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and imaging photothermal trapping of gold nano-rods in clear 
media and biological tissue  

YONG HU*, ADRIAN PODOLEANU, AND GEORGE DOBRE 

Applied Optics Group, School of Physical Sciences, University of Kent, CT2 7NH Canterbury, UK 

*y.hu-240@kent.ac.uk 

Abstract: A quantitative spectrometer-based photothermal optical coherence tomography (PT-OCT) system is employed to 

investigate and image the photothermal trapping of gold nano-rods (GNRs) in clear and biological media. The PT-OCT system is 

calibrated through dynamic phase measurements of piezo motion with known driving parameters. We measure and compare the 

displacement sensitivities of the PT-OCT system at different camera exposure time settings in two configurations: with a distinct 

reference path; and with a common path. The displacement sensitivity of the system in the common path configuration is improved 

from 1.5 nm to 0.17 nm by performing Fourier analysis on the output phase. The minimum Ti:Sa power capable of inducing a 

detectable photothermal response of GNRs is measured to be 0.5 mW. This value agrees with the latest reported minimum Ti:Sa 

power for photothermal trapping GNRs. The PT-OCT system is used to generate en-face images of photothermal trapped GNRs 

in the water solution and in the biological tissue. By displaying the difference between successive en-face phase images, spatial 

distribution patterns of the aggregated GNRs, resulted from the photothermal trapping, are clearly outlined with great contrast. The 

photothermal trapping of GNRs in tissue shows a greater complexity than in the clear media. The limitation of the PT-OCT 

technology is discussed. The study proves the potential of PT-OCT for imaging the photothermal trapping of GNRs.  
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1. Introduction 

During the last 20 years, gold nanoparticles (GNPs) have been extensively used as contrast agents in biomedical imaging and 

therapy agents in photothermal therapeutics [1]. The application of GNPs is based on the fact that they exhibit useful optical and 

photothermal properties which can be tuned to absorb and scatter light across the visible and NIR region [2]. GNPs are outstanding 

candidates for optical tweezer based micromanipulation inside living cells, and the optical trapping efficiency of a single GNP is 

7 fold better than a similarly sized latex particle [3]. GNPs can also convert optical energy into heat, endowing them with intense 

agents for cancer treatments [4]. These optical and photothermal properties of GNPs result from the collective waves that travel 

along the metal/liquid interface and are heavily determined by precise control over the particles’ shape, size or architecture [5]. 

The earliest developed GNPs, gold nano-spheres, were not usually optimized for biomedical applications due to their limited peak 

absorption in the transmission window (650-900 nm) for biological entities [6]. By contrast, other nano-structures, like gold nano-

shells (GNSHs) and gold nano-rods (GNRs), exhibit a tunable peak absorption wavelength in a wider electromagnetic range. For 

instance, the peak absorption wavelength of GNRs can be tuned from 600 nm to 1400 nm to cover the visible and NIR regions by 

varying their aspect ratio [7]. The peak absorption wavelength of GNSHs can be tuned from 800 nm to 2200 nm by varying the 

ratio of core radius to gold shell thickness [8]. Compared with GNSHs, GNRs have several advantages for in vivo molecular 

imaging [9]. Firstly, due to their smaller size (tens of nanometres), GNRs are more mobile in thin blood vessels, whereas GNSHs 

are hundreds of nanometres in size. Secondly, the absorption peak of GNRs is much narrower than that of GNSHs, which is 

desirable to decrease the attenuation of the imaging beam by the contrast agent. Thirdly, compared with GNSHs, GNRs find wider 

use in photothermal therapeutics since they have higher photothermal conversion efficiencies in the NIR region than GNSHs 

[10,11], which gives them a unique photothermal trapping effect [7]. The photothermal trapping of GNRs happens when they are 

exposed to a tightly focused NIR laser beam. In the case, GNRs absorb and then convert the laser energy into heat efficiently. The 
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created heat generates a temperature gradient in the media. As a result, the temperature gradient creates thermophoresis and 

convection flow in the media, which work together to trap and redistribute surrounding GNRs [7,12]. The theoretical and 

experimental studies of photothermal trapping of other micro particles have been explained previously [12,13], in which the 

photothermal trapping is proved to be an alternative approach to the optical trapping of micro particles. However, only a few reports 

on photothermal trapping of GNRs were published until recently [7,14]. In [7], the photothermal trapping process of GNRs was 

investigated and imaged by detecting a two-photon luminescence (TPL) signal. GNRs radiate TPL, as a unique nonlinear optical 

property, when they are exposed to a Ti:Sa laser beam [15]. Moreover, the process of photon absorption using a tightly focused 

beam with a depth of focus of the order of several microns (high NA) results in the localised heating in a small volume overlapping 

with the focal spot region near a glass surface. The heat spots around GNRs were shown to contribute to the trapping of other  

particles, as well as making GNRs subject to trapping themselves. Because  96% of the photon energy absorbed by GNRs is 

converted into heat via non-radiative electron relaxation [7], the resulting TPL signal was weak, and TPL detection could only be 

demonstrated for GNRs diffused in the deionized (DI) water, not in biological tissue or other scattering media. The resulting images 

of GNR aggregation patterns and geometries are therefore specific to a high NA, tightly focused excitation geometry. However, in 

order to effectively image the photothermal trapping effect of GNRs in scattering media, with a comparatively low NA and longer 

depth of focus required for deeper penetration into structures, it is advantageous to explore an alternative detection technology, 

hence this study. 

Optical Coherence Tomography (OCT), especially its subsidiary Fourier domain OCT (FD-OCT) is a non-invasive optical 

diagnostic technique capable of providing depth-resolved images with a micrometre scale resolution to depths of several 

millimetres of the studied tissue [16-18]. FD-OCT can be implemented in two ways: spectral domain OCT (SD-OCT) employing 

a broadband light source and a spectrometer; or swept source OCT (SS-OCT) using a swept-laser source and a photodetector. Tiny 

optical path difference (OPD) variations, of the order of fractions of the axial resolution, can be measured by retrieving the 

interferometric phase in phase sensitive OCT. Employing phase sensitive OCT, the measured absolute phase value has been used 

for en-face imaging [19,20]. The phase difference between successive A-scans has been used for Doppler flow OCT [21]. So far, 

phase sensitive OCT has been reported in a variety of applications, such as evaluating mammalian cochlea motion at sub-nanometre 

scale [22], imaging and quantifying microbubbles in clear and scattering media with an accuracy of 10 nm [23], lateral profiling 

of cells with sub-nanometre sensitivity [24], and cross-sectional imaging of dynamic contractile motion of beating cardiomyocytes 

at a line rate of 19 kHz [20]. Determined by the implementation, phase sensitive SS-OCT exhibits nanometre scale displacement 

sensitivity [25], whereas phase sensitive SD-OCT reaches even sub-nanometre scale displacement sensitivity [26,27]. 

As a functional extension of phase sensitive OCT, photothermal OCT (PT-OCT) has been applied for photothermal detection 

of GNSHs in clear media [28-30]. PT-OCT is able to identify and separate the GNSHs from surrounding media through the 

detection of photothermal heating [31], where the photon absorption by GNPs leads to a temperature change in the surrounding 

environment, causing the thermo-elastic expansion of the media and the shifts in the values of the local refractive index [32]. The 

local geometric and refractive index changes alter the local optical path length (OPL) that can be directly detected by a phase 

sensitive OCT system. As a biomedical agent with great potential, GNRs have been used as contrast agents in PT-OCT for in vivo 

imaging and 3D imaging of tissue structure [30,33], and even for molecular imaging [34]. In these reports, however, the 

photothermal trapping effect of GNRs to Ti:Sa laser beams was discarded, and the photothermal trapping induced movements of 

GNRs in the tissue sample was ignored. Although GNRs have been proved as appealing agents in biomedical application, the study 

of their photothermal trapping effect, especially in biological tissue, is still inadequate. Since 96% of absorbed photon energy by 

GNRs is converted into heat [7], we anticipate that PT-OCT may offer an efficiency advantage in the study of photothermal trapping 

of GNRs compared to the reported TPL detection. 

In this paper, we present a theoretical analysis and experimental verification of the phase measurement capability of a phase 

sensitive SD-OCT system. We detail the methodology to test and quantify the performance of the system, including the method to 

calibrate the system and the methods to measure the sensitivity and the sensitivity decay of two set-up configurations: one using 

separate interferometer arms; and the other one employing a common path configuration. We chose the common path system for 

its superior sensitivity to measure the dependence of the photothermal response of GNRs (diffused in DI water) to both the 

modulation frequency and the average power of the Ti:Sa laser beam. After these measurements, we observed the aggregated 

GNRs as a result of the photothermal trapping. In order to image the aggregated GNRs, we performed photothermal imaging 

instead of detecting the TPL signal. It is concluded that the photothermal imaging is an alternative method to study the photothermal 

trapping of GNRs. We then injected the GNR solution into a piece of pork tissue and performed photothermal detection to locate 

GNRs. After the GNRs were located in the tissue sample, we performed photothermal imaging of these GNRs at the allocated 

depth to monitor their photothermal response. We found that the photothermal trapping of GNRs diffused in biological tissue was 
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affected by the tissue structure in a random way, and the photothermal trapping of GNRs in tissue was significantly more complex 

than that in the DI water.  

2. Theory  

The measurement of OPD fluctuations using phase sensitive OCT has been discussed and mathematically evaluated in earlier 

studies [19,22,23,28]. For FD-OCT, the detected interference term of the spectrum is expressed as 𝐼(𝑘) = 2|𝐸𝑅𝐸𝑆|cos⁡(2𝑘𝑧 + 𝜑), 
where 𝑘 = 2𝜋 𝜆⁄  is the wavenumber, 𝜑 is the random system noise added to phase, and 2𝑧 is the OPD between reference and 

sample paths if OPD = 0 is placed at the top of the sample. To obtain the depth resolved structural information, coded in magnitude 

𝐴(𝑧) and phase Φ(𝑧), of the sample, a complex Fourier transform (FT) of 𝐼(𝑘) gives the interference signal 𝐼(𝑧) in the time 

domain:  

 𝐼(𝑧) = 𝐹𝑇[𝐼(𝑘)] = 𝐴(𝑧)exp⁡[𝑖Φ(𝑧)] (1) 

where the magnitude 𝐴(𝑧) serves to reconstruct conventional OCT images, and Φ(𝑧) provides the phase information at the optical 

depth 𝑧 in the sample, which is varied as the axial OPD change 𝑧(𝑡) over time and can be expressed as: 

 Φ(𝑧, 𝑡) = 2 ×
2π

λ
× 𝑛 · 𝑧(𝑡) + 𝜑 (2) 

where 𝜑 is the random noise and the factor of 2 comes from the double path of the beam in the OCT sample arm. For periodic 

fluctuations, assuming the 𝑧(𝑡) variation is created by a sinusoidal vibrating source with vibrating magnitude 𝐴 and frequency 𝑓0, 
Eq. (2) becomes: 

 Φ(𝑧, 𝑡) = 2 ×
2𝜋

𝜆
× 𝑛 · 𝐴 · sin⁡(2𝜋𝑓0𝑡) + 𝜑 (3) 

Since the data detecting rate is much faster than the fluctuation of the noise, by calculating the phase difference ∆Φ(𝑧, 𝑡) 
between two successive A-scans, temporally separated by ∆𝑡, the noise term 𝜑 can be eliminated: 

 ∆Φ(𝑧, 𝑡) =
8𝜋2

𝜆
× 𝑛 · 𝐴 · 𝑓0 · cos⁡(2𝜋𝑓0𝑡) · ∆𝑡 (4) 

According to Eq. (3) and Eq. (4), if the vibrating frequency 𝑓0 is given, by measuring either Φ(𝑧, 𝑡) or ∆Φ(𝑧, 𝑡), the vibration 

magnitude 𝐴 can be obtained. If Eq. (3) is used, the continuity of the Φ(𝑧, 𝑡) trace would be disturbed by the existence of the 

random noise term 𝜑, as we observed during the measuring process. If Eq. (4) is used, when the amplitude of ∆Φ(𝑧, 𝑡) is as low 

as its noise floor, the ∆Φ(𝑧, 𝑡) measurement meets its sensitivity limit [22]. To overcome this limit, a fast Fourier transform (FFT) 

to Eq. (4) gives the amplitude |p(𝑓0)| of the FFT peak at the frequency 𝑓0, which also yields the vibrating amplitude 𝐴: 

 FFT[∆Φ(𝑧, 𝑡)] = p(z, 𝑓) =
4𝜋2

𝜆
· 𝐴 · 𝑓0 · ∆𝑡

yields
→   𝐴 =

|p(𝑓0)|·𝜆

4𝜋2·𝑓0·∆𝑡
 (5) 

where 𝑓 is the frequency variable in the frequency domain. Thus, Eq. (3), Eq. (4) and Eq. (5) can be used independently to obtain 

the vibration magnitude 𝐴 of a sinusoidal vibration. In this study, the measurements were made on vibrations generated by a piezo 

actuator. The results obtained from Eq. (3), Eq. (4) and Eq. (5) were compared with each other and then with the data sheet of the 

actuator to evaluate which equation matched most closely the actuator response. Our phase sensitive OCT system was calibration 

by the comparison.  

3. Methods  

3.1 System configuration  

A phase sensitive SD-OCT system was developed as presented in Fig. 1. The OCT source is a superluminescent diode (Amonics, 

ALS-1050-S, 13 mW, 35 nm bandwidth @ 1050 nm). The output light travels through a fibre isolator and subsequently, a 2×2 

fibre-optic Michelson interferometer composed of a 50:50 fibre coupler (Thorlabs, TW1064R5A2A). With collimating lenses, the 

fibre coupler outputs 2.4 mm diameter beams in two arms. In the sample arm, after a dichroic mirror, the OCT beam is co-axially 

combined with a Ti:Sa laser (Coherent, Mira Seed, 3 mW output power, 80 MHz repetition rate, 2 mm diameter, 150 fs pulse 

duration, 25 nm bandwidth @ 800 nm) that acts as the excitation source. The superposed beams are incident on a pair of 

galvanometer mirrors (Thorlabs, GVS302) and subsequently travel through an objective/scan lens (Thorlabs, LSM02-BB, f =18 
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mm) producing a focused spot size of 3.1 µm on the sample. The Ti:Sa beam is modulated by an optical chopper wheel. In the 

reference arm, a glass block compensates the dispersion created by the objective lens in the sample arm. Light beams returning 

from both arms interfere at a commercial spectrometer consisting of a high-speed line scan CMOS camera (Goodrich SUI, SU1024-

LDH) with a maximum line rate of 47 kHz and the digital output rate of 14-bit. The camera has 1024 elements with a pixel size of 

25×500 µm and a spectral range of 900 nm, resulting in a spectral resolution of 0.088 nm at the centre wavelength of 1050 nm. 

The camera output is then digitized by a camera link image acquisition card (National Instruments, PCIe-1430) installed in a 

computer.  

   

   

Fig. 1. Schematic layout of phase sensitive SD-OCT with photothermal detection capability. Superluminescent diode (SLD), neutral density 

filter (ND Filter), collimating lenses (C1,C2),  fibre coupler (50:50), achromatic doublets (C3,C4), dichroic mirror (DM), scanning mirrors 

(X,Y), objective lens (OBJ), dispersion compensating block (DC), mirrors (M1,M2), polarization controller (PC). The three categories of the 
sample are shown in inserts (A), (B) and (C). Inset (B) is a cross-sectional view of a glass made microfluidic channel (500 µm wide and 20 

µm deep). The surface facing the shooting beam (from left to right) is the top surface of the channel, and the longitudinal axis of the channel 
is perpendicular to the paper page. Inset (D) shows a 10 × magnified microscopy image of the top view of the front surface of this microfluidic 

channel (500 µm wide). As seen, in the channel, the aggregation of GNRs (the golden blob in the image) results from the photothermal 

trapping of Ti:Sa beam. 

As the interference light projecting on the pixels on both edges of the camera has no interferometric features, 674 out of 1024 

elements in the middle of the camera are enabled. The computer employs a B-spline interpolation algorithm (developed by the 

authors) to rescale and resample the interference signal and generates an evenly distributed 674-points channelled spectrum in the 

k (wavenumber)-space. The channelled spectrum then undergoes a complex FFT, obtaining depth-resolved 337-pixel phase and 

intensity profiles of the target. Measuring the full width at half maximum (FWHM) of A-scan peaks in the intensity profile, the 
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OCT system has an axial resolution of 17⁡µ𝑚 in the air. The imaging depth of 𝑧 = 1.44 mm in the air is evaluated, where the 

sensitivity decays by 6 dB. Using a refractive index n = 1.38 for pork tissue, the axial resolution and imaging depth in such tissue 

become respectively 12 µm and 1.01 mm. The absolute phase value 𝜑(𝑧, 𝑡) at a depth of interests 𝑧 in the sample is retrieved in 

two steps. Firstly, in the A-scan intensity profile, we identify the pixel index of the interested depth 𝑧 from its corresponding peak. 

Secondly, in the A-scan phase profile, we extract the phase value 𝜑(𝑧, 𝑡) of that pre-identified pixel index. 

For an OCT system, the use of a separate reference arm is subject to random phase noise due to mechanical or thermal 

fluctuations in each independent arm [35]. In this work, as seen in Fig.  1.A, to reduce the dependence on such fluctuations, a 100 

µm microscope coverslip is placed at 𝑧0 in front of the actuated coverslip to provide a reference phase 𝜑(𝑧0, 𝑡). Since the phase of 

all points along the optical beam is detected in the same A-scan, the phase values at all points are affected by the same noise. 

Consequently, the phase noise can be removed by subtracting the reference phase 𝜑(𝑧0, 𝑡) from the phase of interests 𝜑(𝑧, 𝑡), and  

the dynamic difference Φ(𝑧, 𝑡) can be expressed as: 

 Φ(𝑧, 𝑡) = 𝜑(𝑧, 𝑡) − 𝜑(𝑧0, 𝑡) (6) 

In practice, Φ(𝑧, 𝑡) is obtained by calculating the cross-power 𝑌𝑧𝑧0(𝑡) of signals from interfaces 𝑧0 and 𝑧: 

 𝑌𝑧𝑧0(𝑡) = 𝑌z(𝑡) ∙ 𝑌𝑧0(𝑡)
̅̅ ̅̅ ̅̅ ̅̅ = 𝐴𝐴0𝑒

𝑖(𝜑(𝑧,𝑡)−𝜑(𝑧0,𝑡)) = 𝐴𝐴0𝑒
𝑖(Φ(𝑧,𝑡)) (7) 

where 𝑌𝑧(𝑡) and 𝑌𝑧0(𝑡) are complex values retrieved from the interested interface 𝑧 and the reference interface 𝑧0. For the rest of 

the paper, the expression “detected phase signal” refers to Φ(𝑧, 𝑡) in Eq.(7). 

3.2 Sample preparation 

As seen in Fig. 1.A, the sample employed to calibrate the system is a 100 µm glass coverslip that is mounted on a piezo actuator 

(Thorlabs, PA4FEW). When driven by a pre-set sinusoidal voltage, the piezo actuator reacts with sinusoidal vibration with known 

frequency and amplitude. Another coverslip is placed 1000 µm in front of the actuated one. The back surface (𝑧0) of the stationary 

coverslip provides the reference phase 𝜑(𝑧0, 𝑡), whilst 𝜑(𝑧, 𝑡) is measured on the front surface (𝑧) of the actuated coverslip. 

As seen in Fig. 1.B, a glass made microfluidic channel filled with the GNR solution (Nanopartz Inc., 1014 particles/mL, peak 

absorption wavelength 800 nm) serves as the sample for PT-OCT investigation and imaging the photothermal trapping of GNRs 

in clear media (DI water). A 10× microscopy image of the aggregated GNRs in the glass channel is presented in Fig. 1.D. The 

aggregation resulted from the photothermal trapping of the Ti:Sa beam to the GNRs.  

As seen in Fig. 1.C, a piece of pork tissue mounted on a coverslip serves as the sample for PT-OCT investigation and imaging 

the photothermal trapping of GNRs in the biological tissue sample. The GNR solution was injected into the tissue 5 minutes before 

the measurement. The experiment was performed in the common path OCT configuration. The front surface of the coverslip serves 

as the reference arm reflector, whilst the back surface of it provides the reference phase 𝜑(𝑧0, 𝑡). 𝜑(𝑧, 𝑡) was detected at different 

axial locations in the tissue sample to locate GNRs.  

4. Results 

4.1 Calibration 

To calibrate the phase sensitive OCT system, we designed three LabVIEW programmes to manipulate the acquired data in parallel. 

Each LabVIEW programme retrieved one of the Φ(𝑧, 𝑡), ∆Φ(𝑧, 𝑡) and |p(𝑓0)| quantities and produced their traces. We measured 

the amplitudes of these traces and took them into Eq. (3), Eq. (4) and Eq. (5) respectively to calculate the vibration amplitudes 𝐴. 

As discussed in the theory section, each equation can be used independent for the purpose of obtaining 𝐴. Here, the obtained 

experimental results of 𝐴 from all three LabVIEW programmes are plotted in the same graph and are compared with the data sheet 

of the piezo actuator, as shown in Fig. 2.  
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Fig. 2. System calibration. Measured amplitudes of traces of Φ(𝑧, 𝑡), ∆Φ(𝑧, 𝑡) and|p(𝑓0)| are introduced into Eq. (3), Eq. (4) and Eq. (5) 

respectively to calculate the vibration amplitudes 𝐴. Results (colored dots) obtained from three equations are compared with the data sheet 
(blue line) of the actuator.  

To obtain the |p(𝑓0)| trace, FFT is performed on the last 1024 values of the ∆Φ(𝑧, 𝑡) trace. Sinusoidal signals with a fixed 

frequency of 5 Hz and selected voltages (from 20 V to 140 V) were applied to the actuator. The actual displacements produced by 

the actuator cover a range of 0-3 µm. As seen in Fig. 2, from 20 V to 90 V, the displacement values 𝐴 measured by three methods 

match the actual vibrating amplitude of the actuator. From 90 V upwards, compared with the other two methods, results obtained 

by the FFT method (triangular markers) exhibit better agreement with the blue trace (provided by the actuator data sheet). This is 

due to the inherently averaging nature of the FFT method since each FFT measurement is performed on 1024 ∆Φ(𝑧, 𝑡) data 

obtained from 1024 measurements of ∆Φ(𝑧, 𝑡). In contrast, compared with the FFT method, the other two methods are more likely 

to be subject to the movement error of each single vibration of the actuator.   

Because of its better accuracy performance, we chose the FFT method to measure the displacement sensitivity of the OCT 

system. To evaluate the measured displacement sensitivity, the measured value is then compared with the values characterised 

using the two mathematical models (described in section 5.1). Displacement sensitivity and its variation with the overall system 

operating speed, as well as defocus, are discussed in section 5.1 and section 5.2. 

4.2 Photothermal response of GNR 

As shown in Fig. 1, the measurements were made on two separate glass microfluidic channels, one filled with pure DI water and 

the other one filled with the GNR solution (Fig. 1.B). The air/glass interface of the microfluidic channel provided the reference 

phase⁡𝜑(𝑧0, 𝑡), while the signal phase 𝜑(𝑧, 𝑡) was measured on the glass/solution interface. Though it has concluded from the 

experiments discussed above that the common path configuration exhibits a better displacement sensitivity than the separate 

reference arm configuration, the front glass of the microfluidic channel facing to the objective is too thick to be used in the common 

path configured system. Thus, measurements in this section were taken in the separate reference arm configuration, with both 

galvo-scanners disabled and an A-scan acquisition rate of 500 Hz. 

4.2.1 Photothermal response of GNRs to Ti:Sa modulation frequency 

To investigate the photothermal response of the GNR solution to the modulation frequency of the Ti:Sa beam, we measured the 

differential phase ∆Φ(𝑧, 𝑡) variation over time with the Ti:Sa beam modulated by an optical chopper wheel (Fig. 1). When it rotates, 

the optical chopper wheel periodically interrupts the Ti:Sa beam travelling to the GNR sample. By doing this, it introduces a 

modulation to the photothermal response of the GNR sample to the Ti:Sa beam. Since the wheel is composed of metal spokes with 

sharp edges radiating from the hub, its rotation creates a square-wave modulation to the Ti:Sa illumination. Thus, an output signal 

with a square-wave appearance is obtained.  
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Fig. 3. Measured phase differential ∆Φ(𝑧, 𝑡) (a-c, in blue). FFT of ∆Φ(𝑧, 𝑡) (A-C, in red). 

As mentioned above, since the trace of the output phase Φ(𝑧, 𝑡) shows discontinuities due to the random noise term 𝜑 in Eq. 

(2), the trace of the phase differential ∆Φ(𝑧, 𝑡) was used as the output signal. In this case, the expected shape of the output trace 

should be the differentiation of square-waves. The obtained results are presented in Fig. 3.  Fig. 3(a) and Fig. 3(b) show ∆Φ(𝑧, 𝑡) 
traces measured at Ti:Sa modulation frequencies of 10 Hz and 20 Hz. As seen, they present expected spike-like form which is in 

agreement with the differential of a square-wave. The positive spikes correspond to rising edges of square-waves, and the negative 

spikes correspond to falling edges of square-waves. The spike frequency is identical to that of the chopper wheel. 

Fig. 3(c) shows the result of the channel filled with pure DI water, which appears generally featureless, indicating the lack of 

photothermal response when GNRs are absent. To enhance the SNR of measurements, FFT was performed on the ∆Φ(𝑧, 𝑡) trace. 

Fig. 3(A,B,C) show the frequency spectra of the corresponding ∆Φ(𝑧, 𝑡) traces for each condition in Fig. 3(a,b,c). As seen, the 

highest peak in each graph locates at the modulation frequency of the chopper wheel. According to the differentiation property of 

Fourier Transform, the FFT of the differentiation of a function has the same frequency components of the FFT of the original 

function but different amplitudes. Thus, in our case, the expected frequency components of the FFT of ∆Φ(𝑧, 𝑡) should be same as 

the frequency components of the FFT of square-waves. Since the FFT of square-waves is composed of only odd harmonics, the 

expected FFT of the ∆Φ(𝑧, 𝑡) trace should be composed of only odd harmonics. Limited by the A-scan operation rate (500 Hz) of 

the system, the highest detectable Ti:Sa modulation frequency was 250 Hz. We fixed the Ti:Sa output power at 119.4 mW and 

varied the modulation frequency of the chopper wheel. The amplitude/height of the FFT peak at the modulation frequency is plotted 

against the Ti:Sa modulation frequency (5-240 Hz) in Fig. 4. 
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Fig. 4. Amplitude of the FFT peak at the Ti:Sa modulation frequency against the Ti:Sa modulation frequency. 

As seen, the employed GNR solution exhibits (in broad terms) a superior photothermal response in the range 60-240 Hz 

compared to the range 5-50 Hz. Though occasional dips exist on the trace in the range 60-240 Hz, we have observed no evidence 

to link them in the response to a physical change (periodic or otherwise) in the measurement system. 

4.2.2 Photothermal response of GNRs to optical power of Ti:Sa beam 

We keep the Ti:Sa modulation frequency fixed at 220 Hz and increasingly attenuate the Ti:Sa power on the GNR sample using a 

neutral density (ND) filter (Fig. 1) in order to evaluate the minimum excitation power required to excite a detectable photothermal 

response of the GNR solution. Fig. 5 shows the FFT of ∆Φ(𝑧, 𝑡) for three different power values. As seen, the larger the attenuation, 

the smaller the SNR. Fig. 5(c) indicates that the minimum excitation power capable of inducing the photothermal response of 

GNRs is 0.583 mW. This value is in line with the latest reported minimum Ti:Sa power (0.5 mW) capable of photothermal trapping 

GNRs [7].  

 

   

Fig. 5. FFT of ∆Φ(z,𝑡) for different Ti:Sa excitation power. Ti:Sa modulation frequency: 220 Hz.  
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Fig. 6. Amplitudes of FFT peaks against average Ti:Sa power on the GNRs sample. Insert: zoom into the graph for power less than 2 mW. 

The amplitude of the FFT peak is plotted against excitation power in Fig. 6. As seen, below the power of 60 mW, a decrease 

in the Ti:Sa excitation power results in a decrease of the signal. Above 60 mW power, some saturation of the photothermal response 

of GNRs takes place. As seen in the inset, below the power of 1 mW, the Ti:Sa induced photothermal response of GNR is still 

detectable. 

4.3 PT-OCT for imaging photothermal trapped GNRs in clear media 

After the excitation beam was applied to the GNR solution, an aggregation of GNRs resulting from the photothermal trapping was 

observed (Fig. 1.D). The aggregation of GNRs is attributable to the self-assisted photothermal trapping of GNRs under the two-

photon excitation. The TPL detection has been reported to image the trapping process [7]. As an alternative method to TPL, we 

demonstrate below that the PT-OCT system can be used to image aggregated GNRs resulted from the photothermal trapping. To 

this end, we performed imaging while the photothermal response of GNRs was either enabled or disabled by the shutter in Fig. 1. 

The OCT system was configured with a separate reference arm. As a 3D data volume containing the phase information of the 

sample was reconstructed, adequate data acquisition and operation speeds were required. In Section 5.1 we show that from the 

choice of settings available, a camera exposure time at 27.8 µs results in an adequate data acquisition speed for 3D imaging and an 

equivalent OCT displacement sensitivity of 7.83 nm. The air/glass interface of the channel (Fig. 1.B) provides the reference phase 

𝜑(𝑧0, 𝑡). As seen in Fig. 1.D, the combined OCT and Ti:Sa beams are scanned by two galvo-scanners over an area of 60 × 60 µm 

over the aggregated GNRs in the channel. The slow galvo-scanner (Fig. 1) determines a 3D frame rate of 0.5 frames/s. The fast 

galvo-scanner performs a line scan rate of 90 cycles/s (11.1 ms/line), equivalent with the beam integrating each pixel for 65 µs. A 

LabVIEW programme was created to assemble all collected A-scans into a 3D data set. An en-face image (170 × 170 pixels, 0.35 

µm/pixel) displaying phase matrix -π ≤ Φ𝑡(𝑥𝑚, 𝑦𝑛) ≤ π is sliced at the glass/GNR boundary from the 3D data set, where 𝑥𝑚, 𝑦𝑛 are 

the lateral image coordinates. After a 3D frame interval of Δt = 2 s, another phase matrix Φ𝑡+∆𝑡(𝑥𝑚, 𝑦𝑛) at the same boundary in a 

new 3D frame is obtained. The difference 𝛿Φ(𝑥𝑚 , 𝑦𝑛) between successive matrices is calculated as: 

 𝛿Φ(𝑥𝑚, 𝑦𝑛) = Φ𝑡+∆𝑡(𝑥𝑚 , 𝑦𝑛) − Φ𝑡(𝑥𝑚 , 𝑦𝑛) (8) 

where -2π ≤ 𝛿Φ(𝑥𝑚, 𝑦𝑛) ≤ 2π. Since the LabVIEW sub-VI being used to map the phase values into the brightness variation in the 

en-face image automatically scales negative 𝛿Φ(𝑥𝑚 , 𝑦𝑛) values into 0, the information in the range of -2π ≤ 𝛿Φ(𝑥𝑚, 𝑦𝑛) ≤ 0 is lost in 

the image. In this case, all features presented by negative values (between -2π and 0) of 𝛿Φ(𝑥𝑚, 𝑦𝑛) would be scaled to 0, showing 

as black with no distinguishable brightness variation in the produced images. In order to show the features with negative values of 

𝛿Φ(𝑥𝑚, 𝑦𝑛), a constant π is then added to all 𝛿Φ(𝑥𝑚, 𝑦𝑛) values before they are mapped to the grayscale to build en-face images in 

Fig. 7. In this case, 𝛿Φ(𝑥𝑚 , 𝑦𝑛) = -π is scaled to 0, and 𝛿Φ(𝑥𝑚, 𝑦𝑛) = 3π is scaled to 255 in the produced en-face images. Adding π, 

when 𝛿Φ(𝑥𝑚 , 𝑦𝑛) = −𝜋, 𝛿Φ(𝑥𝑚 , 𝑦𝑛) + 𝜋 = 0 corresponds to an intermediate grayscale value in the image.  
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When the shutter is closed, as shown in Fig. 7(A,a), GNRs present no photothermal response. In this case, the produced en-

face image displays no difference between successive acquisitions. While the Ti:Sa beam is blocked by the shutter, although GNRs 

do not give a photothermal response, phase differences are still created by laterally scanning the OCT beam over the borders 

between GNR areas and voids, and the borders are shown as thin contours in Fig. 7(A,a). When the shutter is switched from closed 

to open, the Ti:Sa beam triggers the photothermal response of GNRs, and the induced phase difference is imaged, as shown in Fig. 

7(B,a). As seen, the bright area is covered by GNRs exhibiting a strong photothermal response to the Ti:Sa beam. Thus, the 

aggregated GNRs resulted from the photothermal trapping are imaged by the PT-OCT system. Keeping the shutter open, the next 

image in Fig. 7(C,a) is mostly grey. This is because the GNRs are in an equilibrium state generating photothermal responses. 

Therefore, no phase difference is induced between successive scanning frames of PT-OCT. When the shutter is switched from 

open to closed, the induced difference is displayed in Fig. 7(D,a). The dark region in Fig. 7(D,a) is bright in Fig. 7(B,a), and the 

bright area in Fig. 7(D,a) is dark in Fig. 7(B,a) due to an inverted order of the photothermal response. 

Ti:Sa 
Power 
(mW) 

(a) 250.70 (b) 170.20 (c) 170.20 (d) 84.20 (e) 37.00 (f) 16.50 

Shutter 
Status: 
closed 

(A) 

      

Shutter 
Action: 
closed 
to open  

(B) 
      

Shutter 
Status: 
open   
(C) 

      

Shutter 
Action: 
open to 
closed 

(D) 
      

Fig. 7. En-face phase images of PT-OCT, displaying 𝛿Φ(𝑥𝑚, 𝑦𝑛) + 𝜋, at the glass/GNR boundary over the aggregated GNRs resulted from 

photothermal trapping. Image size: 170 × 170 pixel, 60 × 60 µm.  

Taking the shutter “from closed to open, then from open to closed” as a cycle, experiments were conducted in a series of such 

cycles with the power of the Ti:Sa beam progressively attenuated between cycles. As seen in Fig. 7 column (a–f), the smaller the 

excitation power, the smaller the areas of bright sectors. As seen in Fig. 7 column (f), when the excitation power is as low as 16.5 

mW, the difference between images in this cycle could be barely seen, indicating that the minimum power used in the PT-OCT 

system should be higher than this value. Images in Fig. 7 column (b) and Fig. 7 column (c) were acquired intentionally with the 

same power of 170.2 mW. The similarity between corresponding images indicates that the measurements are highly repeatable. 

The drawback of the PT-OCT is that the absolute phase value Φ𝑡(𝑥𝑚, 𝑦𝑛) is restricted between -π and π. All phase values larger 
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than π are forced to π, and all phase values smaller than -π are forced to -π. Thus, the PT-OCT is able to image the aggregation of 

GNRs but without offering any information on the thickness of the aggregated GNRs. The thickness of GNRs may offer 

information about the strength of photothermal trapping, in addition to the location of the aggregated GNRs in the en-face images 

(Fig. 7) which our method can show. 

 

4.4 PT-OCT for investigating photothermal trapping of GNRs in biological tissue 

Compared with freely diffusing GNRs in DI water, GNRs diffusing in biological tissue have more complex surroundings. To 

investigate the photothermal trapping of GNRs in biological tissue, we performed the PT-OCT measurement on a piece of pork 

tissue injected with the GNR solution. The sample preparation process is described in section 3.2 and Fig. 1.C. As shown, the front 

surface of the coverslip serves as the reference arm reflector for the common path configuration, and the back surface of it provides 

the reference phase 𝜑(𝑧0, 𝑡). Since the coverslip is thin, the system was set up in the common path configuration to benefit from a 

better displacement sensitivity (The choice of the configuration is discussed in section 5.1). To enhance the displacement sensitivity, 

the tightest beam focus is adjusted so that it is located inside the tissue (as discussed in section 5.2). Incident on a single lateral 

position on the sample, the Ti:Sa beam is modulated at 120 Hz by the chopper wheel (Fig. 1). To search for the depth at which 

GNRs are located, we varied the detecting depth 𝑧 (from the glass/tissue interface to the tissue/air interface) at which the ∆Φ(𝑧, 𝑡) 
signal is retrieved, while monitoring the FFT trace of ∆Φ(𝑧, 𝑡). When we reached the depth of 800 µm below the glass/tissue 

interface, a peak at 120 Hz appeared in the FFT profile, indicating that GNRs exist at this depth. However, the height of the peak 

varied with time. This is shown by the FFT plots in Fig. 8, obtained every 5 seconds in a measurement sequence lasting 30 seconds.  

   

   

Fig. 8. FFT of ∆Φ(𝑧, 𝑡) at the depth of 800 µm in the tissue injected with GNRs. The Ti:Sa beam was modulated at 120 Hz. Graphs were 
obtained every 5 seconds in a measurement lasting 30 second. 

As seen in Fig. 8, the amplitude of the FFT peak fluctuates during the 30 seconds measurement. Unlike the stable FFT peak 

obtained in section 4.1, where GNRs were diffusing in DI water, the fluctuation in Fig. 8 suggests that the photothermal trapping 

induced movement of GNRs in the biological sample is affected by the time evolution of the tissue structure. Thus, the concepts 

used to explain the photothermal trapping of GNRs in clear media in the reference [7] may not fully explain the photothermal 

trapping of GNRs in biological tissue. In Fig. 8, for instance, a broad overall reduction in amplitude such as (b) to (c) can be 
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ascribed to changes in the light transmission properties of the tissue close to the focal spot (tissue becomes more opaque as it is 

heated due to denaturation of protein structure). In the meanwhile, the increases in amplitude such as (c) to (d) and subsequently 

(e) to (f) suggest a degree of complexity in the photothermal trapping induced movement of GNRs in tissue which is consistent 

with changes in the shape of localised GNR accumulations but should not necessarily be interpreted as a manifestation of a 

convective flow similar to that described in clear media in [7]. 

The method and operating parameters used in section 4.2 were employed to carry out the PT-OCT imaging of photothermal 

trapped GNRs in the pork tissue. In Fig. 9, row A and row B show grayscale images, representing the 𝛿Φ(𝑥𝑚 , 𝑦𝑛) array, that were 

obtained inside the tissue sample from two different layers. The depth corresponding to row A is 189 µm inside the tissue and the 

depth corresponding to row B is 431 µm inside the tissue. 

 
Shutter Status: 

closed (a) 
close to open 
t=0.5 (s) (b) 

Shutter Status: 
opened t=2.5 (s) (c) 

Shutter Status: 
opened t=4.5 (s) (d) 

open to close 
(e) 

Shutter Status: 
closed (f) 

189 
µm 
(A) 

      

431 
µm 
(B) 

      

Fig. 9. En-face PT-OCT images displaying 𝛿Φ(𝑥𝑚, 𝑦𝑛) = Φ𝑡+∆𝑡(𝑥𝑚, 𝑦𝑛) − Φ𝑡(𝑥𝑚, 𝑦𝑛). Images display the depths of 189 µm and 431 µm 

in the tissue. Columns (b-d) were obtained 0.5 second, 2.5 seconds and 4.5 seconds after the shutter was opened. Image size: 60 µm × 60 
µm. 

Images in Fig. 9 column (a) are mostly dark when the shutter is closed. The patterns of bright shades in Fig. 9 column (b), 

analogous to Fig. 7 row (B), show the location of GNRs when the shutter is switched from closed to open. The PT-OCT was used 

for imaging GNRs at different depths in the biological tissue. Images in Fig. 9 columns (b-d) are obtained at different time after 

the shutter was opened. Unlike the images in Fig. 7 row (C) that present no pattern, Fig. 9 columns (b-d) contain varied patterns of 

bright shades. The effect of varied patterns is expected, which also agrees with the fluctuating peaks in Fig. 8. These results 

presented in Fig. 8 and Fig. 9, conducted with GNRs in the tissue sample, can be explained based on two reasons. Firstly, the 

fluctuating peaks in Fig. 8 and the varied patterns in Fig. 9 indicate that the photothermal trapping has induced movements of 

GNRs in the tissue, movement that is somehow affected by the tissue morphology. This effect is not observed with the GNRs in 

the DI water, where the signal peak is stable in time. Secondly, those effects can be ascribed to the changes in the light transmission 

properties of the tissue close to the focal spot where the tissue is being cooked during the excitation process so that the heat induced 

denaturation of the protein structure increases the complexity in the photothermal trapping of GNRs. The net result is the fluctuating 

peaks in Fig. 8 generated over time while the Ti:Sa beam was modulated at 120 Hz, and the varied patterns in Fig. 9 columns (b-

d) generated over time while the shutter was left open. When the shutter is switched from open to closed, the images in Fig. 9 

column (e) should display a similar effect as that noticed in Fig. 7 row (D). However, due to the two reasons mentioned just above, 

the images obtained are not exact reversed replicas of any images recorded before. As seen in Fig. 9 column (f), when the shutter 

is left closed, images from both layers are mostly dark showing no feature, analogous to what happens in Fig. 7 row (C). 

 

5. Discussion  

Given that the photothermal effect of GNRs induced OPD variation can be of the order of a few nm only, it is important to choose 

the parameters of the PT-OCT system in a way that enhances the displacement sensitivity. Two factors playing an important role 
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are the A-scan acquisition speed (linked to camera exposure time in our SD-OCT system), and the ability to cope with defocus at 

the GNR z-location, as discussed below.  

5.1 Displacement sensitivity – variation with A-scan rate for common path and separate reference arm OCT 

The smallest distinguishable phase fluctuation about an average DC value is a measure of the phase sensitivity 𝜎𝜙 of a phase 

sensitive OCT system [24,38], which then determines the axial displacement sensitivity 𝜎𝑧 according to Eq. (2) and Eq. (9). In this 

study, we employed two commonly used methods to characterise and estimate the phase sensitivity of the system. 

The first method characterising the phase sensitivity comes from the perspective of the system noise level, where the 

fundamental limitation on the phase sensitivity arises from the signal-to-noise ratio (SNR) of the measurement procedure [35,36]. 

Under the assumption that the SNR of the measured OCT signal intensity satisfies SNR >> 1, the phase variance 𝜎𝜙 is given by 

𝜎𝜙 =
1

√𝑆𝑁𝑅
, and the path variance 𝜎𝑧 can be expressed as [26,36,37]: 

 𝜎𝑧 =
𝜆0𝜎𝜙

4𝜋𝑛
=

𝜆0

4𝜋𝑛√𝑆𝑁𝑅
 (9) 

where 𝜆0=1050 𝑛𝑚 is the central wavelength of the OCT light source and n = 1 is the refractive index of air. In this study, based 

on the perspective of the system noise level, we use 𝜎𝑧 to characterise displacement sensitivity of the system. To work out 𝜎𝑧, the 

SNR in Eq. (9) was measured as the ratio of the A-scan peak of the stationary interface (Fig. 1.A) to its noise floor in the A-scan 

profile. It is widely accepted that an interferometer configured with a separate reference arm exhibits worse system noise floor than 

a common path configured system [26,36,37]. In addition, we found that the camera pixel sensitivity is another factor affecting the 

phase sensitivity of a SD-OCT system. Specifically, improved camera pixel sensitivity can be obtained by extending the camera 

exposure time, which in return reduces the data acquisition speed (A-scan rate). Consequently, it is important for us to find the 

optimum trade-off between the camera sensitivity and the operating speed of the system. Such a trade-off will offer an acceptable 

measurement sensitivity, and at the same time the system maintains its operating speed (A-scan rate) in hundreds of Hz. The 

Goodrich SUI camera in the system provides different pre-set operating modes, each of which has fixed settings of camera exposure 

time and pixel sensitivity, optimised in pairs. Thus, we measured the SNR in two interferometer configurations separately, and in 

each configuration we varied the camera exposure time settings. To implement the common path configuration, the reference arm 

(Fig. 1.A) was blocked, and the front surface of the stationary coverslip serves as the reference reflector. The measured SNR was 

taken into Eq. (9) to calculate 𝜎𝑧. Results are compared in (b) and (c) in Fig. 10. 

 

Fig. 10. Characterized displacement sensitivity. (a): Eq. (10), common path configuration. (b): Eq. (9), common path configuration. (c): Eq. 

(9), reference arm configuration. 

The second method characterising the phase sensitivity comes from the perspective of the statistics of the output phase stability 

measured on a stationary interface. It has been reported that the phase fluctuation contributed by interferometric instabilities 
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increases the phase noise floor and degrades the phase sensitivity [24,38]. Based on this perspective, the displacement sensitivity 

𝜎′𝑧 can be expressed as [24,38]: 

 𝜎′𝑧 =
𝜆0𝜑𝑆𝐷

4𝜋𝑛
 (10) 

where 𝜑𝑆𝐷 is the standard deviation of a set of successive phase values. 

To work out 𝜎′𝑧 in Eq. (10), we performed A-scans (500 Hz) continuously at a fixed lateral location on the stationary glass 

surface (located at 𝑧 in Fig. 1.A), and then calculated the standard deviation 𝜑𝑆𝐷 of 1024 output phase values. All measurements 

were performed in the common path configuration with varied camera exposure time settings. Results are presented in histograms 

(a) in Fig. 10.  

As seen in Fig. 10, the displacement sensitivity of the common path configured system (shown as (b) in Fig. 10) is better than 

that of the reference arm configured system (shown as (c) in Fig. 10). In the common path configured system (a) and (b), camera 

exposure time settings of 443 µs and 886 µs provide the best displacement sensitivities. The displacements obtained from these 

two camera settings are similar and comparable in each set-up configuration, 1.57 nm to 1.36 nm for (a), 3.73 nm to 4.01 nm for 

(b), and 10.79 nm to 10.09 nm for (c). Practically, if the displacement sensitivity is comparable, a faster operating rate is always 

preferred. Thus, we used the setting of 443 µs rather than the setting of 886 µs for the photothermal measurements (Fig. 3, Fig. 4, 

Fig. 5, Fig. 6, Fig. 8) that do not involve galvo scanning. Furthermore, as discussed in section 5.3, as long as the geometry of the 

studied sample allowed, we chose the common path configuration to perform our measurements (Fig. 8 and Fig. 9) since histograms 

of (a) and (b) are always lower than that of (c) in Fig. 10.  

   

   

Fig. 11. DIS: displacement amplitude. (a): Φ(𝑧, 𝑡) output trace at 0.8 V. (b): Φ(𝑧, 𝑡) output trace at 0.4 V. (c-f): FFT of ∆Φ(𝑧, 𝑡) at driving 
voltages of 0.4 V, 0.2 V, 0.1 V and 0.04 V respectively. DIS in (a) is calculated using Eq. (3), and DIS in (b-f) is calculated using Eq. (5). 

The sensitivity values plotted as (a) and (b) histograms in Fig. 10 are obtained in the same system configuration (common path 

configuration) but are calculated using Eq. (9) and (10) respectively, corresponding to the two different perspectives in 

characterising the phase sensitivity outlined above. To experimentally evaluate and compare the accuracies of these two 

perspectives, we performed measurements on the vibrating actuator (Fig. 1.A) driven by sinusoidal voltages at 100 Hz with selected 

voltages (0.8 V, 0.4 V, 0.2 V, 0.1 V, 0.04 V). For the voltages of 0.8 V and 0.4 V, the LabVIEW programme outputting Φ(𝑧, 𝑡) 
were used, and the produced traces of Φ(𝑧, 𝑡) are presented in (a) and (b) in Fig. 11. As seen in Fig. 11(b), when the driving voltage 
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is smaller than 0.4 V, the Φ(𝑧, 𝑡) trace losses the sinusoidal pattern. In this case, the method of outputting Φ(𝑧, 𝑡) meets its 

sensitivity limitation. Then, for the voltages of 0.4 V, 0.2 V, 0.1 V, 0.04 V, the LabVIEW programme outputting the FFT of 

∆Φ(𝑧, 𝑡) were used, and the produced traces of FFT are presented in (c) – (f) in Fig. 11.  All measurements were performed in the 

common path configuration with the camera set at 443 µs. The aim of the experiment is to search the smallest detectable 

displacement which will be then compared with the histograms (a) and (b) in Fig. 10.   

Since the Φ(𝑧, 𝑡) trace was not able to detect the sinusoidal vibration when the actuator was driven by the voltage smaller than 

0.4 V, instead of outputting the Φ(𝑧, 𝑡) trace, we applied FFT on the ∆Φ(𝑧, 𝑡) trace to improve the displacement sensitivity further. 

As shown in each individual graph in (c) – (f) in Fig. 11, we measured the amplitude |p(𝑓0)| of the FFT peak that sits at the driving 

frequency of 100 Hz, and took the obtained value into Eq. (5) to calculate the displacement amplitude 𝐴. As seen in Fig. 11(f), the 

detectable displacement using the FFT method can be as small as 0.17 nm with a SNR of 2.1. This displacement was produced 

when the actuator was driven at 0.04 V. 

5.2 Displacement sensitivity – variation with defocus 

The phase sensitivity degradation with defocus plays an important role in phase microscopy [39]. In our common path configured 

system, the degradation was evaluated by measuring the displacement sensitivity while moving the detected boundary (located at 

𝑧 in Fig. 1.A) axially away in steps of 0.05 mm from the reference interface (located at 𝑧0 in Fig. 1.A). Eq. (10) was used to 

calculate the displacement sensitivity at each axial location. Results are presented in Fig. 12.  

 

Fig. 12. Displacement sensitivity degradation with defocus. The reference interface (𝑧0 in Fig. 1.A) is located at -0.35 mm (left red triangle 

in the figure). The beam focus position is located at 0 mm (right red triangle in the figure). The displacement sensitivity is measured on the 

detected interface (𝑧 in Fig. 1.A) while it is placed at selected axial positions.  

The “Axial Position” in Fig. 12 serves as the position coordinate in the axial direction. The stationary reference interface (𝑧0 in 

Fig. 1.A) and the tightest beam focus are fixed at -0.35 mm and 0 mm respectively. The displacement sensitivities were measured 

on the moving detected interface (𝑧 in Fig. 1.A) at selected axial locations. As seen, when the detected interface is placed 0.15 mm 

to the right of the beam focus, the best displacement sensitivity of 1.57 nm is obtained. Given by the fitting lines (black-dashed), 

the region to the right of the beam focus has a displacement sensitivity degradation of 1.72 nm/mm, whereas the region to the left 

of it has a value of 30.65 nm/mm. The degradation is clearly a consequence of the properties of the focusing optics being used. 

Based on the curve in Fig. 12, in the experiments (Fig. 8 and Fig. 9), the GNR sample is placed within the axial range (-0.05 mm 

to 0.45 mm) to make the experiment benefit from a sufficiently good displacement sensitivity performance.  

5.3 Choice of OCT configuration 

In our practice, the measurement parameters are significantly influenced by other factors, and the geometry of the sample is one 

the factors. Specifically, as proved in section 5.1, the common path configuration is always preferred because it exhibits a better 
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displacement sensitivity (1.57 nm, camera: 443 µs) than the separate reference arm configuration (10.79 nm, camera: 443 µs). 

However, for PT-OCT imaging of GNRs in DI water (Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7), we chose the separate reference arm 

configuration. That is because the employed microfluidic channel had a thickness of 400 µm, but the maximum imaging depth of 

the OCT system was only 1400 µm in air. The geometry of the microfluidic channel does not fit the common path configuration 

setup as it does not allow placing the detected interface in the beam waist with the best displacement sensitivity (as discussed in 

section 5.2). Despite a poorer displacement sensitivity, the minimum average Ti:Sa power (0.583 mW) in PT-OCT capable of 

generating a detectable photothermal response of GNRs is still in line with the reported minimum Ti:Sa power (0.5 mW) for 

photothermal trapping of GNRs in [7] where the TPL detection is employed. Consequently, to investigate the photothermal trapping 

of GNRs, the PT-OCT should be superior to the TPL detection when common path configuration is employed.  

In section 4.4, as the coverslip in contact with the tissue sample was only 100 µm thick, the common path configuration was 

chosen. A longer camera exposure time may have improved the displacement sensitivity of the system but this would have also 

slowed down the A-scan acquisition speed. We found that the camera exposure time of 443 µs and the A-scan rate of 500 Hz 

resulted in an acceptable trade-off for obtaining an overall system performance. The depth of 800 µm, where GNRs were located 

by our PT-OCT method, is close to the maximum imaging depth of the system (1000 µm in tissue). Thus, the PT-OCT technology 

could be able to locate GNRs deep in the tissue if a higher resolution spectrometer was employed.  

For PT-OCT imaging of the photothermal trapping of GNRs in DI water (section 4.3), the separate reference arm configuration 

was employed to accommodate the geometry of the microfluidic channel. A camera exposure time of 27.8 µs was used, which 

could perform a maximum B-scan line rate of 200 lines/s, to satisfy our B-scan line rate of 90 lines/s. The system configuration 

and the camera exposure time result in a displacement sensitivity of 7.83 nm according to Fig. 10 (c). Compared with the best 

displacement sensitivity of 1.57 nm, this degraded displacement sensitivity resulted in fewer measured phase values that fall 

between -π and π. As discussed in section 4.3, all phase values were wrapped between -π and π. As a consequence, the phase 

wrapping had an effect on rescaling partial phase values used to build the en-face images in Fig. 7. Thus, the axial thickness of the 

aggregated GNRs, which is also linked to the strength of photothermal trapping, could be quantified by the PT-OCT technology 

but only by using a suitable algorithm for phase unwrapping, which is able to extend the depth range of obtained phase values. 

Thus, to improve the method for investigation and imaging the photothermal trapping of GNRs by PT-OCT, an effective phase 

unwrapping algorithm suitable for en-face imaging should be developed in future studies to remove the 2π ambiguity. In addition, 

in the future study, with the help of the phase unwrapping algorithm, the PT-OCT could be employed to visualize the photothermal 

trapping process of GNRs.  

By contrast, the common path configuration was chosen for imaging the photothermal trapping of GNRs in the tissue sample 

in section 4.4. This configuration has an improved displacement sensitivity of 3.93 nm, resulting in more phase values in the range 

[-π, π ] that are used to build the images in Fig. 9.  

In Fig. 8, the fluctuation of the FFT peak indicates that the photothermal trapping of GNRs is affected by internal variations of 

the tissue structure. This indication agrees with the varying pattern in Fig. 9 columns (b-d). Given by the varying pattern in Fig. 9 

columns (b-d), when the shutter is held open, the photothermal trapping induced movements of GNRs in the tissue sample is 

affected by the permanent change of the tissue structure as well.  

6. Conclusion 

In this paper, we demonstrate that a spectrometer based PT-OCT system with sub-nanometre displacement sensitivity performance 

is capable of imaging the photothermal trapping induced aggregation of GNRs. We also evaluate the fundamental and hardware 

limits on the system displacement sensitivity as functions of SNR and output phase stability. By optimising the camera exposure 

time, the OCT system in a common path configuration is found to allow detection of axial displacements as small as 1.57 nm. 

When a periodic movement is detected, and the Fourier analysis is carried out on the output phase, notable improvement is obtained 

in the displacement sensitivity of better than 0.17 nm (with SNR of 2.1). The system in a separate reference arm configuration is 

found to exhibit worse displacement sensitivity performance than the common path configuration. This is expected because a 

separate reference arm makes the output phase susceptible to mechanical or thermal fluctuations in both arms. Nevertheless, a 

separate reference arm configured system is still capable to image the pattern of aggregated GNRs in vitro. Using a separate 

reference arm configured PT-OCT system, it is found that the minimum Ti:Sa power able to induce the detectable photothermal 

response of the GNR solution is 0.5 mW. This value is in good agreement with the reported minimum Ti:Sa power able to induce 

photothermal trapping of GNRs [7]. Thus, a common path configured PT-OCT system with better sensitivity performance should 

exceed the TPL detection in searching for the minimum Ti:Sa power in generating a detectable photothermal response of GNRs.  
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We obtained en-face phase images as grayscale x-y maps, displaying photothermally induced changes in GNRs and surrounding 

media. When comparing the phases before and after the Ti:Sa excitation, the locations of aggregated GNRs are represented as 

brighter shades, whereas locations with fewer or no GNRs present are represented as darker shades. To compare the image made 

by the PT-OCT with that made by the TPL, the lateral scanning area of the PT-OCT is set to be 60 µm × 60 µm which is in line 

with that of the TPL (66 µm × 66 µm FOV) [7]. Since the objective employed in the PT-OCT has the magnification of 10 ×, the 

achieved lateral resolution in the image is not comparable to that of the TPL, in which 40 × and 60 × water objectives were 

employed [7]. Nevertheless, the image contrast of the PT-OCT image is better than that of the TPL image. This advantage of PT-

OCT is a consequence of the grayscale encoding of the difference between successive en-face phase maps, in which the background 

information is removed from the image by the subtraction, leaving only the short burst occurring during the Ti:Sa modulation 

process in the image. In contrast, in the TPL image, both the signal information and the background information are mixed together. 

Thus, the achieved contrast in the PT-OCT images proves that the PT-OCT method can be an alternative to TPL detection in 

imaging the photothermal trapping of GNRs, although PT-OCT has its shortcomings that need to be resolved. Specifically, in TPL 

imaging, the variation of the thickness of the aggregated GNRs can be connected to the variation of the magnitude of the TPL 

signal. In comparison, the PT-OCT image is not able to precisely present the thickness variation since it cannot convert the 

thickness information into the brightness variation in the image without the application of a reliable phase-unwrapping algorithm 

which is the target of the future work. 

Finally, the fluctuation of the FFT signal and the varying pattern in the en-face images indicate that the photothermal trapping 

induced migration of GNRs in biological tissue is influenced by the complex and particular nature of tissue structure, and the 

photothermal trapping of GNRs in tissue has a greater complexity than in the DI water.  
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