. [45] and Bauman et al. [6], our approach
conflates types with information about the dynamic object structure (maps [20] or object
shapes [65]), which allows the just-in-time compiler to reduce redundancy between checking
structure and checking types; consequently, most of the overhead that results from type
checking is eliminated.
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The contributions of this paper are:

demonstrating that VM optimizations enable transient gradual type checks with low
performance cost
an implementation approach that requires only small changes to existing abstract-syntax-
tree interpreters
an evaluation based on classic benchmarks and benchmarks from the literature on gradual

typing

2 Gradual Types in Grace

This section introduces Grace, and motivates supporting transient gradual typing in the
language.

2.1 The Grace Programming Language

Grace is an object-oriented, imperative, educational programming language, with a focus
on introductory programming courses, but is also intended for more advanced study and
research [9, 19]. While Grace’s syntax draws from the so-called “curly bracket” tradition of C,
Java, and JavaScript, the structure of the language is in many ways closer to Smalltalk: all
computation is performed via dynamically dispatched “method requests” where the object
receiving the request decides which code to run; returns within lambdas are “non-local”,
returning to the method activation in which the block is instantiated [27]. In other ways,
Grace is closer to JavaScript than Smalltalk: Grace objects can be created from object
literals, rather than by instantiating classes[10, 35] and objects and classes can be deeply
nested within each other [37].

Critically, Grace’s declarations and methods’ arguments and results can be annotated
with types, and those types can be checked either statically or dynamically. This means the
type system is intrinsically gradual: type annotations should not affect the semantics of a
correct program [50], and the type system includes a distinguished “Unknown” type which
matches any other type and is the implicit type for untyped program parts.

The static core of Grace’s type system is well described elsewhere [34]; here we explain
how these types can be understood dynamically, from the Grace programmer’s point of view.
Grace’s types are structural [9], that is, an object implements a type whenever it implements
all the methods required by that type, rather than requiring classes or objects to declare
types explicitly. Methods match when they have the same name and arity: argument and
return types are ignored. A type thus expresses the requests an object can respond to, for
example whether a particular accessor is available, rather than a nominal location in an
explicit inheritance hierarchy.

Grace then checks the types of values at run time:

the values of arguments are checked after a method is requested, but before the body of

the method is executed;

the value returned by a method is checked after its body is executed; and

the values of variables are checked whenever written or read by user code.!

In the spectrum of gradual typing, these semantics are closest to the transient typechecks of
Reticulated Python [60, 29]. Reticulated Python inserts transient checks only when a value

1 Qur rational for checking reads in addition to writes is described in Section 6.2.
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flows from untyped to typed code, while Grace inserts transient checks only at explicit type
annotations (but in principle checks every annotation every time).

2.2 Why Gradual Typing?

Our primary motivation for this work is to provide a flexible system to check consistency
between an execution of a program and its type annotations. A key part of the design
philosophy of Grace is that the language should not force students to annotate programs
with types until they are ready, so that teachers can choose whether to introduce types early,
late, or even not at all.

A secondary goal is to have a design that can be implemented with only a small set of
changes to facilitate integration in existing systems.

Both of these goals are shared with much of the other work on gradual type systems, but
our context leads to some different choices. First, while checking Grace’s type annotations
statically may be optional, checking them dynamically should not be: any value that flows
into a variable, argument, or result annotated with a type must conform to that type
annotation. Second, adding type annotations should not degrade a program’s performance,
or rather, programmers should not be encouraged to improve performance by removing
type annotations. And third, we allow the programmer to execute a program even when
not statically type-correct. Allowing such execution is useful to students, where they can
see concrete examples of dynamic type errors. This is possible because Grace’s static type
checking is optional, which means that an implementation cannot depend on the correctness
or mutual compatibility of a program’s type annotations.

Existing gradual type implementations do not meet these goals, particularly regarding
performance; hence the ongoing debate about whether gradual typing is alive, dead, or some
state in between [56, 62, 42, 6, 45, 29, 30].

2.3 Using Grace’s Gradual Types

We now illustrate how the gradual type checks work in practice in the context of a simple
program to record information about vehicles. Suppose the programmer starts developing
this vehicle application by defining an object intended to represent a car (Listing 1, Line 1)
and writes a method that, given the car object, prints out its registration number (Line 5).

def car = object {
var registration is public := "J03553"

}

method printRegistration(v) {
print "Registration: {v.registrationl}"

UL W N~

}

-3

Listing 1 The start of a simple Grace program for tracking vehicle information.

Next, the programmer adds a check to ensure any object passed to the printRegistra-
tion method will respond to the registration request; they define the structural type
Vehicle [58] naming just that method (Listing 2, Line 1), and annotate the printRegis-
tration method’s argument with that type (Listing 2, Line 5). The annotation ensures
that a type error will be thrown if an object, passed to the printRegistration method,
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1 type Vehicle = interface {
2 registration
3
1
5

}

method printRegistration(v: Vehicle) {
6 print "Registration: {v.registration}"

T3}

Listing 2 Adding a type annotation to a method parameter.

cannot respond to the registration message. Without the type check, the print method
would cause a run-time error when interpolating the string. However, since type errors cause
termination, the run-time error in the middle of the print implementation will now be
avoided.

In Listing 3, the programmer continues development and creates two car objects (Lines 9
and 18), that conform to an expanded Vehicle type (Line 1).

1 type Vehicle = interface {
2 registration

3 registerTo(_)
43

6 type Person = interface { name }
7 type Department = interface { code }

8

9 var personalCar : Vehicle :=

10 object {

11 var registration is public := "DLS018"

12 method registerTo(p: Person) {

13 .

14 print "{self} is now registered to {p.name}"
15 }

16

18 var governmentCar : Vehicle :=
19 object {

20 var registration is public := "FKD218"

21 method registerTo(d: Department) {

22 print "{self} is now registered to {d.code}"
23 }

24}

26 governmentCar.registerTo(

27 object {

28 var name is public := "Richard"
29 }

30 )

Listing 3 A program in development with inconsistently typed registerTo methods.

Note that each version of the registerTo method declares a different type for its parameter
(Lines 12 and 21). When the programmer executes this program, both personalCar and
governmentCar pass the type check for Vehicle. Both objects respond to registeration
and registerTo. Notably, the type of the argument for registerTo is ignored. At Line 26
the developer attempts to register the government car to an object representing a person: only
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when the method (Line 21) is invoked will the gradual type test on the argument fail (the
object passed in is not a Department because it lacks a code method).

3 Graal, Truffle, Self-Optimization and Dynamic Adaptive
Compilation

This section gives a brief introduction into just-in-time compilation, and the main techniques
we rely on for our optimizations.

3.1 Self-Optimizing Interpreters

Self-optimizing abstract-syntax-tree (AST) interpreters [68] are the foundation for the work
presented here. Together with partial evaluation [66], self-optimization enables efficient
dynamic language implementations that reach the performance of custom state-of-the-art
virtual machines (cf. Section 5.2 and [41]). The framework for building such interpreters is
called Truffle.

The key idea is that an AST rewrites itself based on a program’s run-time values to
reflect the minimal set of operations needed to execute the program correctly.

As an example, consider the addition of two numbers in a dynamic language, possibly
written simply as: a + b. Because there are no static types known, the run-time values
for a and b could potentially be anything from an integer or a double, to a string or a
collection, or any arbitrary objects that have a “+” method. In an self-optimizing interpreter,
the expression may be represented by an add node, with two child nodes that each read a
variable. The first time the add node executes, it may find that both values to be added are
integers. It will then speculate that all future executions also see integers, and thus, rewrite
itself to an add-integer node. This add-integer node will simply confirm that both values
are integers, and then directly perform the integer addition. Compared to a general add
node, we do not have to cover the cases for doubles, strings, and other kinds of objects,
which results in much simpler code that can be more easily optimized. All other cases are
supported by rewriting the add node to more general versions. This happens, for instance,
when the values are not integers. However, in practice, programs tend be monomorphic and
so such speculation is highly beneficial.

What starts out as something close to a traditional AST, in the end, incorporates
additional knowledge about execution. As a consequence of this rewriting, such trees should
be referred to more correctly as execution trees rather than ASTs.

3.2 Polymorphic Inline Caches for Optimizing Dynamic Behavior

Polymorphic inline caches (PICs) [32] are a variation on the theme of caching run-time values
to improve performance. Originally, they focused on method invocation in dynamic languages
to avoid costly method lookups by caching the looked-up method for a specific type. For
dynamic languages, PICs can be generalized to not only consider the receiver type, but
instead the object shape (cf. Section 3.3), which enables the optimizations we are aiming for.

In a language such as JavaScript, a PIC could be used for the following expression:
obj.toString(). The dot can be thought of as the lexical representation of the method
lookup. An implementation would keep a small cache for each such dot in the code. This
means, for each lexical lookup location, we have a separate cache. PICs benefit from the
relatively monomorphic behavior of programs. A specific lexical lookup is likely to see only



Roberts, Marr, Homer, Noble

one kind of object in the obj variable, so the cache will usually have the correct method for
the object ready and can avoid a costly lookup.

3.3 Object Shapes: Metadata for Dynamic Objects

Object shapes [65], which are also know as maps [20] or hidden classes, are in the most general
case a usage profile for groups of objects. In languages such as Self, JavaScript, and Grace,
we do not have classes that define the set of fields for an object. The set of fields might even
change over time. Furthermore, fields can theoretically store any possible value. However,
in practice, the behavior of programs is again relatively monomorphic and objects created
in a specific part of a program are likely to have always the same set of fields, which each
are used to store only a small number of different kinds of values. For example, an object
representing a counter would have a field count, which always stores integers, while an object
representing a person may have always a field name that stores a string, but never an integer.

Object shapes represent this run-time information in a way that allows a just-in-time
compiler to represent objects in memory similarly to C structs, and then to generate highly
efficient code. Object shapes can be conflated with additional information, for instance
to represent knowledge about types [6, 45]. PICs identify groups of objects with the same
structure based on the shape. Consequently, objects with the same shape use the same entry
in the PIC. Similar to classes, shapes tend to be monomorphic in practice for a specific
lexical location.

3.4 Just-in-Time Compilation with Graal and Truffle

The Graal compiler is a just-in-time compiler for Java. For languages built on the Truffle
framework, Graal applies partial evaluation, which enables efficient native code generation
for Truffle interpreters [66]. As such, Graal is a metacompiler. This means that instead
of compiling a specific program, in our case a Grace program, Graal compiles our Grace
interpreter Moth for the execution of a specific Grace method.

For simplicity, partial evaluation can be thought of a highly aggressive inlining strategy. It
starts with the root node of a specific Grace method and inlines all interpreter code reachable
from it. This is possible, because it speculates that the execution tree is constant.

To enable further optimizations, Graal also inlines on the level of the Grace code,
i.e., across Grace methods. This is important as it exposes more opportunities to apply
optimization. Consequently, Graal is able to optimize Grace code similar to how a custom
Grace just-in-time compiler would work, and it applies, e.g., constant folding, common
subexpression elimination, and loop-invariant code motion.

Loop-invariant code motion and common subexpression elimination are especially import-
ant because Moth relies on self-optimizing nodes, PICs, and object shapes. These techniques
introduce various optimistic checks, i.e., guards. To generate efficient native code, a compiler
must move such checks out of loops and remove redundant checks altogether.

By combining all the techniques sketched in this section, Graal and Truffle are able to
execute dynamic languages as efficiently as virtual machines built for a specific language —
but with much less implementation effort.

4 Moth: Grace on Graal and Truffle

Implementing dynamic languages as state-of-the-art virtual machines can require enorm-
ous engineering efforts. Meta-compilation approaches[41] such as RPython[12, 14] and
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GraalVM [67, 66] reduce the necessary work dramatically, because they allow language
implementers to leverage existing VMs and their support for just-in-time compilation and
garbage collection.

Moth [47] adapts SOMNs [38] to leverage this infrastructure for Grace. SOMNS is a
Newspeak implementation [18] on top of the Truffle framework and the Graal just-in-time
compiler, which are part of the GraalVM project. One key optimization of SOMNS for this
work is the use of object shapes [65], also known as maps [20] or hidden classes. They represent
the structure of an object and the types of its fields. In SOMNS, shapes correspond to the class
of an object and augment it with run-time type information. With Moth’s implementation,
SOMNSs was changed to parse Grace code, adapting a few of the self-optimizing abstract-
syntax-tree nodes to conform to Grace’s semantics. Despite these changes Moth preserves the
peak performance of SOMNS, which reaches that of Google’s V8 JavaScript implementation
(cf. Section 5.2 and Marr et al. [40]).

4.1 Adding Gradual Type Checking

One of the goals for our approach to gradual typing was to keep the necessary changes to
an existing implementation small, while enabling optimization in highly efficient language
runtimes. In an AST interpreter, we can implement this approach by attaching the checks
to the relevant AST nodes: the expected types for the argument and return values can be
included with the node for requesting a method, and the expected type for a variable can
be attached to the nodes for reading from and writing to that variable. In practice, we
encapsulate the logic of the check within a new class of AST nodes that are specially design
to support gradual type checking. Moth’s front end was adapted to parse and record type
annotations and attach instances of this checking node as children of the existing method,
variable read, and variable write nodes.

The check node uses the internal representation of a Grace type (cf. Listing 4, Line 13)
to test whether an observed object conforms to that type. An object satisfies a type if all
members required by the type are provided by that object (Line 5). Note that here we use a
pseudo code syntax similar to Python for all code examples that represent the implementation
of Moth, even though Moth is implemented in Java. We chose this syntax to avoid any
confusion with our Grace examples.

I class Type:
2 def init(members):

3 self._members = members

4

5 def is_satisfied_by(other: Type):
6 for m in self._members:

7 if m not in other._members:

8 return False

9 return True

[l def check(obj: Object):
12 t = obj.get_type()
13 return self.is_satisfied_by(t)

Listing 4 Sketch of a Type in our system and its check() semantics.
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global record: Matrix
class TypeCheckNode (Node) :

expected: Type

O U W N

@Spec(static_guard="expected.check(obj) )
8  def check(obj: Number):
9 pass

11 @Spec(static_guard="expected.check(obj) ™)
12 def check(obj: String):
13 pass

16

17 @Spec(guard="obj.shape==cached_shape™, static_guard="expected.check(obj) )
|8  def check(obj: Object, @Cached(obj.shape) cached_shape: Shape):

19 pass

20

21 @Fallback

22 def check(obj: Any):

23 T = obj.get_type()

24

25 if record[T, expected] is unknown:

26 record[T, expected] = T.is_subtype_of (expected)

27

28 if not record[T, expected]:

29 raise TypeError(f"{obj} doesn't implement {expected}")

Listing 5 A sketch of the specializations in TypeCheckNode to minimize the run-time overhead
of type checking. A specialization is a minimal set of operations for one specific situation, e.g.,
that the value to be checked is some type of number.

4.2 Optimization

There are two aspects to our implementation that are critical for a minimal-overhead solution:

specialized executions of the type checking node, along with guards to protect these
specialized versions, and

a matrix to cache sub-typing relationships to eliminate redundant exhaustive subtype
tests.

Optimized Type Check Node The first performance-critical aspect to our implementation
is the optimization of the type checking node. We rely on Truffle and its TruffleDSL [31]. This
means we provide a number of special cases, which are selected during execution based on the
observed concrete kinds of objects. A sketch of our type checking node using a pseudo-code
version of the DSL is given in Listing 5. A simple optimization is for well known types such
as numbers (Line 8) or strings (Line 12). The methods annotated with @Spec (shorthand
for @Specialization) correspond to possible states in a state machine that is generated by
the TrufleDSL. Thus, if a check node observes a number or a string, it will check on the
first execution only that the expected type, i.e., the one defined by some type annotation,
is satisfied by the object using a static_guard. If this is the case, the DSL will activate
this state. For just-in-time compilation, only the activated states and their normal guards

5:9
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1 class VariableReadNode(Node) :
2 slot: FrameSlot

3 type_check: TypeCheckNode

1

5

6

@Spec

def do_read(frame: VirtualFrame):
value = frame.read(slot)

8 if type_check:

9 type_check.check(value)

10 return value

7

Listing 6 Sketch of a VariableReadNode using the TypeCheckNode to ensure Grace’s transient
semantics.

are considered. A static_guard is not included in the optimized code. If a check fails, or
no specialization matches, a fallback (i.e., check_generic in Line 22) will be selected. This
fallback will raise a type error when appropiate.

For generic objects we rely on the specialization of Line 18, which checks that the object
satisfies the expected type. If that is the case, it reads the shape of the object (cf. Section 4)
at specialization time and caches it for later comparisons. Thus, during normal execution,
we only need to read the shape of the object and then compare it to the cached shape with
a simple reference comparison. If the shapes are the same, we can assume the type check
passed successfully. Note that shapes are not equivalent to types, however, shapes imply
the set of members of an object, and thus, do imply whether an object fulfills one of our
structural types.

The TypeCheckNode is used in Moth in all places that need to check types, which includes
reading and writing variables as well as method requests and returns. Listing 6 shows a
sketch of an AST node that implements reading from a local variable, which is stored in a
frame object. A frame corresponds to a stack frame, sometimes also called an environment.

Line 8 first checks whether a type check needs to be performed. Since type annotations
are optional, it may not be necessary to check for a type. Note that type_check is a constant
for just-in-time compilation (cf. Section 3.4), which enables subsequent optimizations. Line 9
then calls the check () method on the TypeCheckNode, which may result in a type error. For
a variable that only contains numbers, the type_check object would activate the number
specialization in its state machine. For just-in-time compilation, this means only the code
for checking numbers needs to be compiled, but none of the other specializations.

In many cases, the specialization for objects would be activated in a TypeCheckNode,
which checks the shape of an object against a cache. This check is identical to the check
performed by a polymorphic inline cache (PIC, cf. Section 3.2). Since PICs are used for all
method calls, they are very common in most programs, and these additional checks can often
be removed easily via common subexpression elimination.

Subtype Cache Matrix The other performance-critical aspect to our implementation is
the use of a matrix to cache sub-typing relationships. The matrix compares types against
types, featuring all known types along the columns and the same types again along the rows.
A cell in the table corresponds to a sub-typing relationship: does the type corresponding
to the row implement the type corresponding to the column? All cells in the matrix begin
as unknown and, as encountered in checks during execution, we populate the table. If a
particular relationship has been computed before we can skip the check and instead recall the
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previously-computed value (Line 26 in Listing 5). Using this table we are able to eliminate
the redundancy of evaluating the same type to type relationships across different checks in
the program. To reduce redundancy further we also unify types in a similar way to Java’s
string interning; during the construction of a type we first check to see if the same set of
members is expressed by a previously-created type and, if so, we avoid creating the new
instance and provide the existing one instead.

Together the self-specializing type check node and the cache matrix ensure that our
implementation eliminates redundancy, and consequently, we are able to minimize the
run-time overhead of our system.

5 Evaluation

To evaluate our approach to gradual type checking, we first establish the baseline performance
of Moth compared to Java and JavaScript and then assess the impact of the type checks
themselves.

5.1 Method and Setup

To account for the complex warmup behavior of modern systems [4] as well as the non-
determinism caused by e.g. garbage collection and cache effects, we run each benchmark for
1000 iterations in the same VM invocation.? To improve the confidence in the results further,
we run all experiments with 30 invocations. Afterwards, we inspected the run-time plots
over the iterations and manually determined a cutoff of 350 iterations for warmup, i.e., we
discard iterations with signs of compilation. All reported averages use the geometric mean
since they aggregate ratios.

All experiments were executed on a machine running Ubuntu Linux 16.04.4, with Kernel
3.13. The machine has two Intel Xeon E5-2620 v3 2.40GHz, with 6 cores each, for a total
of 24 hyperthreads. We used ReBench 0.10.1[39], Java 1.8.0_171, Graal 0.33 (a13b888),
Node.js 10.4, and Higgs from 9 May 2018 (aa95240). Benchmarks were executed one by
one to avoid interference between them. The analysis of the results was done with R 3.4.1,
and plots are generated with ggplot 2.2.1 and tikzDevice 0.11. Our experimental setup is

available online to enable reproductions.?

5.2 AreWe Fast Yet?

To establish the performance of Moth, we compare it to Java and JavaScript. Moth is used in
its untyped version, i.e., without type checks. For JavaScript we chose two implementations,
Node.js with V8 as well as the Higgs VM. The Higgs VM is an interesting point of comparison,
because Richards et al. [45] used it in their study. The goal of this comparison is to determine
whether our approach could be applicable to industrial strength language implementations
without adverse effects on their performance.

We compare across languages based on the Are We Fast Yet benchmarks [40], which are
designed to enable a comparison of the effectiveness of compilers across different languages.
To this end, they use only a common set of core language elements. While this reduces the
performance-relevant differences between languages, the set of core language elements covers

2 For the Higgs VM, we only use 100 iterations, because of its lower performance. This is sufficient since

Higgs’s compilation approach induces less variation and leads to more stable measurements.
3 https://github.com/gracelang/moth-benchmarks/releases/tag/papers/ecoopl9
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Figure 1 Comparison of Java 1.8, Node.js 10.4, Higgs VM, and Moth. The boxplot depicts
the peak-performance results for the Are We Fast Yet benchmarks, each benchmark normalized
individually based on the result for Java, which means all results for Java are 1.0, and its box
appears as a line. The dots on the plot represent the geometric mean reported as averages. For
these benchmarks, Moth is within the performance range of JavaScript, as implemented by Node.js,
which makes Moth an acceptable platform for our experiments.

only common object-oriented language features with first-class functions. Consequently, these
benchmarks are not necessarily a predictor for application performance, but can give a good
indication for basic mechanisms such as type checking.

Figure 1 shows the results. We use Java as baseline since it is the fastest language
implementation in this experiment. Note that we perform a unit conversion on the results
separately for each benchmark, using the average of Java as 1 unit. While this conversion
does not change the distribution of the data, it allows us to show it neatly on one plot.

We see that Node.js (V8) is about 1.8x (min. 0.8x, max. 2.7x) slower than Java. Moth is
about 2.3x (min. 0.9x, max. 4.3x) slower than Java. As such, it is on average 31% (min.
—16%, max. 2.3x) slower than Node.js. Compared to the Higgs VM, which is on these
benchmarks 10.4x (min. 1.5x, max. 163x) slower than Java, Moth reaches the performance of
Node.js more closely. With these results, we argue that Moth is a suitable platform to assess
the impact of our approach to gradual type checking, because its performance is close enough
to state-of-the-art VMs, and run-time overhead is not hidden by slow baseline performance.

5.3 Performance of Transient Gradual Type Checks

The performance overhead of our transient gradual type checking system is assessed based
on the Are We Fast Yet benchmarks as well as benchmarks from the gradual-typing literature.
The goal was to complement our benchmarks with additional ones that are used for similar
experiments and can be ported to Grace. To this end, we surveyed a number of papers [56,
62, 42, 6, 45, 55, 29] and selected benchmarks that have been used by multiple papers. Some
of these benchmarks overlapped with the Are We Fast Yet suite, or were available in different
versions. While not always behaviorally equivalent, we chose the Are We Fast Yet versions
since we already used them to establish the performance baseline. The selected benchmarks
as well as the papers in which they were used are shown in Table 1.

The benchmarks were modified to have complete type information. To ensure correctness
and completeness of these experiments, we added an additional check to Moth that reports
absent type information to ensure each benchmark is fully typed. To assess the performance
overhead of type checking, we compare the execution of Moth with all checks disabled, i.e.,
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Table 1 Benchmarks selected from literature.

Fannkuch [62, 29]

Float [62, 42, 29]

Go 62, 42, 29]

NBody [36, 62, 29] used [40]
Queens [62, 42, 29] used [40]
PyStone [62, 42, 29]

Sieve [56, 42, 6, 45, 30]  used [40]
Snake [56, 42, 6, 45, 30]

SpectralNorm  [62, 42, 29]

the baseline version from Section 5.2, against an execution that has all checks enabled. We
did not measure programs that mix typed and untyped code because with our implementation
technique a fully typed program is expected to have the largest overhead.

Peak Performance

Figure 2 depicts the overall results comparing Moth, with all optimizations, against the
untyped version. The run-time overhead, after discarding the warmup iterations, is on
average 5% (min. —13%, max. 79%).

The benchmark with the highest overhead of 79% is List. The benchmark traverses a
linked list and has to check the list elements individually. Unfortunately, the structure of
this list introduces checks that do not coincide with shape checks on the relevant objects.
We consider this benchmark a pathological case and discuss it in detail in Section 6.1.

Beside List, the highest overheads are on Richards (33%), CD (12%), Snake (14%), and
Towers (12%). Richards has one major component, also a linked list traversal, similar to
List. Snake and Towers primarily access arrays in a way that introduces checks that do not
coincide with behavior in the unchecked version.

In some benchmarks, however, the run time decreased; notably Permute (—13%), Graph-
Search (—3%), and Storage (—8%). Permute simply creates the permutations of an array.
GraphSearch implements a page rank algorithm and thus is primarily graph traversal. Storage
stresses the garbage collector by constructing a tree of arrays. For these benchmarks the
introduced checks seem to coincide with shape-check operations already performed in the
untyped version. The performance improvement is possibly caused by having checks earlier,
which enables the compiler to more aggressively move them out of loops. Another reason
could simply be that the extra checks shift the boundaries of compilation units. In such cases,
checks might not be eliminated completely, but the shifted boundary between compilation
units might mean that the generated native code interacts better with the instruction cache
of the processor.

Warmup Performance

To more precisely measure warmup, all experiments were executed 30 times. The resulting
Figure 3 shows the first 100 iterations for each benchmark. For each iteration n, we normalized
the measurements to the mean of iteration n of the untyped Moth implementation. Thus,
any increase indicates a slow down because of typing. The darker lines indicate the means,
while the lighter area indicates a 95% confidence interval.
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Figure 2 A boxplot comparing the performance of Moth with and without type checking. The
plot depicts the run-time overhead on peak performance over the untyped performance. On average,
transient type checking introduces an overhead of 5% (min. —13%, max. 79%). The average is
indicated as a line with long dashes. Note that the axis is logarithmic to avoid distorting the
proportions of relative speedups and slowdowns.

Looking only at the first few iterations, where we assume that most code is executed in
the interpreter and might be affected by compilation activity, the overhead appears minimal.
Only the Mandelbrot and CD benchmarks shows a noticeable slowdown.

Mandelbrot with its distinctly slow first iteration can be explained by its code structure.
Since it is a computational kernel with many primitive operations, but no method calls,
optimized code is only reached after the first full benchmark iteration. The problem could
be alleviated with on-stack-replacement for loops, which is currently not done. Since other
benchmarks use methods, they reach compiled code earlier and do not exhibit the same
first-iteration slowdown.

PyStone however show various spikes. Since spikes appear in both directions (speedups
and slowdowns), we assume that they indicate a shift, for instance, of garbage collection
pauses, which may happen because of different heap configurations triggered by the additional
data structures for type information.

5.4 Effectiveness of Optimizations

To characterize the concrete impact of our two optimizations — i.e., the optimized type
checking node that replaces complex type tests with checks for object shapes and our matrix
to cache sub-typing information, — we look at the number of type checks performed by the
benchmarks as well as the impact on peak performance.
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Figure 3 Plot of the run time for the first 100 iterations. The lines indicate the mean at iteration
n normalized to the untyped result, the lighter area indicates a 95% confidence interval. The first
iteration, i.e., mostly interpreted, seems to be affected significantly only for Mandelbrot, though CD
shows slower behavior in early warmup, too.

Impact on Performed Type Tests

Table 2 gives an overview of the number of type tests done by the benchmarks during execution.

We distinguish two operations check_generic and is_subtype_of, which correspond to
the operations in Line 22 and Line 5 of Listing 4. Thus, check_generic is the test called
whenever a full type check has to be performed, and is_subtype_of is the part of the check
that determines the relationship between two types. The second column of Table 2 indicates
which optimization is applied, and the following columns show the mean, minimum, and
maximum number of invocations of the tests over all benchmarks.

The baselines without optimizations are the rows with the results for neither of the
optimizations being enabled. Depending on the benchmark, we see that the type tests are
done tens of millions to hundreds of millions times for a single iteration of a benchmark.

Our optimizations reduce the number of type test invocations dramatically. As a result,
the full check for the subtyping relationship is done only once for a specific type and super
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Table 2 Type Test Statistics over all Benchmarks. This table shows how many of the type tests
can be avoided based on our two optimizations. As indicated by the numbers, the number of type
tests can vary significantly between benchmarks. Thus, the table shows the mean, minimum, and
maximum number of type tests across all benchmarks for a given configuration. With the use of
an optimized node that replaces type checks with simple object shape checks, check_generic is
invoked only for the first time that a lexical location sees a specific object shape, which eliminates
run-time type checks almost completely. Using our subtype matrix that caches type-check results,
invocations of is_subtype_of are further reduced by an order of magnitude.

Type Test Enabled Optimization mean #invocations min max
check generic  Neither 137,525,845 11,628,068 896,604,537
Subtype Cache 137,525,845 11,628,068 896,604,537
Optimized Node 292 68 1,012
Both 292 68 1,012
is_subtype_of Neither 134,125,215 11,628,067 896,604,534
Subtype Cache 16 10 29
Optimized Node 292 68 1,012
Both 16 10 29

type. Similarly, the generic type check is replaced by a shape check and thus reduces the
number of expensive type checks to the number of lexical locations that verify types combined
with the number of shapes a specific lexical location sees at run time.

Impact on Performance

Figure 4 shows how our optimizations contribute to the peak performance. The figure depicts
Moth’s peak performance over all benchmarks, depending on the activated optimizations. As
for Figure 1, we do a per-benchmark unit conversion using Moth (untyped), preserving the
distribution properties of the results, but enabling us to show the results on a single plot.

As seen before in Figure 2, the untyped version is faster by 5%. Moth with both
optimizations enabled as well as Moth with the optimized type-check node (cf. Listing 4)
reach the same performance. This indicates that the subtype cache matrix is not strictly
necessary for the peak performance. However, we can see that the subtype cache matrix
improves performance by an order of magnitude over the Moth version without any type
check optimizations. This shows that it is a relevant and useful optimization. Based on the
numbers of Table 2, we see that this optimization is relevant for the very first execution
of code. For code that has not executed before, having the global cache for the subtype
relations gives the most benefit. After the first execution, the lexical caches in form of the
type check nodes are primed with the same information, and the subtype cache matrix is
only rarely needed. An example for code that benefits from the subtype cache matrix is unit
test code, because most of the code is executed only once. While the performance of unit
tests is not always critical, it can have a major impact on developer productivity.

Impact on Memory Usage

In our implementation, the subtype cache matrix is the largest additional data structure. We
initialize it for up to 1000 types and use 1 byte per type combination. Java utilizes ca. 1IMB
of memory for the matrix. Additional memory is used to represent the type-check nodes
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Figure 4 Performance Impact of the Optimizations on the Peak Performance over all benchmarks.
The boxplot shows the performance of Moth normalized to the untyped version, i.e., without any
type checks. This means all results for Moth (untyped) are 1.0 and its box appears as a line. The
dots on the plot represent the geometric mean reported as averages. The performance of Moth
with both optimizations and Moth with only the node for optimized type checks are identical. The
subtype check cache improves performance over the unoptimized version, but does not contribute to
the peak performance.

at every lexical location. Since they behave like polymorphic inline caches (PIC) [32], their
memory usage depends on the specific program execution. For the benchmarks used in this
paper, the extra memory use can be up to 200KB.

In the context of Graal and Truffle, this additional memory usage is small, since the
metacompilation approach uses a lot of memory [41]. In a dedicated virtual machine, memory
use can be further optimized and be as efficient as for other kinds of PICs.

5.5 Transient Typechecks are (Almost) Free

As discussed in the introduction, in many existing gradually typed systems, one would expect
a linear increase of the performance overhead with respect to an increasing number of type
annotations.

In this section, we show that this is not necessarily the case on our system. For this
purpose we use two microbenchmarks, Check and Nest, which have at their core method
calls with 5 parameters. The Check benchmark calls the same method 10 times in a row, i.e.,
it has 10 call sites. The Nest benchmark has 10 methods with identical signatures, which
recurse from the first one to the last one. Thus, there are still 10 method calls, but they
are nested in each other. In both benchmarks, each method increments a counter, which
is checked at the end of the execution to verify that both do the same number of method
activations, and only the shape of the activation stack differs.

Each benchmark exists in six variants, each variant in a separate file, going from having
no type annotations over annotating only the first method parameter to annotating all 5
parameters. To demonstrate the impact of compilation, we present the results for the first
iteration as well as the hundredth iteration. The first iteration is executed at least partially
in the interpreter, while the hundredth iteration executes fully compiled.

Figure 5 shows that such a common scenario of methods being gradually annotated with
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Figure 5 Transient Typechecks are (Almost) Free. Two microbenchmarks, each with six variants,
demonstrate the common scenario of adding type annotations over time, which in our system does
not have an impact on peak performance. The benchmark variants differ only in the increasing
number of method arguments that have type annotations. We show the result for the first benchmark
iteration (a) and the one hundredth (b). Moth (neither), i.e., Moth without our two optimizations
sees a linear increase in run time. For the first iteration, we see some difference between Moth (both)
and Moth (untyped). By the hundredth iteration, however, the compiler has eliminated the overhead
of the type checks and both Moth variants essentially have the same performance (independent of
the number of method arguments with type annotations).

types does not incur an overhead on peak performance in our system. The plot shows the
mean of the run time for each benchmark configuration. Furthermore, it indicates a band
with the 95% confidence interval. The yellow line, Moth (neither), corresponds to our Moth
with type checking but without any optimizations. For this case, we see that the performance
overhead grows linearly with the number of type annotations.

For Moth (both) and Moth (untyped), we see for the first iteration that the band of
confidence intervals diverges, indicating that the additional type checks have an impact on
startup performance. In contrast the confidence intervals overlap for the hundredth iteration,
which shows that Moth does not suffer from a general linear overhead when adding type
checks. Instead, most type checks do not have an impact on peak performance. However,
as previously argued for the List benchmark, this is only the case for checks that can be
subsumed by shape checks (shape checks are performed whether or not type checks are
present).

5.6 Changes to Moth

Outlined earlier in Section 4, a secondary goal of our design was to enable the implementation
of our approach to be realized with few changes to the underlying interpreter. This helps to
ensure that each Grace implementation can provide type checking in a uniform way.

By examining the history of changes maintained by our version control, we estimate that
our implementation of Moth required 549 new lines and 59 changes to existing lines. The
changes correspond to the implementation of new modules for the type class (179 lines) and
the self-specializing type checking node (139 lines), modifications to the front end to extract
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1 type ListElement = interface {

2 next

33}

1

5 var elem: ListElement := headOfList
6 while (...) do {

7 elem := elem.next

8 }

Listing 7 Example for dynamic type checks not corresponding to existing checks.

typing information (115 new lines, 14 lines changes) and finally the new fields and amended
constructors for AST nodes (116 new lines, 45 lines changes).

6 Discussion

6.1 The VM Could Not Already Know That

One of the key optimizations for our work and the work of others [6, 45] is the use of object
shapes to encode information about types (in our case), or type casts and assumptions (in
the case of gradually typed systems). The general idea is that a VM will already use object
shapes for method dispatches, field accesses, and other operations on objects. Thus any
further use to also imply type information can often be optimized away when the compiler
sees that the same checks are done, and therefore can be combined by optimizations such as
common subexpression elimination.

This assumption breaks, however, when checks are introduced that do not correspond
to those that exist already. As described in Section 4, our approach introduces checks for
reading from and writing to variables. Listing 7 gives an example of a pathological case. It
is a loop traversing a linked list. For this example our approach introduces a check, for the
ListElement type, when (1) assigning to and reading from elem and (2) when activating
the next method. The checks for reading from elem and activating the method can be
combined with the dispatch’s check on object shape. Unfortunately, the compiler cannot
remove the check when writing to elem, because it has no information about what value will
be returned from next, and so it needs to preserve the check to be able to trigger an error
on the assignment. For our List benchmark, this check induces an overhead of 79%.

Compiler optimizations such as inlining are also insufficient for this particular case,
because there are no guarantees about what elem does to implement next. The next method
of a specific kind of ListElement may even have a type annotation for a return value. The
best Graal can do in this example is to combine the check for the return value with the one
writing to elem.

Since the example shows a somewhat generic data structure, there is the question of
whether the issue applies to other data structures as well. Our benchmarks use a range of
data structures including hash maps, sets, and vectors, none of which show the issue, because
in more complex programs the chance of already having a check there is high, and cases
were there has not been one before seem to be rare — although one can always consider
additional optimizations to eliminate further checks. For generic data structures, storage
strategies [13] could be used to encode type information about elements. This would allow
the VM to check only once before a loop, and the loop could then rely on that check for
guarantees about the elements of the data structure.
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6.2 Optimizations

Read and Write Checks. As a simplification, we currently check variable access on both
reads and writes. This approach simplifies the implementation, because we do not need to
adapt all built-ins, i.e., all primitive operations provided by the interpreter. One optimization
could be to avoid read checks. A type violation can normally only occur when writing to
a variable, but not when reading. However, to maintain the semantics, this would require
us to adapt many primitives. Examples for primitives are operations that activate blocks,
which need to check their arguments or return values as well as any primitives that write to
variables or fields. Given the number of primitives, this is error prone and incompleteness
would result in missing type checks.

By checking reads and writes in a few well defined locations, we get errors as soon as
user code accesses fields and variables. Moreover, only a small set of locations required
changes to Moth’s code, which reduces implementation overhead. Given the good results
(cf. Sections 5.4 and 5.6), we decided to keep read checks, because it is a more uniform and
maintainable approach for an academic project.

Dynamic Type Propagation. Another optimization could be to use Truffle’s approach to
self-specialization [68] and propagate type information to avoid redundant checks. At the
moment, Truffle interpreters typically use self-specialization to specialize the AST to avoid
boxing of primitive types. This is done by speculating that some subtree always returns
the expected type. If this is not the case, the return value of the subtree is going to be
propagated via an exception, which is caught and triggers respecialization. This idea could
possibly be used to encode higher-level type information for return values, too. This could
be used to remove redundant checks in the interpreter by simply discovering at run time
that whole subexpressions conform to the type annotations.

Performance Impact of Types As seen in Section 6.1, there are cases where adding types
may reduce performance, even so, in the best case this does not happen (cf. Section 5.5).

While the expectation is that adding more types may result in higher potential for
performance issues, in the context of dynamic and adaptive compilation as used for Moth,
this is not necessarily the case. Since compilers rely on various heuristics, for instance for
inlining, there may be situations where a fully typed program is faster than a program
with fewer types. Since the checks need to be compiled themselves, they also influence
such heuristics. This means it is possible that partially typed programs may show worse
performance than fully typed ones.

6.3 Threats to Validity

This work is subject to many of the threats to validity common to evaluations of experimental
language implementations. Our underlying implementation may contain undetected bugs that
affect the semantics or performance of the gradual typing checks, affecting construct validity —
we may not have implemented what we think we have. Given that our benchmarking harness
runs on the same implementation, it is also subject to the same risks and thus affecting
internal validity — we may not be measuring the implementation correctly. Moth is built on
the Truffle and Graal toolchain, so we expect external validity there at least — we expect the
results would transfer to other Graal VMs doing similar AST-based optimizations. We have
less external validity regarding other kinds of VMs (such as VMs specialized to particular
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languages, or VMs built via meta-tracing rather than partial evaluation). Nevertheless, we
expect our results should be transferable as we rely on common techniques.

Generalizability Finally, because we are working in Grace, it is less obvious that our
results generalize to other gradually typed-languages. We have worked to ensure that e.g.
our benchmarks do not depend on any features of Grace that are not common in other
gradually-typed object-oriented languages, but as Grace lacks a large corpus of programs the
benchmarks are necessarily artificial, and it is not clear how the results would transfer to the
kinds of programs actually written in practice. The advantage of Grace (and Moth) for this
research is that their relative simplicity means we have been able to build an implementation
that features competitive performance with significantly less effort than would be required
for larger and more complex languages. On the other hand, more effort on optimisations
could lead to even better performance.

Another aspect which limits generalizability is the specific semantics of Grace. Reticulated
Python, Typed Racket, and Gradualtalk have semantics that need additional runtime support,
and thus, we cannot draw any conclusions without further research.

For languages such as Newspeak, Strongtalk, or TypeScript, where types do not have
run-time semantics, one could add termination based on type errors to these languages, or
simply avoid termination and report the errors after program completion as a debugging aid.
For either option, our approach should apply and we would expect similar results.

7 Related Work

Although syntaxes for type annotations in dynamic languages go back at least as far as
Lisp [54], the first attempts at adding a comprehensive static type system to a dynamic-
ally typed language involved Smalltalk [33], with the first practical system being Bracha’s
Strongtalk [17]. Strongtalk (independently replicated for Ruby [26]) provided a powerful and
flexible static type system, where crucially, the system was optional (also known as pluggable
[16]). Programmers could run the static checker over their Smalltalk code (or not); either way
the type annotations had no impact whatsoever of the semantics of the underlying Smalltalk
program.

Siek and Taha [48] introduced the term “gradual typing” to describe the logical extension
of this scheme: a dynamic language with type annotations that could, if necessary, be checked
at runtime. Siek and Taha build on earlier complementary work extending fully statically
typed languages with a “DYNAMIC” type—Abadi et al. ’s 1991 TOPLAS paper [1] is an
important early attempt and also surveys previous work.

Revived practical adoption of dynamic languages generated revived research interest,
leading to the formulation of the gradual guarantee to characterize sound gradual type
systems: informally “removing type annotations always produces a program that is still well
typed” and also “evaluates to an equivalent value” [50], drawing on Boyland’s critical insight
that such a guarantee must by its nature exclude code that reflects on the presence or absence
of type declarations [15]. Moth ensures that the values passing through type annotations
cannot be incompatible with those annotations and that type annotations cannot change
program values; notably, the type tests consider only method names and not any further
type annotations. This means that removing type annotations cannot cause a program to fail
or change its behaviour, satisfying the informal statement of the gradual guarantee. Moth
does not meet the refined formal statement of the guarantee in Sieket al.’s [50]’s Theorem 5,
however, because Theorem 5 requires all intermediate values conform to their inferred static

5:21

ECOOP 2019



5:22

Transient Typechecks are (Almost) Free

types. Moth only checks at explicit type declarations, not inferred intermediate types.

Type errors in gradual, or other dynamically checked, type systems will be detected
at the type declarations, but often those declarations will not be at fault — indeed in a
correctly typed program in a sound gradually typed system, the declarations cannot be at
fault because they will have passed the static type checker. Rather, the underlying fault
must be somewhere within the barbarian dynamically typed code trans vallum. Blame
tracking [63, 52, 2] localizes these faults by identifying the point in the program where the
system makes an assumption about dynamically typed objects, so it can identify the root
cause should the assumption fail. Different semantics for blame detect these faults slightly
differently and incur differing implementation overheads [60, 51, 62].

The diversity of semantics and language designs incorporating gradual typing has been
captured recently via surveys incorporating formal models of different design options.
Chung et al. [22] present an object-oriented model covering optional semantics (erasure),
transient semantics, concrete semantics (from Thorn [11]), and behavioural semantics (from
Typed Racket), and give a series of programs to clarify the semantics of a particular language.
Greenman et al. take a more functional approach, again modelling erasure, transient (“first
order”), and behavioural (“higher order”) semantics [28], and also present performance in-
formation based on Typed Racket. Wilson et al. take a rather different approach, employing
questionnaires to investigate the semantics programmers expect of a gradual typing system
[64].

As with languages more generally, there seem to be two main implementation strategies for
languages mixing dynamic and static type checks: either adding static checks into a dynamic
language implementation, or adding support for dynamic types to an implementation that
depends on static types for efficiency. Typed Racket, for example, optimizes code with a
combination of type inference and type declarations—the Racket IDE “optimizer coach” goes
as far as to suggest to programmers type annotations that may improve their program’s
performance [53]. In these implementations, values flowing from dynamically to statically
typed code must be checked at the boundary. Fully statically typed code needs no dynamic
type checks, and so generally performs better than dynamically typed code. Adopting a
gradual type system such as Typed Racket [59] allows programmers to explicitly declare types
that can be checked statically, removing unnecessary overhead. Ortin et al.’s [43] approach
takes this to a logical extreme using a rule base to guide program specialisation at compile
time based on abstract interpretation.

On the other hand, systems such as Reticulated Python [60], SafeTypeScript [45], and
our work here take the opposite approach. These systems do not use information from
type declarations to optimize execution speed. Rather, the necessity to perform potentially
repeated dynamic type checks tends to slow programs down; instead, here, code with no
type annotations generally performs better than statically typed code or code with many
type annotations. In the limit, these kinds of systems may only ever check types dynamically
and may not involve a static type checker at all.

As gradual typing systems have come to wider attention, the question of their imple-
mentation overheads has become more prominent. Takikawa et al. [56] asked “is sound
gradual typing dead?” based on a systematic performance measurement on Typed Racket.
The key here is their evaluation method, where they constructed a number of different
permutations of typed and untyped code, and evaluated performance along the spectrum [30].
Bauman et al. [6] replied to Takikawa et al.’s study, in which they used Pycket [5] (a tracing
JIT for Racket) rather than the standard Racket VM, but maintained full gradually-typed
Racket semantics. Bauman et al. are able to demonstrate most benchmarks with a slowdown
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of 2x on average over all configurations. Note that this is not directly comparable to our
system, since typed modules do not need to do any checks at run time. Typed Racket only
needs to perform checks at boundaries between typed and untyped modules, however, they
use the same essential optimization technique that we apply, using object shapes to encode
information about gradual types. Muehlboeck and Tate [42] also replied to Takikawa et al.,
using a similar benchmarking method applied to Nom, a language with features designed to
make gradual types easier to optimize, demonstrating speedups as more type information is
added to programs. Their approach enables such type-driven optimizations, but relies on a
static analysis which can utilize the type information, and the underlying types are nominal,
rather than structural.

Most recently, Kuhlenschmidt et al. [36] employ an ahead of time (i.e. traditional, static)
compiler for a custom language called Grift and demonstrate good performance for code
where more than half of the program is annotated with types, and reasonable performance
for code without type annotations.
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Perhaps the closest to our approach are Vitousek et al. [60] (incl. [62, 29]) and Richards et al. [45].

Vitousek et al. describe dynamically checking transient types for Reticulated Python (termed
“tag-type” soundness by Greenman and Migeed [29]). As with our work, Vitousek et al.’s
transient checks inspect only the “top-level” type of an object. Reticulated Python undertakes
these transient type checks at different places to Moth. Moth only checks explicit type an-
notations, while Reticulated Python implicitly checks whenever values flow from dynamic to
static types. We refrain from a direct performance comparison since Reticulated Python is an
interpreter without just-in-time compilation and thus performance tradeoffs are different. In
recent experimental work, however, Vitousek et al. [61] have evaluated Reticulated Python’s
transient semantics running on top of an unmodified PyPy JIT metacompiler. These results
are broadly consistent with those presented here, finding similarly small slowdowns using just
the tracing JIT, and reducing those slowdowns even further when some tests are elimited via
static type inference.

Richards et al. [45] take a similar implementation approach to our work, demonstrating
that key mechanisms such as object shapes used by a VM to optimize dynamic languages can
be used to eliminate most of the overhead of dynamic type checks. Unlike our work, Richards
implement “monotonic” gradual typing with blame, rather than the simpler transient checks,
and do so on top of an adapted Higgs VM. The Higgs VM implements a baseline just-in-time
compiler based on basic-block versioning [21]. In contrast, our implementation of dynamic
checks is built on top of the Truffle framework for the Graal VM, and reaches performance
approaching that of V8 (cf. Section 5.2). The performance difference is of relevance here
since any small constant factors introduced into a VM with a lower baseline performance
can remain hidden, while they stand out more prominently on a faster baseline.

Overall, it is unclear whether our results confirm the ones reported by Richards et al. [45],
because our system is simpler. It does not introduce the polymorphism issues caused by
accumulating cast information on object shapes, which could be important for performance.
Considering that Richards et al. report ca. 4% overhead on the classic Richards benchmark,
while we see 33%, further work seems necessary to understand the performance implications
of their approach for a highly optimizing just-in-time compiler.

8 Conclusion

As gradually typed languages become more common, and both static and dynamically
typed languages are extended with gradual features, efficient techniques for gradual type
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checking become more important. In this paper, we have demonstrated that optimizing
virtual machines enable transient gradual type checks with relatively little overhead, and
with only small modifications to an AST interpreter. We evaluated this approach with Moth,
an implementation of the Grace language on top of Truffle and Graal.

In our implementation, types are structural and shallow: a type specifies only the names
of members provided by objects, and not the types of their arguments and results. These
types are checked on access to variables, when assigning to method parameters, and also on
return values. The information on types is encoded as part of an object’s shape, which means
that shape checks already performed in an optimizing dynamic language implementation can
also be used to check types. Being able to tie checks to the shapes in this way is critical for
reducing the overhead of dynamic checking.

Using the Are We Fast Yet benchmarks as well as a collection of benchmarks from the
gradual typing literature, we find that our approach to dynamic type checking introduces an
overhead of 5% (min. —13%, max. 79%) on peak performance. In addition to the results
from further microbenchmarks, we take this as a strong indication that transient gradual
types do not need to imply a linear overhead compared to untyped programs. However,
we also see that interpreter and startup performance are impacted by the additional type
annotations.

Since Moth reaches the performance of a highly optimized JavaScript VM such as V8, we
believe that these results are a good indication for the low peak-performance overhead of our
approach.

In specific cases, the overhead is still significant and requires further research to be
practical. Thus, future research should investigate how the number of gradual type checks
can be reduced without causing the type feedback to become too imprecise to be useful.
One approach might increase the necessary changes to a language implementation, but
avoid checking every variable read. Another approach might further leverage Truffle’s
self-specialization to propagate type requirements and avoid unnecessary checks.

Finally, we hope to apply our approach to other parts of the spectrum of gradual typing,
eventually reaching full structural types with blame that support the gradual guarantee.
This should let us verify that Richards et al. [45]’s results generalize to highly optimizing
virtual machines, or alternatively, show that other optimizations for precise blame need to
be investigated.
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