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Adaptive Fault-Tolerant Sliding-Mode Control for
High-Speed Trains with Actuator Faults and

Uncertainties
Zehui Mao, Xing-Gang Yan, Bin Jiang,Senior Member, IEEE, Mou Chen,Member, IEEE

Abstract—In this paper, a novel adaptive fault-tolerant sliding-
mode control scheme is proposed for high-speed trains, where the
longitudinal dynamical model is focused, and the disturbances
and actuator faults are considered. Considering the disturbances
in traction force generated by the traction system, a dynamic
model with actuator uncertainties modelled as input distribution
matrix uncertainty is established. Then, a new sliding-mode
controller with design conditions is proposed for the healthy train
system, which can drive the tracking error dynamical system
to a pre-designed sliding surface in finite time and maintain
the sliding motion on it thereafter. In order to deal with the
actuator uncertainties and unknown faults simultaneously, the
adaptive technique is combined with the fault-tolerant sliding-
mode control design together to guarantee that the asymptotical
convergence of the tracking errors is achieved. Furthermore, the
proposed adaptive fault-tolerant sliding-mode control scheme is
extended to the cases of the actuator uncertainties with unknown
bounds and the unparameterized actuator faults. Finally, case
studies on a real train dynamic model are presented to explain
the developed fault-tolerant control scheme. Simulation results
show the effectiveness and feasibility of the proposed method.

Index Terms—Actuator faults, fault-tolerant sliding-mode con-
trol, adaptive control, actuator uncertainty, high-speedtrain.

I. I NTRODUCTION

Due to the increasing requirements of the reliability and
safety of the modern control systems, fault detection and
fault-tolerant control design have attracted more and more
researchers and engineers (see [1]- [5]). High-speed trains with
their high loading capacities, fast and on schedule, have been
one of the most important transportation means. Similar to
the other large-scale and complex control systems, faults also
exist in high-speed trains, which motivates the studies of the
fault detection and fault-tolerant control design for high-speed
trains (see [6]- [9]).

Uncertainty, including modelling uncertainty and distur-
bance, widely exists in real physical systems, and thus it ises-
sential to consider various uncertainties in control design, fault
detection and fault-tolerant control design. For high-speed
trains, there exist some internal and external uncertainties,
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such as modelling uncertainties from the electric equipments
and mechanical installations, and disturbances from the track
irregularities, tunnels and slopes. It should be noted thatthe
external disturbances can be modelled as an additional signal
for the system model, while the internal uncertainties should
be modelled as state or input/actuator uncertainties in the
system differential dynamical equation.

It is well known that the input saturation, deadzone and
hysteresis are popular problems for actuator uncertainties, see
[10]- [11], for which the input signals are limited and bounded.
It should be noted that the internal uncertainties cannot be
considered as the external uncertainties in system modelling,
since the boundedness of the system states should be ensured
by the controller design, which are always used in the designed
controller and cannot be assumed to be bounded,a priori.
Actually, the complex coupling between the input distribution
uncertainties and the control signal makes the control design
full of challenges. Among the existing results for the controller
or fault-tolerant controller design of high-speed trains,the
external disturbances, which are modelled as an additional
signal for the system model, are widely investigated [12]-
[15]. However, the internal uncertainties, which are modelled
as state or input/actuator distribution matrix uncertainties in
the system differential dynamical equation, are rarely taken
into considerations. Thus, the fault-tolerant control forhigh-
speed train with actuator uncertainties is of both theoretical
challenge and practical importance.

For the faulty system, the fault-tolerant control is an es-
sential and effective technique to guarantee system stability
and/or some performances (such as asymptotic tracking), in
the presence of faults. Due to the unknown fault, adaptive
techniques are always used to deal with this case to achieve
the desired tracking performance (see [16]- [20]). As the
position/speed tracking is the main task for trains to guarantee
the on-time schedule, the adaptive technique is pertinent to
high-speed trains with unknown faults. Moreover, the results
about the adaptive fault-tolerant sliding-mode control are rare,
although there are some works for the aircrafts [21], [22].

This paper is focused on the fault-tolerant control problem
for the longitudinal dynamical model of high-speed trains
with traction system actuator faults and uncertainties. Both the
traction system actuator uncertainties and external disturbances
are considered, which are modelled as the input distribution
matrix uncertainties and additional disturbances in the high-
speed train. For the healthy and different faulty cases, theadap-
tive fault-tolerant sliding-mode control schemes are proposed
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with the controller structure, design conditions, and adaptive
laws being derived. The main contributions of this paper are
summarized as follows:

(i) Considering the traction system actuator uncertainties
and external disturbances, a model with input distribu-
tion matrix uncertainty and additional disturbances is
introduced to describe the dynamic properties of the
high-speed trains.

(ii) A set of conditions and the controller structure are
developed for the healthy case such that the designed
novel sliding-mode controller can drive the tracking
error dynamical system to a pre-designed sliding surface
in finite time and maintains the sliding motion on it
thereafter, even in the presence of input distribution
matrix uncertainty.

(iii) For different cases (the bound of the actuator uncer-
tainty is unknown; the actuator fault is unparameterized),
the fault-tolerant sliding-mode controllers with adaptive
laws are developed for the longitudinal dynamical model
of high-speed trains, respectively.

The rest of this paper is organized as follows: In Section II,
the longitudinal dynamical model of high-speed trains with
actuator uncertainties is presented, and the actuator fault-
tolerant control problem is formulated. In Section III, a sliding-
mode controller with the design condition is developed for
the healthy system with actuator uncertainties and external
disturbances, to achieve the displacement and speed tracking.
In Section IV, a new fault-tolerant sliding-mode controller with
adaptive laws is proposed for the faulty system with the known
bound of fault. In Section V and VI, the proposed fault-tolerant
sliding-mode controller is extended to the cases of the actuator
uncertainties with unknown bound and unparameterized fault,
respectively. In Section VII, simulations for four cases (health
and faulty cases) are presented, and the effectiveness of the
fault-tolerant control scheme is verified. Finally, Section VIII
concludes the paper.

II. PROBLEM FORMULATION

For high-speed trains, the general dynamical model of
longitudinal motion can be described as [6], [23], [24]

M(t)ẍ(t)=Ft(t)−M(t)(a+ bv(t) + cv2(t)) + d(t), (1)

where x(t) is the displacement of the train,M(t) is the
mass of the train,Ft(t) is the traction force generated by the
traction system, the parametersa, b and c are resistive force
coefficients of the Davis equation,d(t) models the external
disturbances from weather conditions or rail conditions (ramp,
tunnel, curvature, etc.).

Remark 1: It should be noted that the slope and curvature
rails can induce additional resistances. In order to achieve
a high speed for a high-speed train, the railway should be
smooth, and the slope angle and the degree of curvature
should be as small as possible. According to [29], under the
speed 300km/h, the minimum curve radius is 4500m, and
the maximum slop is 12‰. In connection with this, the train
moves in a one-dimensional space, with slope and curvature
resistances considered as disturbances, which are modeledas

(1). In China, a plenty of bridges are built to make the railway
straight. On the other hand, the suspension system model is
always used to describe the lateral and roll dynamics, which
can be decoupled from the longitudinal dynamic model (1).
Thus, the considering that train moves in a one-dimensional
space and modelled as a rigid body, is reasonable. 2

Actuator uncertainty . According to [6], the mass of a train
can be considered as varying with respect to the stations and
keeps constants between two consecutive stations. Therefore,
it is reasonable to express the mass of train in the dynamics (1)
asM(t) = M̄+∆M (t), whereM̄ is a constant determined by
the loadings of train,∆M (t) is also a constant during the two
stations and only changed at the stopping stations. According
to the maximum loading of a train,∆M (t) is bounded and its
bound can be estimated in reality.

The traction system generates the traction force, which is
considered as the actuators in high-speed trains, and consists of
traction motors, inverters, PWMs (pulse width modulations),
rectifiers, and related mechanical drives, etc. The uncertainties
widely exist in these equipments. In this paper, considering
the actuator uncertainties, a dynamics model is introducedto
express the taction forceFt(t) as follows:

Ft(t)=(1 + ∆f (t))F (t) + ∆F (t), (2)

where∆f (t) and ∆F (t) are time-varying functions to rep-
resent the uncertainties in the traction system,F (t) is the
force that the motors provide. The traction force model (2)
contains both additive and multiplicative uncertainties,which
are used to express the most of the actuator uncertainties.
Moreover, these two terms∆f (t) and ∆F (t) are bounded
with their bounds obtained from the maximum traction force
and mechanical installation.

Remark 2: For high-speed trains, both the input saturation
and deadzone exist in the actuators. Because the breaking
system is working when the traction system starts, the input
deadzone can be avoided, as traction force is applied to the
train when the motors in the traction system work normally.
Moreover, the allowed maximin speed decides the maximin
traction forces and the redundances of the traction system.
Then, the high-speed train cannot be operated under the
input saturation. Thus, the presented traction force model(2)
can mainly display the uncertainties in the high-speed train
actuator. 2

Dynamic model of high-speed trains. Let x1 = x,
x2 = ẋ, m = 1/M̄ , ∆m(t) = (1 + ∆f (t))/M(t) − 1/M̄
and d̄(t) = (d(t) + ∆F (t))/M(t). Due to the known bounds
of ∆f (t), ∆F (t) andM(t), the bounds of∆m(t) and d̄(t)
can be calculated easily. The longitudinal motion dynamics
(1) with (2) can be expressed as

ẋ1(t)=x2(t), (3)

ẋ2(t)= (m+∆m(t))F (t) − a− bx2(t)− cx2
2(t) + d̄(t),(4)

wherem, a, b and c are known system parameters,∆m(t)
and d̄(t) satisfy the following conditions:

0 ≤ ∆m(t)≤mb < m, |d̄(t)| ≤ db, (5)
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with mb anddb > 0 being known constants.

Actuator faults . The general faults for traction system are
motor faults, IGBT faults in rectifier and inverter, mechanical
faults, and so on. In modelling, most of these faults can
be equivalent to the effectiveness loss of the motor, and the
traction force can be considered as the sum of the motor forces.
The parametric fault model for one motor can be expressed as
(see, e.g. [9] and [20])

Fi(t)= F̄i(t) = fi0 +

li
∑

ρ=1

fiρsiρ(t), t ≥ ti, (6)

for somei ∈ {1, 2, . . . , n}, wheren is the number of motors.
Here,ti is the fault occurring time instant,i is the fault index,
fi0 and fiρ are constants, which are all unknown. The basis
signalssiρ(t) are known, andli are the number of the basis
signals of theith actuator fault.

This fault model (6) covers several practical fault conditions
of the high-speed train actuators, which is shown as follows:

1) Totaly fault. The motor stopping fault is a total fault.
Then, Eq. (6) can be written asFi(t) = F̄i(t) = fi0 = 0, with
fiρ = 0, for ρ = 1, . . . , li.

2) Constant fault. The mechanical drives locked fault can
lead the constant torque, which is a constant actuator fault.
Then, Eq. (6) can be written asFi(t) = F̄i(t) = fi0 =
non-zero constant, withfiρ = 0, for ρ = i, . . . , li.

3) Periodic fault. The IGBT (Insulated Gate Bipolar Tran-
sistor) fault (from PWM) can lead the periodic fault with
approximately known frequency, which could be a sine func-
tion. Then, Eq. (6) can be written asFi(t) = F̄i(t) =
fi1 sin(wt) for some knownw, with fi0 = 0, fi1 =
non-zero unknown constant andfiρ = 0, for ρ = 2, . . . , li.

In some cases, a completely parameterized fault model
may be an ideal model for some time-varying actuator faults,
as the knowledge of the basis functionsfiρ(t) may not be
available for some applications. In such cases, approximations
of the basis functionsfiρ(t) can be employed to achieve
approximate compensation of actuator faults. Some commonly
used approximation methods, such as Taylor series and neural
networks, are employed to approximate the unknown actuator
faults. The approximation for the actuator fault, usually will
result in a bounded approximation error, the whose magnitude
can be very small by proper choices of the basis functions
used in approximation.

Consider that there aren motors. From (6), the input of
system (3)-(4) can be rewritten as

F (t)=σνν(t) + ϑT ζ(t), (7)

ϑ=[ϑT
1 , ϑ

T
2 , . . . , ϑ

T
n ]

T ,

ϑi=[fi0, fi1, . . . , fili ]
T ∈ Rli+1, i = 1, . . . , n, (8)

ζ(t)= [1, s11(t), . . . , s1l1(t), . . . , 1,

si1(t), . . . , sili(t), . . . , 1, sn1(t), . . . , snln(t)]
T , (9)

where ν(t) is the control input,σν is the number of the
remaining healthy actuators,ϑ andζ(t) are the actuator fault
pattern parameters describing the types of faults. The vector
ϑ could change with the fault evolution, but is fixed in a time
interval.

For actuator fault-tolerant control design of high-speed
trains, the assumption for faults is given as: (A1) there is no
more thann̄ (n̄ < n) actuators fail, and the fault parameterϑ
is bounded and satisfies||ϑ||2 ≤ ϑ0, whereϑ0 > 0 is a known
constant. It implies that forn − n̄ ≤ σν ≤ n, the remaining
healthy actuators can still achieve the desired control objective.

Objective. The objective of this paper is to develop an
adaptive fault-tolerant sliding-mode control scheme for the
high-speed trains described by (3) and (4), to guarantee the
stability and asymptotic tracking properties, in the present of
the actuator uncertainty∆m(t) and actuator faults modeled in
(7)-(9).

III. SLIDING -MODE CONTROLLER DESIGN FOR HEALTHY

CASE

In this section, a controller is to be designed to make
the close-loop system (3)-(4) stable and achieve the tracking
performance. For high-speed trains, the Curve-To-Go is always
achieved through speed tracking. Let the desired speed trajec-
tory be xd(t), and the desired displacement trajectoryyd(t).
Then, ẏd(t) = xd(t).

Sliding-surface design. Denote the tracking errorse1(t) =
x1(t) − yd(t) and e2(t) = x2(t) − xd(t). From (3)-(4), the
tracking error dynamic equation can be written as:

ė1(t)= e2(t), (10)

ė2(t)= (m+∆m(t))F (t) − a− bx2(t)− cx2
2(t)

+d̄(t)− ẋd(t). (11)

For error dynamical system (10)-(11), design a sliding
function:

δ(e1, e2)=ke1(t) + e2(t), (12)

wherek > 0 is a design parameter. The sliding surfaceδ(t) =
0 can be described by

e2(t)=−ke1(t). (13)

From the structure of system (10)-(11), it is straight forward
to see that system (10) dominates the sliding motion of the
system (10)-(11) with respect to the sliding surface (13). From
(10) and (13), the corresponding sliding mode dynamics can
be described by

ė1(t)=−ke1(t), (14)

which implies

e1(t)= e−kte1(0), e1(0) = x(0)− yd(0). (15)

Due to k > 0, it is clear to see thatlimt→∞ e1(t) = 0.
The analysis above shows that the sliding motion of the error
dynamical system (10)-(11) associated with the sliding surface
(13) is asymptotically stable. Therefore, after sliding motion
occurs, it haslimt→∞(x1(t) − yd(t)) = 0, which implies
that x1(t) tracks the desired signalyd(t) asymptotically. The
objective now is to design a sliding-mode controller such that
the error system (10)-(11) can be driven to the sliding surface
(13) in finite time and maintains the sliding motion thereafter.
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Sliding-mode controller design. For train dynamic system
(3)-(4), consider the controller

F (t)=−
1

m
F0(t)−

1

m
db −

r(t)

m
sgn

(

k(x1(t)− yd(t))

+x2(t)− xd(t)

)

, (16)

where

F0(t)=k(x2(t)− xd(t)) − a− bx2(t)

−cx2
2(t)− ẋd(t), (17)

r(t) is a nonnegative time varying gain to be designed later,
anddb satisfies (5).

Then, the following result is ready to be presented.
Theorem 1: The sliding-mode control in (16) drives the

error dynamical system (10)-(11) to the sliding surface (13)
in finite time and maintains a sliding motion on it thereafter
if mb < m and the control gainr(t) in (16) satisfies

r(t)≥
m

m−mb

(

η +
mb

m
(|F0(t)|+ db)

)

, (18)

for η > 0.
Proof: From (12) and (10)-(11), the dynamic equation of

sliding surface can be given by

δ̇(t)=kė1(t) + ė2(t)

=k(x2(t)− xd(t)) + (m+∆m(t))F (t)

−a− bx2(t)− cx2
2(t) + d̄(t)− ẋd(t). (19)

Substituting (16) into equation (19) yields

δ̇(t)=∆m(t)

(

−
1

m
F0(t)−

1

m
db −

r(t)

m
sgn(δ(t))

)

−db + d̄(t)− r(t)sgn(δ(t)), (20)

whereδ(t) is the sliding function defined in (12).
From (20) andδ(t)sgn(δ(t)) = |δ(t)|, it follows that

δ(t)δ̇(t)

= δ(t)∆m

(

−
1

m
F0(t)−

1

m
db −

r(t)

m
sgn(δ(t))

)

−r(t)|δ(t)| − δ(t)(db − d̄(t)). (21)

From (5), (21) andr(t) > 0,

δ(t)δ̇(t)

≤|δ(t)|mb

(

1

m
|F0(t)|+

1

m
db +

r(t)

m

)

− r(t)|δ(t)|

=−

(

−
mb

m
(|F0(t)|+ db + r(t)) + r(t)

)

|δ(t)|. (22)

From (18), it has
m−mb

m
r(t)≥ η +

mb

m
(|F0(t)|+ db). (23)

The inequality (23) can be rewritten as

r(t) −
mb

m
r(t) −

mb

m
(|F0(t)|+ db)≥ η, (24)

which implies that

r(t) −
mb

m
(r(t) + |F0(t)|+ db)≥ η. (25)

Substituting (25) into (21), yields

δ(t)δ̇(t)≤−η|δ(t)|. (26)

Therefore, the reachability condition holds and hence the
result follows. ∇

The proposed sliding-mode controller (16) withF0 defined
in (17), can drive the error dynamics (10)-(11) to the sliding
surface (13) in finite time. Since the sliding motion has
been asymptotically stable as analysed earlier, it followsthat
limt→∞ e1(t) = 0 andlimt→∞ e2(t) = 0. Thus, the proposed
controller (16) can guarantee the tracking errors of healthtrain
system (3)-(4) converge to zero asymptotically.

Remark 3: In Theorem 1, the right hand side of the
inequality (18) is a function dependent on the system state
x2(t) and desired signalxd(t). It is not reasonable to assume
x2(t) is bounded,a priori. Thus, ther(t) is designed to be
a positive function dependent on the system statex2(t) and
desired trajectoryxd(t) and ẋd(t). For different faulty cases
discussed in the following sections, the controller parameter
r(t) is also a function dependent on the system states, desired
trajectory, basic function of fault, etc. 2

Remark 4: The sliding-mode control has been used ex-
tensively to deal with fault-tolerant control (see, e.g. [21]-
[22], [25]- [27]). However, the uncertainty existing in the
input distribution matrix are rarely considered in the existing
work, and specifically, the associate result for high-speedtrain
has not been available. It should be emphasized that such a
class of uncertainties is interacted with control signal and thus
the traditional design method cannot be applied. This paper
provides the contribution for high-speed train in this regard
for the first time. 2

IV. FAULT-TOLERANT SLIDING-MODE CONTROLLER

DESIGN

In this section, a fault-tolerant controller will be designed
for the train dynamic model (3)-(4) with the actuator fault
described by (7). For the actuator fault model (7), the fault
parameterϑ could be changed, and be a constant during a
certain time instant. According to Assumption (A1) that the
remaining healthy actuators can achieve the control perfor-
mance, the fault parameterϑ can be assumed to be bounded.

Faulty system. From (3)-(4) and (7), the dynamics of the
faulty system can be rewritten as:

ẋ1(t)=x2(t), (27)

ẋ2(t)=(m+∆m(t))(σνν(t) + ϑT ζ(t))− a− bx2(t)

−cx2
2(t) + d̄(t),−cx2

2(t) + d̄(t), (28)

whereν(t) is system input,σν is the number of the remaining
health actuators and satisfiesn− n̄ ≤ σν ≤ n, ϑ andζ(t) are
defined in (8) and (9), and||ϑ||2 ≤ ϑ0 with ϑ0 being a known
constant.

With the tracking errorse1(t) = x1(t)− yd(t) ande2(t) =
x2(t)− xd(t), The error dynamic equation can be written as:

ė1(t)= e2(t), (29)

ė2(t)= (m+∆m(t))(σνν(t) + ϑT ζ(t)) − a− bx2(t)

−cx2
2(t) + d̄(t)− ẋd(t). (30)
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The objective now is to design a fault-tolerant sliding-
mode controller for the error system (29)-(30), such that the
close-loop signal is bounded and the tracking errors satisfy
limt→∞ e1(t) = 0 and limt→∞ e2(t) = 0, in the presence of
the unknown actuator faultϑ and actuator uncertainty∆m(t).

Fault-tolerant sliding-mode controller design. The mod-
ified control law is proposed to be

ν(t)=−ϑ̂T
ν (t)ζ(t) − ρ̂ν(t)

{

1

m
F0(t) +

1

m
db

+
r(t)

m
sgn

(

k(x1(t)− yd(t)) + x2(t)− xd(t)

)}

,(31)

whereϑ̂ν(t) andρ̂ν(t) are the estimates ofϑ∗
ν = ϑ

σν

andρ∗ν =
1
σν

, respectively,F0(t) is defined in (17),r(t) is a nonnegative
time varying gain, andm anddb are given in (5).

For arbitrary initial estimatêϑν(0) and the initial estimate
ρ̂ν(0) ∈ [ 1

n
, 1
n−n̄

], the adaptive termŝϑν(t) and ρ̂ν(t) are
updated by the following adaptive laws:

˙̂
ϑν(t)=Γϑζ(t)δ(t), (32)

˙̂ρν(t)=Γρ

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

δ(t)

+gν(t), (33)

where the adaptive law gainsΓϑ = ΓT
ϑ > 0, Γρ is a positive

constant, andgν(t) is given as

gν(t)=















0, if ρ̂ν(t) ∈ ( 1
n
, 1
n−n̄

) or
if ρ̂ν(t) =

1
n
, g(t) ≥ 0 or

if ρ̂ν(t) =
1

n−n̄
, g(t) ≤ 0,

−g(t), otherwise,

(34)

with g(t) = Γρ

(

1
m
F0(t) +

1
m
db +

r(t)
m

sgn(δ(t))
)

δ(t).
Then, the following result is ready to be presented.
Theorem 2: The closed-loop system formed by apply-

ing the sliding-mode control in (31) and the adaptive laws
given in (32)-(33) to the faulty system (27)-(28), is state
bounded and its tracking errors satisfylimt→∞ e1(t) = 0
and limt→∞ e2(t) = 0, if mb < m, the number of the failed
actuatorsn̄ in Assumption (A1) and the control gainr(t) in
(31) satisfies

n̄≤
n(m−mb)

m
, (35)

r(t)≥
m

m−mbn|ρ̂ν(t)|

(

η +
mb

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0||ζ(t)||2 + n|ρ̂ν(t)| (|F0(t)|+ db)

))

, (36)

for η > 0.
Proof: Consider the sliding function (12). From (29)-(30),

by direct calculation, it follows that the time derivative of δ(t)
is given by

δ̇(t)= (m+∆m(t))(−σν ϑ̂
T
ν (t)ζ(t) + ϑT ζ(t))

−mσν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

+F0(t) + d̄(t)

=mσν ϑ̃
T
ν (t)ζ(t) + ∆m(t)

(

−σν ϑ̂
T
ν (t)ζ(t) + ϑT ζ(t)

)

+mσν ρ̃ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−db + d̄(t)− r(t)sgn(δ(t)), (37)

whereϑ̃ν(t) = ϑ∗
ν − ϑ̂ν(t), and ρ̃ν = ρ∗ν − ρ̂ν(t).

For system (27)-(28) with adaptive laws in (32)-(33), choose
a Lyapunov function candidate as

V =
1

2
δ2 +

mσν

2
Γ−1
ϑ ϑ̃T

ν ϑ̃ν +
mσν

2
Γ−1
ρ ρ̃2ν . (38)

Let (Tj , Tj+1), j = 0, 1, . . . , N , with T0 = 0, be time
intervals, and the actuators only fail at timeTp. Then, the
actuator fault pattern is fixed during these time intervals,which
means thatϑ is a constant fort ∈ (Tj , Tj+1), and discontinues
for t ∈ [0,∞). Fort ∈ (Tj , Tj+1), j = 1, . . . , N , take the time
derivative ofV :

V̇

= δ(t)δ̇(t) +mσνΓ
−1
ϑ ϑ̃T

ν (t)
˙̃
ϑν(t) +mσνΓ

−1
ρ ρ̃ν(t) ˙̃ρν(t)

= δ(t)∆m(t)
(

−σν ϑ̂
T
ν (t)ζ(t) + ϑT ζ(t)

)

−δ(t)∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

r(t)

m
sgn(δ(t))

)

−r(t)|δ(t)| − δ(t)(db − d̄(t)) +mσνΓ
−1
ρ ρ̃ν(t)gν(t), (39)

wheremσνΓ
−1
ρ ρ̃ν(t)gν(t) ≤ 0, due to(ρ∗ν − ρ̂ν(t))gν(t) ≤ 0

with gν(t) defined in (34).
Consider thatσν , the number of the remaining healthy

actuators, satisfiesσν ≤ n. With the bounded condition
||ϑ||2 ≤ ϑ0, it follows from (39) and|d̄(t)| ≤ db in (5) that

V̇ ≤|δ(t)|mb

(

n|ϑ̂T
ν (t)ζ(t)| + ϑ0||ζ(t)||2

+n|ρ̂ν(t)|

(

1

m
|F0(t)|+

1

m
db +

r(t)

m

))

− r(t)|δ(t)|

=−

(

−
mb

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)| (|F0(t)|+ db + r(t))

)

+ r(t)

)

|δ(t)|. (40)

According to Assumption (A1),n − n̄ ≤ σν ≤ n implies
1
n
≤ ρ∗ν ≤ 1

n−n̄
, i.e., 1

n
≤ ρ̂ν(t) ≤

1
n−n̄

. Inequality (35) can
lead to 1

n−n̄
≤ m

mbn
, so that 1

n
≤ ρ̂ν(t) ≤

m
mbn

, which means
m−mbn|ρ̂ν(t)| > 0.

Usingm−mbn|ρ̂ν(t)| > 0 and (36), it has

m−mbn|ρ̂ν(t)|

m
r(t) ≥ η +

mb

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0||ζ(t)||2 + n|ρ̂ν(t)||F0(t)|+ n|ρ̂ν(t)|db

)

, (41)

which implies that

r(t) −
mbn|ρ̂ν(t)|

m
r(t) −

mb

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0||ζ(t)||2 + n|ρ̂ν(t)||F0(t)|+ n|ρ̂ν(t)|db

)

≥ η. (42)
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Due to the discontinuous parameterϑ, V (·) is not contin-
uous with respect to timet. With (40) and (42), the time
derivative ofV for t ∈ (Tj , Tj+1), j = 0, 1, . . . , N , becomes

V̇ ≤−η|δ(t)|. (43)

Since the number of faults occurring in the system is finite,
it has

V̇ ≤−η|δ(t)| ≤ 0, t ∈ (TN ,∞). (44)

Therefore, all the variablesδ(t), ϑ̃ν = ϑ∗
ν − ϑ̂ν(t) andρ̃ν =

ρ∗ν − ρ̂ν(t), are bounded, and so arêϑν(t) and ρ̂ν(t). From
(44), we have a finite energy sliding functionδ(t):

∫ ∞

0

|δ(t)|dt

≤
1

η
(V (δ(0), ϑ̃ν(0), ρ̃ν(0))− V (δ(∞), ϑ̃ν (∞), ρ̃ν(∞)))

<∞, (45)

which impliesδ(t) ∈ L1.
Furthermore, from (12) and (29), it follows that

ė1(t)=−ke1(t) + δ(t),

i.e., e1(t)=
1

s+ k
[δ](t), k > 0. (46)

Becausek > 0 and δ(t) is bounded,e1(t) and ė1(t) are
bounded, and so aree2(t) and x2(t). According to [28],
δ(t) ∈ L1 results in e1(t) ∈ L1. Then, with the structure
of the fault-tolerant controller (31), the boundedness ofν(t)
is ensured. Based on Barbǎlat Lemma, it haslimt→∞ δ(t) = 0
and limt→∞ e1(t) = 0. Then,limt→∞ e2(t) = 0. ∇

2x
1x

,d dy x, , , , ba b c m m

0 ( )F t

ˆ ( )t

ˆ ( )t

( )t

Fig. 1: The adaptive fault-tolerant sliding-mode controller

The inputs of the controller are the desired and actual
distance and speed, and the parametersa, b, c, m, mb, db,
the signalζ(t) are also needed to construct the adaptive laws.
Then, the output of the controller is the traction force signal
ν(t), which requires the traction system to provide. The detail
process is shown in Fig. 1.

Discussion. Comparing with the results for the healthy case
in Section III, an additional condition about the number of the
failed actuators is given as (35). From (44), we can see that the
adaptive law given in (33) can make the estimateρ̂ν(t) belong
to [ 1

n
, 1
n−n̄

]. Then, combining with the condition (35), the
proposed fault-tolerant sliding-mode controller can makethe
faulty system (27)-(28) with the actuator uncertainties∆m(t)
and fault (7) to achieve the displacement tracking.

From (44), it can be seen that the proposed adaptive fault-
tolerant sliding-mode controller (31) cannot guarantee the

error dynamics (29)-(30) to be driven to the sliding surface
(12), in finite time; while the controller (16) for the healthy
system (3)-(4) can drive the error dynamics (10)-(11) to the
sliding surface (12) in finite time. The reason is that for
the fault-tolerant controller (31), the adaptive law (32)-(33)
is required to deal with the unknown fault parameterϑ.
Although the fault-tolerant controller (31) cannot drive the
error dynamics (29)-(30) to the sliding surface (12) in finite
time, but the tracking errors can be guaranteed to converge
to zero, whent goes to infinity, while the tracking error
e1(t) exponentially converge to zero in the healthy case. The
proposed fault-tolerant controller (31) can handle the actuator
uncertainty∆m(t) and faultϑ simultaneously, to guarantee the
closed-loop states boundedness and tracking performances.

Remark 5: There are many results about the fault-tolerant
sliding-mode control design (see for example [21]- [22], [25]-
[27]). However, the considered faults are always assumed to
have known bounds or more information of faults, except the
contributions mentioned in Remark 4. We would like to point
out that the works of the adaptive technique combined with
the sliding-mode control are rarely founded, especially for
the high-speed trains. Due to the unknown system faults, we
introduce the adaptive laws to estimate the faults, while the
sliding-mode technique is used to deal with the input distri-
bution matrix uncertainty and achieve the trajectory tracking.
Moreover, when the bounds of the actuator uncertainties are
unknown, a new adaptive law is employed to estimate the
bounds, which will be shown in the next section. 2

V. CONTROLLER DESIGN FOR THE UNKNOWN BOUNDmb

CASE

For the healthy and faulty cases in the above sections,
the boundmb on the input distribution∆m(t) is known. In
this section, the case that the boundmb is unknown, will be
discussed. The design procedure of the fault-tolerant sliding-
mode controller for the unknownmb is similar to that of (31),
in which the unknown parametermb should be replaced by
its estimationm̂b(t).

For the initial estimatem̂b(0) ∈ [0,m], the adaptive term
m̂b(t) is updated by the following adaptive law:

˙̂mb(t)=Γm

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

|δ(t)|+ gm(t),(47)

whereΓm is a positive constant,̂ϑν(t) and ρ̂ν(t) are give in
(32) and (33),F0(t) is defined in (17),m and db are given
in (5), r(t) is a nonnegative time varying gain, andgm(t) is
given as

gm(t)=















0, if m̂b(t) ∈ (0,m) or
if m̂b(t) = 0, ḡ(t) ≥ 0 or
if m̂b(t) = m, ḡ(t) ≤ 0,

−ḡ(t), otherwise,

(48)

with ḡ(t) = Γm

(

mn|ϑ̂T
ν (t)ζ(t)| + mϑ0||ζ(t)||2 + n|ρ̂ν(t)|

(|F0(t)|+ db + r(t))

)

|δ(t)|.
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Then, the following theorem can be obtained.
Theorem 3: The closed-loop system formed by applying

the sliding-mode control in (31) and the adaptive laws given
in (32)-(33) and (47) to the faulty system (27)-(28), is state
bounded and its tracking errors satisfylimt→∞ e1(t) = 0 and
limt→∞ e2(t) = 0, if the number of the failed actuators̄n in
Assumption (A1) and the control gainr(t) in (31) satisfy

n̄≤
n(m− m̂b(t))

m
, (49)

r(t)≥
m

m− m̂b(t)n|ρ̂ν(t)|

(

η +
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)|

+mϑ0‖ζ(t)‖2 + n|ρ̂ν(t)(|F0(t)|+ db)

))

, (50)

for η > 0.
Proof: The dynamicδ(t) is the same as (37). Choose a

Lyapunov function candidate modified from (38) as

V =
1

2
δ2 +

mσν

2
Γ−1
ϑ ϑ̃T

ν ϑ̃ν +
mσν

2
Γ−1
ρ ρ̃2ν +

1

2
Γ−1
m m̃2

b , (51)

whereϑ̃ν(t) = ϑ∗
ν − ϑ̂ν(t), ρ̃ν = ρ∗ν − ρ̂ν(t), m̃b(t) = mb −

m̂b(t), ϑ∗
ν = ϑ

σν
andρ∗ν = 1

σν
.

For the fault pattern fixed time intervalst ∈ (Tj , Tj+1),
j = 1, . . . , N , usingσν ≤ n and (31), take the time derivative
of V

V̇ ≤|δ(t)|mb

(

n|ϑ̂T
ν (t)ζ(t)| + ϑ0||ζ(t)||2

+n|ρ̂ν(t)|

(

1

m
|F0(t)|+

1

m
db +

r(t)

m

))

−r(t)|δ(t)| + Γ−1
m m̃b(t) ˙̃mb(t)

=
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

|δ(t)|

+

(

mb

m
−

m̂b(t)

m

)(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

|δ(t)|

−r(t)|δ(t)| + Γ−1
m m̃b(t) ˙̃mb(t). (52)

From (47), (52) can be rewritten as

V̇ =−

(

−
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

+ r(t)

)

|δ(t)|

+Γ−1
m m̃b(t)gm(t), (53)

whereΓ−1
m m̃b(t)gm(t) ≤ 0, due to(mb − m̂b(t))gm(t) ≤ 0

with gm(t) defined in (48).
According to (50), it has

r(t) −
m̂b(t)

m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0||ζ(t)||2

+n|ρ̂ν(t)|(|F0(t)|+ db + r(t))

)

≥ η. (54)

Further, from (53) and (54), it follows that

V̇ ≤−η|δ(t)| ≤ 0, t ∈ (TN ,∞), (55)

which implies that all the variablesδ(t), ϑ̃ν(t), ρ̃ν(t), and
m̃b(t) are bounded, andδ(t) ∈ L1. From the definitions of
ϑ̃ν(t), ρ̃ν(t) andm̃b(t), ϑ̂ν(t), ρ̂ν(t) andm̂b(t) are bounded.
Furthermore, from (12) and (29),e1(t) andė1(t) are bounded,
and so aree2(t) and x2(t). According to [28],δ(t) ∈ L1

results ine1(t) ∈ L1. Then, with the structure of the fault-
tolerant controller (31), the boundedness ofν(t) is ensured.
Based on Barbǎlat Lemma, it haslimt→∞ δ(t) = 0 and
limt→∞ e1(t) = 0. Then,limt→∞ e2(t) = 0. ∇

Discussion. To handle the unknown bound of the input
uncertainty∆m(t), the adaptive law (47) is introduced to deal
with the unknown parametermb, which is used to design the
controller functionr(t). It should be noted that the adaptive
law (47) is a differential equation, and contains the function
r(t). Due tor(t) > 0, we can chooser(t) as the right hand
side of inequality (50) adding a positive constantǫ, i.e.,r(t) =

m
m−m̂b(t)n|ρ̂ν(t)|

(

η + m̂b(t)
m

(

mn|ϑ̂T
ν (t)ζ(t)| +mϑ0‖ζ(t)‖2+

n|ρ̂ν(t)(|F0(t)|+ db))) + ǫ with ǫ being a positive constant.
Then, r(t) can be substituted into (47). The fault-tolerant
sliding-mode controller proposed in Theorem 3 guarantees
that the corresponding closed-loop system is uniformly
bounded and the tracking errors converge to zero.

Remark 6: For the controller design, we need the distance
and speed of the train, which are available in the real high-
speed train control systems. Since the distance and speed
of the train are essential information, the train will stop to
ensure the safety if these signals are not available under some
faulty cases. Thus, there are redundant sensors to measure
these signals and guarantee their accuracies. If there is one
sensor failed, the remaining health sensors can provide the
information that the controller needs. If there are two or more
sensors failed, perhaps the train will stop, and the controller
will not work. For the sensor noise, the filter method has been
employed in the automatic train operating control system.2

VI. EXTENSION TO THE UNPARAMETERIZED FAULT CASE

In this section, the fault-tolerant control problem for the
unparameterized time-varying fault will be investigated.In this
case, the faulty system (27)-(28) is rewritten as

ẋ1(t)=x2(t), (56)

ẋ2(t)= (m+∆m(t))(σνν(t) + ϑ(t))− a− bx2(t)

−cx2
2(t) + d̄(t), (57)

where ϑ(t) is the bounded time-varying actuator fault, and
|ϑ(t)| ≤ ϑ1 with ϑ1 unknown.

The fault-tolerant control law is proposed to be

ν(t)=−ϑ̂ν(t)− ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

, (58)
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where ϑ̂ν(t) and ρ̂ν(t) are the estimates ofϑ∗
ν = ϑ1

σν

and
ρ∗ν = 1

σν
, respectively,F0(t) is defined in (17),v(t) is a design

signal, andr(t) is a nonnegative time varying gain.
For the initial estimatêρν(0) ∈ [ 1

n
, 1
n−n̄

], the design signal
v(t) and the adaptive termŝϑν(t) and ρ̂ν(t) are designed as

˙̂
ϑν(t)=Γϑδ(t), (59)

˙̂ρν(t)=Γρ

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

δ(t) + gν(t), (60)

v(t)=−µ|δ(t)|, (61)

where the adaptive law gainsΓϑ andΓρ are positive constants,
µ > 0, andgν(t) is given as

gν(t)=















0, if ρ̂ν(t) ∈ ( 1
n
, 1
n−n̄

) or
if ρ̂ν(t) =

1
n
, g(t) ≥ 0 or

if ρ̂ν(t) =
1

n−n̄
, g(t) ≤ 0,

−g(t), otherwise,

(62)

with g(t) = Γρ

(

1
m
F0(t)+

1
m
db+

1
m
v(t)+ r(t)

m
sgn(δ(t))

)

δ(t).

Then, the following result is ready to be presented.
Theorem 4: The sliding-mode control in (58) with the

adaptive laws (59)-(60) applied to the faulty system (56)-
(57) guarantees that the sates of the closed-loop system and
the tracking errors are uniformly ultimately bounded, if the
number of the failed actuators̄n in Assumption (A1) and the
control gainr(t) in (58) satisfies

n̄≤
n(m−mb)

m
, (63)

r(t)≥
m

m−mbn|ρ̂ν(t)|

(

η +
mb

m

(

mn|ϑ̂T
ν (t)|

+n|ρ̂ν(t)|(|v(t)| + |F0(t)|+ db)

))

, (64)

for η > 0.
Proof: With ϑ̃ν(t) = ϑ∗

ν − ϑ̂ν(t), and ρ̃ν = ρ∗ν − ρ̂ν(t), the
dynamicδ(t) is expressed as

δ̇(t)

=mσν ϑ̃ν(t) +m(−ϑ1 + ϑ(t)) + ∆m(t)
(

−σν ϑ̂ν(t) + ϑ(t)
)

+mσν ρ̃ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t) +

r(t)

m
sgn(δ(t))

)

−∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

− v(t)− db + d̄(t)− r(t)sgn(δ(t)), (65)

whereδ(t) is the sliding function defined in (12).
Choose a Lyapunov function candidate as

V =
1

2
δ2 +

mσν

2
Γ−1
ϑ ϑ̃2

ν +
mσν

2
Γ−1
ρ ρ̃2ν . (66)

Then, from (65), (59) and (60), the time derivative ofV is
given by

V̇ = δ(t)m(−ϑ1 + ϑ(t)) + δ(t)∆m(t)(−σν ϑ̂ν(t) + ϑ(t))

−δ(t)∆m(t)σν ρ̂ν(t)

(

1

m
F0(t) +

1

m
db +

1

m
v(t)

+
r(t)

m
sgn(δ(t))

)

− δ(t)v(t) − r(t)|δ(t)|

−δ(t)(db − d̄(t)) +mσνΓ
−1
ρ ρ̃ν(t)gν(t). (67)

Using (59)-(61), it follows that

V̇ ≤−η1|δ(t)|+mbϑ1|δ(t)| − µ|δ(t)|2. (68)

whereη1 = η+m(ϑ1−ϑ(t)). Because|ϑ(t)| ≤ ϑ1 andm > 0,
it hasm(ϑ1−ϑ(t)) ≥ 0, which means(η+m(ϑ1−ϑ(t)) > 0.

The termmbϑ1|δ(t)| − µ|δ(t)|2 attains a maximum value
m2

b
ϑ2

1

4µ at |δ(t)| = mbϑ1

2µ for t ∈ [0,+∞), i.e.,

V̇ ≤−η1|δ(t)| +
m2

bϑ
2
1

4µ
. (69)

Therefore, for any initial stateδ(0), the solution of the
closed-loop system is uniformly ultimately bounded, i.e.,δ(t),
ϑ̃ν andρ̃ν are uniformly ultimately bounded. From (46), it has
e1(t) is uniformly ultimately bounded. Then, so ise2(t). ∇

Discussion. To handle the unparameterized faultϑ(t) with
unknown boundϑ1, the nonlinear damping is applied. With the
sliding-mode technique, the proposed fault-tolerant controller
(58) can make the closed-loop system is uniformly bounded,
in the presence of actuator uncertainty∆m(t) and unknown
actuator faultϑ. Compared with the tracking performances of
controller (16) for healthy case and the fault-tolerant controller
(31) for the case that the bound of fault parameter is known,
although the performance of the controller (58) is degraded,
the tracking errors can be smaller enough by choosing appro-
priate controller parameters.

For high-speed trains, the topic of the reliability and safety
has attracted many researchers and engineers. Until now,
there are still some problems in the existing fault diagnosis
and fault-tolerant control scheme for high-speed trains. For
example, the actuator uncertainties that are modelled as the
input distribution matrix uncertainty, are not taken into account
in the controller and fault-tolerant controller design. This paper
considers uncertainty in input matrix in high-speed train using
adaptive and sliding-mode techniques, for the first time. This
is one of the main contributions in the area. Moreover, in the
future, the high-speed trains will have higher speeds, which
require advanced control to achieve the high-accuracy speed
and position tracking to guarantee the safety of the trains.
Considering that the sliding-mode technique is wildly used
in industrial systems, we propose the adaptive fault-tolerant
sliding-mode controller.

Remark 7: The controllers proposed in Theorems 1-4, show
the traction force that the traction system provides to the train
for achieving the desired trajectory tacking, in the presence
of the actuator uncertainties and faults. From Theorems 1-4,
it can be seen that the information (desired and actual speed,
distance and some parameters of the train) that the controller
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design needs, are all available in practice. Then, the proposed
control methods can be implemented in the automatic train
operating control system. Moreover, perhaps there are some
delays in the information transfer. Due to the robustness ofthe
sliding-mode controller, the proposed adaptive fault-tolerant
sliding-mode controller can handle some small delays.2

Remark 8: In train control, there are mainly two types
of models used in the literatures, namely, the single mass
point model and the cascade mass point model. The proposed
method can be extended to the cascade mass point model
with inputs acting on every car. Under the assumption that
the speeds of all cars are synchronous, the cascade mass point
model can be considered as a single mass point model. The
high-speed trains require advanced control to achieve the high-
accuracy speed and position tracking to guarantee the safety
of the trains. For this case, the disturbances, uncertainties and
faults should be considered and dealt with. So, it is meaningful
to study the uncertainty existing in the input distribution
matrix, which is rarely investigated in both train and car
vehicles. 2

VII. S IMULATION STUDY

To demonstrate the effectiveness of the proposed adaptive
fault-tolerant sliding-mode controllers, the simulationstudies
on a high-speed train will be presented. The considered train
contains 8 vehicles (4 locomotives and 4 carriages), which
means there are 16 motors in the considered system, and the
simulation parameters are from a CRH type train in [29].

Simulation conditions. The parameters of the train are cho-
sen asM̄ = 380 (ton),a = 8.63×10−3 (kN), b = 7.295×10−6

(kN s/m), c = 1.12 × 10−6 (kN s2/m2), ∆M (t) = 20 (ton),
∆f (t) = 1− e−0.05t, and∆F (t) = 10 sin(0.03t) (kN).

Case 1 (Healthy mode): The disturbance is set as

d(t)=







0, t ∈ [0, 200);
200(1− e−10t), t ∈ [200, 500);
100 sin(0.03t), t ∈ [500, 2000].

(70)

which can represent that the train runs in a straight track
during 0 ≤ t < 200. During 200 ≤ t < 500, as the train
accelerates, the aerodynamic force increases, then the train
enters a tunnel. Fromt = 500, the train travels in a slope
track, and has some time-varying disturbances, such as winds,
meeting another train, etc. We choose the parameter of sliding
surface ask = 8 and the initial sates asx(0) = [0.55 0]T .

Case 2 (Known fault bound mode): For the train with 4
locomotives, there are 16 motors with same type, i.e.,n = 16.
Because most faults can be considered as the effectiveness loss
of the traction force, the parameters of the fault expression in
(7) are chosen asσν = 15 and

(i) for t ∈ [400, 600), ξ = 2× 105, ̟(t) = 1;
(ii) for t ∈ [600, 800), ξ = 2× 105, ̟(t) = 1 + sin(0.05t−

30);
(iii) for t ∈ [800, 2000], ξ = 0, ̟(t) = 1;
which means at the beginning, a motor has a constant fault
and after some time, the fault becomes a time-varying fault.
The failed motor completely stops working, at last. Further, it
hasϑ0 = 4× 105.

The initial parameter estimates are80% of their ideal values,
and the initial conditions are chosen asx(0) = [0.5 0]T . The
gains of the adaptive laws in (32)-(33) are chosen as0.2, and
the parameter of sliding surface ask = 8.

Case 3 (Unknown fault bound mode): The fault is the
same as Case 2, whilemb is unknown. The initial parameter
estimates are90% of their nominal values, and the initial
conditions are chosen asx(0) = [0.1 0]T . The gains of
the adaptive laws in (32)-(33) are chosen as0.2, and the
parameters ask = 12 andµ = 2.

Case 4 (Unparameterized fault mode): In this case, an
unparameterized time-varying fault is considered, whose cor-
responding parameters are chosen asσν = 15 and

ϑ(t)=2× 105 sin(0.01t− 30), for t ≥ 600, (71)

which implies a fault occurs in a motor after 600s.ϑ(t) is
unknown.

The initial parameter estimates are90% of their nominal
values, and the initial conditions are set asx(0) = [0.05 0]T .
The gains of the adaptive laws in (59)-(60) are chosen as0.2,
and the parameters ask = 12 andµ = 3.
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Fig. 3: The tracking errors for the healthy system

Simulation results. The simulate results for the four cases
above are shown in Figs. 1-5, respectively. The operating con-
ditions including acceleration, reacceleration, constant speed,
deceleration, constant speed, redeceleration, and slowing down
until fully stop, are considered [8]. The total running timeis
2000 seconds (about 34 minutes), which can describe a train
running from a station to another one.

The simulation results of the healthy system including the
plant distance (solid) and desired distance (dashed) are shown
in Fig. 2, and the distance and speed tracking errors for cases
1-4 are shown in Figs. 3-6.
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In fig. 3, there are some transit responses occurring at the
instants that the accelerations are abruptly changed. Since the
acceleration information is used to design the controller,it
is better to choose a smooth acceleration curve to avoid the
transit responses.

Figs. 4-6 demonstrate that, while the actuator fault occurs
at the 400th or 600th second, the proposed adaptive fault-
tolerant sliding-mode controller can regulate the train speed
and displacement states close to the desired trajectories after
some transit responses, so that the tracking performances and
the system stability is achieved, during the train operation.

It is visible from the simulation results that a little bit
chattering occurs in Figs. 3-6. This is caused by the dis-
continuous controllers (16), (31) and (58), due to the sign
function, which results in a discontinuous right hand side in
the dynamical equations. The chattering has been reduced by
using boundary layer method in which the discontinuous sign
function is approximated by the continuous saturation function
proposed in [30], [31] and [32]. To show the sliding-mode
properties, the chattering is not completely removed and the
small accepted amplitude of the chattering is retained.

These simulation results show that the proposed adaptive
fault-tolerant sliding-mode controller can achieve the close-
loop stability and asymptotic tracking properties of the train
even in the presence of unknown actuator uncertainties and
faults.
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VIII. C ONCLUSIONS

In this paper, a new adaptive fault-tolerant sliding-mode
control scheme is proposed for high-speed train with unknown
actuator uncertainties and faults. For the healthy train system,
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Fig. 6: The tracking errors for the unparameterized fault

a sliding-mode controller is designed to guarantee that the
tracking error dynamics can asymptotically converge to zero.
The cases that the bound of the actuator fault parameter is
known, the bound of the actuator uncertainty is unknown,
and the fault is modelled as an unparameterized time-varying
function, have been considered as well. Combining with the
adaptive technique, an adaptive fault-tolerant sliding-mode
control scheme is proposed to handel the actuator uncertainties
and faults, simultaneously. The simulation examples on a
realistic train dynamic model are given to demonstrate the
effectiveness of the proposed methods.
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