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Abstract: Contagion in financial markets has been one the most active areas of research, 

especially during the last decade and due to the major incidents during the Global Financial 

Crisis and the European Financial Crisis. However, two of the most important questions that 

remain after a financial crisis are what are the determinants of the crisis and how can we 

forecast an incident based on suitable indicators. The purpose of this study is twofold. First, to 

develop a measure of contagion based on the multiscale nature of the financial contagion. 

Second, to examine how financial contagion is spread in the US economy in different 

frequencies based on the proposed measure. We assert that important information on an 

upcoming crisis, not observed in the original data, may be revealed by performing a time-

frequency analysis of the time-series and the cross-section of stock returns. We use wavelet 

analysis to decompose the returns and network analysis to compute various network 

characteristics related to contagion. Our proposed methodology allow us to: understand the 

short-, mid- and long-term connections of the network, bring out structures/relations that are 

not visible initially and mask the true connections between companies, study how the networks 

measures change over scale, and finally, examine the distribution of contagion at different time-

horizons and scales. 
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1. Introduction 

 

Contagion in financial markets has been one of the most active areas of research especially 

during the last decade and the major incidents during the global financial crisis and the 

European financial crisis. Most of this research aims at uncovering the factors that affect 

contagion in order to propose solutions that limit it in the future. One of the factors that impose 

burdens in this task is the structure of the financial market itself. The rapid development of 

financial markets through the last decades led them to evolve in complex systems due to the 

large number of agents and relations among them. These complex structures increase the 

difficulty of the assessment of contagion. In this respect, thinking of financial markets as 

complex systems, it is natural to use methods like network analysis in order to assess the 

relationships between the various agents, (for example see Mantegna (1999). Previous studies 

have used a number of methods to assess contagion among which were connectedness 

measures (Billio et al. (2012). 

One of the important steps in the analysis is to correctly identify the relations between the 

actors of the network. Previous studies were based on stock returns to form either undirected 

networks, with the use of correlations, or directed networks with the use of Granger causality 

tests (Billio et al. (2012). In both of these cases a typical problem that emerges, taking in mind 

the large number of relations, is that information may continue to be hidden due to the large 

complexity of the network especially in the case of daily data. In this respect, Onnela et al. 

(2004) used a Minimum Spanning Tree algorithm to filter the relations and extract from the 

network those relations that were deemed important for their analysis. However, such methods 

do not come without costs. The algorithm used in such cases may neglect essential information 

from the network (Chi et al., 2010). 

In this study, we focus on the multiscale analysis of financial contagion based in the 

application of wavelet analysis (WA). For a correct analysis of daily returns, both local and 

global information is needed. Hence, WA is ideal for this task since it can reveal these 

characteristics by decomposing the stock returns time-series in different scales. Moreover, the 

wavelet transform has good frequency resolution for low-frequency events and good time 

resolution for high-frequency events and can bring out trends, jumps or structural breaks, 

Mallat (1999). 

Following Billio et al. (2012), we estimate the adjacency matrix of the network on the 

wavelet decomposed data using Granger causality tests and then we compute a number of 

network characteristics related to contagion. In turn, these measures are used as determinants 



of contagion, where contagion is estimated as the out-degree centrality of a node. Put 

differently, a node with a high number of out-connections has a higher likelihood to transfer 

contagion to the nodes in his neighbor. 

The research motivation of the study lies with previous studies that tried to assess contagion 

in financial systems that are complex systems with large numbers of actors. In these cases, the 

frequency of the data may impose additional limitations to the analysis. The present study 

attempts to develop a method for assessing the relation in a network by first decomposing the 

data used to assess the relation (stock returns) based on both its frequency and time domain. 

For the task in hand, we use wavelet analysis to disentangle the various signals that may lie in 

the time series and the cross-section of stock returns and then use these wavelet transforms to 

form the network and calculate the network characteristics. 

The research question of the study concerns the likely existence of differences in the relation 

between contagion and network characteristics, due to the use of signals related to different 

measurement frequencies retrieved from the primary data, to estimate the variables of interest 

(contagion and network variables). In other words, specific contagion incidents of interest may 

take place at different frequencies than the frequency observed in the original data. Thus, the 

merit of this analysis has to do with the decomposition of stock returns in various frequencies 

prior to estimating the network and contagion variables. This approach enables us to examine 

both the relationship between contagion and network characteristics, as well as, the changes in 

this relation as we move from higher to lower frequencies. WA is ideal for this type of analysis 

since it alleviates the problem of data reduction when different frequencies are used. 

The results of the study show that the decomposition provides a number of important 

research findings that could not be uncovered using only the raw data. In this respect, certain 

network characteristics like clustering may enhance the contagion effects in some cases, while 

eigenvector centrality seems to limit it, but the effects of both clustering and eigenvector 

centrality are not constant at different scales. Moreover, contagion seems to be limited in 

certain cases by the contemporaneous presence of clustering and eigenvector centrality. In sum 

our results point towards the existence of different information content for contagion through 

the various timescales. 

The remainder of the study is as follows: Section 2 reviews the literature and develops the 

research hypotheses. Section 3 explains the methodology used in the study. Section 4 presents 

the descriptive statistics and analyses the empirical results and last Section 7 concludes the 

study. 



2. Literature Review and Research Hypotheses 

 

Explaining contagion has been the subject of a large number of studies due to the profoundly 

negative effects that it can have in the financial markets and the economy in general. Studies 

on contagion used a number of methods which likely suffered from loss of information due to 

the complex nature of the financial system. During the last years a new trend arose based on 

the use of networks. Mantegna (1999) is one of the first studies to use network models in order 

to examine the relation in the stock market. Billio et al. (2012) use a number of connectedness 

measures as proxies for systemic risk. Elliott et al. (2014) use network analysis to directly 

examine the impact of contagion in a financial network among intermediaries. Acemoglu et al. 

(2015) develop a methodology for examining contagion based on the use of financial networks. 

A problem that emerges in the empirical application of the networks is the large information 

set that may emerge and makes inference difficult. Some studies apply filters that eliminate 

part of the information in the network in order to provide a clearer view of the relation between 

the actors if the network, i.e. Tumminello et al. (2005). In this strand of literature, Onnela et 

al. (2004) use a Minimum Spanning Tree algorithm which filters relations and extracts only 

those that are deemed important for the analysis. On the other hand, Chi et al. (2010) base the 

mapping of the relations on correlations and choose only correlation of high values in order to 

proceed to their analysis. However, using a subgraph of the total network in order to remove 

noise may lead to a loss of information. 

Apart from filtering the relations in the network there are other tools that can be used to 

filter the noise and provide a more analytical view of large networks with a large number of 

nodes. In specific, partitioning based on the frequency of stock returns, by using WA, has 

provided a very powerful tool for decomposing time series. For example Kim & In (2005) use 

multiscale analysis to assess the relation between stock returns and inflation for a number of 

time scales. Reboredo & Rivera-Castro (2014) use a similar methodology based on WA to 

examine the relation between oil prices and stock returns. The authors argue that the main 

problem of the analysis on the above relation has to do with the limited time scales used, which 

can be encountered using a multiscale analysis. 

Contagion in financial markets may follow a number of streams among which may be 

channels with short or medium-term dynamics. Put differently, contagion is like an epidemic, 

where the spread may not be observed only in the short term or only in the medium term. 

Therefore, allowing for a multiscale horizon may provide useful evidence on the spread of 

contagion that were previously unused due to focusing only on short term dynamics. Indeed, 



Gençay et al. (2005) provide evidence that the relation between stock returns and beta becomes 

stronger as we move to higher scales. 

Therefore, the research hypotheses of the study are related to differences in contagion 

between the timescales. In specific, the first set of research hypotheses assert that the degree of 

clustering is positively related to the outdegree centrality and moreover this relation becomes 

stronger as we move to higher scales (low frequency). The rational is that, the more closely 

related are the nodes the higher the likelihood of a high outdegree centrality due to the more 

probable spillover of shocks. Moreover, for low scale shocks, market mechanisms may be 

adequate to absorb it, however, for more persistent idiosyncratic shocks the contagion is more 

probable and is also a function of the connectedness. Therefore, the first set of research 

hypotheses of the study is formulated as follows: 

 

H1A: The higher the connectedness of a bank in the form of clustering, the higher the number 

of connections to other nodes in the form of outdegree centrality. 

 

and 

 

H1B: The relation between connectedness of a bank in the form of clustering and the number 

of connections in the form of outdegree centrality is a direct function of the scale of the channel 

of contagion after a shock. 

 

On the other hand, we expect that a shock for banks with high eigenvector centrality, which 

accounts for the importance of the other nodes to which the node of interest is attached, will be 

negatively related to contagion and this negative relation will become stronger as we move to 

higher scales. This hypothesis is based on the assertion that a shock in these firms may not pass 

through to their connected nodes if the later are significant nodes of the network and this effect 

will be a direct function of the size of scale. Put differently, the higher the scale the more 

immune are significant nodes of the network to contagion from less important nodes due to the 

existence of a larger time-window to attain the effects of the shock. Therefore, our second set 

of research hypotheses are as follows: 

 

H2A: The higher the eigenvector centrality of a bank, the lower the number of connections 

to other nodes in the form of outdegree centrality. 

 



and 

 

H2B: The relation between eigenvector centrality of a bank and the number of connections 

in the form of outdegree centrality is an indirect function of the scale of the channel of 

contagion after a shock. 

 

The third set of research hypotheses has to do with the contemporaneous effects of clustering 

and eigenvector centrality. In specific, we argue that any increasing effects of clustering on 

outdegree centrality may be limited by the contemporaneous presence of high eigenvector 

centrality. In this respect the third set of research hypotheses is as follows: 

 

H3A The higher the eigenvector centrality and clustering the lower the probability of 

contagion 

 

and 

 

H3B The higher the eigenvector centrality and clustering in higher scales the lower the 

probability of contagion than in lower scales 

 

The last research hypothesis has to do with the financial health of the firm. To assess the 

financial health of the firm we use accounting measures such as the book-to-market ratio, the 

leverage and the return-on-assets. We hypothesize that a bank with strong financial health, as 

measured by the previous indicators, will be more immune to contagion at least for lower 

scales. However, we expect that a prolonged period of shocks will likely lead to a generalized 

contagion in the market. Therefore, our third research hypothesis is as follows: 

 

H4: High scale contagion is related positively to more financially healthy firms. 

3. Research Methodology 

 

The methodology of the study is divided in three interrelated parts. The first describes the 

use of wavelet analysis in the decomposition of stock returns based on scale. In the second part, 

we develop the financial network formation and the estimation of the network parameters. 

Finally, in the third part present the main models of this study. 



 

3.1 Wavelet Analysis 

 

In this section, we provide a quick presentation of the multiscale wavelet analysis (WA). 

The wavelet transform is localized in both time and frequency and overcomes the fixed time-

frequency partitioning providing many advantages over alternative methods, e.g. (short-time) 

Fourier transform. The discrete wavelet transform provides efficient means of analyzing a time-

series according to scales. WA is very flexible in handling very irregular data series and can be 

used to identify trends, jumps or periodicities that originally cannot be observed, Donoho & 

Johnstone (1994). As mentioned in  Conlon et al. (2016), Ramsey (1999), these characteristics 

are very common in financial time-series. 3 Finally, using WA we can represent highly complex 

structures without knowing the underlying functional form which is of great benefit in 

economic and financial research, Ramsey (1999). In this study we use the Maximal Overlap 

Discrete Wavelet Transformation (MODWT) motivated by its many advantages over the 

classic DWT (see Percival & Walden (2000)). 

The wavelet representation of a time-series is given by:  

        , , , , 1, 1, 1, ,( ) j k J k J k J k J k J k k j k

k k k k

f t s t d t d t d t              (1) 

where J is the number of scales and k is the kth coefficient. The smooth and detail component 

coefficients are given by 

    , , ,       ,j k j ks f t t dt k j




    (2) 

    , , ,       ,j k j kd f t t dt k j




    (3) 

respectively where the functions  ,j k t  and  ,j k t  are called the father and the mother 

wavelet functions. By setting 

 , ,( ) ( )j j k j k

k

S t s t    (4) 

 , ,( ) ( )j j k j k

k

D t d t    (5) 

                                                 

3 A sample of recent papers that have used WA to analyse financial time-series can be found in Alexandridis 

& Zapranis (2013), (2014), Conlon & Cotter (2012), Conlon et al. (2016), Fernandez (2006), Gençay et al. (2005), 

In & Kim (2006), Kim & In (2005), Ramsey (1999). 



the original time-series can be reconstructed. This reconstruction in called the multi-resolution 

analysis (MRA) and can be written as: 

 

    , , , , 1 1( ) ( ) ( ) ( ) ( )J k J k j k j k J J J

k Z j Z k Z

f t s t d t S t D t D t D t  

  

          (6) 

 

At each level j of the MODWT we split the time series (the approximation 1jS  ) into two parts. 

This first one is a detail signal at level j, jD , that captures short-term deviations in the time-

series while the second one is the new approximation at level j, jS , that captures the long-term 

components. We denote the original time-series as the approximation 0S . 

 

3.2 Formation of the Network and Estimation of the Basic Parameters 

 

We decompose the idiosyncratic returns to J+1 signals ( 1,..., ,J JD D S ) obtained from the 

MODWT described in the previous section. Then we form the adjacency matrix of the network 

for each scale. 

For the estimation of the idiosyncratic returns we use the CAPM with leads and lags of the 

market return, 
mr , following Dimson (1979). The model is as follows: 

 

       
   

      , 0 1 , 2 2 , 1 3 , 4 , 1 5 , 2 ,i w m w m w m w m w m w i wr r r r r r   (7) 

 

where ri,w is the weekly stock return of firm i at week w, rm is the market return and ,i w  is the 

error term. We estimate model (7) annually for each scale j. 

The adjacency matrix, A, maps the relations between the nodes of the network into 1 and 0. 

It is a square matrix and is used to represent a graph through assigning 1 if there is a relation 

between nodes i and j and zero otherwise. If the graph is undirected (causality runs in both 

directions and is amphidromous) then the matrix is symmetric and the element i,j is equal to 

the element j,i. If the graph is a directed graph (the causality may run from one node to the 

other but the opposite is not compulsory) then the i,j element may not be equal to the j,i element 

of the matrix.  

Following Billio et al. (2012), we perform Granger causality tests, Granger (1969), in order 

to map the network. Hence, we construct a directed network. Specifically, if the weekly returns 



of firm i in week w Granger-cause the weekly returns of firm j in week w then the i,j element 

of the thk  adjacency matrix, corresponding to the thk  scale, takes the value of 1 and the value 

of 0 in the opposite case. 

The adjacency matrix is used to estimate the out-degree of each node. The out-degree of 

node i, 
out

id , is estimated as the number of other nodes that are affected by the node of interest. 

We divide 
out

id  by the total number of nodes that could have been affected by the node of 

interest in order to standardize the measure as a percentage. As explained above, node i is 

affected by node j if the stock returns of the later Granger-cause the stock returns of the former. 

The total degree of node i is given by the summation of the in- and the out-degree, 

tot in out

i i id d d  . 

We also compute the clustering coefficient between the nodes of the system following 

Fagiolo (2007). The methodology of Fagiolo is based on the methodology of Watts & Strogatz 

(1998) with the difference that is suited for binary directed networks: 

 

 
 

 

3

2 1 2

T

ii
i tot tot
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A A
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d d d




  
 

  (8) 

 

where A is the adjacency matrix,  
3

T

ii
A A  is the ii element of  

3
TA A , 

totd  is the total 

degree  and 
id  is the number of bilateral edges between node i and its neighbors given that no 

self-interactions exist, 
2

i ij ji ii

i j

d a a A



   where 
2

iiA  is the i diagonal element of 
2A A A  . 

The last measure is the eigenvector centrality which measures the “prestige” of node i. High 

eigenvector centrality indicates that node i (or bank i) is highly connected or is connected to 

important neighbours (or both).  Newman (2010) argues that estimating eigenvector centrality 

using a directed network may be problematic. To alleviate this we estimate the eigenvector 

centrality by constructing the adjacency matrix B based on the correlation matrix that uses as 

inputs the idiosyncratic stock returns. The eigenvector centrality measure is given by: 

 


 
1

i ij j
j

Eigencentrality B Eigencentrality   (9) 

where λ is a the leading eigenvalue of the adjacency matrix B. 

We estimate the above measures for each scale of the decomposed returns. 

  



3.3 The Main Models 

 

The contagion measure used in the study is based on financial networks contagion studies 

(i.e. Billio et al., 2012). We define contagion as the transmission of shocks among the 

connected firms. In this respect, we measure connectedness using the out-degree centrality. 

Out-degree centrality is a measure of connections of the node of interest to others. A high out-

degree centrality expresses the risk a specific bank related to its shocks flowing through the 

network. Hence, a high number of nodes affected by the node of interest leads to a higher 

likelihood of contagion. For the task in hand we use the decomposition methodology described 

in Section 3.1 and estimate the out-degree centrality for the J+1 decompositions of the 

idiosyncratic returns. Next, we use Granger Causality tests and estimate the contagion variable 

as the ratio of the number of nodes affected by the node of interest to the total number of nodes 

that could have been affected by the node of interest and this variable is estimated for each J+1 

decomposition. The main model express contagion as a function of a number of accounting 

and auditing characteristics of a bank and is estimated in an under a panel data approach with 

period fixed effects and robust standard errors. In algebraic form the model is as follows: 

 

 
   

    

   

    

, 0 1 , 2 , 3 ,

4 , 5 , 5 , 6 , ,

i t i t i t i t

i t i t i t i t i t

Contagion Size Leverage MtB

RoA NCSKEW Eigcentrality Clustering
  (10) 

 

where Size is the logarithm of total assets, Leverage is the bank’s leverage ratio, MtB is the 

Market-to-Book ratio and RoA is the return on assets. Clustering is the measure of clustering 

given by equation (8), NCSKEW is the negative skewness stock crash risk presented in Chen 

et al. (2001) and Eigcentrality is the eigenvector centrality measure described in equation (9).  

The measure of Chen et al. (2001) is defined as follows: 
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where ri,t is the idiosyncratic weekly return of firm i for week t, as estimated from equation (7) 

and n is the number of weekly observations in each year. 



Finally, we extend model (10) in a Difference-in-Differences fashion. This approach will 

help us examine the effects of cross-terms between high eigenvector centrality, high clustering 

and NCSKEW. The extended model is as follows: 
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where _High Eigcentrality  is a dummy variable taking the value of 1 if the eigencentrality of 

bank i is higher than the median of the year and zero otherwise. Similarly, _High Clustering  

take the value of 1 if bank’s i centrality is above the median of the year and zero otherwise.  

4. Data  

The sample of the study comes from US banks and comprises of two parts (subsamples). 

The first sample has a weekly frequency and is used to estimate, the contagion measures, the 

clustering, the sigma measure and eigenvector centrality. The second sample has an annual 

frequency and is used to estimate the main models. This sample includes 240 banks with 4,140 

year observations (these numbers may decrease due to data unavailability and the 

corresponding statistics are reported in the related Tables). 

Our dataset used to estimate the yearly contagion and network measures ranges from 

5/1/1996 to 31/12/2016 consisting of 1,096 observations of weekly returns and were obtained 

from the Bloomberg database while, the mr   and the risk-free interest rate, fr  (where fr  is the 

1-month T-bill rate), were obtained from the Kenneth French database. Having estimated the 

annual contagion and network measures using he above dataset we then estimate the rest of the 

annual measures by obtaining the relevant data from the Compustat database. The original 

dataset consists of data corresponding to 674 US banks. We keep only the banks where we 

have at least 950 observations reducing our sample to 240 US banks. 

 

[Insert Table 1 approximately here] 

 



Table 1 presents the descriptive statistics of the out-degree centrality, the Size, the Leverage, 

MtB, RoA, COUNT_VOL, NCSKEW, EXTRA_SIGMA, Eigcentrality and Clustering. The 

decompositions corresponding to j=1 to 5 regard the corresponding wavelet decompositions, 

the S index regards the long-term decomposition and the original index regards the actual 

returns (without decomposition). A closer inspection of Table 1 reveals that the dependent 

variable is lower for lower scales and increases as the scale increase. This shows that in lower 

scales the number of nodes affected by the node of interest is lower, likely implying that the 

low-scale shocks may not persist, while on the contrary, the higher the scale of a shock the 

higher the probability of persisting in the system. 

Figure 1 presents a correlation plot of the dependent and independent variables. A closer 

inspection of Figure 1 reveals correlations very close to zero between the variables with an 

exception of NCSKEW and EXTRA_SIGMA in the original returns and MtB and RoA. 

 

[Insert Figure 1 approximately here] 

5. Empirical Results 

 

Table 2 presents the results of estimating equation (10), which are used as a benchmark. As 

it can be seen the coefficient of eigenvector centrality is negative and significant in most cases. 

This result provides support to Research Hypothesis H2A  by showing that the more important 

is the neighbor of a node of interest, the more difficult for a shock to pass through him in the 

network. Moreover, we also see that moving from higher frequencies to lower frequencies 

(from Panel A to Panel F) the coefficient of eigenvector centrality becomes more negative. 

This result provides support to Research Hypothesis H2B due to showing that the more 

important the nodes connected to the node of interest the less likely that it will affect the change 

in out-degree centrality as we move to higher scales. Put differently, the higher the 

measurement scale, the less probable is that a firm will affect its neighbors, if its neighbors are 

important in the system in the long run. 

On the other hand, focusing on the original data (Panel G) we also observe a negative 

relation between eigenvector centrality and the level of the out-degree centrality, however with 

a much lower coefficient in relation to other Panels in the Table. The above results confirm the 

importance of analyzing the contagion in a multiscale framework. 

The analysis of the clustering coefficient in Table 2 shows that it is positively related to 

contagion as measured by the out-degree centrality and thus provides support to Research 



Hypothesis H1A. This result shows that, the more clustered the nodes in the neighbor of a node 

of interest, the higher the level of outdegree centrality and hence the more probable is the 

dissemination of contagion through the system. In addition, we observe higher clustering 

coefficients to the short- and mid-term components, while we observe a much smaller 

coefficient in the long-term component. These results provide support to research hypothesis 

H2B. Again, these results are not reflected at the same extend in the original data, where the 

respective coefficient is lower than most of the respective coefficients of the decomposed data. 

Our results do not indicate any support for H4 since most of the accounting variables are 

statistically insignificant for all scales. 

 

[Insert Table 2 approximately here] 

  

Next, we turn our attention to the results of the extended model reported in Table 3. First, 

we observe that high eigenvector centrality is related negatively to the out-degree centrality but 

the respective coefficient is not significant in all Panels of Table 3. High clustering is positively 

related to out-degree centrality for all scales, as well as, the long-term component and the 

original data. Its coefficient increases with scale, although it is much smaller for the long-term 

component and the original data, indicating that a shock originated from a highly clustered 

banks may affect the system and the magnitude of the effect will be higher in the shock persists 

in higher scales. These results provide support to Research Hypotheses H1A, H1B, H2A and H2B.  

The interaction term between the high centrality and high eigenvector centrality is negative 

which is expected. Banks that are highly clustered with other banks that are important is more 

likely to absorb a shock. Also, the coefficient becomes more negative indicating that a shock 

originating from banks that are highly clustered with high eigenvector centrality in higher 

scales, is even less probable to spread in the network. Taken together the above results imply 

that, contagion may be favored by high clustering with important nodes in the network, 

however, if connectedness is also present in the data then contagion seems to be limited. This 

implies that neighbors of a node of interest that are important for the system are less prone to 

contagion if they are also closely connected in triads (have a high clustering coefficient). 

 

 

[Insert Table 3 approximately here] 

 



Moreover, firms with a higher likelihood of a stock crash, as measured by the NCSKEW 

measure have lower out-degree centrality as shown by the negative and significant coefficient 

of NCSKEW but only in Panel A. Moreover, for some of the Panels of Table 3 high eigenvector 

centrality leads to a weaker relation between NCSKEW and out-degree centrality. Our results 

provide some support to Research Hypotheses H3A and H3B but do not provide enough evidence 

to support H4 since the coefficients of Size, Leverage, MtB and RoA are statistically 

insignificant, with an exception of MtB for scales 3 and 4 and RoA for scale 3. 

 

6. Robustness Checks 

 

In our analysis,  the NCSKEW, proposed by Chen et al. (2001), is the prime measure of a 

shock. For robustness checks, we replace NCSKEW by two alternative crash measures. First, 

we estimate model (10)  using the EXTRA_SIGMA measure of Bradshaw et al. (2010) which 

is a more extreme measure of crash risk:  

 
 

, ,

,

_ min
i w i w

i w

r r
EXTRA SIGMA

std r

 
   

  

  (13) 

For each year, we compute the weekly return that is below the mean weekly return for the 

specific year, ,i wr , divided by the standard deviation of the weekly returns during the specific 

year,  ,i wstd r . The results are presented in the Appendix in Tables A1 and A2 and lead to the 

same conclusions reached using NCSKEW as the primary measure of crash risk. 

Second, we estimate model (10) by replacing the shock measure NSKEW by Count_Vol. 

Count_Vol represents the number of times in a year the conditional volatility of a firm is over 

the 95th quantile of the conditional volatility of all firms. We follow Baur (2012) and estimate 

the conditional volatility using a non-symmetric GARCH model. The results are reported in 

Tables A3 and A4 in the Appendix and show that our primary conclusions still hold. 

 

7. Conclusions 

 

The present study proposes a novel approach in the measurement of contagion. According 

to this approach, we use wavelet analysis to decompose stock returns into time scales and then 

feed these data into a network in order to measure contagion based on the network 



characteristics. In this respect, our approach offers a number of important research insights that 

would not be unraveled using only the original return series. 

Our results show that certain network characteristics like clustering may enhance the 

contagion effects in some cases, while eigenvector centrality seems to limit it. The effect of 

both clustering and eigenvector centrality is not constant at different scales but generally 

increase (in absolute value). The effect of high clustering is more evident in higher scales 

indicating that a shock originated from a highly clustered banks may affect the system and the 

magnitude of the effect will be higher in the shock persists in higher scales. On the other hand, 

when both clustering and eigenvector centrality are high we observe a limiting effect in 

contagion indicating that a shock originating from banks that are highly clustered with high 

eigenvector centrality in higher scales it is even less probable to spread in the network. Our 

results do not provide enough evidence to support the hypothesis that high scale contagion is 

related positively to more financially healthy firms. 

Finally, using wavelet analysis and study contagion in different frequencies we were able to 

analyze successfully the characteristics of a firm that affect the spread of a shock in the financial 

markets. This was not possible in the original time-series where the aforementioned effects 

were masked and our results were often contradicting. These results should be useful to 

academics and market participants due to the new level of analysis offered by the wavelet 

decomposition. 
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Table 1: Descriptive Statistics 

  Mean Median Maximum Minimum Std. Dev. 

Out-Degree Centrality Scale 1 
0.12 0.10 0.68 0.00 0.09 

Out-Degree Centrality Scale 2 
0.27 0.22 0.90 0.00 0.17 

Out-Degree Centrality Scale 3 
0.31 0.25 0.87 0.00 0.20 

Out-Degree Centrality Scale 4 
0.34 0.28 0.87 0.00 0.22 

Out-Degree Centrality Scale 5 
0.36 0.30 0.91 0.00 0.23 

Out-Degree Centrality Long Term 
0.09 0.09 0.29 0.00 0.04 

Out-Degree Centrality Original 
0.30 0.30 0.72 0.00 0.15 

Size 
8.15 7.74 14.48 5.14 1.96 

Leverage 
0.15 0.12 0.93 0.00 0.13 

MtB 
1.57 1.44 4.25 0.22 0.72 

RoA 
0.01 0.01 0.04 -0.04 0.01 

Count Volatility Original 
2.37 0.00 53.00 0.00 5.91 

NCSKEW Original 
-0.02 -0.02 2.13 -1.91 0.60 

EXTRA_SIGMA Original 
1.70 1.62 3.58 0.91 0.44 

Eigcentrality Original 
0.41 0.21 1.00 0.00 0.43 

Clustering Original 
0.41 0.40 1.00 0.00 0.11 

Notes: The sample covers the period 1997-2016 and concern 240 US banks with 4,140 observations. Scales 1 to 5 concern the decomposition 

of idiosyncratic returns using the wavelet analysis and the associated Out-Degree Centrality, using the j=1 to 5 return decompositions, which 

serve as the proxy of contagion.  

 

 



 

 

Table 2: Determinants of out-degree centrality using NCSKEW 

 Panel A: Scale 1 Panel B: Scale 2 Panel C: Scale 3 Panel D: Scale 4 Panel E: Scale 5 Panel F: Long Term Panel G: Original Data 

 coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat 

Intercept 0.086*** 9.711 0.008 0.236 -0.199*** -9.822 -0.155*** -8.029 -0.082*** -4.441 0.032*** 6.933 0.072*** 5.565 

Size -0.001 -1.121 0.000 -0.133 0.003 1.424 -0.001 -0.528 0.001 0.886 0.001** 2.152 0.000 -0.206 

Leverage -0.004 -0.334 -0.027 -0.888 -0.034 -1.342 -0.014 -0.575 0.009 0.238 0.002 0.362 0.009 0.556 

MtB 0.000 0.017 -0.005 -0.856 -0.006 -0.956 0.012** 2.218 -0.006 -0.910 -0.001 -0.433 0.003 0.730 

RoA -0.082 -0.346 0.664 1.427 0.983* 1.799 -0.852* -1.813 0.075 0.146 0.059 0.577 -0.168 -0.597 

NCSKEW -0.007** -2.202 -0.008 -0.630 -0.005 -0.697 0.003 0.505 0.010* 1.827 -0.001 -0.619 -0.004 -0.989 

Eigcentrality -0.035*** -6.959 -0.009 -0.872 -0.049*** -3.554 -0.135*** -14.497 -0.114*** -12.595 -0.025*** -11.370 -0.079*** -16.218 

Clustering 0.263*** 8.152 0.777*** 9.034 1.196*** 28.843 1.152*** 32.116 0.972*** 37.421 0.417*** 13.583 0.640*** 29.165 

Adjusted R2 
0.070 

 
0.059 

 
0.172 

 
0.288 

 
0.309 

 
0.329 

 
0.339 

 

Notes: The sample covers the period 1997-2016 and concern 240 US banks with 4,140 observations. *, ** and *** shows statistical significance at the 10%, 5% and 1% level. 

 

  



 

 

Table 3: Determinants of out-degree centrality using a DiD approach and NCSKEW 

 Panel A: Scale 1 Panel B: Scale 2 Panel C: Scale 3 Panel D: Scale 4 Panel E: Scale 5 Panel F: Long Term Panel G: Original Data 

 coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat 

Intercept 0.125*** 16.368 0.250*** 17.862 0.238*** 15.218 0.234*** 14.664 0.258*** 14.670 0.070*** 14.700 0.267*** 18.863 

Size -0.001 -1.380 0.000 -0.168 0.002 1.153 0.000 0.152 0.002 1.179 0.001* 1.744 0.000 0.007 

Leverage -0.003 -0.312 -0.024 -0.824 -0.032 -1.292 -0.018 -0.772 0.018 0.492 0.004 0.736 0.007 0.440 

MtB 0.001 0.398 -0.004 -0.782 -0.005 -0.750 0.013** 2.269 -0.005 -0.939 0.000 0.111 0.004 1.081 

RoA -0.131 -0.551 0.649 1.387 1.051* 1.937 -0.506 -1.082 -0.090 -0.172 0.060 0.557 -0.207 -0.753 

NCSKEW -0.011** -2.202 -0.001 -0.057 -0.006 -0.616 0.017 1.402 0.009 0.941 0.000 -0.058 0.001 0.101 

HIGH_Eigcentrality -0.024*** -5.230 -0.011 -1.247 -0.002 -0.194 0.012 1.457 0.034*** 3.491 -0.007*** -5.066 -0.040*** -6.893 

HIGH_Clusteringing 0.025*** 4.606 0.037*** 4.222 0.111*** 11.315 0.246*** 29.114 0.231*** 23.342 0.037*** 19.142 0.098*** 16.171 

HIGH_Eigcentrality x HIGH_Clustering -0.005 -0.769 0.015 1.310 -0.017 -1.365 -0.168*** -14.621 -0.179*** -13.784 -0.013*** -4.940 -0.033*** -4.150 

HIGH_Eigcentrality x NCSKEW 0.006 1.089 0.008 0.380 0.016 0.913 -0.032* -1.865 -0.002 -0.146 0.004* 1.680 -0.001 -0.077 

HIGH_Clustering x NCSKEW 0.005 0.626 -0.001 -0.046 -0.021 -1.116 -0.004 -0.250 0.015 1.032 0.001 0.648 -0.018** -2.274 

HIGH_Eigcentrality x HIGH_Clustering 

x NCSKEW 

0.005 0.472 -0.049 -1.458 0.025 0.926 0.022 0.984 -0.019 -0.925 -0.008** -2.314 0.025** 1.977 

Adjusted R2 0.124 
 

0.104 
 

0.173 
 

0.320 
 

0.305 
 

0.298 
 

0.393 
 

Notes: The sample covers the period 1997-2016 and concern 218 US banks with 3,778 observations. *, ** and *** shows statistical significance at the 10%, 5% and 1% level.



 

 

 
Figure 1. Correlation plot of the returns of 223 US banks between 5/1/1996 and 31/12/2016 

 

 



 

Appendix 

 

Table A1: Determinants of out-degree centrality using EXTRA_SIGMA 

 Panel A: Scale 1 Panel B: Scale 2 Panel C: Scale 3 Panel D: Scale 4 Panel E: Scale 5 Panel F: Long Term Panel G: Original Data 

 coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat 

Intercept 0.10*** 8.74 0.10*** 2.66 -0.14*** -5.62 -0.12*** -4.74 -0.08*** -3.54 0.03*** 6.07 0.14*** 9.07 

Size 0.00 -1.14 0.00 -0.22 0.00 1.37 0.00 -0.43 0.00 0.89 0.00** 2.13 0.00 -0.18 

Leverage 0.00 -0.35 -0.03 -0.92 -0.03 -1.26 -0.02 -0.68 0.01 0.27 0.00 0.36 0.01 0.54 

MtB 0.00 0.07 -0.01 -0.93 -0.01 -0.90 0.01** 2.17 -0.01 -0.90 0.00 -0.43 0.00 0.68 

RoA -0.08 -0.34 0.66 1.45 1.00* 1.84 -0.82* -1.77 0.08 0.16 0.06 0.59 -0.19 -0.65 

EXTRA_SIGMA -0.01** -2.50 -0.04*** -4.70 -0.03*** -3.65 -0.02** -2.55 0.00 -0.08 0.00 -0.74 -0.04*** -8.58 

Eigcentrality -0.04*** -7.00 -0.02 -1.42 -0.05*** -3.80 -0.13*** -14.58 -0.12*** -12.73 -0.03*** -11.39 -0.08*** -16.79 

Clustering 0.26*** 8.01 0.78*** 9.45 1.22*** 29.03 1.16*** 31.76 0.97*** 37.80 0.42*** 13.57 0.63*** 29.42 

Adjusted R2 
0.07 

 
0.07 

 
0.17 

 
0.29 

 
0.31 

 
0.33 

 
0.35 

 

Notes: The sample covers the period 1997-2016 and concern 240 US banks with 4,140 observations. *, ** and *** shows statistical significance at the 10%, 5% and 1% level. 

 

  



 

 

Table A2: Determinants of out-degree centrality using a DiD approach and EXTRA_SIGMA 

 Panel A: Scale 1 Panel B: Scale 2 Panel C: Scale 3 Panel D: Scale 4 Panel E: Scale 5 Panel F: Long Term Panel G: Original Data 

 coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat 

Intercept 0.181*** 8.865 0.277*** 7.217 0.294*** 8.344 0.239*** 7.195 0.241*** 8.439 0.069*** 10.619 0.312*** 14.463 

Size -0.001 -1.411 0.000 -0.241 0.002 1.179 0.000 0.257 0.002 1.237 0.001* 1.710 0.000 0.014 

Leverage -0.004 -0.432 -0.025 -0.863 -0.032 -1.286 -0.020 -0.856 0.019 0.512 0.004 0.658 0.007 0.449 

MtB 0.001 0.425 -0.005 -0.859 -0.004 -0.728 0.012** 2.182 -0.005 -0.953 0.000 0.147 0.004 1.025 

RoA -0.126 -0.533 0.665 1.451 1.058** 1.961 -0.459 -0.992 -0.105 -0.198 0.058 0.539 -0.210 -0.762 

EXTRA_SIGMA -0.022*** -3.274 -0.011 -0.728 -0.026* -1.808 -0.002 -0.144 0.007 0.720 0.000 0.257 -0.026*** -3.177 

HIGH_Eigcentrality -0.063*** -2.861 0.078 1.613 -0.050 -1.103 0.056 1.334 0.080** 2.132 -0.018*** -3.148 -0.013 -0.547 

HIGH_Clusteringing -0.028 -1.150 0.066 1.252 0.172*** 3.514 0.300*** 7.904 0.233*** 6.171 0.037*** 5.464 0.120*** 5.973 

HIGH_Eigcentrality x HIGH_Clustering 0.017 0.595 -0.008 -0.122 -0.092 -1.501 -0.238*** -4.219 -0.225*** -4.282 -0.003 -0.280 -0.051 -1.621 

HIGH_Eigcentrality x EXTRA_SIGMA 0.015* 1.964 -0.038* -1.954 0.023 1.089 -0.022 -1.118 -0.021 -1.248 0.004* 1.991 -0.016 -1.217 

HIGH_Clustering x EXTRA_SIGMA 0.020** 2.370 -0.012 -0.553 -0.026 -1.204 -0.026 -1.498 -0.001 -0.050 0.000 -0.106 -0.013 -1.173 

HIGH_Eigcentrality x HIGH_Clustering x 

EXTRA_SIGMA 

-0.008 -0.741 0.008 0.295 0.033 1.180 0.034 1.315 0.021 0.875 -0.004 -1.306 0.010 0.560 

Adjusted R2  0.128 
 

0.111 
 

0.175 
 

0.321 
 

0.305 
 

0.298 
 

0.402 
 

Notes: The sample covers the period 1997-2016 and concern 218 US banks with 3,778 observations. *, ** and *** shows statistical significance at the 10%, 5% and 1% level.



Table A3: Determinants of out-degree centrality using Count_Vol 

 Panel A: Scale 1 Panel B: Scale 2 Panel C: Scale 3 Panel D: Scale 4 Panel E: Scale 5 Panel F: Long Term Panel G: Original Data 

 coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat 

Intercept 0.121*** 10.755 -0.007 -0.222 -0.169*** -7.932 -0.175*** -9.341 -0.122*** -6.762 0.066*** 6.867 0.031** 2.155 

Size -0.002** -2.232 0.000 0.091 0.002 1.210 0.000 0.004 0.003* 1.793 0.000 0.293 0.001 0.794 

Leverage -0.005 -0.386 -0.027 -0.940 -0.032 -1.327 -0.017 -0.687 0.009 0.242 0.001 0.062 0.001 0.077 

MtB 0.001 0.247 -0.003 -0.616 -0.004 -0.686 0.012** 2.263 -0.004 -0.733 0.000 -0.014 0.004 1.147 

RoA -0.086 -0.387 0.571 1.389 0.760 1.567 -0.507 -1.208 0.197 0.418 0.008 0.058 -0.049 -0.188 

Count_Vol -0.001*** -4.557 -0.001*** -2.756 0.000 -0.712 0.000 -0.443 0.002*** 4.492 0.000*** -3.191 0.003*** 7.911 

Eigcentrality -0.045*** -8.792 -0.006 -0.608 -0.047*** -3.534 -0.128*** -13.705 -0.108*** -11.732 -0.041*** -9.356 -0.075*** -15.005 

Clustering 0.142*** 3.596 0.807*** 10.160 1.135*** 24.061 1.168*** 33.543 0.999*** 38.363 0.293*** 7.615 0.676*** 27.427 

Adjusted R2 0.072  0.077  0.186  0.299  0.320  0.219  0.358   
Notes: The sample covers the period 1997-2016 and concern 240 US banks with 4,140 observations. *, ** and *** shows statistical significance at the 10%, 5% and 1% level. 

 

  



 

 

Table A4: Determinants of out-degree centrality using a DiD approach and Count_Vol 

 Panel A: Scale 1 Panel B: Scale 2 Panel C: Scale 3 Panel D: Scale 4 Panel E: Scale 5 Panel F: Long Term Panel G: Original Data 

 coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat coef t-stat 

Intercept 0.143*** 17.045 0.225*** 16.050 0.218*** 14.546 0.220*** 15.172 0.233*** 15.009 0.096*** 12.086 0.232*** 16.423 

Size -0.002** -2.089 0.001 0.391 0.003 1.574 0.001 0.655 0.003** 2.050 0.000 0.637 0.001 0.965 

Leverage -0.002 -0.171 -0.025 -0.888 -0.027 -1.103 -0.022 -0.919 0.017 0.469 0.003 0.424 -0.003 -0.157 

MtB 0.001 0.558 -0.003 -0.574 -0.002 -0.342 0.011** 2.182 -0.005 -0.922 0.001 0.460 0.005 1.503 

RoA -0.105 -0.473 0.606 1.478 0.944* 1.930 -0.259 -0.625 0.039 0.083 -0.004 -0.030 -0.117 -0.460 

Count_Vol -0.001*** -2.711 0.000 0.109 -0.001 -0.801 0.000 0.251 0.001 0.598 -0.001*** -4.071 0.003*** 2.934 

HIGH_Eigcentrality -0.036*** -7.254 0.011 1.290 0.016* 1.715 0.024*** 2.724 0.037*** 3.869 -0.030*** -5.616 -0.022*** -3.154 

HIGH_Clusteringing 0.011* 1.934 0.059*** 6.836 0.118*** 11.583 0.253*** 31.212 0.241*** 24.536 0.012** 2.266 0.116*** 17.389 

HIGH_Eigcentrality x HIGH_Clustering 0.009 1.394 -0.010 -0.875 -0.033** -2.440 -0.175*** -14.372 -0.182*** -13.647 0.009 1.669 -0.056*** -6.176 

HIGH_Eigcentrality x Count_Vol 0.001 1.092 -0.002* -1.906 -0.002* -1.790 -0.002 -1.078 0.003 1.626 0.001** 2.300 -0.001 -1.105 

HIGH_Clustering x Count_Vol 0.001 0.903 -0.001 -1.473 0.002 1.225 0.000 0.062 0.002 1.123 0.001*** 3.047 -0.001 -0.920 

HIGH_Eigcentrality x HIGH_Clustering 

x Count_Vol 

-0.001 -0.696 0.002* 1.684 0.002 1.173 -0.001 -0.283 -0.004* -1.807 -0.001 -1.459 0.003* 1.727 

Adjusted R2  0.131 
 

0.115 
 

0.185 
 

0.329 
 

0.318 
 

0.229 
 

0.401 
 

Notes: The sample covers the period 1997-2016 and concern 218 US banks with 3,778 observations. *, ** and *** shows statistical significance at the 10%, 5% and 1% level. 


