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Abstract

One goal of algebraic topology is to find algebraic invariants that classify

topological spaces up to homotopy equivalence. The notion of homotopy is not

only restricted to topology. It also appears in algebra, for example as a chain

homotopy between two maps of chain complexes. The theory of model categories,

introduced by D. Quillen [Qui06], provided us with a powerful common language

to represent different notions of homotopy. Quillen’s work transformed algebraic

topology from the study of topological spaces into a wider setting useful in many

areas of mathematics, such as homological algebra and algebraic geometry, where

homotopy theoretic approaches led to interesting results.

In brief, a model structure on a category C is a choice of three distinguished

classes of morphisms: weak equivalences, fibrations, and cofibrations, satisfying

certain axioms. We can pass to the homotopy category Ho(C) associated to a

model category C by inverting the weak equivalences, i.e. by making them into

isomorphisms. While the axioms allow us to define the homotopy relations be-

tween classes of morphisms in C, the classes of fibrations and cofibrations provide

us with a solution to the set-theoretic issues arising in general localisations of

categories. Even though it is sometimes sufficient to work in the homotopy cate-

gory, looking at the homotopy level alone does not provide us with enough higher

order structure information. For example, homotopy (co)limits are not usually

a homotopy invariant, and in order to define them we need the tools provided

by the model category. This is where the question of rigidity may be asked: if

we just had the structure of the homotopy category, how much of the underlying

model structure can we recover?
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This question of rigidity has been investigated during the last decade, and an

extremely small list of examples have been studied, which leaves us with a lot of

open questions regarding this fascinating subject.

Ou goal is to investigate one of the open questions which have not been an-

swered before. In this thesis, we prove rigidity of the K(1)-local stable homotopy

category Ho(LK(1)Sp) at p = 2. In other words, we show that recovering higher

order structure information, which is meant to be lost on the homotopy level,

is possible by just looking at the triangulated structure of Ho(LK(1)Sp). This

new result does not only add one more example to the list of known examples of

rigidity in stable homotopy theory, it is also the first studied case of rigidity in

the world of Morava K-theory.
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Chapter 1

Introduction and overview

A Quillen adjunction between two model categories C and D is an adjunction

that respects the model structure. However, when this Quillen adjunction in-

duces an equivalence of categories on the homotopy level, we say that the model

categories C and D are Quillen equivalent. But on the other hand, if there is

an equivalence between the homotopy categories of two model categories, can

anything be said about the underlying model structures?

Starting with the stable homotopy category Ho(Sp), that is, the homotopy

category of spectra, Schwede [Sch07a] showed that if Ho(Sp) is equivalent as a

triangulated category to the homotopy category of a stable model category C,

then the model category of spectra is Quillen equivalent to C. In other words,

Ho(Sp) is rigid.

wonder if there is a similar result for Bousfield localisations of the stable

homotopy category with respect to certain homology theories. If we look at the

part of the stable homotopy category that is readable by a given homology theory,

will that structure give us a rigid example? Particularly interesting localisations

are the ones with respect to Morava K-theories K(n) with coefficient ring

K(n)∗ ∼= Fp[vn, v−1
n ], |vn| = 2pn − 2,
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as well as with respect to Johnson-Wilson theories E(n), where

E(n)∗ ∼= Z(p)[v1, v2, . . . , vn, v
−1
n ], |vi| = 2pi − 2.

Both theories at n = 1 are related to complex K-theory in different ways. More

precisely, by the Adams splitting [Ada69], the spectrum E(1) is a summand of

complex K-theory localised at p

K(p)
∼=

p−2∨
i=0

Σ2iE(1),

while K(1) is a summand of mod-p complex K-theory [Rav16, Proposition 1.5.2].

In our case of interest in this thesis, p = 2, we have that mod-2 K-theory coincides

with K(1) since there is only one such summand.

Starting with the Johnson-Wilson theories E(n) for a fixed prime p, the lo-

calisation of spectra with respect to it is denoted LnSp (the prime p is omitted

from the notation). This E(n)-localisation provides a powerful tool for studying

the full stable homotopy category, and much of modern stable homotopy theory

is related to studying the chromatic tower

. . .→ Ln(X)→ Ln−1(X)→ . . .→ L1(X)→ L0(X).

If we look at the case where n = 1 and p = 2, then it has been shown in [Roi07]

that Ho(L1Sp) is rigid. However, if we consider the case where n = 1 and p ≥ 5,

the situation is different since in [Fra96], Franke constructed an exotic algebraic

model for the E(1)-local stable homotopy category Ho(L1Sp) at p ≥ 5, i.e. a

model category that realises the same homotopy category but is not Quillen

equivalent to L1Sp. For p = 3, there is an equivalence, but the question whether

it is triangulated remains open, more details about this are discussed in [Pat17b].

Now, if we look at LnSp for other values of n and p, little is known about it.

For 2p − 2 > n2 + n, it has been shown in [Fra96] that a potential exotic model

exists for E(n)-local spectra, although what is known so far is that we have a
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triangulated equivalence only for n = 1 and p ≥ 5. However, for 2p− 2 ≤ n2 +n,

it is still an open question whether we will have rigidity or an exotic model,

except the case n = 1 and p = 2 which has been shown to be rigid by Roitzheim

in [Roi07]. In particular, for n = 2 and p = 2 or p = 3, the question whether

we have rigidity or an exotic model remains unanswered. For further examples

of exotics models see [Sch02, DS09, Pat17a], and for other cases of rigidity see

[Sch01, BR14a, Pat16, PR17].

Another interesting localisation of spectra that we wish to know more about

is the localisation with respect to Morava K-theory K(n). In that case, nothing

is known about the rigidity Ho(LK(n)Sp) or whether we have exotic models. For

a fixed prime p, K(n)-local spectra can be viewed as the difference between LnSp

and Ln−1Sp. More precisely, we have

Ln = LK(0)∨K(1)∨...∨K(n),

therefore

L1Sp = LK(0)∨K(1)Sp.

For n = 0, we have that

LK(0) = L0 = LHQ

is rationalisation.

In this thesis, we investigate one of the open questions mentioned above,

which is the rigidity of the K(1)-local stable homotopy category Ho(LK(1)Sp)

at p = 2. The fact that the E(1)-local stable homotopy category is related to

the K(1)-local case does not mean in any way that the rigidity of Ho(LK(1)Sp)

can be deduced from that of Ho(LE(1)Sp). Working in the Morava K-theory

setting required coming up with new techniques and strategies to establish this

new result. The first challenge faced while working in this setting is the fact that,

unlike E(1)-localisation, K(1)-localisation is not smashing. Losing the smashing

property does not only make certain steps harder, it also results in losing the
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K(1)-local sphere as a compact generator. Therefore, we had to adopt the K(1)-

local mod-2 Moore spectrum as a compact generator. Adding to that, while

K(1)-locality implies E(1)-locality, the converse is not true, i.e. E(1)-locality

does not imply K(1)-locality. Therefore, a key theorem used in the proof of the

rigidity of Ho(LE(1)Sp), the “v1-periodicity theorem”, cannot be used in the K(1)-

local case. To that end, a major step in proving the K(1)-local rigidity was finding

a new criterion for when a 2-local spectrum is K(1)-local. Hence, another new

contribution of the work in this thesis is finding a new characterisation related

to v1-self maps to detect K(1)-locality. In literature, this is stated for E(1)-local

spectra, but we prove here that we can modify it to show that under certain

assumptions, a spectrum is K(1)-local, which is a stronger statement.

The main result in this thesis tells us that all of the higher homotopy infor-

mation is already encoded in the triangulated structure of Ho(LK(1)Sp), which

brings us one step closer towards a global understanding of the behaviour of the

rigidity of the stable homotopy category in the world of Morava K-theory. Our

main result is thus:

K(1)-Local Rigidity Theorem. Let C be a stable model category, p = 2, and

let Φ be an equivalence of triangulated categories

Φ : Ho(LK(1)Sp) → Ho(C).

Then the underlying model categories LK(1)Sp and C are Quillen equivalent.

We now outline the structure of this thesis leading to the proof of the K(1)-

local rigidity theorem.

Chapter 2 is the opening chapter where we recall some definitions surrounding

model categories, and how we pass to the homotopy category associated to a

model category. We close this chapter by defining stable model categories, and

by giving some examples.

In Chapter 3, we start by talking about spectra and the stable homotopy

category. Afterwards, we dedicate a section to tools from triangulated categories.
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We define what we mean by rigidity in stable homotopy theory in subsection

3.2.1, since at that point we will have all the necessary background. Next, we

talk about Bousfield localisation of the stable homotopy category. We finish this

chapter by defining an important tool needed later on, that is, homotopy limits

and colimits of spectra.

Chapter 4 is the one in which we prove the main theorem. We start by setting

up the necessary ingredients in order to construct the desired Quillen equivalence.

In the first section, we find a new characterisation related to v1-self maps to prove

that a spectrum is K(1)-local. After that, we construct a Quillen functor

LK(1)Sp→ C

by proving that the Quillen functor

Sp→ C,

constructed by the Universal Property of Spectra [SS02, 5.1] can be extended

to LK(1)Sp since the right adjoint sends fibrant objects to K(1)-local objects.

Finally, we prove that the constructed Quillen adjunction is a Quillen equiva-

lence by reducing the argument to endomorphisms of the compact generator of

Ho(LK(1)Sp).

In the proof of our main theorem, the knowledge of certain homotopy groups

in the K(1)-local setting is necessary. We choose to write details of such compu-

tations and some Toda brackets equalities separately in Chapter 5.

Lastly, in Chapter 6, we discuss possible future research to be carried out in

the subject of rigidity in stable homotopy theory. More precisely, we outline what

would happen if we consider, 2-locally, the K(2)-local stable homotopy category

and try to investigate rigidity at this chromatic level.
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Chapter 2

Preliminaries

In this opening chapter, we cover all the preliminary material that will be

used later. We start by giving an introduction to model categories, and how we

pass to the homotopy level. We end this chapter by talking about stable model

categories. We intend to give a general exposition of this introductory material.

Hence, where appropriate, we will recommend references that provide proofs and

more detailed discussions. We assume that the reader is familiar with basic

notions regarding categories, a classical reference for category theory is [Mac13].

2.1 Model categories

In order to set up the basic machinery of homotopy theory, Daniel Quillen

introduced the language of model categories [Qui06]. Shortly speaking, a model

structure on a category C is a choice of three classes of morphisms, called weak

equivalences, fibrations, and cofibrations. A list of axioms should be verified by

these classes of morphisms, which provide us with a set-theoretically clean device

to describe homotopy between morphisms. In this thesis, the main references

for the theory of model categories are [Hov99] and [DS95]. In this section, we

introduce basic notions from the theory of model categories. We begin by defining

model categories and giving some examples, then we talk about Quillen functors.

Definition 2.1.1. A morphism g : A→ B in a category C is (said to be) a retract
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2.1 Model categories

of f : X→ Y if there exists a commutative diagram

A X A

B Y B

i

g

r

f g

j s

in which the composites r ◦ i and s ◦ j are the appropriate identities.

Definition 2.1.2. Given a commutative square diagram in a category C of the

following form

A X

B Y,

f

i p

g

h

a lift or lifting in the diagram is a morphism h : B → X such that the resulting

diagram with five arrows commutes, i.e. h ◦ i = f and p ◦ h = g.

Definition 2.1.3. A morphism i : A→ B is said to have the left lifting property

(LLP) with respect to a morphism p : X → Y if a lift exists in any commutative

diagram of the form

A X

B Y

f

i p

g

Dually, if the lift exists we say that p has the right lifting property (RLP) with

respect to i.

Definition 2.1.4. A model category is a category C with three distinguished

classes of morphisms: weak equivalences (
∼−→), fibrations (�), and cofibrations

(�). A morphism which is both a fibration (resp. cofibration) and a weak

equivalence is called a trivial fibration (resp. trivial cofibration). The three classes

are required to be closed under composition and contain all identity morphisms.

In addition, the following axioms should hold.

(MC1) Finite limits and colimits exist in C, meaning that any functor

F : D → C
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2.1 Model categories

where D is a finite category, has a limit and a colimit in C.

(MC2) If f and g are composable morphisms in C, and if any two of the three

morphisms f, g, g ◦ f are weak equivalences, then so is the third.

(MC3) If f is a retract of g, and g is a fibration, cofibration, or a weak equivalence,

then so is f .

(MC4) Given a commutative diagram

A X

B Y

f

i p

g

where i is a cofibration and p a fibration, a lift exists if one of i or p is a

weak equivalence.

(MC5) Any morphism f : X → Y can be factored in two ways:

(i) X
j−→ Z

q−→ Y , where j is a cofibration and q is a trivial fibration,

(ii) X
j−→ Z

q−→ Y , where j is a trivial cofibration and q is a fibration.

Definition 2.1.5. An object ∅ of a category C is called an initial object if for any

object X in C, there is a unique morphism ∅ → X. Dually, the object ∗ is called

a terminal object if there is exactly one morphism X → ∗ for any object X ∈ C.

Clearly, we can see that initial and terminal objects are unique up to canonical

isomorphism.

Remark 2.1.6. A model category C has both an initial object ∅ and a termi-

nal object ∗. To be more precise, if we apply the axiom (MC1) to the functor

F : D → C, where D is the empty category (i.e. the category with no objects),

then colim(F ) is an initial object of C, and lim(F ) is a terminal object of C.

Definition 2.1.7. We call a model category (or any category with initial and

terminal object) pointed if the map from the initial object to the terminal object

is an isomorphism.
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2.1 Model categories

Definition 2.1.8. An object X in a model category C is called cofibrant if the

unique morphism ∅ → X is a cofibration, and fibrant if X → ∗ is a fibration.

Actually, fibrant and cofibrant objects have nice properties and are our center

of interest when passing to the homotopy level. Therefore, even when our object

is not fibrant/cofibrant, we would like to “replace” it by another object which is.

To that extend, we have the notion of fibrant and cofibrant replacement.

Take the unique morphism ∅ → X, where X is an object in our model cate-

gory. If we apply MC5(i) to it, we will obtain the factorisation

∅� Xc ∼
� X,

where Xc is cofibrant. Similarly, by applying MC5(ii) to X → ∗, we obtain a

fibrant object X f and a trivial cofibration X
∼
� X f .

Definition 2.1.9. The object X f is called a fibrant replacement of X, Xc a

cofibrant replacement of X, and Xc,f a cofibrant/fibrant replacement of X. If X

was already cofibrant we let Xc = X, or if X is fibrant, then X f = X.

Remark 2.1.10. It is worth noticing that a fibrant replacement of a cofibrant

object is again cofibrant. To be more precise, if X is a cofibrant object, then the

composition of cofibrations

∅� X
∼
� X f

is itself a cofibration, which tells us that X f is cofibrant.

We now give some examples of a model structure on some categories. Note

that one can have multiple model structures on the same category. But differ-

ent choices of the three classes of morphisms might produce different homotopy

categories as we will see later.

Let Top denote the category of topological spaces and continuous maps.

Definition 2.1.11. A morphism f : X → Y of topological spaces is called a

Serre fibration if, for each CW-complex A, it has the right lifting property (RLP)
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2.1 Model categories

with respect to the inclusion

A× {0} → A× [0, 1].

In other words, a lift exists in any commutative diagram of the form

A× {0} X

A× [0, 1] Y,

i f

where A is a CW-complex. Equivalently, we can replace A by the n-disk Dn, i.e.

f is a Serre fibration if and only if it has the RLP with respect to the inclusions

Dn → Dn × [0, 1].

The following proposition from [DS95] makes the category Top into a model

category.

Proposition 2.1.12. [DS95, Proposition 8.3] We can define a model structure on

the category of topological spaces Top, by defining a continuous map f : X → Y

to be :

· a weak equivalence if it is a weak homotopy equivalence, i.e. for each base-

point x ∈ X the induced map f∗ : πi(X, x) → πi(Y, f(x)) is a bijection of

pointed sets for i = 0 and an isomorphism of groups for i ≥ 1,

· a fibration if it is a Serre fibration,

· a cofibration if it has the LLP with respect to trivial fibrations, i.e. with re-

spect to each morphism which is both a Serre fibration and a weak homotopy

equivalence.

Remark 2.1.13. In this model structure, every object is fibrant because the

continuous map X → ∗ to the point space is a Serre fibration, and the cofibrant

objects are exactly the spaces which are retracts of generalised CW-complexes.

Moreover, any space X has a CW-replacement Xc, in other words, cofibrant

replacement in this model structure is given by CW-approximation.

10



2.1 Model categories

The machinery of model categories is applicable beyond topology. Actually,

many purely algebraic categories carry model category structures, for example

the category ChR of non-negatively graded chain complexes over R, where R is

an associative ring with unit. Recall that an object M of the category ChR is a

collection of R-modules {Mn}n∈N, together with differentials

dn : Mn →Mn−1, such that dn−1 ◦ dn = 0 for all n > 1.

A morphism f : M → N of ChR is a collection of R-module morphisms

fn : Mn → Nn, such that dn ◦ fn = fn−1 ◦ dn.

Note that the category ChR has all small limits and colimits. The initial and

terminal object is the chain complex 0, which is 0 in each degree.

Theorem 2.1.14. [DS95, Theorem 7.2] Define a morphism f : M → N in the

category ChR to be

· a weak equivalence if it induces isomorphisms on homology groups,

· a cofibration if for each n ∈ N, the morphism fn : Mn → Nn is a monomor-

phism with projective cokernel,

· a fibration if Mn → Nn is an epimorphism for each n ∈ N.

The above choice of classes of morphisms makes the category ChR into a model

category. This is called the projective model structure on ChR.

Remark 2.1.15. With respect to the above model structure on the category

ChR, the cofibrant objects are the chain complexes M such that each Mn is a

projective R-module. Every chain complex is fibrant in this model structure. If

we consider an R-module M as a chain complex concentrated in degree zero, a

cofibrant replacement for M is simply a projective resolution.

The next example of a model category that will be relevant later on is the cat-

egory of simplicial sets denoted sSets. Before talking about the model structure,
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2.1 Model categories

we will briefly define the category of simplicial sets. The main references for the

category of simplicial sets and the standard model structure on it are [GJ09] and

[Hov99, Chapter 3].

Definition 2.1.16. The category of finite ordinal numbers ∆ has objects the

ordered sets [n] = {0, . . . , n} for n ≥ 0, and morphisms the order preserving

maps. Moreover, the category ∆ is generated by the monomorphisms

di : [n− 1]→ [n], 0 ≤ i ≤ n

{0, 1, . . . , n− 1} 7→ {0, 1, . . . , i− 1, i+ 1, . . . , n}

and the epimorphisms

sj : [n+ 1]→ [n], 0 ≤ j ≤ n

{0, 1, . . . , n+ 1} 7→ {0, 1, . . . , j, j, . . . , n}.

In other words, all the morphisms in ∆ are compositions of the cofaces di and

codegeneracies sj. Plus, the cosimplicial identities are verified:



dj ◦ di = di ◦ dj−1 if i < j

sj ◦ di = di ◦ sj−1 if i < j

sj ◦ dj = Id = sj ◦ dj+1

sj ◦ di = di−1 ◦ sj if i > j + 1

sj ◦ si = si ◦ sj+1 if i ≤ j.

Definition 2.1.17. A simplicial set is a functor

X : ∆op → Sets

[n] 7→ Xn,

where Sets is the category of sets, and Xn is called the set of n-simplices of X.

In other words, we can think of a simplicial set X as a collection of sets Xn

12



2.1 Model categories

together with maps

di = X(di) : Xn → Xn−1,

sj = X(sj) : Xn−1 → Xn.

These are respectively, the face and degeneracy maps, and they satisfy the fol-

lowing simplicial identities :



di ◦ dj = dj−1 ◦ di if i < j

di ◦ sj = sj−1 ◦ di if i < j

dj ◦ sj = Id = dj+1 ◦ sj

di ◦ sj = sj+1 ◦ di if i > j + 1

si ◦ sj = sj+1 ◦ si if i ≤ j.

Definition 2.1.18. A morphism f : X → Y between simplicial sets, called a

simplicial map, is a collection of maps fn : Xn → Yn commuting with the face

and degeneracy maps: fn−1 ◦ di = di ◦ fn and fn+1 ◦ si = si ◦ fn.

The simplicial sets and simplicial maps form the category of simplicial sets

denoted sSets.

A relatively simple example of a simplicial set is the standard n-simplex ∆n

of sSets, which is a combinatorial analogue to the standard topological n-simplex

σn, i.e. the convex hull of the standard basis vectors in Rn+1

σn = {(t0, . . . , tn) ∈ Rn+1 :
n∑
i=0

ti = 1, ti ≥ 0}.

Example 2.1.19. (The standard n-simplices)

The functor from simplicial sets to sets sending X ∈ sSets to its set of n-simplices

Xn is representable. In fact, the Yoneda lemma gives the isomorphism

HomsSets(∆
n, X) ∼= Xn,

13



2.1 Model categories

where ∆n is the standard n-simplex of sSets defined by

∆n = Hom∆(−, [n]) : ∆op → Sets.

Note that simplicial maps

∆n → ∆m,

correspond bijectively to morphisms

[n]→ [m], in ∆.

Moreover, we have the boundary of the standard simplex

∂∆n :=
⋃

0≤i≤n
di ◦∆n−1 ⊆ ∆n,

and the horns Λn
k , which are the union of all faces except the kth one

Λn
k :=

⋃
i 6=k

di ◦∆n−1 ⊆ ∆n.

Another example of a simplicial set is the one constructed from a topological

space X, called the singular set of X, and denoted S(X).

Example 2.1.20. (The singular set)

We have the following functor

S(−) : Top→ sSets

X 7→ S(X)

defined by setting the singular n-simplex

Sn(X) = HomTop(σn, X),

where σn is the standard topological n-simplex mentioned earlier.

14



2.1 Model categories

Definition 2.1.21. We can functorially associate a topological space to a sim-

plicial set by the geometric realisation functor

| − | : sSets→ Top

X 7→ |X|.

Here, |X| is the topological space constructed in the following way. Consider X

with the discrete topology and take

|X| =
⋃
n≥0

Xn × |∆n|/ ∼,

where |∆n| = σn, and the equivalence relation ∼ is generated by the relations

(di(xn), vn−1) ∼ (xn, d
i(vn−1)), xn ∈ Xn and vn−1 ∈ |∆n−1|

(si(xn), vn+1) ∼ (xn, s
i(vn+1)), xn ∈ Xn and vn+1 ∈ |∆n+1|.

The maps di and si are, respectively, the faces and degeneracies of the simplicial

set X. As for the maps di and si, notice that an order preserving map [m]→ [n]

induces a continuous map

|∆m| → |∆n|.

Hence, by the maps di and si here, we mean the induced maps

di : |∆n−1| → |∆n|

sj : |∆n+1| → |∆n|.

Notation. Throughout this thesis, the top arrow in an adjoint functor pair F :

C � D : G denotes the left adjoint, and the bottom arrow denotes the right

adjoint.

The realisation functor and the singular set functor are part of an adjunction

in the following sense.

15
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Proposition 2.1.22. [GJ09, Proposition 2.2] We have an adjunction

| − | : sSets� Top : S(−).

In other words, we have a natural isomorphism

HomTop(|X|, Y ) ∼= HomsSets(X,S(Y )).

The category of simplicial sets is another example of a model category, and

this model structure will become useful when defining the model structure on

spectra later.

Theorem 2.1.23. [GJ09, Theorem 11.3] The category of simplicial sets is a

model category, by defining a morphism of simplicial sets f : X → Y to be:

· a weak equivalence if its geometric realisation |f | : |X| → |Y | is a weak

homotopy equivalence,

· a cofibration if for each n, the morphism fn : Xn → Yn is a monomorphism,

· a fibration if it is a Kan fibration, i.e. f has the left lifting property with

respect to the inclusions of the horns Λn
k ↪→ ∆n, n ≥ 1, and 0 ≤ k ≤ n.

Remark 2.1.24. The initial object ∅ of the category sSets is the simplicial set

which consists of the empty set in each degree. Since the morphisms from the

empty set to all sets are monomorphisms, all the objects in sSets are cofibrant

with respect to the above model structure.

The terminal object is the one consisting of the singleton set in each degree. The

fibrant objects are what we call the Kan complexes. In other words, they are the

simplicial sets Y such that the unique map Y → ∗ is a Kan fibration, i.e. there

exists a diagonal morphism making the diagram commute

Λn
k Y

∆n ∗.
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2.2 The homotopy category of a model category

Definition 2.1.25. Using the same concept of constructing a pointed topological

space by choosing a basepoint, we also can apply this construction to simplicial

sets. In that case, we obtain the category of pointed simplicial sets denoted sSets∗.

An object of sSets∗ is a simplicial set X together with a distinguished 0-simplex

∗ ∈ X0 = X([0]). The morphisms in sSets∗ are the simplicial maps preserving

the basepoints. Moreover, the category sSets∗ with the same weak equivalences,

cofibrations and fibrations in sSets form a model category.

In order to compare model categories, one studies functors between them that

respect the model structure, so-called Quillen functors.

Definition 2.1.26. Suppose C and D are model categories.

(a) We call a functor F : C → D a left Quillen functor if F is a left adjoint and

preserves cofibrations and trivial cofibrations.

(b) We call a functor U : D → C a right Quillen functor if U is a right adjoint

and preserves fibrations and trivial fibrations.

(c) Suppose F : C � D : G is an adjunction. We call F : C � D : G a

Quillen adjunction if F is a left Quillen functor, or equivalently, if U is a

right Quillen functor [Hov99, Lemma 1.3.4].

2.2 The homotopy category of a model

category

In this section, C is some fixed model category, A and X are objects of C. The

homotopy category of C denoted Ho(C) will be a category with the same objects

as C, but the morphisms sets consist of equivalence classes of morphisms under a

certain homotopy relation.

We will define the notion of left homotopy in terms of cylinder objects, and

then a dual notion of right homotopy, defined in terms of path objects. It turns

17



2.2 The homotopy category of a model category

out that the two notions coincide if the source A is cofibrant and the target X is

fibrant.

Definition 2.2.1. A cylinder object for A is an object A ∧ I of C together with

a diagram

Aq A i−→ A ∧ I ∼−→ A

which factors the folding map

IdA + IdA : Aq A→ A.

Note that the above folding map exists by the universal property of the coproduct.

If the morphism

Aq A i−→ A ∧ I

is a cofibration, then A ∧ I is called a good cylinder object. If in addition, the

morphism

A ∧ I → A

is a (necessarily trivial) fibration, then A∧ I is called a very good cylinder object.

If A ∧ I is a cylinder object for A, then we have two structure morphisms

i1, i2 : A→ A ∧ I

defined as the compositions i1 = i ◦ in1 and i2 = i ◦ in2 , where in1 and in2 are the

two canonical morphisms

in1 , in2 : A→ Aq A.

Remark 2.2.2. By MC5(i), every object in a model category C has a very good

cylinder object. Plus, we might have many cylinder objects A ∧ I, A ∧ I ′, . . .

associated for an object A, since a cylinder object A ∧ I is any object of C

with the above formal property. However, all these cylinder objects are weakly

18



2.2 The homotopy category of a model category

equivalent.

Definition 2.2.3. Let f, g : A → X be two morphisms in a model category C.

By the universal property of the coproduct, there exists a morphism

f + g : Aq A→ X.

We say that f and g are left homotopic, denoted f ∼l g, if the coproduct f + g

can be extended to H : A ∧ I → X as in the diagram

Aq A X .

A ∧ I

f+g

i0+i1
H

Such a map H is said to be a left homotopy from f to g.

Example 2.2.4. For a topological space A ∈ Top, the product A × [0, 1] is a

cylinder object for A with respect to the model structure in Theorem 2.1.12. The

notion of left homotopy with respect to this cylinder object coincides with the usual

notion of homotopy.

We are interested in the case when the left homotopy relation forms an equiv-

alence relation on the set HomC(A,X).

Lemma 2.2.5. [DS95, Lemma 4.7] If A is cofibrant, then ∼l is an equivalence

relation on HomC(A,X).

We can dualise the definition of cylinder objects and left homotopies to get

similar notions of path objects and right homotopies.

Definition 2.2.6. A path object for X is an object XI of C together with a

diagram

X
∼−→ XI p−→ X ×X

which factors the diagonal map

(IdX , IdX) : X → X ×X.
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2.2 The homotopy category of a model category

A path object XI is called a good path object, if XI → X ×X is a fibration. If in

addition, the morphism X → XI is a (necessarily trivial) cofibration, then XI is

called a very good path object.

Example 2.2.7. If C = Top, then one choice of path object for a space X is the

mapping space Map([0, 1] , X).

Remark 2.2.8. In that sense, the notation XI might suggest a space of paths

in X. However that notion is not correct if we are working in a model category

C that is not the category of topological spaces. In that case, a path object

associated to an object A is any object of C with the above formal properties.

Therefore, we might have several path objects associated to an object A, but they

are all weakly equivalent.

Similarly, we define the right homotopy relation using path objects.

Definition 2.2.9. Two maps f, g : A → X are said to be right homotopic

(written f ∼r g) if there exists a path object XI for X such that the product

map (f, g) : A→ X ×X lifts to a map H : A→ XI as in the diagram

XI

A X ×X .

p

(f,g)

H

Such a map H is said to be a right homotopy from f to g.

Lemma 2.2.10. [DS95, Lemma 4.16] If X is fibrant, then ∼r is an equivalence

relation on HomC(A,X).

Lemma 2.2.11. [DS95, Lemma 4.21] If A is cofibrant and X is fibrant, then the

left and right homotopy relations on HomC(A,X) agree, and the identical right

and left homotopy equivalence relations are denoted by the symbol “∼”. Two

maps related by this relation are said to be homotopic, and the set of equivalence

classes with respect to this relation is denoted HomC(A,X)/ ∼.
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2.2 The homotopy category of a model category

Actually, we have the following generalisation of Whitehead’s theorem, which

in the topological category says that a weak homotopy equivalence between CW-

complexes is a homotopy equivalence.

Theorem 2.2.12. [DS95, 4.24] Suppose A and X are objects in C which are both

fibrant and cofibrant. Then f : A → X is a weak equivalence if and only if f is

a homotopy equivalence, i.e. there exists a morphism g : X → A such that the

composites g ◦ f and f ◦ g are homotopic to the respective identities.

Definition 2.2.13. The homotopy category Ho(C) of a model category C is the

category with the same objects as C, and with

HomHo(C)(X, Y ) = HomC(X
c,f , Y c,f)/ ∼ .

Notation. For a given map f : X → Y in C, denote by [f ] its homotopy class in

the set of equivalence classes of HomC(X
c,f , Y c,f) under the equivalence relation

“ ∼ ” defined above.

Example 2.2.14. Take the category of ChR of nonnegatively graded chain com-

plexes over R, with the projective model structure defined in Theorem 2.1.14.

In that case, the homotopy category Ho(ChR) is equivalent to the category with

objects the cofibrant chain complexes, i.e. projective chain complexes, and mor-

phisms the ordinary chain homotopy classes of maps. Actually, Ho(ChR) is equiv-

alent to the derived category D(R), i.e. the localisation of ChR with respect to

the quasi-isomorphisms.

Example 2.2.15. Another example is Ho(Top) the homotopy category of topo-

logical spaces with respect to the model structure in Proposition 2.1.12. We can

see that Ho(Top) is equivalent to the usual homotopy category of CW-complexes,

as shown in [DS95, Proposition 8.4].

Remark 2.2.16. Since we did not assume the functoriality of the splittings in

MC5(i) and MC5(ii), the assignments X 7→ X f and X 7→ Xc need not to be

functorial on the model level. However they are indeed functors on the homotopy
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2.2 The homotopy category of a model category

level, and therefore the choices of Xc and X f are unique up to homotopy equiva-

lence. Note that our results in this thesis do not depend on the choice of cofibrant

and fibrant replacements since any two choices will be weakly equivalent.

Definition 2.2.17. There is a functor between C and its homotopy category

Ho(C) denoted

γC : C → Ho(C),

which is the identity map on objects, and sends a map f : X → Y in C to the

map [f ] ∈ HomHo(C)(X, Y ).

The following proposition [DS95] is useful to detect the isomorphims in the

homotopy category.

Proposition 2.2.18. If f is a morphism of C, then [f ] is an isomorphism in

Ho(C) if and only if f is a weak equivalence.

If an adjoint pair of functors is a Quillen pair, it induces an adjoint pair of

functors on the homotopy level

LF : Ho(C)� Ho(D) : RG,

called the total derived adjunction. Since LF and RG are, respectively, the left

and right derived functors of certain composites, we will first introduce the notion

of left and right derived functors, denoted LF and RG.

Definition 2.2.19. Suppose C is a model category, and F : C → D a functor.

Consider pairs (G, s) where G : Ho(C)→ D is a functor, and s : G ◦ γC → F is a

natural transformation. Now, a left derived functor is a pair (LF, t) of this type

that is universal from the left in the following sense. We have a functor

LF : Ho(C)→ D,
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2.2 The homotopy category of a model category

and a natural transformation

t : LF ◦ γC → F,

such that for any other pair (G, s) of that form, there exists a unique natural

transformation s′ : G→ LF making the below diagram commute

F

G ◦ γ (LF ) ◦ γ .
s′◦γ

s
t

Similarly, a right derived functor for F is a pair (RF, t) that is universal from the

right.

Remark 2.2.20. If a left (respectively right) derived functor for F exists, then

it is unique up to canonical natural isomorphism.

Note that left and right derived functors might not exist, nevertheless the

following proposition states when we can detect their existence.

Proposition 2.2.21. [DS95, Proposition 9.3] Suppose C is a model category, and

F : C → D is a functor taking weak equivalences between cofibrant (respectively

fibrant) objects in C to isomorphims in D. Then the left (respectively right) derived

functor (LF, t) (respectively (RF, t)) exists, and for each cofibrant (respectively

fibrant) object X of C the morphism

tX : LF (X)→ F (X)

(respectively tX : F (X)→ RF (X))

is an isomorphism.

Definition 2.2.22. Let C and D be model categories, and F : C → D a functor

between them. A total left derived functor LF for F is a left derived functor for

the composite γD ◦ F : C → Ho(D). Similarly, a total right derived functor for F

23



2.2 The homotopy category of a model category

is

RF := R(γD ◦ F ) : Ho(C)→ Ho(D).

Theorem 2.2.23. [DS95, Theorem 9.7.(i)] Suppose C and D are model categories

and F : C � D : U is a Quillen adjunction. Then the total derived functors LF

and RU exist and are part of an adjunction

LF : Ho(C)� Ho(D) : RU

which we call the derived adjunction.

Note that, sometimes LF : Ho(C)� Ho(D) : RU is an adjoint equivalence of

categories even when F : C � D : U is not.

Definition 2.2.24. A Quillen adjunction F : C � D : U is called a Quillen

equivalence if and only if, for all cofibrant X in C and fibrant Y in D, we have

that a map

f : FX → Y

is a weak equivalence in D if and only if its adjoint

f ] : X → UY

is a weak equivalence in C.

Proposition 2.2.25. [Hov99, Proposition 1.3.13] If F : C � D : U is a Quillen

adjunction, then it is a Quillen equivalence if and only if the adjunction

LF : Ho(C)� Ho(D) : RU

is an adjoint equivalence of categories.

The following result proved in [Qui06], shows that the category of simplicial

sets is a good model for topological spaces in combinatorial language. In other

24



2.3 Stable model categories

words, we have “well behaved” topological spaces that are Quillen equivalent to

the original ones.

Theorem 2.2.26. The adjoint pair of functors defined in Proposition 2.1.22

| − | : sSets� Top : S(−)

is a Quillen equivalence.

Theorem 2.2.27. [Hov99, Corollary 1.3.16] Suppose F : C � D : U is a Quillen

adjunction. The following are equivalent:

(a) F : C � D : U is a Quillen equivalence.

(b) F reflects weak equivalences between cofibrant objects, meaning that if f is a

map between cofibrant objects such that its image F (f) is a weak equivalence

in D, then f itself is a weak equivalence. Plus, for every fibrant Y, the map

F (UY )c → Y is a weak equivalence.

(c) U reflects weak equivalences between fibrant objects and, for every cofibrant

X, the map X → U(FX)f is a weak equivalence.

As we have just seen, a Quillen equivalence induces an equivalence on the

homotopy level, but its importance lies in the fact that it preserves higher order

information which is not necessarily preserved by an equivalence of categories on

the homotopy level. For such an example see, [Sch02].

Plus, note that not all equivalences between homotopy categories arise this

way. There are examples of model categories C and D where Ho(C) is equivalent

to Ho(D), but C and D are not Quillen equivalent. Examples of such cases are

[DS09] and [Sch01, 2.1, 2.2].

2.3 Stable model categories

Stable model categories are much more interesting to study since they carry

more structure in their homotopy categories. We will introduce them in this
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section and give some examples.

Definition 2.3.1. Let C be a pointed model category and, X ∈ C. First construct

Xc, a cofibrant replacement of X. Applying MC5(ii) to the folding map, we have

the factorisation

Xc qXc � Xc ∧ I ∼−→ Xc,

where Xc ∧ I is a very good cylinder object of Xc. The suspension of X denoted

ΣX is defined as the pushout diagram

Xc qXc Xc ∧ I

∗ ΣX.

Dually, choosing a factorisation of the diagonal map by MC5(i), we have

X f ∼−→ (X f)
I
� (X f)× (X f),

where (X f)
I

is a very good path object for a fibrant replacement of X. The loop

object of X denoted ΩX is defined by the pullback diagram

ΩX (X f)
I

∗ (X f)× (X f).

These constructions are not functorial or adjoint on C, but they become functorial

and adjoint in the homotopy category.

Theorem 2.3.2. [Qui06, Section I.2] Let C be a pointed model category. We

have well-defined functors on Ho(C), the suspension functor

Σ : Ho(C)→ Ho(C),
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and the loop functor

Ω : Ho(C)→ Ho(C).

Furthermore, they form an adjunction

Σ : Ho(C)� Ho(C) : Ω.

Definition 2.3.3. A pointed model category C is called stable if Σ and Ω are

inverse equivalences of homotopy categories.

Example 2.3.4. We have the following non-stable model categories:

• The category of pointed topological spaces Top∗, equipped with the model

structure defined in Proposition 2.1.12, is not stable. In fact, Σ and Ω in

this case are not inverse equivalences of homotopy categories. To see this,

it is sufficient to consider a counterexample. We have that

Σ : π2(S1)→ π3(S2)

is not an isomorphism since π2(S1) ∼= 0 and π3(S2) ∼= Z. Therefore Σ is

not an equivalence of homotopy categories in that case.

• The category of pointed simplicial sets sSets∗, with the model structure de-

fined in Theorem 2.1.23, is not stable. We can deduce that from the fact

that for any X ∈ sSets∗, we have the following isomorphism between the

suspension and the geometric realisation | − |

|ΣX| ∼= Σ|X|.

Since the category Top∗ is not stable, the category sSets∗ is not stable either.

The following is an example of a stable model category

Example 2.3.5. The category of non-negatively graded chain complexes ChR, is

a stable model category with respect to the projective model structure in Theorem
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2.1.14. Take (M,∂) a cofibrant chain complex in ChR, that is a degreewise pro-

jective chain complex. First, we know that in that case the coproduct M qM and

the product M ×M are the direct sum M ⊕M . A cylinder object M ∧ I for M

is the chain complex defined by

(M ∧ I)n = Mn ⊕Mn−1 ⊕Mn,with differentials

δn(a, b, c) = (∂na+ b,−∂n−1b, ∂nc− b).

The chain maps i1, i2 : M →M ∧ I and p : M ∧ I →M are given by

i1(m) = (m, 0, 0),

i2(m) = (0, 0,m),

p(a, b, c) = a+ c.

We can check that p ◦ i1 = p ◦ i2 = IdM , and that p is a quasi-isomorphism.

Moreover, the map i : M ⊕ M → M ∧ I, defined by i(a, b) = (a, 0, b), is a

cofibration since M is projective. Now, the suspension of M , denoted by ΣM , is

defined by the pushout diagram

Mn ⊕Mn Mn ⊕Mn−1 ⊕Mn

0 (ΣM)n ∼= Mn−1.

The differential of the suspension chain complex is dn = −∂n−1. Analogously,

we construct a path object for M denoted (M I , σ), and that is the chain complex

defined by

(XI)n = Xn ⊕Xn ⊕Xn+1, with differentials

σn(a, b, c) = (∂na, ∂nb,−∂n+1c+ a− b).

We take the pullback of the resulting diagram, and we will have that the resulting
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loop object is the chain complex (ΩM,d′) defined as follows

(ΩM)n = Mn+1,

d′n = −∂n+1.

We can conclude that the chain maps

M → (Ω ◦ Σ)M, and

(Σ ◦ Ω)M →M

are quasi-isomorphisms since Σ and Ω are degree shifts.

Another important example of a stable model category is the category of

spectra denoted Sp, to which we devote its own section in the next chapter.
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Chapter 3

Stable homotopy theory

3.1 Spectra

Stable homotopy theory is concerned with the study of phenomena that re-

main unchanged after sufficiently many applications of the suspension functor.

The motivating idea behind studying stable homotopy theory is the Freudenthal

Suspension Theorem which implies that the sequence of homotopy classes of maps

[X, Y ]→ [ΣX,ΣY ]→ . . .→ [ΣnX,ΣnY ]→ . . .

is eventually constant for finite-dimensional pointed CW-complexes X and Y .

The goal is to form a “stable” category where the suspension operation is in-

vertible, i.e. we should be able to desuspend any object in this category. To get

this stability property, we have to pass from working with topological spaces to

working with spectra

Spaces
stabilisation7−−−−−−→ Spectra.

Spectra are objects related to spaces and were developed around the 1960s by

Lima [Lim59] and later generalised by Whitehead [Whi62]. The suspension is not

invertible in the category of spectra, but becomes invertible when we pass to the

associated homotopy category and obtain what is called the stable homotopy cat-

egory. This stable homotopy category has many nice properties not found in the

30



3.1 Spectra

(unstable) homotopy category of spaces. Hence, studying this stable homotopy

category has been an active field in algebraic topology, beginning with Boardman

in his Ph.D thesis, and Adams [Ada95], and continuing to this day.

In this section, we will define the category of spectra denoted Sp, then briefly

talk about the smash product ∧, which plays a role in stable homotopy theory

similar to that of the tensor product in algebra.

Definition 3.1.1. A spectrum X is a sequence of pointed simplicial sets (X0, X1, · · · )

together with structure maps

σXn : ΣXn → Xn+1, or equivalently

σ̄Xn : Xn → ΩXn+1.

A morphism f : X → Y of spectra is a collection of morphisms of pointed sets

fn : Xn → Yn

that commute with the structure maps, that is,

fn+1 ◦ σXn = σYn ◦ Σfn, for all n ≥ 0.

A spectrum X is called a suspension spectrum (respectively an Ω-spectrum) if σXn

(respectively σ̄Xn ) is a weak homotopy equivalence for all n.

Remark 3.1.2. We can define a spectrum to be a sequence of CW-complexes,

or pointed topological spaces. However, all these definitions will determine the

same homotopy category, known as the stable homotopy category.

Definition 3.1.3. The homotopy groups of a spectrum X are the stable homo-

topy groups

πn(X) = colim
i

πn+i(Xi),
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where the homomorphisms of the direct system are

πn+i(Xi)
Σ−→ πn+i+1(ΣXi)

(σi)∗−−−→ πn+i+1(Xi+1).

Note that if X is an Ω-spectrum, then the homomorphism

πn+i(Xi)→ πn+i+1(Xi+1)

is an isomorphism for n+ i ≥ 1, and we have πn(X) = πn+i(Xi) for n+ i ≥ 1.

Example 3.1.4.

(a) Suspension spectrum

If X is a pointed space, we define its suspension spectrum denoted Σ∞X, by

taking the nth-term to be (Σ∞X)n = ΣnX and the structure maps σn = Id. The

homotopy groups of the suspension spectrum Σ∞X are the stable homotopy groups

of the based space X

πn(Σ∞X) = colim
i

πn+i(Σ
iX) = πSn (X).

(b) Sphere spectrum S0

The sphere spectrum is denoted S0 because of its special role. We take the n-sphere

Sn to be the nth- term and

σn : ΣSn ∼= Sn+1 → Sn+1

to be the canonical homeomorphisms. In that case, the homotopy groups of the

sphere spectrum are the stable homotopy groups of spheres. Actually, by Freuden-

thal’s theorem the sequence stabilises and the colimit is attained at a finite stage

πstn (S0) = colim
i

πn+i(S
i) = πn+i(S

i), for i > n+ 2.

(c) Eilenberg-MacLane spectra HG
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Let G be an abelian group and n ∈ N. An Eilenberg-MacLane space of type n,

denoted K(G, n), is a CW-complex with a single non-vanishing homotopy group

G occuring in dimension n. Such spaces exist ([Gra75, Theorem 17.3]), and are

uniquely determined up to weak homotopy equivalence. This sequence of spaces,

as n varies, assembles to make a spectrum HG by taking Xn = K(G, n). Since

looping shifts homotopy, i.e.

πn(ΩX) ∼= πn+1(X),

we have a weak homotopy equivalence

σ̄n : K(G, n)→ ΩK(G, n+ 1),

which is a homotopy equivalence by Whitehead’s theorem. The map

σn : ΣK(G, n)→ K(G, n+ 1)

is the adjoint of the homotopy equivalence σ̄. The homotopy groups of HG are

concentrated in a single degree like the spaces from which it was built

πn(HG) =

 G if n = 0,

0 if n 6= 0.

(d) Moore Spectrum M(G)

Let G be an abelian group. The Moore spectrum M(G) has a Moore space M(G, n)

at the level n. A Moore space M(G, n) is a CW-complex with one 0-cell and all

other cells in dimensions n and n+ 1 such that
πn(M(G, n)) ∼= G,

πk(M(G, n)) = 0 if k < n,

Hi(M(G, n),Z) = 0 if i > n.
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Given any abelian group G, there is a Moore spectrum M(G) unique up to weak

equivalence. The spectrum M(G) has the following homology and homotopy

groups 
π0(M(G)) = H0(M(G),Z) = G,

πi(M(G)) = 0 for i < 0,

Hi(M(G),Z) = 0 for i 6= 0.

Note that the sphere spectrum is a Moore spectrum for G = Z.

Remark 3.1.5. Since we defined a spectrum to be a sequence of simplicial sets,

when we say a space in the above examples we mean the associated simplicial set

to that space.

The following well-known theorem, see for example [Ada69] and [Ada95], al-

lows us in certain cases to determine the homotopy groups of a certain Moore

spectrum.

Theorem 3.1.6. (Universal coefficient theorem) For a group G, we have a short

exact sequence

0→ G⊗Z πnS0 → πn(M(G))→ TorZ(G, πn−1S0)→ 0.

We can use the above theorem to deduce the below result. Note that it is a

well-known fact, but we choose to include the proof to show how the universal

coefficient theorem can be used to deduce such a result.

Corollary 3.1.7. For G = Q, the rational numbers, there is an equivalence

between the rational Moore spectrum and the Eilenberg-MacLane spectrum.

M(Q) ' HQ.

Proof. If we take G = Q in Theorem 3.1.6, we end up with the following short

exact sequence

0→ Q⊗ πnS0 → πn(M(Q))→ Tor(Q, πn−1S0)→ 0.
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However, we know that

Tor(Q, πn−1S0) = 0,∀n.

Hence, we have an isomorphism

Q⊗ πnS0 → πn(M(Q)).

Plus, by a Theorem of Serre, we know that

 Q⊗ πnS0 = 0, for n 6= 0

Q⊗ π0S0 ∼= Q.

We conclude that the spectrum MQ is characterised by the homotopy groups

πnMQ =

 Q, n = 0

0, n 6= 0.

As seen in Example 3.1.4(c), that means that we have a weak equivalence between

MQ and the rational Eilenberg-MacLane spectrum HQ.

Remark 3.1.8. For G = Z/p, the mod-p Moore spectrum is defined as the cofibre

of multiplication by p on the sphere spectrum, i.e. it is part of a distinguished

triangle

S0 .p−→ S0 incl−−→M(Z/p) pinch−−−→ ΣS0.

We will learn about distinguished triangles in the next section. Here, incl is

the inclusion of the bottom cell, and pinch is the map that “pinches” off the

bottom cell so that only the top cell is left. Alternatively, M(Z/p) can be defined

as Σ−1(Σ∞M(Z/p, 1)), the desuspension of the suspension spectrum of a mod-p

Moore space M(Z/p, 1). The spectrum Σ∞M(Z/p, 1) is the suspension spectrum

associated to the space M(Z/p, 1) = S1 ∪p D2, i.e. the space obtained from the
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circle S1 by attaching a 2-disc along the degree p map

S1 .p−→ S1

z 7→ zp.

Remark 3.1.9. The degree two map of the Moore spectrum, 2IdM(Z/2), is non-

zero in Ho(Sp) [Sch08, Proposition 4]. Furthermore, it factors as the composite

M(Z/2)
pinch−−−→ S1 η−→ S0 incl−−→M(Z/2),

where η : S1 → S0 is the well-known Hopf map. It is worth noticing that for p

odd this is not true, and we have

p IdM(Z/p) = 0 [Sch08, Proposition 5].

Definition 3.1.10. Throughout this thesis, Sp denotes the model category of

spectra with the stable Bousfield-Friedlander model structure [BF78]:

A map f : X → Y in Sp is:

· a weak equivalence if f∗ : π∗X → π∗Y is an isomorphism,

· a cofibration if the induced map

ΣYn ∪ΣXn Xn+1 → Yn+1

is a cofibration of simplicial sets for all n > 1 and X0 → Y0 is a cofibration

of simplicial sets,

· a fibration if f has the right lifting property with respect to trivial cofibra-

tions. Or equivalently, if f is a fibration in sSet∗ such that X and Y are

fibrant in Sp.

Remark 3.1.11. (a) A spectrum X is fibrant in Sp with respect to this model

structure if and only if X is an Ω-spectrum and each Xn is a Kan-complex.
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(b) A spectrum X is cofibrant with respect to the model structure defined above

if and only if each

σXn : ΣXn → Xn+1

is an injection.

(c) The homotopy category of spectra denoted Ho(Sp) is called the stable ho-

motopy category and is our centre of interest for the rest of this thesis.

Definition 3.1.12. Take X and Y two spectra. We construct the spectrum

X ∧Y (we read it X smash Y ) as a functor of two variables, with arguments and

values in the stable homotopy category Ho(Sp)

− ∧− : Ho(Sp)× Ho(Sp)→ Ho(Sp),

such that we have the following natural homotopy equivalences.

a = a(X, Y, Z) : (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z)

τ = τ(X, Y ) : X ∧ Y → Y ∧X

l = lX : S0 ∧X → X

r = rX : X ∧ S0 → X

s = sX,Y : (ΣX) ∧ Y → Σ(X ∧ Y ).

Remark 3.1.13. In this thesis, we will not need to know more than the above

properties. However, the construction of the smash product is somehow compli-

cated and not as obvious as one would like. A good source to learn more about

the construction of the smash product is [Ada95, chapter 4] and [Swi75, Theo-

rem 13.40]. However, having a smash product defined on the category of spectra

before passing to the homotopy level is possible, but with a different notion of

spectra, for example symmetric spectra. For more details about that see [HSS00].
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3.2 Tools from triangulated categories

3.2 Tools from triangulated categories

Another important feature of the stable homotopy category Ho(Sp), as we

will see later, is that it carries the structure of a triangulated category. Trian-

gulated categories are a special class of categories which appear in many areas

of mathematics, specifically stable homotopy theory. This kind of category first

appeared implicitly in papers on stable homotopy theory in the work of Puppe,

until Verdier axiomatised the properties of these categories in his Ph.D thesis

[Ver96].

In this section, we define several tools that will play a relevant role in the

upcoming chapters. We start by defining triangulated categories, then we talk

about Toda brackets. Afterwards, we define cofiber and fiber sequences, and

we close the subsection 3.2.3 by giving a precise definition of what we mean by

rigidity and exotic models in stable homotopy theory. Lastly, we end this section

by talking about compact generators.

3.2.1 Triangulated categories

Definition 3.2.1. A category A is called additive if the following conditions are

satisfied.

(A1) Each morphism set HomA(X, Y ) is endowed with the structure of an abelian

group, and the composition operation is bilinear.

(A2) We have a zero object 0A, that is an object which is both the terminal and

initial object of A.

(A3) The category A has finite products which are isomorphic to finite coprod-

ucts.

Definition 3.2.2. A functor F : A → A′ between additive categories is called

additive if it is compatible with the additive structure. In other words, for any
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3.2 Tools from triangulated categories

two objects X and Y in A, the mapping induced by F

HomA(X, Y )→ HomA′(F (X), F (Y ))

is a homomorphism of abelian groups.

Definition 3.2.3. Let T be an additive category equipped with an auto-equivalence

Σ : T → T .

A triangle in T is a sequence (α, β, γ) of maps

X
α−→ Y

β−→ Z
γ−→ ΣX,

and a morphism betweeen two triangles (α, β, γ) and (α′, β′, γ′) is a triple (Φ1,Φ2,Φ3)

of maps in T making the following diagram commutative

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′.

Φ1 Φ2 Φ3 ΣΦ1

The category T is triangulated if it is equipped with a class of distinguished

triangles called exact triangles, satisfying the following axioms.

(TR0) The exact triangles are closed under isomorphisms.

(TR1) For all X ∈ T , the triangle 0→ X
IdX−−→ X → 0 is exact.

(TR2) Each map α : X → Y fits into an exact triangle X
α−→ Y

β−→ Z
γ−→ ΣX.

(TR3) A triangle (α, β, γ) is exact if and only if (β, γ,−Σα) is exact.

(TR4) Given two exact triangles (α, β, γ) and (α′, β′, γ′), each pair of maps Φ1 and

Φ2 satisfying Φ2 ◦α = α′ ◦Φ1, can be completed to a morphism of triangles
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3.2 Tools from triangulated categories

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′.

α

Φ1

β

Φ2

γ

Φ3 ΣΦ1

α′ β′ γ′

(TR5) (Octahedal axiom) Given exact triangles (α1, α2, α3), (β1, β2, β3), and (γ1, γ2, γ3)

with γ1 = β1 ◦ α1, there exists an exact triangle (δ1, δ2, δ3) making the fol-

lowing diagram commute

X Y U ΣX

X Z V ΣX

W W

ΣY ΣU.

α1

IdX

α2

β1

α3

δ1 IdΣX

γ1 γ2

β2

γ3

δ2

IdW

β3 δ3

Σα2

Lemma 3.2.4. [Nee14, Proposition 1.1.20] Let (Φ1,Φ2,Φ3) be a morphism be-

tween exact triangles. If two maps out of three are isomorphisms, then so is the

third.

Remark 3.2.5. We can see that by applying the previous proposition to (IdX , IdY ,Φ),

the exact triangle in (TR2) is unique up to isomorphism. Note that this isomor-

phism is not unique because the completion of the diagram in (TR4) is not unique.

Definition 3.2.6. Let C and D be triangulated categories. An exact functor

F : D → C is an additive functor together with a natural equivalence Φ : FΣ→ ΣF ,

with the property that for any exact triangle

X
α−→ Y

β−→ Z
γ−→ ΣX

in D, the following candidate triangle is exact in C

F (X)
F (α)−−→ F (Y )

F (β)−−→ F (Z)
ΦX◦F (γ)−−−−−→ ΣF (X).
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3.2 Tools from triangulated categories

In other words, an exact functor sends exact triangles to exact triangles.

Definition 3.2.7. A triangulated subcategory T ′ of T is a full additive subcat-

egory with a triangulated structure, such that the inclusion functor T ′ ↪→ T is

exact, and every object isomorphic to an object in T ′ is in T ′.

Remark 3.2.8. The above definition is equivalent to saying that the category

T ′ is invariant under suspension, and if in a triangle two out of three objects are

in T ′, then so is the third.

3.2.2 Toda brackets

Toda brackets are operations on homotopy classes of maps, named after Hi-

roshi Toda who defined them and used them to compute homotopy groups of

spheres in [Tod62]. We will use Toda brackets mainly in Chapter 5 to complete

short exact sequences.

We start by considering the following diagram in a triangulated category T

X3 X2 X1 X0

C

ΣX3,

λ3 λ2

ι

λ1

Π

β

γ

in which λ1, λ2 and λ3 are maps such that λ1◦λ2 = 0 = λ2◦λ3, and (λ3, ι,Π) is an

exact triangle in T . If we apply the functor HomT (−, X1) to the exact triangle,

we get an exact sequence

HomT (ΣX3, X1)
Π∗−→ HomT (C,X1)

ι∗−→ HomT (X2, X1)
λ∗3−→ HomT (X3, X1).

Hence the relation λ2 ◦ λ3 = 0 tells us that λ2 ∈ Kerλ∗3 = Imι∗, which implies

the existence of a map β : C → X1 with β ◦ ι = λ2. Note that this choice of β is

not necessarily unique. Similarly, we apply HomT (−, X0) and obtain the exact
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3.2 Tools from triangulated categories

sequence

HomT (ΣX2, X0)
(Σλ3)∗−−−−→ HomT (ΣX3, X0)

Π∗−→ HomT (C,X0)
ι∗−→ HomT (X2, X0).

Now, the relation λ1 ◦λ2 = 0 = λ1 ◦ β ◦ ι implies that there exists a (non-unique)

γ ∈ HomT (ΣX3, X0) such that γ ◦ Π = λ1 ◦ β.

The construction of the element γ is not necessarily unique as there are

choices involved in its construction. First, we can alter β by an element of

Π∗(HomT (ΣX3, X1)), and γ by an element of (Σλ3)∗(HomT (ΣX2, X0)) as we can

read off from the exact sequences. Putting these choices together we see that γ

is only defined modulo

(Σλ3)∗(HomT (ΣX2, X0)) + λ1∗(HomT (ΣX3, X1)) ⊆ HomT (ΣX3, X0).

Definition 3.2.9. Let

X3
λ3−→ X2

λ2−→ X1
λ1−→ X0

be a sequence in a triangulated category T with λ1 ◦ λ2 = λ2 ◦ λ3 = 0. The Toda

bracket 〈
λ1, λ2, λ3

〉
is the set of all maps γ in HomT (ΣX3, X0) which can be constructed as above.

Since there are choices involved in the construction of γ, the Toda bracket
〈
λ1, λ2, λ3

〉
is an element of the quotient group HomT (ΣX3, X0)/R, where

R = (Σλ3)∗(HomT (ΣX2, X0)) + λ1∗(HomT (ΣX3, X1)),

which we refer to as the indeterminacy of the Toda bracket involved.

Example 3.2.10. If x is an element of πst∗ (S0) such that 2x = 0, then

x ◦ η ∈
〈
2, x, 2

〉
.
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This can be seen from the commutative diagram below, and remember that

2IdM(Z/2) = incl ◦ η ◦ pinch, by Remark 3.1.9.

Sn Sn S0 S0

ΣnM(Z/2) ΣnM(Z/2) Sn

Sn+1.

.2 x

incl

.2

pinch

x̄

.2

x̄
x

incl

η

The following theorem, as its name suggests, helps us to see what happens

when we juggle around different elements in a Toda bracket.

Theorem 3.2.11. (Juggling Theorem)[Rav03, Theorem A1.4.6] [Koc96, Propo-

sition 5.7.4] Let

X3
λ3−→ X2

λ2−→ X1
λ1−→ X0

α−→ Z

be composable morphisms in a triangulated category T . Then the following inclu-

sions hold if the involved Toda brackets are defined:

(a)
〈
α ◦ λ1, λ2, λ3

〉
⊆
〈
α, λ1 ◦ λ2, λ3

〉
(b) α ◦

〈
λ1, λ2, λ3

〉
⊆
〈
α ◦ λ1, λ2, λ3

〉
.

Remark 3.2.12. For a detailed list of relations between Toda brackets we suggest

[Tod62, page 30]. We list some of these relations which we will need later on.

(a) If one of the elements λ1, λ2 or λ3 is zero, then
〈
λ1, λ2, λ3

〉
= 0.

(b)
〈
λ1 + λ′1, λ2, λ3

〉
⊆
〈
λ1, λ2, λ3

〉
+
〈
λ′1, λ2, λ3

〉
(c)

〈
λ1, λ2, λ3

〉
+
〈
λ1, λ

′
2, λ3

〉
=
〈
λ1, λ2 + λ′2, λ3

〉
(d)

〈
λ1, λ2, λ3 + λ′3

〉
⊆
〈
λ1, λ2, λ3

〉
+
〈
λ1, λ2, λ

′
3

〉
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3.2.3 Cofiber and fiber sequences

Before stating the result that gives a triangulated structure on the stable

homotopy category, we briefly introduce fiber and cofiber sequences. For more

details about their construction, we suggest [Hov99, Chapter 6] or [Qui06, Chap-

ter I.3].

Definition 3.2.13. Let C be a pointed model category, and f : X → Y a

morphism in our category. We define the cofiber of f as the pushout diagram

X Y

∗ Cofib(f).

f

Dually, we define the fiber of f as the pullback diagram

Fib(f) ∗

X Y.
f

Definition 3.2.14. Suppose C is a pointed model category. A cofiber sequence

in Ho(C) is any diagram that is isomorphic to a diagram of the form

A
f−→ B

g−→ C,

where f is a cofibration of cofibrant objects in C with cofiber C, together with a

right coaction of ΣA on C given by [Hov99, Theorem 6.2.1] or [Qui06, Chapter

I.3].

Remark 3.2.15. Suppose we have a cofiber sequence

X → Y → Z,
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with a right coaction of ΣX on Z. Then we have a map

∂ : Z → ΣX

called the boundary map of the cofiber sequence.

Definition 3.2.16. Dually, we can define a fiber sequence as a diagram

X → Y → Z

in Ho(C) together with a right action of ΩZ on X, which is isomorphic in Ho(C)

to a diagram

E
i−→ F

p−→ G,

where p is a fibration between fibrant objects with fiber E. Furthermore, we have

a boundary map

∂ : ΩZ → X

associated to the fiber sequence

X → Y → Z.

Proposition 3.2.17. [Hov99, Proposition 6.3.4] Let C be a pointed model cate-

gory, suppose that

X
f−→ Y

g−→ Z

is a cofiber sequence in C, then the cofiber sequence can be “extended” to the right.

In other words, the sequence

Y
g−→ Z

∂−→ ΣX
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becomes a cofiber sequence. Dually, a fiber sequence A
h−→ B

k−→ C is “expandable”

to the left, meaning that the sequence

ΩC
∂−→ A

h−→ B

is a fiber sequence itself.

Proposition 3.2.18. [Hov99, 7.1.6] The homotopy category Ho(C) of a stable

model category C carries the structure of a triangulated category. The exact tri-

angles are given by the fiber and cofiber sequences, since in this case they coincide

up to sign.

In particular, since the category of spectra with the model structure in Defi-

nition 3.1.10 is stable, its homotopy category Ho(Sp) is a triangulated category.

Notation. We denote the morphisms in a triangulated category T by [A,B]T .

This is a group since triangulated categories are, in particular, additive. By

[A,B]Tn we mean [ΣnA,B]T . If T = Ho(C) for some stable model category, we

write [A,B]C instead of [A,B]Ho(C).

The following proposition is used as a basic tool for constructing long exact

sequences out of exact triangles.

Theorem 3.2.19. [Ada95, III Proposition 3.9.] Suppose we have an exact tri-

angle in the stable homotopy category

X
f−→ Y

g−→ Z
h−→ ΣX,

then for each W in Sp the sequence

. . .→ [X,W ]Sp
n+1 −→ [Z,W ]Sp

n −→ [Y,W ]Sp
n −→ [X,W ]Sp

n → . . .

(respectively, . . .→ [W,X]Sp
n −→ [W,Y ]Sp

n −→ [W,Z]Sp
n −→ [W,X]Sp

n−1 → . . .)

is exact.
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The next example will be useful later on, in the proof of Lemma 4.1.2, and in

Section 5.2.12 where we are going to use it to compute certain homotopy groups.

Example 3.2.20. We start first by remembering that a long exact sequence of

modules over a ring R

0→M1
Φ1−→M2

Φ2−→ . . .
Φn−1−−−→Mn

Φn−→Mn+1
Φn+1−−−→ . . .

can be split into short exact sequences

0→ Coker(Φi−2)
Φi−1−−−→Mi

Φi−→ ImΦi → 0.

By applying the above to the long exact homotopy sequence produced by Theorem

3.2.19 from the exact triangle

S0 p.−→ S0 incl−−→M
pinch−−−→ S1,

we get short exact sequences of the form

0 −→
(
πm+1(S0)

)/
p

incl∗−−→ πm+1(M(Z/p)) pinch∗−−−→ {πm(S0)}p → 0.

Here,

{πm(S0)}p = {x ∈ πm(S0) : px = 0}

is the p-torsion of the group πm(S0).

After we have provided the necessary background, we can define rigidity and

exotic model.

Definition 3.2.21. Let C be a fixed stable model category (for example C = Sp),

and D any stable model category. Assuming that there is an equivalence of

triangulated categories on their homotopy level

Φ : Ho(C) ∼−→ Ho(D),
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are C and D Quillen equivalent?

• If the answer is affirmative, then we say that Ho(C) is rigid. For example,

for C = Sp, Schwede showed that Ho(Sp) is rigid [Sch07a].

• If the answer is negative, and we have a counterexample where rigidity is

not verified, then we say that D is an exotic model for C.

3.2.4 Compact generators

Definition 3.2.22. Let T be a triangulated category with infinite coproducts,

and T ′ a full triangulated subcategory of T with shift and triangles induced from

T . The subcategory T ′ is called localising if it is closed under coproducts in T .

Definition 3.2.23. A set G of objects of a triangulated category T is called a

set of generators if the only localising subcategory containing the objects of G is

T itself.

Definition 3.2.24. We say that an object A of a triangulated category T is

compact (also called small or finite) if the functor [A,−]T from T to groups

commutes with arbitrary coproducts, i.e. for any family of objects {Ai}i∈I whose

coproduct exists, the canonical map

⊕
i∈I

[A,Ai]
T → [A,

∐
Ai]
T

is an isomorphism.

Note that objects of a stable model category are called “generators” or “com-

pact” if they are so when considered as objects of the triangulated homotopy

category.

The next theorem tells us what criterion should be satisfied by a set of compact

objects, in order to become generators of a triangulated category.

Theorem 3.2.25. [SS03, Lemma 2.2.1] Let T be a triangulated category with

infinite coproducts, and G a set of compact objects. Then the following are equiv-

alent.
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(i) The set G generates T in the sense of Definition 3.2.23.

(ii) The objects of G detect isomorphisms, meaning that a morphism X → Y in

T is an isomorphism if and only if [G,X]T → [G, Y ]T is an isomorphism

for all G ∈ G.

The previous theorem will form an important step in the proof of the main

result in this thesis. Briefly speaking, if we want to prove that a criterion is true

for all the objects in a certain triangulated category, then it is often sufficient to

prove it true for a compact generator.

Remark 3.2.26. Note that in Theorem 3.2.25, the point (i) implies (ii) even

without the hypotheses of compactness. In other words, the objects of a set of

generators detect isomorphisms.

Example 3.2.27. The sphere spectrum S0 is a compact generator of the stable

homotopy category Ho(Sp). It “generates” the whole stable homotopy category

under exact triangles and coproducts.

In the next section, after introducing Bousfield localisation, we will give more

examples that will be our center of interest for the rest of the thesis. For a list of

interesting examples of compact generators see [SS03, Examples 2.3].

3.3 Bousfield localisation

A useful tool to create a new model category out of a given one is Bousfield

localisation. This section starts by defining homology theories, and then con-

structing the function spectrum F (X, Y ). After that, we will talk about Bous-

field localisation of spectra with respect to some homology theories, in particular

with respect to Morava K-theory. We will end this section by discussing the

“Periodicity Theorem” and the self-map on the Moore spectrum which will be

needed later on.

49



3.3 Bousfield localisation

Definition 3.3.1. A generalised homology theory E∗ is a covariant functor from

the category of pairs of pointed spaces to the category of graded abelian groups,

such that the first three of the Eilenberg-Steenrod axioms are satisfied:

(i) (Homotopy axiom) Homotopic maps

f, g : (X,A)→ (Y,B)

induce the same homomorphism

E∗(f) = E∗(g) : E∗(X,A)→ E∗(Y,B).

(ii) (Exactness axiom) For each pair (X,A), there is a natural long exact se-

quence

. . .→ En(A)
En(i)−−−→ En(X)

En(j)−−−→ En(X,A)
∂−→ En−1(A) −→ . . . ,

where En(i) is the homomorphism induced by the inclusion map

i : A→ X.

(iii) (Excision axiom) If we have the inclusions C ⊂ A ⊂ X, with the closure of

C contained in the interior of A, then there is an isomorphism

E∗(X − C,A− C)
∼=−→ E∗(X,A).

A generalised cohomology theory E∗ is a contravariant functor with similar prop-

erties.

Actually, such theories can be constructed out of spectra. These constructions

are due to G. W. Whitehead [Whi62].

Definition 3.3.2. Let E be an Ω-spectrum, and X a based space. The gener-
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alised cohomology theory E∗ associated with E is defined by

En(X) = [Σ∞X,E]−n,

and the generalised homology theory E∗ associated with E is defined by

En(X) = πn(E ∧X),

where E ∧ X denotes the smash product of E with the suspension spectrum

associated with X.

Notation. For a spectrum E, we denote E∗ := E∗(S0) ∼= π∗(E). This is called

the coefficient ring of the associated homology theory.

Example 3.3.3. (i) Ordinary homology or cohomology with coefficients in an

abelian group G can be constructed by taking E to be the Eilenberg-MacLane

spectrum HG.

E∗(X) = π∗(HG ∧X) = H∗(X,G),

E∗(X) = [X,HG]∗ = H∗(X,G).

(ii) If E is the sphere spectrum S0, then the resulting homology theory consists

of the stable homotopy groups of X

En(X) = πstn (X),

and the coefficient ring in that case is the ring of stable homotopy groups of

spheres.

(iii) Complex topological K-theory is usually defined in terms of stable equiv-

alence classes of complex vector bundles, but the Bott periodicity theorem

allows us to define complex K-theory in terms of spectra. In fact, complex

K-theory is the cohomology theory associated with the periodic K-theory
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spectrum

(KU)n =

 Z×BU if n even,

ΩBU if n odd.

Here, U is the stable unitary group, and BU is its classifying space. The

structure maps are the adjoints to

(σ̄ : KUn → ΩKUn+1) =

 the Bott equivalence Z×BU
∼=−→ Ω2BU if n even,

the identification ΩBU
∼=−→ Ω(Z×BU) if n odd.

Theories constructed from a spectrum satisfy the following axiom.

Definition 3.3.4 (Wedge Axiom). Suppose that W is a (possibly infinite) wedge

of spaces,
∨
i

Xi, then

E∗(W ) ∼=
∏
α

E∗(Xα), and

E∗(W ) ∼=
⊕
α

E∗(Xα).

Likewise, constructing a spectrum out of a generalised (co)homology theory

is possible by the following theorem.

Theorem 3.3.5. (Brown Representability Theorem)[Bro62] If h∗ is a generalised

cohomology theory satisfying the wedge axiom, then there is a spectrum E such

that h∗ = E∗.

Remark 3.3.6. Note that with a finiteness assumption on the domain of the

generalised homology theory, there is a homology version of the Brown repre-

sentability theorem due to Adams [Ada71].

The complex bordism of a space X, denoted MU∗(X), can be interpreted

geometrically as the group of bordism classes of manifolds over X with a complex

linear structure. However, it can be represented by a spectrum MU, called the
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Thom spectrum for the unitary group, and described in terms of Thom spaces:

MU2n = MU(n),

MU2n+1 = ΣMU(n).

Here, MU(n) is the Thom space of the universal n-dimensional complex vector

bundle over the classifying space BU(n) of the unitary group U(n). Moreover,

the complex bordism ring MU∗ has many interesting algebraic properties, and is

isomorphic to the following graded ring

MU∗ ∼= Z[x1, x2, . . .], |xi| = 2i.

Brown and Peterson showed that after localising MU at a prime p, the MU

spectrum is homotopy equivalent to an infinite wedge of suspensions of “smaller”

spectra named BP after them, with coefficient ring

BP∗ ∼= Z(p)[v1, v2, . . .], |vi| = 2pi − 2.

Here, Z(p) is the ring of integers localised at p.

Many important homology theories are constructed from MU∗ or BP∗ via

Landweber’s exact functor theorem [Lan76]. Landweber’s theorem states that

given a BP∗-module M∗, and under certain conditions, the functor

BP∗(−)⊗BP∗ M∗ =: M∗(−)

is a generalised homology theory which can be represented by a spectrum M .

In this thesis we restrict ourselves to giving examples of such theories with-

out going into details. Good references for such constructions are [Rav16] and

[Rav03]. An important example of such homology theories satisfying Landweber’s

conditions and resulting in the construction of a generalised homology theory is

the Johnson-Wilson theory.
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Definition 3.3.7. For a fixed prime p and n a positive integer, the Johnson-

Wilson spectrum denoted E(n) is a spectrum with coefficients

E(n)∗ ∼= Z(p)[v1, v2, . . . , vn, v
−1
n ], |vi| = 2pi − 2.

The theory E(0)∗ agrees with singular homology with rational coefficients, while

E(1)∗ is related to complex K-theory. By the Adams splitting [Ada69], the spec-

trum E(1) is a summand of complex K-theory localised at p:

K(p)
∼=

p−2∨
i=0

Σ2iE(1).

There is an analogue of the Landweber exact functor theorem on some spec-

trum P (n) constructed from BP , and that enables us to construct the Morava

K-theories K(n)∗. The existence of such theories was proved by Jack Morava in

the early seventies in an unpublished work. The first published reference con-

cerning the K(n)’s is an article by Johnson and Wilson [JW75]. In this thesis

we will not talk about the construction of such theories, however a nice reference

containing more details is [Wür91]. Instead, we will restrict ourselves to defining

them and citing some of the many properties that made K(n) play an important

role in stable homotopy theory.

Definition 3.3.8. Let p be a fixed prime and n ∈ N. The Morava K-theory

K(n)∗ is a homology theory with coefficient ring

K(n)∗ ∼= Fp[vn, v−1
n ], |vn| = 2pn − 2.

Similar to E(n)∗, we have by convention that K(0) = E(0) = HQ = MQ, and

K(1) is related to complex K-theory. More precisely, we have that K(1) is a

summand of mod-p complex K-theory [Rav16, Proposition 1.5.2(ii)]. In our case

of interest in this thesis, p = 2, we have that mod-2 K-theory coincides with

K(1) since there is only one such summand. Since K(n)∗ is a graded field (i.e.

each non-zero homogeneous element has a multiplicative inverse), every graded
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module over it is free. This leads to a special isomorphism called the Künneth

isomorphism which provides us with a special tool to compute the homology of

a smash product of spectra

K(n)∗(X ∧ Y ) ∼= K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

Actually, this Künneth isomorphism is only verified by Morava K-theory and

ordinary homology with field coefficients.

Example 3.3.9. Given spectra X and Y , the graded group [W ∧X, Y ]∗, regarded

as a functor on the spectrum W , is a cohomology theory satisfying the wedge

axiom 3.3.4. Therefore, by 3.3.5 there is a spectrum, denoted by F (X, Y ) and

called the function spectrum, such that

[W ∧X, Y ]∗ ∼= [W,F (X, Y )]∗.

When X is finite and Y = S0, then F (X, Y ) is the Spanier-Whitehead dual of

X, denoted DX, and discussed in more detail below.

Theorem 3.3.10. [Rav16, Theorem 5.2.1] Let X be a finite spectrum, that is

any desuspension of the suspension spectrum of a finite CW-complex (i.e. its

total number of cells is finite), or that is weakly equivalent to one of that form.

Then, there is a unique finite spectrum DX (the Spanier-Whitehead dual of X)

with the following properties.

(i) For any spectrum Y , we have a natural isomorphism, in both X and Y ,

between the graded group [X, Y ]∗ and π∗(DX ∧ Y ). In particular, we have

DS0 ' S0.

(ii) This isomorphism is reflected in Morava K-theory, namely

Hom(K(n)∗(X), K(n)∗(Y )) ∼= K(n)∗(DX ∧ Y ).

(iii) DDX ' X, and [X, Y ]∗ ∼= [DX,DY ]∗.
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(iv) For a homology theory E∗, there is a natural isomorphism between Ek(X)

and E−k(DX).

(v) Spanier-Whitehead duality commutes with smash products, i.e. for finite

spectra X and Y ,

D(X ∧ Y ) = DX ∧DY.

The following lemma is a known result, but we choose to include its proof

because we could not find a reference.

Lemma 3.3.11. For a fixed prime p and n ∈ N, the mod-pn Moore spectra are

“self-dual” up to suspension. More precisely, the suspension Σ(DM(Z/pn)) is a

mod-pn Moore spectrum and we have the isomorphism

jn : M(Z/pn)→ Σ(DM(Z/pn))

in Ho(Sp).

Proof. In this proof we will use the notation

M = M(Z/pn).

We have the exact triangle in Ho(Sp)

S0 .pn−→ S0 −→M −→ S1.

By applying Theorem 3.2.19, we have the commutative diagram, in which the

upper and lower rows are exact

. . .→
[
S0,S0

]
n+1

[
S0,M

]
n+1

[
S0,S0

]
n

[
S0,S0

]
n

. . .

. . .→
[
S0, S0

]
n+1

[
M,S0

]
n

[
S0,S0

]
n

[
S0,S0

]
n

. . .

∼=

(.pn)∗

∼= ∼=

(.pn)∗
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By a Five Lemma argument, we conclude that

[
S0,M

]
n+1
∼=
[
M, S0

]
n
, for all n.

On the other hand, by Theorem 3.3.10(i), we have that

[
M,S0

]
n
∼=
[
S0, DM

]
n
, for all n.

which gives us the desired isomorphism in Ho(Sp)

[
S0,M

]
n+1
∼=
[
S0, DM

]
n
∼=
[
S0,ΣDM

]
n+1

.

Now, let E∗ be a generalised homology theory represented by a spectrum E.

Definition 3.3.12. A spectrum X is E∗-acyclic if

E∗(X) = π∗(E ∧X) = 0.

Definition 3.3.13. A map f : X → Y is an E∗-equivalence if it induces an

isomorphism on E∗-homology groups

E∗(f) : E∗(X)→ E∗(Y ).

Definition 3.3.14. A spectrum X is E∗-local if for each E∗-acyclic spectrum A,

we have

[A,X] = 0.

Equivalently, a spectrum X is E∗-local if each E∗-equivalence

f : A→ B

in Ho(Sp) induces a bijection

f ∗ : [B,X]→ [A,X].
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As we saw in Section 2.2, we can construct the homotopy category of a model

category by inverting weak equivalences. This process is done by localising a

model category by formally inverting a certain class of morphisms. In this thesis,

we choose to talk about a specific localisation which is the Bousfield localisa-

tion of spectra with respect to some generalised homology theory. However, to

read about localisation of a model category with respect to a certain class of

morphisms, we refer the reader to [Hir09].

Mainly speaking, Bousfield localisation restricts attention to the part of the

stable homotopy theory visible to a given homology theory E∗, which makes this

tool very useful in studying the stable homotopy category. The main references

for such constructions are [Bou79] and [Rav84]. This construction becomes par-

ticularly interesting when looking at some very special homology theories that

give information about the structure of the p-local stable homotopy category for

some prime p.

Definition 3.3.15. An E∗-localisation functor LE is a covariant functor from

Ho(Sp) to itself, along with a natural transformation η from the Id to LE, such

that:

(i) η
X

: X → LEX is an E∗-equivalence.

(ii) For any E∗-equivalence f : X → Y , there is a unique r : Y → LEX such

that rf = η
X

X Y

LEX

f

η
X r

Proposition 3.3.16. [Rav84, Proposition 1.5] If the functor LE exists, then it

has the following properties.

(i) It is unique.

(ii) It is idempotent, i.e. LE ◦ LE = LE.
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(iii) For any map g : X → Y , where Y is E∗-local, there is a unique map

g̃ : LEX → Y such that g̃ ◦ η
X

= g.

Theorem 3.3.17 (Localisation Theorem). [Bou79] For every generalised homol-

ogy theory E∗, there is a localisation functor

LE : Ho(Sp)→ Ho(Sp).

Theorem 3.3.18. [Bou79, Theorem 1.1] Given E and A in Ho(Sp), there is a

natural (in A) exact triangle

CEA
θ−→ A

η
A−→ LEA −→ Σ(CEA)

in Ho(Sp) such that CEA is E∗-acyclic and LEA is E∗-local.

We have a model structure on LESp described in the following proposition.

This construction can be seen as a special case of a more general result by

Hirschhorn [Hir09]. More details about that can be found in [BR14b].

Proposition 3.3.19. Let Sp be the category of spectra with the model structure

of Definition 3.1.10, and E∗ a generalised homology theory. Then there is a model

category LESp with the same objects as Sp and with the following model structure.

· The weak equivalences are the E∗-equivalences.

· The cofibrations are the cofibrations of Sp.

· The fibrations are the maps with the right lifting property with respect to

cofibrations that are E∗-equivalences.

Remark 3.3.20. As a consequence of the last proposition, we can see the model

structure on the category LESp as being formed out of the one on Sp such that:

· Every weak equivalence of Sp is a weak equivalence of LESp.

· The class of trivial fibrations of LESp is equal to the class of trivial fibrations

of Sp.
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· Every fibration of LESp is a fibration of Sp.

· Every trivial cofibration of Sp is a trivial cofibration of LESp.

Therefore, we can see that the adjunction

Id : Sp� LESp : Id

is a Quillen adjunction. Moreover, the categories Sp and LESp have the same

cofibrant objects, but the fibrant objects in LESp are the ones which are fibrant

in Sp and E∗-local. The set of homotopy classes of maps in Ho(LESp) is denoted

[X, Y ]LESp = [LEX,LEY ]Sp.

As in Theorem 2.2.12, we have a special version of the Whitehead Theorem

in the language of the E∗-local stable homotopy category, which enables us to get

global data on spectra from local data.

Lemma 3.3.21. (The E∗-Whitehead Theorem)

If X, Y ∈ Ho(Sp) are E∗-local, and f : X → Y is an E∗-equivalence, then f is

an isomorphism in Ho(Sp).

Lemma 3.3.22. [Bou79, Lemma 1.4]Suppose we have an exact triangle in Ho(Sp)

W −→ X −→ Y −→ ΣW.

If any two out of the three spectra W, X, Z are E∗-local, then so is the third.

Proposition 3.3.23. [Bou79, Lemma 1.10] If we have an exact triangle in

Ho(Sp)

W −→ X −→ Y −→ ΣW,

then its E-localisation

LEW −→ LEX −→ LEY −→ Σ(LEW )
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remains an exact triangle.

Remark 3.3.24. Bousfield localisation of a stable model category is not neces-

sarily again stable. In [BR14b, Proposition 3.6], the authors construct a char-

acterisation which allows us to verify when the stability of a model category is

preserved by Bousfield localisation. In particular, this gives us that the E-local

stable homotopy category LESp is a stable model category itself.

The following lemma is a well-known fact, but we choose to include the proof

since we could not find a reference for it.

Lemma 3.3.25. Let X and Y be in Ho(Sp), then we have the isomorphism

[X,LEY ]Sp
n
∼= [LEX,LEY ]Sp

n ,

for all n ∈ N.

Proof. We have the following morphism of exact triangles

CEX X LEX ΣCEX

∗ X X Σ ∗ .

η
X

Id η−1
X

Id

By Theorem 3.2.19, we have the commutative diagram, in which the upper and

lower rows are exact

[∗, LEY ]n+1 [X,LEY ]n [X,LEY ]n [∗, LEY ]n

[CEX,LEY ]n+1 [LEX,LEY ]n [X,LEY ]n [CEX,LEY ]n .

∼=

Id∗

(η−1
X

)
∗

Id∗ ∼=
η∗
X

We know that

[CEX,LEY ] = 0,

because LEY is E-local and CEX is E-acyclic. Then by the five lemma, we
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conclude that

[X,LEY ]Sp
n
∼= [LEX,LEY ]Sp

n .

Remark 3.3.26. Note that in general,

[LEX,LEY ]Sp
n
∼= [X,LEY ]Sp

n � [LEX, Y ]Sp
n .

Definition 3.3.27. Localisation at E is said to be smashing if for every spectrum

X, the map

Id ∧ η
S0

: X → X ∧ LES0

is an E-localisation.

Remark 3.3.28. Notice that in order to prove that a certain E-localisation is

smashing, it is sufficient to check if the spectrum X ∧ LES0 is E∗-local because

the map

Id ∧ η
S0

: X → X ∧ LES0

is always an E∗-equivalence.

Remark 3.3.29. The E-localisation functor LE is triangulated and preserves

generators. However, it does not preserve compactness in general, because the

functor LE does not commute with arbitrary coproducts. However, if the local-

isation is smashing, then the functor LE commutes with arbitrary coproducts

[Rav84, Proposition 1.27(d)], and the image of a compact generator is again a

compact generator. Therefore, the spectrum LES0 is a generator in Ho(LESp),

but it is compact for a smashing localisation.

Example 3.3.30. If E = HQ = M(Q), then

LQX := LHQX ' X ∧ LQS0 ' X ∧HQ

is smashing, and is called the rationalisation of X. In that case, the homotopy

groups are

π∗(LQX) ∼= π∗(X)⊗Q ∼= H∗(X)⊗Q.
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Another smashing localisation that will be used later on is p -localisation. In

other words, it is Bousfield localisation with respect to the p-local Moore spectrum

M(Z(p)). Here, Z(p) is the ring of integers localised at the prime p, that is, the

subring of the rational numbers with denominator prime to p.

Proposition 3.3.31. [Bou79, Proposition 2.4]For each X ∈ Ho(Sp), we have

LM(Z(p))X 'M(Z(p)) ∧X, and

π∗(LM(Z(p))X) ∼= Z(p) ⊗ π∗X.

An interesting result arising from p -localisation is the rigidity of the 2-local

stable homotopy category.

Theorem 3.3.32. [Sch01] Let C be a stable model category. If we have an equiv-

alence of triangulated categories between Ho(C) and the 2-local stable homotopy

category

Φ : Ho(C)→ Ho(Sp(2)),

then the category C and the 2-local spectra are Quillen equivalent.

Notation. Localisation of a spectrum X with respect to the p-local Moore spec-

trum will be denoted X(p).

Definition 3.3.33. The localisation of a spectrum X with respect to the mod-p

Moore spectrum M(Z/p) is the p-completion of X denoted X∧p , i.e.

X∧p = LM(Z/p)X.

If a spectrum is M(Z/p)-local, then we call it a p-complete spectrum.

Proposition 3.3.34. [Bou79, Proposition 2.5]

(a) For each X ∈ Ho(Sp), we have

X∧p = LM(Z/p)X ' F (ΩM(Z/p∞), X),
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where Z/p∞ can be defined as the factor group Z[1/p]/Z, or as the colimit

of the groups Z/pn under multiplication by p. Additionally, there is a split

short exact sequence

0 −→ Ext(Z/p∞, π∗X) −→ π∗(LM(Z/p)X) −→ Hom(Z/p∞, π∗−1X) −→ 0.

(b) If the groups π∗X are finitely generated, then

π∗(LM(Z/p)X) ∼= Z∧p ⊗ π∗X,

where Z∧p denotes the p-adic integers, which can be defined as the limit of

the group Z/pn under multiplication by “.p”.

(c) A spectrum X ∈ Ho(Sp) is M(Z/p)-local (equivalently p-complete) if and

only if the groups π∗(X) are Ext-p-complete, i.e. the completion map

π∗(X)→ Ext(Z/p∞, π∗(X))

is an isomorphism, and

Hom(Z/p∞, π∗(X)) = 0.

Moreover, p-completion can be described as a homotopy limit as we will dis-

cuss in Section 3.4.

Notation. Localisation with respect to p-local complex K-theory K(p), where

the coefficient ring is K(p)∗ = Zp[v1, v
−1
1 ], |v1| = 2p− 2 is denoted

LK(p)
= LE(1).

The reason behind the above equality is the Adams splitting that we talked about

earlier.
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Remark 3.3.35. Localisation with respect to E(n), LE(n), is also denoted Ln.

By the notation L0, we refer to the rationalisation, and we write

L0 = LQ = LE(0) = LK(0) (see Definition 3.3.8).

Furthermore, by [Rav84, Theorem 2.1]

LE(n) = Ln = LK(0)∨K(1)∨...∨K(n).

This also illustrates that we can view localisation with respect to K(n) as the

“difference” between Ln and Ln−1. Thus in our case we have

L1 = LE(1) = LK(p)
= LK(0)∨K(1).

Remark 3.3.36. Another consequence of [Rav84, Theorem 2.1] to keep in mind

is that if a spectrum is K(1)-local, it is also E(1)-local. But the converse is not

true in general. As we will see in Section 4.1 some other condition needs to be

added in order to achieve K(1)-locality out of E(1)-locality.

Another feature of the functors Ln is that, unlike the functors LK(n), they are

smashing.

Theorem 3.3.37 (Smash product theorem). [Rav16, Theorem 7.5.6] For any

spectrum X,

LnX ' X ∧ LnS0.

The smashing property of the functor Ln not only makes some calculations

easier, but also preserves the compactness of a generator as we saw in Remark

3.3.29. We conclude that in Ho(LnSp), the spectrum LnS0 is a compact generator.

On the other hand, localisation with respect to the nth-Morava K-theory is

not smashing for n > 0. Although the K(n)-local sphere is still a generator, it

is not a compact one. However, the following result provides us with a compact

generator for Ho(LK(n)Sp).
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Lemma 3.3.38. [HS99, Theorem 7.3] For a fixed prime p and n > 0, the spec-

trum LK(n)M(Z/p) is a compact generator for the K(n)-local stable homotopy

category Ho(LK(n)Sp).

Another feature of the K(1)-localisation that will become useful in the next

chapter is the following result, which enables us to see the K(1)-localisation as

the p-completion of the E(1)-localisation.

Lemma 3.3.39. [Bou79, Proposition 2.11] [HS99, Propostion 7.10.(e)] For a

fixed prime p and X any spectrum in Ho(Sp), we have

LK(1)X = LM(Z/p)L1X = (L1X)∧p .

Remark 3.3.40. The rigidity question of the E-local stable homotopy category

is still wide open and very little is known. One of the open questions in this

subject is whether we have rigidity for

E = K(1) at p = 2.

In this thesis, we answer affirmatively this open question. As for the case where

E = E(1) and p = 2,

we have the following result by [Roi07].

Theorem 3.3.41 (E(1)-Local Rigidity Theorem). Let C be a stable model cate-

gory, p = 2, and let Φ be an equivalence of triangulated categories

Φ : Ho(L1Sp)→ Ho(C).

Then L1Sp and C are Quillen equivalent.

However, if we take p to be odd, it has been shown by Franke [Fra96] that we

lose rigidity of Ho(L1Sp). Moreover, the author in [Roi07] established a criterion
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which enables us to check whether a stable model category C provides an exotic

model for L1Sp or not.

We will end this section by defining the “v1-self map” that will be needed

later on.

Definition 3.3.42. Let X be a spectrum, a map

f : ΣdX → X

is called a self map of X. We can iterate it up to suspension by considering the

composites

. . .Σ3dX
Σ2df−−−→ Σ2dX

Σdf−−→ ΣdX
f−→ X.

For brevity, we denote these composite maps by


f 2 = f ◦ Σdf : Σ2dX → X,

f 3 = f 2 ◦ Σ2df : Σ3dX → X,

etc . . .

The self map is said to be nilpotent if some suspension of f , denoted f t for some

t > 0, is null-homotopic.

Definition 3.3.43. Let X be a p-local finite spectrum, and let n ≥ 1. A vn-self

map is a map f : ΣkX → X with the following properties.

(a) The map f is a K(n)∗-equivalence.

(b) For m 6= n, the induced map K(m)∗(X)→ K(m)∗(Y ) is nilpotent.

Definition 3.3.44. We say that a p-local finite spectrum X has type n if

K(n)∗(X) 6= 0, but K(m)∗(X) = 0 for m < n.

Example 3.3.45. A spectrum X has type 0 if

H∗(X,Q) � 0,
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or equivalently if Hi(X,Z) is not a torsion group for all i. The p-local sphere

spectrum S0
(p) is a type 0 spectrum which admits the multiplication by p map as a

v0-self map.

Example 3.3.46. An example of a spectrum of type 1 is the mod-p Moore spec-

trum M(Z/p). Actually, since it has no rational homology, we have

K(0)∗(M(Z/p)) = H∗(M(Z/p),Q) = 0.

Moreover, if we look at the cofiber sequence

S0 .p−→ S0 →M(Z/p),

the associated long exact sequence in K(1)-homology is of the form

. . .→ K(1)i+1M(Z/p)→ K(1)iS0 .p−→ K(1)iS0 → K(1)iM(Z/p)→ . . .

Since multiplication by p kills K(1)∗(S0) ∼= Fp[v1, v
−1
1 ], the maps

K(1)∗(S0)→ K(1)∗(M(Z/p))

are injections, and K(1)∗(M(Z/p)) is non-trivial.

Theorem 3.3.47 (Periodicity Theorem). [Rav16, Chapter 6] [HS98, §3] Let X

be a finite p-local spectrum of type n. Then X admits a vn-self map

vp
i

n : ΣpidX → X, for some i ≥ 0.

Where d = 0 if n = 0, and d = 2pn − 2 if n > 0.

While Theorem 3.3.47 tells us that a vn-self map exists for certain spectra,

it does not address their periodicity. Finding the smallest integer such that the

vn-self map holds is not easy, and the list of known periodic self maps is very

limited.
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Example 3.3.48. The earliest known periodic map was constructed on the mod-p

Moore spectrum M(Z/p) by [Ada66], now known as the Adams map. For p = 2,

it is denoted

v4
1 : Σ8M(Z/2)→M(Z/2).

Note that there is no smaller degree v1-self map that can be realised by M(Z/2).

As for p odd, the period of the self map is 2p− 2 and we have a v1
1-self map

v1
1 : Σ2p−2M(Z/p)→M(Z/p).

Corollary 3.3.49. The cofiber of a vn-self map is of type n+ 1, hence it admits

a vn+1-self map.

Example 3.3.50. Let V (1) denote the cofibre of the v1-self map on the Moore

spectrum. Starting with p = 2, the authors in [BHHM08] proved that V (1), the

cofibre of

v4
1 : Σ8M(Z/2)→M(Z/2),

admits a minimal v2-self map of the form

v32
2 : Σ192V (1)→ V (1).

As for p = 3, by [BP04], the cofibre of

v1
1 : Σ2p−2M(Z/p)→M(Z/p),

has a v9
2-self map

v9
2 : Σ144V (1)→ V (1).

Lastly, for p ≥ 5, the cofibre of

v1
1 : Σ2p−2M(Z/p)→M(Z/p),

has a v1
2-self map instead [Smi70].
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3.4 Homotopy limits and colimits of spectra

3.4 Homotopy limits and colimits of spectra

The same way we have limits and colimits of abelian groups, we can mimic

this construction in homotopy theory. Colimits and limits in a model category are

not usually well-behaved with respect to homotopy equivalences, therefore they

are not homotopy invariants. The homotopy (co)limit functor can be thought of

as a correction to the (co)limit, modifying it so the result is homotopy invariant.

The main reference used in this section for the constructions of homotopy

(co)limits in the stable homotopy category is [Rav16, A.5]. However, for a more

detailed construction we refer the reader to [BK72, Chapter XI, XII]. Note that

this is an old version of these constructions, a more modern construction of ho-

motopy (co)limits in the language of model categories can be found in [Str11].

Nevertheless, we choose the old version because in the proof of our main theorem

we need to see those homotopy (co)limits in the context displayed in this section.

We start this section by constructing the homotopy (co)limit in Ho(Sp). Af-

terwards, we will see how we can view localisation with respect to some homology

theories as holim/hocolim. We will end this section by a special example of ho-

motopy limits which are the homotopy pullback squares, and see how it relates

to Bousfield localisation.

We begin by constructing the colimit (colim
i

) of abelian groups since those

will be needed in the definition of hocolim in the stable homotopy category. It is

a well-known fact that colimits of abelian groups do exist and can be described

as follows.

Proposition 3.4.1. Let (Ai, fi)i∈N be a sequential direct system of abelian groups,

where fi : Ai → Ai+1 is a homomorphism. Define the shift homomorphism

s :
⊕
i∈N

Ai →
⊕
i∈N

Ai, such that s(a) = a− fi(a) for a ∈ Ai.

Then the cokernel of this shift map is the colimit (or direct limit) of the direct
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3.4 Homotopy limits and colimits of spectra

system (Ai, fi)i∈N

colim
i

Ai = coker(s).

Proposition 3.4.2. [Rav16, Section A.5] Let (Xi, fi)i∈N be a sequential direct

system of spectra in Ho(Sp). By the axioms of the stable homotopy category

[Mar83, Chapter 2 §1], the infinite coproduct or wedge
∨
i∈N

Xi exists in Ho(Sp)

and is defined by (∨
i∈N

Xi

)
n

=
∨
i∈N

(Xi)n .

It has the universal property that a collection of maps gi : Xi → Y leads to a

unique map

f :
∨
i∈N

Xi → Y.

Moreover, we have

π∗(
∨
i∈N

Xi) =
⊕
i∈N

π∗(Xi).

Another property is that it distributes over smash product in the expected

way.

Proposition 3.4.3. [Swi75, Proposition 13.48] For any spectrum E ∈ Ho(Sp),

we have a natural homotopy equivalence

E ∧ (
∨
i∈N

Xi) '
∨
i∈N

(E ∧Xi).

Consequently, we have

E∗(
∨
i∈N

Xi) ∼=
⊕
i∈N

E∗(Xi).

Within the same concept of defining the colimit of abelian groups as the cokernel

of the shift map, we define the homotopy colimit as the cofibre of a shift map.

Proposition 3.4.4. [Rav16, Section A.5]Let (Xi, fi)i∈N be a sequential direct sys-

tem of spectra in Ho(Sp). Consider
∨
i∈N

Xi, the coproduct defined in Proposition 3.4.2.
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3.4 Homotopy limits and colimits of spectra

Then, there is a shift map

σ :
∨
i∈N

Xi →
∨
i∈N

Xi

inducing the shift homomorphism of Proposition 3.4.1 in homology

s :
⊕
i∈N

E∗(Xi)→
⊕
i∈N

E∗(Xi).

Hence, we can define the homotopy colimit of spectra as the cofibre of σ

hocolim
i

(Xi) = Cσ.

We end up with the following exact triangle in Ho(Sp)

ΩCσ −→
∨
i∈N

Xi
σ−→
∨
i∈N

Xi −→ Cσ.

Remark 3.4.5. Since the wedge of spectra commutes with the smash product,

the homotopy colimit commutes with it as well

hocolim
i

(Xi ∧X) ' (hocolim
i

Xi) ∧X.

The same applies for homology,

E∗(hocolim
i

Xi) = colim
i

E∗(Xi),

where colim
i

is the colimit of abelian groups defined in Proposition 3.4.1.

Remark 3.4.6. The hocolim of E∗-local spectra is not necessarily E∗-local. See

[Rav84, Example 1.9] for a counterexample.

Homotopy limits are defined in a similar way. First, we need to construct

infinite products in the stable homotopy category. More information about the

holim can be found in [Ada95, III].

Proposition 3.4.7. [Rav16, Proposition A.4.3] Suppose we have a sequential in-

verse system of spectra (Xi, fi)i∈N in Ho(Sp), where fi : Xi → Xi−1 is a morphism
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3.4 Homotopy limits and colimits of spectra

of spectra. There is a infinite product
∏
i

Xi satisfying

[Y,
∏
i

Xi]∗ ∼=
∏
i

[Y,Xi]∗, for any Y ∈ Ho(Sp).

Note that this product does not behave well with respect to the smash product,

i.e. ∏
i

(Xi ∧ Y ) 6' (
∏
i

Xi) ∧ Y

(this is analogous to the fact that infinite products of abelian groups do not

commute with tensor products). Plus, it does not necessarily commute with

Bousfield localisation LE.

The same way as before, we construct a shift map on the product and define

the holim
i

as the fiber.

Proposition 3.4.8. [Rav16, Section A.5] [Bou79, Lemma 1.8] Suppose we have

a sequential inverse system of spectra (Xi, fi)i∈N in Ho(Sp). Let
∏
i

Xi be the

infinite product defined in Proposition 3.4.7. By the universal property of the

product
∏
i

Xi, we can construct a shift map

∏
i

Xi
σ−→
∏
i

Xi

by describing the composite

∏
i

Xi
σ−→
∏
i

Xi
pj−→ Xj

for each j ∈ N, where pj is the evident projection. The map σ we want is given

by

pj ◦ σ = pj − fj ◦ pj+1.

The homotopy limit of spectra

holim
i

Xi

is the fibre Fσ of the shift map defined above. Therefore, we have the exact triangle
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3.4 Homotopy limits and colimits of spectra

in Ho(Sp)

Fσ −→
∏
i

Xi
σ−→
∏
i

Xi −→ ΣFσ.

Even though the holim does not commute with the smash product, it has a

useful property and that is, unlike the hocolim, it preserves E-local spectra.

Proposition 3.4.9. [Rav84, Proposition 1.7] The homotopy limit holim of E∗-

local spectra is E∗-local.

As mentioned earlier, some Bousfield localisations can be seen as homotopy

colimits and limits.

Proposition 3.4.10. [Bou79, Proposition 4.2] Let M denote the mod-2 Moore

spectrum M(Z/2). The localisation of M with respect to E(1) is the homotopy

colimit of the sequence formed by the self-map on M(Z/2), i.e.

hocolim(M
v4
1−→ Σ−8M

v4
1−→ Σ−16M

v4
1−→ . . .) ' L1M.

The reference for the following proposition is [Bou79, Theorem 2.5]. We choose

to include the proof since it will be needed later on to prove the corollary resulting

from this proposition.

Proposition 3.4.11. For a prime p, as we have seen in Proposition 3.3.34, the

p-completion of a spectrum X is the function spectrum

X∧p ' F (M(Z/p∞),ΣX).

We can conclude that the p-completion X∧p is the homotopy limit of

. . .
F (Ψ3,ΣX)−−−−−−→ F (M(Z/p3),ΣX)

F (Ψ2,ΣX)−−−−−−→ F (M(Z/p2),ΣX)
F (Ψ1,ΣX)−−−−−−→ F (M(Z/p),ΣX),

where Ψn : M(Z/pn) → M(Z/pn+1) realizes the map p· : Z/pn → Z/pn+1 on

integral homology.
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3.4 Homotopy limits and colimits of spectra

Proof. The Moore spectrum M(Z/p∞) is the homotopy colimit of the sequence

M(Z/p) ψ1−→M(Z/p2)
ψ2−→M(Z/p3)

ψ3−→ . . .

because the group Z/p∞ is the colimit of the groups Z/pn under multiplication

by the p· maps. Since the exact functor F (−,ΣX) is contravariant, it takes

homotopy colimits to homotopy limits. Therefore, the spectrum

X∧p ' F (M(Z/p∞),ΣX)

is the homotopy limit of

. . .
F (Ψ2,ΣX)−−−−−−→ F (M(Z/p2),ΣX)

F (Ψ1,ΣX)−−−−−−→ F (M(Z/p),ΣX).

Note that the following corollary is stated as Remark 9.11 in [Sch07b].

Corollary 3.4.12. As a consequence of Proposition 3.4.11, the p-completion of

a spectrum X is

X∧p ' holim(. . . −→M(Z/p3) ∧X −→M(Z/p2) ∧X −→M(Z/p) ∧X).

Proof. The goal is to construct an isomorphism between the inverse systems of

Proposition 3.4.11 and the corollary we are proving. First, we need to make

precise the maps of the inverse system

. . . −→M(Z/p3) ∧X −→M(Z/p2) ∧X −→M(Z/p) ∧X.

As we have seen in Lemma 3.3.11, the suspension Σ(DM(Z/pn)) is a mod-pn

Moore spectrum. Moreover, we can choose an isomorphism

jn : M(Z/pn)→ Σ(DM(Z/pn))
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3.4 Homotopy limits and colimits of spectra

in Ho(Sp), such that the composition

ρn : M(Z/pn+1)
jn+1−−→ Σ(DM(Z/pn+1))

ΣDψn−−−→ Σ(DM(Z/pn))
j−1
n−−→M(Z/pn)

realises the reduction

Z/pn+1 → Z/pn

on homology. Now, we can construct the desired isomorphism between the inverse

systems

(F (M(Z/pn),ΣX), F (Ψn,ΣX)) and (M(Z/pn) ∧X, ρn ∧X).

For any spectrum X, the composite

M(Z/pn) ∧X jn∧IdX−−−−→ ΣF (M(Z/pn),S0) ∧X → F (M(Z/pn),ΣX)

is an isomorphism, where the second isomorphism comes from the fact that

F (M(Z/pn),ΣX) ' ΣDM(Z/pn) ∧X.

We have the commutative diagram in Ho(Sp)

M(Z/pn+1) ∧X M(Z/pn) ∧X

F (M(Z/pn+1),ΣX) F (M(Z/pn),ΣX).

ρn∧X

' '

F (ψn,ΣX)

Hence, the homotopy limits of the two systems are homotopy equivalent, and the

p-completion X∧p is also the homotopy limit of the sequence

. . .
ρ3∧X−−−→M(Z/p3) ∧X ρ2∧X−−−→M(Z/p2) ∧X ρ1∧X−−−→M(Z/p) ∧X.

In a model category, the homotopy pullback can be seen as a homotopy ap-

proximation of strict pullbacks. For a detailed construction of the homotopy
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3.4 Homotopy limits and colimits of spectra

pullback, see [DS95, Section 10].

Definition 3.4.13. Let A, B and C be objects in a model category C. Consider

a diagram

B → A← C.

Let

A
∼
� Af

be a fibrant replacement of A. Applying MC5(ii), we factor the maps B → Af

and C → Af into trivial cofibrations followed by fibrations

B A C

B′ Af C ′.

∼ ∼ ∼

The (strict) pullback of

B′ → Af ← C ′

is the homotopy pullback of

B → A← C.

The following result is well-known, but we choose to include a proof since we

could not find a reference stating the result in the form we wanted.

Proposition 3.4.14. Let

A B

C D

be a homotopy pullback square in Ho(Sp). Then for any X in Ho(Sp), we have

the following long exact sequence

. . .→ [X,A]Sp
n → [X,B]Sp

n ⊕ [X,C]Sp
n −→ [X,D]Sp

n −→ [X,A]Sp
n−1 −→ . . .

Proof. By [Str11, Theorem 8.39], the homotopy pullback square gives us the
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3.4 Homotopy limits and colimits of spectra

following fiber sequence in Ho(Sp)

ΩD → A→ B ∨ C.

The desired long exact sequence follows by Theorem 3.2.19.

The following proposition is a widely known result. A nice proof can be found

in [Bau11, Proposition 2.2].

Proposition 3.4.15. Let E, F and X be spectra with E∗(LFX) = 0. Then there

is a homotopy pullback square

LE∨FX LEX

LFX LFLEX.

r

r′ η
F

LF (η
E

)

The map r in the diagram is the unique factorisation, as in Definition 3.3.15, of

η
E

: X → LEX through LE∨FX, which exists because the map X → LE∨FX is an

E∗-equivalence. The same holds for r′, but in this case as the unique factorisation

of η
F

: X → LFX since the map X → LE∨FX is an F∗-equivalence as well.

By applying the above proposition to

E =
∨
p

M(Z/p) and F = MQ,

we get the Sullivan arithmetic square, which allows us to reconstruct a space if

all its mod-p-localisations and its rationalisation are known.

Lemma 3.4.16. [Bou79, Proposition 2.9] For any spectrum X, we have the

following homotopy pullback square

X
∏
p

LM(Z/p)X

LQX LQ(
∏
p

LM(Z/p)X).

∏
ηp

ηQ
ηQ

LQ(
∏
p
ηp)
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3.4 Homotopy limits and colimits of spectra

Another homotopy pullback square obtained from Proposition 3.4.15 is the

chromatic fracture square, in that case we take

E = K(n) and F = K(m), such that m < n.

Lemma 3.4.17. Let X be a spectrum. Then we have the following homotopy

pullback square

LK(m)∨K(n)X LK(n)X

LK(m)X LK(m)LK(n)X,

for m < n.

In particular, for m = 0 and n = 1, we have the following homotopy pullback

square relating E(1)-localisation to K(1)-localisation

L1X LK(1)X

L0X L0LK(1)X.
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Chapter 4

Proof of the K(1) - local rigidity

This chapter is the heart of this thesis, in which we prove a new result of

rigidity in stable homotopy theory.

K(1)-Local Rigidity Theorem. Let C be a stable model category, p = 2, and

let Φ be an exact equivalence of triangulated categories

Φ : Ho(LK(1)Sp)→ Ho(C).

Then the underlying model categories LK(1)Sp and C are Quillen equivalent.

In order to establish the proof of our main theorem, we divide this chapter

into three sections. The first section is the starting point, where we construct a

new characterisation to detect K(1)-locality. In the second section, we construct

the Quillen adjunction using the result of Section 4.1. Lastly, in Section 4.3 we

finalise the proof of our main result, and the Quillen adjunction is proved to be

a Quillen equivalence. In the process of proving our main result, the knowledge

of certain homotopy groups in the K(1)-local setting is crucial. In order to make

the task of reading this chapter easier and the proofs more comprehensible, we

choose to write the details of all these computations separately in Chapter 5.

Notation. From now on, let p = 2, and let Sp denote the category of 2-local

spectra. The mod-2 Moore spectrum M(Z/2) will be denoted by M .
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4.1 From E(1)-locality to K(1)-locality

As we have seen in Example 3.3.48, the mod-2 Moore spectrum M has a

periodic v4
1-self map

v4
1 : Σ8M →M.

In [Bou79], a criterion involving this v4
1-self map has been developed to show that

a spectrum is E(1)-local.

Lemma 4.1.1. [Bou79, §4] A spectrum X is E(1)-local if and only if v4
1 induces

an isomorphism

(v4
1)
∗

: [M,X]Spn → [M,X]Spn+8, for all n ∈ Z.

In this section we extend this result to K(1)-locality by adding another con-

dition. First, we need the following lemma.

Lemma 4.1.2. For any spectrum X ∈ Ho(Sp), we have

L1(M ∧X) ' LK(1)(M ∧X).

Proof. By Lemma 3.4.17, we have the following homotopy pullback square

L1Y LK(1)Y

L0Y L0LK(1)Y.

Therefore, we have that if L0Y ' ∗ and L0LK(1)Y ' ∗ then L1Y ' LK(1)Y . This

is the case for

Y = X ∧M(Z/2) =: X/2.

First, let us prove that L0(X ∧M) ' ∗. Similarly to Example 3.2.20, the long
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4.1 From E(1)-locality to K(1)-locality

exact homotopy sequence of the exact triangle

X
.2−→ X

incl−−→ X/2 −→ ΣX

splits into short exact sequences of the form

0 −→ (πm+1X)
/

2 −→ πm+1(X/2) −→ {πmX}2 → 0.

As before, {πmX}2 denotes the 2-torsion of the group πmX. Since tensoring with

Q preserves exactness, we have

πm+1(X/2)⊗Q ∼= 0 ∼= πm+1(L0(X/2)),

therefore L0(X/2) ' ∗.

The same applies to L0LK(1)(X/2). We can see that by tensoring the following

short exact sequence with Q

0 −→ (πm+1LK(1)X)
/

2 −→ πm+1LK(1)(X/2) −→ {πmLK(1)X}2 → 0,

we will have that

L0LK(1)(X/2) ' ∗.

Hence, L1(M ∧X) ' LK(1)(M ∧X) as desired.

Remark 4.1.3. Even though the above lemma is written in the 2-local world,

we can replace p = 2 in the proof by any prime p and the lemma will still be

correct in the p-local setting.

Lemma 4.1.4. A 2-complete spectrum X is K(1)-local if and only if v4
1 induces

an isomorphism

(v4
1)
∗

: [M,X]Spn → [M,X]Spn+8

for all n ∈ Z.

Proof. First, suppose that the spectrum X is K(1)-local. As we have seen in
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Definition 3.3.43, the map v4
1 induces a K(1)∗-isomorphism on M . Thus, its

cofibre, denoted by V (1), is K(1)∗-acyclic. The desired isomorphism is deduced

from the long exact sequence

. . . −→ [V (1), X]n+1 −→ [M,X]n
(v4

1)
∗

−−−→ [Σ8M,X]n → [V (1), X]n → . . . ,

since by hypothesis [V (1), X]n = 0 for all n.

To prove the other direction, we first note that the assumption is equivalent

to

(v4
1 ∧X)∗ : πn(M ∧X)→ πn+8(M ∧X)

being an isomorphism for all n because, as we proved in Lemma 3.3.11, the

spectrum M is its own Spanier-Whitehead dual up to suspension

Σ(DM) 'M.

We conclude that

hocolim(M ∧X
v4
1∧X−−−→ Σ−8M ∧X

v4
1∧X−−−→ Σ−16M ∧X −→ . . .) 'M ∧X,

because all the arrows are weak equivalences. However, as we have seen in Propo-

sition 3.4.10, we have that

hocolim(M
v4
1−→ Σ−8M

v4
1−→ Σ−16M

v4
1−→ . . .) ' L1M.

We conclude that in our case,

M ∧X ' (L1M) ∧X

since unlike holim, hocolim commutes with the smash product “∧” as noted in

Remark 3.4.5. However, by the Smash product theorem 3.3.37, L1 is smashing,
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which tells us that

(L1M) ∧X ' (L1S0 ∧M) ∧X ' L1S0 ∧ (M ∧X) ' L1(M ∧X).

Consequently,

M ∧X ' (L1M) ∧X ' L1(M ∧X).

On the other hand, by Lemma 4.1.2

L1(M ∧X) ' LK(1)(M ∧X).

We conclude that M ∧X is K(1)-local.

By induction, we prove that M(Z/2n) ∧ X is K(1)-local for all n. First, by

applying the octahedral axiom (TR5 of Definition 3.2.3) to the diagram

S0 ∧X S0 ∧X M ∧X S1 ∧X

S0 ∧X S0 ∧X M(Z/2n) ∧X S1 ∧X

M(Z/2n−1) ∧X M(Z/2n−1) ∧X

S1 ∧X ΣM(Z/2) ∧X,

2IdS0∧X

Id 2n−1IdS0∧X Id

2nIdS0∧X

Id

we obtain the following exact triangle in Ho(Sp)

M ∧X →M(Z/2n) ∧X →M(Z/2n−1) ∧X → ΣM(Z/2) ∧X.

If we suppose that M(Z/2n−1) ∧ X is K(1)-local, then by a two out of three

argument (Lemma 3.3.22) we deduce that M(Z/2n) ∧ X is K(1)-local as well.

By Corollary 3.4.12, the 2-completion of X denoted X∧2 is the homotopy limit
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(holim) of

. . . −→M(Z/2n) ∧X −→ . . . −→M(Z/22) ∧X −→M ∧X.

As we have seen in Proposition 3.4.9, the homotopy limit of E∗-local spectra is

E∗-local. Since every term of the above sequence is K(1)-local, the spectrum X∧2

is K(1)-local. As X is 2-complete (equivalently M -local), this must mean that

X itself is K(1)-local.

4.2 The Quillen functor pair

In order to obtain a Quillen equivalence between LK(1)Sp and C, we first need a

Quillen adjunction between those categories. Forgetting the K(1)-local structure,

Quillen adjunctions between spectra Sp and any stable model category have been

studied first in [SS02] and were later generalised in [Len12].

Theorem 4.2.1. [Len12, Section 6] Let C be a stable model category and X ∈ C

a fibrant and cofibrant object. Then there is a Quillen adjunction

X ∧ − : Sp� C : Hom(X,−)

such that X ∧ S0 ' X.

Notation. The left derived functor of X ∧ − : Sp→ C is denoted

X ∧L − : Ho(Sp)→ Ho(C),

and the right derived functor of Hom(X,−) is denoted

RHom(X,−) : Ho(C)→ Ho(Sp).

Looking at Sp and LK(1)Sp as categories, they are the same, however, they

have different model structures. Therefore, Theorem 4.2.1 gives us only an ad-
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junction

X ∧ − : LK(1)Sp� C : Hom(X,−).

We do not know if the above adjunction respects the model structures, and hence

we cannot yet say that it is a Quillen adjunction.

Therefore, the goal now is to show that the Quillen adjunction of Theorem 4.2.1

also gets us a Quillen adjunction on K(1)-local spectra LK(1)Sp as follows

Sp C

LK(1)Sp.

X∧−

Id X∧−

To that end we use the following result by [BR11, Proposition 7.8].

Proposition 4.2.2. As before, let C be a stable model category and X ∈ C a

fibrant and cofibrant object. The Quillen adjunction

X ∧ − : Sp� C : Hom(X,−)

extends to a Quillen adjunction

X ∧ − : LK(1)Sp� C : Hom(X,−)

if and only if the spectrum RHom(X, Y ) is K(1)-local for all Y ∈ C.

Important Notation. For the rest of the thesis, let Φ : Ho(LK(1)Sp) → Ho(C)

be an equivalence of triangulated categories, and X a fibrant-cofibrant replacement

of Φ(LK(1)S0). So from now on, unless stated, whenever we mention the spectrum

X it means we are considering a precise choice of this spectrum which is a fibrant-

cofibrant replacement of Φ(LK(1)S0).

In order to show that RHom(X, Y ) is K(1)-local for all Y , we use Lemma

4.1.4. However, before being able to apply Lemma 4.1.4, we need to prove that

RHom(X, Y ) is 2-complete, to that end we use Proposition 3.3.34 (c).
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Lemma 4.2.3. The spectrum RHom(X, Y ) is 2-complete for all Y ∈ C.

Proof. By Proposition 3.3.34 (c), in order to prove that the spectrum RHom(X, Y )

is 2-complete for all Y ∈ C, it is enough to show that the groups π∗(RHom(X, Y ))

are Ext-2-complete. However, the latter fact is the same as the following equiva-

lent statements.

(i) The groups [X ∧L S0, Y ]C∗ are Ext-2-complete, since we have an adjunction

(X ∧L −,RHom(X,−)).

(ii) The groups [X, Y ]C∗ are Ext-2-complete since X ∧L S0 ∼= X.

(iii) The groups [Φ−1(X),Φ−1(Y )]
LK(1)Sp
∗ are Ext-2-complete (Φ is an equivalence

of categories).

(iv) The groups [S0,Φ−1(Y )]
LK(1)Sp
∗ are Ext-2-complete, because Φ−1(X) ∼= LK(1)S0.

(v) The groups [S0, LK(1)Φ
−1(Y )]Sp

∗ are Ext-2-complete, as a consequence of the

isomorphism [A,B]LK(1)Sp ∼= [A,LK(1)B]Sp.

The last statement is the same as saying that the spectrum LK(1)Φ
−1(Y ) is 2-

complete, which is indeed true, since by Lemma 3.3.39 we have

LK(1)Φ
−1(Y ) =

(
L1Φ−1(Y )

)∧
2
.

Lemma 4.2.4. The image of the mod-2 Moore spectrum M by the left derived

functor

X ∧L − : Ho(Sp)→ Ho(C)

is

X ∧LM ∼= Φ(LK(1)M) ∼= Φ(M).

Proof. Remember that the left derived functor X ∧L − of the Quillen functor

in Theorem 4.2.1 and the equivalence Φ are both exact. Therefore, from the
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isomorphisms

X ∧L S0 ∼= X ∼= Φ(LK(1)S0),

we can see that both X∧LM and Φ(LK(1)M) are the cofibre of the multiplication

by 2 on the object X. Thus, we deduce the first isomorphism

X ∧LM ∼= Φ(LK(1)M).

As for the last isomorphism of the lemma, it is a consequence of the isomorphism

M ∼= LK(1)M

in the homotopy category Ho(LK(1)Sp).

Remark 4.2.5. We will need to know, on several occasions, what are the images

of the maps incl and pinch under certain functors. So we choose to gather this

information in this remark and use it when appropriate.

(a) First, we analyse the images of the maps incl and pinch by the functor

X ∧L −. As we have seen in Lemma 4.2.4, we can choose an isomorphism

in Ho(C)

X ∧LM ∼= Φ(LK(1)M)

completing the diagram

X ∧L S0 X ∧L S0 X ∧LM X ∧L S1

Φ(LK(1)S0) Φ(LK(1)S0) Φ(LK(1)M) Φ(LK(1)S1),

2(X∧LIdS0 )

∼=

X∧Lincl

∼=

X∧Lpinch

∼= ∼=
2Φ(IdLK(1)S

0 )
Φ(incl) Φ(pinch)

such that X ∧L incl corresponds to Φ(incl), and X ∧L pinch corresponds to

Φ(pinch). Hence, we have the following equalities in Ho(C)

X ∧L incl = Φ(incl),

X ∧L pinch = Φ(pinch).
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4.2 The Quillen functor pair

(b) Now, we wonder what happens to the maps incl and pinch when we apply

the homology theory K(1)∗. By applying the homology theory K(1)∗ to

the exact triangle

S0 2.−→ S0 incl−−→M
pinch−−−→ S1,

we obtain the long exact sequence

. . .→ K(1)m(S0)
K(1)m(2)−−−−−→ K(1)mS0 K(1)m(incl)−−−−−−−→ K(1)mM

K(1)m(pinch)−−−−−−−−→ K(1)m−1S0 . . .

Remember that

K(1)∗ := K(1)∗(S0) ∼= F2[v1, v
−1
1 ], |v1| = 2.

This means that K(1)m(S0) is concentrated only in even degrees. Plus, for

any m, notice that the maps K(1)m(2) are zero because multiplication by

2 annihilates K(1)∗(S0). For m even, we have that K(1)m−1(S0) = 0, and

the long exact sequence is now of the form

. . .→ K(1)m(S0)
0−→ K(1)m(S0)

K(1)m(incl)−−−−−−−→ K(1)m(M)
K(1)m(pinch)−−−−−−−−→ 0→ . . .

We deduce that for m even, the map K(1)m(incl) is an isomorphism, and

the map K(1)m(pinch) is zero. As for m odd, we would have that

K(1)m(S0) = 0.

Hence, the exact sequence is now of the form

. . .→ 0
K(1)m(incl)−−−−−−−→ K(1)m(M)

K(1)m(pinch)−−−−−−−−→ K(1)m−1(S0)
0−→ . . .

In conclusion, for m odd, we have that K(1)m(pinch) is an isomorphism,

and K(1)m(incl) = 0. All the above data, tells us the below information
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about the values of K(1)m(M):

 K(1)m(M) ∼= K(1)m(S0) ∼= F2, for m even

K(1)m(M) ∼= K(1)m+1(S0) ∼= F2, for m odd.

Now, we can embark on the main goal of this section which is proving that

RHom(X, Y ) is K(1)-local for all Y , where RHom(X,−) is the right derived

functor of the Quillen functor

Hom(X,−) : C → Sp.

To that end, we use Lemma 4.1.4, which tells us that a 2-complete spectrum Z

is K(1)-local if and only if v4
1 induces an isomorphism of its mod-2 homotopy

groups [M,Z]Sp
∗ .

Lemma 4.2.6. The map

(v4
1)∗ : [M,RHom(X, Y )]Sp

n → [M,RHom(X, Y )]Sp
n+8

is an isomorphism for all n ∈ Z and all Y ∈ C.

Before we proceed to the proof of the above lemma, we need to compute the

images of certain generators by the left derived functor X ∧L − of the Quillen

functor

X ∧ − : Sp→ C of Theorem 4.2.1.

Namely, we will analyse the images of the Hopf elements η ∈ π1LK(1)S0, ν ∈

π3LK(1)S0 and σ ∈ π7LK(1)S0, plus the image of the element µ ∈ π9LK(1)S0.

(We refer the reader to Chapter 5 for details about the generators of the stable

homotopy groups of the K(1)-local sphere and their multiplicative relations.)

Lemma 4.2.7. The functor X ∧L − is taking the elements η, ν, σ, and µ in

π∗LK(1)S0 to the following values.
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• X ∧L η =

 Φ(η), or

Φ(η) + Φ(y1).

• X ∧L ν = mΦ(ν) for some odd m ∈ Z,

• X ∧L σ = kΦ(σ) for some odd k ∈ Z,

• X ∧L µ =

 Φ(µ), or

Φ(µ) + Φ(η2σ).

Proof. X ∧L η

Remember that by Remark 3.1.9, the map 2IdM factors as

M
pinch−−−→ S1 η−→ S0 incl−−→M.

If we K(1)-localise, as η survives the K(1)-localisation, we have that

2IdLK(1)M 6= 0, and it factors as

LK(1)M
pinch−−−→ LK(1)S1 η−→ LK(1)S0 incl−−→ LK(1)M.

To see the effect of the functor X ∧L − on the element η, we first prove that

X ∧L 2IdM is different than zero. The functor X ∧L− is additive, so we have the

following in Ho(C):

X ∧L 2IdM = 2IdX∧LM

= 2IdΦ(LK(1)M), by Lemma 4.2.4

= 2Φ(IdLK(1)M)

= Φ(2IdLK(1)M), because Φ is additive.

Since 2IdLK(1)M 6= 0, we have that

Φ(2IdLK(1)M) 6= 0
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because Φ is an equivalence of categories, which means that we have a bijection

between [LK(1)M,LK(1)M ]LK(1)Sp and [Φ(LK(1)M),Φ(LK(1)M)]C. Consequently,

2IdX∧LM 6= 0. (1)

On the other hand, 2IdX∧LM factors as

X ∧LM X∧Lpinch−−−−−−→ X ∧L S1 X∧Lη−−−→ X ∧L S0 X∧Lincl−−−−−→ X ∧LM.

We already know by Remark 4.2.5 (a) that

X ∧L incl = Φ(incl)

X ∧L pinch = Φ(pinch).

As for the element X ∧L η, we know so far that it cannot be zero because

2IdX∧LM 6= 0, by (1).

Plus,

X ∧L η ∈ [X ∧L S0, X ∧L S0]C1
∼= [X,X]C1

∼= [Φ(LK(1)S1),Φ(LK(1)S0)]C0

∼= Z/2{Φ(η),Φ(y1)}, see Table 5.1.

Hence, we have three possibilities for X ∧L η:


Φ(η), or

Φ(y1), or

Φ(η) + Φ(y1).

If we suppose that

X ∧L η = Φ(y1), then
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2IdX∧LM = (X ∧L incl) ◦ (X ∧L η) ◦ (X ∧L pinch)

= Φ(incl) ◦ Φ(y1) ◦ Φ(pinch)

= Φ(incl ◦ y1 ◦ pinch)

= 0, by Remark 5.2.2(a),

and that is a contradiction to (1). So X ∧L η cannot be equal to Φ(y1), which

leaves us with two possibilities for X ∧L η:

 Φ(η), or

Φ(η) + Φ(y1).
(2)

X ∧L ν

We start by remembering that we have the following relation

4ν = η3, (see Section 5.1 for all the relations in π∗LK(1)S0 used here).

Therefore, to study X ∧L ν, it makes sense to start by analysing the element

X ∧L η3 = (X ∧L η)3 =

 Φ(η)3 = Φ(η3), or

(Φ(y1) + Φ(η))3.

However, the second option, (Φ(y1) + Φ(η))3, is equal to Φ(η3) since

ηy1 = 0, and

y2
1 = 0.

Now, we know that

4(X ∧L ν) = X ∧L η3 = Φ(η3) = 4Φ(ν),

93



4.2 The Quillen functor pair

with 4(X ∧L ν) 6= 0 in

[X,X]C3
∼= [Φ(LK(1)S0),Φ(LK(1)S0)]C3

∼= Z/8{Φ(ν)}.

All the above tells us that X ∧L ν has order 8 in the group Z/8{Φ(ν)} and is

therefore a generator. In conclusion,

X ∧L ν = mΦ(ν), for some odd integer m ∈ Z. (3)

X ∧L σ

We start by looking at the Toda bracket relation

8σ =
〈
ν, 8, ν

〉
((5) in Section 5.1).

Since the functor X ∧L − is exact, the above gives us that

X ∧L 8σ ∈
〈
X ∧L ν,X ∧L 8, X ∧L ν

〉
.

The indeterminacy in this Toda bracket is zero, thus, equality holds. Therefore,

we get

8(X ∧L σ) = X ∧L 8σ =
〈
X ∧L ν,X ∧L 8, X ∧L ν

〉
=
〈
mΦ(ν),Φ(8),mΦ(ν)

〉
, by (3)

= m2
〈
Φ(ν),Φ(8),Φ(ν)

〉
= m2Φ(8σ).

Since Φ is an equivalence, we have that Φ(8σ) 6= 0. Hence, the above tells us that

8(X ∧L σ) = m28Φ(σ) 6= 0 in [X,X]C7
∼= Z/16{Φ(σ)}.
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Consequently, X ∧L σ has order 16 in this group, and

X ∧L σ = kΦ(σ), for some odd integer k ∈ Z. (4)

X ∧L µ

We know that

µ ∈
〈
η, 8σ, 2

〉
, with indeterminacy = η2σ, by (6) in Section 5.1.

It follows by (2) and (4) that

X ∧L µ ∈
〈
X ∧L η,X ∧L 8σ,X ∧L 2

〉
=


〈
Φ(η),Φ(8σ), 2

〉
, or〈

Φ(η) + Φ(y1),Φ(8σ), 2
〉
.

If we have that

X ∧L µ ∈
〈
Φ(η),Φ(8σ), 2

〉
= Φ

(〈
η, 8σ, 2

〉)
= {Φ(µ),Φ(µ) + Φ(η2σ)},

then

X ∧L µ =

 Φ(µ), or

Φ(µ) + Φ(η2σ).

However, if

X ∧L µ ∈
〈
Φ(η) + Φ(y1),Φ(8σ), 2

〉
,

we shall prove that we will end up with the same possibilities as before. By

Lemma 5.2.9, we know that

〈
η + y1, 8σ, 2

〉
=
〈
η, 8σ, 2

〉
+
〈
y1, 8σ, 2

〉
, and〈

y1, 8σ, 2
〉

= η2σ.
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Therefore,

X ∧L µ ∈ {Φ(µ),Φ(µ) + Φ(η2σ)}+ Φ(η2σ),

and this means that

X ∧L µ ∈ {Φ(µ),Φ(µ) + Φ(η2σ)}, because 2Φ(η2σ) = 0.

Now, we can move on to proving Lemma 4.2.6, namely that the mod-2 homo-

topy groups of RHom(X, Y ) are v4
1-periodic for all Y ∈ C.

Proof. By adjunction, it suffices to prove that

(X ∧L v4
1)∗ : [X ∧LM,Y ]Cn → [X ∧LM,Y ]Cn+8

is an isomorphism for all integers n. We know that

(v4
1)
∗

: [M,Φ−1(Y )]
LK(1)Sp
n → [M,Φ−1(Y )]

LK(1)Sp

n+8

is an isomorphism for all n. However, Lemma 4.2.4 tells us that

X ∧LM ∼= Φ(M),

and this means that

Φ(v4
1)∗ : [X ∧LM,Y ]Cn → [X ∧LM,Y ]Cn+8

is an isomorphism as well. Therefore, to show that (X ∧L v4
1)∗ is an isomorphism,

one compares the elements (X ∧L v4
1) and Φ(v4

1) in the endomorphism ring

[X ∧LM,X ∧LM ]C8
∼= [M,M ]

LK(1)Sp

8
∼= [M,LK(1)M ]Sp

8 .

The calculation of the above endomorphism ring is done separately in Chapter 5.
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By Computation 5.2.12 we know that

[M,LK(1)M ]Sp
8
∼= Z/4{v4

1} ⊕ Z/2{η̃σ ◦ pinch, IdLK(1)M ∧ ησ}.

By Corollary 5.2.13,

2v4
1 = incl ◦ µ ◦ pinch,

so

2(X ∧L v4
1) = X ∧L (2v4

1)

= X ∧L (incl ◦ µ ◦ pinch)

= (X ∧L incl) ◦ (X ∧L µ) ◦ (X ∧L pinch).

First, by Remark 4.2.5(a) the images of the maps incl and pinch by the functor

X ∧L − are respectively Φ(incl) and Φ(pinch). On the other hand, by Lemma

4.2.7, X ∧L µ corresponds to either Φ(µ) or Φ(µ) + Φ(η2σ). Hence, we have two

possibilities for 2(X ∧L v4
1), either

• 2(X ∧L v4
1) = Φ(incl) ◦ Φ(µ) ◦ Φ(pinch)

= Φ(incl ◦ µ ◦ pinch)

= Φ(2v4
1) = 2Φ(v4

1)

or

• 2(X ∧L v4
1) = Φ(incl) ◦ (Φ(µ) + Φ(η2σ)) ◦ Φ(pinch)

= Φ(incl ◦ µ ◦ pinch) + Φ(incl ◦ η2σ ◦ pinch)

= Φ(incl ◦ µ ◦ pinch) + 0, by Remark 5.2.2(b)

= Φ(2v4
1) = 2Φ(v4

1).

This means that the elements X ∧L v4
1 and Φ(v4

1) are equal to each other up to

an element in [M,LK(1)M ]Sp
8 of order 2, that is

X ∧L v4
1 = Φ(v4

1) + Φ(T ), for some T ∈ [M,LK(1)M ]Sp
8 , such that 2T = 0.
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Showing that X∧L v4
1 is an isomorphism in Ho(C) is now down to proving that all

such v4
1+T are isomorphisms in Ho(LK(1)Sp). We know by Proposition 2.2.18 that

v4
1 + T is an isomorphism in Ho(LK(1)Sp) if and only if it is a K(1)∗-equivalence.

The map v4
1 is indeed a K(1)∗-equivalence since it is a v1-self map on the Moore

spectrum. Now, to finish the proof, we need to check what K(1)∗(T ) is equal to

for each T ∈ [M,LK(1)M ]Sp
8 with 2T = 0. For that, it is enough to check what

K(1)∗ is doing for

2v4
1, η̃σ ◦ pinch and IdLK(1)M ∧ ησ,

as each T in question is a sum of those. First, remember that K(1)∗(v
4
1) is a

morphism of F2-modules since K(1)∗ is a graded field. As a result, we have that

K(1)∗(2v
4
1) = 0.

Now, since K(1)m(S0) is concentrated only in even degrees, the induced map in

K(1)∗-homology for the element η ∈ π1LK(1)S0

K(1)m(η) : K(1)m+1(S0)→ K(1)m(S0)

is zero whether m is odd or even. Consequently, we have

K(1)∗(IdLK(1)M ∧ ησ) = 0, and

K(1)∗(ησ ◦ pinch) = 0.

However, by Remark 5.2.1 we know that K(1)∗(ησ ◦ pinch) is also equal to

K(1)∗(pinch ◦ η̃σ ◦ pinch) = K(1)∗(pinch) ◦K(1)∗(η̃σ ◦ pinch).

We already know that the above composition is equal to zero, and Remark 4.2.5(b)

tells us that K(1)∗(pinch) is either zero or an isomorphism, which means that in

either case

K(1)∗(η̃σ ◦ pinch) = 0.

98



4.2 The Quillen functor pair

Therefore, every v4
1 + T is a K(1)∗-isomorphism, which means that it is an iso-

morphism in Ho(LK(1)Sp) and its image

Φ(v4
1 + T ) = X ∧L v4

1

is an isomorphism in Ho(C). In conclusion, by adjunction, the map in question

(v4
1)∗ : [M,RHom(X, Y )]Sp

n → [M,RHom(X, Y )]Sp
n+8

is an isomorphism for all n and Y .

Recall by Lemma 4.1.4, that a 2-complete spectrum is K(1)-local if and only

if v4
1 induces an isomorphism on its mod-2 homotopy groups. However, we know

by Lemma 4.2.3 that RHom(X, Y ) is 2-complete, and Lemma 4.2.6 tells us that

v4
1 induces an isomorphism on its mod-2 homotopy groups [M,RHom(X, Y )]Sp

∗ .

Consequently, by Proposition 4.2.2, we can construct the desired Quillen adjunc-

tion as we see below.

Corollary 4.2.8. The spectrum RHom(X, Y ) is K(1)-local for all Y . Thus,

X ∧ − : LK(1)Sp� C : Hom(X,−)

is a Quillen adjunction.

Lemma 4.2.9. The left derived functor

X ∧L − : Ho(LK(1)Sp)→ Ho(C)

of the Quillen functor in Corollary 4.2.8 is acting on the elements y0 ∈ π0(LK(1)S0)

and y1 ∈ π1(LK(1)S0) as follows.

• X ∧L y0 = Φ(y0)

• X ∧L y1 = Φ(y1)
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Proof. X ∧L y0

The element y0 is the only non-zero torsion element in

π0(LK(1)S0) ∼= Z∧2 ⊕ Z/2,

and since the functor X ∧L − is additive, the element X ∧L y0 must be a torsion

element as well. Hence, X ∧L y0 is either equal to Φ(y0) or zero. We have the

following relation

µy0 = η2σ (Section 5.1).

We already know by Lemma 4.2.7 that

X ∧L η2σ = (X ∧L η2) ◦ (X ∧L σ)

= Φ(η2) ◦ Φ(kσ) ,(for some odd k ∈ Z)

= kΦ(η2σ) 6= 0.

So,

X ∧L µy0 = (X ∧L µ) ◦ (X ∧L y0) 6= 0,

which tells us that X ∧L y0 cannot be zero, and we are left with the other option

of being equal to Φ(y0).

X ∧L y1

We have that y1 = ηy0, which gives us by using the previous calculation and

Lemma 4.2.7 the following.

X ∧L y1 = (X ∧L η) ◦ (X ∧L y0)

=

 Φ(η) ◦ Φ(y0), or

Φ(η) ◦ Φ(y0) + Φ(y1) ◦ Φ(y0)

=

 Φ(y1), or

Φ(y1) + Φ(ηy2
0).
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However, we know that

y2
0 = 0,

and that tells us that we have in either case

X ∧L y1 = Φ(y1).

4.3 The Quillen equivalence

As before, let Φ : Ho(LK(1)Sp) → Ho(C) be an equivalence of triangulated

categories. In the previous section, we constructed the Quillen adjunction

X ∧ − : LK(1)Sp� C : Hom(X,−),

where X ' Φ(LK(1)S0). This Quillen adjunction induces the derived adjunction

on the homotopy level (Theorem 2.2.23)

X ∧L − : Ho(LK(1)Sp)� Ho(C) : RHom(X,−).

Remember that

X ∧L S0 ∼= X, and

X ∧LM ∼= Φ(LK(1)M).

Our goal now is to prove that the Quillen adjunction (X ∧ −,Hom(X,−)) is a

Quillen equivalence, or equivalently that the derived adjunction (X∧L−,RHom(X,−))

is an adjoint equivalence of categories (Proposition 2.2.25). To this end, we first

start by looking at the homotopy type of the spectrum RHom(X,X ∧LM). Note

that in the E(1)-local case in [Roi07], the author investigated the homotopy type

of RHom(X,X ∧L S0). The reason behind it is that in L1Sp, the sphere spectrum

is a compact generator, while in LK(1)Sp, the Moore spectrum M is a compact
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generator, and S0 is just a generator. Everything mentioned and the reason why

we are looking at a compact generator will become apparent when we will be

proving the equivalence.

As we have seen in Corollary 4.2.8, the spectrum RHom(X,X ∧LM) is K(1)-

local. Therefore, by the Universal property of localisation (Proposition 3.3.16),

the adjoint of the identity map factors over LK(1)M

M RHom(X,X ∧LM)

LK(1)M

η
M

∃!λ

Proposition 4.3.1. The map

λ : LK(1)M → RHom(X,X ∧LM)

is a π∗-isomorphism.

Proof. Remember that any map that induces an isomorphism on the mod-2 ho-

motopy groups of 2-complete spectra must be a weak equivalence. As the source

and the target of the map λ are both 2-complete, it is enough to show that λ

induces an isomorphism of mod-2 homotopy groups. In other words, we need to

show that λ∗ in the following commutative diagram is an isomorphism

[M,LK(1)M ]Sp
∗
∼= [M,M ]

LK(1)Sp
∗ [M,RHom(X,X ∧LM)]Sp

∗

[X ∧LM,X ∧LM ]C∗ .

λ∗

X∧L−
adj

∼=

The above diagram is commutative because, by definition of λ, for α ∈ [M,LK(1)M ]Sp
∗ ,

the image of X ∧L α under the adjunction isomorphism is precisely λ ◦α. All we

need to show is that

X ∧L − : [M,M ]
LK(1)Sp
n −→ [X ∧LM,X ∧LM ]Cn
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is an isomorphism for all n.

However, via the self map v4
1, the endomorphisms of the Moore spectrum are

periodic of period 8 in Ho(LK(1)Sp)

[M,M ]
LK(1)Sp
n

∼= [M,M ]
LK(1)Sp

n+8 .

Therefore, we only have to show that the desired isomorphism holds for n = 1, . . . , 8.

To that end, we first show that

X ∧L − : [S0,S0]
LK(1)Sp
n −→ [X,X]Cn

is an isomorphism for n = 0, . . . , 9 by verifying that

ψ : [S0,S0]
LK(1)Sp
n

X∧L−−−−−→ [X,X]Cn
Φ−1

−−→ [S0, S0]
LK(1)Sp
n

is an isomorphism in that range. By Lemma 4.2.7, Lemma 4.2.9 and Table 5.1, we

know that the above map ψ is acting on the generators of π∗(LK(1)S0) as follows.

x ψ(x)
y0 y0

y1 y1

η η or η + y1

ν mν, m odd
σ kσ, k odd
µ µ or µ+ η2σ

Hence, the composition

ψ = Φ−1 ◦ (X ∧L −) : πn(LK(1)S0)→ πn(LK(1)S0)

is an isomorphism for n = 0, . . . , 9. Since we already know that Φ−1 is an iso-

morphism, we conclude that

X ∧L − : [S0,S0]
LK(1)Sp
n −→ [X,X]Cn
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is an isomorphism for n = 0, . . . , 9. Now, the desired result will follow by using

a five lemma argument. To be more specific, we have the following commutative

diagram

0 (πnLK(1)S0)
/

2 πn(LK(1)M) {πn−1LK(1)S0}2 0

0 [X,X]Cn
/

2 [X,X ∧LM ]Cn {[X,X]Cn−1}2 0

incl∗ pinch∗

incl∗ pinch∗

where the two rows are short exact sequences, and the left-hand side, as well

as the right-hand side arrows, are isomorphisms for n = 0, . . . , 9. Therefore, we

conclude that the middle vertical arrow is an isomorphism. Now, the statement

that

X ∧L − : [M,M ]
LK(1)Sp
n −→ [X ∧LM,X ∧LM ]Cn

is an isomorphism for n = 1, . . . , 8 is deduced from the following commutative

diagram

0 (πn+1(LK(1)M))
/

2 [M,M ]
LK(1)Sp
n {πnLK(1)M}2 0

0 [X ∧L S0, X ∧LM ]Cn+1

/
2 [X ∧LM,X ∧LM ]Cn {[X ∧L S0, X ∧LM ]Cn}2 0.

pinch∗

∼=

incl∗

∼=

Thus, we can conclude that LK(1)M and Hom(X,X ∧LM) are weakly equivalent

in Sp.

Now that we have all the necessary arguments, we can use the fact that M is

a compact generator of Ho(LK(1)Sp) (Lemma 3.3.38) to prove our main theorem.

Theorem 4.3.2. The Quillen adjunction

X ∧ − : LK(1)Sp� C : Hom(X,−)

is a Quillen equivalence.

Proof. By [Hov99, 1.3.16], it is sufficient to show the following:
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4.3 The Quillen equivalence

• RHom(X,−) : Ho(C)→ Ho(LK(1)Sp) reflects isomorphisms.

• A→ RHom(X,X ∧L A) is an isomorphism for all A ∈ Ho(LK(1)Sp).

Since Φ is an equivalence of triangulated categories, Φ(LK(1)S0) = X is a gener-

ator for Ho(C), therefore as mentioned in Section 3.2 in Remark 3.2.26 it detects

isomorphisms.

Let us first show the first point. For a morphism f : Y → Z in C, let

RHom(X, f) : RHom(X, Y )→ RHom(X,Z)

be an isomorphism in Ho(LK(1)Sp), so

[S0,RHom(X, Y )]LK(1)(Sp)
∗

RHom(X,f)−−−−−−→ [S0,RHom(X,Z)]LK(1)(Sp)
∗

is an isomorphism. By adjunction,

[X, Y ]C∗
f∗−→ [X,Z]C∗

is an isomorphism. Since X is a generator in Ho(C), we have that f : Y → Z is

an isomorphism in Ho(C) which proves the first point.

In order to prove the second point, we will use the Theorem 3.2.25 mentioned

in Section 3.2 of this thesis. Consider the full subcategory T of Ho(LK(1)Sp)

containing those A ∈ Ho(LK(1)Sp) such that

A→ RHom(X,X ∧L A)

is an isomorphism. Our goal is to prove that T = Ho(LK(1)Sp). Since RHom(X,−)

and X∧L− are exact functors, T is triangulated. By Proposition 4.3.1 it contains

the Moore spectrum M , i.e. a compact generator of Ho(LK(1)Sp).

To be able to use Theorem 3.2.25, we still need to verify that this category T

is also closed under coproducts. Now let Ai, i ∈ I, be a family of objects in T .

We would like that
∐
i

Ai ∈ T . As M reflects isomorphisms, this means that we
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4.3 The Quillen equivalence

need to show that

[M,
∐
i

Ai]
LK(1)Sp
∗ → [M,RHom(X,X ∧L (

∐
i

Ai))]
LK(1)Sp
∗

is an isomorphism. On the other hand, by adjunction,

[M,RHom(X,X ∧L (
∐
i

Ai))]
LK(1)Sp
∗

∼= [X ∧LM,X ∧L (
∐
i

Ai)]
C
∗ .

Since X ∧L − is a left adjoint, it commutes with coproducts, therefore

[X ∧LM,X ∧L (
∐
i

Ai)]
C
∗
∼= [X ∧LM,

∐
i

(X ∧L Ai)]C∗ .

Since Φ is an equivalence of triangulated categories, and LK(1)M is a compact

generator of Ho(LK(1)Sp), we have that Φ(LK(1)M) = X ∧L M is a compact

generator of Ho(C), and this means that

[X ∧LM,
∐
i

(X ∧L Ai)]C∗ ∼=
⊕
i

[X ∧LM,X ∧L Ai]C∗ .

Similarly, we know that

[M,
∐
i

Ai]
LK(1)Sp
∗

∼=
⊕
i

[M,Ai]
LK(1)Sp
∗ .

As Ai ∈ T , for all i ∈ I,

[M,Ai]
LK(1)Sp
∗

∼= [M,RHom(X,X ∧L Ai)]LK(1)Sp
∗ ,

which is induced by

Ai
∼=−→ RHom(X,X ∧L Ai).

By naturality of those isomorphisms, we have that T is closed under coprod-

ucts, therefore T = Ho(LK(1)Sp), and our Quillen adjunction is indeed a Quillen

equivalence.
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4.3 The Quillen equivalence

In conclusion, we proved that if we have by hypothesis an exact equivalence

of triangulated categories for p = 2

Φ : Ho(LK(1)Sp)→ Ho(C),

then we have a Quillen equivalence

X ∧ − : LK(1)Sp� C : Hom(X,−).

In other words, we showed that, 2-locally, the K(1)-local stable homotopy cate-

gory is indeed rigid.
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Chapter 5

Computations

In this chapter, we write details about computing certain homotopy groups in

the K(1)-local setting. We start by talking about relations between generators

of the homotopy groups π∗(LK(1)S0), using either equalities or Toda brackets.

Afterwards, we compute homotopy groups and endomorphism rings of the K(1)-

local Moore spectrum M(Z/2).

5.1 The groups π∗(LK(1)S0) and their generators

By [Bou79, Theorem 4.3] and Lemma 3.3.39, we know that the K(1)-local

sphere is the fiber of Ψ3 − 1 on KOZ2, where Ψ3 is the Adams operation and

KOZ2 is the 2-adic real K-theory spectrum. Therefore the long exact sequence

produced by the fiber sequence

LK(1)S0 → KOZ2
Ψ3−1−−−→ KOZ2

provides us with values of πn(LK(1)S0) at p = 2. On the other hand, the long

exact sequence provided by the homotopy pullback square

L1Y LK(1)Y

L0Y L0LK(1)Y
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tells us that 2-locally, we have

πn(LK(1)S0) ∼= πn(L1S0), for n 6= −2, −1, 0.

The final result from degree −2 until 9 reads as follows, see e.g. [Rav84, Theorem

8.15] or [Bou79, Corollary 4.5].

Table 5.1

n πn(S0
(2)) πn(L1S0) πn(LK(1)S0)

−2 0 Q/Z(2)
∼= Z/2∞ 0

−1 0 0 Z∧2
0 Z(2){ι} Z(2){ι} ⊕ Z/2{y0} Z∧2 {ι} ⊕ Z/2{y0}
1 Z/2{η} Z/2{η, y1} Z/2{η, y1}
2 Z/2{η2} Z/2{η2} Z/2{η2}
3 Z/8{ν} Z/8{ν} Z/8{ν}
4 0 0 0
5 0 0 0
6 Z/2{ν2} 0 0
7 Z/16{σ} Z/16{σ} Z/16{σ}
8 Z/2{ησ, ε} Z/2{ησ} Z/2{ησ}
9 Z/2{η2σ, ηε, µ} Z/2{η2σ, µ} Z/2{η2σ, µ}

The element y0 is the unique element of order 2 of π0(LK(1)S0), and y1 = ηy0 is

a generator of the second summand in π1(LK(1)S0). As for the other elements of

πn(LK(1)S0), we give them the names of their (not necessarily unique) preimages

in πn(S0). Moreover, we have the following relations, [Rav84, Theorem 8.15(d)]

4ν = η3, ηy1 = 0, y2
0 = 0, y2

1 = 0, σy1 = 0 and µy0 = η2σ.

Furthermore, by [Tod62, Lemma 5.13, Lemma 10.5, Tables in Chapter XI], we

have the following relations on Toda brackets

8σ =
〈
ν, 8, ν

〉
, (5)

µ ∈
〈
η, 8σ, 2

〉
, with indeterminacy = η2σ. (6)
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5.2 The endomorphism ring of LK(1)M(Z/2)

In this section, we compute the group [M(Z/2), LK(1)M(Z/2)]Sp
8 which we

used to prove Lemma 4.2.6.

Notation. As in the previous chapter, the mod-2 Moore spectrum M(Z/2) will

be denoted by M .

We will first outline the method that we are going to adapt in order to compute

the homotopy groups πm(LK(1)M) for any m, and then use it to compute the

groups π8(LK(1)M) and π9(LK(1)M). Afterwards, we will see how we are going

to use π8(LK(1)M) and π9(LK(1)M) to find what [M,LK(1)M ]Sp
8 is equal to.

General Strategy. Analogously to Example 3.2.20, the long exact homotopy

sequence of the exact triangle

LK(1)S0 2.−→ LK(1)S0 incl−−→ LK(1)M
pinch−−−→ LK(1)S1, (s)

provides us with short exact sequences of the form

0 −→
(
πm+1(LK(1)S0)

)/
2

incl∗−−→ πm+1(LK(1)M)
pinch∗−−−→ {πm(LK(1)S0)}2 → 0.

As before, we have

{πm(S0)}2 = {x ∈ πm(S0) : 2x = 0}.

Since Section 5.1 provided us with the groups πm(LK(1)S0) in a certain range,

finding the homotopy groups of LK(1)M and the group [M,LK(1)M ]Sp
8 is now a

game of completing short exact sequences in which Toda brackets are the main

players.

Remark 5.2.1. Since pinch∗ is surjective, let x̃ denote the preimage of x ∈ {πm(S0)}2

such that

pinch ◦ x̃ = x.

110



5.2 The endomorphism ring of LK(1)M(Z/2)

We have

pinch∗(2x̃) = 2 pinch ◦ x̃

= 2x = 0.

Therefore, 2x̃ ∈ Im(incl∗), and has a unique preimage in
(
πm+1(LK(1)S0)

)/
2 under

the map incl∗. However, we know that

2x̃ = incl ◦ η ◦ pinch ◦ x̃, by Remark 3.1.9

= incl ◦ ηx

= incl∗(ηx),

which tells us that this preimage is indeed ηx.

Notation. For x an element in {πm(LK(1)S0)}2, we will denote its preimage under

the map pinch∗ by x̃. Note that this preimage need not to be unique, however

our computations do not depend on the choice of such an x̃ unless stated.

Remark 5.2.2. Before starting the computations, it is worth noting that we

have the following equalities.

(a) incl ◦ y1 ◦ pinch = incl ◦ ηy0 ◦ pinch

= 2ỹ0 ◦ pinch, by Remark 5.2.1

= ỹ0 ◦ (2 pinch), since all the functors involved are additive

= 0, because 2 pinch = 0.

(b) incl ◦ η2σ ◦ pinch = incl∗(η(ησ)) ◦ pinch

= 2η̃σ ◦ pinch, by Remark 5.2.1

= η̃σ(2 pinch)

= 0.

Computation 5.2.3. π0LK(1)M ∼= Z/2{incl, incl ◦ y0}
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Proof. As mentioned in the beginning of this section, we have the following short

exact sequence

0 −→
(
π0(LK(1)S0)

)/
2

incl∗−−→ π0(LK(1)M)
pinch∗−−−→ {π−1(LK(1)S0)}2 → 0.

Since we have that

{π−1(LK(1)S0)}2 = {Z∧2 }2 = 0, and

Z∧2 /2 ∼= Z/2,

the above short exact sequence gives us an isomorphism

Z/2{ι, y0}
incl∗−−→ π0LK(1)M.

Computation 5.2.4. π1LK(1)M ∼= Z/4{ỹ0} ⊕ Z/2{incl ◦ η}

Proof. By using the same strategy as before and the calculations of Section 5.1,

we end up having the following short exact sequence

0→ Z/2{η, y1}
incl∗−−→ π1LK(1)M

pinch∗−−−→ Z/2{y0} → 0.

We have two choices for π1LK(1)M : either Z/4 ⊕ Z/2 or Z/2 ⊕ Z/2 ⊕ Z/2. We

will prove that the second choice cannot work. Since pinch∗ is surjective, there

exists an element ỹ0 ∈ π1LK(1)M such that pinch∗(ỹ0) = y0. By Remark 5.2.1,

the equality y1 = ηy0, and the fact that incl∗ is injective, we have that

incl∗(y1) = incl∗(ηy0) = 2ỹ0 6= 0.

Hence, we conclude that

π1LK(1)M ∼= Z/4⊕ Z/2,
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with ỹ0, the preimage of y0 by pinch∗, generating Z/4, and incl∗(η) generating

the second summand.

Computation 5.2.5. π8LK(1)M ∼= Z/2{incl ◦ ησ, 8̃σ}.

Proof. We have the short exact sequence

0→ Z/2{ησ} incl∗−−→ π8LK(1)M
pinch∗−−−→ Z/2{8σ} → 0,

because

{π7LK(1)S0}2 = {Z/16{σ}}2 = Z/2{8σ}.

Hence,

π8LK(1)M ∼= Z/4 or Z/2⊕ Z/2.

The option of π8LK(1)M being isomorphic to Z/4 with 8̃σ, the preimage of 8σ by

pinch∗, as generator is not valid because

2 8̃σ = incl∗(η(8σ)), by Remark 5.2.1

= incl∗(8ησ)

= 0, since 8ησ = 0.

As a consequence,

π8LK(1)M ∼= Z/2⊕ Z/2,

with 8̃σ generating one summand, and incl∗(ησ) generating the second one.

To specify the element 8̃σ in the above computation, and to be able to compute

[M,LK(1)M ]Sp
8 , we need the following equality.

Lemma 5.2.6. 8σ = pinch ◦ v4
1 ◦ incl in Ho(LK(1)Sp).

Proof. The element pinch ◦ v4
1 ◦ incl lies in

π7LK(1)
∼= Z/16{σ}.
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However, we know that

2 pinch ◦ v4
1 ◦ incl = 0, because 2 pinch = 0.

Therefore, the element pinch ◦ v4
1 ◦ incl can be either 0 or 8σ. Now, in order

to prove the desired equality, what is left to do is to prove that the element in

question cannot be equal to zero. Assume that

pinch ◦ v4
1 ◦ incl = 0.

By looking at the long exact homotopy sequence below produced from the exact

triangle (s)

. . .→ [S8, LK(1)S0]Sp incl∗−−→ [S8, LK(1)M ]Sp pinch∗−−−→ [S8, LK(1)S1]Sp −→ . . . ,

we see that our assumption gives us that

v4
1 ◦ incl ∈ Ker(pinch∗) = Im(incl∗).

Hence, there exists an element ϕ ∈ [S8, LK(1)S0]Sp such that

incl ◦ ϕ = v4
1 ◦ incl.

This element ϕ lies in

π8(LK(1)S0) ∼= Z/2{ησ},

therefore

ϕ = ηa, for either a = 0 or a = σ.

By illustrating all the above factorisations in a commutative diagram and then

applying the mth K(1)-homology to it, we end up with the following commutative
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diagram

K(1)m(LK(1)S8) K(1)m(Σ8LK(1)M) K(1)m(LK(1)M)

K(1)m(LK(1)S7) K(1)m(LK(1)S0).

K(1)m(incl)

K(1)m(η)

K(1)m(v4
1)

K(1)m(a)

K(1)m(incl)

By Remark 4.2.5(b), we know that for m even, the map K(1)m(incl) is an isomor-

phism. Additionally, we know that the v1-self map v4
1 is a K(1)∗-isomorphism.

Thus, the upper row in the above commutative diagram is an isomorphism for

even m. However, the map K(1)m(η) lowers the degree by 1, so it must be zero,

which leads us to a contradiction. This means that there is no such ϕ verifying

the equality

incl ◦ ϕ = v4
1 ◦ incl,

and this means that the composition pinch ◦ v4
1 ◦ incl is indeed non-zero, which

leave us with the only option of being equal to 8σ.

Corollary 5.2.7. π8LK(1)M ∼= Z/2{incl ◦ ησ, v4
1 ◦ incl}

Proof. The element 8̃σ in Computation 5.2.5 is a preimage of 8σ by pinch∗ of

order two, i.e. it is an element in π8LK(1)M such that

2 8̃σ = 0, and

pinch ◦ 8̃σ = 8σ.

By Lemma 5.2.6, we have that

pinch ◦ 8̃σ = 8σ = pinch ◦ v4
1 ◦ incl.

Hence, we can choose 8̃σ to be equal to v4
1 ◦ incl since it is a preimage of 8σ by

pinch∗ and is of order two.

Computation 5.2.8. π9LK(1)M ∼= Z/4{η̃σ} ⊕ Z/2{incl ◦ µ}
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Proof. We start by looking at the information provided by the short exact se-

quence

0→ Z/2{η2σ, µ} incl∗−−→ π9LK(1)M
pinch∗−−−→ Z/2{incl ◦ ησ, v4

1 ◦ incl} → 0.

The situation is similar to Computation 5.2.4, and the maps are acting on gen-

erators as follows

0 Z/2{η2σ, µ} π9LK(1)M Z/2{ησ} 0

η̃σ ησ

η2σ 2η̃σ 0

µ incl ◦ µ.

pinch∗

incl∗ pinch∗

incl∗

By Remark 5.2.1,

2η̃σ = incl ◦ η2σ 6= 0, because incl∗ is injective.

Hence, the element η̃σ is generating the Z/4 summand, and the other summand

is generated by the element incl ◦ µ.

Before computing the groups [M,LK(1)M ]Sp
8 , we need a couple of lemmas

regarding some Toda bracket equalities.

Lemma 5.2.9. We have the following equalities of Toda brackets.

(a)
〈
y1, 8σ, 2

〉
= η2σ.

(b)
〈
η + y1, 8σ, 2

〉
=
〈
η, 8σ, 2

〉
+
〈
y1, 8σ, 2

〉
.

(c)
〈
incl ◦ η, 8σ, 2

〉
= incl ◦

〈
η, 8σ, 2

〉
.

Proof. (a) We start by computing the indeterminacy of the Toda bracket in-

volved. By going back to the Definition 3.2.9 of Toda brackets, we know that the
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indeterminacy here is

(Σ2)∗([S9, LK(1)S0]) + (y1)∗([S9, LK(1)S1]) ∼= Z/2{y1ησ} (since π9(LK(1)S0) ∼= Z/2)

= 0 (because y1η = 0).

By Theorem 3.2.11(b) and the fact that y1 = y0η, we see that the bracket〈
y1, 8σ, 2

〉
contains

y0 ◦
〈
η, 8σ, 2

〉
= {y0µ, y0µ+ y0η

2σ}, by (6) in Section 5.1

= {η2σ, η2σ + y0(y0µ)}, because η2σ = µy0

= {η2σ}, because y2
0 = 0.

This tells us that 〈
y1, 8σ, 2

〉
= η2σ.

(b) We first notice that by Remark 3.2.12 (b), we have

〈
η + y1, 8σ, 2

〉
⊆
〈
η, 8σ, 2

〉
+
〈
y1, 8σ, 2

〉
. (7)

To show the other inclusion, we need first to determine the indeterminacy of the

Toda bracket
〈
η + y1, 8σ, 2

〉
. As before, the indeterminacy now is

(Σ2)∗([S9, LK(1)S0]) + (η + y1)∗([S9, LK(1)S1]), and that consists of the elements

{0, η2σ, y1ησ, η
2σ + y1ησ} = {0, η2σ}, because y1η = 0.

Hence, the bracket on the left hand side in (7) has indeterminacy η2σ, which is

the same as the indeterminacy of the sum of brackets on the right hand side.
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Plus, by part (a) of this lemma, and (6) we have

〈
η, 8σ, 2

〉
+
〈
y1, 8σ, 2

〉
= {µ, µ+ η2σ}+ {η2σ}

= {µ+ η2σ, µ+ 2 η2σ}

= {µ, µ+ η2σ}, because 2 η2σ = 0.

Therefore, in order to show the inclusion

{µ, µ+ η2σ} ⊆
〈
η + y1, 8σ, 2

〉
,

it is sufficient to prove that

µ+ η2σ ∈
〈
η + y1, 8σ, 2

〉
.

To prove that µ+ η2σ belongs to the Toda bracket
〈
η + y1, 8σ, 2

〉
, it is sufficient

to verify that the diagram below commutes

LK(1)S7 LK(1)S7 LK(1)S1 LK(1)S0

Σ8LK(1)M

LK(1)S9.

2 8σ

incl

η+y1

pinch

pinch◦v4
1

µ+η2σ

On the other hand, since the element µ is in
〈
η, 8σ, 2

〉
, it verifies the commuta-

tivity of the diagram

LK(1)S7 LK(1)S7 LK(1)S1 LK(1)S0

Σ8LK(1)M

LK(1)S9,

2 8σ

incl

η

pinch

pinch◦v4
1

µ
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5.2 The endomorphism ring of LK(1)M(Z/2)

i.e. we have the equality

µ ◦ pinch = η ◦ pinch ◦ v4
1. (8)

Plus, part (a) of this lemma ensures the commutativity of the diagram

LK(1)S7 LK(1)S7 LK(1)S1 LK(1)S0

Σ8LK(1)M

LK(1)S9,

2 8σ

incl

y1

pinch

pinch◦v4
1

η2σ

which gives us the equality

η2σ ◦ pinch = y1 ◦ pinch ◦ v4
1. (9)

All the above tells us that

(µ+ η2σ) ◦ pinch = µ ◦ pinch + η2σ ◦ pinch

= η ◦ pinch ◦ v4
1 + y1 ◦ pinch ◦ v4

1, by (8) and (9).

Consequently, µ+ η2σ ∈
〈
η + y1, 8σ, 2

〉
. However, remember that the indetermi-

nacy of
〈
η + y1, 8σ, 2

〉
is η2σ, which tells us that

µ+ η2σ + η2σ = µ ∈
〈
η + y1, 8σ, 2

〉
.

Therefore, equality must hold in (7).

(c) By the Juggling Theorem 3.2.11 (b), we have

incl ◦
〈
η, 8σ, 2

〉
⊆
〈
incl ◦ η, 8σ, 2

〉
.
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5.2 The endomorphism ring of LK(1)M(Z/2)

Our goal is to establish equality, and hence show that

〈
incl ◦ η, 8σ, 2

〉
⊆ incl ◦

〈
η, 8σ, 2

〉
. (10)

We know by (6) that

incl ◦
〈
η, 8σ, 2

〉
= {incl ◦ µ, incl ◦ µ+ incl ◦ η2σ}

= {incl ◦ µ, incl ◦ µ+ 2η̃σ}.

As for the bracket
〈
incl ◦ η, 8σ, 2

〉
, its indeterminacy is

(Σ2)∗([S9, LK(1)M ]) + (incl ◦ η)∗([S9, LK(1)S1]) consisting of the elements

{0, 2η̃σ, incl ◦ η2σ, 2η̃σ + incl ◦ η2σ} = {0, 2η̃σ, 4η̃σ}, because incl ◦ η2σ = 2η̃σ.

However, the only non-trivial element in the above indeterminacy is 2η̃σ since

4η̃σ = 0. We conclude that the indeterminacies of the brackets in question are

equal. Hence, to finish our proof, it is enough to show that

incl ◦ µ ∈
〈
incl ◦ η, 8σ, 2

〉
.

To that end, it is enough to check the commutativity of the diagram

LK(1)S7 LK(1)S7 LK(1)S1 LK(1)S0 LK(1)M

Σ8LK(1)M

LK(1)S8,

2 8σ

incl

η incl

pinch

pinch◦v4
1

incl◦µ

i.e. we need to check that

incl ◦ µ ◦ pinch = incl ◦ η ◦ pinch ◦ v4
1. (11)
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5.2 The endomorphism ring of LK(1)M(Z/2)

However, since µ ∈
〈
η, 8σ, 2

〉
, we have

µ ◦ pinch = η ◦ pinch ◦ v4
1,

which means that the equality in (11) is true. Consequently, the equality in (10)

holds because we have the same indeterminacy on both sides.

Lemma 5.2.10.
〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
= incl ◦

〈
η, 8σ, 2

〉

Proof. First, we have the following inclusion

〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
=
〈
incl ◦ η ◦ pinch, v4

1 ◦ incl, 2
〉
, by Remark 3.1.9

⊆
〈
incl ◦ η, pinch ◦ v4

1 ◦ incl, 2
〉
, by Theorem 3.2.11(a).

On the other hand, we know that

〈
incl ◦ η, pinch ◦ v4

1 ◦ incl, 2
〉

=
〈
incl ◦ η, 8σ, 2

〉
, by Lemma 5.2.6

= incl ◦
〈
η, 8σ, 2

〉
, by Lemma 5.2.9 (c).

= {incl ◦ µ, incl ◦ µ+ 2η̃σ}, by (6).

Hence, we have that

〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
⊆ {incl ◦ µ, incl ◦ µ+ 2η̃σ}. (12)

The above inclusion tells us that the bracket
〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
contains

either one element or two elements, and if the latter is true we will have equality

between the brackets involved. To that end, we study the indeterminacy of the

bracket
〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
. The indeterminacy here is equal to

(Σ2)∗([S9, LK(1)M ]) + (2IdLK(1)M)∗([S9, LK(1)M ]) ∼= Z/2{2η̃σ}.
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5.2 The endomorphism ring of LK(1)M(Z/2)

Consequently, we have the desired equality

〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
= incl ◦

〈
η, 8σ, 2

〉
.

Lemma 5.2.11.
〈
2IdLK(1)M , incl ◦ ησ, 2

〉
= 0, with indeterminacy

2π9LK(1)M ∼= Z/2{2η̃σ}.

Proof. The indeterminacy of the Toda bracket in question is

(Σ2)∗([S9, LK(1)M ]) + (2IdLK(1)M)∗([S9, LK(1)M ]) = 2π9LK(1)M ∼= Z/2{2η̃σ}.

On the other hand,

〈
2IdLK(1)M , incl ◦ ησ, 2

〉
=
〈
incl ◦ η ◦ pinch, incl ◦ ησ, 2

〉
, by Remark 3.1.9

⊆
〈
incl ◦ η, pinch ◦ incl ◦ ησ, 2

〉
, by the Juggling Theorem 3.2.11 (a).

However, the bracket
〈
incl ◦ η, pinch ◦ incl ◦ ησ, 2

〉
is equal to zero because

pinch ◦ incl = 0.

Plus, the indeterminacy of
〈
incl ◦ η, pinch ◦ incl ◦ ησ, 2

〉
is

(Σ2)∗([S9, LK(1)M ]) + (incl ◦ η)∗([S9,S1]),

consisting of the elements

{0, 2η̃σ, incl ◦ η2σ, 2η̃σ + incl ◦ η2σ}

in which the only non-trivial element is 2η̃σ because incl ◦ η2σ = 2η̃σ, and η̃σ is

of order 4. Hence, the two brackets on both sides of the inclusion have the same

indeterminacy. The above tells us that the bracket
〈
2IdLK(1)M , incl ◦ ησ, 2

〉
have
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5.2 The endomorphism ring of LK(1)M(Z/2)

at least one element, and is included in the bracket
〈
incl ◦ η, pinch ◦ incl ◦ ησ, 2

〉
which consists of exactly one element. We conclude that the two brackets must

be equal, and the bracket
〈
incl ◦ η, pinch ◦ incl ◦ ησ, 2

〉
is equal to zero, with

indeterminacy Z/2{2η̃σ}.

Computation 5.2.12.

[M,LK(1)M ]Sp
8
∼= Z/4{v4

1} ⊕ Z/2{η̃σ ◦ pinch, IdLK(1)M ∧ ησ}

Proof. Using the same method to produce short exact sequences as in previous

calculations, we have the short exact sequence

0→
(
π9LK(1)M

)
/2

pinch∗−−−→ [M,LK(1)M ]Sp
8

incl∗−−→ {π8LK(1)M}2 → 0.

Note that this short exact sequence comes from the long exact sequence obtained

when we apply the contravariant functor [−, LK(1)M ] to the exact triangle (s).

By Corollary 5.2.7 and Computation 5.2.8, the above equals

0→ Z/2{η̃σ, incl ◦ µ} pinch∗−−−→ [M,LK(1)M ]Sp
8

incl∗−−→ Z/2{incl ◦ ησ, v4
1 ◦ incl} → 0.

For x ∈ {π8LK(1)M}2, we denote the preimage of x under incl∗ by x̄ ∈ [M,LK(1)M ]Sp
8 ,

i.e.

incl∗(x̄) = x̄ ◦ incl = x.

Since 2x = 0, we have that

2x = 2(x̄ ◦ incl) = incl∗(2x̄) = 0,

and the element 2x̄ ∈ Im(pinch∗). Hence, there exists a unique q ∈
(
π9LK(1)M

)
/2

such that

pinch∗(q) = q ◦ pinch = 2x̄.
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5.2 The endomorphism ring of LK(1)M(Z/2)

Now, for a fixed x ∈ {π8LK(1)M}2 if q is not equal to zero, then 2x̄ is not equal

to zero as well, because pinch∗ is injective. If the latter is true, then x̄ generates

a Z/4-summand. This is where the Toda brackets come in handy. The element q

lies in the Toda bracket
〈
2IdLK(1)M , x, 2

〉
. In other words, for a fixed x, q depends

on x, and satisfies the commutativity of the diagram below

LK(1)S8 LK(1)S8 LK(1)M LK(1)M

Σ8LK(1)M

LK(1)S9.

2 x

incl

2IdLK(1)M

pinch

x̄

q

So to determine which x ∈ {π8LK(1)M}2 is giving us 2x̄ = 0, we will make use of

the previous Toda bracket calculations. For x = v4
1 ◦ incl, we have

q ∈
〈
2IdLK(1)M , v

4
1 ◦ incl, 2

〉
= incl ◦

〈
η, 8σ, 2

〉
, by Lemma 5.2.10.

However, we know that

µ ∈
〈
η, 8σ, 2

〉
, with indeterminacy = η2σ (by (6)).

This means that

q = incl ◦ µ, or

q = incl ◦ µ+ incl ◦ η2σ.

By Remark 5.2.2

pinch∗(incl ◦ η2σ) = incl ◦ η2σ ◦ pinch = 0,
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5.2 The endomorphism ring of LK(1)M(Z/2)

which gives us that in either case, for x = v4
1 ◦ incl, we have

incl ◦ µ ◦ pinch = 2x̄ = 2v4
1 6= 0, because pinch∗ is injective. (H)

Now, for x = incl ◦ ησ, we have by Lemma 5.2.11 that

q ∈
〈
2IdLK(1)M , incl ◦ ησ, 2

〉
= 2π9LK(1)M.

However, the element q lies in
(
π9LK(1)M

)
/2, and the above Toda bracket is

telling us that it lies at the same time in 2π9LK(1)M . Hence, for x = incl◦ησ, the

element q must be equal to zero. We deduce that we have just one Z/4-summand,

and two other Z/2-summands. So the short exact sequence we are looking at now

is of the form

0→ Z/4{η̃σ, incl◦µ} pinch∗−−−→ Z/4{v4
1}⊕Z/2⊕Z/2

incl∗−−→ Z/2{incl◦ησ, v4
1◦incl} → 0.

One of the two Z/2 summands in the middle is generated by

pinch∗(η̃σ) = η̃σ ◦ pinch.

As for the other Z/2 summand, it is generated by a preimage of incl ◦ ησ under

the map incl∗. Hence, any element P ∈ [M,LK(1)M ]8 with

incl∗(P ) = P ◦ incl = incl ◦ ησ

can be taken to be a generator of the other Z/2 summand. The choice

P = IdLK(1)M∧ησ : LK(1)M∧LK(1)S8 ' Σ8LK(1)M → LK(1)M∧LK(1)S0 ' LK(1)M

can be taken as a generator because it verifies our condition, which can be seen
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5.2 The endomorphism ring of LK(1)M(Z/2)

by the commutativity of the diagram

LK(1)S8 LK(1)S8 Σ8LK(1)M ' LK(1)M ∧ S8 LK(1)S9

LK(1)S0 LK(1)S0 LK(1)M ' LK(1)M ∧ LK(1)S0 LK(1)S1.

2.

ησ

incl

ησ

pinch

P ησ

2. incl pinch

The equation (H) in the previous proof gives us the following equality.

Corollary 5.2.13. 2v4
1 = incl ◦ µ ◦ pinch 6= 0.
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Chapter 6

Future work

A natural question that arises after proving rigidity of the K(1)-local stable

homotopy category is what happens if we go up one chromatic level and try to

investigate, 2-locally, the rigidity of Ho(LK(2)Sp)?

In this chapter, I will outline what difficulties might arise at n = 2 and will

explain some ideas in order to overcome these.

The first step in constructing the desired Quillen equivalence between LK(2)Sp

and a stable model category C is to build a Quillen functor from LK(2)Sp to C.

As we have seen in Proposition 4.2.2, we have a Quillen adjunction

X ∧ − : LK(2)Sp� C : Hom(X,−)

if and only if the spectrum RHom(X, Y ) is K(2)-local for all Y ∈ C. This

significantly complicates the case we are trying to study. To be more specific, in

the K(1)-local case, as we have proved in Lemma 4.1.4, a 2-complete spectrum

A is K(1)-local if and only if the v4
1-self map induces an isomorphism on its mod-

2 homotopy groups [M(Z/2), A]Sp
∗ . However, in the K(2)-local case, we cannot

prove that a spectrum is K(2)-local, or E(2)-local to start with, by just testing it

against a v2-self map. This goes back to the fact that the Telescope conjecture is

still open at n = 2. Therefore, a starting point is to try to adjust our localisation

so it is enough to test against a v2-self map. Hence, for many reasons listed below,

a better idea is to consider the K(2)-finite localisation, LfK(2)Sp, in the sense of
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[Mil92] at p = 2. We start by defining what we mean by finite localisation.

Let E∗ be a generalised homology theory represented by a spectrum E. The E-

finite localisation with respect to some homology theory E∗ can be characterised

in exactly the same terms as the Bousfield localisation in Section 3.3, but with

the addition of a finiteness assumption.

Definition 6.1.

· A spectrum W is finitely E∗-local if and only if [A,W ] = 0 for every finite

E∗-acyclic spectrum A.

· A spectrum Z is finitely E∗-acyclic if and only if [Z,W ] = 0 for every finitely

E∗-local spectrum W .

· A map f : X → Y is a finite E∗-equivalence if and only if its cofiber is

finitely E∗-acyclic.

Theorem 6.2. [Mil92, Theorem 4] For any spectrum X, there is a finite E∗-

equivalence from X to a finitely E∗-local spectrum LfEX. It is denoted by

ηf
X

: X → LfEX,

and called the finite E-localisation. The map ηf
X

is initial among maps from X

to finitely E∗-local spectra, and terminal among finite E∗-equivalences out of X.

Moreover, we can relate this finite localisation to Bousfield localisation of

Section 3.3 as follows.

Theorem 6.3. [Mil92, Corollary 11] Finite E-localisation is Bousfield localisation

with respect to the spectrum LfES
0. In other words, for any spectrum X, we have

LfEX = LLf
ES0X.

Remark 6.4. Notice that any E∗-local spectrum is in particular finitely E∗-local.

Since the map ηf
X

is initial among maps from X to finitely E∗-local spectra, we
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get a unique factorisation from LfEX to LEX

X LfEX

LEX.

ηf
X

η
X

r

The Telescope conjecture suggests that for E = E(n), the Johnson-Wilson theory,

the map

LfnX → LnX

is an equivalence for all X. It has been shown by Mahowald [Mah81] (for p = 2)

and Miller [Mil81] (for p > 2) that the Telescope conjecture is true for n = 1. As

for other values of n and p, the Telescope conjecture remains open.

By [Rav84, Theorem 2.11], K(n)-locality coincides with E(n)-locality for finite

spectra. Hence, K(n)-finite localisation is the same as E(n)-finite localisation,

and we denote it by

Lfn := LfE(n) = LfK(n).

Definition 6.5. As seen in Theorem 3.3.47, by the periodicity theorem, any finite

spectrum X of type n (Definition 3.3.44) admits a vn-self map. The telescope of

X, denoted Tel(X), is the homotopy colimit of the sequence formed by the vn-

self map.

In some literature, the E(n)-finite localisation is called the “telescopic locali-

sation” because the finite localisation of a type n spectrum X is the telescope of

this spectrum.

Proposition 6.6. [Mil92, Proposition 14] If X is a spectrum of type n, then

LfnX = Tel(X).

This K(n)-finite localisation is a nice localisation, and it will give us the

main ingredients to start studying rigidity. To begin with, finite localisation is
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smashing [Mil92, Proposition 9], which is a desirable criterion when studying

rigidity, because it provides us with the sphere spectrum as a compact generator,

and that makes some calculations easier. Adding to that, as the next proposition

suggests, this localisation provides us with a criterion of when a spectrum is

finitely K(2)-local.

Proposition 6.7. [Mil92, Proposition 15] Let T be a finite p-local spectrum of

type n, and denote its vn-self map by

vp
i

n : Σpi(2pn−2)T → T, for some i > 0.

Then a spectrum A is finitely K(n)-local (or finitely E(n)-local) if and only if vp
i

n

induces an isomorphism

(vp
i

n )
∗

: [T,A]k → [T,A]k+pi(2pn−2), for all k ∈ Z.

Remark 6.8. As mentioned before, the Telescope conjecture is true for n = 1.

Hence, by Proposition 6.6, we have that

L1X = Lf1X = Tel(X), for any spectrum X.

Therefore, showing that a spectrum is E(1)-local is equivalent to showing that it

is finitely E(1)-local. Consequently, by Proposition 6.7, to show that a spectrum

is E(1)-local it is now enough to test it against a v1-self map. However, for n = 2,

the Telescope conjecture is still open, and hence we cannot prove that a spectrum

is E(2)-local by only testing it against a v2-self map. To overcome this obstacle,

and study rigidity on a new chromatic level, we consider K(2)-finite localisation

instead of K(2)-localisation since this finite localisation will provide us with the

missing tool of verifying locality by using a v2-self map.

The new rigidity theorem we are planning to prove using the tools mentioned

earlier is thus:
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K(2)-Finitely Local Rigidity Conjecture. Let C be a stable model category,

p = 2, and let Φ be an equivalence of triangulated categories

Φ : Ho(LfK(2)Sp) → Ho(C).

Then the underlying model categories LfK(2)Sp and C are Quillen equivalent.

Plan of the proof. The starting point is to construct a Quillen adjunction

X ∧ − : LfK(2)Sp� C : Hom(X,−).

As we have seen in Proposition 4.2.2, the above Quillen adjunction exists if and

only if the spectrum RHom(X, Y ) is finitely K(2)-local for all Y ∈ C. Hence, our

goal now is to prove that the spectrum RHom(X, Y ) is finitely K(2)-local, and

to that end we use Proposition 6.7. In conclusion, the aim now is to prove that

(v2i

2 )
∗

: [T,RHom(X, Y )]n → [T,RHom(X, Y )]n+2i6

is an isomorphism for some type 2-spectrum T .

Since we can test against any spectrum of type 2, we have the advantage of

choosing a suitable one that will make our calculations achievable. If we want

to choose a spectrum related to the K(1)-local case, we might start considering

V (1), the cofibre of

v4
1 : Σ8M(Z/2)→M(Z/2).

The spectrum V (1) is a type 2 spectrum and possesses a v32
2 -self map [BHHM08]

v32
2 : Σ192V (1)→ V (1).

Although this is a well constructed spectrum, the period 192 of the self map will

make our computations almost impossible. However, the good news is that in

[BE16] a type 2 spectrum called Z with certain properties has been constructed,

131



and it has been shown that it possesses a v1
2-self map

v1
2 : Σ6Z → Z.

This makes the spectrum Z an ideal candidate to test finite locality against. To

be more accurate, we want to prove that v1
2 induces an isomorphism

(v1
2)
∗

: [Z,RHom(X, Y )]n → [Z,RHom(X, Y )]n+6, for all n ∈ Z.

To that end, similarly to Chapter 5, we will need to do some calculations in

the K(2)-finite local setting. More precisely, we need to calculate the homotopy

groups

[Z,Lf2Z]Sp
6 = [Z,Z]

Lf
2 Sp

6 .

Therefore, a first step towards solving rigidity in this finite setting is to calculate

the homotopy groups

πn(Lf2Z) for 0 6 n 6 7.

For this calculation, we can use a special type of spectral sequence, the “localised

Adams spectral sequence”. This localised Adams spectral sequence was con-

structed by Mahowald and Sadofsky in [MS95]. It converges to π∗(L
f
2Z) with the

E2-term

Es,t
2
∼= v−1

2 Exts,tA (H∗(Z),Z/2).

Using this spectral sequence in order to calculate the desired homotopy groups is

not an easy task. Even if we can calculate the E2- terms, the biggest challenge is

determining the differentials, and any progress in this direction will be of signif-

icant importance. This will not only help answering the rigidity question at the

chromatic level 2 but will also contribute to other areas of chromatic homotopy

theory, especially given that nothing is known about the homotopy groups of this

recently constructed spectrum Z in the world of finite localisation.
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