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Denisovans are members of a hominin group only known from fragmentary fossils 

genomically studied from a single site, Denisova Cave1–3 in Siberia, and from their 

genetic legacy through gene flow into several low-altitude East Asian populations4,5 and 

high-altitude modern Tibetans6. The lack of morphologically informative Denisovan 

fossils impedes our ability to connect geographically and temporally dispersed Asian 

fossil hominins and understand their relation to these recent populations in a coherent 

manner, including the Denisovan-inherited human adaptation to the high-altitude 

Tibetan Plateau7,8. Here we report a Denisovan mandible, identified by ancient protein 

analysis9,10, found in Baishiya Karst Cave, Xiahe County, Gansu Province (China), on 

the Tibetan Plateau. We determine the mandible to be at least 160 thousand years old 

through U-series dating of an adhering carbonate matrix. It is the first direct evidence 

of this hominin group outside the Altai Mountains, and provides unique insights into 

Denisovan mandibular and dental morphology. Our results indicate that archaic 

hominins occupied the Tibetan Plateau in the Middle Pleistocene and successfully 

adapted to high-altitude hypoxia environments much earlier than the regional arrival of 

modern Homo sapiens.  
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Main Text 

Denisovans are an extinct sister group of Neanderthals, and only known from fragmentary 

fossils identified at a single site, Denisova Cave (Altai, Russia; Extended Data Fig. 1a). Their 

genomic legacy is present at relatively high frequency in several Asian, Australian and 

Melanesian populations4,11–14, suggesting that they once might have been widespread. 

Denisovan introgression into present day Tibetans, Sherpas and neighbouring populations 

includes positive selection on the Denisovan allele of the Endothelial PAS domain-containing 

protein 1 (EPAS1), which provides high-altitude adaptation to hypoxia in extant humans 

inhabiting the Tibetan Plateau6,15,16. This Denisovan-derived adaptation is currently difficult to 

reconcile with the low altitude of Denisova Cave (700 meters above sea level, masl) and the 

earliest evidence of high-altitude presence of humans on the Tibetan Plateau around 30-40 

thousand years before present (ka BP)17–20. Furthermore, the relationships of various Middle 

Pleistocene (MP) and Late Pleistocene (LP) hominin fossils in East Asia with Denisovans are 

difficult to resolve due to limited morphological information on Denisovans and the lack of 

paleogenetic data on MP hominin fossils from East Asia and tropical Oceania. 

The right half of a hominin mandible was found in the Baishiya Karst Cave in 1980 (3200 masl; 

Fig. 1, Extended Data Figs. 2, 3). A recent survey revealed the presence of Palaeolithic stone 

artifacts in Baishiya Karst Cave (Extended Data Fig. 1b). An in-situ carbonate matrix is present 

on the bottom of the specimen, allowing determination of a minimum age for the Xiahe 

mandible. Three carbonate subsamples were collected for U-Th dating (see SI; Methods). The 

bulk 230Th age of 164.5 ± 6.2 ka BP is not statistically different from 155 ± 15 for the uppermost 

and 163 ± 10 ka BP for the lowermost parts of the crust (Student t-test, p <0.05; Extended 

https://paperpile.com/c/awEDDr/nNBa+0eJT+mEx5+owWX+E0OC
https://paperpile.com/c/awEDDr/wzn6+zGZI+m5nj
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Data Tab. 1; SI). Consistency between the ages of the subsamples from different places of the 

carbonate indicates this crust formed in a short time period at 160 ka BP. Hominins therefore 

occupied the Tibetan Plateau at least as early as marine isotope stage (MIS) 6 in the 

penultimate glacial period. 

There is no evidence for the preservation of ancient DNA in the Xiahe mandible (Methods). 

However, palaeoproteomic analysis revealed the survival of an endogenous ancient proteome 

in a dentine sample, but not in a bone sample (Extended Data Fig. 4; Methods;9,21). The 

endogenous proteins are highly degraded and clearly distinguishable from contaminating 

modern proteins (Extended Data Tab. 2; Extended Data Figs. 4, 5). Phylogenetic analysis of 

the recovered proteome results in a phylogenetic tree accurately reflecting great ape 

phylogeny, including the relationships between H. sapiens, Neanderthals, and Denisovans 

(Fig. 2). Within this framework, the Xiahe proteome is placed together with the Denisovan high-

coverage genome (Denisova Cave individual D3; Bayesian probability: 0.99;22). In addition, 

the observed state of particular single amino acid polymorphisms (SAPs) within the Xiahe 

proteome further supports the close relationship between the Xiahe proteome and Denisovans 

(SI 4). Only one high-coverage Denisovan genome is currently available (D3), limiting our 

understanding of the proteomic sequence diversity within “Denisovans”. We therefore assign 

the Xiahe mandible to a hominin population closely related to the Denisovans from Denisova 

Cave. 

The Xiahe mandible is heavily encrusted in a carbonate matrix (Extended Data Fig. 2). The 

carbonate matrix is the only in-situ material that can currently be directly associated with the 

mandible. We therefore qCT-scanned the specimen and removed the carbonate matrix 

https://paperpile.com/c/awEDDr/NKAA+LCAs
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digitially (see Methods). The Xiahe mandible displays an archaic morphology that is rather 

common among MP hominins. Metrically, the fossil is within the variation of this group (SI Tab. 

2). The body is very robust, relatively low and thick. Its height slightly decreases towards the 

back. The mandibular reliefs are pronounced, in particular the lateral prominence and the well-

developed anterior marginal tubercle. Internally, a protruding mandibular torus overhangs a 

marked sub-alveolar fossa. From the mandibular foramen, the mylohyoid line runs in a rather 

low position. The mental foramen is located under the P4 and rather low on the body. Although 

a mental trigone is weakly expressed, there is no developed chin and the symphysis is strongly 

receding with an inclination angle of 69° (Fig. 1d). Lingually, a primitive pattern of a small 

genioglossal fossa separating the upper and lower transverse tori is present. The archaic 

morphology of the Xiahe mandible is confirmed by geometric morphometric (GM) analysis 

(Extended Data Fig. 6). It falls within the hull of MP specimens and at the limit of the Homo 

erectus distribution. In contrast, it is well separated from H. erectus in the GM analysis of the 

dental arcade shape (Extended Data Fig. 7). Its arcade is less elongated than H. erectus and 

plots close to primitive forms of MP hominins, Neanderthals and Homo sapiens. 

The dental morphology also fits the MP hominin variability. The M1 has five well-developed 

primary cusps and a Y-fissure pattern. In addition, it has two accessory cusps: tuberculum 

sextum (C6) and tuberculum intermedium (C7; SI Tab. 4). The middle-trigonid crest is absent 

from the outer enamel surface (OES), but present at the enamel-dentine junction (EDJ) as a 

low continuous crest that dips at the sagittal sulcus (grade 2 in ref23; Extended Data Fig. 7). 

There are two wide roots – mesial and distal – each with bifurcated apices. The M2, which was 

erupting but already in functional occlusion, preserves the five principal cusps arranged in a 

https://paperpile.com/c/awEDDr/85ch


 

Y-pattern, and a large C7 (SI Tab. 4). No middle-trigonid crest is present at the OES or EDJ. 

The principal component analysis of the EDJ ridge and cervix shape groups the Xiahe M2 with 

other MP specimens such as Mauer and Balanica. It falls at the limit of the H. erectus 

distribution 

The assignment of the Xiahe mandible to the Denisovans orients the morphological 

comparisons toward their sister group, the Neanderthals, the material from Denisova Cave, 

and pene-contemporaneous East Asian specimens. Xiahe lacks the high mandibular body 

observered in Neanderthals and its symphyseal profile is more receding than the mean values 

observed in this group. However, the anterior part of the arcade is flattened and similar to that 

observed in Neanderthals. There is also the marked retromolar space commonly observed in 

Neanderthals. However, this feature might be linked to the agenesis of the M3. 

The feature of the Xiahe specimen that best links it to the fragmentary fossils from the Denisova 

Cave is its large dentition. In shape space, the size of the Xiahe dental arcade surpasses all 

the comparative specimens along PC1, with the exceptions of WT15000 and Tighénif 3. The 

combination of a moderately large mandible with an exceptionally large dental arcade is 

confirmed by analysis of the teeth. The bucco-lingual diameter of the M1 is larger than the 

mean of all MP samples and exceeds the maximum value of the MP European samples (SI 

Tab. 2; SI Fig. 2). Its mesio-distal diameter is larger than, and outside the range of, all our 

comparative specimens. The M2 has a bucco-lingual diameter at the high end of the H. erectus 

range. Its mesio-distal diameter is within the range of the MP European sample but outside the 

range of the rest of the comparative samples (SI Tab. 3). 



 

Among the pene-contemporaneous East Asian specimens, Xiahe is similar in several aspects 

to the Penghu 1 mandible24. The metrics of the two fossils that can be compared are very 

similar (SI Tab. 2) and their dental similarities are striking. Like Xiahe, Penghu 1 displays 

anagenesis of the M3. Although Penghu’s M2 is smaller than that of Xiahe, in both individuals 

the M2 crown is wider mesio-distally than bucco-lingualy. Xiahe’s and Penghu’s M2 roots are 

remarkable. In addition to mesial and distal plate-like roots there is a prominent accessory 

lingual root that branches off the mesial root below the cervix. This feature is of particular 

interest as three-rooted mandibular molars are very rare in non-Asian H. sapiens but appear 

much more frequently in recent Asian populations (see SI). Finally, in both specimens, the P3 

displays Tomes’ root, a feature occasionally observed in other fossil hominins (Extended Data 

Fig. 8a). Among other non-sapiens Chinese specimens, similarities with the Xujiayao25 

material should also be underlined. For example, at the EDJ, the M2 displays a moderately 

complex occlusal basin, low dentine horns and a weakly expressed protostylid. These 

observations reinforce the idea that Denisovans are already represented in the described fossil 

record of China, particularly in fossils like Penghu 1 and Xujiayao. Future ancient DNA and 

ancient protein analysis of these specimens can directly test such hypotheses. 

The Xiahe mandible is the first Denisovan found outside of Denisova Cave1,11. The minimum 

MP age of the mandible makes the Xiahe mandible comparable in age to Denisovan 2, the 

chronologically oldest Denisovan fossil currently known from Denisova Cave2,3,26. As 

Neanderthals and Denisovans are estimated to have diverged around 445-473 thousand years 

ago27, the early part of the Denisovan lineage therefore remains undocumented in the fossil 

https://paperpile.com/c/awEDDr/bTrk
https://paperpile.com/c/awEDDr/wHm9
https://paperpile.com/c/awEDDr/5NC3+nNBa
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record. However, the Xiahe mandible demonstrates that beyond the Altaï region, Denisovans 

or Denisovan-related populations have deep roots in central East Asia. 

The Xiahe mandible represents the earliest hominin fossil on the Tibetan Plateau. It is at least 

120 thousand years older than the oldest known Paleolithic sites (30-40 ka BP) in the 

region17,20 (Fig. 3). Successful colonization of, and adaptation to, high-altitude plateaus like the 

Himalayas have generally been considered as restricted to recent H. sapiens20, particularly 

due to resource scarcity, low temperatures, and hypoxia. In contrast, the Xiahe mandible 

demonstrates that archaic hominins occupied the Tibetan Plateau and successfully adapted 

to high-altitude environments (Fig. 3). The evidence suggests that Denisovans or Denisovan-

related populations have accumulated adaptive alleles beneficial to high-altitude occupation 

during their presence on the Tibetan Plateau. Archaic hominin alleles in modern Himalayan 

populations, such as the Denisovan-derived EPAS1 allele6,16, may therefore derive from a local 

archaic hominin on or around the Tibetan Plateau, like the Xiahe hominin. 

The Xiahe Denisovan provides evidence for a deep evolutionary history of these archaic 

hominins within the challenging environment of the Tibetan Plateau. This fossil raise the veil 

on the Denisovan anatomy, resolves several outstanding questions concerning this group and 

paves the way towards a better understanding of the MP hominin evolutionary history in East 

Asia. 

  

https://paperpile.com/c/awEDDr/zwen+4PRH
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FIGURES 

 

 

 

Figure 1. The Xiahe mandible. Anterior (a), occlusal (b), lateral (c), and internal (d) views of 

the reconstructed specimen. The preservation of the symphyseal region of the mandible 

allows for a virtual reconstruction of the two sides of the mandible. Mirrored parts are in gray. 

The symphyseal section and the infradentale-gnathion angle are displayed on d. See 

Methods for the reconstruction and Extended Data Fig. 2 for the original fossil. 

  



 

 

Figure 2. Phylogenetic position of the Xiahe proteome within great apes (Hominidae). 

Node values indicate Bayesian probability (0-1) / RAxML maximum likelihood (0-100%), 

respectively. Macaca macaca and Nomascus leucogenys are used as outgroups (not shown). 

  



 

 

Figure 3. The paleoclimate background to human presence on the Tibetan Plateau in 

the past 200 thousand years. a, LR04 Benthic stack δ18O records28. b, Antarctic Fuji Dome 

ice core δ18O isotope data29. c, Greenland Ice Sheet Project (GRIP) δ18O isotope data30. d, 

The 10Be-based rainfall for Loess samples from Baoji, China31. e, Available absolute dates of 

Paleolithic and Epi-Paleolithic sites on the Tibetan Plateau (see Methods).  

https://paperpile.com/c/awEDDr/6Qkm
https://paperpile.com/c/awEDDr/ssy5
https://paperpile.com/c/awEDDr/QatQ
https://paperpile.com/c/awEDDr/NFUI


 

REFERENCES 

1. Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from 

southern Siberia. Nature 464, 894–897 (2010). 

2. Sawyer, S. et al. Nuclear and mitochondrial DNA sequences from two Denisovan individuals. 

Proc. Natl. Acad. Sci. U. S. A. 112, 15696–15700 (2015). 

3. Slon, V. et al. A fourth Denisovan individual. Sci Adv 3, e1700186 (2017). 

4. Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of Human 

Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. Cell 173, 53–61 

(2018). 

5. Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The Combined Landscape of 

Denisovan and Neanderthal Ancestry in Present-Day Humans. Curr. Biol. 26, 1241–1247 

(2016). 

6. Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of 

Denisovan-like DNA. Nature 512, 194–197 (2014). 

7. Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau 

after 3600 B.P. Science 347, 248–250 (2015). 

8. Meyer, M. C. et al. Permanent human occupation of the central Tibetan Plateau in the early 

Holocene. Science 355, 64–67 (2017). 

9. Welker, F. Palaeoproteomics for human evolution studies. Quat. Sci. Rev. 190, 137–147 

(2018). 

10. Welker, F. Elucidation of cross-species proteomic effects in human and hominin bone 

proteome identification through a bioinformatics experiment. BMC Evol. Biol. 18, 23 (2018). 

http://paperpile.com/b/awEDDr/5NC3
http://paperpile.com/b/awEDDr/5NC3
http://paperpile.com/b/awEDDr/Aqvf
http://paperpile.com/b/awEDDr/Aqvf
http://paperpile.com/b/awEDDr/w34a
http://paperpile.com/b/awEDDr/0eJT
http://paperpile.com/b/awEDDr/0eJT
http://paperpile.com/b/awEDDr/0eJT
http://paperpile.com/b/awEDDr/GvSC
http://paperpile.com/b/awEDDr/GvSC
http://paperpile.com/b/awEDDr/GvSC
http://paperpile.com/b/awEDDr/wzn6
http://paperpile.com/b/awEDDr/wzn6
http://paperpile.com/b/awEDDr/dp7m
http://paperpile.com/b/awEDDr/dp7m
http://paperpile.com/b/awEDDr/Q47P
http://paperpile.com/b/awEDDr/Q47P
http://paperpile.com/b/awEDDr/LCAs
http://paperpile.com/b/awEDDr/LCAs
http://paperpile.com/b/awEDDr/MLo4
http://paperpile.com/b/awEDDr/MLo4


 

11. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. 

Nature 468, 1053–1060 (2010). 

12. Qin, P. & Stoneking, M. Denisovan Ancestry in East Eurasian and Native American 

Populations. Mol. Biol. Evol. 32, 2665–2674 (2015). 

13. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl. Acad. Sci. U. 

S. A. 108, 18301–18306 (2011). 

14. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast 

Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011). 

15. Jeong, C. et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. 

Commun. 5, 3281 (2014). 

16. Hackinger, S. et al. Wide distribution and altitude correlation of an archaic high-altitude-

adaptive EPAS1 haplotype in the Himalayas. Hum. Genet. 135, 393–402 (2016). 

17. Zhang, D. et al. History and possible mechanisms of prehistoric human migration to the 

Tibetan Plateau. Sci. China Earth Sci. 59, 1765–1778 (2016). 

18. Yuan, B., Huang, W. & Zhang, D. New evidence for human occupation of the northern 

Tibetan Plateau, China during the Late Pleistocene. Chin. Sci. Bull. 52, 2675–2679 (2007). 

19. Zhao, M. et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement 

on the Tibetan Plateau. Proc. Natl. Acad. Sci. U. S. A. 106, 21230–21235 (2009). 

20. Zhang, X. L. et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 

thousand to 30 thousand years ago. Science 362, 1049–1051 (2018). 

http://paperpile.com/b/awEDDr/nNBa
http://paperpile.com/b/awEDDr/nNBa
http://paperpile.com/b/awEDDr/mEx5
http://paperpile.com/b/awEDDr/mEx5
http://paperpile.com/b/awEDDr/owWX
http://paperpile.com/b/awEDDr/owWX
http://paperpile.com/b/awEDDr/E0OC
http://paperpile.com/b/awEDDr/E0OC
http://paperpile.com/b/awEDDr/zGZI
http://paperpile.com/b/awEDDr/zGZI
http://paperpile.com/b/awEDDr/m5nj
http://paperpile.com/b/awEDDr/m5nj
http://paperpile.com/b/awEDDr/4PRH
http://paperpile.com/b/awEDDr/4PRH
http://paperpile.com/b/awEDDr/VDae
http://paperpile.com/b/awEDDr/VDae
http://paperpile.com/b/awEDDr/bAjJ
http://paperpile.com/b/awEDDr/bAjJ
http://paperpile.com/b/awEDDr/zwen
http://paperpile.com/b/awEDDr/zwen


 

21. Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the 

Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. U. S. A. 113, 11162–11167 

(2016). 

22. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. 

Science 338, 222–226 (2012). 

23. Bailey, S. E., Skinner, M. M. & Hublin, J.-J. What lies beneath? An evaluation of lower molar 

trigonid crest patterns based on both dentine and enamel expression. Am. J. Phys. 

Anthropol. 145, 505–518 (2011). 

24. Chang, C.-H. et al. The first archaic Homo from Taiwan. Nat. Commun. 6, 6037 (2015). 

25. Xing, S., Martinón-Torres, M., Bermúdez de Castro, J. M., Wu, X. & Liu, W. Hominin teeth 

from the early Late Pleistocene site of Xujiayao, Northern China. Am. J. Phys. Anthropol. 

156, 224–240 (2015). 

26. Douka, K. et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at 

Denisova Cave. Nature 565, 640–644 (2019). 

27. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. 

Nature 505, 43–49 (2014). 

28. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic 

δ18O records. Paleoceanography 20, PA1003 (2005). 

29. Uemura, R. et al. Ranges of moisture-source temperature estimated from Antarctic ice cores 

stable isotope records over glacial–interglacial cycles. Clim. Past 8, 1109–1125 (2012). 

30. Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into 

the last interglacial period. Nature 431, 147–151 (2004). 

http://paperpile.com/b/awEDDr/NKAA
http://paperpile.com/b/awEDDr/NKAA
http://paperpile.com/b/awEDDr/NKAA
http://paperpile.com/b/awEDDr/3x6n
http://paperpile.com/b/awEDDr/3x6n
http://paperpile.com/b/awEDDr/85ch
http://paperpile.com/b/awEDDr/85ch
http://paperpile.com/b/awEDDr/85ch
http://paperpile.com/b/awEDDr/bTrk
http://paperpile.com/b/awEDDr/wHm9
http://paperpile.com/b/awEDDr/wHm9
http://paperpile.com/b/awEDDr/wHm9
http://paperpile.com/b/awEDDr/dWxk
http://paperpile.com/b/awEDDr/dWxk
http://paperpile.com/b/awEDDr/vdkT
http://paperpile.com/b/awEDDr/vdkT
http://paperpile.com/b/awEDDr/6Qkm
http://paperpile.com/b/awEDDr/6Qkm
http://paperpile.com/b/awEDDr/ssy5
http://paperpile.com/b/awEDDr/ssy5
http://paperpile.com/b/awEDDr/QatQ
http://paperpile.com/b/awEDDr/QatQ


 

31. Beck, J. W. et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess. 

Science 360, 877–881 (2018). 

 

SUPPLEMENTARY INFORMATION 

Supplementary Information is available in the online version of this paper. 

 

ACKNOWLEDGEMENTS 

We are grateful to the 6th Gongtang Living Buddah, Liling Wang and her husband, and Junyi 

Xie for providing us the opportunity to study the fossil. We thank D. Madsen, J. Brantingham, 

D. Rhode, C. Perreault, J. Yang, T. Cheng, X. Shen, J. Yao, Z. Yang, J. Chen and C.-R. Huang 

for their assistance in the fieldwork and in the laboratory. We also thank the help from the local 

government of Xiahe County and Ganjia town, the monks in the Baishiya temple and people 

from Bajiao Ancient City for their support of the fieldwork. We are grateful to O. Jöris, G. Smith, 

P. Ungar, R. Grün for their helpful discussions and comments. We are grateful to the many 

curators and colleagues who, over the years, gave us access to recent and fossil hominin 

specimens for computed tomography scanning, photogrammetry or analysis, to E. Trinkaus 

for providing comparative data, to H. Temming, S. Tuepke, C. Molenaar and Diondo GmbH, 

Hattigen, Germany, for their technical assistance. We thank Svante Pääbo and Aximu Ayinuer-

Petri. We thank support from the Strategic Priority Research Program of Chinese Academy of 

Sciences, Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE) 

(#XDA20040000) and National Natural Science Foundation of China (#41620104007). D.J.Z. 

thanks the support from National Natural Science Foundation of China (#41771225). Fieldwork 

in 2018 was supported by the Second Tibetan Plateau Scientific Expedition (Project no. 4). U-

Th dating was supported by the Science Vanguard Research Program of the Ministry of 

Science and Technology (#107-2119-M-002-051) and the Higher Education Sprout Project of 

the Ministry of Education, Taiwan (#107L901001). J.-J.H. and F.W. thank the Max Planck 

Society for providing financial support. 

 

AUTHOR CONTRIBUTIONS 

F.H.C., J.-J.H. and D.J.Z. designed the study. D.J.Z., G.R.D., G.H.D. H.W., J.W. and H.X. 

collected field data. D.J.Z., H.X. and J.W. carried out sampling and subsampling process. C.-

C.S. and T.-L.Y. conducted U-Th dating of the crust carbonates. Q.M.F. performed the ancient 

DNA extractions. Mandibular metrical and non-metrical data were compiled and analyzed by 

J.-J.H. and I.B. Geometric morphometric analysis of the mandible were performed by S.E.F., 

S.S., I.B. and J.-J.H. Dental metrical and non-metrical data were compiled and analyzed by 

S.E.B. and M.M.S. F.W., R.F., S.D. and H.X. performed proteomic analysis. F.W., F.H.C., J.-

J.H., D.J.Z. and C.-C.S. wrote the paper with contributions of all authors. 

 

AUTHOR INFORMATION 

Reprints and permission information is available at www.nature.com/reprints. 

The authors declare no competing financial interests. 

Correspondence and requests for material should be addressed to the relevant corresponding 

http://paperpile.com/b/awEDDr/NFUI
http://paperpile.com/b/awEDDr/NFUI
http://www.nature.com/reprints


 

authors. 

  



 

METHODS 

 

Study site. 
Baishiya Karst Cave, 3200 masl, is located on the south face of the Dalijiashan mountain in 

Ganjia Basin, Xiahe County, Gansu province, China, on the northeastern Tibetan Plateau 

(Extended Data Fig. 1). The cave is located at the mouth of the Jiangla River, a small tributary 

of Yangqu River in Ganjia Basin. This cave, with a 10 m-high and 20 m-wide entrance and 

several chambers, is more than 1 km long. The studied mandible fossil was found in 1980. 

Extensive surveys and test excavations in the cave and surrounding regions have been 

conducted since 2011. Animal bones and stone artifacts, including flakes, cores and scrapers 

were discovered in the shallow sediments of the cave entrance. Two nearby Paleolithic sites 

discovered in 2016 suggest that prehistoric human activity was not restricted to the cave but 

also present in the open-air regions of Ganjia Basin (Extended Data Fig. 1). 

Chronological dates for archaeological sites on the Tibetan Plateau displayed in Figure 4 were 

taken from the following literature. Dates in blue (from various sites) were previously compiled 

by Chen et al.7 and Madsen et al.32. Dates in purple (the Quesang site) are published by Meyer 

et al.8. Dates in green (the Nwya Devu site) are published in Zhang et al.20. Gray symbols 

(Wulunwula lake site, Siling Co and Lenghu sites) represent indirect and disputed dates 

published in Brantingham et al.33. Dates in red are those reported in this paper for the Xiahe 

mandible. This overview clearly demonstrates that the Xiahe hominin is a minimum of 120 ka 

older than any previously identified hominin occupation of the Tibetan Plateau. 

 

U-Th dating. 

U-Th dating was performed on one bulk sample and two serial samples of carbonate crust 

adhering to the Xiahe mandible (SI Fig. 1). After an ultrasonic cleaning step with ultrapure 

water, U-Th dating was applied to the three subsamples. Procedures were conducted in a 

class-10,000 clean room with class-100 benches at the High-Precision Mass Spectrometry 

and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan 

University34. Each sample was dissolved in 7 N HNO3 and spiked with a 233U-236U-229Th tracer, 

the sample solution was added to 0.2 ml HClO4 and refluxed at 90-100 °C overnight for over 

10 hours to decompose organic material. Uranium and thorium were purified with chemical 

methods including Fe co-precipitation and anion-exchange chromatography35. After the final 

column separation step the separated U and Th aliquots were further treated with 0.05-0.2 ml 

HClO4, refluxed at 90-100 °C for over 5 hours, and dried to effectively remove organic material 

and reduce polyatomic interferences. U and Th fractions were then dissolved in 1% HNO3 

(+0.05% HF) for instrumental analysis35.Determinations of all isotopic compositions and 

concentrations were made on a Thermo-Finnigan NEPTUNE multi-collector inductively 

coupled plasma mass spectrometer (MC-ICP-M)35. U-Th uncertainties were calculated at 2σ 

level. U-Th isotopic compositions, activity, and 230Th dates, in years before AD 1950, with 2s 

error, are given in Extended Data Table 1. 

 

Morphological Analysis. 

 

A list of all specimens used in various morphological comparisons with extant and other fossil 
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hominins can be found in SI Table 6. 

 

Computed tomography and virtual reconstruction of the fossil. The original fossil 

specimen was scanned using a Diondo d3 industrial micro-computed tomography scanner 

(Diodon GmbH) at the DCS Engineering Innovation Laboratory, Shanghai, China. The 

specimen was scanned with an isotropic voxel size of 52.125 μm. Segmentation of the micro-

computed tomography volume was performed in Avizo (Visualization Sciences Group). The 

comparative dental sample was scanned with an isotropic voxel size ranging from 11.6 to 39.1 

μm at the MPI EVA on a BIR ARCTIS 225/300 micro-computed tomography scanner or on a 

Skyscan 1172 micro-computed tomography scanner. The micro-computed tomography slices 

were filtered using a median filter followed by a mean-of-least-variance filter to reduce the 

background noise while preserving and enhancing edges. The matrix adhering to the mandible 

was virtually removed by manual segmentation. The specimen was reconstructed with Aviso 

by mirroring the right side of the mandible to the left in the position allowing the best anatomical 

match of the overlapping symphyseal regions. 

 

Mandibular metric data. Three-dimensional (3D) surface models of recent H. sapiens and 

fossil mandibles were obtained from either computed tomography scans, NextEngine laser 

scans (Grotte des Enfants 4, Tianyuandong, Wadjak 2, Zhoukoudian Upper Cave 108 and 

recent H. sapiens Coimbra sample), or photogrammetric methods. In the latter method, two-

dimensional photos (from 40 to 90) were taken per mandible with a Nikon camera. After 

excluding the background of each image, the photos were processed by Agisoft software. Each 

stack of photos ran through alignment, geometric reconstruction and texturing steps in order 

to become a 3D surface model. For most fossils, surface models were made from the original 

specimen, however in several instances research quality casts were implemented 

(Minatogawa A, Minatogawa 1, Sima de los Huesos XXI, Wadjak 2, Zafarraya, Zhoukoudian 

Upper and Lower Cave (GI/II, H1.12, Jaw K/G1.66). Linear measurements were taken on 3D 

surface models. Data generated through these various methods are comparable in terms of 

quality and precision (SI Tab. 1). Our measurements were complemented by measurements 

of the original specimens taken by E. Trinkaus (height and breadth of the mandibular corpus 

at the level of the mental foramen) and comparative data taken from the literature (see 

Supplementary Information). 

 

Shape analysis of the mandible. Geometric morphometric (GM) methods were used to 

analyze the shape of the Xiahe mandible in a comparative context. 3D coordinates of 

anatomical landmarks and curve semilandmarks (n= 88) were digitized on the surface models 

(n= 170) using Landmark Editor36 according to the preserved morphology of the Xiahe 

mandible. Landmark and semilandmark data were analyzed in R. Missing bilateral landmarks 

and curve semilandmarks were estimated by mirroring the preserved side. Missing landmarks 

and curve semilandmarks lacking a bilateral counterpart were estimated by deforming the 

sample average onto the deficient configuration using thin-plate spline interpolation. Curve 

semilandmarks were slid by minimizing the bending energy of a thin-plate spline deformation 

between each specimen and the sample mean shape37,38. After sliding, all landmarks and curve 

semilandmarks were converted to shape variables using a generalized Procrustes analysis. 
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The resulting shape coordinates were analyzed in a between-group principal component 

analysis (PCA). Shape changes were visualized along PC1 and PC2 by warping the sample 

mean shape along the positive and negative ends of PC1 and PC2, plus/minus two standard 

deviations (+ 2 SDVs) from the sample mean. The comparative sample composition can be 

found in the Supplementary Information. 

 

Shape analysis of the dental arcade. Geometric morphometric methods were used to analyze 

the shape of the Xiahe mandible dental arcade. Three-dimensional landmark data were 

collected on computed tomographic scans and surface scans of recent H. sapiens (rHs) (n = 

52) and fossils (n = 42). Specimens of rHs were scanned using industrial micro CT (BIR ACTIS 

225/300 at the MPI-EVA, Leipzig, Germany; isotropic voxel sizes 0.03 – 0.093 mm), and 

medical CT (Vivantes Klinikum Berlin, Germany; CIMED, La Plata, Argentina; and the 

Smithsonian Institution, Washington, U.S.A.; recent human CT scans were obtained as part of 

Copes39); pixel sizes 0.13 –0.47 mm, slice intervals 0.33 - 0.50 mm). The fossil hominin 

samples comprise CT scans and surface scans of the original fossils and casts, which were 

obtained by the MPI-EVA, Leipzig, Germany. To capture mandibular arcade shape, spatial 

arrangement of the teeth, and dental size proportions, landmarks were taken on the alveolar 

margin of every tooth except the third molars. Additionally, landmarks were taken at the cervix 

of the first and second molars because these teeth are preserved in Xiahe. The landmarks 

were placed at the most distal, buccal, mesial, and lingual tooth dimensions on the alveolar 

bone of the incisors, canines, and premolars. For the molars, a mesial and a distal landmark, 

as well as two landmarks were taken at the most exposed position of the mesial and distal 

root. The cervical landmarks on M1 and M2 were placed at the most distal, buccal, mesial, and 

lingual position. Missing data were estimated by thin-plate spline (TPS) warping. All 

measurements were taken in Avizo. Landmarks were symmetrized using reflected relabeling40 

and superimposed applying the Generalized Procrustes Analysis41,42. To create a larger 

comparative sample set, we estimated mandibular arcades from maxillary arcades following 

the protocol described previously43–45. Therefore, the same landmarks protocol as described 

above was applied to the maxillary arcades of fossils that lack lower jaws. To estimate 

mandibular arcades for these individuals, we used multiple multivariate regression based on 

the covariation between maxillary and mandibular landmarks. To analyze differences in shape, 

we performed principal component analysis (PCA) on the Procrustes shape coordinates. To 

analyze the impact of size, we added the variable log centroid size to the Procrustes shape 

coordinates. The inclusion of estimated dental arcade wireframes based on available maxillary 

arcades (Extended Data Fig. 4) results in the same relationship of Xiahe to other hominin 

fossils in both shape and form space as when such estimated mandibular arcades are 

excluded from the analysis (SI Fig. 3). All statistical analyses were performed in Mathematica46. 

The comparative sample composition can be found in the Supplementary Information. 

 

Dental metric and non-metric data. Crown metric and non-metric data were collected from 

casts or originals, with a few exceptions taken from the literature. See the Supplementary 

Information for details on exceptions. Root metric data were taken on 3D models generated 

from micro-computed tomographic data. Crown measurements were taken using Mitituyo 

digital callipers. Non-metric trait expressions were scored using the Arizona State University 
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Dental Anthropology System47 where applicable (for lower dentition: cusp 6, cusp 7, molar 

groove pattern, protostylid) and Bailey et al.23 for the middle trigonid crest. The recent H. 

sapiens sample includes individuals from southern, western and eastern Africa, western and 

central Europe, northeastern Asia, western Asia, India, Australia, New Guinea and Andaman 

Islands. For root metrics, the sample composition can be found in the Supplementary 

Information. 

 

Molar EDJ shape analysis. Enamel and dentine tissues (Extended Data Fig. 5) of lower 

second molars were segmented using the 3D voxel value histogram and its distribution of 

greyscale values48,49. After segmentation, the EDJ was reconstructed as a triangle-based 

surface model using Avizo. Small EDJ defects were corrected digitally using the “fill holes” 

module of Geomagic Studio. We then used Avizo to digitize 3D landmarks and curve-

semilandmarks on these EDJ surfaces48,49. Anatomical landmarks were placed on the tip of 

the dentine horn of the protoconid, metaconid, entoconid and hypoconid. A sequence of 

landmarks was also placed along the marginal ridge connecting the dentine horns beginning 

at the top of the protoconid moving in lingual direction; the points along this ridge curve were 

then later resampled to the same point count on every specimen using Mathematica. Likewise, 

we digitized and resampled a curve along the cemento–enamel junction as a closed curve 

starting and ending below the protoconid horn and the mesiobuccal corner of the cervix. The 

resampled points along the two ridge curves were subsequently treated as sliding curve 

semilandmarks and analyzed using GM together with the four anatomical landmarks. The 

comparative sample composition can be found in the Supplementary Information. 

 

Ancient DNA analysis. 

We prepared one extract from 64.3 mg of dentine powder from the Xiahe mandible, as 

described in Dabney et al.50. From this extract (10 μl out of 50 μl), we produced one library 

using a single-stranded library protocol22,51. We captured human mitochondrial DNA genome 

sequences (mtDNA) from this library using the in-solution capture method described in Fu et 

al.52 to determine the DNA preservation. We sequenced the enriched library on a MiSeq using 

a double index configuration (2x76bp) and merged the forward and reverse sequences into a 

single fragment requiring an overlap of at least 11 bp. We mapped these merged reads, which 

we call a “fragment”, to the revised Cambridge reference sequence (rCRS NC_012920) using 

bwa53 with the following parameters: –n 0.01 and –l 16500. We removed duplicate fragments 

by identifying all fragments with the same start and end positions and keeping the one with the 

highest average base quality. 

We observe no ancient damage pattern, which suggests that the Xiahe mandible does 

not contain ancient human DNA. Deamination of cytosine (C) to uracil (U) residues occurs 

primarily at single-stranded DNA overhangs and leaves characteristic patterns of C→T 

substitutions in sequences obtained from ancient DNA molecules because uracils are read as 

thymines (T) by DNA polymerases. When we measured the number of fragments that contain 

C->T substitutions relative to the mtDNA consensus sequence, we find that this value is 0.4-

0.7%. When we only take fragments with C->T substitutions in the first or last position, the 

frequency of C->T substitutions at the other end of the fragment is 2.1-3.7%. In conclusion, 

this mandible shows no evidence suggesting the presence of ancient human DNA. 
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Ancient protein analysis. 

Protein Extraction. Separate bone and dentine samples (SI Fig. 1) were drilled at the Key 

Laboratory of Western China’s Environmental Systems (Ministry of Education) in Lanzhou 

University, China. Dentine and bone samples were treated using established proteome 

extraction protocols21,54. This resulted in an ammonium-bicarbonate fraction (hereafter AmBic) 

and acid-demineralization fraction (hereafter Acid) for each sample. An extraction blank 

followed the exact same extraction procedure to estimate protein contamination during protein 

extraction and analysis in Lanzhou, Leipzig, and Oxford. 

 

MALDI-TOF-MS. MALDI-TOF-MS analysis followed protocols established elsewhere21,54,55. 

Positive MALDI spectra were obtained for the dentine fractions in the low molecular range 

(<2500 m/z) only. AmBic and Acid extractions of the bone sample returned negative MALDI 

spectra in all cases. Only the Acid and AmBic fractions of the dentine sample were therefore 

analyzed using shotgun proteomics at the University of Oxford, UK. 

 

LC-MS/MS. Samples were analyzed on an Orbitrap Fusion Lumos in tandem with an Ultimate 

3000 RSLCnano UPLC (both Thermo Fisher Scientific). Chromatographic separation of 

peptides was achieved on an EASY Spray PepMAP UHPLC column (50 cm x 75 μm, 2 μm 

particle size) after trapping on a PepMAP u-pre-column (0.5 cm x 300 μm). Peptides were 

eluted with a linear gradient of 5 -35% acetonitrile in 5% DMSO/0.1% formic acid, followed by 

column washing and equilibration steps. Each sample was followed by a blank injection to 

evaluate sample carry-over. MS1 spectra were acquired between 400 and 1500 Th in the 

orbitrap detector with a resolution of 120,000 and an AGC target of 400,000. Selected 

precursors were excluded for 7 seconds before repeated analysis in the Orbitrap at a resolution 

of 15,000 and after HCD fragmentation (28% normalized collision energy). Precursors were 

isolated in the quadrupole with an isolation window of 1.2 Th. The instrument used a top speed 

duty cycle (3 seconds) with a maximum injection time of 40 ms and AGC target of 40,000. 

LC-MS/MS analysis of the AmBic and Acid fractions was conducted on three separate 

occasions. AmBic and Acid extracts were analyzed separately as well, resulting in six ancient 

protein files. In addition to injection blanks, extraction blanks were analyzed twice, again 

preceding and followed by injection blanks. All these remained empty of appreciable amounts 

of proteins, only including common laboratory contaminants. 

 

Data analysis. Mass spectrometry files (.raw) from ancient samples, extraction blanks and 

injection blanks were converted to .mgf files using ProteoWizard56. Files resulting from the 

same extraction were searched together in PEAKS v. 7.57. Deamidation (NQ), oxidation (M), 

hydroxylation (P), pyro-glu (EQ,) and phosphorylation (HCDRSTY) were selected as variable 

modifications. MS1 tolerance was set at 10 ppm and MS2 tolerance at 0.07 Da. Peptides were 

only accepted with an FDR equal to 1.0% or lower, with a minimum of 2 unique peptides for 

each protein with a total score of -10lgP ≥ 20. The first search was run against the entire human 

proteome database with the addition of Neanderthal- and Denisovan-specific protein 

sequences for a selected set of common bone and dentine proteins. The acceptance of amino 

acid substitutions in comparison to the provided sequence database followed the guidelines 
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presented by Welker10. Example MS/MS spectra of phylogenetically informative sequences 

can be found in SI Figure 4. The database was supplemented with a list of proteins commonly 

suspected to represent contaminants proteins58. 

For MALDI-TOF-MS spectra, glutamine deamidation was quantified for P1105, the 

collagen peptide appearing at an m/z of 1105.6, as this is a slow-deamidation peptide 

frequently observed in collagen MALDI-TOF-MS spectra59. For LC-MS/MS datasets, the extent 

of glutamine and asparagine deamidation was calculated as the ratio of spectra containing 

deamidated glutamine and/or asparagine positions to the total number of spectra containing 

glutamine and/or asparagine positions for each protein identified individually21. Contamination-

filtering left eight collagens as likely endogenous the Xiahe dentine proteome (Extended Data 

Tab. 2). 

In addition to deamidation, we utilized a similar approach based on peptide-spectrum-

matches (PSM) spectral counts to get an insight into peptide cleavage sites (both N- and C-

termini of each peptide). One would expect modern proteins to have few, or no, non-enzymatic 

cleavages, while proteins preserved for extended periods of time might have undergone 

hydrolysis. Such hydrolysis would appear as non-proteotypic cleavage in resulting fragmention 

spectra. We normalized the obtained PSM counts in comparison to a random cleavage model 

for each investigated protein. To this end, human reference sequences for 12 selected proteins 

were randomly cleaved, N- and C-terminal amino acid cleavage windows (positions P1 and 

P1’) obtained for all the PSMs matching a particular protein, and the observed percentage 

divided by the theoretical percentage for random cleavage for each protein. We observe a 

large amount of semi-tryptic or non-tryptic peptide-spectrum-matches in the endogenous 

collagens while such peptide-spectrum-matches are almost absent in contaminants (Extended 

Data Fig. 7). In addition, for the endogenous collagens we observe a far greater enrichment of 

cleavages after arginines (R, mainly R.G cleavages) compared to lysines (K, mainly K.G 

cleavages). The source of this difference is unclear, although a similar difference does not 

seem to be present for the contamination proteins. Therefore, its source may lie in diagenetic 

modifications of lysines, for example lysine methylation, making this residue inaccessible to 

trypsin cleavage. 

 

Phylogenetic Analysis. Of those proteins endogenous to the Xiahe dentine sample, six 

proteins were used for subsequent phylogenetic analysis (COL1α1, COL1α2, COL2α1, 

COL3α1, COL5α1 and COL5α2). Proteins COL9α1 and COL11α2 were excluded as these had 

a low number of matching peptides in both the Acid and AmBic extractions (Extended Data 

Tab. 2). COL10α1 sequences were added to these as we previously demonstrated the highly 

informative protein sequences of this gene within archaic hominins21. Protein sequence 

alignments were aligned with the homologous sequences from all great ape genera and 

translated protein sequences from ancient hominin genomes (Neanderthals60 and a 

Denisovan61), while a macaque (Macaca mulatta) and a gibbon (Nomascus leucogenys) were 

used as outgroups. See SI Table 5 for accession numbers. 

Phylogenetic trees were built on the CIPRES Science Gateway62 using MrBayes Bayesian 

phylogenetic analysis and RAxML maximum-likelihood methods. The protein sequence 

alignment was partitioned by gene for both analyses, allowing for variable substitution rates 

between genes using the Dayhoff substitution model. MrBayes was run for 5 million 
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generations, with sampling every 500 generations, and 10% burn-in discarded, while RAxML 

was run for 1,000 bootstrap iterations. 

 

Code availability. 

All R code used to generate protein deamidation and peptide cleavage patterns are available 

upon request to Dr. Frido Welker. 

 

Data deposition. 

All the proteomic mass spectrometry data have been deposited in the ProteomeXchange 

Consortium repository with the identifier PXDXXXXXX. Protein consensus sequences for the 

Xiahe hominin used for phylogenetic analysis are available in Supplementary File 2. A surface 

scan model of the Xiahe mandible is publicly available at: XXXX. 
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EXTENDED DATA TABLES 

 

 

Extended Data Table 1. U-Th ages of the crust attached on Xiahe mandible. Analytical 

errors are 2σ of the mean. 

Subsample Weight 238U 232Th δ234U [230Th/238U] 230Th/232Th Age (ka) Age (ka BP) 

corrected c,d 

δ234Uinitial 

ID g 10-6 g/g a 10- 6g/g measured a activity c atomic (x 10-6) uncorrected corrected b 

XH-SD-U1 0.2198 1348.5 ± 2.1 316.0 ± 4.2 431.1 ± 2.7 1.195 ± 0.020 84.1 ± 1.8 168.3 ± 6.1 164.5 ± 6.2 686 ± 13 

XH-SD-U4 0.1837 1523.2 ± 2.8 330 ± 12 388.5 ± 2.6 1.122 ± 0.052 85.4 ± 5.0 158 ± 15 155 ± 15 601 ± 28 

XH-SD-U6 0.1962 1464.1 ± 2.5 477 ± 16 411.2 ± 2.7 1.177 ± 0.031 59.5 ± 2.5 169 ± 10 163 ± 10 652 ± 19 

a [238U] = [235U] x 137.818 (±0.65‰) (ref.63); δ234U = ([234U/238U]activity - 1) x 1000. 
b δ234Uinitial corrected was calculated based on 230Th age (T), i.e., δ234Uinitial = δ234Umeasured X 

eλ234*T, and T is corrected age. 
c [230Th/238U]activity = 1 - e-λ230T + (δ234Umeasured/1000)[ λ230/(λ230 - λ234)](1 - e-(λ230 – λ234) T), where T 

is the age. Decay constants are 9.1705 x 10-6 yr-1 for 230Th, 2.8221 x 10-6 yr-1 for 234U (ref.64), 

and 1.55125 x 10-10 yr-1 for 238U (ref.65). 
d Age corrections, relative to 1950 AD, were calculated using an estimated initial atomic 
230Th/232Th ratio of 4 (± 2) x 10-6. 

 

 

Extended Data Table 2. Endogenous protein coverage statistics. 

 AmBic Acid Combined 

Protein Peptides Unique Peptides Unique Coverage (%) N_Deam (%) Q_Deam (%) 

COL1α1 539 499 375 349 61.1 (88.2) 99.2 (733) 91.8 (2018) 

COL1α2 346 338 243 236 54.8 (73.8) 98.0 (1368) 92.7 (280) 

COL2α1 78 38 61 38 25.2 89.7 (29) 95.6 (247) 

COL3α1 34 28 7 4 7.0 0 (8) 83.3 (18) 

COL5α1 7 5 6 4 2.6 - 100 (3) 

COL5α2 28 22 27 24 11.1 72.73 (11) 96.9 (96) 

COL9α1 3 3 - - - - 100 (9) 

COL11α2 7 4 5 4 - - 87.5 (8) 

Triple-helical coverage is indicated in parentheses for COL1α1 and COL1α2 as the non-triple-

helical regions of COL1α1 and COL1α2 are not present in the mature COL1 protein, and 

therefore not observed in most proteome studies. N_Deam: asparagine deamidation. Q_Deam: 

glutamine deamidation. Number of spectra (PSMs) covering asparagine and glutamine are 

indicated in parentheses for both deamidation columns. 
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EXTENDED DATA FIGURES 

 

 

Extended Data Figure 1. Location of Baishiya Karst Cave. a, Location of Baishiya Karst 

Cave, archaic Homo sites, and selected Middle and Upper Paleolithic sites in East and Central 

Asia. Numbers denoting the archaeological sites are: 1. Mezmaiskaya Cave, 2. Teshik-Tash 

Cave, 3. Okladnikov Cave, 4. Denisova Cave, 5. Kara-Bom, 6. Tongtian Cave, 7. Nyadem, 8. 

Quesang, 9. Chikhen Agui, 10. Shuidonggou, 11. Guanyin Cave, 12. Zhiren Cave, 13. Fuyan 

Cave, 14. Lingjing, 15. Xujiayao, 16. Tianyuan Cave, 17. Zhoukoudian Upper Cave, 18. 

Jinniushan. b, Ganjia Basin with the Bashiya Karst Cave (red star) and two paleolithic sites 

(NML01, Nimalong01; WET01, Waerta01; blue triangles). 

  



 

 

Extended Data Figure 2. Xiahe mandibular preservation with adhering calcareous crust. 

a, lateral, b, buccal, c, occlusal, and d, inferior, e, anterior f, posterior views. Sampling locations 

for ancient proteins and ancient DNA can be seen on the M2 and ascending ramus, and 

sampling location for U-Th dating on the inferior surface. 



 

 

Extended Data Figure 3. Surface model of the Xiahe mandible after digital removal of 

the adhering calcareous crust. a, lateral, b, buccal, c, occlusal, and d, inferior, e, anterior f, 

posterior views. 

  



 

 

Extended Data Figure 4. Preservation of the Xiahe dentine proteome. a, Deamidation of 

five Xiahe proteins also identified in several LP and MP proteomes. b, Glutamine deamidation 

of peptide P1105 observed in the ZooMS analysis of the Xiahe dentine sample compared to 

reference data. c, Correlation between deamidation observed in LC-MS/MS experiments for 

AmBic and Acid extracts (R2=0.99). d, Length distribution of non-tryptic peptides in a LP 

Neanderthal and the Xiahe dentine proteome. Samples are colour-coded according to 

geological age. Deamidation is based on quantitative MALDI-TOF-MS analysis (b) or on semi-

quantitative spectral counting methods (a, c). 0% indicates an absence of deamidation and 

100% indicates complete deamidation of asparagine and glutamine. Reference data:21,54,55,66. 
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Extended Data Figure 5. Normalized frequencies of peptide cleavage patterns of 

selected proteins. Spectral counts are based on the total number of AmBic and Acid peptide-

spectrum matches (PSMs) and include both N- and C- termini of each aligned PSM. Red 

colours indicate more PSMs than expected and green colours fewer PSMs than expected, 

compared to a random cleavage model for each protein. Note differences in colour scale.  



 

 

Extended Data Figure 6. Geometric morphometrics of the mandible. A between-group 

principal component analysis of mandibular shape. Although some overlap exists, all groups 

show a distinct mandibular shape. Xiahe plots at the edge of the H. erectus distribution and 

within the range of Middle Pleistocene Homo. Surface models illustrate mandibular shape 

changes along PC1 (lateral view) and PC2 (lateral and superior view). Recent H. sapiens are 

shown in cyan, Upper Palaeolithic and Holocene H. sapiens in light blue, early H. sapiens in 

dark blue, Neanderthals in pink, H. erectus in green, and other Middle Pleistocene fossil 

hominins in orange.  



 

 
Extended Data Figure 7. Geometric morphometrics of the dental arcade. a, Procrustes 

form space. b, Procrustes shape space. The wireframes illustrate form changes along PC1 

and PC2. For a and b, colours are as in Extended Data Fig. 4. The wireframes show the form 

and shape changes along PC1 and PC2, respectively. Estimated wireframes used in the PCA 

are indicated by “est”. 

  



 

 

Extended Data Figure 8. Root morphology and enamel-dentine junction (EDJ) shape. a, 

The roots of the M1 are typical of lower molars with a mesial and distal plate-like root. There 

are mesial and distal plate-like roots on the M2; however, there is an additional accessory 

lingual root that splits off distally from the mesial root about 2/3 from the cervix. The P3 root is 

a Tomes’ form with a distinct lingual groove. b, A principal component analysis of EDJ ridge 

and cervix shape reveals a clear separation between H. erectus on one side and Neanderthals 

and H. sapiens on the other side, with Middle Pleistocene hominins in between. Xiahe also 

falls between the H. erectus hull and Neanderthals+H. sapiens, but not with the other included 

Middle Pleistocene specimens. Colours are as in Extended Data Fig. 4 for relevant groups. 


