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Chapter 1

Introduction and preliminaries

1.1 Thesis introduction and overview

The present work focuses on the use of random measures for the modelling of complex
data which presents heterogeneity in various aspects. We will mainly focus on two kinds of
heterogeneity.

1) Heterogeneity due to belonging to different populations or samples.

2) Heterogeneity due to having different covariate values.

In the present chapter we present the necessary preliminaries for the rest of the thesis, includ-
ing the notion of completely random measures, vectors of completely random measures and
neutral to the right distributions. Vectors of completely random measure are the fundamental
mathematical tool for the work presented throughout the thesis; while the neutral to the right
distribution are of key importance for the models introduced in chapter 4 and 5. Chapter 2
revolves around the concept of completely random measures which are a flexible and man-
ageable class of vectors of completely random measures that has been previously introduced
and used for Bayesian analysis of heterogeneous data in the literature. In this chapter we
present recently published results regarding the integrability conditions of compound random
measure and present a variety of results, including the introduction of a new compound
random measure, related to the LogNormal distribution, and a new formula for the associated
Laplace exponent which allows for an approximation via Monte-Carlo methods. In Chapter
3 we focus on the link between compound random measures and Lévy copulas, which are a
framework for the modelling of vectors of completely random measures that has been very
popular in the literature. Of main importance is the introduction of a new class of Lévy
copulas which is a generalization of the widely used Clayton Lévy copula. Many models
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for heterogeneous data in the framework of Lévy copulas have been proposed and can be
used with the specific choice of our extended Clayton Lévy copula proposal. Chapter 4
presents a recently published model which generalizes neutral to the right distributions for
multiple-sample information. This model addresses heterogeneity as in point 1) above, where
different populations can exhibit different behaviours which can be dependent among each
other. Finally, in Chapter 5 we introduce a new model for regression in survival analysis
where the two heterogeneity points above, 1)-2), are modelled. We argue that such model
can even be used for the identification of different populations which keep the symmetry of
exchangeability and are determined by the covariate values of the individuals.

1.2 Completely random measures and vectors thereof

Even though the main application of this thesis is in survival analysis where we consider
survival times that correspond to random variables supported in the real positive axis R+ =

(0,∞), results in Chapter 2 are given for more general spaces than R+. With that in mind,
we present this section’s preliminaries in a general setting. Let (Ω,F ,P) be a probability
space and X a Polish space with corresponding Borel σ -algebra X . We call a measure µ

on (X,X ) boundedly finite if µ(A) < ∞ for any bounded set A ∈X ; we denote by MX

the space of boundedly finite measures on the measurable space (X,X ) and by MX the
associated Borel σ -algebra, see Appendix 2 in Daley and Vere-Jones (2007) for technical
details. A random measure is a measurable function from the probability space (Ω,F ,P)
onto (MX,MX). We will focus on the class of completely random measures as introduced
by Kingman (1967).

Definition 1. A random measure µ on (X,X ) is called a completely random measure (CRM)
if for any n > 1 and disjoint sets A1, . . . ,An ∈X the random variables µ(A1), . . . ,µ(An) are
mutually independent.

A CRM µ has the following representation, see Kingman (1967),

µ = µd +µr +µ f l,

where µd is a deterministic measure; µ f l is a measure that consists on jumps with possibly
random jump heights but fixed jump locations, i.e.

µ f l =
∞

∑
i=1

W (fl)
i δ

x(fl)i
,
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with {x(fl)i }∞
i=1 ⊂ X the fixed jump locations and {W (fl)

i }∞
i=1 ⊂ R+ the random jump heights;

and µr is a measure made of jumps with random locations and random heights, i.e.

µr =
∞

∑
i=1

W (r)
i δ

X (r)
i
,

where {X (r)
i }∞

i=1 ⊂ X are the random jump locations and {W (r)
i }∞

i=1 ⊂ R+ the random jump
heights. The measures µd , µ f l and µr are mutually independent. In this thesis we will
consider CRM’s without the deterministic part, µd; even more we will treat the part with
fixed locations separately. So by a CRM we will refer to a measure which has the form as µr

above. Such CRM’s are characterized by their Laplace transform

E
[
e−µ( f )

]
= e−

∫
R+×X(1−e− f (x)s)ν(ds,dx) (1.1)

for f : X→R+ such that µ( f )< ∞, where µ( f ) =
∫
X f (x)µ(dx), and ν(ds,dx) is a measure

in (R+×X,B(R+)⊗X ) such that∫
R+×X

min{1,s}ν(ds,dx)< ∞ (1.2)

for any bounded set X ∈X . A measure ν satisfying the condition displayed in equation
(1.2) is called the Lévy intensity of µ . We say that ν is homogeneous when

ν(ds,dx) = ρ(ds)κ(dx) (1.3)

with ρ a measure in (R+,B(R+)) referring to the jump heights and κ a non-atomic measure
in (X,X ) referring to the jump locations. From the integrability condition equation 1.2,
we observe that if κ is a boundedly finite measure in X, i.e. for any bounded set X ∈X

κ(X) < ∞, then ρ must satisfy the condition 1.2 by its own. All the homogeneous Lévy
intensities in the present work will be such that the associated κ measure is boundedly
finite so the associated ρ measure is such that ρ(ds)dx is a Lévy intensity. If in the Laplace
transform (1.1) we set f (x) = λ1{x∈A} with λ ∈ R+ and A a bounded set in X , we get

E
[
e−λ µ(A)

]
= e−

∫
R+×A(1−e−λ s)ν(ds,dx). (1.4)
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Such Laplace transform is often sufficient to perform the majority of the calculations in this
work. With that in mind we define the Laplace exponent

ψt(λ ) =
∫
R+×(0,t]

(1− e−λ s)ν(ds,dx). (1.5)

If the Lévy intensity of interest is homogeneous as in (1.3) then the corresponding Laplace
exponent can be written as ψt(λ ) = γ(t)ψ(λ ) where γ(t) =

∫ t
0 κ(dx) and ψ(λ ) =

∫
∞

0 (1−
e−λ s)ρ(ds). Sometimes it is useful to write a CRM in terms of a Poisson random measure
(PRM). Following Sato (1999), we define the latter measure as follows

Definition 2. Let ν be a σ -finite measure in (X,X ). A Poisson random measure in (X,X )

is a completely random measure N such that if C ∈X then N(C) is a Poisson random
variable with intensity ν(C).

Given a CRM µ with Lévy intensity ν we can set a Poisson random measure N in
(R+×X,B(R+)⊗X ) such that by the Lévy-Ito decomposition, see Sato (1999), we have
that

µ(A) =
∫
R+×A

sN(ds,dx). (1.6)

An advantage of the above representation is that it allows us to use PRM’s results in a CRM
setting. A key result for PRM’s which will be of use later on follows

Proposition 1. (Rosiński (2001)) Let M and N be PRM’s defined on possibly different
probability spaces and taking values in Polish spaces S, T0, with respective Borel σ -algebras
S , T0 and intensity measures η , ν . We suppose that T0 ⊂ T for some Polish space T, with
Borel σ -algebra T , and that we have a measurable function h : S→ T such that

ν = η ◦h−1 on T0

then
N d
= M ◦h−1

In addition, if N is defined in a probability space rich enough to allow the existence of a
standard uniform random variable that is independent of N and

M =
∞

∑
i=1

δSi
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for some S-valued random elements Si, i≥ 1; then there exists a sequence {S̃i}∞
i=1 of S-valued

random elements defined in the same probability space as N and such that

{S̃i}∞
i=1

d
= {Si}∞

i=1

and

N a.s.
=

∞

∑
i=1

δh(s̃i).

In the next example we use the above proposition to construct a series representation for a
CRM with homogeneous Lévy intensity.

Example. Let there be sequences of independent, identically distributed (i.i.d.) random
variables (r.v.’s)

Ui
i.i.d.∼ Uniform(0,1), i ∈ {1,2, . . .}

Γi
i.i.d.∼ Exponential(1), i ∈ {1,2, . . .}

Γ̂i =
i

∑
j=1

Γi, i ∈ {1,2, . . .},

ν(ds,dx) = ρ(ds)dx be a Lévy intensity in R+×R+ with ρ a Borel measure in R+ and
denote the Lebesgue measure in R+ as Leb(dx). An homogeneous PRM in R+ with Lévy
intensity η̃(A) = Leb(A), can be written as ∑

∞
i=1 δ

Γ̂i
. It follows that

M =
∞

∑
i=1

δ(Γ̂i,Ui)

has intensity Leb×Leb in R+× [0,1]. If we define

h1(s) = inf
{

u > 0 :
∫
[u.∞)

ρ(dy)< s
}

then for a < b we observe that h−1
1 ([a,b]) =

(
ρ
(
[b,∞)

)
,ρ
(
[a,∞)

))
has Lebesgue measure

ρ
(
[a,∞)

)
−ρ
(
[b,∞)

)
= ρ

(
[a,b)

)
, so extending the measure it follows from Proposition 1

that

N =
∞

∑
i=1

δ(h1(Γ̂i),Ui)
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is a PRM with intensity ν(ds,dx) = Leb◦h−1
1 (ds)×Leb◦ Id−1(dx) = ρ(ds)×Leb(dx). We

can use equation (1.6) to construct a CRM with Lévy intensity ν from the series representation
of the PRM N above.

In the above example the function h1 can be seen as the generalized inverse function of the
so called tail integral of a Lévy intensity ρ(ds)dx:

Definition 3. Let ρ(ds)dx be a Lévy intensity defined in(
R+× [0,1],B(R+)⊗B([0,1])

)
.

The tail integral of ρ is the function

U(u) =
∫
[u,∞)

ρ(ds).

We observe that the tail integral, by definition a decreasing function, has a decreasing general-
ized inverse, denoted h1 in the above example; so the sequence {h1(Γ̂i)}∞

i=1 is monotonically
decreasing. For non-homogeneous Lévy intensities we can also use Proposition 1 to get a
series representation of the associated CRM, as showed in the next example.

Example. Let ν(ds,dx) be a Lévy intensity in R+×R+, {Wi}∞
i=1 ⊂R+ such that ∑

∞
i=1 δWi is

a PRM with intensity ρ̂(ds) = ν(ds,R+) and {Ui}∞
i=1 i.i.d. Uniform(0,1) random variables;

then

M =
∞

∑
i=1

δ(Wi,Ui)

has Lévy intensity ρ̂×Leb in R+× [0,1]. If we define

FX |W (s) =
ν (dW, [0,s])

ρ̂(dW )

F←X |W (s) = inf
{

u > 0 : FX |W (u)≥ s
}

then for a < b we observe that(
F←X |W

)−1
([a,b]) =

(
F(a)X |W ,F(b)X |W

)
has Lebesgue measure

ν (dW,(a,b])
ρ̂(dW )
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so extending the measure it follows from Proposition 1 that

N =
∞

∑
i=1

δ(
Wi,F←X |Wi

(Ui)
)

is a PRM with intensity ρ̂ ◦ Id−1(ds)×Leb◦
(

F←X |W
)−1

(dx) = ρ̂(ds)×FX |s(dx) = ν(ds,dx).

The above examples, albeit considering X to be a general Polish space, can be used to
motivate the next algorithm for simulation of a CRM µ with Lévy intensity ν as above.

Algorithm 1 Ferguson-Klass
1: Let K ∈ N and simulate

Ui
i.i.d.∼ Uniform(0,1), i ∈ {1,2, . . . ,K};

Γi
i.i.d.∼ Exponential(1), i ∈ {1,2, . . . ,K};

Γ̂i =
i

∑
n=1

Γi, i ∈ {1,2, . . . ,K}.

2: Define

Wi = inf
{

u > 0 :
∫
[u,∞)×X

ν(ds,dx)< Γ̂i

}
and

Xi = inf
{

s > 0 :
ν (dWi, [0,s])

ν (dWi,X)
≥Ui

}
.

3: Approximate µ by using

µ ≈
K

∑
i=1

WiδXi

Again we observe that the weights Wi are given by the generalized inverse function of the tail
integral of ρ(ds) = ν(ds,X) and as such conform a monotonically decreasing sequence. For
the truncation parameter K in step 3 of the Ferguson-Klass algorithm above we exploit the
monotonicity of the weights and will use

K = max{i : Wi ≥ b}
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for some b ∈ R+. The above algorithm was proposed in Ferguson and Klass (1972). A
variety of algorithms for simulation of CRM’s are available; see for instance Rosiński (2001)
and Cont and Tankov (2004) for such algorithms in a Lévy process context.

Fig. 1.1 Plot of µ(0, t] when a σ -stable CRM is considered with κ(dx) = dx. The plot was
obtained by using Algorithm 1; truncation level in step 3 of the algorithm is given by the
bound b = 10−6 as discussed above.

A popular example of an homogeneous CRM is the σ -stable

Example 1. σ -stable CRM
Let σ ∈ (0,1), the Lévy intensity determining a σ -stable CRM is

ν(ds,dx) =
Aσs−1−σ

Γ(1−σ)
dsκ(dx). (1.7)

As an illustration, we plot in Figure 1.1 the associated process µ(0, t] for the σ -stable process
in (1.7) with κ(dx) = dx by making use of Algorithm 1, where

U(x) =
Aσ

Γ(1−σ)

∫
∞

x
s−1−σ ds =

A
Γ(1−σ)xσ
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is the associated tail integral and

U←(x) =
(

A
Γ(1−σ)x

) 1
σ

.

is the corresponding generalized inverse used to generate the jump weights Wi in step 2 of
Algorithm 1. We choose the truncation level K in step 3 of Algorithm 1 such that the weights
Wi ≥ b for i ∈ {1, . . . ,K} for b ∈ R+.

Another important example of an homogeneous CRM is the Gamma.

Example 2. Gamma CRM
Let α,β ∈ (0,∞), the Lévy intensity determining a Gamma(α,β ) CRM is

ν(ds,dx) =
βe−αs

s
dsκ(dx) (1.8)

If for example we take κ(dx) = dx above then we have the tail integral

U(x) = β

∫
∞

x

e−αs

s
ds

Following Wolpert and Ickstadt (1998) we define

E(x) =
∫

∞

x

e−s

s
ds

so U(x) = βE(αx), and observe that if χ2
d is a Chi-squared distribution with d degrees of

freedom then

E(x) = lim
d→0

Γ

(
d
2

)
P
[
χ

2
d > 2x

]
=

(
lim
d→0

Γ

(
d
2
+1
))(

lim
d→0

2
d
P
[
χ

2
d > 2x

])
= lim

d→0

2
d
P
[
χ

2
d > 2x

]
.

The generalized inverse of E, denoted E←, can be written in terms of the quantile function of
a χ2

d -distribution which we denote Q
χ2

d
as follows

E←(x) = lim
d→0

Q
χ2

d

(
1− dx

2

)
2

.
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So

U←(x) =
E←

(
x
β

)
α

= lim
d→0

Q
χ2

d

(
1− dx

2β

)
2α

(1.9)

The Laplace exponent of the Gamma CRM is given by

ψ(λ ) = β log(1+
λ

α
), (1.10)

see for instance Kyprianou (2006). As another illustration of Algorithm 1, we plot in Figure
1.2 the stochastic process µ(0, t], with t ∈ R+, given by a Gamma(α,β ) CRM µ with
κ(dx) = dx, so we are in the homogeneous case. To evaluate the generalized inverse of the
associated tail integral in step 2 of Algorithm 1 we use the limit approximation in (1.9) by
choosing d sufficiently small. We choose the truncation level K in step 3 of Algorithm 1 such
that the weights Wi ≥ b for i ∈ {1, . . . ,K} for b ∈ R+.

Fig. 1.2 Plot of µ(0, t] when a Gamma(2,1) CRM is considered with κ(dx) = dx. The plot
was obtained by using Algorithm 1; in step 2 of the Algorithm the limit approximation (1.9)
was used with d = 10−39 and in step 3 the truncation level is given by the bound b = 10−19

as discussed above.

The notion of a completely random measure can be generalized to higher dimensions in a
similar fashion to Definition 1 by considering vectors that have CRM’s as entries.
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Definition 4. A vector µµµ = (µ1, . . . ,µd) of random measures on (X,X ) is called a vector
of completely random measures (VCRM) if for any n > 1 and disjoint sets A1, . . . ,An ∈X

the random vectors {(µ1(Ai), . . . ,µd(Ai))}n
i=1 are mutually independent.

In similarity with the CRM case, we will restrict ourselves to VCRM’s that have no determin-
istic part nor fixed jump locations, again we will treat this case separately; so the VCRM’s µµµ

we consider have a series representation

µµµ =

(
∞

∑
i=1

W1,iδXi, . . . ,
∞

∑
i=1

Wd,iδXi

)
(1.11)

for a random collection of vectors {(W1,i, . . . ,Wd,i)}∞
i=1 taking values in (R+)d and {Xi}∞

i=1

taking values in X; such VCRM’s are determined by the following Laplace functional
transform:

E
[
e−µ1( f1)−...−µd( fd)

]
= e−

∫
(R+)d×X(1−e− f1(x)s1−...− fd (x)sd)ν̃d(dsss,dx) (1.12)

where f j : X→ R+, j ∈ {1, . . . ,d}, are such that µ j( f j)< ∞ and ν̃d is a measure, defined in(
(R+)d×X,B

(
(R+)d)⊗X

)
, which must satisfy the integrability condition∫

(R+)d×X
min{1,∥sss∥}ν̃d(dsss,dx)< ∞ (1.13)

for any bounded set X ∈X . We call ν̃d the multivariate Lévy intensity of µµµ . Two basic
examples of VCRM’s are given next.

Example 3. Independent entries VCRM
Let d ∈ N\{0} and µµµ a d−dimensional VCRM. The entries of µµµ are pairwise independent
if and only if its Lévy intensity satisfies that

ν̃d(A,B) = ν1 ({s : (s,0, . . . ,0) ∈ A} ,B)+ν2 ({s : (0,s,0, . . . ,0) ∈ A} ,B)
+ . . .+νd ({s : (0,0, . . . ,s) ∈ A} ,B)

for some univariate Lévy intensities ν1, . . . ,νd and any sets A ∈B((R+)d), B ∈B(R+).

Example 4. Completely identical dependence
Let d ∈ N\{0} and µµµ a d−dimensional VCRM. The entries of µµµ are almost surely equal if
and only if its Lévy intensity satisfies that

ν̃d(A,B) = ν̃ ({s : (s,s, . . . ,s) ∈ A} ,B)
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for some univariate Lévy intensities ν̃ and any sets A ∈B((R+)d), B ∈B(R+).

The corresponding homogeneous case arises when ν̃d can be written in the form

ν̃d(dsss,dx) = ρ̃d(dsss)κ(dx) (1.14)

where ρ̃d is a measure in
(
(R+)d,B

(
(R+)d)) referring to the vector of jump heights and κ is

a non-atomic measure in (X,X ) referring to the shared jump locations in each CRM within
the vector. Again, if in the multivariate Laplace transform (1.12) we take fi(x) = λi1{x∈A}
for i ∈ {1, . . . ,d}, λλλ = (λ1, . . . ,λd) ∈ (R+)d and A a bounded set in X then we can obtain a
simpler version of the multivariate Laplace transform as

E
[
e−λ1µ1(A)−···−λd µd(A)

]
= e−

∫
(R+)d×A(1−e−λ1s1−...−λdsd )ν̃d(dsss,dx)

. (1.15)

We define the Laplace exponent corresponding to a VCRM as

ψt(λλλ ) =
∫
(R+)d×(0,t]

(1− e−⟨λλλ ,sss⟩)ν̃d(dsss,dx). (1.16)

Again, if the Lév intensity of interest is homogeneous as in (1.14) then the corresponding
Laplace exponent can be written as ψt(λλλ ) = γ(t)ψ(λλλ ) where γ(t) =

∫ t
0 κ(dx) and ψ(λλλ ) =∫

(R+)d(1− e−⟨λλλ ,sss⟩)ρ̃d(dsss). We observe that each entry in a VCRM µµµ = (µ1, . . . ,µd) is a
CRM with its corresponding Lévy intensity. Indeed, for j ∈ {1, . . . ,d}, the Lévy intensity
associated to µ j, the j-th entry of a VCRM µµµ with multivariate Lévy intensity ν̃d , is given by

ν j(A,X) =
∫
(R+)d−1

ν̃d(ds1, . . . ,ds j−1,A,ds j+1, . . . ,dsd,X) (1.17)

with A∈B (R+). We call ν j the j-th marginal of the d-variate Lévy intensity ν̃d . We observe
that if ν̃d is homogeneous, taking the form (1.14), then each marginal ν j associated to ν̃d can
be written in the form

ν j(ds,dx) = ρ j(ds)κ(dx) (1.18)

with ρ j a measure in (R+,B(R+)), for each j ∈ {1, . . . ,d}. For a Lévy intensity ρd(dsss)dx
we define the d−variate tail integral in analogy with Definition 3:

Definition 5. Let ρd(dsss)dx be a d−variate Lévy intensity defined in(
(R+)d×R+,B

(
(R+)d

)
⊗B(R+)

)
.
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The d−variate tail integral associated to ρd is the function

U(uuu) =
∫
[u1,∞)×...×[ud ,∞)

ρ̃d(dsss).

With the notation as in 1.18 we set the notation for the marginal tail integral, i.e. the tail
integral associated to the marginal ρi(ds)dx, as follows

U j(u) =
∫
[u,∞)

ρ j(ds) (1.19)

for j ∈ {1, . . . ,d}.

1.3 Neutral to the right distributions

In the seminal work of Doksum (1974), the neutral to the right (NTR) probability distributions
were introduced. Such NTR distributions can be expressed in terms of a CRM µ .

Definition 6. We say that a positive random variable Y has a NTR distribution given by a
CRM µ , denoted Y ∼ NTR(µ), if

S(t) = P[Y > t |µ] = e−µ(0,t],

where µ is such that
lim
t→∞

µ(0, t] a.s.
= ∞, (1.20)

so Y is almost surely supported in R+.

NTR distributions have several appealing properties, including the independence of normal-
ized increments

F(t1),
F(t2)−F(t1)

1−F(t1)
, · · · , F(tK)−F(tK−1)

1−F(tK−1)

for F(t) = 1− S(t) the distribution function associated to the NTR distribution, 0 < t1 <
.. . < tK for K ∈ N. Another important property is the posterior characterization for censored
to the right data which is of great utility in a survival analysis context.

Definition 7. Let there be two independent samples

{Yi}∞

i=1
i.i.d.∼ H
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and

{Ci}∞

i=1
i.i.d.∼ G,

for H, G cumulative distribution functions. We suppose that we only observe

Ti = min{Yi,Ci}; Ji = 1{Yi≤Ci}.

We denote as censored to the right survival data

DDD = {(Ti,Ji)}n
i=1

.

Taking into account possible repetitions in the censored to the right observations, we consider
the ordered statistics without repetitions, (T(1), . . . ,T(k)), where k is the number of different
observations. We set T(0) = 0, T(k+1) = ∞. In the frequentist statistics literature, the survival
function of the observations of interest, in censored to the right data, is fitted with the Kaplan-
Meier estimator, we will use this frequentist estimation for comparison with the Bayesian
nonparametric fits of survival functions in this thesis.

Definition 8. The Kaplan-Meier estimator for the survival function of the events of interest
in a censored to the right survival data setting is given by

ŜKM(t) = ∏
{ j :T( j)≤t}

(
1−

#{i : Ti = T( j) , Ji = 1}
#{i : Ti ≥ T( j)}

)
(1.21)

The number of exact observations for censored to the right data is ne = ∑
n
i=1 Ji and the

number of censored observations is nc = n−ne. Define the set functions

me(A) =
n

∑
i=1

Ji1A(Ti) ; mc(A) =
n

∑
i=1

(1− Ji1A(Ti)) .

So we define the numbers

ne
j = #

{
i : Ti = T( j) and Ji = 1

}
; nc

j = #
{

i : Ti = T( j) and Ji = 0
}
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for, respectively, the exact observations and censored observations related to time T( j),
j ∈ {1, . . . ,k}. The next cumulative quantities will also be of use

n̄e
j =

k

∑
r= j

ne
r ; n̄c

j =
k

∑
r= j

nc
r,

where j ∈ {1, . . . ,k}. Using the notation introduced above, the posterior characterization
when considering censored to the right data for a NTR distribution is given next.

Theorem 1. Let µ be a CRM with Lévy intensity of the form ν(ds,dx) = ν(s,dx)ds. And let
DDD be censored to the right data arising from a NTR(µ) model. If for ηt(s) = ν(s,(0, t]) the
partial derivative η ′t0(s) =

∂ηt(s)
∂ t

∣∣∣
t=t0

exists, then the posterior distribution given censored to

the right data DDD is again NTR with the next associated CRM

µ
◦+ ∑
{ j :T( j) is an exact observation }

M jδT( j) (1.22)

where

i) µ◦ is given by a Lévy intensity ν◦ such that

ν
◦(ds,dx)

∣∣
x∈(T( j−1),T( j))

= e−(n̄
c
j+n̄e

j)sν(s,dx)ds

for j ∈ {1, . . . ,k+1}.

ii) The random weights {M j} j∈M, with

M = { j : T( j) is an exact observation },

are mutually independent and have, respectively, a density given by

f j(s) ∝ e−(n̄
c
j+n̄e

j+1)s(1− e−s)ne
jη
′
T( j)

(s).

iii) The completely random measure µ◦ is independent of {M j} j∈M.

The result above showcases that the posterior distribution of a NTR distribution with respect
to censored to the right data is itself NTR again. This is because the measure in (1.22) is
completely random; we can distinguish two parts in it, a so called "continuous" part given
by µ◦ and a discrete part with jump locations explicitly given by the exact observations in
the survival data and random jump weights. We observe that such result is similar in spirit
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to the conjugacy results in parametric Bayesian statistics and allows for model tractability.
Indeed, we can use the result above to propose an estimator for the survival function of the
event times of interest in terms of a posterior mean as follows.

Corollary 1. In the setting of Theorem 1, let H̄ be the survival function associated to the
event times of interest, {Yi}n

i=1 in the censored to the right data DDD and set

Mt =
{

j : T( j) is an exact observation and T( j) ≤ t
}
.

We can estimate H̄ with

Ŝ(t) = E[P[Y > t |µ] |DDD ] = e
−∑

k+1
j=1

(
ψ
◦ j
t∧T( j)

(1)−ψ
◦ j
t∧T( j−1)

(1)
)

× ∏
j∈Mt

∫
∞

0 e−(1+n̄c
j+n̄e

j+1)s(1− e−s)ne
jη ′T( j)

(s)ds∫
∞

0 e−(n̄
c
j+n̄e

j+1)s(1− e−s)ne
jη ′T( j)

(s)ds
(1.23)

where ψ
◦ j
t is the Laplace exponent of µ◦ restricted to (T( j−1),T( j)), j ∈ {1, . . . ,k}.

Usually the Lévy intensity underlying the CRM in a NTR distribution is parametrized by
some real valued vector ccc. It follows from the proof of Theorem 1 that we can get an explicit
formula for the likelihood of such vector of hyper-parameters ccc, given survival data DDD as
before; such likelihood is of key importance for the inferential procedure of the NTR model.

Corollary 2. In the setting of Theorem 1, given survival data DDD if the underlying Lévy inten-
sity νccc, the corresponding partial derivative η ′t,ccc and Laplace exponent ψt,ccc are parametrized
by some vector ccc with real valued entries then the likelihood on ccc is given by

l(ccc;DDD) = e
−∑

k
j=1

(
ψT( j),ccc

(n̄c
j+n̄e

j)−ψT( j−1),ccc
(n̄c

j+n̄e
j)
)

×∏
j∈M

∫
∞

0

(
e−(n̄

c
j+n̄e

j+1)s(1− e−s)ne
j

)
η
′
T( j),ccc(s)ds.

We highlight that if we assign a prior distribution on the vector of hyper-parameters ccc then
we can use the above likelihood to get the posterior distribution; furthermore we can use a
Markov Chain Monte-Carlo (MCMC) algorithm to draw samples from ccc|DDD . To make easier
the evaluation of the estimator in Corollary 1 we present two Propositions next.
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Proposition 2. In the setting of Theorem 1, the Laplace exponent of µ◦ restricted to
(T( j−1),T( j)), j ∈ {1, . . . ,k}, can be evaluated as

ψ
◦ j
t (λ ) =

(
ψt∧T( j)(λ + n̄c

j + n̄e
j)−ψt∧T( j−1)(λ + n̄c

j + n̄e
j)
)

−
(

ψt∧T( j)(n̄
c
j + n̄e

j)−ψt∧T( j−1)(n̄
c
j + n̄e

j)
)

We observe that if in the above result the Laplace exponent ψt is related to an homogeneous
CRM so ψt(λ ) = γ(t)ψ(λ ) then we have the following simplification

ψ
◦ j
t (λ ) =

(
γ(t ∧T( j))− γ(t ∧T( j−1))

)(
ψ(λ + n̄c

j + n̄e
j)−ψ(n̄c

j + n̄e
j)
)

Proposition 3. Let ν be a Lévy measure defining a CRM, let q ∈ R+ and n ∈ N\{0}. Then

∫
R+×(0,t]

e−qs (1− e−s)n
ν(ds,dx) =

n−1

∑
k=0

(
n−1

k

)
(−1)k+1 (ψt(k+q)−ψt(k+1+q))

We observe that in order to calculate the estimator proposed in Corollary 1 we need to
explicitly evaluate the Laplace exponent ψ of the underlying CRM in the NTR distribution,
this need is further showed in Proposition 3 above where the Laplace exponent is used
to evaluate integrals as the ones in the estimator formula 1.23. Similarly to evaluate the
likelihood in Corollary 2 the calculation of the Laplace exponent can be of key importance
for computations. In the next example we illustrate two ways of of fitting the survival of
possibly censored to the right data in a NTR context.

Example 5. NTR fit
We consider synthetic exponentially distributed censored to the right survival data DDD where

Yi ∼ Exponential(1.0), i = 1, . . . ,125.

Ci ∼ Exponential(1.0/3.0), j = 1, . . . ,125.

Such choice is useful as it allows for around 80% of the censored to the right observations to
be exact, around 100 data points. We use the estimator from Corollary 1 to fit the data. As we
take into account a vector of hyper-parameters ccc in what follows we denote such estimator,
(1.23), as Ŝ(t;ccc). We consider a NTR distribution with an homogeneous Gamma(α,β ) as
underlying CRM. Hence, our vector of hyper-parameters is ccc = (α,β ); to which we assign
prior distributions, pα and pβ respectively, and use a Metropolis-Within Gibbs algorithm to
draw samples from the posterior distributions of α and β , i.e. α|DDD and β |DDD accordingly. To
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this end we use the likelihood l(α,β ;DDD) as presented in 2. Given initial values α(0) and β (0)

the algorithm is as follows.

Algorithm 2 Metropolis within Gibbs for NTR(Gamma(α,β )) model fit example

1: Draw α(i+1) from a Metropolis-Hastings sampler with truncated Normal proposal distri-
bution g(x′|x)∼ Normal

∣∣
(0,∞)

(x,1) and target distribution

l(x,β (i);DDD)pα(x).

2: Draw β (i+1) from a Metropolis-Hastings sampler truncated Normal proposal distribution
g(x′|x)∼ Normal

∣∣
(0,∞)

(x,1) and target distribution

l(α(i+1),x;DDD)pβ (x).

After using the above algorithm to generate a MCMC chain we use the values αmaxpost and
β maxpost which attain the maximum posterior distribution along the chain to evaluate the
estimator in Corollary 1 as

Ŝmaxpost = Ŝ(t;α
maxpost,β maxpost) (1.24)

see Figure . Alternatively we can average the estimator over the values in the chain after a
burn-in index.

Ŝaveraged(t) =
chain-length

∑
i=burn-in

Ŝ(t;α(i)β (i))

chain-length − burn-in
, (1.25)

see Figure . The prior distributions we choose for the hyper-parameters are.

α ∼ LogNormal(m = 1.0/T̄ ,σ2 = 1.0)

β ∼ LogNormal(m = 1.0,σ2 = 1.0)

where T̄ is the mean of the censored to the right observations {Ti}125
i=1 and LogNormal(m,σ2)

denotes the law of LogNormal random variable associated to a Normal distribution with
mean m and variance σ2. With such choices we run Algorithm 2 and show the chains for α

and β in Figures 1.3 and 1.4, respectively; the values attaining the maximum a posteriori
value are showed in these figures and later used to plug-in in the estimator (1.24) which
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is showed in Figure 5; even more, we use the chains to produce the estimator (1.25) as
showcased in Figure 1.6.

Fig. 1.3 Plot of MCMC chain for α as described in Algorithm 2.

Fig. 1.4 Plot of MCMC chain for β as described in Algorithm 2.
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Fig. 1.5 NTR survival fit with the estimator (1.24), compared with the Kaplan-Meier estimator
(1.21) and the true survival function of the events of interest, which are exponentially
distributed with rate one.

Fig. 1.6 NTR survival fit with the estimator (1.25), burn-in= 200, compared with the Kaplan-
Meier estimator (1.21) and the true survival function of the events of interest, which are
exponentially distributed with rate one.
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The asymptotic analysis of a posterior distribution when the number of observations n tends
to infinity is of special importance in Bayesian statistics. Posterior consistency is a key
concept in this setting.

Definition 9. Given a time horizon τ ∈ R+, n i.i.d. survival times Y1, . . . ,Yn associated
to a true cumulative hazard function Λ0 which is continuous, a true survival function S0

such that limt→∞ S0(t) = 0 and limt→0 S0(t) = 1 and corresponding survival data DDD (n) =

{(Ti,δi,XXX i)}n
i=1, We say that the posterior is consistent if for any ε > 0

P
[

sup
t≤τ

|S(t)−S0(t)|< ε |DDD (n)
]
→ 1

The study of posterior consistency conditions for NTR distributions was performed by Kim
and Lee (2001) and Dey et al. (2003). To introduce such conditions we haver first to present
the cumulative hazard function for NTR distributions.

Definition 10. Given a random variable with cumulative distribution function F and survival
function S, its cumulative hazard functions is given by

Λ(t) =
∫ t

0

F(ds)
S(s−)

.

For NTR distributions we have the following characterization of the cumulative hazard.

Proposition 4. Let QExp(1)(x) = 1−e−x be the quantile functions of an Exponential r.v. with
rate parameter 1. If S∼ NTR(µ) and µ is a CRM with homogeneous Lévy intensity ν(ds,dx)
then the cumulative hazard function of S is a CRM with homogeneous Lévy intensity ξ (ds,dx)
given by

ξ (A,B) = ν

((
QExp(1)

)−1
(A) ,B

)
for any A,B ∈B(R+).

For a proof see Proposition 2 in Dey et al. (2003) and the discussion therein. If ν is
homogeneous ν(ds,dx) = ρ(ds)κ(dx) and furthermore ρ is absolutely continuous with
respect to Lebesgue measure, i.e. ρ(ds) = ρ(s)ds, then ξ (ds,dx) = L(ds)κ(dx) and L is
absolutely continuous with respect to Lebesgue measure, L(ds) = L(s)ds, as

L(A) =
∫
(QExp(1))

−1
(A)

ρ(s)ds =
∫

A

ρ (− log(1− s))
1− s

ds;

so L(s) = ρ (− log(1− s))/(1− s) where we have been performing the usual abuse of nota-
tion of giving the same name to the measure and the respective Radon-Nikodym derivative.
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The next result from Kim and Lee (2001) gives sufficient conditions for posterior consistency
when we consider a cumulative hazard rate given by a Lévy process with homogeneous
intensity of the form ξ (s,x)dsdx in the NTR model.

Proposition 5 (Kim and Lee (2001)). Given a time horizon τ ∈R+, if S is a survival function
such that S(ds) = 1−Λ(ds) where Λ is a CRM given by a Lévy intensity ξ such that for

λ (x) =
∫ 1

0
sξ (s,x)ds

we have that

sup
x∈[0,τ] ,s∈[0,1]

s(1− s)ξ (s,x)
λ (x)

< ∞

and there exists a function h(x) in [0,τ] such that 0 < infx∈[0,τ] h(x)≤ supx∈[0,τ] h(x)< ∞ and

0 < lim
s→0

sup
x∈[0,τ]

∣∣∣sξ (s,x)
λ (x)

−h(x)
∣∣∣< ∞

then the posterior distributions of S is consistent.

Example 6 (Kim and Lee (2001)). Homogeneous Gamma CRM posterior consistency
For the homogeneous gamma CRM we have that

ν(s,x) =
βe−αsκ(x)

s

so by Proposition 4 the associated cumulative hazard function Λ has Lévy intensity given by

ξ (s,x) =
β (1− s)ακ(x)
− log(1− s)(1− s)

.

We observe that

λ (x) =
∫ 1

0

β s(1− s)ακ(x)
− log(1− s)(1− s)

ds = cκ(x)

for some c ∈ (0,∞). Using 1− e−s ≤ s

sup
x∈[0,τ] ,s∈[0,1]

sβ (1− s)α

−c log(1− s)
≤ sup

s∈[0,1]

β

c
(1− s)α =

β

c
.
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Consistency for Gamma NTR

Fig. 1.7 Plot of NTR fits as in Example 5, with (1.24), and true survival for 15, 25, 60 and
125 observations; in each case there are around 80% of the observations are exact and the
rest censored to the right.

and choosing h(x) = β/2c

lim
s→0

sup
x∈[0,τ]

∣∣∣ sβ (1− s)α

−c log(1− s)(1− s)
− β

2c

∣∣∣= ∣∣∣ lim
s→0

β

c
(1− s)− β

2c

∣∣∣= β

2c

So the gamma CRM satisfies the conditions of Proposition 5 and in consequence the consis-
tency of the posterior survival function.

Another interesting asymptotic property in Bayesian statistics is the Bernstein-von Mises
theorem which deals with the convergence of the posterior distribution into the law of a
frequentist estimator, in our case the Kaplan-Meier estimator of Definition 8. In what follows
let B(·) be a standard Brownian motion in R+ and given survival data with covariates DDD

(n)
X̂XX

denote the associated Kaplan-Meier estimators as Ŝ(n)KM.

Definition 11. Given a time horizon τ ∈ R+, let D([0,τ]) be the space of cadlag functions
on [0,τ] with the uniform convergence topology and associated Borel σ -algebra. Let there
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be n i.i.d. survival times Y1, . . . ,Yn associated to a true cumulative hazard function Λ0 which
is continuous, a true survival function S0 such that limt→∞ S0(t) = 0 and limt→0 S0(t) = 1,
and corresponding survival data DDD (n) = {(Ti,δi,XXX i)}n

i=1; we say that the posterior attains the
Bernstein-von Mises theorem if

L
(√

n(S(·)− Ŝ(n)KM(·)) |DDD (n)
X̂XX

)
)

d→−S0(·)B(U0(·))

on D([0,τ)) with probability 1, where U0(t) =
∫ t

0 dΛ0(s)/Q(s) with Q(t) = P[Y ≥ t], Y ∼
L (S0).

The next result from Kim and Lee (2004) gives sufficient conditions for the Bernstein-von
Mises theorem in a NTR setting.

Proposition 6. (Kim and Lee (2004)) Given a time horizon τ ∈R+, if S is a survival function
such that S(ds) = 1−Λ(ds) where Λ is a CRM given by a Lévy intensity ξ such that for

0 < λ (x) =
∫ 1

0
sξ (s,x)ds < ∞

we have that

sup
x∈[0,τ] ,s∈[0,1]

s(1− s)ξ (s,x)
λ (x)

< ∞

and

sup
x∈[0,τ] ,s∈(0,ε)

∣∣∣ ∂

∂ s

(
sξ (s,x)

λ (x)

)∣∣∣< ∞

for some ε > 0. Then the posterior attains the Bernstein-von Mises theorem.

Example 7. (Kim and Lee (2004)) Homogeneous Gamma CRM Bernstein-von Mises
In view of Example 6, κ must be bounded and positive in [0,τ] and we only have to observe
that for g(s) = sξ (s,x)/λ (x)

g′(s) =−β (1− s)α−1

c log(1− s)
+

β (α−1)s(1− s)α−2

c log(1− s)
− β s(1− s)α−2

λ (log(1− s))2

=
β (α−1)s(1− s)α−2

c log(1− s)
+

β (1− s)α−1

c

(
− log(1− s)− s(1− s)−1

(log(1− s))2

)
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Bernstein-von Mises Theorem for Gamma NTR

Fig. 1.8 Plot of NTR fits as in Example 5, with (1.24), and Kapla-Meier fits for 15, 25, 60
and 125 observations; in each case around 80% of the observations are exact and the rest
censored to the right.

for some c ∈ (0,∞). Using L’Hopital’s rule we see that

lim
s→0

g′(s) =−β (α−1)
c

+
β

c
lim
s→0

(1− s)−1− (1− s)−1− s(1− s)−2

−2log(1− s)(1− s)−1

=−β (α−1)
c

− β

2c
.

So the Bernstein-von Mises result follows.

1.4 Proofs of NTR results

In this section we give the proofs of the results associated to NTR distributions in the previous
section.
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Proof of Theorem 1

We need the next technical lemma for the proof of the theorem.

Lemma 1. In the setting of Theorem 1, let r ∈ R+, q ∈ N\{0}, t0 > 0 and 0 < ε < t0; then
as ε → 0

E
[
e−rµ(t0−ε,t0](1− eµ(t0−ε,t0])q

]
= ε

∫
∞

0
e−rs(1− e−s)q

η
′
t0(s)ds+o(ε)

Proof. We denote△s2
s1 ft(r) = fs2(r)− fs1(r) for a function f where s1,s2,r ∈ R+. We use

the binomial theorem and apply expectation to write the left hand side in the equation above
as

E
[
e−rµ(t0−ε,t0](1− eµ(t0−ε,t0])q

]
= E

[
q

∑
i=0

(
q
i

)
(−1)ie−(r+i)µ(t0−ε,t0]

]

=
q

∑
i=0

(
q
i

)
(−1)ie−△

t0
t0−ε ψt(r+i)

= e−△
t0
t0−ε ψt(r)

q

∑
i=0

(
q
i

)
(−1)ie−△

t0
t0−ε (ψt(r+i)−ψt(r))

= e−△
t0
t0−ε ψt(r)

q

∑
i=0

(
q
i

)
(−1)ie−

∫
∞

0 e−rs(1−e−is)△t0
t0−ε ηt(s)ds

= e−△
t0
t0−ε ψt(r)

(
1+

q

∑
i=1

(
q
i

)
(−1)ie−

∫
∞

0 e−rs(1−e−is)△t0
t0−ε ηt(s)ds

)

= e−△
t0
t0−ε ψt(r)

(
1+

q

∑
i=1

(
q
i

)
(−1)i

(
1− ε

∫
∞

0
e−rs(1− e−is)η ′t0(s)ds+o(ε)

))

= e−△
t0
t0−ε ψt(r)

(
−ε

∫
∞

0
e−rs

q

∑
i=1

(
q
i

)
(−1)i(1− e−is)η ′t0(s)ds+o(ε)

)

= e−△
t0
t0−ε ψt(r)

(
ε

∫
∞

0
e−rs(1− e−s)q

η
′
t0(s)ds+o(ε)

)
= (1+o(1))

(
ε

∫
∞

0
e−rs(1− e−s)q

η
′
t0(s)ds+o(ε)

)
= ε

∫
∞

0
e−rs(1− e−s)q

η
′
t0(s)ds+o(ε)

We make use of the following Lemma to simplify the proof of the Theorem.
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Lemma 2. In the setting of Theorem 1 suppose the censored to the right data DDD is comprised
of a sole observation t1 with frequencies ne = ne

1 and nc = nc
1. Let t < t1; then

E
[
e−λ µ(0,t]|µ,DDD

]
= lim

ε→0

E
[
e−(λnc+ne)µ(0,t]

]
E
[
e−(nc+ne)µ(0,t]

]
Proof.

E
[
e−λ µ(0,t]|µ,DDD

]
= lim

ε→0

E
[

e−λ µ(0,t]e−ncµ(0,t1]
(

e−µ(0,t1−ε]− e−µ(0,t1]
)ne]

E
[
e−ncµ(0,t1]

(
e−µ(0,t1−ε]− e−µ(0,t1]

)ne]

= lim
ε→0

E
[
e−λ µ(0,t]−ncµ(0,t]−neµ(0,t]

]
E
[

e−ncµ(t,t1]
(

e−µ(t,t1−ε]− e−µ(t,t1]
)ne]

E
[
e−ncµ(0,t]−neµ(0,t]

]
E
[
e−ncµ(t,t1]

(
e−µ(t,t1−ε]− e−µ(t,t1]

)ne]
=

E
[
e−(λ+nc+ne)µ(0,t]

]
E
[
e−(nc+ne)µ(0,t]

] = e−(ψt(λ+nc+ne)−ψt(nc+ne))

We observe that if ψt is the Laplace exponent associated to the Lévy measure ν then
ψ

(k)
t (λ ) = ψt(λ + k)−ψt(k) is the Laplace exponent associated to e−ksν(ds,dx), with this

in mind we have that, in the following, without loss of generality for calculations of the
posterior Laplace exponent as in the previous Lemma it suffices to consider evaluation of the
exponent in a time t which is greater than all the survival times in the survival data DDD.
Lets define

ΓDDD ,ε =
k⋂

j=1

{
(T1,J1, . . . ,Tn,Jn) : mc ({T( j)}

)
= nc

j ,

me ((T( j)− ε,T( j)]
)
= ne

j
}

so that

E
[
e−λ µ(0,t]|DDD

]
= lim

ε→0

E
[
e−λ µ(0,t]

1ΓDDD ,ε
(DDD)

]
P
[
DDD ∈ ΓDDD ,ε

] .
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We have that

E
[
e−λ µ(0.t]

1ΓDDD ,ε
(DDD)

]
= lim

ε→0
E

[
e−λ µ(0.t]−∑

k
i=1 nc

i µ(0,T(i)]
k

∏
i=1

(
e−µ(0,T(i)−ε]− e−µ(0,T(i)]

)ne
i

]

= E

[
e−λ µ(0.t]−∑

k
i=1 nc

i µ(0,T(i)]−∑
k
i=1 ne

i µ(0,T(i)−ε]
k

∏
i=1

(
1− e−µ(T(i)−ε,T(i)]

)ne
i

]

= E

[
e−λ µ(T(k).t]−∑

k
r=1(λ+n̄c

r+n̄e
r)µ(T(r−1),T(r)−ε]−∑

k
r=1(λ+n̄c

r+n̄e
r+1)µ(T(r)−ε,T(r)]

×
k

∏
i=1

(
1− e−µ(T(i)−ε,T(i)]

)ne
i

]
= E

[
e−λ µ(T(k).t]−∑

k
r=1(λ+n̄c

r+n̄e
r)µ(T(r−1),T(r)−ε]

]
×E

[
e−∑

k
r=1(λ+n̄c

r+n̄e
r+1)µ(T(r)−ε,T(r)]

k

∏
i=1

(
1− e−µ(T(i)−ε,T(i)]

)ne
i

]
= E[I1]E[I2]

with
I1 = e−∑

k+1
i=1 (λ+n̄c

i +n̄e
i )µ(T(i−1),T(i)−ε]

where we set T(k+1) = t, n̄c
k+1 = 0 = n̄e

k+1. On the other hand

I2 = e−∑
k
r=1(λ+n̄c

r+n̄e
r+1)µ(T(r)−ε,T(r)]

k

∏
i=1

(
1− e−µ(T(i)−ε,T(i)]

)ne
i
. (1.26)

For the expectation in I2 need to calculate quantities of the form

E
[
e−rµ(t0−ε,t0](1− eµ(t0−ε,t0])q

]
which are already given by the previous lemma for q > 0; if q = 0

lim
ε→0

E
[
e−rµ(t0−ε,t0](1− eµ(t0−ε,t0])q

]
= lim

ε→0
E
[
e−rµ(t0−ε,t0]

]
= 1

So if we define J = { j : ne
j > 0} then

lim
ε→0

E[I2] = lim
ε→0 ∏

i∈J

(
ε

∫
∞

0
e−(λ+n̄c

i +n̄e
i+1)s(1− e−s)ne

i η
′
T(i)(s)ds+o(ε)

)
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We also get that

lim
ε→0

E[I1] = e
−∑

k+1
i=1

(
ψT(i)

(λ+n̄c
i +n̄e

i )−ψT(i−1)
(λ+n̄c

i +n̄e
i )
)

So

E
[
e−λ µe(0.t]1ΓDDD,ε

(DDD)
]
= e
−∑

k+1
i=1

(
ψT(i)

(λ+n̄c
i +n̄e

i )−ψT(i−1)
(λ+n̄c

i +n̄e
i )
)

× lim
ε→0 ∏

i∈J

(
ε

∫
∞

0
e−(λ+n̄c

r+n̄e
r+1)s(1− e−s)ne

i η
′
T(i)(s)ds+o(ε)

)

Analogously, or by Monotone convergence when λ → 0, we get that

E
[
1ΓDDD

]
= e
−∑

k
i=1

(
ψTi(n̄

c
i +n̄e

i )−ψT(i−1)
(n̄c

i +n̄e
i )
)

× lim
ε→0 ∏

i∈J

(
ε

∫
∞

0
e−(n̄c

i +n̄e
i+1)s(1− e−s)ne

i η
′
T(i)(s)ds+o(ε)

)
. (1.27)

It follows that

E
[
e−λ µe(0,t]|DDD

]
= e
−∑

k+1
i=1

∫
R+×(T(i−1),T(i)]

(1−e−λ s)e−(n̄
c
i +n̄e

i )sν(ds,du)

× ∏
j∈J

lim
ε→0

ε
∫

∞

0 e−(λ+n̄c
r+n̄e

r+1)s(1− e−s)ne
i η ′T( j)

(s)ds+o(ε)

ε
∫

∞

0 e−(n̄c
r+n̄e

r+1)s(1− e−s)ne
i η ′T( j)

(s)ds+o(ε)


= e
−∑

k+1
i=1

∫
R+×(T(i−1),T(i)]

(1−e−λ s)e−(n̄
c
i +n̄e

i )sν(ds,du)

×∏
j∈M

∫ ∞

0 e−(λ+n̄c
r+n̄e

r+1)s(1− e−s)ne
i η ′T(i)(s)ds∫

∞

0 e−(n̄c
r+n̄e

r+1)s(1− e−s)ne
i η ′T(i)(s)ds

 (1.28)

Proof of Corollary 1

In equation 1.28 above, take λ = 1 and using the discussion after Lemma 2 replace M with
Mt to obtain the result.

Proof of Corollary 2

From equation 1.27 in the proof of Theorem 1 we obtain the desired likelihood.
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Proof of Proposition 2

In the setting of Theorem 1.

ψ
◦ j
t (λ ) =

∫
(t∧T( j−1),t∧T( j))×R+

(1− e−λ s)e−(n̄
c
j+n̄e

j)sν(s,dx)ds

=
∫
(t∧T( j−1),t∧T( j))×R+

(1− e−(λ+n̄c
j+n̄e

j)s)ν(s,dx)ds

−
∫
(t∧T( j−1),t∧T( j))×R+

(1− e−(n̄
c
j+n̄e

j)s)ν(s,dx)ds

=
(

ψt∧T( j)(λ + n̄c
j + n̄e

j)−ψt∧T( j−1)(λ + n̄c
j + n̄e

j)
)

−
(

ψt∧T( j)(n̄
c
j + n̄e

j)−ψt∧T( j−1)(n̄
c
j + n̄e

j)
)
.

Proof of Proposition 3

In the setting of Proposition 3∫
R+×(0,t]

e−qs (1− e−s)n
ν(ds,dx)

=
∫
R+×(0,t]

e−qs(1− e−s)
n−1

∑
k=0

(
n−1

k

)
(−1)ke−ks

ν(dsdx)

=
n−1

∑
k=0

(
n−1

k

)
(−1)k

∫
R+×(0,t]

e−(k+q)s(1− e−s)ν(ds,dx)

=
n−1

∑
k=0

(
n−1

k

)
(−1)k+1

(∫
R+×(0,t]

(1− e−(k+q)s)ν(ds,dx)

−
∫
R+×(0,t]

(1− e−(k+1+q)s)ν(ds,dx)
)

=
n−1

∑
k=0

(
n−1

k

)
(−1)k+1(

ψt(k+q)−ψt(k+1+q)
)



Chapter 2

Compound random measures

2.1 Completely random measures

Griffin and Leisen (2017) introduced a flexible and tractable family of VCRM’s. Their
key idea was to construct a d-variate VCRM using as building blocks a CRM, i.e. an
univariate VCRM, and a d-variate probability distribution. They call Compound Random
Measure (CoRM) the particular family of VCRM’s they propose. The following definition
of a CoRM differs from the one in Griffin and Leisen (2017) since it takes into account
the inhomogeneous case, where the locations and associated weights in the CRM are not
independent as in (1.14).

Definition 12. A Compound Random Measure (CoRM) is a VCRM with Lévy intensity
given by

ν̃d(dsss,dx) =
∫
R+

z−dh
(

s1

z
, . . . ,

sd

z

)
dsssν

⋆(dz,dx) (2.1)

where h is a d-variate probability density function which we call the score distribution
density, and ν⋆ is a Lévy intensity which we call the directing Lévy measure.

By performing a simple change of variable we note that

∫
(R+)d

z−dh
(

s1

z
, . . . ,

sd

z

)
dsss = 1.

Therefore, z−dh
( s1

z , . . . ,
sd
z

)
can be seen as the density of a distribution function

H
(

ds1

z
, . . . ,

dsd

z

)
.
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This allows to write the multivariate Lévy intensity in equation (2.1) as

ν̃d(dsss,dx) =
∫
R+

H
(

ds1

z
, . . . ,

dsd

z

)
ν
⋆(dz,dx), (2.2)

and we call such H the score distribution. To write the Lévy intensity of a CoRM in
terms of distribution functions rather than probability density functions will be convenient
for the results presented in the next section. In the following we will say that the CRM as-
sociated to the directing Lévy measure ν⋆ of a CoRM µµµ is the directing CRM of the CoRM µµµ .

In Griffin and Leisen (2017), they used a CoRM to model a vector of Dirichlet processes
which they used to fit a mixture model for heterogeneous clinical studies; furthermore they
extend this approach in Griffin and Leisen (2018) where they use a mixture model based
on a normalized CoRM where the score distribution depends on a covariate. On the other
hand, Todeschini et al. (2016) recently used CoRM’s for the modelling of graphs which allow
overlapping communities. Finally in this thesis we will use CoRM’s for survival analysis
with multiple-sample information, Riva-Palacio and Leisen (2018) as discussed in Chapter 4,
and for survival analysis regression in Chapter 5. We conclude the high potential for the use
of CoRM’s in the analysis of several heterogeneous datasets.

2.2 Integrability conditions

The specification of a CoRM needs the initial choice of a score distribution and a directing
Lévy measure. Although this seems straightforward, it is necessary to check that this choices
lead to a well defined CoRM. Otherwise, the associated stochastic process, in this case a
random measure, is not well defined; in a Bayesian statistics setting where a probability
distribution is given in terms of a CoRM we can be under risk of performing inference based
on an ill-posed prior if the CoRM we are using is not well defined. In this section we look at
two important aspects of Definition 12

1) We provide conditions on the score distribution and the directing Lévy measure for the
existence of the marginal Lévy intensities of a CoRM, see Theorem 2 and Corollary 3,

2) We provide conditions on the score distribution and the directing Lévy measure for the
existence of the multivariate Lévy intensity of a CoRM, see Theorem 3.

Essentially, Theorem 2 and Corollary 3 ahead focus on the existence of the marginals, (1.17),
of a CoRM. On the other hand, Theorem 3 focuses on the global existence of a CoRM. The
proofs of the theorems can be found at the end of the chapter, section 2.4.
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Let H and ν⋆ be, respectively, a score distribution and a directing Lévy measure which define
a CoRM. We denote with H j, j ∈ {1, . . . ,d}, the j-th marginal of a d-dimensional score
distribution H. A simple change of variable leads to the j-th marginal of a CoRM, namely

ν j (A,X) =
∫
R+×X

∫
A/z

H j(ds)ν⋆(dz,dx)

=
∫
R+

∫
A×X

ν
⋆

(
dz
s
,dx
)

H j(ds). (2.3)

We can see the formula above as a mean. Let S j be a random variable with distribution H j,
then

ν j(A,X) = E
[

ν
⋆

(
A
S j
,X
)]

(2.4)

for A ∈B (R+). We use the last identity to give conditions for the marginal intensity ν j to be
a proper Lévy intensity, i.e. a measure that satisfies the condition displayed in equation (1.2).

Theorem 2. Let H be a d-variate score distribution and ν⋆ a directing Lévy measure defining
a measure ν̃d as in (2.2) with corresponding marginals ν j for j ∈ {1, . . . ,d}. Let X be a
bounded set in X , then the measure ν j satisfies the integrability condition (1.2) if and only if

∫
(0,1)×X

P
[

S j ≥
1
z

]
ν
⋆(dz,dx)< ∞ (2.5)

and ∫
[1,∞)×X

P
[

S j ≤
1
z

]
zν

⋆(dz,dx)< ∞. (2.6)

Furthermore if the marginal score H j satisfies that

1−H j

(
1
z

)
≤ z ∀ z ∈ (0,ε) for some ε > 0 (2.7)

and

lim
z→∞

zH j

(
1
z

)
< ∞ (2.8)

then conditions (2.5), (2.6) are satisfied with an arbitrary choice of the directing Lévy
measure ν⋆.
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As set in Definition 12, we usually work with CoRM’s given by a score with a probability
density; in such case the following corollary to Theorem 2 follows.

Corollary 3. If S j has probability density function h j then conditions (2.7)-(2.8) reduce to

lim
z→0

h j
(1

z

)
z2 < 1 (2.9)

and

lim
ε→0

h j (ε)< ∞. (2.10)

The previous results concerned conditions for the marginals of a CoRM to be well defined,
now we focus on such a result for the CoRM. For a score density function h and directing
Lévy measure ν⋆ to properly define a CoRM we need to check the condition (1.13) which
takes the form ∫

R+×X

∫
(R+)d

min{1,∥sss∥}h
(

s1

z
, . . . ,

sd

z

)
dsss
zd ν

⋆(dz,dx)< ∞ (2.11)

for bounded set X ∈X . As stated at the beginning of this section, in the next theorem we
provide conditions on the score distribution and the directing Lévy measure for the existence
of the multivariate Lévy intensity of a CoRM. This is equivalent to provide conditions such
that the above inequality holds true.

Theorem 3. Consider a CoRM which satisfies conditions (2.5) and (2.6) for each marginal
ν j, j ∈ {1, . . . ,d}, then the integrability condition (2.11) is satisfied.

We conclude this section by providing three examples of the use of the previous results when
considering Gamma, Beta and LogNormal distributed score distributions.

Example 8. Gamma scores
We consider the marginal gamma score case. Let h be the d-variate probability density of
the score distribution; for j ∈ {1, . . . ,d} we denote the j-th marginal density h j and let it
correspond to a Gamma distribution with shape and rate parameters α j, β j, i.e.

h j(s) =
β

α j
j sα j−1e−β js

Γ(α j)
1{s∈(0,∞)}.
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We check the constraints (2.7), (2.8) by making use of Corollary 3 as we have probability
densities. To check (2.9) we see that

lim
s→0

h j
(1

s

)
s2 = lim

s→0

β
α j
j e−

β j
s

Γ(α j)sα j+1 = 0

and constraint (2.10) is satisfied for arbitrary Lévy directing measure ν⋆ whenever α j ≥ 1, as
in the examples presented in Griffin and Leisen (2017). However for α j < 1 the associated
CoRM will be well posed depending on the choice of ν⋆. If for example we take the directing
Lévy measure to be the σ -stable, i.e.

ν
⋆(dz,dx) =

Aσ

Γ(1−σ)z1+σ
dzdx

then constraint (2.5) in Theorem 2 can be reduced to

A
Γ(1−σ)

∫ 1

0

∫
∞

1
z

h j(s)
σ

z1+σ
dsdz =

A
Γ(1−σ)

∫
∞

1

∫ 1

1
s

h j(s)
σ

zσ+1 dzds

=
A

Γ(1−σ)

∫
∞

1
h j(s)(sσ −1)ds < ∞,

which is always satisfied since h j is a Gamma density. On the other hand, condition (2.6) in
Theorem 2 becomes

A
Γ(1−σ)

∫
∞

1

∫ 1
z

0
h j(s)

σz
z1+σ

dsdz =
A

Γ(1−σ)

∫ 1

0

∫ 1
s

1
h j(s)

σ

zσ
dzds

=
Aσ

Γ(2−σ)

∫ 1

0
h j(s)(sσ−1−1)ds < ∞

which is not satisfied when α j +σ < 1.

Example 9. Beta scores
In the setting as above, if the marginal scores are Beta distributed, i.e.

h j(s) =
sα j−1(1− s)β j−1

B(α j,β j)
1{s∈(0,1)}

then constraint (2.9) becomes

lim
s→0

h j
(1

s

)
s2 = lim

s→0

(s−1)β j−1

sα j+β jB(α j,β j)
= 0,
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so it is always satisfied; and condition (2.8) is satisfied whenever α j ≥ 1. We consider
again a σ -stable Lévy intensity for ν⋆ when α j < 1. Proceeding as in the previous example,
constraint (2.5) becomes

A
Γ(1−σ)

∫
∞

1

∫ 1

1
s

h j(s)
σ

zσ+1 dzds < ∞

so it always holds; and constraint (2.6) becomes

A
Γ(1−σ)

∫ 1

0

∫ 1
s

1
h j(s)

σ

zσ
dzds < ∞,

which holds for σ +α j > 1.

Example 10. LogNormal scores
We check conditions (2.9) and (2.10) for an arbitrary LogNormal distribution with density

h(z) =
1

zσ
√

2π
e−

(ln(z)−µ)2

2σ2 .

We have that

lim
z→0

h(1/z)
z2 = lim

z→0

1
zσ
√

2π
e−

(ln(1/z)−µ)2

2σ2

= lim
z→0

1
σ
√

2π
e
− ln(1/z)2+2(µ+σ2) ln(1/z)−µ2

2σ2 = 0

and

lim
z→0

h(z) = lim
z→0

(
1

zσ
√

2π
e−

(ln(z)−µ)2

2σ2

)
lim
z→0

(
1

σ
√

2π
e
− ln(z)2+2(µ−σ2) ln(z)−µ2

2σ2

)
= 0

So LogNormal scores define a CoRM for any choice of the directing Lévy measure ν⋆.

Example 11. Mixture distribution scores
We will see that a mixture of score distributions which satisfy the conditions of Corollary 3
attains the integrability conditions.

Definition 13. Let n ∈ N \ {0} and H(i) be a d−variate probability distribution for each
i ∈ {1, . . . ,n}. Given www = (w1, . . . ,wn) in the n-dimensional simplex, i.e. with positive
entries and such that ∑

n
i=1 wi = 1, then we say that the mixture of H(1), . . . ,H(n) with weights
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www is the distribution given by

H =
n

∑
i=1

wiH(i),

denoted w1L (H(1))+ . . .+wnL (H(n)) where we can refer to the law of the probability
distributions by their name, cumulative distribution, survival function or density function.

It is straightforward that if {h(i)}n
i=1 are probability densities satisfying the conditions in

Corollary 3, then then any mixture distribution of them has a probability density that attain
the Corollary 3 as well.

In what follows we denote a CoRM with score distribution "distribution" and directing
Lévy measure "directing" as "distribution"-"directing" CoRM; for example we can have
a LogNormal-Gamma CoRM or a Beta-σ -stable CoRM. If the "distribution" label used
corresponds to univariate distribution we assume that the vector given by the score has
mutually independent entries with marginal distribution as the label; furthermore the directing
Lévy measure is taken to be homogeneous if it is not otherwise indicated in the label.

2.3 Other interesting properties

The aim of this section is to investigate four interesting properties of CoRM’s. First, we
focus on CoRM’s which arise from regurlarly varying directing Lévy measures. This result is
motivated by the recent papers of Caron and Fox (2017) and Todeschini et al. (2016) which
made use of regularly varying Lévy measures to construct sparse random graphs. Second, we
provide an explicit expression of the multivariate Lévy intensity of a CoRM with independent
exponential scores. This result is interesting when compared with Theorem 3.2 in Zhu and
Leisen (2015) and Corollary 2 in Griffin and Leisen (2017) which provide, respectively,
the Lévy copula representation and the Laplace exponent of CoRM’s with independent
exponential scores. Third we give a formula for the Laplace exponent of a CoRM which can
be approximated via Monte-Carlo methods. Finally, we give a series representation for a
CoRM which can be used for simulation purposes and that will be of use later on to prove
results concerning the model in Chapter 5. The proofs of the results can be found at the end
of the chapter.

For the results that deal with a d-variate CoRM given by an homogeneous directing Lévy
intensity ν⋆(dz,dx) = ρ⋆(dz)κ(dx), we observe that the corresponding marginals of the
CoRM can be written in the form ν j(ds,dx) = ρ j(ds)κ(dx) as discussed in (1.18).
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2.3.1 Regularly varying directing Lévy measure

In this section we focus on CoRM’s given by a directing Lévy measure that is regularly
varying. We recall that a real valued function L is slowly varying if limt→∞ L(at)/L(t) =
1 ∀a > 0.

Definition 14. An homogeneous Lévy measure ρ⋆(dz)κ(dx) in R+×X is said to be regularly
varying if the tail integral U⋆(y) =

∫
∞

y ρ⋆(ds) is a regularly varying function, i.e. it satisfies

U⋆(y) = L
(

1
y

)
1

yσ

for some σ ∈ [0,1), which we call the regular variation index, and L a slowly varying
function.

The following Theorem highlights an interesting link between the directing Lévy measure
and the marginal Lévy intensities in terms of the regularly varying property.

Theorem 4. Consider a CoRM with an homogeneous directing Lévy measure ρ⋆(ds)κ(dx)
such that the conditions of Theorem 3 are satisfied. If ρ⋆ is regularly varying with tail integral
U then the marginals ρ j, j ∈ {1, . . . ,d}, are regularly varying.

Example. σ -stable directing Lévy measure
Consider a σ -stable directing Lévy measure

ν
⋆(ds,dx) =

σ

Γ(1−σ)sσ+1 dsdx.

The related tail integral is

U⋆(y) =
1

Γ(1−σ)yσ

which is a regularly varying function with index σ and slowly varying function L(y) = 1
Γ(1−σ) .

We see that the regularly varying tail integrals related to the CoRM construction arise as a
factor of U⋆, namely U j(y) = E

[
Sσ

j

]
U⋆(y) and from Theorem 4 the associated marginal tail

integrals are regularly varying.

Regularly varying CRM’s are of interest in the work of Caron and Fox (2017) and Todeschini
et al. (2016) as they are related to the asymptotic properties of their models, see Caron and
Rousseau (2017).
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2.3.2 Independent Exponential scores

Consider a d-variate CoRM given by an homogeneous directing Lévy measure ν⋆(dz,dx) =
ρ⋆(dz)κ(dx) and a score distribution corresponding to d independent standard exponential
distributions, i.e.

h(s1, . . . ,sd) =
d

∏
i=1

e−si.

We observe that each associated marginal takes the form ν j(ds,dx) = f (s)dsκ(dx), where
f (s) =

∫
∞

0 z−1e−
s
z ρ⋆(dz). The following Theorem provides a characterization for this class

of CoRM’s.

Theorem 5. Consider a CoRM as described above; the corresponding d-variate Lévy
intensity ν̃d(dsss,dx) = ρ̃d(sss)dsssκ(dx) is such that

ρ̃d(sss) = (−1)d−1 ∂ d−1

∂ sd−1 f (s)
∣∣∣∣
s=s1+...+sd

.

2.3.3 Laplace exponent of a CoRM.

We can express the Laplace exponent of a CoRM in terms of the Laplace exponent of its
directing Lévy measure as follows.

Theorem 6. Let µµµ be a d-variate CoRM given by a score distribution H and directing Lévy
intensity ν⋆ associated to a Laplace exponent ψ⋆

t , then the Laplace exponent is given by

ψt(λ1, . . . ,λd) = E[ψ⋆
t (λ1W1− . . .−λdWd)]

where (W1, . . . ,Wd)∼ H.

The inferential schemes for the models presented in Chapters 4 and 5 rely heavily on the
evaluation of the Laplace exponent of an underlying VCRM; so the above result is of special
interest for using a CoRM in such models when its Laplace exponent is not explicitly available
but the one corresponding to the directing Lévy measure is.

2.3.4 Series representation of a CoRM

We can use the second part of Proposition 1 to obtain a series representation of a CoRM
given a series representation of the directing CRM. We illustrate such procedure in the next
theorem.



40 Compound random measures

Theorem 7. Let µµµ be a CoRM given by a score distribution H and a directing CRM µ⋆ with
a series representations

µ
⋆ =

∞

∑
i=1

W ⋆
i δXi.

If (
Z1,i, . . . ,Zd,i

) i.i.d.∼ H, i ∈ {1,2, . . .}

then

µµµ
a.s.
=

∞

∑
i=1

(
Z1,iWi, . . . ,Zd,iWi

)
δXi. (2.12)

We can use the above result to set an algorithm for simulation of a CoRM with score
distribution H and directing CRM µ⋆ as follows

Algorithm 3 CoRM simulation
1: Use the Ferguson-Klass algorithm, Algorithm 1, or some other algorithm to generate a

truncated series approximation of the directing CRM

µ
⋆ ≈

K

∑
i=1

W ⋆
i δXi.

for some K ∈ N.
2: Sample (

Z1,i, . . . ,Zd,i
) i.i.d.∼ H, i ∈ {1, . . . ,K}.

3: Approximate µµµ by using

µµµ ≈
K

∑
i=1

(
Z1,iWi, . . . ,Zd,iWi

)
δXi .

We denote LogNormal(mmm,ΣΣΣ) for a d-variate LogNormal distribution associated to a d-variate
Normal distribution with vector of means mmm and variance-covariance matrix ΣΣΣ. Let I(d) be
the d-variate identity matrix. With such notation we plot a LogNormal-Gamma CoRM in
Figure 2.1.
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Fig. 2.1 Plot of the entries of µµµ ((0, t]× (0, t]) when a LogNormal
(

mmm = (1.5,0.5) , I(2)
)

-
Gamma(2,1) CoRM is considered, the Gamma directing Lévy measure is homogeneous,
i.e. κ(dx) = dx as it was not otherwise stated. The random vector related to the secore
distribution has mutually independent entries due to the choice of variance-covariance matrix
but they are not identically distributed due to the vector of means choice. The simulation
was obtained by using Algorithm 3. The underlying Gamma process was obtained by using
Algorithm 1 as indicated in step 1 of the CoRM simulation algorithm.

2.4 Chapter 2 proofs

Proof of Theorem 2

We recall that ν⋆ satisfies (1.2) since it is a Lévy intensity. Using (2.4), condition (1.2) for ν j

becomes

E
[∫

R+×X
min{1,z}ν⋆

(
dz
S j
,dx
)]

= E

[∫(
0, 1

S j

)
×X

zν
⋆(dz,dx)

]
+E

[∫[
1

S j
,∞
)
×X

ν
⋆(dz,dx)

]
< ∞. (2.13)
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Therefore, ν j satisfies (1.2) if and only if

E

[∫(
0, 1

S j

)
×X

zν
⋆(dz,dx)

]
< ∞ (2.14)

and

E

[∫[
1

S j
,∞
)
×X

ν
⋆(dz,dx)

]
< ∞. (2.15)

The former can be decomposed using the Fubini-Tonelli theorem in

E

[∫(
0, 1

S j

)
×X

zν
⋆(dz,dx)

]
=
∫
R+×X

P
[

S j ≤
1
z

]
zν

⋆(dz,dx)

=
∫
(0,1)×X

P
[

S j ≤
1
z

]
zν

⋆(dz,dx)+
∫
[1,∞)×X

P
[

S j ≤
1
z

]
zν

⋆(dz,dx).

Condition (2.6) ensures that the second term of the above equation is finite. It is easy to see
that the first term is finite as well. Indeed,∫

(0,1)×X
P
[

S j ≤
1
z

]
zν

⋆(dz,dx)≤
∫
(0,1)×X

zν
⋆(dz,dx)< ∞.

On the other hand, the second term in (2.13) can be decomposed in

E

[∫[
1

S j
,∞
)
×X

ν
⋆(dz,dx)

]
=
∫
R+×X

P
[

1
z
≤ S j

]
ν
⋆(dz,dx)

=
∫
(0,1)×X

P
[

S j ≥
1
z

]
ν
⋆(dz,dx)+

∫
[1,∞)×X

P
[

S j ≥
1
z

]
ν
⋆(dz,dx).

Condition (2.5) ensures that the first term of the above equation is finite. It is easy to see that
the second term is finite as well. Indeed,∫

[1,∞)×X
P
[

S j ≥
1
z

]
ν
⋆(dz,dx)≤

∫
[1,∞)×X

ν
⋆(dz,dx)< ∞.

Therefore, the first part of the theorem follows from (2.13), (2.14) and (2.15).
For the remaining part of the Theorem we use that (1.2) is attained when considering the
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directing Lévy measure ν⋆. Indeed, if

lim
z→∞

zP
[

S j ≤
1
z

]
< ∞ (2.16)

then as ν⋆ is a Lévy intensity

∫
[1,∞)×X

P
[

S j ≤
1
z

]
zν

⋆(dz,dx)< ∞. (2.17)

so (2.14) holds. And if there exists ε > 0 such that 1−H j
(1

z

)
≤ z ∀ z ∈ (0,ε) then

∫
(0,1)×X

P
[

1
z
≤ S j

]
ν
⋆(dz,dx)<

∫
(0,1)×X

zν
⋆(dz,dx)< ∞,

so (2.15) also holds. From the first part of the theorem the CoRM marginal ν j satisfies the
integrability conditions for arbitrary ν⋆.

Proof of Corollary 3

We define f (z) = z− (1−H j
(1

z

)
) and observe that f (0+) = 0 so the existence of f ′(0+)> 0

implies (2.7). As S j has a probability density we get that f ′(0+) exists and (2.7) is equivalent
to f ′(0+)> 0 which we write as

lim
z→0

h j
(1

z

)
z2 < 1.

Using the fundamental theorem of calculus we see that (2.8) reduces to

lim
z→∞

zP
[

S j ≤
1
z

]
= lim

ε→0
h j (ε)< ∞

which is satisfied when h j is continuous at zero.
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Proof of Theorem 3

Denote Pj = {sss ∈ (R+)d : max{s1, . . . ,sd}= s j} for j ∈ {1, . . . ,d}; then, by using (2.3) and
the fact that each ν j is a Lévy intensity we get that for any bounded set X in X

∫
R+×X

∫
(R+)d

min{1,∥sss∥}h
(

s1

z
, . . . ,

sd

z

)
dsss
zd ν

⋆(dz,dx)

=
d

∑
j=1

∫
R+×X

∫
Pj

min{1,∥sss∥}h
(

s1

z
, . . . ,

sd

z

)
dsss
zd ν

⋆(dz,dx)

≤
d

∑
j=1

∫
R+×X

∫
Pj

min{1,
√

ds j}h
(

s1

z
, . . . ,

sd

z

)
dsss
zd ν

⋆(dz,dx)

≤
d

∑
j=1

∫
R+×X

∫
(R+)d

min{1,
√

ds j}h
(

s1

z
, . . . ,

sd

z

)
dsss
zd ν

⋆(dz,dx)

=
d

∑
j=1

∫
R+×X

∫
R+

min{1,
√

ds}h j

(
s
z

)
ds
z

ν
⋆(dz,dx)

=
d

∑
j=1

∫
R+×X

min{1,
√

ds}ν j(ds,dx)

≤
d

∑
j=1

∫
R+×X

min{
√

d,
√

ds}ν j(ds,dx)

=
√

d
d

∑
j=1

∫
R+×X

min{1,s}ν j(ds,dx)< ∞.

Proof of Theorem 4

We recall that for the case at hand

U⋆(y) = L
(

1
y

)
1

yσ
(2.18)

is a tail integral.

Proof. We note that equation (2.4) implies that

ρ j(A) = E
[

ρ
⋆

(
A
S j

)]



2.4 Chapter 2 proofs 45

It follows that the marginals of the CoRM are given by

U j(y) = ρ j ((y,∞))

= E
[
U⋆

(
y
S j

)]
= E

[
L
(

S j

y

)(
S j

y

)σ]
= E

[
L
(

S j

y

)
Sσ

j

]
1

yσ
.

Hence, it is enough to check if the function l(z) = E
[
L(S jz)Sσ

j

]
is slowly varying for L a

slowly varying function. Let a > 0, we need to check

lim
t→∞

l(at)
l(t)

= lim
t→∞

E
[
L(atS j)Sσ

j

]
E
[
L(tS j)Sσ

j

] = 1.

For a fixed ε > 0 we can choose t0 such that ∀u > t0

|L(au)/L(u)−1|< ε

2
,

since L is slowly varying. Then for t > t0∣∣∣∣∣∣
E
[
L(atS j)Sσ

j

]
E
[
L(tS j)Sσ

j

] −1

∣∣∣∣∣∣=
∣∣∣∣∣∣
E
[
Sσ

j
(
L(atS j)−L(tS j)

)]
E
[
L(tS j)Sσ

j

]
∣∣∣∣∣∣

≤
E
[
1{

S j>
t0
t

}Sσ
j

∣∣L(atS j)−L(tS j)
∣∣]

E
[
L(tS j)Sσ

j

] +

E
[
1{

S j≤
t0
t

}Sσ
j

∣∣L(atS j)−L(tS j)
∣∣]

E
[
L(tS j)Sσ

j

]

<

E
[
1{

S j>
t0
t

}Sσ
j

ε

2L(tS j)

]
E
[
L(tS j)Sσ

j

] +

E
[
1{

S j≤
t0
t

}Sσ
j

∣∣L(atS j)−L(tS j)
∣∣]

E
[
L(tS j)Sσ

j

]

<
ε

2
+

E
[
1{

S j≤
t0
t

}Sσ
j

∣∣L(atS j)−L(tS j)
∣∣]

E
[
L(tS j)Sσ

j

]
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=
ε

2
+

E
[
1{

S j≤
t0
t

}Sσ
j tσ
∣∣L(atS j)−L(tS j)

∣∣]
U j(

1
t )

=
ε

2
+

∫
(0, t0

t ]
sσ tσ |L(ats)−L(ts)|H j(ds)

U j(
1
t )

=
ε

2
+

∫
(0,t0] u

σ |L(au)−L(u)|H j
(du

t

)
U j(

1
t )

(2.19)

We observe that limx→0U j(x) = ∞. since U j is a tail integral. From (2.18) it follows that
limx→0 xσ (L(ax)−L(x)) = 0. Hence, the function g(x) = xσ (L(ax)−L(x)) is bounded in
[0, t0] by a constant K1,t0 . Finally we observe that for t > t0∫

(0,t0]
H j

(
du
t

)
<
∫
(0,1]

H j (du)≤ 1.

We set t1 > t0 such that for u > t1

2K1,t0
ε

<U j(1/u).

Choosing t > t1 we get∫
(0,t0] u

σ |L(au)−L(u)|H j
(du

t

)
U j(

1
t )

<
K1,t0

U j(
1
t )

<
ε

2

It follows from (2.19) that ∣∣∣∣∣∣
E
[
L(atS j)Sσ

j

]
E
[
L(tS j)Sσ

j

] −1

∣∣∣∣∣∣< ε.

Consequently, l defined above is slowly varying, implying that the marginal tail integral U j

is regularly varying.

Proof of Theorem 5

Let
f (s) =

∫
∞

0
z−1e−

s
z ρ

⋆(dz).
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From the setting of the independent exponential multivariate score distribution it is straight-
forward to see that

ρ̃d(sss) =
∫

∞

0
z−dh

(
s1

z
, · · · , sd

z

)
ρ
⋆(dz) =

∫
∞

0
z−de−

s1+...+sd
z ρ

⋆(dz).

From Example 8 we know that, for arbitrary ρ⋆ and d ∈ N \ {0}, the previous integral is
finite. Therefore for s ̸= 0

∫
∞

0

∣∣∣∣ ∂ j

∂ s j z−1e−
s
z

∣∣∣∣ρ⋆(dz) = ρ̃ j+1(s,0, . . . ,0)< ∞; (2.20)

it follows using the Dominated Convergence Theorem that we can take the derivative under
the integral sign as

(−1)d−1 ∂ d−1

∂ sd−1 f (s)
∣∣∣∣
s=s1+...+sd

= (−1)d−1
∫

∞

0

∂ d−1

∂ sd−1

(
z−1e−

s
z

)
ρ
⋆(dz)

∣∣∣∣
s=s1+...+sd

=
∫

∞

0
z−de−

s1+...+sd
z ρ

⋆(dz). (2.21)

Using (2.20) and (2.21) we conclude the proof.

Proof of Theorem 6

ψt(λ1, . . . ,λd) =
∫ t

0

∫
∞

0
· · ·
∫

∞

0
(1− e−λ1u1−...−λdud)ν(du1, . . . ,duddx)

=
∫ t

0

∫
∞

0
· · ·
∫

∞

0
(1− e−λ1w1z−...−λdwdz)h(w1, . . . ,wd)dw1 . . .dwdν

⋆(dz,dx)

=
∫

∞

0
· · ·
∫

∞

0

∫ t

0

∫
∞

0
(1− e−(λ1w1−...−λdwd)z)ν⋆(dz,dx)h(w1, . . . ,wd)dw1 . . .dwd

= E
[∫ t

0

∫
∞

0
(1− e−(λ1W1−...−λdWd)z)ν⋆(dz,dx)

]
= E[ψ⋆

t (λ1W1− . . .−λdWd)]
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Proof of Theorem 7

Let µ⋆ and H as in the hypothesis of the theorem and ν⋆ the Lévy intensity of µ⋆. We
consider a PRM

M =
∞

∑
i=1

δ(ZZZi,Wi,Xi),

where {ZZZi}∞
i=1

i.i.d.∼ H and {(Wi,Xi)}∞
i=1 are such that

∞

∑
i=1

δ(Wi,Xi)

as a PRM has intensity ν⋆. It follows that M has intensity µ = H×ν⋆. We define by

h(zzz,w,x) = (z1w,z2w, . . . ,zdw,x)

Then for A1, . . . ,Ad,B ∈B (R+)

h−1 ((A1× . . .×Ad)×B) ={
(
a1

w
,
a2

w
, . . . ,

ad

w
,w,x) such that x ∈ B, a1 ∈ A1, . . .ad ∈ Ad, w ∈ R+

}
So the pullback measure η = µ ◦h−1 is given by

η ((A1× . . .××Ad)×B) =
∫

h−1((A1×...××Ad)×B)
dµ

=
∫

A1/z×A2/z×...×Ad/z×(0,∞)×B
H(ds1, . . . ,dsd)ν

⋆(dz,dx)

=
∫

A1×A2×...×Ad×(0,∞)×B
H
(

ds1

z
, . . . ,

dsd

z

)
ν
⋆(dz,dx)

So extending the measure we conclude that

N =
∞

∑
i=1

δ(Z1,iWi,Z2,iWi,...,Zd,iWi,Xi)

is a CoRM given by the score distribution H and the directing Lévy measure ν⋆ due to
Proposition 1.



Chapter 3

Lévy copulas from compound random
measures

3.1 Lévy copulas

A widely used approach for setting the dependence structure in a VCRM is the Lévy copula
approach. Lévy copulas were proposed in Kallsen and Tankov (2006) and serve as an
analogue of the distributional copulas. For Lévy copulas interest is placed on a multivariate
Lévy intensity while distributional copulas interest is placed on a multivariate probability
distribution. For a full review of Lévy copulas see Cont and Tankov (2004) and for a full
review of distributional copulas see Nelsen (2007). In this chapter we discuss the link between
a Lévy copula and a CoRM, exhibited in Theorem 9, and introduce a new class of Lévy
copulas which generalize the widely used Clayton Lévy copula. These results are of interest
in a Bayesian nonparametric context as we will see in Chapter 4. However, Lévy copulas are
also of interest in the frequentist literature. In fact, they were first used in this framework
for modelling dependent Lévy processes, see for instance Esmaeili and Klüppelberg (2010).
We introduce some preliminary concepts for the discussion in this chapter. Let d ∈ N, in
the following we say for aaa = (a1, . . . ,ad) and bbb = (b1, . . . ,bd) both in (R+)d that a d−box
denoted [aaa,bbb] is given by

[aaa,bbb] = [a1,b1]× [a2,b2]×·· ·× [ad,bd].
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We say that the vertices of a d−box [aaa,bbb] are the points ccc = (c1, . . . ,cd) such that ck ∈ [ak,bk]

for k ∈ {1, . . . ,d}. We also define the function

sgn(ccc) =

1, if ck = ak for an even number of k’s.

−1, if ck = ak for an odd number of k’s.

We need the next two definitions for the setting up of the Lévy copula concept.

Definition 15. Let f be a d-variate function Dom( f )⊂ (R+)d and [aaa,bbb] with all its vertices
in Dom( f ); we say that the f−volume of [aaa,bbb] is

Vf ([aaa,bbb]) = ∑
{ccc :ccc is a vertex of [aaa,bbb]}

sgn(ccc) f (ccc)

Definition 16. We say that a d-variate function f with domain Dom( f ) ⊂ (R+)d is d-
increasing in (R+)d if Vf ([aaa,bbb])> 0 for all d−boxes [aaa,bbb] with all their vertices in Dom( f ).

More precisely a Lévy copula is defined as follows.

Definition 17. A d−variate positive Lévy copula is a function C (s1, . . . ,sd) : [0,∞]d→ [0,∞]

which satisfies

1. C (s1, . . . ,sd)< ∞ for (s1, . . . ,sd) ̸= (∞, . . . ,∞).

2. C is d−increasing.

3. C (s1, . . . ,sd) = 0 if uk = 0 for any k ∈ {1, . . . ,d}

4. Ck(s) = C (y(k)1 , . . . ,y(k)k−1,s,yk+1, . . . ,y
(k)
d ) = s for k ∈ {1, . . . ,d}, s ∈R+, where y(k)1 =

· · ·= y(k)k−1 = y(k)k+1 = · · ·= y(k)d = ∞.

The relation between the d−variate tail integral, see Definition 5, the marginal tail integrals,
see equation (1.19), and the Lévy copula is made explicit in the next result, which can be
seen as the Lévy copula analogue of the Sklar Theorem for distributional copulas.

Theorem 8. (Cont and Tankov (2004)) Let U be a d-variate tail integral with margins
{Ui}d

i=1 then there exists a Lévy copula C such that

U(s1, . . . ,sd) = C (U1(s1), . . . ,Ud(sd))

If {Ui}d
i=1 are continuous C is unique, otherwise it is unique in Ran(U1)× . . .×Ran(Ud).
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For a proof see Cont and Tankov (2004) where a full review of Lévy copulas and their link to
Lévy processes is given. If the Lévy copula is smooth then from Theorem 8 and the definition
of the multivariate tail integral we have that the underlying multivariate Lévy intensity can
be expressed as

ρ̃d(sss) =
∂ d

∂u1 · · ·∂ud
C (uuu)

∣∣∣∣
u1=U1(s1),··· ,xd=Ud(sd)

ρ1(s1) · · ·ρd(sd), (3.1)

where ρi, i ∈ {1, . . . ,d}, are the corresponding marginal tail integrals. Furthermore if C

is a two dimensional Lévy copula and {(W1,i,W2,i)}∞
i=1 are the random weights of a series

representation for the associated CRM, equation (1.11), then the law of S1,i = U1 (W1,i)

conditioned on S2,i =U2 (W2,i) = s2 ∈ R+ \{0} is given by the distribution function

F̂S1|S2=s1(s1) =
∂

∂ s2
C (s1,s2) (3.2)

and the law of S2,i =U2 (W2,i) conditioned on S1,i =U1 (W1,i) = s1 ∈ R+ \{0} is given by
the distribution function

F̂S2|S1=s1(s2) =
∂

∂ s1
C (s1,s2); (3.3)

see Theorem 6.3 in Cont and Tankov (2004) for a proof.

Some examples of d-variate positive Lévy copulas are the following:

Example 12. Independence Lévy copula.

C⊥(s1, . . . ,sd) =
d

∑
i=1

si ∏
j ̸=i
1{s j=∞}.

In this case the random measures {µi}d
i=1 are pairwise independent.

Example 13. Complete dependence Lévy copula.

C||(s1, , . . . ,sd) = min{s1, . . . ,sd}.

In this case the random measures {µi}d
i=1 are completely dependent in the sense that the

jumps weights of the VCRM associated to each location, the vectors
{(

W1,i, . . . ,Wd,i
)}∞

i=1
as in (1.11), are in a set S such that whenever vvv,uuu ∈ S then either v j < u j or u j < v j for all
j ∈ {1, . . . ,d}.
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Example 14. Clayton Lévy copula.

Cθ (s1, . . . ,sd) =
(

s−θ

1 + . . .+ s−θ

d

)−1/θ

; θ > 0.

The Clayton example above is of great interest as its parameter θ enable us to modulate
between the independence and complete dependence cases; indeed

lim
θ→0

Cθ (s1, . . . ,sd) = C⊥(s1, . . . ,sd)

and
lim

θ→∞
Cθ (s1, . . . ,sd) = C||(s1, , . . . ,sd).

Lévy copulas are useful to construct VCRM’s in such a way that the marginal behaviour can
be fixed and the dependence structure can be modeled separately, see for example Grothe
and Nicklas (2013) Leisen and Lijoi (2011), Leisen et al. (2013) and Zhu and Leisen (2015).

Example 15. Clayton Lévy copula with σ -stable marginals.

We focus on an homogeneous VCRM with dependence in the weights given by the Clayton
Lévy copula and with σ -stable margins, Example 1 with κ(dx) = dx. If we consider the
Lévy intensity arising from (3.1) when considering the d-dimensional Clayton Lévy copula,
above, and σ -stable marginals with the same parameter, (1.7), we obtain

ρ̃d,θ ,A,σ (sss) =
A(1+θ)(1+2θ) · · ·(1+(d−1)θ)σd (s1s2 · · ·sd)

σθ−1

Γ(1−σ)
(
sσθ

1 + · · ·+ sσθ
d

) 1
θ
+d

.

Furthermore, if we take θ = 1/σ we obtain the simplified Lévy intensity

ρ̃d,A,σ (sss) =
A(σ +1)(σ +2) · · ·(σ +d−1)σ

Γ(1−σ)(s1 + · · ·+ sd)
σ+d . (3.4)

Such intensity corresponds as well to a CoRM with Gamma(1,1) score distribution, Example
2, which is restrained to have Gamma marginals; this example arises when taking φ = 1
in equation (4.4) of Griffin and Leisen (2017). A convenient feature of this Lévy intensity
is that, as shown in Proposition 3.1 of Zhu and Leisen (2015), we can explicitly get the
corresponding Laplace exponent

ψd,A,σ (λλλ ) =
d

∑
i=1

λ
σ+d−1
i

∏
d
j=1, j ̸=i(λi−λ j)

; λi ̸= λ j for j ̸= i, (3.5)
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where we take the appropriate limits when λλλ = (λ1, . . . ,λd) is such that λi = λ j for distinct
i, j ∈ {1, . . . ,d}.

The Lévy copula approach is also convenient for the proposal of general simulation schemes
for VCRM’s. We can use the identities (3.2) and (3.3) to construct a simulation algorithm as
follows, see Cont and Tankov (2004).

Fig. 3.1 Plots of VCRM’s given by a Clayton Lévy copula and σ -stable margins; simulation
was peformed using Algorithm 4 with Algorithm 1 for the marginal CRM simulation.
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Algorithm 4 Lévy copula based simulation for two dimensional VCRM
1: Draw a marginal CRM.
2: Use the conditional distributions (3.2) or (3.3) to draw the weights of the remaining

CRM weights given the weights of the CRM drawn in the last step.

Illustration of the dependence structure given by a Clayton Lévy copula is presented in Figure
3.1. As expected, when θ = 0.3, we are close to independent behaviour. On the other hand,
when θ is increased to 3.5, we can appreciate the higher dependence induced by a larger
value of the copula parameter.

3.2 A new class of Lévy copulas from CoRM’s

Griffin and Leisen (2017) highlighted the Lévy copula structure of a CoRM when the
score distribution has independent and identically distributed marginal distributions; further
exploration of the Lévy copulas corresponding to a CoRM was not performed. In a more
general setting where the score distribution has an arbitrary d-variate density function h
which we determine by its associated distributional survival Copula Ĉ and marginal survival
functions S1, . . . ,Sd , see Nelsen (2007) Section 2.6, we have the next result to recover the
Lévy Copula

Theorem 9. Let µµµ be a CoRM given by a directing Lévy measure ν⋆ and a score distribution
with distributional survival Copula Ĉ and marginal survival functions S1, . . . ,Sd , then the
Lévy copula, C , associated to µµµ is given by

C (s1, . . . ,sd) =
∫

∞

0
Ĉ

(
S1

(
U−1

1 (s1)

z

)
, · · · ,Sd

(
U−1

2 (s2)

z

))
ρ
⋆(dz)

where the marginal tail integrals Ui can be expressed as

Ui(x) =
∫

∞

0
Si

(
x
z

)
ρ
⋆(dz)

for i ∈ {1, . . .d}.

The above result can be used to propose new families of Lévy copulas which arise from a
CoRM. With the aim of proposing a new family of Lévy copulas we focus on the next family
of bivariate CoRM’s which was previously studied in Griffin and Leisen (2017).

Example 16. If σ ∈ (0,1), φ > 0 and
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• h(y1,y2) =
(y1y2)

φ−1e−y1−y2

Γ(φ)2

• ρ⋆(z) = z−σ−1Γ(φ)
Γ(φ+σ)Γ(1−σ)

Then by Theorem 4.1 in Griffin and Leisen (2017) the corresponding bivariate CoRM has
σ−stable marginals and Lévy intensity given by

ρσ ,φ (ds1,ds2) =
σ(s1s2)

φ−1Γ(σ +2φ)(s1 + s2)
−σ−2φ

Γ(φ)Γ(σ +φ)Γ(1−σ)
ds1ds2 (3.6)

We show the Lévy copula associated to the above CoRM in the next result.

Theorem 10. Let σ ∈ (0,1) and φ > 0. We set

Cσ ,φ (s1,s2) =
σΓ(σ +2φ)(s

− 1
σ

1 + s
− 1

σ

2 )−σ

2Γ(φ)Γ(σ +φ)

×
∞

∑
j=0

∞

∑
k=0

(
φ −1

k

)(
φ + k−1

j

)
(−1)k+ j

(
s
− j

σ

1 + s
− j

σ

2

)(
s
− 1

σ

1 + s
− 1

σ

2

)− j

(σ + j)(σ +φ + k)
. (3.7)

Then the Lévy Copula associated to ρσ ,φ , in (3.6), is Cσ ,φ .

For φ ∈ N\{0} we observe that Cσ ,φ reduces to

Cσ ,φ (s1,s2) =
σΓ(σ +2φ)(s

− 1
σ

1 + s
− 1

σ

2 )−σ

Γ(φ)Γ(σ +φ)

×
φ−1

∑
k=0

(
φ −1

k

)φ+k−1

∑
j=0

(
φ + k−1

j

)
(−1)k+ j

(
s
− j

σ

1 + s
− j

σ

2

)(
s
− 1

σ

1 + s
− 1

σ

2

)− j

(σ + j)(σ +φ + k)

Furthermore, we observe that under the reparametrization θ = 1
σ

the Lévy copula (3.7) has
the Clayton Lévy copula as a factor. Although, from Theorem 10 we see that θ ∈ (1,∞) as
ρσ ,φ was only defined for σ ∈ (0,1). Surprisingly, this Lévy copula can be extended for
θ ∈ (0,1] as showcased in the next theorem.
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Theorem 11. Let φ ∈ N and θ ∈ (0,∞), then

Cθ ,φ (s1,s2) =
Γ( 1

θ
+2φ)(s−θ

1 + s−θ

2 )−
1
θ

2θΓ(φ)Γ( 1
θ
+φ)

×
φ−1

∑
k=0

(
φ −1

k

)φ+k−1

∑
j=0

(
φ + k−1

j

)
(−1)k+ j

(
s− jθ

1 + s− jθ
2

)(
s−θ

1 + s−θ

2

)− j

(σ + j)(σ +φ + k)

is a Lévy copula.

3.3 Future work

We follow Esmaeili and Klüppelberg (2010) to perform parameter estimation of a bivariate
compound Poisson process. We will restrict ourselves to compound Poisson processes with
positive increments.

Definition 18. Given λ1λ2 ∈ R+ \{0} and probability distributions F1, F2 in R+, a bivariate
compound Poisson process with positive increments is a bivariate vector of stochastic
processes (X1,X2) given by

Xi(t) = µi(0, t]

for t ∈ R+ and µµµ = (µ1,µ2) a bivariate VCRM such that marginally µi has Lévy intensity

νi(dsdx) = λiFi(ds)dx.

We observe that the associated marginal tail integrals are bounded in R+ so almost surely
the associated series representation has finite jumps. We will focus on bivariate compound
processes of the form

(X1(t),X2(t)) =

(
N1(t)

∑
i=1

W1,i ,
N2(t)

∑
i=1

W2,i

)

=

N⊥1 (t)

∑
i=1

W⊥1,i +
N∥(t)

∑
i=1

W ∥1,i ,
N⊥2 (t)

∑
i=1

W⊥2,i +
N∥(t)

∑
i=1

W ∥2,i


where N1(t), N2(t), N⊥1 (t), N⊥2 (t) and N∥(t) can be seen as PRM’s in R+, evaluated in
(0, t], see Definition 2. We observe that in each vector component the first sum is related
to independent weights while the second sum in each component is related to dependent
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weights, we call the former the independent part and the latter the dependent part. The
dependent part N∥(t)

∑
i=1

W ∥1,i,
N∥(t)

∑
i=1

W ∥2,i


can be modelled by a Lévy copula with conditional distributions in the weights (3.2) and
(3.3) such that they do not assign a point mass at zero; which is the case for Cθ ,φ . For a
full review of Poisson processes we refer to Kingman (2005). We will assume the next
observation scheme for bivariate compound Poisson processes.

Definition 19. We say that we observe the bivariate compound process continuously through
time if we are able to observe all the jump times and jump weights in a given time interval.

Let {(w1,i,w2,i)}n
i=1 be the jump sizes of a continuously observed bivariate bivariate com-

pound Poisson process, with n ∈ N the number of jumps. We denote

{w⊥1,i}
n⊥1
i=1 = {(w1,w2) : w1,i ̸= 0 , w2,i = 0}, {w⊥2,i}

n⊥2
i=1 = {(w1,w2) : w1,i = 0 , w2,i ̸= 0}

and

{(w∥1,i,w
∥
2,i)}

n∥
i=1 = {(w1,w2) : w1,i ̸= 0 , w2,i ̸= 0}

with n⊥1 ,n
⊥
2 ,n

∥ ∈ N, respectively, the number of jumps in only the first dimension, number
of jumps in only the second dimension and number of jumps in both dimensions. With the
above notation we can give the likelihood for the continuous through time observations.

Proposition 7 (Esmaeili and Klüppelberg (2010)). Let T ∈ R+ if a bivariate compound
Poisson process has jump rates λ1,λ2 and dependent part modelled by a Lévy copula Cccc

parametrized by a real valued vector ccc such that ∂ 2

∂u1∂u2
C exists for every (u1,u2) ∈ (0,λ1)×

(0,λ2), then setting λ ∥ = Cccc(λ1,λ2), λ⊥i = λi−λ ∥, marginal jump weight distributions Fi

associated to survival functions Si and probability densities fi parametrized by real valued
vector ααα i, i ∈ {1,2}, the likelihood function for continuously observed bivariate compound
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Poisson processes in (0, t] is given by

L(λ1,λ2,ααα1,ααα2,ccc) = λ
n⊥1
1 e−λ⊥1 T

n⊥1

∏
i=1

(
f1(w⊥1,i;ααα1)

(
1− ∂

∂u1
Cccc(u1,λ2)

∣∣∣∣
u1=λ1S1(w⊥1,i;ααα1)

))

×λ
n⊥2
2 e−λ⊥2 T

n⊥2

∏
i=1

(
f2(w⊥2,i;ααα2)

(
1− ∂

∂u2
Cccc(λ1,u2)

∣∣∣∣
u2=λ2S2(w⊥2,i;ααα2)

))

× (λ1λ2)
n∥e−λ ∥T

n∥

∏
i=1

(
f1(w

∥
1,i;ααα1) f2(w

∥
2,i;ααα2)

× ∂ 2

∂u1∂u2
Cccc(u1,u2)

∣∣∣∣
u1=λ1S1(w

∥
1,i;ααα1),u2=λ2S2(w

∥
2,i;ααα2)

)

The application of our extension of the Clayton Lévy copula Cθ ,,φ is of interest for the above
model as it can offer more flexibility in the likelihood above. Esmaeili and Klüppelberg
(2010) performed a real data analysis of the Danish fire insurance dataset. With the same data
set and the use of our Copula we have numerically found values of δ for each 2≤ φ ≤ 12
which attain a higher likelihood value than the maximum likelihood restrained to φ = 1,
i.e. the usual Clayton Lévy copula. However numerical issues arise in the maximization
routine as the parameter φ grows. We plan to keep working on the use of our new copula for
bivariate compound Poisson process modelling

3.4 Chapter 3 proofs

Proof of Theorem 9

By definition

U(s1, . . . ,sd) =
∫

∞

0

∫
∞

s1

· · ·
∫

∞

sd

H
(

du1

z
, . . . ,

dud

z

)
ρ
⋆(dz)

=
∫

∞

0

∫
∞

s1
z

· · ·
∫

∞

sd
z

H (du1, . . . ,dud)ρ
⋆(dz)

=
∫

∞

0
S
(

s1

z
, . . . ,

sd

z

)
ρ
⋆(dz)

=
∫

∞

0
Ĉ
(

S1

(
s1

z

)
, . . . ,Sd

(
sd

z

))
ρ
⋆(dz).
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Where in the last equation we have used the Sklar theorem for survival copulas

S(u1, . . . ,ud) = Ĉ (S1(u1), . . .Sd(ud))

From the Sklar theorem for Lévy copulas, Theorem 8, we conclude the proof.

Proof of Theorem 10

Let U be the bivariate tail integral of ρσ ,φ as in the hypothesis.

U(s1,s2) =
∫

∞

s1

∫
∞

s2

σ(y1y2)
φ−1Γ(σ +2φ)(y1 + y2)

−σ−2φ

Γ(φ)Γ(σ +φ)Γ(1−σ)
dy1dy2

We consider the change of variable

hhh(y1,y2) = (y1 + y2,y1/(y1 + y2)) = (ρ,z1)

dρdz1 =

∣∣∣∣det(
dhhh
dyyy

)

∣∣∣∣dy1dy2 = (y1 + y2)
−1dy1dy2

so

U(s1,s2) =
σΓ(σ +2φ)

Γ(φ)Γ(σ +φ)Γ(1−σ)

×
∫

h({y1,y2 :s1≤y1 ,s2≤y2})
(z1− z2

1)
φ−1

ρ
−σ−1dρdz1.

For notation purposes let for the rest of this proof

cσ ,φ =
σΓ(σ +2φ)

Γ(φ)Γ(σ +φ)Γ(1−σ)

For the region of integration we consider the curves

ω̂(t̂) = h(s1,s2 + t̂) = (s1 + s2 + t̂,s1/(s1 + s2 + t̂))

γ̂(t̂) = h(s1 + t̂,s2) = (s1 + s2 + t̂,(s1 + t̂)/(s1 + s2 + t̂))
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with t̂ ≥ 0; so for t ≥ s1 + s2 we can get the reparametrized curves ω(t) = (t,s1/t) and
γ(t) = (t,1− s2/t) to delimit the integration area, hence using Fubini theorem

U(s1,s2) = cσ ,φ

∫
∞

s1+s2

∫ 1−s2/ρ

s1/ρ

(z1− z2
1)

φ−1
ρ
−σ−1dz1dρ

= cσ ,φ

∫
∞

s1+s2

∫ 1−s2/ρ

s1/ρ

(z1− z2
1)

φ−1
ρ
−σ−1dz1dρ

= cσ ,φ

∫
∞

s1+s2

ρ
−σ−1

∫ 1−s2/ρ

s1/ρ

∞

∑
k=0

(
φ −1

k

)
(−1)kzφ−1+k

1 dz1dρ

Fubini
= cσ ,φ

∞

∑
k=0

∫
∞

s1+s2

ρ
−σ−1

(
φ −1

k

)
(−1)k zφ+k

1
φ + k

∣∣∣∣∣
1−s2/ρ

s1/ρ

dρ

= cσ ,φ

∞

∑
k=0

∫
∞

s1+s2

ρ
−σ−1

(
φ −1

k

)
(−1)k

[
(1− s2

ρ
)φ+k− ( s1

ρ
)φ+k

φ + k

]
dρ

= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

∫
∞

s1+s2

(
ρ
−σ−1(1− s2

ρ
)φ+k− sφ+k

1 ρ
−σ−1−φ−k

)
dρ

= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

∫
∞

s1+s2

(
ρ
−σ−1

∞

∑
j=0

(
φ + k

j

)
(−1) j

(
s2

ρ

) j

− sφ+k
1 ρ

−σ−1−φ−k
)

dρ

= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

(
∞

∑
j=0

(
φ + k

j

)
(−1) js j

2

∫
∞

s1+s2

ρ
−σ−1− jdρ

− sφ+k
1

∫
∞

s1+s2

ρ
−σ−1−φ−kdρ

)
= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

[
∞

∑
j=0

(
φ + k

j

)
(−1) j+1s j

2

(
ρ−σ− j

(σ + j)

∣∣∣∣∞
s1+s2

)

+ sφ+k
1

(
ρ−σ−φ−k

(σ +φ + k)

∣∣∣∣∞
s1+s2

)]

= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

[
∞

∑
j=0

(
φ + k

j

)
(−1) js j

2
(s1 + s2)

−σ− j

(σ + j)

− sφ+k
1

(s1 + s2)
−σ−φ−k

(σ +φ + k)

]
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= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

(
∞

∑
j=0

(
φ + k

j

)
(−1) j(s1 + s2)

−σ
( s2

s1+s2
) j

(σ + j)

−
(s1 + s2)

−σ (1− s2
s1+s2

)φ+k

(σ +φ + k)

)

= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

(
∞

∑
j=0

(
φ + k

j

)
(−1) j(s1 + s2)

−σ
( s2

s1+s2
) j

(σ + j)

−
∞

∑
j=0

(
φ + k

j

)
(−1) j(s1 + s2)

−σ
( s2

s1+s2
) j

(σ +φ + k)

)

= cσ ,φ

∞

∑
k=0

(
φ −1

k

)
(−1)k

φ + k

(
∞

∑
j=0

(
φ + k

j

)
(−1) j

(s1 + s2)
−σ

( s2
s1+s2

) j(φ + k− j)

(σ + j)(σ +φ + k)

)

To get the copula we evaluate the above tail integral in(
U−1(s1),U−1(s2)

)
=
(
(Γ(1−σ)s1)

− 1
σ ,(Γ(1−σ)s2)

− 1
σ

)
;

entailing the associated Lévy copula

Cσ ,φ (s1,s2) =
σΓ(σ +2φ)(s

− 1
σ

1 + s
− 1

σ

2 )−σ

Γ(φ)Γ(σ +φ)

φ−1

∑
k=0

(
φ −1

k

)φ+k−1

∑
j=0

(
φ + k−1

j

)
(−1)k+ j

(
s
− 1

σ
2

s
− 1

σ
1 +s

− 1
σ

2

) j

(σ + j)(σ +φ + k)
.

Exploiting that by construction Cσ ,φ is symmetric, we get

Cσ ,φ (s1,s2) =
σΓ(σ +2φ)(s

− 1
σ

1 + s
− 1

σ

2 )−σ

2Γ(φ)Γ(σ +φ)

φ−1

∑
k=0

(
φ −1

k

)φ+k−1

∑
j=0

(
φ + k−1

j

)
(−1)k+ j

(
s
− j

σ

1 + s
− j

σ

2

)(
s
− 1

σ

1 + s
− 1

σ

2

)− j

(σ + j)(σ +φ + k)
.
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Proof of Theorem 11

From equation (3.1) we have that

ρσ ,φ

(
U−1

σ−stab(s1),U−1
σ−stab(s2)

)
ρσ−stab

(
U−1

σ−stab(s1)
)

ρσ−stab
(
U−1

σ−stab(s2)
) = ∂

∂ s2

∂

∂ s1
Cσ ,φ (s1,s2),

where ρσ−stab is the Lévy intensity of an homogeneous σ -stable CRM and U−1
σ−stab its

corresponding generalized inverse tail integral, see Example 1. It follows that

∂

∂ s2

∂

∂ s1
Cσ ,φ (s1,s2) =

σ
(
U−1

σ−stab(s1)U−1
σ−stab(s2)

)φ−1
Γ(σ +2φ)

(
U−1

σ−stab(s1)+U−1
σ−stab(s2)

)−σ−2φ

Γ(φ)Γ(σ +φ)Γ(1−σ)ρσ−stab
(
U−1

σ−stab(s1)
)

ρσ−stab
(
U−1

σ−stab(s2)
)

=

σ

(
(Γ(1−σ))−

2
σ s
− 1

σ

1 s
− 1

σ

2

)φ−1

Γ(σ +2φ)

(
s
− 1

σ

1 + s
− 1

σ

2

)−σ−2φ

(Γ(1−σ))1+ 2φ

σ

Γ(φ)Γ(σ +φ)Γ(1−σ)ρσ−stab
(
U−1

σ−stab(s1)
)

ρσ−stab
(
U−1

σ−stab(s2)
)

=

σ

(
s
− 1

σ

1 s
− 1

σ

2

)φ−1

Γ(σ +2φ)

(
s
− 1

σ

1 + s
− 1

σ

2

)−σ−2φ

(Γ(1−σ))1+ 2
σ

Γ(φ)Γ(σ +φ)Γ(1−σ)ρσ−stab
(
U−1

σ−stab(s1)
)

ρσ−stab
(
U−1

σ−stab(s2)
)

=

σ

(
s
− 1

σ

1 s
− 1

σ

2

)φ−1

Γ(σ +2φ)

(
s
− 1

σ

1 + s
− 1

σ

2

)−σ−2φ

(Γ(1−σ))3+ 2
σ

Γ(φ)Γ(σ +φ)Γ(1−σ)σ2 (Γ(1−σ)s1)
1+ 1

σ (Γ(1−σ)s2)
1+ 1

σ

=

Γ(σ +2φ)

(
s
− 1

σ

1 + s
− 1

σ

2

)−σ−2φ

Γ(φ)Γ(σ +φ)σ (s1s2)
1+ φ

σ

which is greater than zero for s2,s1 > 0 and is well defined for 0 < σ .
By symmetry and using (3.3) it suffices to check that

lim
s2→0

F̂S2|S1=s1(s2) lim
s2→0

=
∂

∂ s1
Cσ ,φ (s1,s2) = 0

and

lim
s2→∞

F̂S2|S1=s1(s2) = lim
s2→∞

∂

∂ s1
Cσ ,φ (s1,s2) = 1.
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For the first limit we observe that

∂

∂ s1
Cσ ,φ (s1,s2) =

σΓ(σ +2φ)

Γ(φ)Γ(σ +φ)

φ−1

∑
k=0

(
φ −1

k

)φ+k−1
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(
φ + k−1

j

)
(−1)k+ j ∂

∂ s1


s
− j

σ

2

(
s
− 1

σ

1 + s
− 1

σ

2

)−σ− j

(σ + j)(σ +φ + k)


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Γ(φ)Γ(σ +φ)
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k

)φ+k−1

∑
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)
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σ

1 + s
− 1

σ

2
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(σ + j)(σ +φ + k)

and for any j ∈ N

lim
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σ
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σ
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1 s
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1
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= 0

So

lim
s2→0

F̂S2|S1=s1(s2) = 0.

On the other hand

lim
s2→∞

s
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1
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1 + s
1
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1
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So for j ∈ N

lim
s2→∞

(
s
− j

σ

2 s
− 1

σ
−1

1

(
s
− 1

σ

1 + s
− 1

σ

2

)−σ− j−1
)

= s
j

σ

1 lim
s2→∞

s
1+ 1

σ

2(
s

1
σ

1 + s
1
σ

2

)σ+ j+1

= s
j

σ

1 lim
s2→∞

1(
s

1
σ

1 + s
1
σ

2

) j =

0, for j ̸= 0

1, for j = 0

It follows that

lim
s2→∞

F̂S2|S1=s1(s2) =
σΓ(σ +2φ)

Γ(φ)Γ(σ +φ)

φ−1

∑
k=0

(
φ −1

k

)
(−1)k 1

σ(σ +φ + k)

From formula 0.160.2 in Ryzhik and Gradshteyn (1965) we have that

n

∑
k=0

(
n
k

)
(−1)k Γ(k+ c)

Γ(k+ c+1)
=

n

∑
k=0

(
n
k

)
(−1)k 1

k+ c
= B(n+1,c)

So we conclude that

lim
s2→∞

F̂S2|S1=s1(s2) =
Γ(σ +2φ)B(φ ,σ +φ)

Γ(φ)Γ(σ +φ)
=

Γ(σ +2φ)B(φ ,σ +φ)

Γ(φ)Γ(σ +φ)
= 1.

As this limits do not depend on what values σ takes in (0,∞) we conclude that we can
construct a CRM with the desired Lévy copula for any σ ∈ (0,∞).



Chapter 4

Multiple-sample Neutral to the Right
Model

In this chapter we generalize the model of Epifani and Lijoi (2010) to an arbitrary dimension
on the underlying VCRM in their model. We provide the posterior characterization for the
model, see Theorem 12. We retain the conjugacy property of NTR type models as discussed
in section 1.3. Extensions of some results in Epifani and Lijoi (2010) and Doksum (1974)
are also provided. The derivation of such results is not trivial when considering an arbitrary
dimension. Proposition 8 gives a general expression for the Laplace exponent when a Lévy
copula is considered to set the dependence of the VCRM underlying the multiple-sample
NTR model; Proposition 10 gives an alternative characterization of the model. Furthermore,
other theoretical results are proved in order to facilitate the calculation of posterior means
when the inferential exercise is implemented. Finally, we illustrate the methodology on
a synthetic dataset. The chapter is divided as follows: Section 3 we extend some results
in Epifani and Lijoi (2010) to the multivariate setting. In particular, we state the posterior
characterization of the model and provide some useful corollaries for implementing the
posterior inference. In Section 4, an application with synthetic data is illustrated. All the
proofs can be found in the appendix.

4.1 Exchangeability and Partial exchangeability

Let Z be a complete and separable metric space, with corresponding Borel σ -algebra Z =

B(Z)
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Definition 20. A collection of random variables {Zi}∞
i=1 in Z is exchangeable if for any

permutation π of {1, . . . ,m} we have that(
Z1, . . . ,Zm

) d
=
(
Zπ(1), . . . ,Zπ(m)

)
.

In several modelling problems the exchangeability assumption appears to be far too restrictive.
In particular, if we consider observations airsing from d different populations where the order
in which they are collected within each population is irrelevant. To describe this setting we
resort to the notion of partial exchangeability, which was introduced in de Finetti (1938), as
set forth in de Finetti (1980). Partial exchangeability formalizes the idea of partitioning a set
of observations into a certain number of classes, say d, in such a way that exchangeability is
attained within each class. For ease of exposition, we confine ourselves to consider the case
where d = 2.

Definition 21. The collection of random vectors{(
Z(1)

i ,Z(2)
i

)}∞

i=1

in Z2 is partially exchangeable if, for any m1,m2 ≥ 1 and for all permutations π1 and π2 of
{1, . . . ,m1} and {1, . . . ,m2} respectively, we have that(

Z(1)
1 , . . . ,Z(1)

m1 ,Z
(2)
1 , . . . ,Z(2)

m2

) d
=
(
Z(1)

π1(1)
, . . . ,Z(1)

π1(m1)
,Z(2)

π2(1)
, . . . ,Z(2)

π2(m2)

)
. (4.1)

A fundamental result regarding exchangeability is de Finetti’s representation theorem which
states that a sequence of random variables is exchangeable if and only if it is conditionally
i.i.d., see for instance Kallenberg (2006). For example if

Yi|µ
i.i.d.∼ NTR(µ), i ∈ {1, . . .};

then it follows that {Yi}∞
i=1 are conditionally i.i.d. and hence exchangeable. An extension of

the NTR model into a partially exchangeable setting was given by Epifani and Lijoi (2010)
for the 2−dimensional case. They considered two populations

{Y (1)
i }

∞
i=1, {Y (2)

i }
∞
i=1

such that for t1, t2 ∈ R+ and i, j ∈ N

P
[
Y (1)

i > t1,Y
(2)
j > t2 |(µ1,µ2)

]
= e−µ1(0,t1]−µ2(0,t2].
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So

Y (1)
i |µ1

i.i.d.∼ NTR(µ), i ∈ {1, . . .},

and

Y (2)
i |µ2

i.i.d.∼ NTR(µ2), i ∈ {1, . . .},

implying that each population {Y ( j)
i }∞

i=1 is exchangeable, j ∈ {1,2} although {Y (1)
i }∞

i=1∪
{Y (2)

i }∞
i=1 is not necessarily exchangeable as Y (1)

i , Y (2)
j , i, j ∈N are not identically distributed

when µ1
a.s.
̸= µ2. It follows that {Y (1)

i ,Y (2)
i }∞

i=1 are partially exchangeable.

4.2 Multiple-sample NTR model

In the present work, we follow the approach of Epifani and Lijoi (2010) and focus on models
based on a d-dimensional VCRM.

Definition 22. Let d ∈ N\{0} and µµµ = (µ1, . . . ,µd) a d-variate VCRM such that

lim
t→∞

µi(0, t]
a.s.
= ∞

for any i ∈ {1, . . . ,d}. We say that d collections of survival times

{Y (1)
j }

∞
j=1, . . . ,{Y

(d)
j }

∞
j=1

follow a multiple-sample NTR distribution, denoted NTR(µµµ), if for ti, j ∈ (R+)d , ni ∈N\{0},
(i, j) ∈ {(i, j) ; 1≤ j ≤ ni, 1≤ i≤ d}.

P
[
Y (1)

1 > t1,1, . . . ,Y
(1)
n1 > t1,n1 , . . . ,Y

(d)
1 > td,1, . . . ,Y

(d)
nd > td,nd |µµµ

]
=

d

∏
i=1

ni

∏
j=1

e−µi(0,ti, j].

(4.2)

In particular for ttt = (t1, , . . . td) ∈ (R+)
d

S(ttt) = P
[
Y (1)

i1 > t1, . . . ,Y
(d)
id > td |(µ1, . . . ,µd)

]
= e−µ1(0,t1]−···−µd(0,td ], (4.3)

with arbitrary i1, . . . , id ∈ N\{0}. This model is convenient for modelling data where the
dependence among the entries of the VCRM µµµ = (µ1, . . . ,µd) accounts for dependence
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among the multiple-samples in a partially exchangeable setting. Furthermore, marginally we
recover the NTR model, namely

Y (i)
1 , . . . ,Y (i)

ni
i.i.d.∼ NTR(µi)

with i ∈ {1, . . . ,d}, ni ∈N\{0}; we observe that this is a clear extension of the model in Epi-
fani and Lijoi (2010) to an arbitrary dimension d. In (4.3) we want to model the dependence
in the entries of the VCRM µµµ in a way that allows us to fix a marginal behaviour so we can
exploit the fact that marginally we recover a NTR model; Lévy copulas as set in Definition
17 are a natural framework to model the dependence structure of a VCRM’s entries in such
way so we will be using them in some of the following results. We remember that Lévy
copulas as set forth in Chapter 3 assume that the related Lévy measure is homogeneous, so
for instance the Laplace exponent can be written as ψt(λλλ ) = γ(t)ψ(λλλ ) for some γ : R+→R+

which must satisfy limt→∞ γ(t) = ∞. The family of Clayton Lévy copulas, Example 14, is
of interest because it has both the independence and complete dependence cases as limit
behaviour. In the next result, we work towards finding expressions for the Laplace exponent
associated to the Clayton family in such a way that the dependence structure is decoupled
across dimensions. This result is useful since, as we will see, an explicit calculation of ψ is
of key importance to implement the Bayesian inference in the model above.

Let ρ̃d,θ be the Lévy intensity associated via Sklar Theorem 8 to the Clayton Lévy copula
Cθ ,d and fixed marginal Lévy intensities ρ1, . . . ,ρd with corresponding Laplace transforms
ψ1, . . . ,ψd . We denote the vector of tail integrals corresponding to the marginal Lévy
intensities as UUUd(xxx) = (U1(x1), . . . ,Ud(xd)) and fix the notation

κ(θ ;λλλ ,iii) = λi1 · · ·λim

∫
(R+)m

e−λi1s1−···−λim smCθ ,m(Ui1(s1), . . . ,Uim(sm))dsss,

where d ∈ N \ {0}, λλλ = (λ1, . . . ,λd) ∈ (R+)d , m ∈ {1, . . . ,d}, and iii = (i1, i2, . . . , im) ∈
{1, . . . ,d}m is such that i1 < · · ·< im.

Proposition 8. Suppose that d ∈ {2,3, . . .} and∫
∥sss∥≤1

∥sss∥ρ̃d,θ (sss)dsss < ∞
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then

ψ(λλλ ) =
∫
(R+)d

(1− e−<λλλ ,sss>)
∂ d

∂ud · · ·∂u1
Cθ ,d(uuu)

∣∣
uuu=UUUd(sss)

ρ1(s1) · · ·ρd(sd)dsss

=
d

∑
i=1

ψi(λi)− ∑
iii=(i1,i2)∈{1,...,d}2

i1<i2

κ(θ ;λλλ ,iii)+ · · ·

· · ·+(−1)d
∑

iii=(i1,...,id−1)∈{1,...,d}d−1

i1<···<id−1

κ(θ ;λλλ ,iii)+(−1)d+1
κ(θ ;λλλ ,(1, . . . ,d)),

where λλλ = (λ1, . . . ,λd) ∈ (R+)d .

Calculation of the Laplace exponent as above is important for the evaluation of various
quantities of interest in the setting of our multiple-sample NTR model. For example, in the
next result we give a formula for the prior survival in our model where we integrate out the
underlying VCRM. With such purpose, we introduce the following notation

νi1,...,ih(si1, . . . ,sih) =
∫

∞

0
· · ·
∫

∞

0
ρ̃d(sss) ∏

j ̸∈{i1,...,ih}
ds j

for h ∈ {1, . . . ,d} and distinct i1, . . . , ih ∈ {1, . . . ,d}; and denote ψi1,··· ,ih for the respective
Laplace exponents.

Proposition 9. In the context of 4.2, let 111 = (1, . . . ,1). For t1 ≤ ·· · ≤ td and i1, . . . , id ∈
{1, . . . ,d} such that ti1 ≤ ·· · ≤ tid then

P
[
Y (1) > t1, . . . ,Y (d) > td

]
= e−γ(ti1)ψ(111)−(γ(ti2)−γ(ti1))ψi2,...,id (111)···−

(
γ(tid )−γ(tid−1)

)
ψid (111).

This result showcases the importance of the Laplace exponent ψ for calculating probabilities
in the multiple-sample information NTR model and the impact of the function γ(t), related to
the time depending part of the Laplace exponent, in the survival function. In the Applications
section of this chapter, 4.3, we will show that the availability of the Laplace exponent is also
of main importance to implement the Bayesian inference for the model. The model we are
working on generalizes to arbitrary dimension the classic model of Doksum (1974). We
present a multivariate extension of Theorem 3.1 in Doksum (1974), which relates our model
with the notion of neutrality to the right. Let F be a d-variate random distribution function
on (R+)d and, for a d-variate vector of CRM’s µµµ = (µ1, . . . ,µd), denote µi(t) = µi ((0, t])
with i ∈ {1, . . . ,d}. Then, we have the following multivariate extension to Theorem 3.1 in
Doksum (1974) and Proposition 4 in Epifani and Lijoi (2010).
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Proposition 10. F(ttt), with ttt = (t1, . . . , td), has the same distribution as

[1− e−µ1(t1)] · · · [1− e−µd(td)]

for some d-variate CRM µµµ = (µ1, . . . ,µd) if and only if for h ∈ {1,2, . . .} and vectors
ttt1 = (t1,1, . . . , td,1), . . . , ttth = (t1,h, . . . , td,h) with t0,i = 0 < t1,i < · · ·< td,i and t j,0 = 0 < t j,1 <

· · · < t j,h, there exists h independent random vectors (V1,1, . . .Vd,1), . . . ,(V1,h, . . .Vd,h) such
that

F(ttt1)
d
=V1,1 · · ·Vd,1

F(ttt2)
d
= [1−V̄1,1V̄1,2] · · · [1−V̄d,1V̄d,2]

...

F(ttth)
d
= [1−

h

∏
j=1

V̄1, j] · · · [1−
h

∏
j=1

V̄d, j] (4.4)

where V̄i, j = 1−Vi, j with i ∈ {1, . . . ,d} and j ∈ {1, . . . ,h}.

When possibly censored to the right survival data is considered for our model in (4.2) we
have to generalize the setting of survival data, Definition 7, for the multiple sample setting.

Definition 23. Let d,n1, . . . ,nd,n∈N\{0} such that n=∑
d
i=1 ni and {Y (1)

j }∞
j=1, . . . ,{Y

(d)
j }∞

j=1

be d groups of observations following a multiple-sample NTR distribution. Associate to each
group of observations {Y (i)

j }∞
j=1 possibly censored to the right data

DDD (i) =
{(

T (i)
j ,J(i)j

)}ni

j=1
,

i ∈ {1, . . . ,d}. We say that

DDDd =
d⋃

i=1

DDD (i)

is censored to the right data with multiple-samples.

We establish some notation in order to address the posterior distribution arising from the
model in (4.2) The number of exact observations is

ne =
d

∑
i=1

ni

∑
j=1

J( j)
i
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and the number of censored observations is nc = n−ne. Taking into account the possible
repetition of values among the observations

{T (1)
j }

n1
j=1, . . . ,{T

(d)
j }

nd
j=1

we consider the order statistics (T(1), . . . ,T(k)) of the distinct observations where k is the
number of distinct observed times among all groups; we set T(0) = 0 and T(k+1) = ∞. Let
define the set functions

me
i (A) =

ni

∑
j=1

J(i)j 1A(T
(i)
j ) ; mc

i (A) =
ni

∑
j=1

(1− J(i)j )1A(T
(i)
j )

for i ∈ {1, . . . ,d}, which denote the number of, respectively, exact and censored marginal
observations in A, with respect to group i. We define the numbers

ne
i, j = me

i ({T( j)}) ; nc
i, j = mc

i ({T( j)})

for, respectively, the exact and censored observations in group i related to the time T( j),
i ∈ 1, . . . ,d} and j ∈ {1, . . . ,k}. The following cumulative quantities will also be of use

n̄e
i, j =

k

∑
r= j

ne
i,r ; n̄c

i, j =
k

∑
r= j

nc
i,r

and the corresponding vectors

n̄nne
j = (n̄e

1, j, . . . , n̄
e
d, j) ; n̄nnc

j = (n̄c
1, j, . . . , n̄

c
d, j),

i ∈ 1, . . . ,d} and j ∈ {1, . . . ,k}. The next theorem determines the calculation of the posterior
characterization for the undelrying VCRM in the multiple-sample NTR model given possibly
censored to the right survival data; we highlight that it applies to a general VCRM as the
assumption that the respective Lévy intensity is homogeneous has been dropped.

Theorem 12. Let µµµ = (µ1, . . . ,µd) be a d-variate VCRM with corresponding Lévy intensity
of the form ν̃d(dsss,dx) = ν̃d(sss,dx)dsss and let DDDd be survival data with d multiple-samples
arising from a multiple-sample NTR(µµµ) distribution. If for ηt = ν̃d(sss,(0, t]) and arbitrary t0 ∈
R+ \{0} the partial derivative η ′t0(sss) = ∂ηt(sss)/∂ t

∣∣
t=t0

exists then the posterior distribution
of µµµ given survival data DDDd is the distribution of the random measure

(µ◦1 , . . . ,µ
◦
d )+ ∑

{ j :T( j)is an exact observation}
(M1, jδT( j), . . . ,Md, jδT( j))



72 Multiple-sample Neutral to the Right Model

where

i) µµµ◦ = (µ◦1 , . . . ,µ
◦
d ) is a d-variate VCRM with Lévy intensity ν◦d such that

ν
◦
d (dsss,dx)

∣∣
x∈(T( j−1),T( j))

= e−⟨n̄nn
c
j+n̄nne

j ,sss⟩ν̃d(dsss,dx)

for j ∈ {1, . . . ,k+1}.

ii) The vectors of jumps {(M1, j, . . . ,Md, j)} j∈I(e) , with

I(e) = { j : T( j) is an exact observation},

are mutually independent and have, respectively, a d-variate probability density function
given by

f j(sss) ∝

d

∏
i=1

{
e−(n̄

c
i, j+n̄e

i, j+1)si(1− e−si)ne
i, j

}
η
′
T( j)

(sss).

iii) The random measure µµµ◦ is independent of {(M1, j, . . . ,Md, j)} j∈M.

The previous result showcases that the posterior distribution arising from (4.2) can be
modelled in the same framework using the VCRM µµµ◦ instead of µµµ and adding as extra
component a series of δ measures with random weights and locations on the exact observation
times. This Theorem is enough to provide a scheme for posterior inference. In particular, we
want to estimate the corresponding posterior survival function of the from

S(ttt) = S(t1, . . . , td) = P
[
Y (1) > t1, . . . ,Y (d) > td |µµµ

]
when multiple-sample survival data is available. A natural approach in Bayesian nonparamet-
rics is to marginalize over the infinite dimensional random element which characterizes the
probability model. In our case, given possibly censored to the right data DDDd , we calculate the
mean of the survival function given the data by marginalizing over the VCRM µµµ . As a result
of Theorem 12 we can calculate such quantity. The next corollary allows us to implement
the necessary inferential scheme for performing the estimation of the survival function as
a posterior mean. We set SL(t) = S(t ∑l∈L eeel) for t > 0, /0 ̸= L ⊂ {1, . . . ,d}. In view of the
independent increments of the CRM’s in a VCRM, the calculation of the posterior mean
of SL is all that is needed for the evaluation of the posterior mean of S. The next corollary
shows how to evaluate the posterior mean of SL.
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Corollary 4. In the setting of Theorem 12, let /0 ̸= L⊂ {1, . . . ,d} and set

I(e)t = { j : T( j) is an exact observation and T( j) ≤ t}

Then

ŜL(t) = E[E[SL(t)|µµµ] |DDDd] = e
−∑

k+1
j=1

(
ψ
◦ j
t∧T( j)

(∑l∈L eeel)−ψ
◦ j
t∧T( j−1)

(∑l∈L eeel)

)
1{T( j−1)<t}

× ∏
j∈I(e)t

∫
(R+)d ∏

d
i=1

(
e−(1{i∈L}+n̄c

i, j+n̄e
i, j+1)si(1− e−si)ne

i, j

)
η ′T( j)

(sss)dsss∫
(R+)d ∏

d
i=1

(
e−(n̄

c
i, j+n̄e

i, j+1)si(1− e−si)ne
i, j

)
η ′T( j)

(sss)dsss

where ψ◦t is the Laplace exponent of µ◦.

From the independence of increments of CRM’s, it follows the next corollary which gives us
an estimator for S(ttt) for arbitrary ttt ∈ (R+)d in terms of the estimates defined in the previous
corollary.

Corollary 5. In the setting of Theorem 12, let S(ttt) be the survival function associated to a
d-variate multiple-sample NTR distribution. For ttt = (t1, . . . , td) and π the permutation of
{1, . . . ,d} such that tπ(1) ≤ tπ(2) ≤ ·· · ≤ tπ(d). We define, for i ∈ {1, . . . ,d−1}, the sets

Li = { j : π
(−1)( j)≥ i};

then the posterior mean of the survival function S(ttt) given multiple-sample survival data DDDd

is

Ŝ(ttt) = E[E[S(ttt)|µµµ] |DDDd] = ŜL1(tπ(1))
d−1

∏
i=1

ŜLi(tπ(i+1))

ŜLi(tπ(i))
(4.5)

for arbitrary ttt ∈ (R+)d .

Usually, we deal with Lévy intensities which exhibit some dependences in a vector of hyper-
parameters ccc. In the proof of Theorem 12, it is outlined how, given multiple-sample survival
data DDDd , we can derive the likelihood of the hyper-parameters in the Lévy intensity. This
likelihood is necessary for implementing the inferential procedure and it is displayed in the
next corollary.

Corollary 6. In the setting of Theorem 12 with survival data DDDd , underlying Lévy intensity
ν̃d,ccc, associated partial derivative η ′t,ccc and Laplace exponent ψt,ccc for some real valued vector
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of hyper-parameters ccc, we get the likelihood on ccc

l(ccc;DDDd) = e
−∑

k
j=1

(
ψT( j),ccc

(n̄nnc
j+n̄nne

j)−ψT( j−1),ccc
(n̄nnc

j+n̄nne
j)
)

×∏
j∈M

∫
(R+)d

d

∏
i=1

(
e−(n̄

c
i, j+n̄e

i, j+1)si(1− e−si)ne
i, j

)
η
′
T( j),ccc(sss)dsss.

The next proposition is useful for the evaluation of the estimator in Corollary 5.

Proposition 11. In the setting of Theorem 12 the Laplace exponent of µµµ◦ restricted to
(T( j−1),T( j)), j ∈ {1, . . . ,d}, can be evaluated as

ψ
◦
t (λλλ )

∣∣
[T( j−1),T( j))

=
∫
(0,t]×(R+)d

(
1− e−⟨λλλ ,sss⟩

)
e−⟨n̄nn

c
j+n̄nne

j ,sss⟩ν̃d(sss,dx)dsss

= ψt(λλλ + n̄nnc
j + n̄nne

j)−ψt(n̄nnc
j + n̄nne

j).

The next proposition provides a useful identity for the computation of the integrals in
Corollary 5 and Corollary 6.

Proposition 12. In the setting of Theorem 12, let n1, . . . ,nd ∈ N and j ∈ {1, . . . ,d} be such
that n j > 0. Set n = ∑

d
i=1 ni and a multiset I = {i1, . . . , in} ⊂ {1≤ k ≤ d : nk ̸= 0} such that

#{i ∈ I : i = k}= nk; then

∫
(R+)d×(0,t]

e−⟨qqq ,sss⟩
d

∏
i=1

(
1− e−si

)ni
ν̃d(dsss,dx)

= ∑
S⊂I\ j

(−1)#(S)
(

ψt(eee j +∑
l∈S

eeel +qqq)−ψt(∑
l∈S

eeel +qqq)
)

where I \ j =
{

i1, . . . , i j−1, i j+1, . . . , in
}

.

The previous results highlight how the implementation of the inferential procedure depends
on whether we can perform evaluations of the Laplace exponent or not, this will be of key
importance in the next section.

4.3 Multiple-sample NTR model application

In this section we perform the fitting of a multivariate survival function given possibly
censored to the right multiple-sample survival data in the framework of (4.2). As mentioned
previously, the evaluation of the Laplace exponent of µµµ in (4.2) is necessary to evaluate
the posterior mean in Corollary 5 and the likelihood in Corollary 6; with this in mind, we
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choose the random measure µµµ given by the Lévy intensity showcased in (3.4), so that the
corresponding Laplace exponent is readily given by (3.5). For illustration purposes, we use
4-dimensional data arising from a distributional copula with fixed marginal distributions,
see Nelsen (2007) for an overview of distributional copulas. More precisely, we generate
simulated data YYY = (Y1, ...,Y4) with probability distribution Fθ ,λ given by a distributional
Clayton copula with parameter θ and exponential marginals with parameter λ . Then, we
perform right-censoring by considering censoring time variables CCC = (C1, . . . ,C4) consisting
of independent exponential random variables with parameter λC. We will consider 150
synthetic observation drawn as follows(

Y (1)
i ,Y (2)

i ,Y (3)
i ,Y (4)

i

)
∼ Fθ=0.3,λ=1., j = 1, . . . ,150

C(i)
j ∼ Exp(λc = 3.7), i = 1, ...,4; j = 1, . . . ,150

We chose λc = 3.7 so we have at least 75% of exact observations for TTT in each dimension.
Set

J(i)j = 1{Y (i)
j ≤C(i)

j }

and
T (i)

j = min{Y (i)
j ,C(i)

j }.

We obtain the multiple-sample censored to the right data

DDD4 =
4⋃

i=1

{(
T (i)

j ,J(i)j

)}150

j=1
/

The construction of Fθ ,λ through a distributional Clayton copula allows us to calculate
explicitly the associated survival function. Indeed if Cd,θ be a d-dimensional distributional
Clayton copula and F̃i, i = 1, . . . ,d, a collection of marginal cumulative distribution functions;
then the survival function associated to the Clayton distributional copula with the previous
marginals is given by

S (x1, . . . ,xd) = 1−
d

∑
i=1

F̃i(xi)+
d

∑
j=2

(−1) j
∑

i1,...,i j∈{1,...,d}
i1<...<i j

Cθ , j(xi1 , . . . ,xi j),

see Section 2.6 in Nelsen (2007). We use the true survival function for comparison with the
fitted survival functions. The estimated survival function are given by the posterior mean

Ŝ(t1, t2, t3, t4) = E[E[S(t1, t2, t3, t4)|µµµ] |DDD] ,
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as in (4.5). For fitting the data, we use the 4-dimensional Lévy intensity given by (3.4)
and assign priors for the corresponding hyper-parameters σ and A which we respectively
denote pσ and pA. We choose a LogNormal prior for the parameter A and a Beta prior for
the parameter σ . We use the Metropolis within Gibbs algorithm to draw samples from the
posterior distributions of A and σ , i.e. σ |DDDd and A|DDDd , by making use of the likelihood
l(σ ,A;DDDd) showed in Corollary 6. Given initial values σ (0), A0), the algorithm is as follows

Algorithm 5 Metropolis within Gibbs for Multiple-Smaple NTR model

1: Draw A(i+1) from a Metropolis-Hastings sampler with proposal distribution g(x′|x)∼
LogNormal(log(x),1) and target distribution l(σ (i),x;DDDd)pA(x).

2: Draw σ (i+1) from a Metropolis-Hastings sampler with Uniform proposal distribution
and target distribution l(x,A(i+1);DDDd)pσ (x).

After using the above algorithm we perform a Monte Carlo approximation of the estimator
(4.5), where we average over the posterior draws of A and σ . For a full review of Markov
Chain Monte Carlo methods refer, for example, to Robert and Casella (2010). The prior
distributions we choose for the hyperparameters are

σ ∼ Beta(µ = 0.4,σ2 = 0.1)

A∼ LogNormal(µ = log(0.88),σ2 = 3.5).

In Figures 4.1 and 4.2 we show the fit for 150 possibly right censored observations where we
performed 100 iterations for the inner Metropolis-Hasting sampler and 1000 iterations for
the overall Gibbs sampler in algorithm 5. The estimated survival functions approximate well
the true functions. For comparison purposes, we presented a Kaplan-Meier type of estimator
for the true survival function. As there is no multivariate Kaplan-Meier, we use the next
estimator for a multivariate survival function:

ŜKM(t1, . . . , td) = SKM(t1|T2 > t2, . . . ,Td > td)SKM(t2|T3 > t3, · · · ,Td > td) . . .SKM(td),

where each SKM estimator is treated as a univariate Kaplan-Meier estimator restricted to the
corresponding set of observations. In Figure 4.1 and Figure 4.2, we can appreciate in the last
subplots of each column that the Kaplan-Meier can fit poorly as there are less observations
on the conditioned Kaplan-Meier functions, as presented in the formula above.
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(a) Fits with first dimen-
sion not fixed.

(b) Fits with second di-
mension not fixed.

Fig. 4.1 Plot of our methodology fits (violet lines), compared with Kaplan-Meier fits (dashed
lines) and the true survival function associated to the distributions Fθ=0.3,λ=1. (green lines).
The first column shows fits of the survival function with fixed values in all dimensions except
the first one; the second column has fixed values in all dimensions except the second one.
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(a) Fits with third dimen-
sion not fixed.

(b) Fits with fourth di-
mension not fixed.

Fig. 4.2 Plot of our methodology fits (violet lines), compared with Kaplan-Meier fits (dashed
lines) and the true survival function associated to the distributions Fθ=0.3,λ=1. (green lines).
The first column shows fits of the survival function with fixed values in all dimensions except
the third one; the second column has fixed values in all dimensions except the fourth one.
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4.4 Proofs of multiple-sample NTR model results

Proof of Proposition 8

Given d ∈ {2,3, . . .}, we use the notation ρ−i(sss) = ∏
d
j=i+1 ρ j(s j) and

UUUk:d(sss) = (Uk(s1), . . . ,Ud(sd−k+1))

for sss ∈ (R+)d . Furthermore we define integrals

a0,m(λλλ ) =
∫
(R+)m

(1− e−<λλλ ,sss>)
∂ d

∂ud · · ·∂u1
Cθ ,m(uuu)

∣∣
uuu=UUUd−m+1:d(sss)

ρ−0(sss)dsss

and

ak,m(λλλ ) =(−1)k+1
∫
(R+)m

λ1 · · ·λke−<λλλ ,sss> ∂ d−k

∂ud · · ·∂uk+1
Cθ ,m(UUUd−m+1:d(sss))ρ−k(sss)dsss

where k ∈ {1, . . . ,d}, m ∈ {0,1, . . . ,d} and λλλ ∈ (R+)d such that a0,d(λλλ )< ∞. we also define

∏
l
j=k a j = 1 when k > l, and denote xxx−i for the vector xxx without its i-th entry.

An integration by parts shows that

a0,d =−
∫
(R+)d−1

(1− e−<λλλ ,sss>)
∂ d−1

∂ud · · ·∂u2
Cθ ,d(uuu)

∣∣
uuu=UUUd(sss)

ρ−1(sss)
∣∣∣∣s1=∞

s1=0
dsss−1

+
∫
(R+)d

λ1e−<λλλ ,sss> ∂ d−1

∂ud · · ·∂u2
Cθ ,d(uuu)

∣∣
uuu=UUUd(sss)

ρ−1(sss)dsss

= a0,d−1(λλλ−1)+a1,d(λλλ )

and in general for r ∈ {1, . . . ,d} we get the recursion formula

ar,d(λλλ ) = ar,d−1(λλλ−(r+1))+ar+1,d(λλλ ). (4.6)

We prove the next technical lemma which provides d +1 identities; of which the first one,
index 0, will be of use for the proof of the Proposition and the rest are useful to prove by
induction the d +1 identities of the Lemma.
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Lemma 3. If a0,d(λλλ )< ∞ then the next d +1 identities hold

a0,d(λλλ ) =
d

∑
i=1

ψi(λi)− ∑
iii=(i1,i2)∈{1,...,d}2

i1<i2

κ(θ ;λλλ ,iii)+ · · ·

· · ·+(−1)d
∑

iii=(i1,...,id−1)∈{1,...,d}d−1

i1<···<id−1

κ (θ ;λλλ ,(i1, . . . , id−1))

+(−1)d+1
κ(θ ;λλλ ,(1, . . . ,d))

a1,d(λλλ ) = ψ1(λ1)−
d

∑
i=2

κ (θ ;λλλ ,(1, i))+ ∑
i1,i2∈{2,...,d}

i1<i2

κ (θ ;λλλ ,(1, i1, i2))+ · · ·

· · ·+(−1)d
∑

i1,...,id−2∈{2,...,d}
i1<···<id−2

κ((θ ;λλλ ,(1, i1, . . . , id−2))

+(−1)d+1
κ (θ ;λλλ ,(1, . . . ,d))

...

ad−1,d(λλλ ) = (−1)d
κ (θ ;λλλ ,(1, . . . ,d−1))+(−1)d+1

κ (θ ;λλλ ,(1, . . . ,d))

ad,d(λλλ ) = (−1)d+1
κ (θ ;λλλ ,(1, . . . ,d)) (4.7)

Proof. We proceed by mathematical induction over the dimension d. We observe that from
the definition of κ we always have

ad,d(λλλ ) = (−1)d+1
κ(θ ;λλλ ,(1, . . . ,d))

For the case d = 2 we have from Proposition 1 in Epifani and Lijoi (2010) that

a0,2(λ1,λ2) = ψ1(λ1)+ψ2(λ2)−κ(θ ;(λ1,λ2),(1,2))

And integrating by parts we obtain

a1,2(λ1,λ2) =
∫
R+

λ1e−λ1s1U1(x1)ds1−λ1λ2

∫
(R+)2

e−λ1x2−λ2s2Cθ (U1(s1),U2(s2))ds1ds2

= ψ1(λ1)−κ (θ ;λλλ ,(1,2))

Therefore, we get the validity of the equations in (4.7) for the case d = 2. Now, suppose that
(4.7) is true for d = m−1, we must show the validity for d = m. From the recursion formula
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(4.6) we get for r ∈ {0,1, · · · ,d}

ar,m(λλλ ) = ar,m−1(λλλ−(r+1))+ar+1,m−1(λλλ−(r+2))+ · · ·+am−1,m−1(λλλ−m)+am,m(λλλ )

The validity of (4.7) for d = m follows from the validity for d = m−1 and a combinatorial
argument.

Proposition 8 follows by considering the first equation in the Lemma statement and the
definition of a0,d .

Proof of Proposition 9.

Using the independent increments property of CRM’s we get that

P
[
Y (1) > t1, . . . ,Y (d) > td

]
= E

[
e−µ1(0,t1]−···−µd(0,td ]

]
= E

[
e−µi1(0,ti1 ]−···−µid (0,ti1 ]

]
E
[
e−µi2(ti1 ,ti2 ]−···−µid (ti1 ,ti2 ]

]
· · ·

· · ·×E
[
e−µid (tid−1 ,tid ]

]
= e−γ(ti1)ψ(111)e−[γ(ti2)−γ(ti1)]ψi2,...,id (111) · · ·e−[γ(tid )−γ(tid−1)]ψid (111)

Proof of Proposition 10.

For the only if part we define Vi, j = 1−e−[µi(ti, j)−µi(ti, j−1)] for i∈ {1, . . . ,d} and j ∈ {1, . . . ,h}
so by supposing (F1(t1), . . . ,Fd(td))

d
= (1− e−µ1(t1), . . . ,1− e−µd(td)) we have

F(t1,1, . . . , td,1)
d
= [1− e−µ1(t1,1)] · · · [1− e−µd(td,1)]

= [1− e−[µ1(t1,1)−µ1(t1,0)]] · · · [1− e−[µd(td,1)−µd(td,0]]

=V1,1 · · ·Vd,1

We observe that for i ∈ {2, . . . ,h} and r ∈ {1, . . . ,d}

1−
i

∏
j=1

V̄r, j = 1−
i

∏
j=1

(1−Vr, j) = 1−
i

∏
j=1

e−[µr(tr, j)−µr(tr, j−1]) = 1− e−µr(tr,i)
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So for i ∈ {2, . . .d}

F(t1,i, . . . , td,i)
d
= [1− e−µ1(t1,i)] · · · [1− e−µd(td,i)]

= [1−
i

∏
j=1

V̄1, j] · · · [1−
i

∏
j=1

V̄d, j].

Concluding the only if part.
For the if part we define µi(t) = − log(1−Fi(t)) for i ∈ {1, . . . ,d} and suppose for h ∈
{1,2, . . .}, ttt1 = (t1,1, . . . , td,1), . . . ,ttth = (t1,h, . . . , td,h) with t0,i = 0 < t1,i < · · ·< td,i and t j,0 =

0 < t j,1 < · · ·< t j,h the existence of independent random vectors

(V1,1, . . .Vd,1), . . . ,(V1,h, . . .Vd,h)

such that we have (4.4).
Marginalizing in (4.4), we can apply Theorem 3.1 of Doksum (1974) to each Fi so we
obtain that Fi ∼ NTR(µi) for some CRM µi that is stochastically continuous, almost surely
non-decreasing and has the appropriate limit behaviour.
We observe that

µ1(t j)−µ1(t j−1)
d
=− log(1−V1, j)

...

µd(t j)−µd(t j−1)
d
=− log(1−Vd, j)

Hence (µ1, . . . ,µd) defines a VCRM.

Proof of Theorem 12.

This proof is not only restricted to the homogeneous Lévy intensity case; in this general
setting, we recall that the Laplace exponent has the form (1.16). In order to prove the theorem
we use the next technical lemma.

Lemma 4. Let (µ1, . . . ,µd) be a d-variate CRM such that µ1, . . . ,µd are not independent
and let the Lévy intensity ν̃d(sss,dt)dsss of (µ1, . . . ,µd) be such that ηt = ν̃d(xxx,(0, t]) is dif-
ferentiable with respect to t ∈ R+ at some t0 ̸= 0 and denote η ′t0(sss) = ∂ηt(sss)/∂ t

∣∣
t=t0

. If
qqq = (q1, . . . ,qd) ∈ Nd are such that max{q1, . . . ,qd} ≥ 1 and rrr = (r1, . . . ,rd) ∈ (R+)d are
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such that min{r1, . . . ,rd} ≥ 1, then

E
[
e−r1µ1(Aε )−···−rd µd(Aε )

(
1− e−µ1(Aε )

)q1
· · ·
(

1− e−µd(Aε )
)qd
]

= ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−s1)q1 · · ·(1− e−sd)qd η
′
t0(sss)dsss+o(ε)

as 0 < ε → 0, with Aε = (t0− ε, t0] for some t0 ∈ R+ \{0}.

Proof. We denote△s2
s1 ft(rrr) = fs2(rrr)− fs1(rrr) for a function f where s1,s2 ∈ R+ and rrr ∈ Rd .

We use the binomial theorem and apply expectation to write the left hand side in the equation
above as

q1

∑
j1=0
· · ·

qd

∑
jd=0

(
q1

j1

)
· · ·
(

qd

jd

)
(−1) j1+···+ jd e−(ψt0(rrr+( j1,..., jd))−ψt0−ε (rrr+( j1,..., jd)))

= e−△
t0
t0−ε ψt(rrr)+ e−△

t0
t0−ε ψt(rrr)

{
d

∑
i=1

qi

∑
j=1

(
qi

j

)
(−1) je−△

t0
t0−ε (ψt(rrr+ jeeei)−ψt(rrr))

+ ∑
i1,i2∈{1,...,d}

i1<i2

qi1

∑
j1=1

qi2

∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1) j1+ j2e−△

t0
t0−ε(ψt(rrr+ j1eeei1+ j2eeei2)−ψt(rrr))

+ · · ·+
q1

∑
j1=1
· · ·

qd

∑
jd=1

(
q1

j1

)
· · ·
(

qd

jd

)
(−1)⟨111, jjj⟩e−△

t0
t0−ε (ψt(rrr+ jjj)−ψt(rrr))

}
(4.8)

We note that for ji ∈ {0, . . . ,xi}, i ∈ {1, . . . ,d}, jjj = ( j1, . . . , jd), a Taylor expansion yields

e−△
t0
t0−ε [ψt(rrr+ jjj)−ψt(rrr)] = e−

∫
(R+)d e−⟨rrr,xxx⟩(1−e−⟨ jjj,sss⟩)△t0

t0−ε ηt(sss)dsss

= 1− ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−⟨ jjj,sss⟩)η ′t0(sss)dsss+o(ε) (4.9)

Furthermore by the binomial theorem we get the next d identities

(1)
d

∑
i=1

q

∑
j=1

(
q
j

)
(−1) j(1− e− js) =−

d

∑
i=1

(1− e−s)q

(2) ∑
i1,i2∈{1,...,d}

i1<i2

qi1

∑
j1=1

qi2

∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1) j1+ j2(1− e− j1si1− j2si2 )

= ∑
i1,i2∈{1,...,d}

i1<i2

{
(1− e−si1 )qi1 +(1− e−si2 )qi2

− (1− e−si1 )qi1 (1− e−si2 )qi2
}
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...

(d-1) ∑
i1,...,id−1∈{1,...,d}

i1<···<id−1

qi1

∑
j1=1
· · ·

qid−1

∑
jd−1=1

(
qi1
j1

)
· · ·
(

qid−1

jd−1

)
(−1) j1+···+ jd−1

× (1− e− j1si1−···− jd−1sid−1 )

= ∑
i1,...,id−1∈{1,...,d}

i1<···<id−1

{
(−1)d−1

d−1

∑
j=1

(1− e−si j )
qi j +

(−1)d−2
∑

j1, j2∈{i1,...,id−1}
j1< j2

(1− e−s j1 )q j1 (1− e−s j2 )q j2 + · · ·

· · ·+(−1)(1− e−si1 )qi1 · · ·(1− e−sid−1 )qid−1
}

(d)
q1

∑
j1=1
· · ·

qd

∑
jd=1

(
q1

j1

)
· · ·
(

qd

jd

)
(−1)⟨111, jjj⟩(1− e−⟨ jjj,sss⟩)

= (−1)d
d

∑
j=1

(1− e−s j)q j +

(−1)d−1
∑

j1, j2∈{1,...,d}
j1< j2

(1− e−s j1 )q j1 (1− e−s j2 )q j2 + · · ·

· · ·+(−1)(1− e−si1 )qi1 · · ·(1− e−sid )qid

So we have that (4.8) becomes

e−△
t0
t0−ε ψt(rrr)

{
1+

d

∑
i=1

qi

∑
j=1

(
qi

j

)
(−1) j

− ε

∫
(R+)d

e−⟨rrr,sss⟩
d

∑
i=1

qi

∑
j=1

(
qi

j

)
(−1) j(1− e− j1s1)η ′t0(sss)dsss

+ ∑
i1,i2∈{1,...,d}

i1<i2

qi1

∑
j1=1

qi2

∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1) j1+ j2

− ε

∫
(R+)d

e−⟨rrr,sss⟩ ∑
i1,i2∈{1,...,d}

i1<i2

qi1

∑
j1=1

qi2

∑
j2=1

(
qi1
j1

)(
qi2
j2

)
(−1) j1+ j2

× (1− e− j1si1− j2si2 )η ′t0(sss)dsss+ · · ·+
q1

∑
j1=1
· · ·

qd

∑
jd=1

(
q1

j1

)
· · ·
(

qd

jd

)
(−1)⟨111, jjj⟩

− ε

∫
(R+)d

e−⟨rrr,sss⟩
q1

∑
j1=1
· · ·

qd

∑
jd=1

(
q1

j1

)
· · ·
(

qd

jd

)
(−1)⟨111, jjj⟩(1− e−⟨ jjj,sss⟩)η ′t0(sss)dsss+o(ε)

}
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= e−△
t0
t0−ε ψt(rrr)

{
ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−s1)q1 · · ·(1− e−sd)qd η
′
t0(sss)dsss+o(ε)

}
= {1+o(1)}

{
ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−s1)q1 · · ·(1− e−sd)qd η
′
t0(sss)dsss+o(ε)

}
=

{
ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−s1)q1 · · ·(1− e−sd)qd η
′
t0(sss)dsss+o(ε)

}
.

Similarly to the proof of Theorem 1 we use the next Lemma to simplify the calculations in
the proof of the Theorem at hand.

Lemma 5. In the setting of Theorem 1 suppose the censored to the right data DDD is comprised
of a sole observation t1 with frequencies nnne = (ne

1, . . . ,n
e
d) and nnnc = (nc

1, . . . ,n
c
d). Let t < t1;

then

E
[
e−λ1µ1(0,t]−...−λd µd(0,t]|DDDd

]
= lim

ε→0

E
[
e−(λ+nc+ne)µ(0,t]

]
E
[
e−(nc+ne)µ(0,t]

]
Proof.

E
[
e−λ1µ1(0,t]−...−λd µd(0,t]|DDDd

]

= lim
ε→0

E
[

∏
d
i=1 e−λiµi(0,t]e−nc

i µi(0,t1]
(

e−µi(0,t1−ε]− e−µi(0,t1]
)ne

i
]

E
[
∏

d
i=1 e−nc

i µi(0,t1]
(
e−µi(0,t1−ε]− e−µi(0,t1]

)ne
i
]

= lim
ε→0

E
[
∏

d
i=1 e−λiµi(0,t]−nc

i µi(0,t]−ne
i µi(0,t]

]
E
[
e−nc

i µi(0,t]−ne
i µi(0,t]

]

×
E
[

∏
d
i=1 e−nc

i µi(t,t1]
(

e−µi(t,t1−ε]− e−µi(t,t1]
)ne

i
]

E
[
∏

d
i=1 e−nc

i µi(t,t1]
(
e−µi(t,t1−ε]− e−µi(t,t1]

)ne
i
]


=
E
[
∏

d
i=1 e−(λi+nc

i +ne
i )µi(0,t]

]
E
[
∏

d
i=1 e−(n

c
i +ne

i )µi(0,t]
] = e−(ψt(λλλ+nnnc+nnne)−ψt(nnnc+nnne).

We observe that if ψt is the Laplace exponent associated to the Lévy measure ν̃d then
ψ

(kkk)
t (λλλ ) = ψt(λλλ +kkk)−ψt(kkk) is the Laplace exponent associated to e−⟨kkk ,sss⟩ν̃d(dsss,dx), with
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this in mind we have that, in the following, without loss of generality for calculations of the
posterior Laplace exponent as in the previous Lemma it suffices to consider evaluation of
the exponent in a time t which is greater than all the survival times in the survival data DDDd .
Define

ΓDDDd ,ε =
d⋂

i=1

k⋂
j=1

{
((T (i)

1 ,J(i)1 , . . . ,T (i)
n1 ,J

(i)
n1 ) : mc

i
(
{T( j)}

)
= nc

i, j ,

me
i
(
(T( j)− ε,T( j)]

)
= ne

i, j
}

so that

E
[
e−λ1µ1(0,t]−···λd µd(0,t]|DDDd

]
= lim

ε→0

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDDd ,ε

(DDDd)
]

P
[
DDDd ∈ ΓDDDd ,ε

]
We observe that defining T(0) = 0 and n̄e

i,k+1 = 0 for i ∈ {1, . . . ,d}

E
[
e−λ1µ1(0,t]−···λd µd(0,t]1ΓDDD,ε

(DDD)
]

= E

[
d

∏
i=1

e−λiµi(0,t]
k

∏
j=1

e−nc
i, jµi(0,T( j)]−ne

i, jµi(0,T( j)−ε]
(

1− e−µi(T( j)−ε,T( j)]
)ne

i, j

]

= E

[
d

∏
i=1

e−λiµi(T(k),t]
k

∏
j=1

[
e−λiµi(T( j−1),T( j)−ε]−λiµi(T( j)−ε,T( j)]

× e−nc
i, j ∑

j
r=1(µi(T(r)−ε,T(r)]+µi(T(r−1),T(r)−ε])−ne

i, j ∑
j
r=1 µi(T(r−1),T(r)−ε]

×e−ne
i, j ∑

j−1
r=1 µi(T(r)−ε,T(r)]

(
1− e−µi(T( j)−ε,T( j)]

)ne
i, j
]

= E

[
d

∏
i=1

e−λiµi(T(k),t]−∑
k
j=1 nc

i, j ∑
j
r=1(µi(T(r)−ε,T(r)]+µi(T(r−1),T(r)−ε])

× e−∑
k
j=1 ne

i, j ∑
j
r=1 µi(T(r−1),T(r)−ε]−∑

k
j=1 ne

i, j ∑
j−1
r=1 µi(T(r)−ε,T(r)]

×
k

∏
j=1

e−λiµi(T( j−1),T( j)−ε]−λiµi(T( j)−ε,T( j)]
(

1− e−µi(T( j)−ε,T( j)]
)ne

i, j

]

= E

[
d

∏
i=1

e−λiµi(T(k),t]
k

∏
j=1

e−(λi+n̄c
i, j+n̄e

i, j+1)µi(T( j)−ε,T( j)]
(

1− e−µi(T( j)−ε,T( j)]
)ne

i, j

× e−λiµi(T( j−1),T( j)−ε]−n̄c
i, jµi(T( j−1),T( j)−ε]−n̄e

i, jµi(T( j−1),T( j)−ε]

]
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So defining

I1,ε =
k

∏
j=1

d

∏
i=1

{
e−[λi+n̄c

i, j+n̄e
i, j+1]µi(T( j)−ε,T( j)]

(
1− e−µi(T( j)−ε,T( j)]

)ne
i, j
}

I2,ε =
d

∏
i=1

e−λiµi(T(k),t]
k

∏
j=1

{
e−λiµi(T( j−1),T( j)−ε]−(n̄c

i, j+n̄e
i, j)µi(T( j−1),T( j)−ε]

}
We get from the independence property of CRM’s that

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDD,ε

(DDD)
]
= E[I1,ε ]E[I2,ε ] (4.10)

We observe that for ri = λi+ n̄c
i, j+ n̄e

i, j+1, i∈ {1, . . . ,d} we have that min{r1, . . . ,rd}≥ 1 and
for j ∈ {1, . . . ,k} such that T( j) is an exact observation we have that max{n1, j, . . . ,nd, j} ≥ 1
so Lemma 4 can be applied yielding

E

[
d

∏
i=1

e−(λi+n̄c
i, j+n̄e

i, j+1)µi(T( j)−ε,T( j)]
(

1− e−µi(T( j)−ε,T( j)]
)ne

i, j

]

= ε

∫
(R+)d

d

∏
i=1

{
e−(λi+n̄c

i, j+n̄e
i, j+1)si(1− e−si)ne

i, j

}
η
′
t T( j)(sss)dsss+o(ε) (4.11)

On the other hand, for j ̸∈ I(e) = { j : T( j) is an exact observation} we have ne
i, j = 0 so by

the continuity of ηt(sss) in t we have

lim
ε→0

E

[
d

∏
i=1

e−(λi+n̄c
i, j+n̄e

i, j+1)µi(T( j)−ε,T( j)]
(

1− e−µi(T( j)−ε,T( j)]
)ne

i, j

]

= lim
ε→0

E

[
d

∏
i=1

e−(λi+n̄c
i, j+n̄e

i, j+1)µi(T( j)−ε,T( j)]

]
= 1 (4.12)

From (4.11), (4.12) and the independence property of CRM’s we obtain

lim
ε→0

E[I1,ε ] =

lim
ε→0 ∏

j∈I(e)

{
ε

∫
(R+)d

d

∏
i=1

{
e−(λi+n̄c

i, j+n̄e
i, j+1)si(1− e−si)ne

i, j

}
η
′
T( j)

(sss)dsss+o(ε)

}
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Also by continuity and independence, settng λλλ = (λ1, . . . ,λd), we get

lim
ε→0

E[I2,ε ] = e
−
(

ψt(λλλ )−ψT(k)
(λλλ )
)

×
k

∏
j=1

{
e
−
(

ψT( j)
(λλλ+n̄nnc

j+n̄nne
j)−ψT( j−1)

(λλλ+n̄nnc
j+n̄nne

j)
)
−
(

ψT( j)
(n̄nnc

j+n̄nne
j)−ψT( j−1)

(n̄nnc
j+n̄nne

j)
)}

So by (4.10), (4.12) and (4.11) we get that

lim
ε→0

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDD,ε

(DDDd)
]
= e
−△t

T(k)
ψt(λλλ )−∑

k
j=1△

T( j)
T( j−1)

ψt(λλλ+n̄nnc
j+n̄nne

j)

× ∏
j∈I(e)

lim
ε→0

{
ε

∫
(R+)d

d

∏
i=1

{
e−(λi+n̄c

i, j+n̄e
i, j+1)si(1− e−si)ne

i, j

}
η
′
T( j)

(sss)dsss+o(ε)

}

× e
−∑

k
j=1△

T( j−1)
T( j)

ψt(n̄nnc
j+n̄nne

j)

And similarly

lim
ε→0

P
[
DDDd ∈ ΓDDDd ,ε

]
= e
−∑

k
j=1△

T( j)
T( j−1)

ψt(n̄nnc
j+n̄nne

j)

× ∏
j∈I(e)

lim
ε→0

{
ε

∫
(R+)d

d

∏
i=1

{
e−(n̄

c
i, j+n̄e

i, j+1)si(1− e−si)ne
i, j

}
η
′
t T( j)(sss)dsss+o(ε)

}
(4.13)

We set T(k+1) = t so we conclude

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]|DDDd

]
= lim

ε→0

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDDd ,ε

(DDD)
]

P
[
DDD ∈ ΓDDDd ,ε

]
= e
−∑

k+1
j=1△

T( j)
T( j−1)

(ψt(λλλ+n̄nnc
j+n̄nne

j)−ψt(n̄nnc
j+n̄nne

j))

∏
j∈I(e)

lim
ε→0


ε
∫
(R+)d ∏

d
i=1

{
e−(λi+n̄c

i, j+n̄e
i, j+1)si(1− e−si)ne

i, j

}
η ′T( j)

(sss)dsss+o(ε)

ε
∫
(R+)d ∏

d
i=1

{
e−
(

n̄c
i, j+n̄e

i, j+1

)
si(1− e−si)ne

i, j

}
η ′T( j)

(sss)dsss+o(ε)


= e
−∑

k+1
j=1
∫
(R+)d×(T( j−1),T( j)]

(1−e−⟨λλλ ,sss⟩)e
−⟨n̄nnc

j+n̄nne
j ,sss⟩ν(dsss,du)

∏
j∈I(e)


∫
(R+)d ∏

d
i=1

{
e−(λi+n̄c

i, j+n̄e
i, j+1)si(1− e−si)ne

i, j

}
η ′T( j)

(sss)dsss∫
(R+)d ∏

d
i=1

{
e−
(

n̄c
i, j+n̄e

i, j+1

)
si(1− e−si)ne

i, j

}
η ′T( j)

(sss)dsss

 (4.14)
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Proof of Corollary 4.

In equation (4.14) above take λλλ = (1, . . . ,1) and using the discussion after Lemma 5 replace
M with Mt to obtain the result.

Proof of Corollary 5.

From equation (4.13) in the proof of Theorem 12 we obtain the related likelihood.

Proof of Proposition 11.

In the setting of Theorem 12.

ψ
◦ j
t (λλλ ) =

∫
(t∧T( j−1),t∧T( j))×(R+)d

(1− e−⟨λλλ ,sss⟩)e−(n̄nn
c
j+n̄nne

j)sν̃d(sss,dx)dsss

=
∫
(t∧T( j−1),t∧T( j))×(R+)d

(1− e−⟨λλλ+n̄nnc
j+n̄nne

j ,sss⟩)ν̃d(sss,dx)dsss

−
∫
(t∧T( j−1),t∧T( j))×(R+)d

(1− e−⟨n̄nn
c
j+n̄nne

j ,sss⟩)ν̃d(sss,dx)dsss

=
(

ψt∧T( j)(λλλ + n̄nnc
j + n̄nne

j)−ψt∧T( j−1)(λλλ + n̄nnc
j + n̄nne

j)
)

−
(

ψt∧T( j)(n̄nn
c
j + n̄nne

j)−ψt∧T( j−1)(n̄nn
c
j + n̄nne

j)
)
.

Proof of Proposition 12.

We will use the next lemma.

Lemma 6. Let m ∈N, qqq1, . . . ,qqqm ∈ (R+)d distinct of 000 = (0, . . . ,0), qqq ∈ (R+)d and /0 ̸= I =
{i1 . . . , i|I|} ⊂ {1, . . . ,m}. We denote I \1 = {i2, . . . , i|I|}. Then

∫
(R+)d×(0,t]

e−⟨qqq ,sss⟩∏
l∈I

(
1− e−⟨qqql ,sss⟩

)
ν̃d(dsss,dx)

= ∑
S⊂I\1

(−1)#(S)
(

ψt(qqq1 +∑
l∈S

qqql +qqq)−ψt(∑
l∈S

qqql +qqq)
)
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Proof. ∫
(R+)d×(0,t]

e−⟨qqq ,sss⟩∏
l∈I

(
1− e−⟨qqql ,sss⟩

)
ν̃d(dsss,dx)

=
∫
(R+)d×(0,t]

e−⟨qqq ,sss⟩(1− e−⟨qqq1 ,sss⟩) ∏
l∈I\1

(
1− e−⟨qqql ,sss⟩

)
ν̃d(dsss,dx)

=
∫
(R+)d×(0,t]

e−⟨qqq ,sss⟩(1− e−⟨qqq1 ,sss⟩) ∑
S⊂I\1

(−1)#Se−⟨∑l∈S qqql ,sss⟩ν̃d(dsss,dx)

= ∑
S⊂I\1

(−1)#S
∫
(R+)d

e−⟨qqq+∑l∈S qqql ,sss⟩(1− e−⟨qqq1 ,sss⟩)ν̃d(dsss,dx)

= ∑
S⊂I\1

(−1)#(S)
(

ψt(qqq1 +∑
l∈S

qqql +qqq)−ψt(∑
l∈S

qqql +qqq)
)

The proposition follows with I as in the hypothesis and qqqi = eeei for i ∈ {1, . . . ,d} in the above
lemma.



Chapter 5

Generalized Additive Neutral to the
Right Regression

5.1 Survival regression

In survival analysis it is often the case that the events of interest we want to analyse involve
information that can be suitably quantified in a control variable which we refer to as covariate.
Usually we want to use the covariates for prognosis purposes, i.e. their effect on the related
survival function. To analyse the dependence between the variable of interest and the
associated covariates we require a regression model. Regression in a NTR setting regression
was investigated by Kim and Lee (2003), where they considered a Cox regression approach
for NTR distributions.

Definition 24. (Kim and Lee (2003)) Let µ be a CRM and T ∼ NTR(µ) so that the survival
function of Y is S(t) = e−µ(0,t]; furthermore let there be a vector of covariates XXX ∈ Rd for
some d ∈ N. We say that Y |XXX follows a Cox NTR distribution if

SCox(t) = P[T > t |XXX ] = S(t)e⟨βββ ,XXX⟩
= e−e⟨βββ ,XXX⟩µ(0,t]

for some βββ ∈ Rd .

The Cox regression approach can be too restrictive in a variety of settings even if we use
the flexible NTR distribution; for example, a shortcoming of this model is that it induces
proportional hazards when we vary the covariates and therefore it does not allow for the
crossing of the survival functions related to r.v.’s with different covariates outside of the set
{t ∈ R+ : SCox(t) = 0 or SCox(t) = 1}. Indeed, if p1, p2 are indexes associated to survival
times Yp1 , Yp2 with respective covariates XXX (p1) ̸= XXX (p2) and survival functions S(p1)

Cox , S(p2)
Cox
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given as in the definition above for a NTR distribution, then

S(p1)
Cox (t)−S(p2)

Cox (t) = S(p1)
Cox (t)(1−S(t)r)

where r = e⟨β ,XXX p2⟩− e⟨β ,XXX p1⟩. The quantity above can only be zero if t = 0 or t = 1.

5.2 Generalized additive NTR regression model

We observe that the d-variate multiple-sample NTR model of Chapter 4, displayed in equation
(4.2), can be thought of as a regression model where the covariates denote the label of
membership to one of d different populations. We will focus on the use of VCRM’s to build
a flexible Bayesian nonparametric regression model that can recover the multiple-sample and
Cox NTR settings.

Definition 25. Let n,m,d,b ∈ N\{0} and µµµ = (µ1, . . . ,µd) a d-variate VCRM such that

lim
t→∞

µi(0, t]
a.s.
= ∞

for any i ∈ {1, . . . ,d}. We say that a collection of random elements

{Yi,XXX i}n
i=1

with Yi ∈ R+, XXX i = (Xi,1, . . . ,Xi,m) ∈ Rm, follows a generalized additive NTR regression
model if

S(ttt) = P[Y1 > t1, . . . ,Yn > tn |µµµ,βββ ,XXX ] =
n

∏
i=1

e− f1(β ,XXX iβ ,XXX iβ ,XXX i)µ1(0,ti]−...− fd(βββ ,XXX i)µd(0,ti] (5.1)

where (t1, . . . , tn) ∈ (R+)n, βββ = (β1, . . . ,βb) ∈ Rb and fi : Rb×Rm→ R+ for i ∈ {1, . . . ,d}.

We observe that the generalized additive NTR regression model can be seen as NTR distribu-
tion conditionally on the covariates XXX i

Yi|βββ ,XXX i,µµµ
ind∼ NTR

(
d

∑
j=1

f j(βββ ,XXX i)µ j

)
; (5.2)

such remark is useful as it allows us to use NTR results for our model. The Cox NTR
model of Kim and Lee (2003) is recovered if d = 1 and f1(β ,XXXβ ,XXXβ ,XXX) = e⟨βββ ,XXX⟩. However, when
considering d > 1 regressor functions f in our model the survival functions for different
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covariate values can cross each other at any point t ∈ R+. Indeed, let Sp1 and Sp2 be the
survival functions of r.v.’s Yp1 , Yp2 in the generalized additive NTR regression model with
respective covariates XXX p1 ̸=Xp2Xp2Xp2 , then

Sp1(t)−Sp2(t) = Sp1(t)

(
1−

d

∏
i=1

e−riµi(0,t]

)

with ri = fi(βββ ,XXX p2)− fi(βββ ,XXX p1). For example, if d = 2, the survival functions cross if the
curves given by {(e−µ1(0,t],e−µ2(0,t]) : t ∈R+} and {(t, tc) : t ∈R+, c =−r1/r2} cross. In
Figure 5.1 we illustrate such case.

Fig. 5.1 Crossing of survival functions when considering a bidimensional CoRM with Gamma
directing Lévy measure and independent Gamma(1,1) scores.

The multiple-sample NTR model, (4.3), can also be recovered by considering a covariate
XXX ∈ {0,1}m such that Xi = 1 if Yi belongs to sample i and Xi = 0 otherwise, and choosing

fi(βββ ,XXX) = 1{Xi=1}. (5.3)

In Section 5.3 we address the posterior consistency of the multiple-sample NTR model and
highlight some interesting comparisons with our more general model (5.1). We have moti-
vated our model as a generalization of the Cox regression and multiple-sample information
models but it can also be viewed as a competing risks model. We assume d causes for the
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event of interest to happen and define the survival function for the i-th cause to be

S̃i(t) = e− fi(βββ ,XXX)µi(0,t]

for i ∈ {1, . . . ,d}. The overall survival function is then given by the model in (5.2). This
suggests a simulation scheme for our model. We sample Ỹi as survival times according to the
survival function S̃i(t) and set

Y = min{Ỹ1, . . . ,Ỹd}. (5.4)

The CoRM is an interesting choice for the underlying VCRM µµµ in the generalized additive
NTR regression model, (5.2). In this case the series representation of µµµ = (µ1, . . . ,µd) in
(2.12) leads to the identity

T ∼ NTR

(
∞

∑
j=1

(
d

∑
i=1

fi(βββ ,XXX)mi, j

)
w jδu j

)
(5.5)

which can be seen as a CoRM on Rm with directing Lévy measure ν⋆ and score distribution
given by the r.v.’s ∑

d
i=1 fi(βββ ,XXX)mi, j. In this form, each score is a random linear combination

of the basis functions f1, . . . , fd . For example, if we take fi(βββ ,XXX) = eβiXi and the score
distribution h, corresponding to the i.i.d. weights {(m1, j, . . . ,md, j)}∞

j=1, to be a multivariate
LogNormal, as in example (10), then we get a NTR distribution as follows

Y ∼ NTR

(
∞

∑
j=1

(
d

∑
i=1

eβiXi+εi, j

)
w jδu j

)

where {(ε1, j, . . . ,εd, j)}∞
j=1 are i.i.d. multivariate Normal r.v.’s. When we consider possibly

censored to the right data, the posterior characterization of the generalized additive NTR
model can be calculated. First, we fix the notation for the posterior calculation of (5.1) to be
established in Theorem 13.

Definition 26. Let
DDD = {Ti,Ji}n

i=1

be survival data with possibly censored to the right observations. Given a sequence of
m−dimensional covariates {XXX i}n

i=1 and a n×m matrix X̂XX with rows consisting of the covariate
sequence, we say that

DDDX̂XX = {Ti,Ji,XXX i}n
i=1

is survival data censored to the right with covariates.
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For the sequence T1, . . . ,Tn we define the k ≤ n order statistics (without repetition) to be
T(1) < · · · < T(k). LetT(0) = 0 and T(k+1) = ∞. We define nc

j and ne
j to be the number of

censored and exact observations at time T( j) respectively. The matrix X̂XX is defined to have as
rows the m-dimensional covariate vectors {XXX i}n

i=1. We define sets

I(e)j = {l : Tl = T( j) and Jl = 1} ; I(c)j = {l : Tl = T( j) and Jl = 0},

with j ∈ {1, . . . ,k} and

I(e) = {l : Tl is an exact observation}.

We also define functions

h(e)i, j (zzz,ẐZZ) = ∑
l∈I(e)j

fi(zzz,ZZZl) ; h(c)i, j (zzz,ẐZZ) = ∑
l∈I(c)j

fi(zzz,ZZZl)

for zzz ∈ Rb, b ∈ N \ {0}, and ẐZZ = (Zl,i), a real valued matrix of dimension n×m with
j ∈ {1, . . . ,k} and i ∈ {1, . . . ,d}. We define the cumulative version of these functions by

h̄(e)i, j (zzz,ẐZZ) =
k

∑
r= j

h(e)i,r (zzz,ẐZZ) ; h̄(c)i, j (zzz,ẐZZ) =
k

∑
r= j

h(c)i,r (zzz,ẐZZ)

with j ∈ {1, . . . ,k} and h̄(e)i,k+1(zzz,ẐZZ) = h̄(c)i,k+1(zzz,ẐZZ) = 0. We define vectors

h̄hh(e)j (zzz,ẐZZ) =
(

h̄(e)1, j(zzz,ẐZZ), . . . , h̄
(e)
d, j(zzz,ẐZZ)

)
and

h̄hh(c)j (zzz,ẐZZ) =
(

h̄(c)1, j(zzz,ẐZZ), . . . , h̄
(c)
d, j(zzz,ẐZZ)

)
.

With the above notation, the next theorem provides the posterior distribution of the gener-
alized additive NTR regression model, (5.2), with a general VCRM and possibly censored
data.

Theorem 13. Let µµµ = (µ1, . . . ,µd) be a d-variate VCRM with corresponding Lévy intensity
of the form ν̃d(dsss,dx) = ν̃d(sss,dx)dsss and DDDX̂XX survival data with covariates following a
generalized additive NTR regression with VCRM µµµ and regressor functions f1, . . . fm. If
fi > 0 for at least one i ∈ {1, . . . ,d} and for ηt(sss) = ν̃d(sss,(0, t]) the partial derivative
η ′t0(sss) = ∂ηt(sss)/∂ t

∣∣
t=t0

exists for arbitrary t0 in R+ \{0}, then the posterior distribution of
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µµµ given survival data DDDX̂XX is the distribution of the random measure

(µ◦1 , . . . ,µ
◦
d )+ ∑

j∈I(e)
(M1, jδT( j), . . . ,Md, jδT( j))

where

i) µµµ◦ = (µ◦1 , . . . ,µ
◦
d ) is a d-variate VCRM with Lévy intensity

ν
◦
d (dsss,dx)

∣∣
x∈[T( j−1),T( j))

= e−⟨ h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX) ,sss ⟩
ν̃d(dsss,dx) (5.6)

ii) The vectors of jumps {(M1, j, . . . ,Md, j)} j∈I(e) are mutually independent and have, respec-
tively, a d−variate probability density function given by

g j(sss) ∝

d

∏
i=1

(
e−
(

h̄(e)i, j+1(βββ ,X̂XX)+h̄(c)i, j (βββ ,X̂XX)
)

si

)
∏

l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)si

)
η
′
T( j)

(sss) (5.7)

iii) The random measure µµµ◦ is independent of {(M1, j, . . . ,Md, j)} j∈I(e) .

We observe that we have the same posterior structure as for the multiple-sample model, a
measure µ◦ with explicit Lévy intensity plus a series of δ measure with random weights and
fixed location at the exact observation times; however the structure relating to the covariate
structure is much richer now. The posterior characterization result is of special interest for its
use in the inference scheme for model; we address this in the following corollaries.
The survival function S(t) = P[Y > t |βββ ,XXX ] conditional on the survival data DDDX̂XX and fixed
value βββ (which will often be a value sampled from the posterior distribution using a simulation
algorithm) is presented in the next result.

Corollary 7. In the setting of Theorem 13. For /0 ̸= L⊂ {1, . . . ,d} denote

I(e)t = {l : T(l) is an exact observation } ∩{l : T(l) ≤ t}.

Let S⋆(t) = P[Y ⋆ > t |βββ ,XXX⋆] be the survival function of a r.v. Y ⋆ associated to a covariate
vector XXX⋆ and βββ a d−variate random vector; then
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Ŝ⋆(t) = E
[
E[S⋆(t)|µµµ] |DDDX̂XX ,βββ ,XXX

⋆
]
= e
−∑

k+1
j=1

(
ψ◦t∧T( j)

(VVV ⋆)−ψ◦t∧T( j−1)
(VVV ⋆)

)
1{T( j−1)<t}

× ∏
j∈I(e)t

∫
(R+)d ∏

d
i=1

(
e−
(

V ⋆
i +h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)

)
si

)
∏l∈I(e)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
η ′T( j)

(sss)dsss

∫
(R+)d ∏

d
i=1

(
e−
(

h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)
∏l∈I(e)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
η ′T( j)

(sss)dsss

(5.8)

where VVV ⋆ =
(
V ⋆

1 . . . ,V ⋆
d

)
= ( f1(βββ ,XXX⋆), . . . , fd(βββ ,XXX⋆)) and ψ◦ is the Laplace exponent of µ◦.

The underlying Lévy intensities with which we deal in our model usually have a parametric
dependence in a vector of hyper-parameters ccc. In the proof of Theorem 13 it is outlined how
to derive the likelihood of the corresponding hyper-parameters when we consider censored
to the right survival data with covariates, DDDX̂XX . This likelihood is essential for the inference
scheme we present later on in this chapter.

Corollary 8. In the setting of Theorem 12 with survival data DDDX̂XX , underlying Lévy intensity
ν̃d,ccc, partial derivative η ′t,ccc and ψt,ccc the associated Laplace exponent, for some real valued
vector of hyper-parameters ccc, we get the likelihood on ccc and βββ

l(βββ ,ccc;DDDX̂XX) = e
−∑

k
j=1

(
ψT( j),ccc

(
h̄hh j

(c)
(βββ ,X̂XX)+h̄hh j

(e)
(βββ ,X̂XX)

)
−ψT( j−1),ccc

(
h̄hh j

(c)
(βββ ,X̂XX)+h̄hh j

(e)
(βββ ,X̂XX)

))

× ∏
j∈I(e)

{∫
(R+)d

d

∏
i=1

(
e−
(

h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)
∏

l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)si

)
η
′
T( j),ccc(sss)dsss

}
(5.9)

where for λλλ ∈ (R+)d , t ∈ R+

ψt,ccc(λλλ ) =
∫
(R+)d×(0,t]

(1− e−⟨λλλ ,sss⟩)ν̃d,ccc(dsss,dx)

We can essentially use Proposition 11 from the last chapter to evaluate the Laplace exponent
in the estimator that appears in Corollary 7. Next we give a Proposition to analytically
calculate the integrals of the type involved in both the estimator of Corollary 7 and likelihood
function of Corollary 8.
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Proposition 13. Let qqq1, . . . ,qqqm ∈ (R+)d distinct of 000 = (0, . . . ,0), qqq ∈ (R+)d and /0 ̸= I =
{i1 . . . , i|I|} ⊂ {1, . . . ,m}. We denote I \1 = {i2, . . . , i|I|}. Then

∫
(R+)d×(0t]

e−⟨qqq ,sss⟩∏
l∈I

(
1− e−⟨qqql ,sss⟩

)
ν̃d(dsss,dx)

= ∑
S⊂I\1

(−1)#(S)
(

ψt(qqq1 +∑
l∈S

qqql +qqq)−ψt(∑
l∈S

qqql +qqq)
)

The preceding discussion highlight how the implementation of the inferential procedure,
as for the multiple-sample information NTR model, depends on whether we can perform
evaluations of the Laplace exponent or not.

5.3 Asymptotic results

In this section we use the main results of Kim and Lee (2001) and Kim and Lee (2004) to
check posterior consistency and the Bernstein-von Mises theorem for the generalized additive
NTR regression model. We use these results to provide guidelines about the choice of the
VCRM and regressor functions { fi}d

i=1 in our model. For example in the CoRM case, this
limits the choice of the score distribution and directing Lévy measure. These results also
give insights into how these choices for the model affect the borrowing of information in a
competing risks framework, (5.4), and how the model can be misspecified if the regressor
functions are not flexible enough. The results presented in this section rely on the use of
the cumulative hazard function for NTR distributions, see Proposition 4, by making use of
the identity of (5.5) which relates our regression model to a NTR setting. In this section we
consider possibly censored to the right survival data with covariates DDD

(n)
X̂XX

= {Ti,Ji,XXX i}n
i=1,

where special emphasis is placed on the number of observations n. When we say that a
distribution has posterior consistency in this section it will be in the setting of Definition 9
with respect to a true underlying distribution with survival function S that generates survival
data DDD

(n)
X̂XX

. In the context of (5.2), the following proposition establishes consistency if the
entries of the VCRM are pairwise independent Gamma CRM’s, see Examples 2 and 3 in
Chapter 1.

Proposition 14. Let d ∈ N\{0}, KKK = (K1, . . . ,Kd) be a random vector in (R+)d such that

Ki
a.s.
̸= 0 for i ∈ {1, . . . ,d}, and let µµµ = (µ1, . . . ,µd) be a vector of CRM’s with independent

entries such that marginally each entry is a Gamma CRM; then, given KKK, the NTR(∑d
i=1 Kiµi)

distribution has a consistent posterior.
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On the other hand, if we consider complete identical dependence as discussed in Example 4
we get the next analogue result.

Proposition 15. Let d ∈ N\{0}, KKK = (K1, . . . ,Kd) be a random vector in (R+)d such that

KKK
a.s.
̸= 000, µ a CRM and µµµ = (µ1, . . . ,µd) = (µ,µ, . . . ,µ) be a VCRM with Lévy intensity

supported in {(s1, . . . ,sd) : s1 = s2 = . . . = sd} ; then, given KKK, the ∼ NTR(∑d
i=1 Kiµi) =

NTR((K1 + . . .Kd)µ) distribution has a consistent posterior if µ is a Gamma CRM.

In terms of our model, (5.1), the previous two propositions give the next result.

Corollary 9. Let µµµ be a VCRM with Gamma CRM entries that are either mutually indepen-
dent or a.s. equal. If fi > 0 for every i ∈ {1, . . . ,d} then

NTR
(

f1(βββ ,X̃XX)µ1(0, t]+ . . .+ fd(βββ ,X̃XX)µd(0, t]
∣∣∣DDD (n)

X̂XX

)
(5.10)

has a consistent posterior, with respect to the underlying true distribution with survival
function S0, conditionally on βββ .

The next proposition can be seen as a generalization of Example 6 into a CoRM setting and
also into the framework of our model.

Proposition 16. Let KKK = (K1, . . . ,Kd) be a random vector with a probability density sup-
ported in (R+\{0})d and µµµ =(µ1, . . . ,µd) a CoRM with Gamma directing Lévy measure and
score distribution with density h supported in (R+)

d . Then the NTR(∑d
i=1 Kiµi) distribution

has a consistent posterior.

The above result showcases a robustness for the posterior consistency of the NTR model
with Gamma CRM when we consider the CoRM with directing Gamma Lévy measure as a
perturbation. In terms of our model, (5.1), we get the next corollary for the proposition above

Corollary 10. Let µµµ be a CoRM with Gamma directing Lévy measure and score distribution
with density h supported in (R+)

d . If fi > 0 for every i ∈ {1, . . . ,d} then

NTR
(

f1(βββ ,X̃XX)µ1(0, t]+ . . .+ fd(βββ ,X̃XX)µd(0, t]
∣∣∣DDD (n)

X̂XX

)
(5.11)

has a consistent posterior, with respect to the underlying true distribution with survival
function S0, conditionally on βββ .

On a more general setting, if we consider the underlying VCRM in our generalized additive
NTR regression model to be determined by an arbitrary absolutely continuous with respect
to Lebesgue measure Lévy intensity ν̃d then the conditions for posterior consistency in
Proposition 5 are expressed as follows
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Proposition 17. Let KKK = (K1, . . . ,Kd) be a random vector in (R+)d such that Ki
a.s.
̸= 0 for

i ∈ {1, . . . ,d}, and µµµ = (µ1, . . . ,µd) be a VCRM with absolutely continuous with respect to
Lebesgue measure Lévy intensity ν̃d(sss,dx)dsss. Then the distribution NTR(∑d

i=1 Kiµi) has a
consistent posterior if

ξ (s,x) =
ν̂(− log(1− s),x)

1− s
satisfies the conditions of Proposition 5 where

ν̂(z) =
∫ z

0

∫ z−yd

0
· · ·
∫ z−yd−...−y3

0

ν̃d

(
z−yd−...−y2

K1
, y2

K2
, . . . , yd

Kd
,x
)

K1 · · ·Kd
dy2 . . .dyd.

Theorem 14. Let b ∈ N \ {0}, βββ ∈ Rb, Y ⋆ be an exact observation with covariate XXX⋆,
S⋆(t) = P[Y ⋆ > t |βββ ,XXX⋆] and VVV ⋆ = ( f1(βββ ,XXX⋆), . . . , fd(βββ ,XXX⋆)). If

NTR
(

f1(βββ ,X̃XX)µ1(0, t]+ . . .+ fd(βββ ,X̃XX)µd(0, t]
∣∣∣DDD (n)

X̂XX

)
(5.12)

has a consistent posterior, with respect to the underlying true distribution with survival
function S0, conditionally on βββ ; then

lim
n→∞

E
[
S⋆(t)|DDD (n)

X̂XX
,βββ ,XXX⋆

]
= S0(t)R(t;X̂XX)

with

R(t;X̂XX) = lim
n→∞

e
−∑

k(n)+1
j=1

(
ψ◦t∧T( j)

(VVV ⋆)−ψ◦t∧T( j)
(111)+ψ◦t∧T( j−1)

(111)−ψ◦t∧T( j−1)
(VVV ⋆)

)
1{T( j−1)<t}

∏
j∈I(e) ,(n)t∫

(R+)d ∏
d
i=1

(
e−
(

V ⋆
i +h̄(e)j+1,i(βββ ,X̂XX

(n)
)+h̄(c)j,i (βββ ,X̂XX

(n)
)
)

si

)
∏l∈I(e) ,(n)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
ν(sss)dsss

∫
(R+)d ∏

d
i=1

(
e−
(

1+h̄(e)j+1,i(βββ ,X̂XX
(n)

)+h̄(c)j,i (βββ ,X̂XX
(n)

)
)

si

)
∏l∈I(e) ,(n)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
ν(sss)dsss

(5.13)

where dependence on n has been made explicit by a super-index (n).

We observe that if fi ≡ 1 then R≡ 1 so our regression model estimator is equivalent in the
limit to the frequentist Kaplan-Meier estimator. The other asymptotic property we focus on
in this chapter are the Bernstein-von Mises results, as in Definition 11, for the generalized
additive NTR regression model. In such context we consider again a true underlying survival
function S0 which generates the survival data with covariates DDD

(n)
X̂XX

.
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Proposition 18. Let KKK = (K1, . . . ,Kd) be a random vector with a probability density sup-
ported in (R+\{0})d such that E[Ki] ,E[1/Ki]<∞ for any i∈{1, . . . ,d}; and µµµ =(µ1, . . . ,µd)

be a CoRM with Gamma directing Lévy measure and a score distribution with density
h supported in (R+)

d such that if (U1, . . . ,Ud) ∼ L (h) we have that E[Ui] < ∞ for any
i ∈ {1, . . . ,d} and E

[
1/U j

]
< ∞ for at least one j ∈ {1, . . . ,d}. Then the distribution

NTR(∑d
i=1 Kiµi) attains the Bernstein-von Mises theorem.

In the context of the generalized additive NTR regression model the next result follows.

Corollary 11. Let µµµ be a d−variate CoRM with Gamma directing Lévy measure and and
a score distribution with density h supported in (R+)

d such that if (U1, . . . ,Ud)∼L (h) we
have that E[Ui]< ∞ for any i ∈ {1, . . . ,d} and E

[
1/U j

]
< ∞ for at least one j ∈ {1, . . . ,d}.

If E
[
1/ fi(β ,X̃XXβ ,X̃XXβ ,X̃XX)

]
,E
[

fi(β ,X̃XXβ ,X̃XXβ ,X̃XX)
]
< ∞ for any i ∈ {1, . . . ,d} then given survival data DDD

(n)
X̂XX

S(t;X̃XX) = e− f1(βββ ,X̃XX)µ1(0,t]−...− fd(βββ ,X̃XX)µd(0,t] (5.14)

satisfies the Bernstein-von Mises theorem with respect to the Kaplan-Meier estimator of the
possibly censored to the right observations in DDD

(n)
X̂XX

for any X̃XX ∈ Rd .

Results as Theorem 14 are interesting as they show a case, namely when fi > 0 for every
i∈ {1, , . . . ,d}, where the posterior mean estimator (5.8) collapses in the limit to the marginal
survival associated to the survival data without covariates, DDD , times a function R which
accounts for the covariate dependence. If the regressor functions fi are not chosen with
enough flexibility we have that our regression model can become misspecified.

Example 17. Model misspecification
We draw samples from two different populations YYY (1) = {Y (1)

i }∞
i=1 and YYY (2) = {Y (2)

i }∞
i=1

given by

Y (1)
i

i.i.d.∼ Weibull(shape = 2.1, rate = 0.5) ; Y (2)
i

i.i.d.∼ Weibull(shape = 0.9, rate = 0.5) .

Given n ∈ N\{0} we consider {Yi,Zi}n
i=1 such that no censoring is considered,

Yi
i.i.d.∼ 0.5Weibull(shape = 2.1, rate = 0.5)+0.5Weibull(shape = 0.9, rate = 0.5) ,

where we have used the usual notation for mixture distributions, and

Zi =

1, if Yi ∼Weibull(shape = 2.1, rate = 0.5) .

2, if Yi ∼Weibull(shape = 0.9, rate = 0.5) .
.
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For illustration purposes we take a VCRM consisting of two independent homogeneous
Gamma(αi,βi) CRM’s with κ(dx) = dx, i ∈ {1,2}. If we consider the generalized additive
NTR regression model with regressor functions f1, f2 given by

f1(Z) = δ1(Z) ; f2(Z) = δ2(Z),

then the model is equivalent to having independent NTR(Gamma(αi,βi)) distributions for
each population, YYY (i), appearing in the survival data, i ∈ {1,2}. As we have Gamma CRM’s
there will be consistency for each population, see Figure 5.2.

Two populations fit with multiple-sample NTR model

Fig. 5.2 Plot of NTR fits given by the estimator (5.8) for two Weibull distributed populations
with independent Gamma(1,1) CRM’s. Draws from 100, 1000 and 10000 observations
without censoring were considered.
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Two populations fit with misspecified NTR regression model

Fig. 5.3 Plot of NTR fits given by the estimator (5.8) for two Weibull distributed populations
with independent Gamma(1,1) CRM’s. Draws from 100, 1000 and 10000 observations
without censoring were considered. The misspecified limit S0(t)R(t;X̂XX) is calculated with
the true mixture of Weibull distribution for S0 and an approximation of R by considering
DDD

(n)
X̂XX

in the limit in (5.13).

On the other hand, if we take the strictly positive regressor functions f1, f2 given by

f1(Z) = 1.5δ1(Z)+0.5δ0(Z)

f2(Z) = 0.5δ1(Z)+1.5δ0(Z),

then, still using independent Gamma CRM’s for the VCRM, because of Theorem 14 the
posterior distribution of individuals belonging to either population, with covariate Z = 1
or Z = 2, will collapse in the distribution given by S0(t)R(t;Z). Here S0 is the survival
function associated to the full set of observations {Yi}n

i=1, which in this case corresponds
to the uniform mixture, weights 0.5 and 0.5 for each involved distribution, of the Weibull
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laws associated to each population YYY (1), YYY (2); and R(·;Z) is the function depending on the
covariate Z that was given in Theorem 14 and which, by the choices of f1, f2 is different
from 1 so the model will produce misspecification as showed in Figure 5.3

We see from the previous example that special care has to be taken in the choice of the
regressor functions, so they are flexible enough to avoid misspecification as in the previous
example.

5.4 Real data analyses

In this section we analyse real survival datasets with the generalized additive NTR regression
model. For the underlying VCRM we will use a CoRM that can modulate between assigning
mass on random weights in the axis of (R+)d and the identity line.

Definition 27. Let δ ∈ [0,1], we denote by δ −LogNormal the distribution given by the
mixture

1
d

d

∑
i=1

LogNormal
(
(1−δ )eeei +δ111 , σ I(d)

)
.

If δ = 0 then the δ -LogNormal distribution accumulates mass near the axis in (R+)d and
if δ = 1 then the mass of the distribution is accumulated near the identity. As showcased
in Example 11 such distribution can be used as the score distribution of a CoRM. In all the
real data studies of this section we will use a δ −LogNormal−Gamma(α,β ) CoRM with
σ = 0.1 in the δ −LogNormal score distribution and κ(dx) = dx for location part in the
homogeneous Gamma directing CRM. We observe that computation of the Laplace exponent
of a δ −LogNormal−Gamma CoRM is not straightforward. However, as the Laplace
exponent of the Gamma directing CRM is explicitly available and drawing samples from the
score distribution is possible, we can use Theorem 6 to give a Monte-Carlo estimator for the
Laplace exponent of the δ −LogNormal−Gamma CoRM. We propose a MCMC scheme
for estimation of the mean posterior survival function in Corollary 7, equation (5.8), when
assigning prior distributions on the vectors βββ , ccc, as in Corollary 8. For all the generalized
additive NTR regression fits in this section we first perform a NTR maximum a posteriori
estimate ĉccmaxpost, see the example in Figure 1.5 and equation 1.24, for the vector of hyper-
parameters ccc = (α,β ) for the directing Gamma Lévy measure associated to the underlying
CoRM. So we fix ccc = ĉccmaxpost = (αmaxpost,β maxpost) in the rest of the inferential scheme. For
the estimation of the parameters βββ ∈ Rb and λ ∈ [0,1] we use a pseudo-marginal Metropolis
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within Gibbs algorithm to draw

βββ
(i)|ĉccmaxpost,DDDX̂XX , 1≤ i≤M;

and use the likelihood (5.9) to identify
(

β̂ββ
maxpost

, λ̂ maxpost
)

attaining the running maximum
a posterior value along the MCMC chain above. We resort to the maximum a posteriori
approaches instead of using averaged estimator along the MCMC chain as in (1.25), see the
discussion pertaining Figure 1.6, because the Laplace exponent of the δ −LogNormal−
Gamma CoRM is not explicitly available so we recur to a Monte-Carlo approximation,
which is computationally more expensive, instead. Even more, we have to recur to the
pseudo-marginal approach as in each MCMC step the Monte-Carlo estimator of the δ −
LogNormal−Gamma CoRM’s Laplace exponent is used.

Algorithm 6 Pseudo-marginal Metropolis within Gibbs for generalized additive NTR regres-
sion model

1: Draw λ (i+1) from a Metropolis-Hastings sampler with Uniorm(0,1) proposal distribution
and target distribution

l(βββ (i),x;DDDX̂XX)

with ψ̂MonteCarlo instead of ψ .
2: Draw βββ (i+1) from a Metropolis-Hastings sampler with suitable proposal distribution and

target distribution
l(xxx,λ (i+1);DDDX̂XX)pβββ (xxx).

with ψ̂MonteCarlo instead of ψ and pβββ a suitable prior distribution in βββ , the vector of
parameters for the regressor functions { fi}∞

i=1.

Anemia clinical trials

In Kalbfleisch and Prentice (2011), Table 1.2, two different treatments for patients with ane-
mia were considered; one with cyclosporine and methotrexate, and the other with methotrex-
ate alone. Each treatment study involved 64 patients. The Kaplan-Meier estimators of
the two treatments cross each other; we see that we can recover this behaviour with the
two-dimensional δ -LogNormal-Gamma CoRM and the multiple-sample model regressor
functions

f1(Zi) = 1{Patient Yi belongs to treatment 1.}

f2(Zi) = 1{Patient Yi belongs to treatment 2.}.
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Fig. 5.4 δ -LogNormal-Gamma model fit for two anemia treatments with δ̂ = 0.13. Kaplan-
Meier estimators are given for comparison.

We observe that in Figure 5.4 the survival estimators in our model for the two treatments
cross each other. As δ̂ maxpost = 0.13 is close to zero, there is a subtle sharing of information
that can be observed when comparing with the Kaplan-Meier estimators.

Melanoma survival data

In Andersen et al. (2012), 205 patients with melanoma which had a tumour removed by
surgery were considered. The thickness of the tumour was one of the covariables of interest
as an increase in the tumour’s thickness is thought to increase the chances of death. Again
we use the two dimensional δ −LogNormal−Gamma CoRM and choose the regressor
functions in a flexible way. Let qqq = (q1,q2,q3q4,q5) be the quantiles of the thickness
covariates at 0.0, 0.25, 0.5, 0.75, 1.0, respectively, then given βββ ∈ [0,1]5 we set kkk(qqq,βββ ) =
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{(q1,β1), . . .(q5,β5)} and regressor functions

f1(z,βββ ) = max{0, Spline(3)kkk (z)}
f2(z,βββ ) = max{0, max(βββ )− f1(z)}

where Spline(3)kkk is a spline of degree 3 with knots kkk and max(βββ ) = max{β1, . . . ,β5}. With
such regressor functions we can approximately recover a multiple-sample model where
the samples are given by the thickness covariate belonging to the supports of f1, f2. The
maximum a posteriori regressor functions are given in Figure 5.5, where we observe that
patients with tumour thickness between the 0.25 and 0.5 quantiles have disjoint supports of
the regressor functions with respect to patients with tumour thickness above the 0.5 quantile;
which we interpret as the two populations the model has fitted.

Fig. 5.5 Regressor functions f1, f2 for the melanoma real data, evaluated at β̂ββ
maxpost

.
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The maximum a posteriori for δ heuristically quantifies how much sharing of information
is the model gives to the pseudo-populations given by the disjoint supports of the regressor
functions. In our case

δ̂
maxpost = 0.000371,

so there is very little sharing of information between the pseudo-populations.

Fig. 5.6 δ − LogNormal−Gamma fits for thickness values 0.5, 1.5, 3.3 and 5.5. For
comparison we present Kaplan-Meier fits of observations with thickness values between the
quantiles at 0.0, 0.25, 0.5 and 0.75 and 1.0.
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Kidney transplant data

We consider the Kidney transplant dataset from the survival analysis book of Klein and
Moeschberger (2006) which is available in the R package "KMsurv" by Yan (2010). This
dataset consists of 863 observations with an indicator covariate to specify if the observation
was exact or censored, an indicator covariate to determine if the observation corresponded to
a male or female patient, an indicator covariate to determine if the observation corresponded
to a white or black patient, and an age covariate which we treat as a continuous variable.
As patients can be divided in populations 1) Male-White, 2) Male-Black, 3) Female-White
and 4) Female-Black, we consider the 4-variate δ -LogNormal-Gamma CoRM. We consider
regressor functions fi, i ∈ {mw,mb, fw, fb} for the label of each populations; which we
define as

fmw(zzz) = eβ0,mw+β1,mwzage1{zgender=male, zrace=white}

fmb(zzz) = eβ0,mb+β1,mbzage1{zgender=male, zrace=black}

ffw(zzz) = eβ0,fw+β1,fwzage1{zgender=female, zrace=white}

ffb(zzz) = eβ0,fb+β1,fbzage1{zgender=female, zrace=black}

The intercept coefficients β0,mw,β0,mb,β0,fw,β0,fb account for the heterogeneity in the pop-
ulations. The linear coefficients for the age β1,mw,β1,mb,β1,fw,β1,fb account for decreasing
survivals when the age augments. In the Male-White population there are 431 individuals,
this is the biggest population in the sample. In Figure 5.7 the generalized additive NTR
regression fit is presented for patients in this population with different age values. The
Female-White populations has 278 individuals, making it the second largest; our model fits
for this population are presented in Figure 5.8 with different age covariates. In contrast
with the White populations, the Black-Male and Black-Female population contain fewer
individual, 92 for Black-Male and 59 for Black-Female; for this reason we only present the
fit for the age equal to 50 covariate, being close to the mean and mode of the age covariate
for both populations. In Figures 5.9 and 5.10 we present the corresponding fits.
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Kidney-transfer white male population NTR regression fits by age

Fig. 5.7 δ −LogNormal−Gamma fits for the White-Male population in the kidney transfer
data set for different age values. Kaplan-Meier estimators and the associated Cox regression
estimator are presented for comparisson.
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Kidney-transfer white female population NTR regression fits by age

Fig. 5.8 δ−LogNormal−Gamma fits for the White-Female population in the kidney transfer
data set for different age values. Kaplan-Meier estimators and the associated Cox regression
estimator are presented for comparisson.
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Fig. 5.9 δ −LogNormal−Gamma fits for the Black-Male population in the kidney transfer
data set for different age values. Kaplan-Meier estimators and the associated Cox regression
estimator are presented for comparisson.

Fig. 5.10 δ − LogNormal−Gamma fits for the Black-Female population in the kidney
transfer data set for different age values. Kaplan-Meier estimators and the associated Cox
regression estimator are presented for comparisson.
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5.5 Proof of generalized additive NTR regression model re-
sults

Proof of Theorem 13

First we will use the next lemma.

Lemma 7. Let (µ1, . . . ,µd) be a d-variate CRM such that µ1, . . . ,µd are not independent and
let the Levy intensity ν̃d(sss,dt)dsss of (µ1, . . . ,µd) be such that ηt = ν̃d(sss,(0, t]) is differentiable
with respect to t ∈ R+ at some t0 ̸= 0 and denote η ′t0(sss) = ∂ηt(sss)∂ t

∣∣
t=t0

. Let it be /0 ̸=
I ⊂ N \ {0}, if ∀l ∈ I qqql = (ql,1, . . . ,ql,d) ∈ Nd are such that max{ql,1, . . . ,ql,d} > 0, and
rrr = (r1, . . . ,rd) ∈ (R+)d are such that min{r1, . . . ,rd}> 0, then

E

[
d

∏
i=1

(
e−riµi(Aε )

)
∏
l∈I

(
1−

d

∏
i=1

e−ql,iµi(Aε )

)]
= ε

∫
(R+)d

e−⟨rrr,sss⟩∏
l∈I

(
1− e−⟨qqql ,sss⟩

)
η
′
t0(sss)dsss+o(ε)

as 0 < ε → 0, with Aε = (t0− ε, t0] for some t0 ∈ R+ \{0}.

Proof. Let it be /0 ̸= I ⊂ N\{0}, then

E

[
d

∏
i=1

(
e−riµi(t0−ε,t0]

)
∏
l∈I

(
1−

d

∏
i=1

e−ql,iµi(t0−ε,t0]

)]

= E

[
d

∏
i=1

(
e−riµi(t0−ε,t0]

)
∑
S⊂I

(−1)#(S)
∏
l∈S

d

∏
i=1

e−ql,iµi(t0−ε,t0]

]

= ∑
S⊂I

(−1)#(S)E

[
d

∏
i=1

e−(∑l∈S ql,i+ri)µi(t0−ε,t0]

]
= ∑

S⊂I
(−1)#(S)e−[ψt0(r1+∑l∈S q1,l ,...,rd+∑l∈S qd,l)−ψt0−ε (r1+∑l∈S q1,l ,...,rd+∑l∈S qd,l)]

= e−ψt0(r1,...,rd)+ψt0−ε (r1,...,rd) ∑
S⊂I

(−1)#(S)e−△
t0
t0−ε [ψt(r1+∑l∈S q1,l ,...,rd+∑l∈S qd,l)−ψt(r1,...,rd)]

With jjj = ( j1, . . . , jd) ∈ (R+)d such that min{ j1, . . . , jd}; we use the Taylor expansion

e−△
t0
t0−ε [ψt(rrr+ jjj)−ψt(rrr)] = e−

∫
(R+)d e−⟨rrr,xxx⟩(1−e−⟨ jjj,sss⟩)△t0

t0−ε ηt(sss)dsss

= 1− ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−⟨ jjj,sss⟩)η ′t0(sss)dsss+o(ε) (5.15)
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So

E

[
d

∏
i=1

(
e−riµi(t0−ε,t0]

)
∏
l∈I

(
1−

d

∏
i=1

e−ql,iµi(t0−ε,t0]

)]

= e−ψt0(r1,...,rd)+ψt0−ε (r1,...,rd)

(
1+ ∑

/0 ̸=S⊂I
(−1)#(S) {1

− ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss+o(ε)
})

=−e−ψt0(r1,...,rd)+ψt0−ε (r1,...,rd)

(
∑

/0 ̸=S⊂I
(−1)#(S)

ε

∫
(R+)d

e−⟨rrr,sss⟩(1− e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss

+o(ε)

)

=−e−ψt0(r1,...,rd)+ψt0−ε (r1,...,rd)

(
ε

∫
(R+)d

e−⟨rrr,sss⟩ ∑
/0 ̸=S⊂I

(−1)#(S)(1− e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss

+o(ε)

)

=−e−ψt0(r1,...,rd)+ψt0−ε (r1,...,rd)

(
ε

∫
(R+)d

e−⟨rrr,sss⟩(−1− ∑
/0 ̸=S⊂I

(−1)#(S)e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss

+o(ε)

)

= (1+o(1))

(
ε

∫
(R+)d

e−⟨rrr,sss⟩(1+ ∑
/0 ̸=S⊂I

(−1)#(S)e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss+o(ε)

)
= ε

∫
(R+)d

e−⟨rrr,sss⟩(1+ ∑
/0 ̸=S⊂I

(−1)#(S)e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss+o(ε)

= ε

∫
(R+)d

e−⟨rrr,sss⟩(∑
S⊂I

(−1)#(S)e−∑l∈S⟨qqql ,sss⟩)η ′t0(sss)dsss+o(ε)

= ε

∫
(R+)d

e−⟨rrr,sss⟩∏
l∈I

(
1− e−⟨qqql ,sss⟩

)
η
′
t0(sss)dsss+o(ε)

Similarly to the proof of Theorem 12 we use the next Lemma to simplify the calculations in
the proof of the Theorem at hand.

Lemma 8. In the setting of Theorem 13 suppose the survival data with covariatesDDDX̂XX is
comprised of a sole observation t1 with associated covariates xxxl l ∈ I for some finite set
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/0 ̸= I ⊂ N. Let t < t1; then

E
[
e−λ1µ1(0,t]−...−λd µd(0,t]|DDDd

]
= lim

ε→0

E
[
e−(λ+nc+ne)µ(0,t]

]
E
[
e−(nc+ne)µ(0,t]

]
Proof.

E
[
e−λ1µ1(0,t]−...−λd µd(0,t]|DDDX̂XX

]
=

lim
ε→0

E
[
∏

d
i=1

(
e−λiµi(0,t]−h(c)i (βββ ,X̂XX)µi(0,t1]

)
∏l∈I

(
∏

d
i=1 e− fi(βββxxx)µi(0,t1−ε]−∏

d
i=1 e− fi(βββxxx)µi(0,t1]

)]
E
[
∏

d
i=1

(
e−h(c)i (βββ ,X̂XX)µi(0,t1]

)
∏l∈I

(
∏

d
i=1 e− fi(βββxxx)µi(0,t1−ε]−∏

d
i=1 e− fi(βββxxx)µi(0,t1]

)]
= lim

ε→0

E
[
e−λiµi(0,t]−h(c)i (βββ ,X̂XX)µi(0,t]−h(e)i (βββ ,X̂XX)µi(0,t]

]
E
[
e−h(c)i (βββ ,X̂XX)µi(0,t]−h(e)i (βββ ,X̂XX)µi(0,t]

]
×
E
[
∏

d
i=1

(
e−h(c)i (βββ ,X̂XX)µi(t,t1]

)
∏l∈I

(
∏

d
i=1 e− fi(βββxxx)µi(t,t1−ε]−∏

d
i=1 e− fi(βββxxx)µi(t,t1]

)]
E
[
∏

d
i=1

(
e−h(c)i (βββ ,X̂XX)µi(t,t1]

)
∏l∈I

(
∏

d
i=1 e− fi(βββxxx)µi(t,t1−ε]−∏

d
i=1 e− fi(βββxxx)µi(t,t1]

)]


=
E
[
∏

d
i=1 e−(λi+h(c)i (βββ ,X̂XX)+h(e)i (βββ ,X̂XX))µi(0,t]

]
E
[
∏

d
i=1 e−(h

(c)
i (βββ ,X̂XX)+h(e)i (βββ ,X̂XX))µi(0,t]

] = e−(ψt(λλλ+hhh(c)(βββ ,X̂XX)+hhh(e)(βββ ,X̂XX))−ψt(hhh(c)(βββ ,X̂XX)+hhh(e)(βββ ,X̂XX))

We observe that if ψt is the Laplace exponent associated to the Lévy measure ν̃d then
ψ

(kkk)
t (λλλ ) = ψt(λλλ +kkk)−ψt(kkk) is the Laplace exponent associated to e−⟨kkk ,sss⟩ν̃d(dsss,dx), with

this in mind we have that, in the following, without loss of generality for calculations of the
posterior Laplace exponent as in the previous Lemma it suffices to consider evaluation of the
exponent in a time t which is greater than all the survival times in the survival data DDDX̂XX .
Define

ΓDDDX̂XX ,ε
=

k⋂
j=1

{(T1,J1,XXX1, . . . ,Tn,Jn,P,bXn)}

so that

E
[
e−λ1µ1(0,t]−···λd µd(0,t]|DDDX̂XX

]
= lim

ε→0

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDD,ε

(
DDDX̂XX

)]
P
[
DDDX̂XX ∈ ΓDDDX̂XX ,ε

]
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We observe that selecting ε sufficiently small such that t ̸∈ (T( j)−ε,T( j)) for all j ∈ {1, . . . ,k}

E
[
e−λ1µ1(0,t]−···λd µd(0,t]1ΓDDDX̂XX ,ε

(
DDDX̂XX

)
|(µ1, . . . ,µd)

]
= E

( d

∏
i=1

e−λiµi(0,t]

)
k

∏
j=1

 ∏
l∈I(e)j

(
d

∏
i=1

e− fi(βββ ,XXX l)µi(0,T( j)−ε]−
d

∏
i=1

e− fi(βββ ,XXX l)µi(0,T( j)]

)

×
d

∏
i=1

(
e−h(c)j,i (βββ ,X̂XX)µi(0,T( j)]

)}]

= E

[(
d

∏
i=1

e−λiµi(0,t]

)
k

∏
j=1

{
d

∏
i=1

(
e−h(e)j,i (βββ ,X̂XX)µi(0,T( j)−ε]

)

× ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)
d

∏
i=1

(
e−h(c)j,i (βββ ,X̂XX)µi(0,T( j)]

)


= E

[(
d

∏
i=1

e−λi(∑
k
j=1{µi(T( j−1),T( j)−ε]+µi(T( j)−ε,T( j)]}+µi(T(k),t])

)

×
k

∏
j=1

{
d

∏
i=1

(
e−h(e)j,i (βββ ,X̂XX)µi(0,T( j)−ε]

)

× ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)
d

∏
i=1

(
e−h(c)j,i (βββ ,X̂XX)µi(0,T( j)]

)


= E

[(
d

∏
i=1

e−λi(∑
k
j=1{µi(T( j−1),T( j)−ε]+µi(T( j)−ε,T( j)]}+µi(T(k),t])

)

×
k

∏
j=1

{
d

∏
i=1

(
e−h(e)j,i (βββ ,X̂XX)

(
∑

j
r=1 µi(T(r−1),T(r)−ε]+∑

j−1
r=1 µi(T(r)−ε,T(r)]

))

× ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)

×
d

∏
i=1

(
e−h(c)j,i (βββ ,X̂XX)

(
∑

j
r=1 µi(T(r−1),T(r)−ε]+∑

j
r=1 µi(T(r)−ε,T(r)]

))}]
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= E

[(
d

∏
i=1

e−λiµi(T(k),t]
k

∏
j=1

e−λiµi(T( j−1),T( j)−ε]−λiµi(T( j)−ε,T( j)]

)

×
d

∏
i=1

(
e−∑

k
j=1 h(e)j,i (βββ ,X̂XX)

(
∑

j
r=1 µi(T(r−1),T(r)−ε]+∑

j−1
r=1 µi(T(r)−ε,T(r)]

))

×
k

∏
j=1

 ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)
×

d

∏
i=1

(
e−∑

k
j=1 h(c)j,i (βββ ,X̂XX)

(
∑

j
r=1 µi(T(r−1),T(r)−ε]+∑

j
r=1 µi(T(r)−ε,T(r)]

))]

= E

[(
d

∏
i=1

e−λiµi(T(k),t]
k

∏
j=1

e−λiµi(T( j−1),T( j)−ε]−λiµi(T( j)−ε,T( j)]

)

×
d

∏
i=1

(
e−∑

k
r=1 h̄(e)r,i (βββ ,X̂XX)µi(T(r−1),T(r)−ε]−∑

k−1
r=1 h̄(e)r+1,i(βββ ,X̂XX)µi(T(r)−ε,T(r)]

)

×
k

∏
j=1

 ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)
×

d

∏
i=1

(
e−∑

k
r=1 h̄(c)r,i (βββ ,X̂XX)µi(T(r−1),T(r)−ε]−∑

k
r=1 h̄(c)r,i (βββ ,X̂XX)µi(T(r)−ε,T(r)]

)]

= E

[(
d

∏
i=1

e−λiµi(T(k),t]

)
k

∏
j=1

{
d

∏
i=1

(
e−λiµi(T( j−1),T( j)−ε]−λiµi(T( j)−ε,T( j)]

)
×

d

∏
i=1

(
e−h̄(e)j,i (βββ ,X̂XX)µi(T( j−1),T( j)−ε]−h̄(c)j+1,i(βββ ,X̂XX)µi(T( j)−ε,T( j)]

)
∏

l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)

×
d

∏
i=1

(
e−h̄(c)j,i (βββ ,X̂XX)µi(T( j−1),T( j)−ε]−h̄(c)j,i (βββ ,X̂XX)µi(T( j)−ε,T( j)]

)}]
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So defining

I1,ε =
k

∏
j=1

{
d

∏
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

µi(T( j)−ε,T( j)]
)

× ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)
I2,ε =

(
d

∏
i=1

e−λiµi(T(k),t]

)
k

∏
j=1

d

∏
i=1

(
e−λiµi(T( j−1),T( j)−ε]

× e−
(

h̄(e)j,i (βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

µi(T( j−1),T( j)−ε]

)

We get from the independence property of CRM’s that

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDD,ε

(
DDDX̂XX

)]
= E[I1,ε ]E[I2,ε ] (5.16)

We observe that for ri = λi + h̄(e)j+1,i(βββ ,X̂XX)+ h̄(c)j,i (βββ ,X̂XX), i ∈ {1, . . . ,d}, we set ql,i = fi(βββ ,XXX l)

and observe that min{r1, . . . ,rd}> 0 and max{q1,i, . . . ,ql,i}> 0 so Lemma 7 can be applied
yielding

E

 d

∏
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

µi(T( j)−ε,T( j)]
)

∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)µi(T( j−1)−ε,T( j)]

)
= ε

∫
(R+)d

d

∏
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)
∏

l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)si

)
η
′
T( j)

(sss)dsss+o(ε)

(5.17)

On the other hand, for j ̸∈J = { j : T( j) is an exact observation} we have I(e)j = /0 so by the
continuity of ηt(sss) in t we get that

lim
ε→0

E

[
d

∏
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

µi(T( j)−ε,T( j)]
)]

= 1 (5.18)
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From (5.17), (5.18) and the independence property of CRM’s we obtain

lim
ε→0

E[I1,ε ] = lim
ε→0 ∏

j∈I(e)

{
ε

∫
(R+)d

d

∏
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)

× ∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)si

)
η
′
T ( j)(sss)dsss+o(ε)


Also by continuity and independence we get

lim
ε→0

E[I2,ε ] = e
−[ψt(λλλ )−ψT(k)

(λλλ )]
k

∏
j=1

e
−[ψT( j)

(λλλ+h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX))−ψT( j−1)
(λλλ+h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX))]

So by (5.16) we have that

lim
ε→0

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDDX̂XX ,ε

(
DDDX̂XX

)]
=

e
−[ψt(λλλ )−ψT(k)

(λλλ )]
k

∏
j=1

e
−[ψT( j)

(λλλ+h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX))−ψT( j−1)
(λλλ+h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX))]

× ∏
j∈I(e)

lim
ε→0

{
ε

∫
(R+)d

d

∏
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)

∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)si

)
η
′
T ( j)(sss)dsss+o(ε)

}

And similarly

lim
ε→0

P
[
DDD ∈ ΓDDDX̂XX ,ε

]
=

k

∏
j=1

e
−[ψT( j)

(h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX))−ψT( j−1)
(h̄hh(e)j (βββ ,X̂XX)+h̄hh(c)j (βββ ,X̂XX))]

× lim
ε→0

ε
#(I(e))

∏
j∈I(e)

{∫
(R+)d

d

∏
i=1

(
e−
(

h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)

∏
l∈I(e)j

(
1−

d

∏
i=1

e− fi(βββ ,XXX l)si

)
η
′
T ( j)(sss)dsss+o(ε)

}
(5.19)
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We set T(k+1) = t so we conclude

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]|DDDX̂XX

]
= lim

ε→0

E
[
e−λ1µ1(0,t]−···−λd µd(0,t]1ΓDDDX̂XX ,ε

(
DDDX̂XX

)]
P
[
DDDX̂XX ∈ ΓDDDX̂XX ,ε

]
= e
−∑

k+1
j=1△

T( j)
T( j−1)

(
ψt(λλλ+h̄(c)j (βββ ,X̂XX)+h̄(e)j (βββ ,X̂XX))−ψt(h̄

(c)
j (βββ ,X̂XX)+h̄(e)j (βββ ,X̂XX))

)

∏
j∈I(e)

∫
(R+)d ∏

d
i=1

(
e−
(

λi+h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)
∏l∈I(e)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
η ′

T ( j)(sss)dsss

∫
(R+)d ∏

d
i=1

(
e−
(

h̄(e)j+1,i(βββ ,X̂XX)+h̄(c)j,i (βββ ,X̂XX)
)

si

)
∏l∈I(e)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
η ′

T ( j)(sss)dsss

(5.20)

Proof of Corollary 7

In equation (5.20) above take λλλ = (1, . . . ,1) and using the discussion after Lemma 8 replace
I(e) with I(e)t to obtain the result.

Proof of Corollary 8

From equation (5.19) in the proof of Theorem 13 we obtain the related likelihood.

Proof of Proposition 13

The result follows from a straightforward application of Lemma 6, in the proof of Proposition
12.

Proof of Proposition 14

Let KKK and µµµ be as in the hypothesis. We use the next Lemma to deal with the effect of KKK in
the Lévy intensity.

Lemma 9. Let S∼ NTR(Kµ) such that µ is an homogeneous gamma CRM with Lévy inten-
sity ν(ds,dx) = ρ(ds;α,β )κ(dx) with κ bounded and strictly positive and K an independent
random variable with probability density supported in R+, then the posterior distribution of
S|K is consistent with respect to S0.

Proof. The Lévy intensity of Kµ|K is given by

νK(A,B) =
∫

A

ν
( z

K ,B
)

K
dz = κ(B)

∫
A

βe−
αz
K

z
dz
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for A ∈ R+ so the hazard rate of S has absolutely continuous w.r.t. Lebesgue measure Lévy
intensity given by

ξK(s,x) =
ν

(
− log(1−s)

K ,x
)

K(1− s)
=

κ(x)β (1− s)
α

K

− log(1− s)(1− s)
.

As K has probability zero of being zero, the conditions of Proposition 5 follow from Example
6.

Furthermore we have the next Lemma to deal with the independent entries of the VCRM in
Proposition 14.

Lemma 10. Let S ∼ NTR(∑d
i=1 µi). If µµµ = (µ1, . . . ,µd) has mutually independent entries

and for each i ∈ {1, . . . ,d} µi has Lévy intensity νi such that

ξi(s,x) =
νi(− log(1− s),x)

1− s

satisfies Proposition 1, then S is consistent.

Proof. Let µµµ = (µ1, . . . ,µd) be a VCRM with independent entries such that each µi has a
Lévy intensity νi(s,dx)ds then µ+ = ∑

d
i=1 µi has a Lévy intensity ρ+ given by

ν+(A,B) = ν1 (A,B)+ . . .+νd (A,B) .

It follows that ν+(ds,dx) = ν+(s,dx)ds = (ν1(s,dx)+ . . .+νd(s,dx))ds. An application of
Proposition 5 implies that S∼ NTR(∑d

i=1 µi) is consistent.

So from Lemma 9 we have that µµµKKK = (K1µ1, . . . ,Kdµd) has marginals which satisfy the
conditions of Lemma 10, from which the consistency of S|KKK ∼ NTR(∑d

i=1 Kiµi) follows.

Proof of Proposition 15

We have that S|KKK ∼NTR((K1 + . . .+Kd)µ) where µ is a Gamma CRM and K = K1+ . . .Kd

is a random variable with probability density function supported in R+ so the result follows
from Lemma 9.

Proof of Corollary 9

As each fi regressor function is strictly positive, the result follows from Propositions 14 and
15 in view of identity (5.2).
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Proof of Proposition 16

We make use of the next Lemma for this proof Furthermore for fixed t ∈ R+ the r.v. S(t;X̃XX)

is bounded, so it is uniformly integrable, and converges in probability to S0(t) hence it
converges in the mean as well.

Lemma 11. Let µ = ∑
∞
i=1 wiδui be an homogeneous Gamma(α,β ) CRM in X for some κ(x)

and {vi}∞
i=1 be an i.i.d. sequence of random variables with common probability density g

supported in R+, then S∼ NTR(∑∞
i=1 viwiδui) is consistent.

Proof. Using Proposition 1 we can check that the Lévy intensity of ∑
∞
i=1 viwiδui is given by

νL (V )(A,B) = E
[∫

A

ρ( z
V ;α,β )κ(B)

V
dz
]

for A in R+ and V a random variable given by the probability density g. So the hazard rate
of S has Lévy intensity given by

ξL (V )(s,dx) = E

ρ

(
− log(1−s)

V ;α,β
)

κ(dx)

V (1− s)

= βκ(dx)E

[
(1− s)

α

V

− log(1− s)(1− s)

]
.

Using Lebesgue dominated convergence theorem the conditions of Proposition 5 follow
analogously to Example 6,

Let ∑
∞
i=1 wiδui be a series representation of the directing Gamma (α,β ) Lévy measure of the

CoRM µµµ then
d

∑
j=1

K jµ j =
∞

∑
i=1

(K1J1,i + . . .+KdJd,i)wiδui

where {
(
J1,i, . . . ,Jd,i

)
}∞

i=1 are i.i.d. with distribution given by the score distribution h. It
follows form the previous Lemma that S|KKK ∼ NTR

(
∑

d
i=1 Kdµd

)
is consistent.

Proof of Corollary 10

As the regressor functions fi are strictly positive the result follows from the Proposition 16 in
view of identity (5.2).
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Proof of Proposition 17

From Proposition 1 we get that the Lévy intensity of µ1 + . . .+µd is given by ν̂(dz,dx) =
ν̂(z,dx)dz where

ν̂(z,dx) =
∫ z

0

∫ z−yd

0
· · ·
∫ z−yd−...−y3

0
ν(z− y2− . . .− yd,y2, . . . ,yd)dy2 · · ·dyd. (5.21)

Using again Proposition 1, the Lévy intensity of (K1µ1, . . . ,Kdµd) given KKK is ν̃(dsss,dx) =
ν̃(sss,dx)dsss with

ν̃(sss,dx) =
ν

(
s1
K1
, . . . , sd

Kd
,dx
)

K1 · · ·Kd
. (5.22)

The affirmation of Proposition 17 follows from Proposition 6 applied to the Lévy intensity
obtained by applying (5.21) together with (5.22) and Proposition 4.

Proof of Theorem 14

If t = 0 the result is trivial so let t > 0. By hypothesis we have that

S0(t) = lim
n→∞

e
−∑

k(n)+1
j=1

(
ψ◦t∧T( j)

(111)−ψ◦t∧T( j−1)
(111)
)
1{T( j−1)<t}

∏
j∈I(e) ,(n)t∫

(R+)d ∏
d
i=1

(
e−
(

1++h̄(e)j+1,i(βββ ,X̂XX
(n)

)+h̄(c)j,i (βββ ,X̂XX
(n)

)
)

si

)
∏l∈I(e) , (n)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
ν(sss)dsss

∫
(R+)d ∏

d
i=1

(
e−
(

h̄(e)j+1,i(βββ ,X̂XX
(n)

)+h̄(c)j,i (βββ ,X̂XX
(n)

)
)

si

)
∏l∈I(e) ,(n)j

(
1−∏

d
i=1 e− fi(βββ ,XXX l)si

)
ν(sss)dsss

due to convergence in probability and uniform integrability. S0(t) and limn→∞E
[
S⋆(t)|DDD (n)

X̂XX
,βββ ,XXX⋆

]
exist by hypothesis so R is well defined. From the definition of the estimator (5.8) the result
follows.

Proof of Proposition18

We use the next Lemma for the proof.

Lemma 12. Let µ = ∑
∞
i=1 wiδui be an homogeneous Gamma(α,β ) CRM in X with positive

and bounded κ and {Vi}∞
i=1 be an i.i.d. sequence of random variables with common probabil-

ity density g supported in R+, then S∼ NTR(∑∞
i=1 viwiδui) attains the Bernstein-von Mises

conditions of Proposition 6 if E[V ]< ∞ and E
[ 1

V

]
< ∞ for V with distribution given by g.
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We recall from the proof of Proposition 16 that the associated hazard rate for the case at hand
takes the form

ξ (s,x) = E

[
β (1− s)

α

V κ(x)
− log(1− s)(1− s)

]
.

where the distribution of V is given by g. We use log(x)≤ x−1 and the Tonelli theorem to
see that

0< λ (x) =
∫ 1

0
E

[
sβ (1− s)

α

V κ(x)
−log(1− s)(1− s)

ds

]
≤ κ(x)E

[
β

∫ 1

0
(1− s)α−1ds

]
=

κ(x)βE[V ]

α
<∞.

So the first condition of Proposition 6 follows. Similarly, taking λ (x) = cκ(x) for some
c ∈ (0,∞) we observe that

γk(s) = E
[

β s(1− s)k

−log(1− s)c

]
≤ β

λ
< ∞

for any k > 0, so the second condition of in Proposition 6 follows. Finally

g′(s) = E

[
−β (1− s)

α

V −1

c log(1− s)
+

β (α

V −1)s(1− s)
α

V −2

c log(1− s)
− β s(1− s)

α

V −2

c(log(1− s))2

]

= E

[
β (α

V −1)s(1− s)
α

V −2

c log(1− s)

]
+

βE
[
(1− s)

α

V −1
]

c

(
− log(1− s)− s(1− s)−1

(log(1− s))2

)
Using L’Hopital’s rule and the Dominated convergence Theorem we see that

lim
s→0

g′(s) =−
β (E

[
α

V

]
−1)

c
+

β

c
lim
s→0

(1− s)−1− (1− s)−1− s(1− s)−2

−2log(1− s)(1− s)−1

=−
β (E

[
α

V

]
−1)

c
− β

2c
< ∞.

So we conclude the condition for the Bernstein-von Mises result. Proceeding as in the proof
of Proposition 16, we observe that we have a series representation of the form

∞

∑
i=1

(K1J1,i + . . .+KdJd,i)wiδui
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where K1, . . . ,Kd are as in the hypothesis of the proposition to proof and
(
J1,i, . . . ,Jd,i

) i.i.d.∼
L (h) for any i ∈ {1,2, . . .}. It follows that for i ∈ {1,2, . . .}

E
[
K1J1,i + . . .+KdJd,i

]
< ∞

and for some j ∈ {1, . . . ,d}

E
[
1/
(
K1J1,i + . . .+KdJd,i

)]
< E

[
1/(K jJ j,i)

]
< ∞.

So an application of Lemma 12 when conditioning on KKK concludes the proof.

Proof of Corollary 11

As the regressor functions fi are strictly positive the result follows from the Proposition 18 in
view of identity (5.2).
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