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Abstract

The aim of this paper is to evaluate the forecasting performance of
SETAR models with an application to the industrial production index
of four major European countries over a period which includes the last
Great Recession. Both point and interval forecasts are considered at
different horizons against those obtained from two linear models. We
follow the approach suggested by Teräsvirta, van Dijk, and Medeiros
[2005] according to which a dynamic specification may improve the
forecast performance of the nonlinear models with respect to the linear
models. We re-specify the models every 12 months and we find that
the advantages of this procedure are particularly evident in theforecast
rounds immediately following the re-specification.
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1 Introduction

Due to their ability to represent asymmetrical movements, the nonlinear

time series models have been applied to macroeconomic variables to study

the business cycle. The most common nonlinear models include Smooth-

Transition Autoregressive (STAR) models, Self-Exciting Threshold Autore-

gressive (SETAR) models and Markov-Switching models. During the last two
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decades many researchers compared the forecasting performance of nonlinear

models to their linear counterparts. A common finding is that, even if the

nonlinear models can provide a better in-sample fit than the linear models,

they cannot always predict better (see Clements and Smith [1999]and Stock

and Watson [1999], amongst others). A possible explanation for this poor

forecast performance lies in the fact that the nonlinearities could be highly

significant in-sample but not in the out-of-sample period, as suggested by

Diebold and Nason [1990] in their application to exchange rate series.

Another line of research has examined under which conditions the nonlin-

ear time series forecasts may outperform linear models. Boero and Marrocu

[2002, 2004], for example, evaluate the point and interval forecasts of SE-

TAR models conditional on regimes and find significant improvements in

the quality of the SETAR forecasts in correspondence of specific regimes.

Macroeconomic data are typically non-stationary in mean and may exhibit

strong seasonal patterns, then in most cases a transformation of the raw data

is necessary. However, several studies warn that the transformation applied

to the data may introduce some bias which could affect the nonlinear charac-

teristics of the original data (see Ghysels et al. [1996], de Bruin and Franses

[1998] and Franses and de Bruin [2000]). Moreover, such transformations

can have an impact on the forecasting performance of the models. In this

respect, Franses and van Dijk [2005] examine the forecasting performance

of nonlinear models relative to that of linear models, for quarterly series of

industrial production from 17 OECD countries. According to their results,

linear autoregressive models with a simple description of seasonality outper-

form nonlinear models at short forecast horizons, whereas nonlinear models

with more elaborate seasonal patterns across regimes dominate at longer

horizons. More recently, a number of studies have re-examined the forecast-

ing performance of nonlinear time series models. Teräsvirta, van Dijk, and

Medeiros [2005] conduct a study using 47 monthly macroeconomic variables
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of the G7 economies and find that STAR models have a superior forecast

performance than linear models in a large number of cases. These authors

emphasise that nonlinear features in time series data could be more or less

pronounced in different periods of time, and these could be better captured

by frequent re-specification of the models.

Ferrara, Marcellino, and Mogliani [2012] analyse the forecasting perfor-

mance of nonlinear models (STAR, TAR, time varying specifications and

Markov Switching models) for 18 OECD countries and 23 variables. The

models are estimated with data from 1970 to 2003 and point forecasts are

evaluated over the period 2004q1 to 2009q4, using both fixed moving windows

and expanding windows. The models are re-estimated each time another ob-

servation is added to the information set, but the specification is assumed

to remain unchanged over the forecast period. The study concludes that,

on average, the nonlinear models do not outperform the linear models even

during the Great Recession period.

In this paper we study the forecasting accuracy of SETAR models taking

into account the limitations and recommendations of the studies mentioned

above. As in Ferrara et al. [2012], our sample period includes the Great Re-

cession of 2008-2009, which provides a good platform to compare and evaluate

the relative out-of-sample forecasting performance of alternative models in

periods of recessions and expansions. In several European countries the last

recession has been very intense and the economy has recovered very slowly

after that. The variable used in this analysis is the seasonally unadjusted

monthly Industrial Production Index (IPI) for France, Italy, Spain and the

United Kingdom. The IPI is one of the key indicators of the business cy-

cle fluctuations for these countries, given the dimension of their industrial

sector. Our analysis is intended to evaluate the models on their ability to

produce both point and interval forecasts. The models are estimated on an

expanding window of data starting with 1975.1-2005.12 and using a recur-
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sive scheme. The forecasting sample ranges from 2006.1 to 2011.12, covering

the years before, during and after the Great Recession of 2008-2009. Fol-

lowing the recommendation of Teräsvirta et al. [2005], the models are fully

re-specified every twelve months, while they are re-estimated for each new

monthly observation included in the sample, and a new set of 1, 3, 6 and

12-step-ahead forecasts are computed. This procedure enables us to replicate

a genuine “real time” forecasting environment. As benchmark models we use

a standard linear autoregressive model and a seasonal ARMA model that are

re-specified every year like the SETAR models.

The most important conclusions can be summarised as follows. The re-

sults of point forecast evaluation suggest that there are some gains in the

forecast performance of the SETAR models associated with a frequent re-

specification. These gains are particularly evident for the 1-step-ahead fore-

casts, moreover, and in line with the findings by Ferrara et al. [2012], these

advantages are stronger outside the recession period. The rest of the pa-

per is organised as follows. In Section 2 we describe the SETAR model and

the methodological issues associated with their specification, estimation and

their use for forecasting. In Section 3 we present the data and we report the

results of the estimation of the models. In Section 4 we describe the forecast-

ing exercise and discuss the results of the evaluation of point and interval

forecasts. Section 5 contains concluding remarks.

2 Model description

In general a Self-Exciting Threshold Autoregressive (SETAR) model can be

considered a linear AR model where the autoregressive parameters depend

on the regime or state. A SETAR model with two regimes is defined as:

Yt =

{
α0 + α1Yt−1 + · · ·+ αp1Yt−p1 + ε1t, if Yt−d ≤ γ
β0 + β1Yt−1 + · · ·+ βp2Yt−p2 + ε2t, if Yt−d > γ

(1)
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where t = 1, ..., T , d ≥ 0 is an integer called the delay parameter, Yt−d is

the threshold variable that defines which regime is operating at the time t, γ

is the threshold parameter and εr,t
iid∼ N(0, σ2

r), r = 1, 2. The autoregressive

orders in the two regimes, p1 and p2, need not to be identical but they must

be greater than one. The parameters αj (j = 0, · · · , p1) are the coefficients of

the lower regime when (Yt−d ≤ γ), and βj (j = 0, · · · , p2) are the coefficients

of the upper regime when (Yt−d > γ).

The models are estimated following the three-stage procedure suggested

by Tong [1990]. In the first stage, for given values of γ and d, depending on

whether or not Yt−d ≤ γ, the data are assigned to a lower and an upper regime

with n1 and n2 observations, respectively, and separated autoregressive mod-

els are estimated by Maximum Likelihood. The order of each autoregression

is chosen according to the usual Akaike Information Criterion (AIC). In the

second stage, γ is searched over a set of possible values, while d remains fixed.

The re-estimation of the separate autoregressive models allows the determi-

nation of the γ parameter, as the one for which the overall AIC (equal to

the sum of the AIC in each regime) attains its minimum value. Note that

the search of the threshold value γ is usually restricted to be between two

predetermined percentiles of Yt, for example, in our analysis below, we con-

duct the search between the 15th and the 85th percentiles. In stage three, d

is searched over values between 1 and p, where p is set to a maximum value

(in our case we set 1 ≤ d ≤ 6). The search over d is carried out by repeating

both stage 1 and stage 2, and the selected value of d is, again, the value that

minimises the AIC.

The use of the SETAR model for forecasting purposes leads to some

typical problems of nonlinear models. Specifically, the computation of multi-

step-ahead forecasts from nonlinear models involves the solution of complex

analytical calculations and the use of numerical integration techniques, or

alternatively, the use of simulation methods. In this study, the forecasts
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are obtained by applying the Monte Carlo simulation method, so that each

point forecast is obtained as the average of 1000 replications. For example,

the 2-step-ahead Monte Carlo forecast is computed by

Ŷt+2|t =
1

k

k∑
i=1

F (Ŷt+1|t + ei; θ) (2)

where F(.) is the nonlinear function that represents the SETAR model of

equation (1), k is the number of iterations of the Monte Carlo (k = 1000),

Ŷt+1|t is the 1-step-ahead forecast, θ is the vector of the parameters αj, βj

defined above, and ei is the realisation of the error process drawn from the

distribution of εr,t+1, r = 1, 2 (see Franses and van Dijk [2000] and Cryer

and Chan [2008]). Notice that the drawing in period t + 2 is made from

a distribution with a variance appropriate for the regime the process is in,

which is determined by Ŷt+1|t.

3 Empirical analysis

We use data on monthly unadjusted series on Industrial Production for four

EU countries: France, Italy, Spain and the United Kingdom. The data are

taken from the OECD Main Economic Indicators. The sample runs from Jan-

uary 1975 to December 2011, the base year for the indices is 2005, the series

are analysed as annual (twelve-month) growth: yt = 100 ln(IPIt/IPIt−12).

The use of seasonally unadjusted series is advocated in several studies in

order to avoid the undesirable effects of filters such as the X-11, which may

obscure the features of the data and the distinction between regimes. Similar

transformation of this variable has been used by Franses and van Dijk [2005],

Teräsvirta et al. [1994], Granger and Teräsvirta [1993] and Teräsvirta and

Anderson [1992]. The variables are plotted in Figure 1. As we can observe,

the Great Recession of 2008-2009 has been very deep in France, Italy and

Spain, with the largest fall reaching 30% in Italy. In the case of the United
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Kingdom, the shrink of the IPI during the crisis of 2008-2009 has been less

pronounced. In order to detect the presence of nonlinearities in the series, we

perform two commonly used tests: the Tsay [1986] test and the Likelihood

Ratio (LR) test proposed by Tong [1990].

Figure 1: Annual rate of IPI growth
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As in Teräsvirta et al. [2005], the tests have been performed sequentially,

once every 12 months, starting with the period 1975.01-2005.12 and ending

with the period 1975.01-2011.12. For all the countries there is strong evidence

of nonlinearities over all of the samples considered, with the exception of

Italy for which linearity is rejected only when the last three years (2009,

2010, 2011) are added to the sample (see linearity tests in the Appendix).

In what follows, we estimate three types of models: a SETAR, a simple AR,

and a seasonal ARMA. All the models are estimated recursively, that is, the

first estimation is performed using the sample 1975.1-2005.12, and a first set

of 1, 3, 6 and 12-months ahead forecasts are calculated.
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Then, each time the models are re-estimated by expanding the sample

with one observation, a new set of forecasts are computed. This process is

repeated until the last available data point, that is, 1, 3, 6, 12 months before

December 2011, depending on the forecast horizon. These forecasts can be

considered genuine forecasts, as in the specification and estimation stage

we completely ignore the information embodied in the forecasting period.

Additionally, the models are re-specified once a year, such that the first

specification is based on data up to December 2005 and the last specification

on data up to December 2010. For all the models the optimal lag length is

selected on the basis of the Akaike information criterion.

In the case of France, Spain and the United Kingdom, the autoregressive

order of the AR model remains unchanged during most of the estimation

periods considered (p = 15, p = 14 and p = 16, respectively), whilst, in the

case of Italy, the order p changes depending on the sample employed (from

p = 12 to p = 15). Also the structure of the seasonal ARMA model remains

unchanged over the entire sample considered: for France, Italy and the United

Kingdom the model consists of three autoregressive terms in the regular part

and a moving-average term in the seasonal part, while, for Spain, the seasonal

component is captured by an autoregressive term. The identification process

for the SETAR models follows the description in Section 2. As it can be

observed from Table 1, the specification of the SETAR models changes over

time in terms of the number of lags entering each regime and the value of the

delay parameter. We also estimated various STAR models, but in most cases

they collapsed to a SETAR model. The behaviour of the variables analysed

is characterised by the presence of many sharp and abrupt changes, so the

switching mechanism of the SETAR model is more suitable than that of the

STAR model. All the estimations and forecasts for the SETAR models have

been carried out with the library TSA of R, for more information on the

working of this library see Cryer and Chan [2008].
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4 Forecasting exercise

The forecast accuracy of the models is assessed over the period 2006.01-

2011.12, which includes a period of expansion (2006-2007), a deep recession

(2008-2009) and a slow recovery (2010-2011). For both point and interval

forecasts we use the recursive scheme described in the previous section.

4.1 Point forecasts

The accuracy of the point forecasts is measured by the Root Mean Squared

Forecast Error (RMSFE). We then calculate the ratio between the RMSFE of

each of the linear models and that of the SETAR model: RAR = RMSFEAR/

RMSFESETAR and RSARMA = RMSFESARMA/RMSFESETAR. A ratio

greater than one means that the SETAR model outperforms the linear model.

For each country in Table 2 we report the results for forecasts with horizon h

equal to 1, 3, 6 and 12 months. In order to assess the sensitivity of the results

to specific sub-samples, the RMSFEs are calculated over the 12 forecasts

obtained in each year, with the exception of the 2006 ratios which are based

on a different number of forecasts, depending on the forecasting horizon.

Precisely, the ratios for 2006 are based on 12 forecasts for h = 1 month, 10

forecasts for h = 3 months, 7 forecasts for h = 6 months and 1 forecast for

h = 12 months. Additionally, for each horizon, the last row of Table 2 reports

the percentage of times the ratios are greater than one (ratios%), that is, the

percentage of times the SETAR model outperforms the linear benchmarks

over the whole forecast period. The last column reports a synthetic measure

of the performance of the models: the overall mean across countries and

years. The results are mixed, as they vary across countries, years and forecast

horizon. From Table 2 we can see that the highest gains of the SETAR models

are shown in the case of Spain with RMSFE ratios greater than one up to

73% times.
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Table 2: RMSFE Ratios by forecast sample period; h=1, 3, 6, 12.

h = 1 month
Forecast France Italy Spain United Kingdom overall
period RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA mean
2006:1-12 1.06 0.93 1.02 1.02 1.26 1.27 0.99 0.85 1.05
2007:1-12 1.02 1.10 1.02 1.01 0.98 1.05 1.25 1.41 1.11
2008:1-12 0.89 0.88 0.96 0.93 1.07 1.09 0.94 0.90 0.96
2009:1-12 1.14 1.21 1.11 1.03 1.21 1.13 0.76 0.78 1.05
2010:1-12 1.02 0.89 0.90 0.90 0.86 0.69 0.78 0.80 0.85
2011:1-12 1.07 1.11 0.94 1.12 0.79 0.82 0.82 0.77 0.93
ratios% 60% 51% 49% 58% 56% 65% 54% 38% 54%

h = 3 months
Forecast France Italy Spain United Kingdom overall
period RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA mean
2006:3-12 1.05 0.95 1.02 1.17 1.20 1.34 0.97 0.78 1.06
2007:1-12 0.93 1.01 1.04 1.10 1.03 1.09 0.99 1.20 1.05
2008:1-12 0.94 0.94 0.98 1.00 1.01 1.08 0.92 0.86 0.97
2009:1-12 0.76 0.78 0.89 0.89 0.96 0.94 0.84 0.87 0.87
2010:1-12 0.94 0.79 0.83 0.89 0.71 0.51 0.75 0.70 0.76
2011:1-12 1.04 0.93 0.90 1.05 1.07 1.08 0.73 0.63 0.93
ratios% 54% 34% 46% 53% 67% 73% 24% 17% 46%

h = 6 months
Forecast France Italy Spain United Kingdom overall
period RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA mean
2006:6-12 1.03 0.86 0.92 1.29 1.27 1.61 0.90 0.94 1.10
2007:1-12 1.02 1.02 0.97 1.14 1.00 1.14 0.89 1.03 1.03
2008:1-12 0.96 0.99 0.99 1.05 1.06 1.16 1.05 1.04 1.04
2009:1-12 0.65 0.68 0.84 0.85 0.92 0.99 0.96 0.97 0.86
2010:1-12 0.41 0.48 0.93 1.09 0.78 0.62 0.64 0.69 0.71
2011:1-12 1.41 1.07 1.03 0.91 0.90 0.96 0.57 0.59 0.93
ratios% 46% 33% 37% 60% 39% 63% 21% 16% 39%

h = 12 months
Forecast France Italy Spain United Kingdom overall
period RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA mean
2006:12-12 1.10 1.08 0.89 1.10 2.15 2.83 0.72 0.84 1.34
2007:1-12 0.98 1.02 0.96 1.10 1.05 1.30 0.78 0.82 1.00
2008:1-12 1.00 1.03 0.96 1.08 0.99 1.03 0.98 1.01 1.01
2009:1-12 0.99 0.99 1.00 1.00 1.05 1.07 1.01 1.04 1.02
2010:1-12 0.11 0.22 0.37 0.66 0.64 0.62 0.57 0.73 0.49
2011:1-12 1.37 1.23 0.76 0.49 0.62 0.49 0.61 0.68 0.78
ratios% 43% 51% 31% 46% 54% 61% 15% 25% 41%
RAR is the ratio RMSFEAR/ RMSFESETAR; RSARMA is the ratio RMSFESARMA/RMSFE-

SETAR. The last row of each panel reports the percentage of times the SETAR model outperforms
the linear counterparts, indicated as ratios%. The overall mean is the mean value across each row.
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There are cases of clear advantages for the SETAR model with ratios

around 1.61 (Spain, h = 6, forecast period 2006:6-2006:12), 1.41 (UK, h =

1, forecast period 2007:1-2007:12), 1.37 (France, h = 12, forecast period

2011:1-2011:12). However these outstanding results do not correspond to an

homogeneous forecast superiority of the SETAR model across all countries,

sample periods and horizons, as reflected by our synthetic measure of forecast

accuracy. In the 1-month-ahead forecasts the SETAR model has on average a

better performance 54% of the times across all countries and forecast sample

periods, whereas in the 3, 6 and 12-months-ahead forecasts the SETAR model

outperforms the linear models 46%, 39% and 41% of the times, respectively.

Surprisingly, but in line with the findings in Ferrara et al. [2012], there

is no clear superior performance of the SETAR models during the years of

recession. This reflects the inability to capture the turning points of the

business cycle even if a dynamic specification approach is adopted. Perhaps

a more frequent re-specification during the years of high instability could

play in favour of the SETAR model, although this would have a high com-

putational cost. Indeed the SETAR model in various occasions is able to

produce forecasts with an error up to 21 times smaller than that of the linear

model. For example the actual value of the IPI annual growth in 2007.01 for

the UK is 2.60, the SETAR 1-month-ahead forecast is 2.45, the AR forecast

is -0.66 and the seasonal ARMA forecast is -0.45, producing values for RAR

and RSARMA of 21 and 20 respectively. These remarkably accurate forecasts

typically occur in the months immediately after the models are re-specified.

The models are fully specified once a year, with the first specification based

on data up to 2005.12 and the last re-specification on data up to 2010.12. In

order to explore further the potential benefits of a full re-specification of the

models and the persistence of these benefits, for each forecast horizon, we

perform a sequential calculation of the RMSFE ratios, starting with the first

round of forecasts obtained after each of the six model re-specification, over
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the entire forecast period 2006.1-2011.12. We then add in the calculation of

the RMSFEs, one at a time, and for each forecast horizon, the forecast errors

from the next 11 rounds of forecasts based on the same model specification

as defined in December, though the models are recursively estimated for each

additional monthly observation included in the sample. The results of this

exercise, for each country and forecast horizon h=1, 3, 6, and 12, are reported

in Table 3. The first row of each panel reports the ratios of the RMSFEs for

the first round of forecasts, that is the January forecasts for h=1, the March

forecasts for h=3, the June forecasts for h=6 and the December forecasts

for h=12. The second row of each panel reports the results for the first and

second rounds of forecasts, and so on, up to the last row, which reports the

results for all of the 72 forecasts for h=1, 70 forecasts for h=3, 67 forecasts

for h=6 and 61 forecasts for h=12.

Table 3 also reports, in the last column, the overall mean of the RMSFE

ratios across countries. As we can see, there are notable overall gains across

countries for the SETAR models, relative to the linear benchmarks, for the

first round of forecasts, with gains in the order of 36% for h=1, 10% for h=3,

and 33% for h=6. Looking at the results by country, the re-specification

yields large immediate benefits to the SETAR models, with gains up to 69%

(France, h=1), 45% (Spain, h=1), 46% (UK, h=1), but it is also evident

from Table 3 that the gains to the SETAR models are consequently reduced

in the successive forecast rounds. There are no gains, overall, to the SETAR

models for h=12, although we can observe some benefits immediately after

the re-specification, with gains of 13% for Italy and 7% for Spain. Finally, it

is of interest to note that the benefits of the re-specifications of the SETAR

models persist for several months for h= 1, while the results for h=3 and h=6

show a clear tendency for the gains to the SETAR models to disappear faster.

These results lend support to the dynamic specification approach suggested

by Teräsvirta et al. [2005].
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Table 3: Impact of model specification: RMSFE Ratios by forecast rounds;
h=1, 3, 6, 12. Forecast period: 2006.1-2011.12

h = 1 month
Forecast France Italy Spain United Kingdom overall
rounds RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA N.F. mean
January 1.69 1.56 1.10 1.13 1.45 1.20 1.46 1.31 6 1.36
Jan-Feb 1.47 1.34 1.10 1.13 1.66 1.28 1.01 0.88 12 1.23
Jan-Mar 1.28 1.25 1.27 1.23 1.20 1.13 1.02 0.95 18 1.17
Jan-Apr 1.27 1.25 1.27 1.23 1.05 1.01 0.98 0.88 24 1.12
Jan-May 1.16 1.16 1.13 1.07 1.11 1.06 0.99 0.92 30 1.08
Jan-June 1.14 1.15 1.12 1.07 1.08 1.03 1.00 0.91 36 1.06
Jan-July 1.07 1.07 1.08 1.02 1.08 0.99 1.01 0.91 42 1.03
Jan-Aug 1.05 1.04 1.07 1.02 1.07 0.98 0.98 0.93 48 1.02
Jan-Sept 1.06 1.04 1.05 1.00 1.00 0.91 0.95 0.90 54 0.99
Jan-Oct 1.05 1.01 1.03 0.99 0.96 0.90 0.96 0.91 60 0.98
Jan-Nov 1.01 0.99 1.02 0.99 1.03 0.97 0.91 0.87 66 0.98
Jan-Dec 1.01 1.00 1.01 0.99 1.02 0.99 0.88 0.86 72 0.97

h = 3 months
Forecast France Italy Spain United Kingdom overall
rounds RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA N.F. mean
March 1.24 1.31 1.02 1.07 1.04 1.10 1.01 0.98 6 1.10
Mar -Apr 1.36 1.39 1.10 1.13 0.90 0.98 0.91 0.81 12 1.07
Mar-May 1.13 1.21 1.11 1.15 0.86 0.98 0.90 0.83 18 1.02
Mar-Jun 1.03 1.10 1.04 1.07 0.82 0.85 0.91 0.83 24 0.96
...

...
...

...
...

...
...

...
...

...
...

Mar -Feb 0.88 0.85 0.90 0.93 0.94 0.94 0.86 0.82 70 0.89

h = 6 months
Forecast France Italy Spain United Kingdom overall
rounds RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA N.F. mean
June 1.98 2.05 1.07 1.18 1.10 1.20 1.02 1.02 6 1.33
Jun-Jul 1.21 1.20 1.16 1.23 1.07 1.02 0.92 0.92 12 1.09
Jun-Aug 0.60 0.59 1.13 1.20 0.92 0.83 0.87 0.97 18 0.89
Jun-Sept 0.55 0.50 0.86 0.86 0.88 0.71 0.89 0.96 24 0.78
...

...
...

...
...

...
...

...
...

...
...

Jun-May 0.71 0.72 0.87 0.90 0.93 0.98 0.87 0.89 67 0.86

h = 12 months
Forecast France Italy Spain United Kingdom overall
rounds RAR RSARMA RAR RSARMA RAR RSARMA RAR RSARMA N.F. mean
December 0.74 0.87 1.02 1.13 1.07 1.00 0.97 1.01 6 0.98
Dec-Jan 0.58 0.61 0.98 0.97 0.92 0.90 0.98 1.02 11 0.87
Dec-Feb 0.32 0.33 0.90 0.88 0.89 0.89 0.93 0.94 16 0.76
Dec-Apr 0.29 0.32 0.74 0.74 0.85 0.85 0.92 0.96 21 0.71
...

...
...

...
...

...
...

...
...

...
...

Dec-Nov 0.40 0.43 0.79 0.83 0.91 0.92 0.90 0.95 61 0.77

N.F.: Number of forecasts used to calculate the RMSFEs.
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4.2 Interval forecasts

In this section we broaden our forecast comparison to the ability of the model

to produce correct interval forecasts. An interval forecast for a variable is the

probability that the future outcome will fall within a stated interval. The

lower and upper limits of the interval forecast are given as the corresponding

percentiles. We use central intervals, so that for example, the 90% forecast

interval is formed by the 5th and 95th percentiles. Evaluation of interval

forecasts is conducted by means of the likelihood ratio test of correct condi-

tional coverage (LRCC) as proposed by Christoffersen [1998]. Christoffersen

[1998] shows that a correctly conditionally calibrated interval forecast will

provide a hit sequence It (for t = 1, 2, · · · , T ), with value 1 if the realisation

is contained in the forecast interval, and 0 otherwise, that is distributed i.i.d.

Bernoulli, with the desired success probability c.

As stressed by Christoffersen [1998], a simple test for correct uncondi-

tional coverage (LRUC) is insufficient in the presence of dynamics in higher-

order moments (conditional heteroscedasticity, for example) because it does

not have power against the alternative that the zeros and ones are clustered

in time-dependent fashion. in this sections see Christoffersen [1998].

In order to overcome this limitation, Christoffersen [1998] proposes a test

for independence (LRIND) which assumes a binary first-order Markov chain

for the indicator function It. Under the null hypothesis of independence, the

test follows a χ2 distribution with one degree of freedom. The joint test of

correct conditional coverage, LRCC , is obtained as the sum of LRUC and

LRIND, and is asymptotically χ2 distributed with two degrees of freedom.

For a detailed description of the tests we refer the reader to Christoffersen

[1998].

The interval forecasts at 1, 3, 6 and 12-months-ahead have been computed

using the recursive scheme on expanding windows as described previously.
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The intervals of the SETAR models are calculated using the corresponding

percentiles of the 1000 replications performed during the forecasting process.

The results of the LR tests reported in Table 4 refer only to the 1-month-

ahead forecasts, while the results for the 3, 6 and 12-months-ahead are avail-

able upon request. The table reports different nominal coverages c in the

range (0.95-0.5), the empirical coverage π and the p-values of the three LR

tests. Unlike the point forecast exercise, the tests on the interval forecasts

have been performed over the entire forecasting period 2006.01-2011.12.

The results show that for Spain and Italy, for almost all levels of coverage,

the SETAR model is the only model to pass all the three tests at the 10%

significance level, while both linear models show some evidence of violation

of the independence assumption, therefore failing the independence test. In

the case of France, none of the models performs satisfactorily in terms of

the correct conditional coverage test, due to failure of correct unconditional

coverage at all intervals. Specifically, all the models appear to generate in-

terval forecasts with actual coverage (π) smaller than the nominal coverage

(c). That is, the interval forecasts corresponding to 95, 90, 75 and 50% are

too small, as less than 95, 90, 75 and 50% observations actually fall into

those intervals. These results may be attributed to an under-estimate of the

standard errors used in the calculation of the forecast intervals. Both linear

and non-linear models appear to perform equally well in the case of the UK.

For longer forecast horizons, all models showed a deterioration of the accu-

racy of the interval forecasts in terms of both unconditional coverage and

independence.

16



T
ab

le
4:

In
te

rv
al

F
or

ec
as

ts
ev

al
u
at

io
n
:

L
R

te
st

s
fo

r
u
n
co

n
d
it

io
n
al

co
ve

ra
ge

,
in

d
ep

en
d
en

ce
an

d
co

n
d
it

io
n
al

co
ve

ra
ge

.
1-

st
ep

-a
h
ea

d
fo

re
ca

st
s;

fo
re

ca
st

in
g

p
er

io
d
:

20
06

.1
-2

01
1.

12
.

F
ra

n
ce

A
R

S
A

R
M

A
S

E
T

A
R

c
π

L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

0
.9

5
0
.8

5
0
.0
3
0

0
.2

13
0
.0
4
4

0.
83

0
.0
1
6

0.
31

0
.0
3
2

0.
79

0
.0
0
2

0.
20

8
0
.0
0
3

0
.9

0
0
.7

3
0
.0
1

0
.2

57
0
.0
1
6

0.
73

0
.0
0
8

0
.0
5
8

0
.0
0
5

0.
66

0
.0
0
0

0.
31

7
0
.0
0
1

0
.7

5
0
.5

9
0
.0
5
4

0
.4

86
0
.1

23
0.

59
0
.0
5
4

0.
17

8
0
.0
6
3

0.
49

0
.0
0
2

0.
38

9
0
.0
0
6

0
.5

0
0
.3

1
0
.0
3
2

0
.2

03
0
.0
4
5

0.
41

0.
30

8
0.

13
7

0.
19

7
0.

31
0
.0
3
2

0.
30

5
0
.0
6
0

It
al

y

A
R

S
A

R
M

A
S

E
T

A
R

c
π

L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

0
.9

5
0
.9

2
0
.4

21
0
.0
5
5

0.
11

4
0.

94
0.

87
4

0
.0
0
9

0
.0
3
1

0.
90

0.
27

1
0.

10
0

0.
14

1
0
.9

0
0
.9

2
0
.7

69
0
.0
5
5

0.
15

1
0.

90
0.

97
9

0.
10

0
0.

25
8

0.
89

0.
81

8
0.

16
3

0.
36

8
0
.7

5
0
.7

7
0
.7

49
0
.0
6
3

0.
16

8
0.

77
0.

74
9

0
.0
2
3

0
.0
7
2

0.
73

0.
82

3
0.

13
0

0.
31

0
0
.5

0
0
.5

5
0
.5

84
0.

25
7

0
.4

53
0.

55
0.

58
4

0.
20

0
0.

37
9

0.
48

0.
81

4
0.

39
3

0.
67

6

S
p

ai
n

A
R

S
A

R
M

A
S

E
T

A
R

c
π

L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

0
.9

5
0
.8

7
0
.0
9
8

0
.0
0
5

0
.0
0
5

0.
89

0.
16

7
0
.0
4
7

0
.0
5
3

0.
90

0.
27

1
0.

41
4

0.
39

1
0
.9

0
0
.8

3
0
.2

40
0
.0
1
4

0
.0
2
4

0.
87

0.
63

3
0
.0
8
4

0.
20

1
0.

79
0
.0
6
8

0.
40

9
0.

13
5

0
.7

5
0
.7

3
0
.8

23
0.

16
3

0
.3

69
0.

76
0.

89
2

0
.0
4
4

0.
13

0
0.

68
0.

35
7

0.
50

3
0.

52
2

0
.5

0
0
.5

2
0
.8

14
0
.0
2
1

0
.0
6
9

0.
56

0.
48

1
0.

74
5

0.
74

0
0.

41
0.

30
8

0.
30

7
0.

35
3

U
n

it
ed

K
in

gd
om

A
R

S
A

R
M

A
S

E
T

A
R

c
π

L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

π
L
R

U
C

L
R

I
N
D

L
R

C
C

0
.9

5
0
.9

4
0
.8

74
0.

64
9

0
.8

90
0.

94
0.

87
4

0.
64

9
0.

89
0

0.
90

0.
27

1
0.

79
6

0.
52

8
0
.9

0
0
.9

2
0
.7

69
0.

48
8

0
.7

53
0.

93
0.

56
5

0.
56

6
0.

71
9

0.
86

0.
47

3
0.

34
8

0.
49

8
0
.7

5
0
.8

0
0
.4

87
0.

29
5

0
.4

54
0.

82
0.

37
5

0.
75

2
0.

64
1

0.
79

0.
61

3
0.

40
9

0.
62

5
0
.5

0
0
.5

1
0
.9

38
0.

93
7

0
.9

94
0.

54
0.

69
6

0.
95

1
0.

92
5

0.
59

0.
30

8
0.

24
6

0.
30

4

In
b

o
ld

ar
e

re
p

or
te

d
th

os
e
p
-v
a
lu
es

fo
r

w
h

ic
h

th
e
H

0
of

th
e

L
R

te
st

s
is

re
je

ct
ed

at
10

%
.
c

in
d

ic
at

es
th

e
n

om
in

a
l

co
v
er

a
ge

a
n

d
π

in
d

ic
at

es
th

e
ac

tu
al

u
n

co
n

d
it

io
n

al
co

v
er

ag
e.

17



5 Conclusions

In this paper we have studied the forecast accuracy of SETAR models in an

application to the monthly Industrial Production Index of four major Eu-

ropean countries. This assessment has been done on the point and interval

forecasts and using as benchmark the forecasts of two standard linear mod-

els. Using data covering the last Great Recession up to December 2011, we

followed the recommendations of Teräsvirta et al. [2005] who suggest that

frequent model re-specification increases the forecast accuracy of nonlinear

models. So, in our forecasting exercise, the models were re-estimated each

time a new observation was added to the sample, using a recursive scheme on

expanding windows and fully re-specified at the beginning of each forecasting

window.

The forecast evaluation was conducted at the 1, 3, 6 and 12-months-ahead

for both point and interval forecasts. SETAR models produced superior point

forecasts in case of 1-month-ahead forecasts 56% of the times, and only 46%,

39%, 41% for the 3, 6 and 12-months-ahead forecasts. As in Teräsvirta

et al. [2005] we found that dynamic re-specification of the SETAR models

resulted in a better forecasting performance, and this finding, in our case,

was particularly evident for the 1-month-ahead forecasts. Interestingly, and

in line with previous findings by Ferrara et al. [2012], the advantages of the

SETAR models are less pronounced during the recession period. The interval

forecasts performance also varied with the forecast horizon. For the 1-month-

ahead forecasts there were cases of clear superior performance of the SETAR

models, while for longer horizons, both linear and nonlinear models showed

a tendency to deteriorate by failing either the unconditional coverage or the

independence test, or both.
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