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Abstract 

Due to increasing globalization the rate of non-native introductions has rapidly increased. 

This is likely to continue as climate change leads to increases in range of some species. 

In some cases, the effect of non-native species on biodiversity has been very severe. 

However, due to the complex nature of ecosystems it is sometimes difficult to determine 

if a non-native species is having a negative impact. This can be the case if interactions 

with other species are involved or native species are declining due to other threats such 

as habitat loss. This thesis investigates whether the marsh frog (Pelophylax ridibundus), 

a non-native species introduced to the UK in 1935, is affecting the distribution and 

abundance of the common frog (Rana temporaria) in Kent, south east England. 

Species distribution modelling predicted marsh frogs to be present in areas where 

common frog presence was low. Many of these areas were in coastal regions with lots 

of watercourses that have higher salinity levels. These conditions are more suited to 

marsh frogs than common frogs, thereby explaining the predicted distributions. However, 

an area in the centre of Kent with high pond density was also predicted as less suitable 

for common frogs. This prediction fitted the hypothesis that in areas of high pond density 

common frog numbers have been reduced by the combined presence of marsh frogs, 

and great crested newts (Triturus cristatus). To test this hypothesis, a local level study 

compared the presence of common frogs in this high pond density area in Kent with 

ponds in Sussex where marsh frogs were absent. To make the comparison more 

meaningful, propensity modelling was used to match the ponds to be compared in the 

two areas by other characteristics as far as possible. Occupancy modelling was used to 

determine probability of detection for great crested newts and marsh frogs from survey 

data collected in ponds in Kent. This showed that accounting for variation in detectability 

did not increase the predicted occupancy of the survey ponds for these species. The 

presence of common frogs was found to be much higher in the ponds in Sussex. Logistic 

regression showed that common frogs were positively associated with shaded ponds, 

which marsh frogs tended to avoid. This suggested predation and/or competition by 
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marsh frogs on common frogs was unlikely because of these different habitat 

preferences. Therefore, a higher proportion of great crested newts in the survey ponds 

in Kent may be the main cause of the lower number of common frogs in that area. 

Results from an eDNA metabarcoding analysis of water samples taken in 2014 from 

ponds in central Kent were obtained. The data provided the presence/absences of 

common frogs, great crested newts, and marsh frogs. Logistic regression showed that 

common frogs were not negatively associated with great crested newt presence. 

However, there was a much higher proportion of ponds with great crested newts 

compared to ponds with common frogs. In contrast, the proportion of ponds occupied by 

marsh frogs was very low. This supported the hypothesis that marsh frogs are unlikely 

to be the cause of lower common frog presence in the area. Common frog spawn surveys 

were conducted in 2017 on a subset of the same ponds analysed by the DNA 

metabarcoding in 2014. These showed a change in pond occupancy between 2014 and 

2017. This could be due to natural changes in occupancy or metabarcoding could be 

detecting non-breeding common frog ponds and missing some breeding ponds. 

Both landscape and local level studies have indicated that common frog presence is 

lower in an area of high pond density in Kent. This is unlikely to be caused by the 

presence of marsh frogs because of a difference in pond preference between common 

frogs and marsh frogs reducing the risk of predation or competition. There was also a 

relatively low presence of marsh frogs in areas that were showing lower proportions of 

common frogs compared to great crested newts. The high proportion of ponds occupied 

by great crested newts is more likely to be the reason for lower common frog presence. 

Therefore, more active measures to control the spread of marsh frogs is not required 

when considering conservation measures to protect common frogs. 

 

Key words: Amphibian, eDNA, frog, invasive, Kent, non-native, occupancy, Pelophylax, 

Rana temporaria, species distribution modelling, Triturus cristatus  
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Chapter 1. General Introduction 
 

The rate of non-native species introductions have increased as a result of human activity 

(Seebens et al. 2018; Wilson et al. 2009; Ricciardi 2007; Tatem and Hay 2007). Climate 

change may also result in the alterations in species ranges (Hulme 2017; Ihlow et al. 

2016; Araújo, Thuiller and Pearson 2006). Therefore, the spread of non-native species 

seems likely to continue (Tatem and Hay 2007). Non-native species can cause severe 

damage to the ecosystem they invade as well as causing economic damage (Shine 

2010; Shine et al. 2006). The impacts of non-native species are diverse. They can range 

from relatively direct impacts such as predation and the spreading of disease, or have 

more complicated origins involving trophic cascades (Penk et al. 2017; Kraus 2015; 

Roemer, Donlan and Courchamp 2002). Therefore, assessing the effects of non-native 

species can be challenging.  

The loss of biodiversity is a concern for many taxa including amphibians (Stuart et al. 

2004). There are multiple causes of amphibian declines and the increasing presence of 

non-native amphibians is not a trivial one (Measey et al. 2016; Kraus 2015; Bielby et al. 

2008; Beebee and Griffiths 2005). Species such as the American bullfrog (Lithobates 

catesbeianus) and African clawed frogs (Xenopus laevis) have had major impacts on 

native species all over the world (Laufer et al. 2018; Barbosa, Both and Araujo 2017; 

Ihlow et al. 2016).  

The UK has had its fair share of problems with non-native species. However, amphibian 

invaders have been less successful. There have been introductions of some of the 

notorious amphibian invasive species into the UK including the American bullfrog and 

African clawed frog. So far, their impacts have not been severe. The UK climate has had 

its advantages in this respect and limited the spread of these species (Kernan 2015; 

Measey and Tinsley 1998). There is one non-native amphibian which has been by far 

the most successful introduction to date, the marsh frog (Pelophylax ridibundus) (Zeisset 
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and Beebee 2003). However, the impact of this species is far from clear. The marsh 

frog’s impact (or not) on the common frog (Rana temporaria) is the subject of this 

research. 

1.1. An introduction to the marsh frog (Pelophylax ridibundus) 
1.1.1. Distribution and taxonomy 
The marsh frog is distributed widely through western, central and eastern Europe and 

has a native area extending from eastern France to Kazakhstan (Kuzmin et al. 2009) 

(Figure 1.1). Marsh frogs belong to Ranidae, sometimes known as ‘true fogs’ or ‘leaping 

frogs’. Characteristically the members of this family have long powerful hind legs for 

swimming and leaping (Greenhalgh and Ovenden 2007). The Ranidae can be separated 

into the ‘brown frogs’ that tend to be more terrestrial and the ‘green frogs’ or ‘water frogs’ 

that are in general more aquatic and noisier (Greenhalgh and Ovenden 2007). Marsh 

frogs are classified as a green frog; it has a loud communal call and the aquatic behaviour 

is typical of this group. This is in contrast to the common frog, a member of the brown 

frogs which displays the typical more terrestrial behaviour of this group e.g. leaving 

ponds soon after spawning and having a quieter call (Greenhalgh and Ovenden 2007). 
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Figure 1.1. Distribution of marsh frogs showing the extant (resident) population (yellow) and 
introduced populations (purple). Reproduced from IUCN Red List (Kuzmin et al. 2009). 

 

1.1.2. Interactions between marsh frogs and common frogs 

In the UK marsh frogs emerge from hibernation around late April early May but if the 

spring has been very cold this can be delayed until late May (Beebee and Griffiths 2000). 

Mating and then spawning ensues in May to early June usually over about two weeks or 

longer if interrupted by bad weather (Beebee and Griffiths 2000). The males tend to 

congregate during breeding usually in areas that have lots of floating vegetation that can 

be used as rafts for mating on (Beebee and Griffiths 2000). The congregation of male 

marsh frogs during mating is not as pronounced as for common frogs because marsh 

frog males are very territorial and aggressive (Menzies 1962).  

Several other features that aided marsh frogs successful introduction into the UK are 

also related to breeding. Marsh frogs lay many eggs (Cayuela, Besnard and Joly 2013); 

a trait that has increased the invasive potential of many species including amphibians 

(Measey et al. 2016; Van Bocxlaer et al. 2010; Urban et al. 2008; Shine et al. 2006; Kats 

and Ferrer 2003). A study in Russia found that female absolute fecundity ranges from 

1,199 to 13,252 (Ivanova and Zhigalski 2011). The estimates of the numbers of eggs laid 
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by a single female each year in the UK vary for both marsh frogs and common frogs. 

Estimates for the common frog have been in the range of 1000 to 2000 (Inns 2009; 

Beebee and Griffiths 2000). Examination of one marsh frog female just prior to spawning 

found 2,900 eggs (Smith 1973). Another feature that could benefit an invading species 

is survival of their young. Rather than the eggs being laid in a large clump that is visible 

from above like common frogs, marsh frogs lay small clumps of eggs that are deposited 

about 5 to 10 cm below the surface and attached to dense aquatic vegetation (Wycherley 

and Anstis 2001; Kyriakopoulou-Sklavounou and Kattoulas 1990). Tadpole behaviour 

also gives marsh frogs an advantage over common frogs. Rather than congregating like 

other anuran tadpoles marsh frog tadpoles tend to prefer deeper water and dense 

vegetation and are rarely caught in open water like common frogs (Beebee and Griffiths 

2000; Innocenzi 1995). 

The differences in behaviour and habitat preference that common frogs exhibit compared 

with marsh frogs may prove to be a significant factor in determining if marsh frogs are 

affecting the distribution of common frogs (Cayuela, Besnard and Joly 2013). Both 

species have a relatively broad habitat range; however, marsh frogs have a preference 

for ditches, sewers and larger open ponds (Roth, Buehler and Amrhein 2016; Beebee 

and Griffiths 2000; Morand and Joly 1995).  Common frogs can be found in both ditches 

or ponds and larger lakes but can also inhabit much smaller, shallower waterbodies 

compared to the marsh frog (Inns 2009; Beebee and Griffiths 2000). Compared with 

common frogs, marsh frogs have a much higher tolerance of brackish water (Viertel 

1999; Innocenzi 1995; Beebee 1980; Menzies 1962). This tolerance has enabled marsh 

frogs to successfully colonise tidal marshes like Romney Marshes in Kent (Firth 1984). 

The differing preference in habitat has led to the belief that they are occupying a vacant 

niche and that the disappearances of the common frogs from these areas is due to a 

change in habitat favouring marsh frogs rather than common frogs (Beebee and Griffiths 

2000; Beebee 1980). For example, an increase of intensive agricultural farming in an 
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area is likely to affect the more terrestrial common frog compared to marsh frogs that 

reside by the water all year round (Beebee 1980). 

Several studies looking at the diet of marsh frogs, both in England and across Europe, 

indicate that marsh frogs are a generalist and their diet is strongly influenced by 

availability of prey (Cicek and Mermer 2007; Merry 2004). The majority of their prey tends 

to be invertebrates but amphibians, reptiles, fish, mammals and plant material have all 

been found in diet studies (Mollov, Boyadzhiev and Donev 2010; Cicek and Mermer 

2007; Yilmaz and Kutrup 2006; Merry 2004; Ruchin and Ryzhov 2002). Common frogs 

share a similar diet consisting of mainly invertebrates (Beebee and Griffiths 2000). 

Despite this, competition for food between the two species is unlikely because common 

frog adults leave ponds to forage on land before marsh frogs have emerged from 

hibernation (Merry 2004). More prey is caught on land than in water (Cicek and Mermer 

2007; Merry 2004). Marsh frogs will both sit and wait and actively forage to catch their 

prey (Merry 2004). Variability in the type of prey was seen in different populations, 

localities and at different times of year (Mollov, Boyadzhiev and Donev 2010; Cicek and 

Mermer 2007; Yilmaz and Kutrup 2006; Ruchin and Ryzhov 2002). Cannibalism was 

also found in many studies (Mollov, Boyadzhiev and Donev 2010; Cicek and Mermer 

2007; Yilmaz and Kutrup 2006; Ruchin and Ryzhov 2002; Smith 1973) and this may 

indicate that the marsh frog is an opportunistic feeder (Mollov, Boyadzhiev and Donev 

2010). In the most comprehensive assessment of diet under natural conditions to be 

carried out in England there was a high mortality of common frog larvae prior to marsh 

frogs emerging from hibernation so predation of marsh frogs on common frogs could not 

be tested (Merry 2004). 

1.1.3. Introduction of marsh frogs into the UK 

There have been numerous reports of introductions of green frogs into the UK taking 

place in the 19th and 20th century (Arnold 1995; Menzies 1962; Smith 1939) the first 

possibly being in 1837 at Morton and Hockering in Norfolk (Arnold 1995). However, the 
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differences in the species were not fully understood and introductions of any of the green 

frogs into the UK were referred to as edible frogs sometimes noted as being ‘the 

subspecies of ridibunda’, ‘Rana esculenta the Hungarian variety’ or ‘the Italian form Rana 

esculenta lessonae’ (Arnold 1995; Boulenger 1884). Due to this it is possible that the first 

introduction of marsh frogs in the UK occurred in Childworth and Shere, Surrey in 1884 

when several types of green frog were introduced (Arnold 1995). Many of the 

introductions of green frogs did not survive (Frazer 1983; Smith 1939). The reasons for 

this are unclear - anecdotal reports suggest enough of the frogs appear to have been 

released; Smith (1939) refers to 200 marsh frogs being sold to a firm in Barking Creek, 

[East London] and 1500 specimens from France and Belgium being released in the Fens 

near Stoke Ferry [Norfolk]. The Stoke Ferry area was very likely to have had suitable 

habitat but as these are anecdotal reports it is difficult to draw any conclusions. There 

are several introduced populations of green frogs present in southern England often with 

a mix of pool frogs (Pelophylax lessonae), edible frogs (Pelophylax esculentus) and 

marsh frogs. There is also a population of the Iberian marsh frog (Pelophylax perezi) in 

Somerset (Reptile and Amphibian Group for Somerset n.d.). 

The most well-known introduction of marsh frogs which is likely to have been the 

progenitor of the population in southern Kent occurred in the winter of 1934-35 when 

Edward Percy Smith introduced 12 marsh frogs into his garden at Stone-in-Oxney, near 

Romney and Walland Marshes, East Kent (Smith 1939). The 12 frogs had originally been 

brought over from the neighbourhood of Debreczen in Hungary by Professor A.V. Hill 

(Mandeville and Spurway 1949). Since then, the species has become abundant in the 

low-lying wetlands of the south eastern counties (Zeisset and Beebee 2003). However, 

there are also records of sightings in the Midlands (Nottinghamshire Biological and 

Geological Records Centre 2012; Worcestershire Biological Records Centre 2012), as 

well as a water frog population in Yorkshire which may contain marsh frogs (Inns 2009). 

After their introduction marsh frogs spread rapidly along watercourses but their 
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dependence on water has prevented natural colonisation of suitable habitat that is 

geographically separated (Zeisset and Beebee 2003). Accidental or deliberate 

translocations are likely to be the cause of the occurrence of new populations in these 

areas (Zeisset and Beebee 2003). The dispersal of marsh frogs in Kent and Sussex 

proceeded in a distinctive pattern along rivers with smaller populations radiating from 

these. 

 

1.2. Detecting impacts of invasive species 
It is notoriously difficult to identify the effects of a non-native species (Pilliod, Griffiths and 

Kuzmin 2012; Shine 2010; Shine et al. 2006; Parker et al. 1999). Even in research into 

the spread of the cane toad (Bufo marinus) in Australia, which is one of the most studied 

invasions, it has been difficult to quantify the effects on native species (Shine 2010; Shine 

et al. 2006). Identifying effects of a non-native species is hindered by several sources of 

ambiguity. Evidence can be derived from experiments designed to test the effect of the 

non-native on a particular species; or research investigating correlation between 

abundance and distribution of one species with the non-native (Pilliod, Griffiths and 

Kuzmin 2012). With experiments, there are trade-offs with replication and scale. Pure 

field experiments are often un-replicated (or pseudo-replicated) so may be realistic but 

confounded. At the other extreme, more contrived mesocosm or laboratory experiments 

can be well-designed with appropriate replication but may be more divorced from the 

real world.  

Experiments have shown that marsh frogs will eat common frog tadpoles (Innocenzi 

1995). However, studies on the diet of marsh frogs have not shown significant levels of 

predation on other amphibians (Mollov, Boyadzhiev and Donev 2010; Cicek and Mermer 

2007; Yilmaz and Kutrup 2006; Merry 2004; Ruchin and Ryzhov 2002). Further 

experimental studies along these lines may not adequately answer the question of why 

there appears to be fewer common frogs in areas where there are marsh frogs. Without 
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answering this question doubts may still remain about the impact of marsh frogs on 

common frogs. To help answer this more general question this research will start at a 

landscape level to identify whether the distribution of common frogs appears altered in 

relation to the distribution of marsh frogs. Species distribution models (SDMs) associate 

species presence records with environmental variables to predict species distributions 

(Peterson et al. 2011; Pearson 2007). This technique has been used to make inferences 

about interactions between species (Buckland et al. 2014; Anderson, Peterson and 

Gómez-Laverde 2002). A more focussed local level study will then be used to identify if 

the findings of the landscape level study are reproduced at a much smaller scale. 

To achieve the aim of determining whether the presence of marsh frogs is likely to have 

caused lower presence of common frogs, four main objectives were set: 1) Use species 

distribution modelling to predict the distributions of common frogs, marsh frogs, great 

crested newts, and grass snakes to locate areas in Kent and Sussex where these 

species may be interacting; 2) Identify which variables are associated with the presence 

of these species to help determine whether species interactions or habitat preferences 

are responsible for the predicted distributions; 3) Compare common frog pond 

occupancy at a local level to find out if it is lower in areas where marsh frogs are present 

while controlling for differences in habitat; 4) Identify what pond variables may be 

associated with the presence of common frogs, marsh frogs, and great crested newts 

and whether these variables reveal anything about the likelihood that marsh frogs are 

preying on common frogs.  

   

1.3. Thesis structure 
• Chapter 2 uses SDMs to compare the predicted distributions of marsh frogs and 

common frogs in order to determine areas of possible overlap and interaction. 

• Chapters 3 and 4 aim to validate the findings in Chapter 2. A local level study 

was used to identify if any reduced presence of common frogs found by the 
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landscape study are reflected at a pond level by the presence of marsh frogs. To 

take account of variation in detectability, occupancy modelling was used to 

calculate the probability of detection and pond occupancy. 

• Chapter 5 compares the results of the local level study to species 

presence/absence data identified using eDNA metabarcoding by Harper, 

University of Hull (Harper et al. 2018a; Harper et al. 2018b; Harper et al. 2018c). 

Common frog spawn surveys and eDNA techniques were then used on a subset 

of these ponds to identify if occupancy has changed between 2014 and 2017 

and/or whether the eDNA survey detects the same ponds as the spawn surveys. 

• Chapter 6 is a general discussion of the main points raised in the other chapters 

and makes recommendations regarding conservation. 
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Chapter 2. Impacts of potential competitors and 

predators on the distribution of common frogs 
 

2.1. Abstract 
The introduction of non-native species can lead to a loss in biodiversity. However, as 

there may be multiple factors driving population trends it is often difficult to determine the 

impacts of a non-native species. In such situations assessing the distributions of the 

native and non-native species can indicate where impacts may be occurring to help 

target a more focussed study. The non-native marsh frog (Pelophylax ridibundus) may 

have been exacerbating declines in a native common frog (Rana temporaria) in south 

east England. Species distribution models (SDMs) were used to determine the overlap 

in distribution between marsh frogs, common frogs and a native predator of the common 

frog, the great crested newt (Triturus cristatus). The SDMs revealed common frogs 

predicted presence was lower in areas predicted suitable for marsh frogs. The strong 

positive association with linear water features was the main predictor of marsh frog 

distribution. The lower probability of common frogs in areas with lots of linear water 

features may be due to these areas having less suitable habitat for common frogs, rather 

than the presence of marsh frogs. An area in central Kent with high pond density was 

predicted as less suitable for common frogs and more suitable for both marsh frogs and 

great crested newts. Great crested newts and marsh frogs were positively associated 

with pond density and could be the reason for fewer common frogs in this area. 

 

2.2. Introduction 
The global decline in amphibians is now well recognised by the conservation community 

(Bielby et al. 2008; Beebee and Griffiths 2005; Stuart et al. 2004). The impact of non-

native amphibian species is an important factor in this decline (Measey et al. 2016). 

However, determining if a non-native is the cause of a native species’ decline can be 
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difficult, particularly if any impacts are due to indirect effects (Pilliod, Griffiths and Kuzmin 

2012; Preston, Henderson and Johnson 2012; Shine 2010; Shine et al. 2006; Parker et 

al. 1999). Even if there is a strong correlation between a decline of a native and an 

increase in a non-native species, the non-native may not be the cause of the decline. 

Changes in habitat that are favourable to the non-native and detrimental to the native 

species could be the reason for the negative relationship (Didham et al. 2005; Byers 

2002). The non-native species may be exacerbating the decline or having no impact. 

Establishing whether the non-native species is an important factor in the decline is 

essential if conservation efforts are to be effective.  

In some areas of lowland Kent and Sussex the native common frog (Rana temporaria) 

has declined (Brady 2009; Firth 1984; Beebee 1980; Menzies 1962). A non-native 

species, the marsh frog (Pelophylax ridibundus), was introduced into Kent in 1935 and 

Sussex in 1973 (Beebee 1980; Smith 1939) (Figure 2.1). It has been suggested that 

marsh frogs may be one of the causes of the decline in common frogs (Brady 2009; Firth 

1984; Menzies 1962). There is also evidence that in Switzerland, another part of the 

marsh frog’s introduced range, it has affected the density and distribution of native 

amphibians (Roth, Buehler and Amrhein 2016). However, other factors such as changes 

in land use, may be causing the common frog decline in Kent and Sussex, possibly 

simultaneously with the spread of marsh frogs (Beebee 1980). 
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Figure 2.1. The recorded presence of marsh frogs in Sussex and Kent using all validated records 
until 2014 held by Kent Reptile and Amphibian Group (KRAG) and the Sussex Biodiversity 
Records Centre (SxBRC).  

 

It is possible that predation of common frog tadpoles and froglets by marsh frogs could 

be reducing common frog numbers (Menzies 1962). However, more complex 

competitive and predatory interactions may be involved. The great crested newt (Triturus 

cristatus), another predator of the common frog that is associated positively with high 

pond density (Oldham et al. 2000), could be driving or exacerbating the situation (Brady 

2009). Marsh frogs inhabit ponds as well as marsh dykes and ditches, and rarely stray 

far from water (Kovar et al. 2009; Beebee and Griffiths 2000). Areas of high pond density 

are likely to be suitable habitat for both these species. Great crested newts are negatively 

affected by predatory fish (Hartel et al. 2007; Van Buskirk 2005). Therefore, it has been 

suggested that common frogs may have been using ponds occupied by fish to avoid 

predation by great crested newts (Brady 2009). Marsh frogs tend to be unaffected by the 

presence of fish (Hartel et al. 2007; Van Buskirk 2003), so they could be reducing the 

Sussex 

Kent 

Marsh frog record 

River 
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number of ponds where common frogs can breed successfully (Brady 2009). Another 

possible explanation may lie with grass snakes (Natrix helvetica), which have large home 

ranges (Reading and Jofre 2009; Madsen 1984) and feed on both frog species and have 

become very abundant in marsh frog inhabited areas (Gregory and Isaac 2004). It is 

possible that grass snakes are moving from marsh frog sites to ponds occupied by 

common frogs, thereby impacting upon their populations.  

Due to the possible complex interactions that could be involved if marsh frogs are 

affecting common frogs, a broader scale approach examining species distributions was 

undertaken in this study. Species’ distribution models (SDMs) can be used to predict 

presence by associating species records with environmental conditions that may affect 

their occurrence (Pearson 2007). SDMs have been used to predict the extent of non-

native invasions, estimate the overlap of non-native and endemic species, and highlight 

where competitive exclusion may be occurring between species (Buckland et al. 2014; 

Urban et al. 2008; Anderson, Peterson and Gómez-Laverde 2002). SDMs can thus 

indicate where a non-native species has potentially displaced a native species.  

The aim of this study was to determine whether the distribution patterns of common 

frogs, marsh frogs, great crested newts, and grass snakes were consistent with the 

hypothesis that marsh frogs were affecting the distribution of common frogs in Kent and 

Sussex. To achieve this  SDMs were used to: (i) identify if there are areas where impacts 

between the species could be occurring; and (ii) whether the predicted distributions and 

the environmental variables most associated with them support a mechanism of impact 

on common frogs such as predation by marsh frogs, great crested newts or grass 

snakes. The environmental variables driving the distribution of all species were 

considered, to avoid falsely attributing the absence of common frogs to the presence of 

marsh frogs. 
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2.3. Methods 
2.3.1. Study area 
The study area comprises the counties of Kent (Lat 51° 11’N, Long 0° 44,E) and Sussex 

(Lat 50°56’N, Long 0°2’E) in south east England (Figure 2.1). These counties are 

characterised by landscapes consisting of chalk hills, lowland arable land, wetland 

marshes, and patches of woodland. The 25 m resolution raster Land Cover Map 2007 

(LCM2007), which identifies the most widespread habitat in 25 m x 25 m pixels (Morten 

et al. 2011), shows the east of Kent and west of Sussex dominated by arable and 

horticultural land; while in the west of Kent and central and east Sussex improved 

grassland is the predominating land cover (Figure 2.2a). There are also extensive urban 

and suburban areas across Kent and Sussex, providing potentially suitable habitat for all 

four species in the form of urban and suburban parks and gardens (Beebee and Griffiths 

2000). Access to surface water such as ponds and watercourses is important for 

amphibians. Central Kent has a large area where pond density is very high (Figure 2.2b). 

In Sussex there are smaller areas of higher pond density. The southernmost part of Kent 

has many watercourses (Figure 2.2c). In some parts of north Kent and the south coast 

of Sussex there are also smaller areas with a high density of watercourses.
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Figure 2.2. Land cover maps of Kent and Sussex. (a) Map showing habitats in Kent and Sussex using the 25 m x 25 m raster Land Cover Map 2007 (Morton 
et al. 2011). Each 25 m x 25 m raster pixel represents the habitat identified as dominant in that location. The habitat categories are based on the UK Biodiversity 
Action Plan Broad Habitats (Morton et al. 2011). (b) Map showing pond density per (km²) in Kent and Sussex. Lighter blue areas indicate higher pond density. 
(c) Map showing linear water (length per km²). Lighter areas indicate greater amounts of linear water features.
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2.3.2. Species data collation 
Species presence records were obtained from the Kent Reptile and Amphibian Group 

(KRAG) and the Sussex Biodiversity Records Centre (SxBRC). The KRAG records used 

were either ‘validated’ or ‘within expected range’ based on the KRAG validation system. 

‘Validated’ records are defined as being supported by compelling evidence, such as a 

clear photograph or the record was from a trusted recorder (Brady 2010). A record that 

is ‘within expected range’ is defined as being submitted from an unknown recorder, but 

which is within the expected range for that species (Brady 2010).  SxBRC records are 

validated by the Sussex county recorder using five different levels: ‘correct’, ‘considered 

correct’, ‘plausible’, ‘unable to verify’, and ‘not accepted/incorrect’ (Foreman 2018). The 

levels ‘correct’ and ‘considered correct’ are similar to the KRAG ‘validated’ and ‘within 

expected range’ categories. Records from only these categories were used in the SDMs 

for Sussex and Kent. The KRAG and SxBRC species records are from a variety of 

sources including records collected by the public, records from environmental 

consultants, and other surveys to assess biodiversity in areas such as nature reserves. 

Therefore, the recording techniques and survey effort for the collection of species 

records varies. 

The habitat where species have been recorded in the past may have changed through 

time, particularly in the case of older observations. To increase the likelihood that the 

type of habitat present when a species was recorded matches the habitat variable used 

in the SDM, only species records from 2000 to 2014 were used. Only species presence 

records reported to a precision of 100 m x 100 m or lower, equivalent to a six figure 

British National Grid reference, were included in the analyses. This resolution was 

chosen to maximise the number of species records that could be used, without being too 

coarse for comparison with the 25 m x 25 m land cover map (see below). Duplicated 

records were removed. Using these criteria, the number of grid cells with species present 

were as follows:  
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Kent: 1253 grid cells with common frog, 218 grid cells with marsh frog, 685 grid cells with 

great crested newt, and 985 grid cells with grass snake. Sussex: 1088 grid cells with 

common frog, 84 grid cells with marsh frog, 554 grid cells with great crested newt, and 

730 grid cells with grass snake.   

2.3.3. Environmental variable selection 
For each species, environmental variables that were considered likely to affect the 

distribution, based on previous research and expert knowledge, were selected for use in 

the SDMs (Table 2.1). These included a subset of the WorldClim bioclimatic variables 

(http://www.worldclim.org/bioclim) (Table 2.1) taken from records between 1950 and 

2000 (Hijmans et al. 2005).  The WorldClim variables have a spatial resolution of 30 arc 

seconds which equates to approximately 0.86 km² resolution at the equator (reducing 

with increasing distance from the equator) (Hijmans et al. 2005). Each WorldClim 

variable was created using temperature or precipitation records from weather stations to 

model an interpolated surface for each variable (Hijmans et al. 2000). The relatively small 

spatial extent of Kent and Sussex means that the bioclimatic variables may be 

approaching their limit of accuracy given the spatial scale. However, the higher elevation 

of the North Downs and South Downs in Kent and Sussex means there are temperature 

and precipitation gradients within the counties which could affect amphibian distribution. 

Therefore, inclusion of bioclimatic variables may result in more accurate distribution 

models. 

Explanatory variables identifying the distance of each pixel from a habitat category were 

created using the Land Cover Map 2007 (LCM2007) (Table 2.1).The LCM2007 is a 25 

m x 25 m raster product derived from satellite imagery and digital cartography, and 

delineates habitats according to the UK Biodiversity Action Plan Broad Habitats (Morton 

et al. 2011). A minimum mappable unit of 0.5 hectares is achieved in the LCM2007; 

segments of habitat smaller than this are ‘dissolved’, into surrounding segments so the 

http://www.worldclim.org/bioclim
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dominant habitat is represented (Morton et al. 2011). Other habitats smaller than 0.5 

hectares may be present but not shown.  

The LCM2007 has six different classes of grassland habitat (‘Improved grassland’, 

‘Rough grassland’, ‘Neutral grassland’, ‘Calcareous grassland’, and ‘Acid grassland’) 

that were merged to form two aggregate classes: ‘Distance from improved grassland’ 

and ‘Distance from semi-natural grassland’. This was done to differentiate, as far as 

possible, between highly managed grassland, such as sports fields, and grassland with 

more natural characteristics that may provide some habitat for amphibians. The habitat 

classes ‘urban’ and ‘suburban’ from the LCM2007 correspond to the UK Biodiversity 

Action Plan Broad Habitat class ‘Built-up areas and gardens’ (Morten et al. 2011; 

Jackson 2000). This category covers: urban and rural settlements (including domestic 

gardens and allotments), farm buildings, caravan parks, industrial estates, retail parks, 

waste and derelict ground, urban parkland, and urban transport infrastructure (Jackson 

2000). The LCM2007 classes ‘urban’ and ‘suburban’ were combined to create the 

variable ‘Distance from urban/suburban areas’ (Table 2.1).  

Table 2.1. Environmental variables used in Kent and Sussex species distribution models for 
common frogs, marsh frogs, great crested newts, and grass snakes. 

Variable 
Name 

Description Reason for inclusion 

Linear water 
features  

Combined length of linear water 
features per km². Derived from 
Ordnance Survey MasterMap 

Water Network (OS MasterMap 
Water Network 2015). 

Marsh frogs are a highly aquatic species 
and often associated with linear water 

features such as drainage ditches (Inns 
2009; Beebee and Griffiths 2000). 

Distance 
from 
broadleaved 
woodland 

A measurement of the distance 
in metres of each raster pixel 

from the closest pixel classified 
as broadleaved woodland. 
Derived from the LCM2007 

(Morton et al 2011).  

Common frog presence has been 
associated with woodland (Boissinot et al. 

2015; Van Buskirk 2005). 

Distance 
from arable 
land 

A measurement of the distance 
in metres of each raster pixel 

from the closest pixel classified 
as arable or horticultural land. 

Derived from the LCM2007 
(Morton et al. 2011). 

Areas of arable land are likely to be 
detrimental to amphibians due to issues 

such as agricultural runoff and overgrowth 
of ditches (Beebee and Griffiths 2000). 
Arable land has also been found to be 
negatively associated with grass snake 

presence (Ward 2017). 

Distance A measurement of the distance Improved grassland could have a 
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from 
improved 
grassland 

in metres of each raster pixel 
from the closest pixel classified 
as improved grassland. Derived 
from the LCM2007 (Morton et al. 

2011). 

negative effect on amphibians due to 
eutrophication of ponds from fertilisers 

(Beebee 2013). 

Distance 
from semi-
natural 
grassland 

A measurement of the distance 
in metres of each raster pixel 

from the closest pixel classified 
as semi-natural grassland. 
Derived from the LCM2007 

(Morton et al 2011). 

Semi-natural grassland can often provide 
habitat for amphibians and reptiles. It was 

found to be positively associated with 
great crested newt presence in Kent and 

grass snakes in Jersey (Ward 2017; 
Bormpoudakis et al. 2015). 

Distance 
from urban/ 
suburban 
areas 

A measurement of the distance 
in metres of each raster pixel 

from the closest pixel classified 
as urban or suburban areas. 
Derived from the LCM2007 

(Morton et al 2011). 

Amphibians, particularly common frogs, 
can often occupy urban and suburban 
ponds leading to quite high populations 

(Beebee 1979).  

Pond density  Number of ponds within a 1 km 
radius divided by pi. Derived 
from a UK wide pond dataset 

provided by ARC Trust. 

Presence of great crested newts has been 
linked to higher pond densities 

(Bormpoudakis et al. 2015; Oldham et al. 
2000). 

Distance 
from major 
road 

A measurement of the distance 
in metres of each raster pixel 

from the closest pixel classified 
as a motorway, primary road, or 
A-road. Derived from Ordnance 
Survey MasterMap Highways 

Network (OS MasterMap 
Highways Network 2015). 

Busy roads have been found to affect 
common frogs and great crested newts 

negatively (Hartel et al. 2010). 

Distance 
from minor 
road 

A measurement of the distance 
in metres of each raster pixel 

from the closest pixel classified 
as a B-road or minor road. 

Derived from Ordnance Survey 
MasterMap Highways Network 

(OS MasterMap Highways 
Network 2015). 

Roads with less traffic have been found to 
have a positive effect on some amphibian 

species (Hartel et al. 2010). 

Temperature 
seasonality 

The standard deviation of 
temperature x 100 at a 

resolution of 30 arc seconds. 
Recorded between 1950 and 

2000. Obtained from the World 
Clim data set 

http://www.worldclim.org/bioclim 
(Hijmans et al. 2005). 

Temperature seasonality has been found 
to be negatively associated with great 

crested newt presence in Kent 
(Bormpoudakis et al. 2015). 

Maximum 
temperature 
warmest 
month 

Maximum temperature warmest 
month recorded between 1950 
and 2000. Obtained from the 

WorldClim data set 
http://www.worldclim.org/bioclim 

(Hijmans et al. 2005).  

Marsh frogs emerge from hibernation later 
than UK native amphibians (Beebee and 
Griffiths 2000) and therefore are likely to 
be more associated with warmer areas.  

Minimum 
temperature 
coldest 
month 

Minimum Temperature coldest 
month recorded between 1950 
and 2000. Obtained from the 

WorldClim data set 
http://www.worldclim.org/bioclim 

Warmer winters can result in hibernating 
animals depleting energy reserves without 
being able to feed. Previous research has 

found great crested newts to be 
negatively associated with warmer winters 

http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
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(Hijmans et al. 2005). (Bormpoudakis et al. 2015; Griffiths, 
Sewell and McCrea 2010). 

Precipitation 
coldest 
quarter 

Precipitation coldest quarter 
recorded between 1950 and 

2000. Obtained from the 
WorldClim data set 

http://www.worldclim.org/bioclim 
(Hijmans et al. 2005). 

High winter rainfall, leading to 
waterlogged soils, could mean hibernating 

amphibians can only utilise gaseous 
exchange across their skin. This could 
prevent pumping of air into their lungs 
thus leading to respiratory problems 
(Griffiths, Sewell and McCrea 2010). 

 

Highly correlated variables in SDMs can lead to very complex models, making it difficult 

to interpret them ecologically (Peterson et al. 2011). Therefore, Spearman’s rank tests 

were used to measure inter-correlation between all the variables. There were no 

correlations between variables where Spearman’s rho was > 0.70 (Supplementary 

information Table S2.1, S2.2) so all the variables were retained (Proosdij et al. 2016; 

Ihlow et al. 2016; Dormann et al. 2013).  

2.3.4. Model development 
Maxent modelling was chosen because it can be used with just species presence 

records, where no information exists on species absence. Also, studies comparing the 

predictive performance of different models have shown Maxent to be one of the most 

accurate modelling methods (Wachtel et al. 2018; Schank et al. 2017; Elith et al. 2006; 

Phillips, Anderson and Schapire 2006). Maxent models were run using Maxent version 

3.3k (Phillips, Dudik and Schapire 2011). 

The accuracy of an SDM can be measured by identifying the fraction of species presence 

records predicted correctly (the sensitivity) and the fraction of absence records predicted 

correctly (the specificity) (Pearson 2007). The Receiver Operating Characteristic (ROC) 

is a plot of sensitivity against 1 minus the specificity over a range of thresholds (Pearson 

2007). The proportion of the area under the ROC curve (the AUC) provides a single-

value measure of the fraction of absence and presence records correctly predicted by 

the model (Fielding and Bell 1997; Swets 1988). AUC is used to assess the SDMs in this 

study because it measures accuracy over the full range of possible thresholds (Pearson 

http://www.worldclim.org/bioclim
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2007; Fielding and Bell 1997). However, as Maxent does not use species absence data, 

specificity is calculated based on the predicted area composed of the background 

environmental data for the entire study area including the places with presence records 

(Pearson 2007). The value of each variable at a random selection of points is used as 

the background environmental data. In this study approximately 10,000 background 

points were used for each model run so a good representation of the study area was 

achieved (Elith et al. 2011).  

Maxent splits the species data into two parts. Data used to train the model and data used 

to test the model’s predictive ability using AUC. The AUC value provides a measure of 

how well the model classifies a sample of species presences compared to a random 

prediction (Pearson 2007). An AUC score of 0.5 means that the model has been able to 

rank random presence sites over random background sites no better than chance 

(Phillips et al. 2009). The AUC values for SDMs using different species or different 

regions are not comparable because the area covered by a species’ predicted 

distribution relative to the study region would vary (Peterson et al. 2011; Franklin et al. 

2009; Phillips, Anderson and Schapire 2006). Therefore, AUC will only be used to assess 

performance in models using the same species in the same region.  

The AUC calculated from model testing is referred to in this study as AUCtest.  Different 

methods can be used to split the data. In this study two methods are tested: (1) the 

subsample method (SS) and (2) the cross-validation method (CV). The SS method splits 

the species data into 80% training data and 20% test data. This level of data splitting 

ensured there was enough training and testing data for even the SDM with the lowest 

number of presence records (Proosdij et al. 2016). The training and testing of the model 

were repeated 10 times, with a different set of test data used for each run. The mean 

AUCtest from the 10 runs was used as the measure of predictive performance. The CV 

method divided the species data into five equal parts, with one of these being used to 

test the model (20% again, to be comparable with the SS method) and the others to train 
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the model. Each part can only be used as test data once (Peterson et al. 2011), meaning 

that a total of five repeat tests could be conducted. The CV testing method provided more 

consistent results and was therefore used in the model tuning analysis (Supplementary 

information S2). 

While AUCtest is a measure of discriminatory power of the model, it does not account 

for overfitting and can therefore support overly complicated models (Radosavljevic and 

Anderson 2014). Overfitting is where a model fits to the training data too closely making 

it less able to predict independent test data (Boria et al. 2014). To provide a measure of 

overfitting, the AUC difference (AUCdiff) was calculated by subtracting AUCtest from the 

AUC calculated by Maxent during model training (AUCtrain) (Boria et al. 2014). 

Therefore, a low AUCdiff means the model can predict test data well and is not fitting too 

closely to the species presence data that was used to develop the model.   

Research has shown it is also important to identify what model settings are likely to 

produce the best performing models for the data, environmental variables, and study 

area being analysed (Morales, Fernandez and Baca-Gonzalez 2017; Radosavljevic and 

Anderson 2014; Anderson and Gonzalez Jr. 2011). Adjustments can be made to alter 

how closely models are fitted to the data by a regularisation mechanism (Phillips and 

Dudík 2008). Regularisation reduces overfitting by lowering or setting some coefficients 

to zero, only keeping those coefficients that improve the ability of the model to distinguish 

between presence and background locations (Merow, Smith and Silander 2013). In this 

study a model tuning analysis was conducted for common frogs, great crested newts, 

and grass snakes. Models were run with regularisation levels of 0.5, 1, 2, 3, 4, 5, and 6 

to identify the most appropriate setting (Supplementary Information S2). Marsh frogs are 

unlikely to be occupying all suitable habitats in Kent and Sussex because their 

unfacilitated range expansion has been limited to contiguous suitable habitat (Zeisset 

and Griffiths 2003). Due to this the default regularisation level of 1 was used which has 

the effect of fitting the predicted distribution closer to the records of species presences.  
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2.3.5. Mitigating sampling bias 
 Record centres often hold data from opportunistic sightings which can be subject to 

sampling bias (Fourcade et al. 2014; Kadmon, Farber and Danin 2004; Dennis and 

Thomas 2000). Reducing the clumping of species records by spatially filtering them can 

improve model performance (Boria et al. 2014; Radosavljevic and Anderson 2014; 

Kramer-Schadt et al. 2013). The data for each species was filtered by implementing a 

minimum distance between species records using the R package SpThin (Aiello-

Lammens et al. 2014). The minimum distances used were 250 m for great crested newts 

and marsh frogs, 500 m for common frogs and 1 km for grass snakes. These distances 

were chosen based on evidence of dispersal distances for each species (Safner et al. 

2011; Kovar et al. 2009). For instance, marsh frogs rarely move far from their pond 

(Kovar et al. 2009; Holenweg 2001; Wycherley and Joslin 1996), although there is 

evidence that they can disperse greater distances along watercourses (Menzies 1962). 

As such 250 m between records was used to reduce spatial autocorrelation.  

A second method of bias reduction that uses a bias file was compared with spatial 

filtering. Bias files account for the clustering of records from uneven sampling by using 

background data with the same bias as the presence data (Kramer-Schadt et al. 2013; 

Phillips et al. 2009). It has the benefit of not reducing the amount of species data, unlike 

the use of spatial filters, which is beneficial if sample sizes are low (Kramer-Schadt et al. 

2013). The bias files were generated using the function kde2d from the R package MASS 

(Venables and Ripley 2002). The comparison of bias reduction techniques was 

conducted with the analysis of model testing methods and regularisation levels 

(Supplementary information S2). The SDMs using either spatial filtering or a bias file 

indicated they may be predicting a higher probability of marsh frog presence than is likely 

given the limited dispersal of marsh frogs. For this reason, the marsh frog SDMs used in 

the results were run without spatial filtering or a bias file for both Kent and Sussex. Most 

of the common frog and grass snake records are clustered in urban and suburban areas. 



24 
 

The use of spatial filtering or bias files did not change the position of ‘Distance from 

urban/suburban areas’ as the most important variable in the SDMs.  Indeed, the 

dominance of ‘Distance from urban/suburban areas’ made it difficult to assess what other 

variables may be associated with common frog and grass snake presence. Sampling 

bias may be the cause of this dominance. Nevertheless, common frogs are common in 

urban garden ponds (Beebee and Griffiths 2000). Grass snakes have also become 

established in urban parks and gardens; probably attracted by the food source provided 

by common frogs and other amphibians (Beebee and Griffiths 2000). It is possible, 

therefore, that large numbers of records in urban and suburban areas may be a 

reasonable representation of common frog distribution. This could also be the case for 

grass snakes, although their more cryptic nature may reduce their likelihood of being 

detected in rural areas. Consequently, the urban and suburban areas were not used as 

an environmental variable in the SDMs predicting the distribution of common frogs and 

grass snakes. Initially, all the other variables were used in the urban and suburban 

removed models. However, the distribution maps showed that the variables ‘Distance 

from major road’ and ‘Distance from minor road’ were acting as proxies for ‘Distance 

from urban/suburban areas’, so the models were re-run without these variables.  

2.3.6. Identifying overlapping distributions 
The final model settings used for each species were determined from the results of the 

model tuning analysis (Supplementary information S2). Distribution maps of the common 

frogs, marsh frogs, great crested newts, and grass snakes were created in ArcGIS 10.5 

using the logistic output from Maxent. Binary presence/absence was determined for each 

species by implementing a threshold at the 10th percentile training presence (10%TP) 

(Radosavljevic and Anderson 2014; Pearson et al. 2007). This threshold allows for 10 

percent omission of presence records before a species is classed as absent. The area 

of predicted sympatry between common frogs and great crested newts using the 10%TP 

was identified. The proportion that the area of predicted sympatry constituted out of the 
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total area predicted as having common frogs present was calculated. Chi-squared tests 

were used to identify if the proportion of sympatric area was significantly different in 

Sussex compared to Kent. This process was repeated using the predicted area of 

sympatry between common frogs and marsh frogs to indicate whether common frogs 

were predicted to be absent from areas of high pond density that were otherwise 

predicted suitable for marsh frogs, great crested newts, or both.   

The marsh frog population in Sussex is much smaller and more recently established than 

in Kent, so there may be areas which are suitable for the species that are yet to be 

colonised. Consequently, the distribution of common frogs may not yet have been 

affected by presence of marsh frogs. Comparing the common frog distribution in Kent 

and Sussex may show that common frogs are predicted to inhabit areas in Sussex that 

were predicted as unsuitable in Kent. This would suggest marsh frogs were having an 

influence on the distribution of common frogs in Kent. The predicted distributions for 

common frogs and great crested newts were also compared to see if the patterns 

differed.  

2.3.7. Comparing species distributions in Kent and Sussex 
The differences in habitat and landscape between two areas can affect species 

distribution patterns. Although Kent and Sussex have a similar habitat and landscape, 

the differences that do exist may affect the predicted species distributions. To help 

determine what might be driving any differences in distribution, the variables having most 

influence in the Kent and Sussex SDMs were identified using percent contribution, 

permutation of importance, and jackknife test on variable importance. The percentage 

contribution measures how influential a variable is by adding (or subtracting) the log 

likelihood of the presence samples (penalised by regularisation) to the contribution of the 

corresponding variable after each iteration of the model training process (Phillips, Dudik 

and Schapire 2011). The permutation of importance assesses the contribution of each 

variable by measuring the decrease in AUCtrain when the values of that variable are 
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randomly distributed between the species presence and background pixels (Phillips, 

Dudik and Schapire 2011). The greater the drop in AUCtrain, the more the model relies 

on that variable (Phillips 2010). The jackknife test identifies which variable has the 

highest AUCtest when used in isolation, and which variable decreases the AUCtest the 

most when removed from the model. Response curves were used to identify how each 

variable affects the species predicted probability when run in a Maxent model using only 

that variable. 

 

2.4. Results 
2.4.1. Common frog 
The AUCtest for the best performing common frog SDM for Kent was 0.68. Therefore, 

this model has been able to rank presence sites over random background sites. 

However, the model is not doing this very well given an AUCtest score of 0.5 means it 

would be ranking sites no better than random. The four variables that contributed most 

to the model were ‘Linear water features’, ‘Distance from broadleaved woodland’, ‘Pond 

density’, and ‘Distance from arable land’ (Table 2.2). The response curves showed 

‘Linear water features’ and ‘Pond density’ were negatively associated with common frog 

presence (Figure 2.3a, c). The probability of presence of common frogs increased with 

the ‘Distance from arable land’ until approximately 700 m, after which point there is a lot 

of variation (Figure 2.3d). ‘Distance from broadleaved woodland’ had the most useful 

information for the model by itself as indicated by jackknife tests on AUCtest (Figure 

2.5a). The proximity of broadleaved woodland (up to ~250 m) had a positive effect on 

common frog probability of presence (Figure 2.3b). 



27 
 

Table 2.2. Variable contributions for the common frog SDM in Kent. The percent contribution is a 
measure of the increase or decrease in the average log likelihood of presence records for the 
study area after each iteration of the model training. Permutation importance provides a measure 
of the drop in AUC calculated during the model training if the contribution of a variable is randomly 
distributed between the species presence and background pixels. 

Variable Percent 
contribution 

Permutation of importance 

Linear water features 21.9 28.3 

Distance from broadleaved woodland 17.4 18.1 

Pond density 14.4 7.7 

Distance from arable land 13 5.4 

Precipitation coldest quarter 8.7 1.1 

Distance from semi-natural grassland 8.2 8.5 

Minimum temperature coldest month 6.7 10.9 

Maximum temperature warmest month 5 7.7 

Distance from improved grassland 3.2 11.2 

Temperature seasonality 1.4 1.2 
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Figure 2.3. Response curves for the four variables that had the highest percentage contribution 
in the common frog SDM for Kent: (a) ‘Linear water features’ (b) ‘Distance from broadleaved 
woodland’ (c) ‘Pond density’ (d) ‘Distance from arable land’. The red line is the mean response of 
the common frog probability of presence to the variable, calculated from five replicate runs. The 
black dashed line indicates the mean +/- one standard deviation. 

 

The common frog SDM for Sussex had an AUCtest of 0.61 indicating that the model 

prediction is relatively poor. As in the Kent SDM, the percentage contribution of ‘Distance 

from broadleaved woodland’ and ‘Pond density’ indicated they were important to the 

model (Table 2.3). In the Sussex model the common frog probability of presence initially 

increases in response to the variable ‘Pond density’ (Figure 2.4c). This is the opposite to 

the response in the Kent model. However, the density of ponds is much higher in Kent 

than in Sussex as can be seen from the x axis of the ‘Pond density’ response curves 

(Figures 2.3c and 2.4c). Therefore, in Sussex there is less information for the model to 

use to determine common frog response to higher pond density leading to much more 

(c) (d) 

(a) (b) 
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variation (Figure 2.4c). ‘Linear water features’ in Sussex had similar permutation of 

importance as the Kent SDM but this was initially associated with an increase in common 

frog probability of presence. ‘Minimum temperature coldest month’ was a reasonably 

high contributor in Sussex. The response curve indicating common frogs prefer areas 

with higher temperatures in winter (Figure 2.4d).     

Table 2.3. Variable contributions for the common frog SDM in Sussex.  

Variable Percentage contribution Permutation of 
importance 

Distance from broadleaved woodland 16.5 10.0 

Distance from semi-natural grassland 14.4 5.0 

Pond density 13.7 16.4 

Minimum temperature coldest month 13.4 24.7 

Linear water features 9.5 20.2 

Maximum temperature warmest month 9.1 6.4 

Temperature seasonality 7.5 9.9 

Precipitation coldest quarter 7.4 0 

Distance from arable land 7.2 5.2 

Distance from improved grassland 1.3 2.2 
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Figure 2.4. Response curves for the four variables that had the highest percentage contribution 
in the common frog SDM in Sussex; (a) ‘Distance from broadleaved woodland’ (b) ‘Distance from 
semi-natural grassland’ (c) ‘Pond density’ (d) ‘Minimum temperature coldest month’. The red line 
is the mean response of the common frog probability of presence to the variable, calculated from 
five replicate runs. The black dashed line indicates the mean +/- one standard deviation. 

 

For the Sussex SDM the variables ‘Temperature seasonality’ closely followed by 

‘Minimum temperature warmest month’ contained the most information (Figure 2.5b). 

However, for both the Kent and Sussex models there was very little information that was 

not contained in the other variables (Figure 2.5).  

(a) (b)

 

(c) (d) 
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Figure 2.5. Jackknife tests of variable importance using AUCtest for the common frog SDMs in: 
(a) Kent and (b) Sussex. The orange bars indicate level of gain in AUCtest when a variable is 
used in isolation. The light blue bars indicate the amount of AUCtest lost when a variable is 
removed from the model. The AUCtest using all the variables in the model is shown by the green 
bar.  

 

2.4.2. Marsh frog 

The AUCtest scores of the marsh frog SDMs for Kent and Sussex were 0.91 and 0.92 

respectively indicating the models performed well. ‘Linear water features’ was positively 

associated with probability of presence in Kent (Figure 2.6a) and was also the most 

(a) 

(b) 
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influential variable (Table 2.4). In Kent marsh frog probability of presence tended to 

increase with Pond density (Figure 2.6b). In the Sussex SDM, ‘Minimum temperature 

coldest month’ and ‘Linear water features’ were the highest contributors to the model 

(Table 2.5). The response curves show that in the Sussex SDM ‘Linear water features’ 

was initially positively associated with presence of marsh frogs but at higher levels of 

linear water the probability of marsh frog presence declined (Figure 2.6c). Probability of 

presence of marsh frogs increased in response to ‘Minimum temperature coldest month’ 

after 0°C (Figure 2.6d). The jackknife tests indicated that  ‘Linear water features’ provided 

the most information to the models when used without the other variables for both Kent 

and Sussex SDMs (Figures 2.7a, b).  

 

Table 2.4. Variable contributions for the marsh frog SDM in Kent.  

Variable Percentage 
contribution 

Permutation of importance 

Linear water features 45.9 38.9 

Distance from arable land 9.0 6.3 

Minimum temperature coldest month 7.4 8.3 

Maximum temperature warmest month 7.0 5.4 

Distance from urban/suburban areas 6.7 7.3 

Pond density 6.6 14.4 

Distance from broadleaved woodland 6.1 5.5 

Precipitation coldest quarter 5.1 5.8 

Distance from minor road 1.9 2.6 

Temperature seasonality 1.3 0.7 

Distance from semi-natural grassland 1.1 2.3 

Distance from improved grassland 1.1 1.4 

Distance from major road 0.7 1.1 
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Table 2.5. Variable contributions for the marsh frog SDM in Sussex.  

Variable Percentage 
contribution 

Permutation of importance 

Minimum temperature coldest month 47.1 56.7 

Linear water features 31.2 10.7 

Precipitation coldest quarter 10.0 21.0 

Distance from broadleaved woodland 2.7 0.9 

Temperature seasonality 2.6 3.7 

Distance from major road 1.6 0.3 

Maximum temperature warmest month 1.2 3.0 

Distance from semi-natural grassland 1.2 0.2 

Distance from arable land 0.8 1.5 

Pond density 0.7 0.1 

Distance from improved grassland 0.6 1.6 

Distance from urban/suburban areas 0.2 0.1 

Distance from minor road 0.1 0.2 
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Figure 2.6. Response curves from the marsh frog SDMs in Kent and Sussex; (a) ‘Linear water 
features’ in the Kent SDM (b) ‘Pond density' in Kent (c) ‘Linear water features’ in the Sussex SDM. 
(d) ‘Minimum temperature coldest month’ in Sussex. The red line is the mean response of the 
marsh frog probability of presence to the variable, calculated from five replicate runs. The black 
dashed line indicates the mean +/- one standard deviation. 
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Figure 2.7. Jackknife tests of variable importance using AUCtest for the marsh frog SDMs in: (a) 
Kent and (b) Sussex. The orange bars indicate level of gain in AUCtest when a variable is used 
in isolation. The light blue bars indicate the amount of AUCtest lost when a variable is removed 
from the model. The AUCtest using all the variables in the model is shown by the green bar. 

 

2.4.3. Great crested newt 

‘Pond density’ was the most important variable to the great crested newt SDMs of Kent 

and Sussex and was positively associated with great crested newt probability of 

presence (Table 2.6 and 2.7; Figure 2.8a, b). The AUCtest score for the Kent model was 

(a) 

(b) 
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0.80 and for the Sussex model was 0.71 indicating the models predicted the great 

crested newt distributions well. Jackknife tests on the Kent great crested newt SDM 

showed only ‘Pond density’ and, to a lesser extent, ‘Distance from urban/suburban areas’ 

were providing information to the model not supplied by other variables (Figure 2.9). 

‘Linear water features’ were much more important to the Kent SDM compared to Sussex 

(Table 2.6 and 2.7). The response curves showed that probability of presence of great 

crested newts decreased with ‘Distance from urban/suburban areas’ in both Kent and 

Sussex (Figure 2.8c and 2.8d). This may be an indication that sampling bias is still a 

problem because great crested newts are not usually associated with urban areas 

(Bormpoudakis et al. 2015; Hartel et al. 2010). 

 

 

Figure 2.8. Response curves from the great crested newt SDMs in Kent and Sussex: (a) Kent 
Pond density; (b) Sussex Pond density; (c) Kent ‘Distance from urban/suburban areas’ (d) Sussex 
‘Distance from urban/suburban areas’. The red line is the mean response of the great crested 
newt probability of presence to the variable, calculated from five replicate runs. The black dashed 
line indicates the mean +/- one standard deviation. 

 

(a) (b) 

(c) (d) 
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Table 2.6. Variable contributions for the great crested newts SDM in Kent.  

Variable Percentage 
contribution 

Permutation of 
importance 

Pond density 42.6 40.1 

Linear water features 17.6 11.8 

Distance from urban/suburban areas 16.1 19.1 

Distance from arable land 8.4 3.8 

Maximum temperature warmest 
month 3.2 1.5 

Distance from major road 3.2 6.3 

Minimum temperature coldest month 2.8 5.4 

Temperature seasonality 1.9 1.2 

Precipitation coldest quarter 1.7 4.4 

Distance from broadleaved woodland 1 2.7 

Distance from minor road 0.8 1.8 

Distance from semi-natural grassland 0.5 1.1 

Distance from improved grassland 0.2 0.5 

 

Table 2.7. Variable contributions for the great crested newts SDM in Sussex.  

Variable Percentage 
contribution 

Permutation of importance 

Pond density 43.1 23.2 

Distance from urban/suburban 
areas 21.3 24.9 

Precipitation coldest quarter 10.1 10.8 

Distance from major road 5.1 10.5 

Temperature seasonality 4.5 0.6 

Distance from minor road 4.2 10.1 

Maximum temperature warmest 
month 2.8 0.1 

Minimum temperature coldest 
month 2.2 2.9 

Distance from improved grassland 1.9 9 

Linear water features 1.6 2.8 

Distance from semi-natural 
grassland 1.2 0.9 

Distance from arable land 1 3 

Distance from broadleaved 
woodland 0.8 1.1 
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2.4.4. Grass snake 
The Kent grass snake SDM had an AUCtest of 0.67 again indicating that this is a 

relatively poor performing model. The four most influential variables were ‘Distance from 

arable land’, ‘Minimum temperature coldest month’, ‘Distance from broadleaved 

woodland’, and ‘Distance from semi-natural grassland’ (Table 2.8). The probability of 

presence increased with ‘Distance from arable land’ and decreased with ‘Distance from 

broadleaved woodland’ and ‘Distance from semi-natural grassland’ (Figure 2.10). There 

is a rapid increase in the probability of presence of grass snakes at a temperature of 

1.4°C which peaks at just above 1.6°C for ‘Minimum temperature coldest month’ (Figure 

2.10b).   

‘Linear water features’ was the variable that contributed the most to the Sussex grass 

snake SDM. The response to ‘Linear water features’ was positive and similar to the 

response in Kent. However, the response to ‘Distance from broadleaved woodland’ 

differed but only after approximately 500 m. 

Table 2.8. Variable contributions for the grass snake SDM in Kent. 

Variable Percentage contribution Permutation of 
importance 

Distance from arable land 36.7 22.4 

Minimum temperature coldest 
month 16 7.5 

Distance from broadleaved 
woodland 15.5 24.7 

Distance from semi-natural 
grassland 9.3 8.7 

Linear water features 7.1 11.8 

Precipitation coldest quarter 5.1 0 

Pond density 4.1 4.6 

Temperature seasonality 3.2 7.5 

Distance from improved grassland 1.6 9.3 

Maximum temperature warmest 
month 1.4 3.5 
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Figure 2.9. Jackknife tests of variable importance using AUCtest for the great crested newt SDMs 
in: (a) Kent and (b) Sussex. The light blue bars indicate the amount of AUCtest lost when a 
variable is removed from the model. The AUCtest using all the variables in the model is shown 
by the green bar. 

 

 

 

(a) 

(b) 
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Table 2.9. Variable contributions for the grass snake SDM in Sussex. 

Variable Percentage 
contribution 

Permutation of 
importance 

Linear water features 30.6 24.8 

Distance from broadleaved woodland 15.8 5.4 

Distance from improved grassland 10.6 15 

Distance from arable land 9.5 18.8 

Maximum temperature warmest 
month 9.3 7.3 

Distance from semi-natural grassland 7.5 8 

Minimum temperature coldest month 7.1 5.3 

Pond density 6.2 7.1 

Precipitation coldest quarter 2 0 

Temperature seasonality 1.5 8.2 

 

 

 
Figure 2.10. Response curves for the four variables that had the highest percentage contribution 
in the grass snake SDMs in Kent: (a) ‘Distance from arable land’; (b) ‘Minimum temperature 
coldest month’; (c) ‘Distance from broadleaved woodland’; (d) ‘Distance from semi-natural 
grassland’. The red line is the mean response of grass snake probability of presence to the 
variable, calculated from five replicate runs. The black dashed line indicates the mean +/- one 
standard deviation. 

 

(a) (b) 

(c) (d) 
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2.4.5. Results of comparing species distributions in Kent and Sussex 
The distribution maps showed that in Kent, the distributions of common frogs and marsh 

frogs appear negatively associated. The areas with a higher predicted probability of 

presence of marsh frogs had a lower predicted probability of presence of common frogs 

(Figure 2.11a, b), particularly in coastal regions. The areas where common frog and 

marsh frog distributions overlap using the 10%TP threshold was relatively small and 

tended to be away from the areas with highest pond density (Figure 2.11d). 

A much higher proportion of the common frog predicted distribution overlaps the marsh 

frog distribution in Sussex compared to Kent (Table 2.10). The results of a chi-square 

test of independence, using number of 25 m² cells predicted to be occupied by common 

frogs using the 10% TP, showed this to be significant, Χ² (df = 1, N = 7,436,486) = 

223,480, p < 0.00. Unlike in Kent, the predicted distributions of common frogs and marsh 

frogs in Sussex did not appear to be negatively associated (Figure 2.12a and 2.12c). 

The proportion of the predicted common frog distribution which overlapped the great 

crested newt distribution was also significantly higher in Sussex compared to Kent, Χ² 

(df = 1, N = 7,436,486) = 600,250, p < 0.00 (Table 2.10). Again, the areas where the 

common frog and great crested newt distribution overlapped were situated away from 

the larger areas of high pond density in Kent (Figure 2.11). In areas of higher pond 

density common frog and great crested newt predicted presence were still largely 

overlapping in Sussex (Figure 2.12b). Sussex also has a lower maximum pond density 

and many of the areas of higher pond density are smaller than in Kent (Figure 2.11d, 

2.11e, 2.12d, 2.12e). 
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Table 2.10. The size of the predicted distribution of common frogs, marsh frogs, and great crested newts 
from the Kent and Sussex SDMs. A threshold at the 10th percentile training presence (10%TP) was 
used to determine presence or absence of each species. The proportion of the common frog 
distribution that overlaps with the marsh frog and great crested newt distributions in Kent and 
Sussex is given in the last two columns.  

County Area of 
common 

frog 
predicted 

distribution 
(km²) 

Area of 
marsh frog 
predicted 

distribution 
(km²) 

Area of great 
crested newt 

predicted 
distribution 

(km²) 

Proportion of 
common frog 
distribution 
overlapping 
marsh frog 
distribution 

Proportion of 
common frog 
distribution 

overlapping great 
crested newt 
distribution 

Kent 2129 969 1596 0.072 0.39 

Sussex 2519 663 2244 0.19 0.67 
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Figure 2.11.  Species distribution maps and pond density maps for Kent: (a) common frog predicted distribution; (b) marsh frog predicted distribution; (c) great 
crested newt predicted distribution; (d) pond density map showing areas where common frog and marsh frog predicted distributions overlap (purple); (e) pond 
density map of Kent showing areas where common frog and great crested newt predicted distributions overlap (blue). Lighter greyscale shading indicates higher 
pond density. Species distributions were determined using a 10% training presence threshold. The SDMs were generated using Maxent’s logistic output. 
Warmer colours indicated a higher probability of presence.   
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Figure 2.12. Species distribution maps and pond density maps for Sussex: (a) common frog predicted distribution; (b) great crested newt predicted distribution 
(c) marsh frog predicted distribution; (d) pond density map showing areas where common frog and marsh frog predicted distributions overlap (purple); (e) pond 
density map of Sussex showing areas where common frog and great crested newt predicted distributions overlap (blue). Lighter greyscale shading indicates 
higher pond density. The presence/absence species distributions were determined for each species using a 10% training presence threshold. The SDMs were 
generated using Maxent’s logistic output. Warmer colours indicated a higher probability of presence.  
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2.5. Discussion  
The pattern in predicted distributions of common frogs and marsh frogs may be reflecting 

these species different responses to habitat rather than a negative interaction between 

them.  The areas predicted by the SDMs as suitable for marsh frogs and unsuitable for 

common frogs are related to the positive and negative associations of these species 

respectively with ‘Linear water features’. The distribution of marsh frogs was largely 

predicted by ‘Linear water features’ (Table 2.4 and 2.5). This reflects previous research 

that has shown marsh frogs are highly aquatic and spread along watercourses, not 

moving far from water very often (Kovar et al. 2009; Holenweg 2001; Beebee and 

Griffiths 2000; Wycherley and Joslin 1996). The areas with most ‘Linear water features’ 

are predominantly coastal marsh dyke habitats. Marsh frogs are abundant in some of 

these areas, and may be better adapted to them than common frogs because they are 

more tolerant of higher levels of salinity (Beebee and Griffiths 2000; Innocenzi 1995; 

Beebee 1980). Livestock grazing in marshland areas may also reduce its suitability as 

habitat for the native amphibians, which spend more of the time foraging on land than 

marsh frogs (Beebee 1980). 

Common frogs are negatively associated with areas of high pond density in Kent (Figure 

2.3c and 2.10a). A study in Luxembourg also found the same trend with still and running 

water variables after using principle component analysis (Wood 2010). The SDMs of 

both Kent and Sussex are consistent with other studies in finding great crested newts 

are positively associated with pond density (Bormpoudakis et al. 2015; Oldham et al. 

2000). A significantly higher proportion of the common frog distribution overlaps the great 

crested newt distribution in Sussex compared to Kent, and Kent has larger areas with 

high pond density than Sussex. This evidence provides support for the hypothesis that 

a higher abundance of great crested newts is linked to lower numbers of common frogs 

in areas characterised by high pond density.  
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The Sussex common frog response curve shows a different response to pond density 

compared to Kent (Figure 2.4c). This could be due to Sussex having lower pond densities 

than Kent, and the areas of higher pond density in Sussex being much smaller in area 

of extent (Figure 2.12d). Smaller areas of high pond density may not be able to sustain 

a great crested newt population large enough to impact common frog numbers. At very 

high pond densities great crested newts could occupy ponds less suitable for their needs, 

such as those with higher fish presence (Brady 2009). As a result, more predation on 

common frogs may be occurring.  

Marsh frogs are also positively associated with high pond density in Kent (Figure 2.6b). 

Therefore, marsh frogs may still be one of the causes of the reduced probability of 

common frog being present in high pond density areas. The lack of marsh frogs in many 

of the higher pond density areas in Sussex could be the reason that these areas are 

more suitable for common frogs. However, it could be that any impact of marsh frogs on 

common frogs is more likely to be caused in combination with predation by great crested 

newts. Further investigations into the pond preferences of each species at a local level 

may provide additional insights. In particular, identifying whether common frogs are using 

ponds occupied by fish in high pond density areas would be worth exploring. 

‘Distance from broadleaved woodland’ was negatively associated with common frog 

presence in Kent and Sussex. Other studies have also found a positive association 

between woodland habitat and common frog presence (Boissinot et al. 2015; Van 

Buskirk 2005). This could be because common frog spawn may be less subject to 

predation by waterfowl in woodland where it is less easily found. Woodland areas may 

also aid movement between ponds (Van Buskirk 2005). However, woodland is relatively 

sparse in the area of high pond density in central Kent. This may be another reason for 

the reduced predicted probability of common frog presence in this region. It is worth 

noting that the Sussex and Kent common frog SDMs have quite a low AUCtest values. 
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This may be due to common frogs being habitat generalists with no strong distribution 

predictors at the spatial scale examined by the models (Franklin et al. 2009).  

In the grass snake SDM in Kent, the response curves for ‘Distance from broadleaved 

woodland’, ‘Linear water’, and ‘Distance from arable land’ are similar to those produced 

by the common frog SDM for the county (Figures 2.3 and 2.10). The grass snake 

distribution could reflect the distribution of one of its frequent prey items the common 

frog. Distance to grass snake prey can be a good predictor of grass snake distribution 

(Ward 2017) and may be the reason for the positive association with ‘Distance from 

broadleaved woodland’. Large populations of grass snakes have been found around 

marsh frog populations (Gregory and Isaac 2004), which would explain the positive 

association with ‘Linear water features’. However, there is no clear evidence to support 

or reject the hypothesis that grass snake numbers are inflated in areas dominated by 

marsh frogs, with individuals subsequently dispersing into common frog areas. 

The results of the predicted species distributions in this study are correlative and not 

sufficient to prove or disprove that marsh frogs or great crested newts are affecting 

common frogs. Field studies are required to confirm whether a predicted lower probability 

of presence of common frogs in high pond density areas in Kent is a real phenomenon. 

It will also be necessary to test whether the presence of great crested newts and/or 

marsh frogs are significantly negatively associated with the presence of common frogs 

in ponds. However, this type of correlative study can be used to focus research on the 

hypotheses that are most likely to prove correct (Anderson, Peterson and Gómez-

Laverde 2002). With the often limited resources available for conservation research this 

is particularly useful.   
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2.6. Supplementary information 
Table S2.1. Spearman’s rho correlation coefficients between explanatory variables in Kent 

Variable Name Linear 
water 

features 

Distanc
e from 
major 
road 

Distanc
e from 
minor 
road 

Pond 
density  

Distance 
from 

urban/ 
suburban 

areas 

Distan
ce 

from 
arable 
land 

Distance 
from 

improved 
grassland 

Distance 
from 
semi-

natural 
grassland 

Distance 
from 

broadleaved 
woodland 

Temperature 
seasonality 

Maximum 
temperature 

warmest 
month 

Minimum 
temperatur
e coldest 

month 

Precipi
tation 

coldest 
quarter 

Linear water 
features  1 0.07 0.26 0.51 0.16 -0.05 -0.08 -0.09 0.24 -0.21 0.35 0.48 0.05 

Distance from 
major road 0.07 1 -0.02 0 0.46 -0.11 -0.01 0.01 0.02 -0.02 -0.17 0.03 0.06 

Distance from 
minor road 0.26 -0.02 1 0.05 0.2 0.03 0.09 0.02 0.06 -0.04 0.11 0.11 -0.01 

Pond density  0.51 0 0.05 1 0.09 0.07 -0.29 -0.16 -0.12 -0.03 0.33 0 0.42 

Distance from 
urban/ 
suburban areas 0.16 0.46 0.2 0.09 1 -0.21 -0.02 -0.06 0.02 -0.07 -0.07 0.01 0.24 

Distance from 
arable land -0.05 -0.11 0.03 0.07 -0.21 1 -0.34 -0.01 -0.26 0.11 0.11 -0.15 0.07 

Distance from 
improved 
grassland -0.08 -0.01 0.09 -0.29 -0.02 -0.34 1 0.14 0.15 -0.06 -0.14 0.14 -0.16 

Distance from 
semi-natural 
grassland -0.09 0.01 0.02 -0.16 -0.06 -0.01 0.14 1 0.08 0.04 0.08 -0.02 -0.09 

Distance from 
broadleaved 
woodland 0.24 0.02 0.06 -0.12 0.02 -0.26 0.15 0.08 1 -0.13 0.03 0.37 -0.25 

Temperature 
seasonality -0.21 -0.02 -0.04 -0.03 -0.07 0.11 -0.06 0.04 -0.13 1 0.37 -0.7 0.15 

Maximum 
temperature 
warmest month 0.35 -0.17 0.11 0.33 -0.07 0.11 -0.14 0.08 0.03 0.37 1 -0.18 0.08 

Minimum 
temperature 
coldest month 0.48 0.03 0.11 0 0.01 -0.15 0.14 -0.02 0.37 -0.7 -0.18 1 -0.42 

Precipitation 
coldest quarter 0.05 0.06 -0.01 0.42 0.24 0.07 -0.16 -0.09 -0.25 0.15 0.08 -0.42 1 
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Table S2.2. Spearman’s rho correlation coefficients between explanatory variables in Sussex 
Variable 

Name 
Linear 
water 

features 

Distance 
from 
major 
road 

Distance 
from 
minor 
road 

Pond 
density  

Distance 
from 

urban/ 
suburban 

areas 

Distance 
from 

arable 
land 

Distance 
from 

improved 
grassland 

Distance 
from 
semi-

natural 
grassland 

Distance 
from 

broadleaved 
woodland 

Temperature 
seasonality 

Maximum 
temperature 

warmest 
month 

Minimum 
temperature 

coldest 
month 

Precipitation 
coldest 
quarter 

Linear water 
features  1 0.02 0.03 0.46 0.01 -0.13 -0.12 -0.09 0.09 -0.17 0.38 0.51 -0.22 

Distance from 
major road 0.02 1 0 -0.05 0.43 -0.01 -0.05 -0.09 -0.09 0.11 -0.08 -0.1 0.11 

Distance from 
minor road 0.03 0 1 -0.13 0.21 -0.01 0.05 0.04 0.02 -0.01 -0.03 -0.01 -0.03 

Pond density  0.46 -0.05 -0.13 1 0.03 -0.05 -0.26 -0.1 -0.15 -0.2 0.04 0.37 -0.33 

Distance from 
urban/ 
suburban 
areas 0.01 0.43 0.21 0.03 1 -0.1 -0.14 -0.1 -0.1 0.06 -0.16 -0.03 0.03 

Distance from 
arable land -0.13 -0.01 -0.01 -0.05 -0.1 1 -0.21 0.04 -0.2 -0.06 -0.2 -0.03 -0.03 

Distance from 
improved 
grassland -0.12 -0.05 0.05 -0.26 -0.14 -0.21 1 0.09 -0.04 0.15 0.05 -0.1 0.2 

Distance from 
semi-natural 
grassland -0.09 -0.09 0.04 -0.1 -0.1 0.04 0.09 1 0.11 -0.1 -0.02 0.07 -0.08 

Distance from 
broadleaved 
woodland 0.09 -0.09 0.02 -0.15 -0.1 -0.2 -0.04 0.11 1 -0.24 0.22 0.28 -0.02 

Temperature 
seasonality -0.17 0.11 -0.01 -0.2 0.06 -0.06 0.15 -0.1 -0.24 1 0.05 -0.51 0.47 

Maximum 
temperature 
warmest 
month 0.38 -0.08 -0.03 0.04 -0.16 -0.2 0.05 -0.02 0.22 0.05 1 0.12 -0.13 

Minimum 
temperature 
coldest 
month 0.51 -0.1 -0.01 0.37 -0.03 -0.03 -0.1 0.07 0.28 -0.51 0.12 1 -0.09 

Precipitation 
coldest 
quarter -0.22 0.11 -0.03 -0.33 0.03 -0.03 0.2 -0.08 -0.02 0.47 -0.13 -0.09 1 
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2.6.1. Model tuning methods 
The AUCdiff and AUCtest results for common frogs, marsh frogs, great crested newts, 

and grass snakes using the subsample (SS) and cross-validation (CV) methods were 

plotted over a range of regularisation values and using either a bias file or spatial filtering 

(Figures S2.1-13). If the results were close the lower regularisation value was selected 

to avoid underfitting (Radosavljevic and Anderson 2014). 

2.6.2. Model tuning results 

The general trend over the different regularisation values was similar for the SS and CV 

methods. For most of the models the SS results, over different regularisation levels, were 

more erratic compared to CV methods for both AUCdiff and AUCtest scores. In the CV 

method, each species record occurs in at least one testing set. This ensures that the 

model can predict all environments where there are species records. The simple splitting 

into test and training data by the SS method can mean that the training data is missing 

key atypical records (Peterson et al. 2011). The slightly more erratic results from the SS 

method may be due to this.  
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Table S2.3. Model specifications for the models selected to be in the main analysis 

Species 
No. 
records 

County Regularisation Bias 
method 

Testing 
method 

AUC
diff 

AUC
test 

Common 
frog 

549 Kent 2 Bias file CV 0.02 0.67 

Common 
frog 

547 Sussex 2 Bias file CV 0.04 0.61 

Great 
crested 
newt  

435 Kent 
2 

Spatial 
thinning 
(250 m) 

CV 
0.02 0.80 

Great 
crested 
newt 

402 Sussex 
4 

Spatial 
thinning 
(250 m) 

CV 
0.03 0.71 

Marsh 
frog 

154 Kent 1 None CV 0.02 0.88 

Marsh 
frog 

72 Sussex 1 None CV 0.03 0.87 

Grass 
snake 

759 Kent 4 Bias file CV 0.03 0.65 

Grass 
snake 

604 Sussex 2 Bias file CV 0.03 0.66 

 

Common frog results 

For the Kent SDMs the bias file models produced lower AUCdiff results, but the spatially 

filtered models generally had higher AUCtest values (Figure S2.1 and S2.2). The spatial 

filtering may not have reduced the spatial autocorrelation in the training data. This can 

lead to higher AUCtest results and would decrease the ability of the models to predict 

the test data causing the higher AUCdiff values (Radosavljevic and Anderson 2014; 

Hijmans 2012). Therefore, the bias file model was used with the CV method for the 

analysis. A regularisation level of 2 was used which achieved a low AUCdiff of 0.022 and 

high AUCtest of 0.67 (Figure S2.1 and S2.2; Table S2.3).  

The Sussex SDM models with data spatially thinned by 500 m using a regularisation 

level of 2 produced the lowest AUCdiff and highest AUCtest (Figures S2.3 and S2.4). 

The model was heavily influenced by ‘Temperature seasonality’ (percent contribution = 

38.9 and permutation contribution = 38.7) which is clearly visible in the distribution map 

(Figure S2.5). Common frogs are found in a wide variety of habitats (Beebee and Griffiths 

2000), this may be the cause of the relatively low AUCtest because it is harder for a 
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model to discriminate between suitable and unsuitable habitat (Proosdij et al. 2016; 

Franklin et al. 2009). However, under this scenario just having one dominant 

environmental predictor such as ‘Temperature seasonality’ is less likely. The variation in 

‘Temperature seasonality’ is also low across Sussex so there is not a strong 

environmental pressure to cause this sort of distribution. For these reasons, the bias file 

model using a regularisation value of 2 with the CV method was chosen for the main 

analysis. This model had an AUCdiff of 0.037 and an AUCtest of 0.61 (Table S2.3). 

 

Figure S2.1. Results of the AUCdiff for the Kent common frog SDM. Comparing models over 

regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 500 m (Filtered). 

Each model was run using the subsample testing method (SS) or the cross-validation testing 

method (CV). 
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Figure S2.2. Results of the AUCtest for the Kent common frog SDM comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 500 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV). 

 

 

Figure S2.3. Results of the AUCdiff for the Sussex common frog SDM comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 500 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV). 
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Figure S2.4. Results of the AUCtest for the Sussex common frog SDM comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 500 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV).  
 

 

  
 

 

Figure S2.5. Common frog species distribution map of Sussex using spatial thinning at 500 m and 
a regularisation level of 2 using Maxent’s logistic output. Warmer colours indicated a higher 
probability of presence. There is a high suitability for common frogs in the centre of Sussex which 
reflects the over reliance on the variable ‘Temperature seasonality’ and so this model was not 
used in the main analysis. 

 

 

High: 0.89 

Low: 0 
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Great crested newt results 

In the Kent models a regularisation value of 2, spatial filtering the data, and using the CV 

validation method provided a reasonably high AUCtest score of 0.80 (Figure S2.6; Table 

S2.3). There was not much loss of generality in prediction, indicated by the relatively low 

AUCdiff of 0.021 (Figure S2.7, Table S2.3).  

The AUCdiff and AUCtest for the Sussex SDMs were all fairly similar. The spatially 

thinned model at a regularisation level of 4 using the CV method was the model used in 

the main analysis. This model used the variable ‘Distance from urban/suburban areas’ 

less than others with similar AUCtest and AUCdiff results (Figures S2.8 and S2.9). Great 

crested newts are not known to be positively associated with urban areas, so a high use 

of this variable is likely to be due to survey bias. This model produced an AUCdiff of 

0.026 and AUCtest of 0.71 (Table S2.3). 

 

Figure S2.6. Results of the AUCdiff for the great crested newt SDM in Kent comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV). 
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Figure S2.7. Results of the AUCtest for the great crested newt SDM in Kent comparing models 
over regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m 
(Filtered). Each model was run using the subsample testing method (SS) or the cross-validation 
testing method (CV). 

 

 
Figure S2.8. Results of the AUCdiff for the great crested newt SDM in Sussex comparing models 
over regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m 
(Filtered). Each model was run using the subsample testing method (SS) or the cross-validation 
testing method (CV). 
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Figure S2.9. Results of the AUCtest for the great crested newt SDM in Kent comparing models 
over regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m 
(Filtered). Each model was run using the subsample testing method (SS) or the cross-validation 
testing method (CV). 

 
Grass snake results 

There was a lot of variation in both AUCdiff and AUCtest in the filtered SS models for 

Kent (Figures S2.10 and S2.11). The AUCdiff was the lowest in the SS bias file model 

but the CV bias file models were also quite close. The AUCtest results for the bias models 

were higher than for the spatially filtered models using the CV method. A regularisation 

value of 4 using the CV method was chosen for use in the main analysis, resulting in an 

AUCtest of 0.65 and an AUCdiff of 0.033 (Table S2.3). 

In the Sussex grass snake SDMs the models using bias files tended to perform better 

for both AUCdiff and AUCtest (Figures S2.12and S2.13). A regularisation level of 2 using 

the CV method and a bias file was used for the main analysis. 
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Figure S2.10. Results of the AUCdiff for the grass snake SDMs in Kent comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV). 

 

 
Figure S2.11. Results of the AUCtest for the grass snake SDMs in Kent comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV). 

 



59 
 

 
 

Figure S2.12. Results of the AUCdiff for the grass snake SDMs in Sussex comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV).  

 
Figure S2.13 Results of the AUCtest for the grass snake SDMs in Sussex comparing models over 
regularisation levels 0.5 to 6 using a bias file (Bias) or spatial filtering of data at 250 m (Filtered). 
Each model was run using the subsample testing method (SS) or the cross-validation testing 
method (CV).  
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Chapter 3. Now you see them now you don’t: 

Determining probability of detection and occupancy 

for two amphibian species 
 

3.1. Abstract 
When using presence/absence data it is important to account for variation in detectability 

of the species involved. Failing to do so may lead to erroneous conclusions. If there is a 

low sample size, non-detection of a species when it is present, will have a greater impact 

on any inferences from the data. Common frogs (Rana temporaria) may be affected by 

the presence of marsh frogs (Pelophylax ridibundus) and great crested newts (Triturus 

cristatus). Prior to an assessment of whether common frog presence was higher in the 

absence of marsh frogs, occupancy modelling was used to determine the probability of 

detection and occupancy for great crested newts and marsh frogs in the study site. The 

turbidity of the water was the most important variable associated with great crested newt 

detection. The detection of marsh frogs was associated with water temperature. 

However, the predicted site occupancy of neither species increased when compared to 

the results of logistic regression which just uses naïve measures of occupancy. This 

suggests that species occupancy was not being underestimated when using models that 

do not account for detectability. Therefore, logistic regression could be used, and an 

extra variable incorporated into a model without risking model over-parameterisation. 

Adding extra variables to a model can affect which variables are most associated with a 

species by the logistic regression. This may alter an inference about the likelihood of 

marsh frogs sharing the same ponds as common frogs. 

3.2. Introduction  
If marsh frogs (Pelophylax ridibundus) are having an impact on common frogs (Rana 

temporaria) this may be caused by direct interactions between the two species within 
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ponds. Marsh frogs are large frogs and can reach a snout ventral length of 13 cm or 

more (Inns 2009; Frazer 1983), so there is the potential for predation on common frogs 

at all its life stages (Measey et al. 2015; Innocenzi 1995; Smith 1973; Ahrenfeldt 1953). 

Equally, marsh frogs could be out-competing common frogs for resources such as food 

or space (Merry 2004). It is also possible that other species may be involved in increasing 

this type of direct impact. For example, it has been hypothesised that in places with high 

numbers of great crested newts (Triturus cristatus), common frogs may occupy ponds 

with fish because fish ponds are less likely to have great crested newts. This could result 

in the predation of common frogs by marsh frogs because marsh frogs are less affected 

by fish (Brady 2009; Hartel et al. 2007; Van Buskirk 2003). However, it is also possible 

that great crested newts are the only cause of reduced common frog presence in areas 

with large great crested newt populations.  

Attributing the decline of a native species to a cause such as the presence of a non-

native species can be difficult if the impact has already taken place (Shine 2010; Merry 

2004). However, this can be explored by identifying significant associations with 

environmental variables that affect the presence of each species (Cayuela, Besnard and 

Joly 2013); or by identifying differences in presence or abundance of the native species 

in areas with and without the non-native species (Buckland et al. 2014). In the next 

chapter, these techniques will be used to assess whether marsh frogs are having an 

impact on common frogs.  However, such analyses require an assessment of the effect 

of imperfect detection in surveys used to determine presence (or abundance) of the 

species involved. If detectability is not accounted for this can lead to underestimates of 

occupancy (Kéry and Royle 2016; Guillera-Arroita, Ridout and Morgan 2010).   

Occupancy modelling provides a means to determine levels of confidence in species 

detection in presence-absence studies (MacKenzie and Bailey 2004; MacKenzie et al. 

2002). Variables that may affect the probability of detection (ρ) or the probability of 

occupancy (ψ) of a species can be incorporated into occupancy models. The objectives 
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of this chapter are to: (1) determine what degree of confidence can be given to the results 

of surveys to detect the presence of marsh frogs and great crested newts in Kent; and 

(2) identify whether occupancy modelling indicates that naïve counts of occupied sites 

underestimates true occupancy for the two species. The variables found to be associated 

with occupancy and detection provided information on what may be causing variation in 

detection and occupancy between surveys and ponds. The results of the occupancy 

modelling are compared with logistic regression models that use naïve estimates of 

occupancy, to assess whether these models underestimate species occupancy. If naïve 

estimates of occupancy are reliable, logistic regression has the advantage that one extra 

covariate of occupancy can be used (to replace the covariate of detection). Several 

environmental variables have been associated with the presence of great crested newts 

(Oldham et al. 2000); this may be also the case for marsh frogs. Therefore, even one 

extra variable may produce a better fitting model. 

Common frog spawn is very visible when laid. If surveys are conducted when spawning 

occurs, occupancy models achieve a detection rate of p=1.0, but this reduces in later 

surveys when spawn has hatched or is predated (Sewell, Beebee and Griffiths 2010). 

Therefore, timing surveying to coincide with the spawning period (late February to March) 

provided the highest chance of detecting common frogs. The use of occupancy modelling 

was considered unnecessary because frog spawn if present is unlikely to be missed. 

Occupancy modelling also assumes that the population is closed meaning a site will not 

change from absent to present over the survey period (MacKenzie et al. 2002). This 

assumption is more easily broken when conducting spawn surveys because there can 

be several weeks difference in spawning times between ponds. Spawning times may 

also be associated with migration distance to a pond (Loman 2016). If common frogs 

have not reached the pond before a survey visit occurs this would falsely lower detection 

probabilities. For these reasons, in this chapter, occupancy models have only been 

developed for marsh frogs and great crested newts. The next chapter will investigate the 
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variables associated with common frogs by logistic regression to identify if they influence 

the likelihood that marsh frogs could be impacting on common frogs. The aim of this 

chapter is to determine if accounting for the probability of detection affects the 

presence/absences of marsh frogs and great crested newts in the surveys in Kent. 

 

3.3. Methods 
3.3.1. Study Area 
The study area was in southern and central Kent in the UK. The landscape consists of 

low-lying clay valleys with some outcrops of sandstone, limestone or chalk. Due to the 

clay the area is predominantly pastoral and has many ponds. To provide the best 

opportunity of assessing any impacts of marsh frogs on common frogs, ponds within the 

dispersal distances of known marsh frog and common frog sites were identified. A 

dispersal distance of 1.5 km has been shown to be a good approximation for common 

frogs (Safner et al. 2011; Kovar et al. 2009). Estimates of marsh frog dispersal distances 

vary but there is consensus that marsh frogs do not move far from water frequently 

(Kovar et al. 2009; Holenweg 2001). For example, in Surrey, most sites colonised by 

frogs of the genus Pelophylax found in the UK (including marsh frogs) were within 100 

m of a watercourse (Wycherley and Joslin 1996). For this reason, the survey ponds were 

selected to be within 100 m of a watercourse and within 500 m from a marsh frog record. 

Species presence records were supplied by the Kent Reptile and Amphibian Group 

(KRAG) and the Kent and Medway Biological Records Centre (KMBRC). This selection 

process resulted in a set of ponds that could potentially be occupied by both common 

frogs and marsh frogs. 

3.3.2. Pond Surveys 
From the ponds identified using common and marsh frog dispersal distances, a subset 

of 45 ponds were surveyed for marsh frogs and great crested newts between March and 

early June 2014. The surveys were conducted in the evening. A 1,000,000 candle-power 
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torch was used to search the area extending to approximately 2 m from the water’s edge.  

All the accessible banks of each pond were searched in this way. The numbers of great 

crested newts and marsh frogs were recorded (including all aquatic life stages of both 

species). Each pond was surveyed three times with a minimum of 7 days and maximum 

of 25 days between surveys. Variables that may affect the detectability (Table 3.1) or 

occupancy (Table 3.2) of either great crested newts or marsh frogs were recorded during 

the surveys. Habitat and bioclimatic variables were also used as covariates of occupancy 

(Table 3.2).  

Table 3.1. Environmental variables that may affect the detectability of marsh frogs and great 
crested newts in amphibian surveys. 

Variable 
Name 

Description Reason for inclusion 

Date The number of days from 1st 
January 2014 to the date the 
survey was conducted. 

Both great crested newts and marsh 
frogs hibernate during the winter (Inns 
2009; Beebee and Griffiths 2000). 
Therefore, amphibian surveys conducted 
earlier in the season may reduce the 
likelihood of detection of both species. 

Water 
temperature 

The water temperature 5 cm below 
the water surface recorded during 
a survey.  

As ectotherms, marsh frogs and great 
crested newts are likely to be sensitive to 
temperature. Sewell et al. (2010) found 
that detectability of great crested newts 
increased with temperature. Marsh frogs 
are often seen basking on the banks of 
ponds and ditches (Inns 2009; Beebee 
and Griffiths 2000; Merry 2004) so 
detection may also be affected by water 
or air temperature. 

Air 
temperature 

The mean air temperature 
calculated from the minimum and 
maximum air temperatures 1 m 
above ground level, recorded 
during a survey visit. 

As above. 

Torchable 
area 

An estimate of the percentage of a 
pond’s perimeter that could be 
searched by torch. This also took 
account of torching that was 
prevented by lack of access or 
obscuring of water surface by 
vegetation growth. 

Probability of detection may be reduced 
if there are areas of a pond that cannot 
be surveyed. 

Time from 
sunset 

A measure of the amount of time 
(minutes) from sunset the survey 
was started. 

Great crested newts can be more active 
in open areas of a pond at night (Beebee 
and Griffiths 2000). Torching may also be 
more effective when it is darker. 

Turbidity Turbidity of the water scored from 
1 = able to see the bottom of the 

The depth the torch beam can penetrate 
the water reduces with higher levels of 
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pond clearly, 2 = moderately clear, 
to 3 = turbid (Sewell, Beebee and 
Griffiths 2010). 

turbidity. Great crested newts also tend to 
spend more time in deeper areas of 
ponds (Beebee and Griffiths 2000) so 
detection of great crested newts and 
marsh frogs may be reduced. 

 

 

Table 3.2. Environmental variables that may affect the occupancy of great crested newts (1) and 
marsh frogs (2) in amphibian surveys. 

Variable 
Name 

Description Reason for inclusion 

Conductivity2 The mean conductivity (µS) of the 
pond from three surveys 
measured 5 cm below surface of 
the pond using a conductivity 
meter. 

Marsh frogs may be more tolerant to 
saline conditions than UK native 
amphibians including great crested 
newts (Innocenzi 1995; Morand and 
Joly 1995; Beebee 1980). 

Shade1,2 The mean of three surveys of a 
pond where the percentage of a 
pond’s perimeter shaded to at 
least 1 m from the shore was 
estimated at each survey visit. 

Excessive shading of a pond by trees 
can lead to eutrophication because of 
leaves accumulating in the pond 
making the pond less suitable for great 
crested newts (ARG UK 2010; Oldham 
et al. 2000). Marsh frogs are often 
found basking on the banks of ponds 
and ditches (Merry 2004; Beebee and 
Griffiths 2000; Smith 1973). This may 
mean shaded ponds are less suitable 
for marsh frogs. 

Macrophytes1,2 The mean surface area covered by 
macrophytes at each of three 
surveys calculated from the 
estimates of the percentage of the 
pond’s surface covered. 

Macrophytes are used as an egg 
substrate for great crested newts and 
provide a food source for their prey 
(ARG UK 2010; Oldham et al. 2000). 
Marsh frogs lay their spawn in weeds 
and bask on floating vegetation (Frazer 
1983; Smith 1973) so may also be 
positively associated with the presence 
of macrophytes. 

Fish1 A subjective assessment of the 
presence and abundance of fish in 
the pond, scored from; 1 = fish 
population is dense; 2 = small 
numbers of goldfish, crucian carp, 
or stickleback; 3 = presence of fish 
is possible given pond conditions; 
to 4 = no records of fish or any fish 
seen in torch surveys. 

In certain conditions great crested 
newts may be negatively affected by 
the presence of predatory fish (ARG UK 
2010; Hartel et al. 2007; Oldham et al. 
2000). 

Fowl1 A subjective assessment of the 
likely impact of water fowl on the 
presence of amphibians, 
considering: the number of water 

Water fowl may affect the presence of 
great crested newts through predation, 
removing aquatic vegetation and 
polluting the water (ARG UK 2010; 

                                                      
1 Used as an occupancy covariate in the great crested newt models. 
2 Used as an occupancy covariate in marsh frog models. 
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fowl seen; the likelihood of 
predation of amphibians; lack of 
pond or bank vegetation due to 
water fowl grazing; and water 
pollution due to waterfowl.  The 
pond was scored from: 1 = major; 
2 = minor; to 3 = absent. 

Oldham et al. 2000).  

Pond area1,2 The approximate area of the pond 
(m²) measured by pacing out the 
length and width of ponds. 

There is evidence that pond area could 
affect great crested newt occupancy 
and that a pond area of 500 to 750 m² 
is the optimum size (ARG UK 2010; 
Oldham et al. 2000). Pond area may 
also affect marsh frog presence as 
marsh frogs tend to be associated with 
larger water bodies (Beebee and 
Griffiths 2000; Frazer 1983). 

Pond 
permanence1,2  

The permanence of the pond 
determined by the frequency a 
pond dries from: never dries = 1; 
dries every 1 or 2 years in 10 = 2; 
dries 3 to 8 years in 10 = 3; and 
dries 8 or 9 years in 10 = 4. 

Marsh frogs rarely leave ponds so are 
more likely to be found in ponds that 
seldom dry out (Kovar et al.2009; 
Holenweg 2001). Great crested newts 
need ponds where metamorphosis can 
be completed before drying, but pond 
drying does prevent the build-up of 
predators (ARG UK 2010; Indermaur et 
al. 2010; Oldham et al. 2000). 

Pond density1,2  Number of ponds within a 1 km 
radius divided by pi. Derived from 
a UK wide pond dataset provided 
by ARC Trust1. 

The presence of great crested newts 
has been linked to higher pond 
densities (Bormpoudakis et al. 2015; 
ARG UK 2010; Oldham et al. 2000). 
The marsh frog’s aquatic nature may 
also mean that there is a positive 
association with high pond density.  

Mean water 
temperature1,2 

The mean water temperature 5 cm 
below the water surface recorded 
over the three surveys.  

Colder water temperature may affect 
great crested newt or marsh frog 
occupancy because warmer 
temperatures may lead to a longer 
breeding season and more time for 
larval development.  

HSI1 The Habitat Suitability Index for 
great crested newts is a numerical 
index indicating the suitability of a 
pond for great crested newts 
scored from 0 to 1 developed by 
Oldham et al. (2000) and updated 
in 2010 (ARG UK 2010). 

The HSI is made up of 10 indices 
(including some of the variables in this 
table). These are: ‘Pond area’, ‘Pond 
permanence’, ‘Shade’, ‘Fowl’, 
‘Macrophyte’, ‘Fish’, ‘Pond density’, 
‘Geographic location’, ‘Water quality’, 
and ‘Terrestrial habitat’.  

Linear water 
features2 

Combined length of linear water 
features per km². Derived from 
Ordnance Survey MasterMap 
Water Network (OS MasterMap 
Water Network 2015). 

Marsh frogs are a highly aquatic 
species and often associated with linear 
water features such as drainage ditches 
(Inns 2009; Beebee and Griffiths 2000). 

Elevation2 Recorded using a hand-held GPS 
unit. 

Elevation was included as an 
occupancy covariate in the marsh frog 
models because it may be correlated to 
‘Linear water features’, ‘Water 
temperature’, and ‘Air temperature’. In 
models that can only have one 
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covariate it may be a better predictor 
than any one of these variables singly.  

Distance from 
broadleaved 
woodland1 

Distance from broadleaved 
woodland (m). Derived from the 
LCM2015 (Rowland et al. 2017).  

Woodland areas can provide 
undisturbed habitat for great crested 
newts and some studies have found a 
positive association between woodland 
and great crested newts although 
presences can differ with species range 
(Van Buskirk 2005; Jehle 2000; Latham 
et al. 1996). 

Distance from 
arable land1,2 

Distance from arable or 
horticultural land (m). Derived from 
the LCM2015 (Rowland et al. 
2017). 

Areas of arable land are likely to be 
detrimental to amphibians due to issues 
such as agricultural runoff and 
overgrowth of ditches (Beebee and 
Griffiths 2000). 

Distance from 
semi-natural 
grassland1 

Distance from semi-natural 
grassland (m). Derived from the 
LCM2015 (Rowland et al. 2017)). 

Semi-natural grassland can often 
provide habitat for amphibians and 
reptiles. It was found to be positively 
associated with great crested newt 
presence in Kent  (Bormpoudakis et al. 
2015). 

Temperature 
seasonality1 

The standard deviation of 
temperature x 100 at a resolution 
of 30 arc seconds. Recorded 
between 1950 and 2000. Obtained 
from the World Clim data set 
http://www.worldclim.org/bioclim 
(Hijmans et al. 2005). 

Temperature seasonality has been 
found to be negatively associated with 
great crested newt presence in Kent 
(Bormpoudakis et al. 2015). 

Maximum 
temperature 
warmest 
month2 

Maximum temperature warmest 
month recorded between 1950 
and 2000. Obtained from the 
WorldClim data set 
http://www.worldclim.org/bioclim 
(Hijmans et al. 2005).  

Marsh frogs emerge from hibernation 
later than UK native amphibians 
(Beebee and Griffiths 2000) and 
therefore are likely to be more 
associated with warmer areas.  

Mean 
temperature 
coldest 
quarter1 

Mean temperature coldest quarter 
recorded between 1950 and 2000. 
Obtained from the WorldClim data 
set 
http://www.worldclim.org/bioclim 
(Hijmans et al. 2005). 

Warmer winters can result in 
hibernating animals depleting energy 
reserves without being able to feed. 
Previous research has found great 
crested newts to be negatively 
associated with the warmer winters 
(Bormpoudakis et al. 2015; Griffiths, 
Sewell and McCrea 2010). 

Precipitation 
coldest 
quarter1,2 

Precipitation coldest quarter 
recorded between 1950 and 2000. 
Obtained from the WorldClim data 
set 
http://www.worldclim.org/bioclim 
(Hijmans et al. 2005). 

High winter rainfall, leading to 
waterlogged soils, could mean 
hibernating amphibians can only utilise 
gaseous exchange across their skin. 
This could prevent pumping of air into 
their lungs thus leading to respiratory 
problems (Griffiths, Sewell and McCrea 
2010). 

 

http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
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3.3.3. Data analysis 

Single Season Occupancy Model 

A separate single season occupancy model was developed for marsh frogs and great 

crested newts using the R package ‘unmarked’ (Fiske and Chandler 2011). Single 

season occupancy models assume: a) the population is closed so a site does not change 

its occupancy state during the survey period; b) a species is never falsely reported as 

present (false positive); c) and detection of a species at one site is independent of all 

others (MacKenzie et al. 2002). 

Marsh frogs hibernate in ponds over winter and have a low migration rate between ponds 

(Kovar et al. 2009; Holenweg 2001; Beebee and Griffiths 2000). Therefore, it is 

reasonable to assume that the population was closed over the survey period of the study. 

Great crested newts usually migrate to ponds for breeding in March or April (Beebee and 

Griffiths 2000). The length of stay in the ponds can vary from just a few days to the rest 

of the year (Beebee and Griffiths 2000). However, although some great crested newts 

may have left the pond before the end of the survey period, it was unlikely that all would 

have done, and the assumption of a closed population is not violated (Sewell, Beebee 

and Griffiths 2010). The surveys were conducted by the researcher and one of five 

volunteers trained in amphibian survey procedures. Volunteers were also given training 

in how to identify marsh frogs by the researcher. On a few occasions surveys were 

undertaken by the researcher alone. All pond metrics were recorded by the researcher 

during surveys. Both marsh frogs and great crested newts are easily distinguished from 

other native amphibians so false positives were unlikely.  

Spatial autocorrelation (the presence of a species at one site means the nearby sites are 

more likely to have the species) can lead to a lack of independence between surveys 

sites. The join count permutation test from the R package spdep  (Bivand and Piras 2015) 

was used to identify spatial autocorrelation. The join count permutation test works by 

counting the numbers of neighbours within a specified distance that are the same state 
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or a different binary state. For example, for each of the survey ponds the presence or 

absence of marsh frogs is recorded then the number of neighbouring ponds with or 

without marsh frogs is counted. These calculations are used to determine whether there 

are a significantly higher number of neighbours that are the same state than is predicted 

when the state of the ponds is repeatedly randomly simulated. The number of simulations 

used was 999. Research has shown that most great crested newts and marsh frogs will 

not disperse further than 250 m (Kovar et al. 2009; Holenweg 2001; Wycherley and Joslin 

1996), so a maximum distance of 250 m was used to indicate what was considered a 

neighbouring pond. The number of neighbours with the same state was not significantly 

higher than predicted by the simulation for either marsh frogs or great crested newts. 

This suggests that spatial autocorrelation within the data is not an issue and 

independence between sites can be assumed. 

The data from the occupancy and detection environmental variables were assessed for 

skewness in the data or outliers that may affect the models. The variables ‘Pond area’, 

and ‘Distance from broadleaved woodland’ were square root transformed. The 

continuous variables were standardised, so they had a mean of zero and a standard 

deviation of one (Fiske and Chandler 2011). 

Model Selection 

The Akaike Information Criterion for small sample sizes (AICc) was used to rank models 

(Mazerolle 2006; Burnham and Anderson 2002). Those models within two delta AICc of 

the highest ranked model were considered to have substantial support and were 

assessed for model fit using the MacKenzie-Bailey test (M&B test) with 1000 simulations 

(MacKenzie and Bailey 2004; Burnham and Anderson 2002). The M&B test was 

implemented using the mb.gof.test with the R package AICcmodav (Mazerolle 2015). 

The overdispersion factor (ĉ) was calculated for each model using the M&B test. If ĉ >1 

for all the models ranked by AICc (except the null model which assumes a constant 

occupancy and detection ρ(·),ψ(·)), overdispersion (the variation in the observed data is 
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higher than expected by the model) was an issue so QAICc was used instead of AICc 

(Anderson and Burnham 2002). The function modavgPred of AICcmodav (Mazerolle 

2015) was used to increase confidence intervals where ĉ > 1 for the predicted probability 

of detection. This inflating of confidence intervals shows the increased uncertainty in the 

prediction due to overdispersion (Kéry and Royle 2016).  

Model selection was undertaken on the detection covariates first and the best performing 

model (lowest (Q)AICc) was used when selecting models for the occupancy part (Kéry 

and Royle 2016). Only variables that had an a priori hypothesis concerning the species 

detection or occupancy were included in the model selection process to avoid models 

that have no causal basis for inclusion but may be correlated with presence of the 

species (Mazerolle 2006; Anderson and Burnham 2002; Burnham and Anderson 2002; 

Anderson et al. 2001). Due to the low number of sites a maximum of two variables per 

model was used (Sewell, Beebee and Griffiths 2010; Burnham and Anderson 2002). To 

reduce the number of covariates in a model, the ordinal variables ‘Fish’ and ‘Pond 

permanence’ were reduced from four categories to two. For example, this meant for 

‘Fish’ the categories 1 (fish population is dense) and 2 (small numbers of goldfish, 

crucian carp, or stickleback) were combined into a single category; similarly, categories 

3 (presence of fish is possible given pond conditions) and 4 (no records of fish or any 

fish seen in torch surveys) were combined. This created an ordinal variable with two 

categories which corresponded to 1 (‘Fish high’) and 2 (‘Fish low’). The best performing 

occupancy models for great crested newts and marsh frogs were identified based on 

(Q)AICc and the M&B test. Logistic regression models using naïve occupancy data were 

then run using the occupancy covariate from the highest ranked models for each species. 

These were compared to the occupancy models to identify if using the detection 

covariates increased the predicted occupancy for the species (Kéry and Royle 2016).     
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 3.4. Results 
3.4.1. Great crested newt 
Out of the 40 ponds surveyed great crested newts were detected at least once in 22 of 

the ponds. The great crested newt model selection process for detectability identified 

three models with a delta AICc <2.0 (Table 3.3). These models were treated as having 

considerable support (Burnham and Anderson 2002). The evidence ratio between the 

two top models (the model with ‘Turbidity’ as a variable and the null model) was 2.9 

indicating the top model (‘Turbidity’) was 2.9 times more likely to be the best model than 

the null model out of the candidate models (Mazerolle 2006). A ‘Turbidity’ score of 1 (able 

to see the bottom of the pond clearly) was positively associated with detection of great 

crested newts in a pond (estimate = 1.67, p = 0.002) and a ‘Turbidity’ score of 3 (turbid) 

was negatively associated with detection (estimate = -2.63, p = 0.004). No other 

variables were significantly associated with detection of great crested newts. Therefore, 

‘Turbidity’ was used as the detection variable in all the models in the model selection 

process to select the most important variable for probability of occupancy (ψ) of great 

crested newts. 
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Table 3.3 Model selection on the detection part of the great crested newt model using constant 
occupancy ψ(·). The parameter count (K) includes intercept. 

Model K AICc Delta AICc AICc 
Weight 

Cumulative 
weight 

Log 
likelihood 

ρ(Turbidity) 

ψ(·)  
5 103.72 0 0.31 0.31 -45.98 

ρ(·) 

ψ(·) 
3 104.14 0.42 0.25 0.57 -48.74 

ρ(Water 
temperature) 

ψ(·) 
4 105.13 1.41 0.15 0.72 -48 

ρ(Time from sunset) 

ψ(·) 
4 105.98 2.26 0.1 0.82 -48.42 

ρ(Torchable area) 

ψ(·) 
4 106.06 2.34 0.1 0.92 -48.46 

ρ(Date) 

ψ(·) 
4 106.46 2.74 0.08 1 -48.66 

 

When selecting for probability of occupancy the model with ρ(Turbidity) and ψ(Fish) was 

the highest ranked model based on AICc (Table 3.4). This model produced a mean 

predicted occupancy of 0.62 (95% CI 0.29 – 0.83) and a mean detection probability of 

0.65 (95% CI 0.46 – 0.82) (Table 3.5). For this model a pond with a ‘Fish’ value of 2 (a 

low fish presence) increased the log odds of great crested newts being present by 2.76 

(estimate = 2.76, p = 0.007). The log odds of detecting great crested newts in a pond 

increased with a pond ‘Turbidity’ value of 1 (estimate = 1.66, p = 0.002) and decreased 

with a ‘Turbidity’ value of 3 (estimate = -2.69, p = 0.002). A pond ‘Turbidity’ value of 2 did 

not significantly affect great crested newt detection. The logistic regression modelling of 

the presence/absence of great crested newts using ‘Fish’ as a covariate produced a 

mean predicted occupancy of 0.55 (95% CI 0.36 – 0.73). 
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Table 3.4. The ten highest ranked models after model selection on the occupancy part of the 
great crested newt model using ‘Turbidity’ as the detection covariate. The parameter count (K) 
includes intercept. 

Model K AICc Delta AICc AICc 
Weight 

Cumulative 
weight 

Log 
likelihood 

ρ(Turbidity) 

ψ(Fish)  
5 116.41 0 0.55 0.55 -52.32 

ρ(Turbidity) 

ψ(HSI) 
5 117.51 1.11 0.31 0.86 -52.87 

ρ(Turbidity) 

ψ(Precipitation 
coldest quarter) 

5 121.09 4.68 0.05 0.91 -54.66 

ρ(Turbidity) 

ψ(Mean water 
temperature) 

5 122.43 6.02 0.03 0.94 -55.33 

ρ(Turbidity) 

ψ (Mean temperature 
coldest quarter) 

5 123.31 6.9 0.02 0.96 -55.77 

ρ(Turbidity) 

ψ(Temperature 
seasonality) 

5 124.45 8.04 0.01 0.97 -56.34 

ρ(Turbidity) 

ψ(shade) 
5 124.74 8.34 0.01 0.98 -56.49 

ρ(Turbidity) 

ψ(·) 
4 125.01 8.6 0.01 0.98 -57.93 

ρ(Turbidity) 

ψ(Distance from 
semi-natural 
grassland) 

5 126.67 10.26 0 0.99 -57.45 

ρ(·) 

ψ(·) 
2 127.14 10.73 0 0.99 -61.41 

 

Only one other model had a delta AICc <2.0, the model with ρ(Turbidity) and ψ(HSI) 

(Table 3.4). ‘HSI’ was positively associated with occupancy of great crested newts, so 

for every one unit increase in ‘HSI’ the log odds of great crested newts being present 

increased by 1.23 (estimate = 1.23, p = 0.004). Detection of great crested newts was 

significantly positively associated with a pond ‘Turbidity’ value of 1 (estimate = 1.67, p = 

0.002) and negatively associated with a ‘Turbidity’ value of 3 (estimate = -1.90, p = 0.04). 

The evidence ratio between these models was 1.74. The results of the M&B goodness 
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of fit test indicated that the observed detection histories of the two highest ranked models 

were not significantly different from the expected detection histories as predicted by the 

models. However, the overdispersion parameter (ĉ) for the top model (ρ(Turbidity) and 

ψ(Fish)) was greater than 1 (ĉ = 1.58). This indicated there was more variation in the 

observed data than expected by the model (MacKenzie et al. 2006). A comparison of the 

detection histories from the M&B test for the model using ρ(Turbidity) and ψ(HSI) showed 

a better fit and indicated very little overdispersion (ĉ = 1.11). The predicted occupancy 

for this model was 0.56 (95% CI 0.36 – 0.76) (Table 3.5) which is not much higher than 

the naïve occupancy of 0.55. Comparing the logistic regression (which uses the naïve 

occupancy) with ‘HSI’ as a covariate and the occupancy model ρ(Turbidity) and ψ(HSI) 

showed they had a similar relationship with HSI (Figure 3.1). Only the upper 95% 

confidence intervals for the occupancy model were slightly wider at lower occupancy 

values compared to the logistic regression (Figure 3.1). ‘HSI’ in the logistic regression 

also had a similar positive affect on great crested newt presence (estimate = 1.35, p = 

0.002). Although occupancy models show that turbidity affects detection, ignoring this in 

logistic regressions results in occupancies that do not differ from those provided by 

occupancy models. 
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Figure 3.1. The observed great crested newt occurrence state (presence or absence) of each 
pond (open circles) with plots of the estimated likelihood of presence against the scaled HSI score 
from: an occupancy model using ‘Turbidity’ as the detection covariate and ‘HSI’ as the occupancy 
covariate (solid red line); and a logistic regression model (solid black line). Dashed lines are 95% 
confidence intervals for the occupancy model (red) and logistic regression model (black).  HSI 
score has been scaled to a mean of zero and a standard deviation of one. 

 

 

Table 3.5. Estimated probability of detection (ρ) and occupancy (ψ) of great crested newts for the 
four highest ranked occupancy models using AICc. Confidence intervals for the probability of 
occupancy have been inflated by the overdispersion factor (ĉ). 

Model ĉ Estimate of ρ 95% CI of ρ Estimate 
of ψ 

95% CI of ψ 

ρ(Turbidity) 

ψ(Fish) 
1.58 0.65 0.46 – 0.82 0.62 0.29 – 0.83 

ρ(Turbidity) 

ψ(HSI) 
1.11 0.71 0.49 – 0.88 0.56 0.36– 0.76 

ρ(Turbidity) 

ψ(Precipitation 
coldest quarter) 

1.55 0.64 0. 47 – 
0.79 0.65 0.29 – 0.84 

ρ(Turbidity) 

ψ(Water 
temperature) 

1.45 0.64 0.47 – 0.79 0.65 0.29 – 0.84 
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The three highest ranked models in the detection model selection process were ranked 

closely. Therefore, model selection for the occupancy models was also run with constant 

detection ρ(·)  and detection with ‘Water temperature’ as the detection covariate. When 

using either constant detection or ‘Water temperature’ the top ranked model used ‘HSI’ 

as the occupancy covariate and ‘Fish’ in the next highest ranked model based on AICc 

(Table S3.1 and S3.2). The evidence ratios indicated that the top models were very close 

when ranking models using constant detection or ‘Water temperature’ as the detection 

covariate. The M&B goodness of fit test showed better fit for both constant detectability 

and when using ‘Water temperature’ as the detection covariate compared to the model 

ρ(Turbidity) and ψ(Fish). There was also little or no overdispersion in the models. The 

predicted occupancy for the model ρ(Water temperature) and ψ(HSI) was 0.55 (95% CI 

0.35 – 0.72). The model ρ(Water temperature) and ψ(Fish) had a predicted occupancy 

of 0.56 (95% CI 0.36 – 0.74). The better fit for the models using either ρ(Water 

temperature) or ρ(·) compared to using ρ(Turbidity) indicates that using ‘Turbidity’ as a 

detection covariate may be producing less reliable predictions of the probability of 

occupancy and detection.  

3.4.2. Marsh frog 
In terms of detectability, ‘Water temperature’ produced the highest AICc ranking (Table 

3.6). ‘Water temperature’ was positively associated with the detection of marsh frogs 

(estimate = 1.02, p = 0.01). There were no other models within two delta AICc. The 

evidence ratio between the top two models was 11.9 indicating the model with ‘Water 

temperature’ as the detection variable had considerably more support. Therefore, ‘Water 

temperature’ was used as the detection covariate for model selection on the occupancy 

part of the model. Model fit using the M&B tests for ρ(Water temperature) and ψ(·), 

indicated that the observed (i.e. naïve) detection histories were not significantly different 

from those predicted by the model (p = 0.089) but the p value was not far off significance 

and there was evidence of overdispersion (ĉ = 1.79). 
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Table 3.6. Model selection on the detection part of the marsh frog model using constant 
occupancy ψ(·). The parameter count (K) includes intercept. 

Model K AICc Delta AICc AICc 
Weight 

Cumulative 
weight 

Log 
likelihood 

ρ(Water 
temperature) 3 123.58 0 0.81 0.81 -58.46 

ρ(·) 

ψ(·) 
2 128.53 4.95 0.07 0.88 -62.1 

ρ(Torchable area) 

ψ (·) 
3 129.43 5.85 0.04 0.92 -61.38 

ρ(Time from sunset) 

ψ(·) 
3 130.53 6.96 0.03 0.95 -61.93 

ρ(Date) 

ψ (·) 
3 130.69 7.11 0.02 0.97 -62.01 

ρ(Air temperature) 

ψ (·) 
3 130.87 7.29 0.02 0.99 -62.1 

ρ(Turbidity) 

ψ (·) 
4 132.57 8.99 0.01 1 -61.71 
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Table 3.7. The ten highest ranked models after selection on the occupancy part of the marsh frog 
model using ‘Water temperature’ as the detection covariate. The parameter count (K) includes 
intercept. 

Model K QAICc Delta_QAICc QAICcWt Cumulative 
weight 

Quasi-Log 
likelihood 

ρ(Water temperature) 

ψ(Macrophytes) 5 72.06 0 0.33 0.33 -30.15 

ρ(Water temperature) 

ψ(Shade) 5 72.51 0.45 0.26 0.59 -30.37 

ρ(Water temperature) 

ψ(Conductivity) 5 74.84 2.78 0.08 0.68 -31.54 

ρ(Water temperature) 

ψ(Maximum 
temperature warmest 
month) 5 75.01 2.95 0.08 0.75 -31.62 

ρ(Water temperature) 

ψ(Linear water 
features) 5 76.21 4.15 0.04 0.79 -32.22 

ρ(Water temperature) 

ψ(Elevation) 5 76.33 4.27 0.04 0.83 -32.28 

ρ(Water temperature) 

ψ(Pond density) 5 76.9 4.84 0.03 0.86 -32.57 

ρ(Water temperature) 

ψ(Precipitation 
coldest quarter) 5 76.95 4.89 0.03 0.89 -32.59 

ρ(Water temperature) 

ψ(Mean water 
temperature) 5 77.1 5.04 0.03 0.92 -32.67 

ρ(Water temperature) 

ψ(Distance from 
arable land) 3 77.24 5.18 0.02 0.94 -35.29 

 

The top ranked model after model selection to determine the variable most important for 

probability of occupancy (ψ) was ρ(Water temperature) and ψ(Macrophytes) (Table 3.7). 

In this model ‘Macrophytes’ was significantly positively associated with the presence of 

marsh frogs (estimate = 1.37, p = 0.006). This model predicted a marsh frog probability 

of occupancy of 0.53 (95% CI 0.25 – 0.77) and a probability of detection of 0.65 (95% CI 

0.46 – 0.81) (Table 3.8). The detection of marsh frogs was significantly positively 

associated with ‘Water temperature’ (estimate = 0.89, p = 0.02). The logistic regression 
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using naïve observations of occupancy and ‘Macrophytes’ as a covariate produced a 

mean occupancy probability of 0.50 (95% CI 0.31 – 0.73) and was similarly positively 

associated with marsh frog presence (estimate = 1.31, p = 0.003). The occupancy model 

and the logistic model had a similar relationship to ‘Macrophytes’, but the occupancy 

model had wider confidence intervals (Figure 3.2). The next highest ranked model 

ρ(Water temperature) and ψ(Shade) produced a probability of occupancy of 0.52 (95% 

CI 0.26 – 0.79). ‘Shade’ was negatively associated with the presence of marsh frogs 

(estimate = -1.26, p = 0.004). Again, ‘Water temperature’ was positively associated with 

the detection of marsh frogs (estimate = 0.80, p = 0.03). There were no other models 

within two delta AICc of the top model. The M&B tests showed that the difference 

between observed and expected detection histories was not significant for either model, 

although the model ρ(Water temperature) and ψ(Shade) was close to being significant 

(p = 0.06) suggesting a better fit for the model using ‘Macrophytes’ as the occupancy 

covariate. The predicted occupancy produced by using ‘Water temperature’ as a 

detection covariate is therefore only marginally higher if variation in detection is not 

considered. Consequently, logistic regression models are considered more appropriate 

because including an extra covariate is likely to produce a better fitting model and may 

affect which variable are the best predictors of marsh frog presence.  
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Table 3.8. Estimated probability of detection (ρ) and occupancy (ψ) of marsh frogs for the four 
highest ranked models using AICc. Confidence intervals for the probability of occupancy have 
been inflated by the overdispersion factor (ĉ). 

Model ĉ Estimate  

of ρ 

95% CI of ρ Estimate  

of ψ 

95% CI of ψ 

ρ(Water temperature) 

ψ(Macrophytes) 
1.76 0.65 0.46 – 0.80 0.53  0.25 – 0.77 

ρ(Water temperature) 

ψ(Shade) 
2.01 0.66 0.47 – 0.82 0.52 0.26 – 0.79 

ρ(Water temperature) 

ψ(Conductivity) 
1.94 0.59 0.43 – 0.75 0.60 0.21 – 0.86 

ρ(Water temperature) 

ψ(Maximum 
temperature warmest 
month) 

1.87 0.64 0.45 – 0.81 0.54 0.26 – 0.81 

  

 

Figure 3.2. The observed marsh frog occurrence state (presence or absence) of each pond (open 
circles) with plots of the estimated likelihood of presence against the scaled ‘Macrophytes’ score 
from: an occupancy model using ‘Water temperature’ as the detection covariate and 
‘Macrophytes’ as the occupancy covariate (solid red line); and a logistic regression model (solid 
black line). Dashed lines are 95% confidence intervals for the occupancy model (red) and logistic 
regression model (black).  ‘Macrophytes’ has been scaled to a mean of zero and a standard 
deviation of one. 
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3.5. Discussion 
3.5.1. Great crested newt models 
The estimated occupancy of great crested newts from the highest ranked model 

ρ(Turbidity) and ψ(Fish) was higher and had broader confidence intervals than the 

logistic regression model which does not account for variation in detectability (Figure 

3.1). The lower estimated occupancy could be due to accounting for variations in 

detectability due to ‘Turbidity’. However, when ‘HSI’ is used as the occupancy covariate 

the predicted occupancy is very similar to the estimates produced by the logistic 

regression (Figure 3.1). The model ψ(Fish) and ρ(·) also produces an estimate of 

occupancy similar to the observed occupancy. This suggests the combination of ψ(Fish) 

and ρ(Turbidity) is the cause of the lower occupancy and higher predicted detection. The 

low p-value and high ĉ calculated from the M&B test indicates that it is not a good fitting 

model despite its higher AICc value. Fish at high densities can be the cause of high 

turbidity in ponds as well as being detrimental to the presence of great crested newts 

(Chan 2011; Hartel et al. 2007; Oldham et al. 2000). However, turbidity in ponds can also 

be caused by other factors that are unfavourable to great crested newts, such as high 

numbers of waterfowl or eutrophic ponds (Oldham et al. 2000). The reduced probability 

of detection in the ψ(Fish) and ρ(Turbidity) model may be the result of the true absence 

of great crested newts in ponds with no observed detections and high ‘Turbidity’, but with 

this absence being due to a factor other than the presence of fish. Plotting the variable 

‘HSI’ against the mean ‘Turbidity’ score of each pond shows low ‘HSI’ scores are 

associated with high ‘Turbidity’ scores. There are almost as many ponds with a high 

‘Turbidity’ level and low ‘Fish’ score (Figure 3.3a, b).  
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Figure 3.3. The variable ‘Turbidity’ plotted against: (a) the variable ‘HSI’ and (b) the variable ‘Fish’. 
‘Turbidity’ is an ordinal variable with three categories: 1 (able to see the bottom of the pond 
clearly), 2 (moderately clear), and 3 (turbid). The variable ‘Fish’ was turned from a four-category 
ordinal variable to a two-category variable. The categories 1(fish population is dense) and 2 (small 
numbers of goldfish, crucian carp, or stickleback) were combined into a single category ‘Fish 
high’. The categories 3 (presence of fish is possible given pond conditions) and 4 (no records of 
fish or any fish seen in torch surveys) were combined to form ‘Fish low’. ‘HSI’ has been centred 
and scaled. ‘HSI’ decrease as ponds increase in turbidity, which suggests turbid ponds may be 
less suitable for great crested newts.  Ponds with high ‘Turbidity’ and ‘Fish low’, and high 
‘Turbidity’ and ‘Fish high’ are similar in number. If very turbid ponds are less suitable for great 
crested newts, models with ‘Turbidity’ as a detection covariate and ‘Fish’ as an occupancy 
covariate may be attributing some great crested newt absences to non-detections and therefore, 
increasing the predicted occupancy. 

  

The variable ‘HSI’ is a conglomeration of several environmental variables that have 

evidence to support their influence on great crested newts (ARG UK 2010; Oldham et al. 

2000). It is very likely that there are several variables that affect the presence of great 

crested newts so the HSI score provides this broad spectrum without having a complex 

model. Sewell et al. (2010) also found HSI score to be important in predicting occupancy 

for great crested newts. Based on this evidence the model ψ(HSI) and ρ(Turbidity) is 

likely to be the best predictor of great crested newt occupancy from this analysis. The 

predicted occupancy of this model is very similar to the results from the logistic 

regression using ‘HSI’ as a covariate (Figure 3.1). Therefore, there is reasonable 

justification in this case for ignoring probability of detection and considering non-

detections as absences.      

(a) (b) 
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A previous study on presence of great crested newts in Kent found evening water 

temperature as having the greatest effect on great crested newt detectability (Sewell, 

Beebee and Griffiths 2010). The results in my study showed ‘Water temperature’ to be 

ranked third by AICc but ranked lower than the model using constant detectability (Table 

3.3). However, mean water temperatures for the three survey events in this study were 

13.7°C, 14.2°C, and 16.2°C. Even the first surveys in this study were closer to 

temperatures recorded later in the season (April to end of May) by Sewell et al. (2010). 

The higher water temperature in this study may be the reason why ‘Water temperature’ 

was found to be much less of a limiting factor on detectability. Bottle trapping as well as 

torching was used in surveys by Sewell et al. (2010) so this could also have increased 

the importance of water temperature. 

3.5.2. Marsh frog models 
The results show that ‘Water temperature’ is by far the strongest predictor associated 

with probability of detection for marsh frogs. Marsh frog behaviour suggests there is a 

link between temperature and detectability; for example, marsh frogs emerge later from 

hibernation than UK native amphibians (Beebee and Griffiths 2000). The variable ‘Air 

temperature’ was not a strong predictor. However, during the surveys, which took place 

after sunset, it was observed that marsh frogs tend to be found just submerged at the 

pond edge, so air temperature would be less important.  

The model selection to find variables that are important in predicting marsh frog 

occupancy indicated ‘Macrophytes’ and ‘Shade’ are important predictors. ‘Macrophytes’ 

and ‘Shade’ were negatively correlated (Spearman’s rho = 0.62); a reasonable 

explanation for this is that the more shaded a pond is, the less light there is to stimulate 

pond vegetation to grow. It is possible therefore, that one variable may be a proxy for the 

other. However, both ‘Macrophytes’ and ‘Shade’ have biologically meaningful reasons to 

be associated with marsh frog presence. The marsh frog behaviour of basking in the sun 

particularly on south facing banks is indicative of a preference for unshaded ponds (Inns 
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2009; Merry 2004; Beebee and Griffiths 2000).  Marsh frogs tend to lay their eggs among 

plants (Kyriakopoulou-Sklavounou and Kattoulas 1990). Macrophytes are also likely to 

provide cover from predators and experiments have shown that marsh frog tadpoles tend 

to stay around aquatic vegetation (Innocenzi 1995).  

The results of the M&B goodness of fit tests for the top two marsh frog occupancy models 

ρ(Water temperature) and ψ(Macrophyte), and ρ(Water temperature) and ψ(Shade) 

showed that there was not a significant lack of fit for either of the above models. However, 

the p values were low suggesting there was overdispersion in both models. 

Overdispersion and a lack of fit can be caused by several factors such as important 

covariates being left out of the model, interactions unmodeled, or a lack of independence 

in the data (Kéry and Royle 2016; Anderson and Burnham 2002). The low sample size 

meant using more complex models was not possible. Therefore, some of the lack of fit 

could be due to missing covariates. A higher sample size would allow more covariates 

to be used which is likely to increase model fit.  

The lack of fit of the occupancy model did not lead to differences in the estimated 

occupancy of the survey ponds compared to the estimates from the logistic regression 

using ‘Macrophytes’ as a covariate (Figure 3.2). Therefore, logistic regression could be 

used instead. This would allow an increase in the number of variables or interaction 

terms providing more information about predictors of marsh frog presence. 

Including covariates of detection for great crested newts or marsh frogs only increased 

the predicted occupancy for either species a marginal amount. This indicates the three 

repeat surveys for each pond have achieved high detection rates and false absences 

are unlikely. Therefore, the environmental variables found to be associated with great 

crested newts and marsh frogs can be used without consideration of false absences 

affecting the results. Using logistic regression rather than occupancy modelling will allow 

an extra covariate to be used in the model to predict presence of the species. Including 

more variables in the model is likely to increase model fit. It may also affect which 
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variables are most associated with the presence of a species. This could alter the 

conclusion concerning whether marsh frogs and common frogs are likely to be found in 

the same ponds.  
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 3.6. Supplementary information  
Table S3.1. Model selection on the occupancy part of the great crested newt model using constant 
detection ρ(·). The parameter count (K) includes intercept. 

Model K AICc Delta AICc AICc 
Weight 

Cumulative 
Weight 

Log 
likelihood 

ρ(·) ψ(HSI) 3 116.86 0 0.73 0.73 -55.1 

ρ(·) ψ(Fish) 3 119.28 2.42 0.22 0.95 -56.31 

ρ(·) ψ(Mean water 
temperature) 3 124.45 7.59 0.02 0.97 -58.89 

ρ(·) ψ(Precipitation 
coldest quarter) 3 126.57 9.71 0.01 0.98 -59.95 

ρ(·) ψ(·) 2 127.14 10.28 0 0.98 -61.41 

ρ(·) ψ(Temperature 
seasonality) 3 127.18 10.32 0 0.98 -60.26 

ρ(·) ψ(Mean 
temperature coldest 
quarter) 

3 127.44 10.58 0 0.99 -60.39 

ρ(·) ψ(Shade) 3 128.16 11.3 0 0.99 -60.75 

ρ(·) ψ(Pond density) 3 128.81 11.95 0 0.99 -61.07 

ρ(·) ψ(Distance from 
semi-natural 
grassland) 

3 129.18 12.32 0 0.99 -61.25 

ρ(·) ψ(Macrophyte) 3 129.36 12.5 0 1 -61.35 

ρ(·) ψ(Pond 
permanence) 3 129.38 12.52 0 1 -61.36 

ρ(·)  

ψ(Distance from 
broadleaved 
woodland) 

3 129.47 12.61 0 1 -61.4 

ρ(·)  

ψ(Distance from 
arable land) 

3 129.47 12.61 0 1 -61.4 

ρ(·) ψ(Fowl) 4 130.59 13.73 0 1 -60.72 
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Table S3.2. Model selection on the occupancy part of the great crested newt model using ‘Water 
temperature’ as the detection covariate. The parameter count (K) includes intercept. 

Model K AICc Delta AICc AICc 
Weight 

Cumulative 
Weight 

Log 
likelihood 

ρ(Water temperature) 
ψ(HSI) 4 117.54 0 0.72 0.72 -54.2 

ρ(Water temperature) 
ψ(Fish) 4 119.68 2.13 0.25 0.96 -55.27 

ρ(Water temperature) 
ψ(Precipitation 
coldest quarter) 

4 127.03 9.49 0.01 0.97 -58.95 

ρ(·) ψ(·) 2 127.14 9.6 0.01 0.97 -61.41 

ρ(Water temperature) 
ψ(·) 3 127.62 10.07 0 0.98 -60.47 

ρ(Water temperature)  

ψ(Temperature 
seasonality) 

4 127.79 10.24 0 0.98 -59.32 

ρ(Water temperature)  

ψ(Mean temperature 
coldest quarter) 

4 127.97 10.43 0 0.99 -59.41 

ρ(Water temperature)  

ψ(Shade) 
4 128.67 11.13 0 0.99 -59.76 

ρ(Water temperature)  

ψ(Pond density) 
4 129.4 11.86 0 0.99 -60.13 

ρ(Water temperature)  

ψ(Distance from 
semi-natural 
grassland) 

4 129.76 12.21 0 0.99 -60.31 

ρ(Water temperature)  

ψ(Macrophyte) 
4 129.98 12.44 0 1 -60.42 

ρ(Water temperature)  

ψ(Pond permanence) 
4 130.01 12.46 0 1 -60.43 

ρ(Water temperature)  

ψ(Distance from 
broadleaved 
woodland) 

4 130.08 12.53 0 1 -60.47 

ρ(Water temperature)  

ψ(Distance from 
arable land) 

4 130.08 12.54 0 1 -60.47 

ρ(Water temperature)  

ψ(Fowl) 
5 131.38 13.83 0 1 -59.81 
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Chapter 4. Detecting the effects of marsh frogs on 

common frogs at a local level 
 

4.1. Abstract 
Non-native species can cause changes in the ecosystems they invade, inflicting indirect 

impacts on native species. Landscape scale studies can indicate where impacts may be 

occurring because of the presence of a non-native. However, to determine whether 

suspected changes in native distributions are a result of the non-native, rather than 

another cause, more localised fine-scale studies are required. A landscape study has 

suggested that in high pond density areas of Kent, marsh frogs (Pelophylax ridibundus), 

in combination with great crested newts (Triturus cristatus), may be reducing the 

presence of common frogs (Rana temporaria). To test whether common frog presence 

is lower in areas with marsh frogs present, pond surveys were conducted to determine 

common frog and great crested newt occupancy in an area with, and an area without, 

marsh frogs. Propensity modelling was used to limit the difference between areas to 

provide a clearer comparison with fewer confounding variables. Logistic regression was 

used to identify the environmental variables associated with each species. The results 

showed there were fewer common frogs in areas where marsh frogs were present. 

However, common frogs were found to be positively associated with pond shading in 

areas where marsh frogs were absent. Marsh frogs were negatively associated with pond 

shading suggesting that common frogs and marsh frogs were likely to use different ponds 

in areas where their ranges overlap. Therefore, negative impacts on common frogs by 

marsh frogs was not likely to reduce common frog population numbers. However, there 

was much higher great crested newt occupancy in the areas with marsh frogs, 

suggesting predation by great crested newts may be the cause of a lower presence of 

common frogs in areas with marsh frogs. 
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4.2. Introduction 
Landscape scale studies can be used to assess the actual and potential distributions of 

non-natives (Ihlow et al. 2016; Buckland et al. 2014) and to make predictions about 

species interactions such as competition (Anderson, Peterson and Gómez-Laverde 

2002). However, landscape scale studies may lack sufficient accuracy to forecast 

species distributions at a local level (Bormpoudakis et al. 2015; Moreira et al. 2015). The 

presence of a non-native species can lead to changes in community structures often due 

to complex interactions between several species (Klop‐Toker et al. 2018; Shulse, 

Semlitsch and Trauth 2013; Roemer, Donlan and Courchamp 2002). Therefore, it is often 

necessary to investigate what is happening at a much more local level where changes 

in native species presence or abundance can be assessed more easily. 

There are still challenges associated with identifying if a non-native species is having an 

impact at a local level. An assessment of the status of a native species before and after 

an invasion can provide evidence that the non-native is the cause of the decline although 

this is rarely achievable in practice (Doody et al. 2009). In some instances, the 

assessment of a non-native species impact must be conducted long after its introduction 

and when declines in native species have already taken place (Willson 2017). In these 

situations, there are usually several competing hypotheses that may explain the 

observed reductions in a native population, such as habitat loss and fragmentation.  

An alternative strategy is to compare two areas with and without the invasive species, 

while attempting to control for any other variables that may confound a comparison 

between the two (Buckland et al. 2014). Patterns in the presence and abundance of 

native and non-native species can be used to indicate whether there is a potential for 

predation or competition between species based on the type of habitat they use (Klop‐

Toker et al. 2018; Roth, Buehler and Amrhein 2016; Cayuela, Besnard and Joly 2013). 

The aims of this chapter are to: 1) identify if fewer ponds are occupied by common frogs 

(Rana temporaria) in areas where marsh frogs (Pelophylax ridibundus) are present; and 
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2) determine if any differences in common frog occupancy between areas with and 

without marsh frogs are due to the presence of marsh frogs, differences in habitat use, 

or the presence of another predator of common frogs the great crested newt (Triturus 

cristatus). To achieve these aims the interactions between the abundance of common 

frogs was compared between two areas, one with and one without marsh frogs. To make 

a comparison more meaningful, propensity modelling was used to limit the difference 

between areas as far as possible. Variables associated with the presence of common 

frogs, marsh frogs, and great crested newts were identified to investigate whether habitat 

preferences affect the likelihood of interactions between these species.    

 

4.3. Methods 
4.3.1. Study system 
The study area was located in the Wealden area of Kent and Sussex in south east 

England. Survey ponds were classified into two groups ‘ponds within a marsh frog area’ 

and ‘ponds in areas without marsh frogs’. The former group contained 49 ponds in 

southern and central Kent (also used in the occupancy modelling study, Chapter 3) 

hereafter known as the Kent survey ponds. These ponds had been selected to be within 

the dispersal distance of a common frog and marsh frog record. A distance of 1.5 km 

was used as the dispersal distance for common frogs (Safner et al. 2011; Kovar et al. 

2009) and 500 m for marsh frogs (Kovar et al. 2009; Holenweg 2001) (Chapter 3, 

methods section). The ‘ponds in areas without marsh frogs’ were all selected from the 

neighbouring county of Sussex and hereafter known as the Sussex survey ponds. The 

exact distribution of marsh frogs in Sussex is not known. However, the Sussex survey 

ponds were selected to be at least 5 km from a known marsh frog record to increase the 

likelihood that the species inhabiting the ponds were not affected by the presence of 

marsh frogs. Records from 1973 to 2014, held by the Sussex Biodiversity Records 
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Centre, were used for this purpose. Ponds were identified in Kent and Sussex from a UK 

pond map provided by ARC trust.  

To reduce the likelihood of differences between the ponds in the two survey areas 

propensity modelling was used to match the Kent survey ponds with ponds in Sussex. 

Propensity modelling is a technique borrowed from medical research. It is used in 

situations where the effect of a treatment on subjects needs to be assessed but a 

properly structured randomised trial is not possible. In randomised experiments 

comparisons between treatment and control subjects is possible because the subjects 

in each group represent unbiased samples from a wider population. Direct comparisons 

may be misleading in non-randomised experiments because the treated subjects may 

differ systematically from the control subjects (Rosenbaum and Rubin 1983). Propensity 

modelling works by ensuring the distribution of baseline covariates are as close as 

possible between control subjects and treatment subjects by calculating a propensity 

score for each subject (Austin 2011). The propensity score is defined as the probability 

of a subject receiving the treatment given the covariates (Ho et al. 2011). It is estimated 

using logistic regression to determine the probability of a subject getting the treatment 

given the covariates used in the propensity modelling (Ho et al. 2007). 

This technique was used to select the survey ponds in Sussex by considering presence 

of marsh frogs as the ‘treatment’. Therefore, ponds in locations where marsh frogs are 

present are the ‘subjects’ given the ‘treatment’ (treatment ponds) and ponds in marsh 

frog absent areas are the control ‘subjects’ (control ponds). The effect that was measured 

was the presence or absence of common frogs, and whether this was affected by the 

‘treatment’ i.e. the presence of marsh frogs in the area. The treatment ponds were the 

49 Kent survey ponds already selected and the control ponds were chosen from ponds 

in Sussex, 5 km from a known marsh frog record. The R package MatchIt (Ho et al. 2011) 

was used to calculate the propensity score and match the scores for the Kent survey 

ponds with all ponds in Sussex that were 5 km away from a marsh frog record. Nearest 
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neighbour matching was used, where the most similar score to the propensity score is 

used rather than an exact match (Ho et al. 2007). 

Environmental variables that may affect the presence of common frogs, according to 

previous research, were used to match the two survey areas (Table 4.1). For each of the 

49 Kent survey ponds eight similar ponds in Sussex were identified (a total of 392 ponds). 

This provided a greater number of ponds that could be surveyed in Sussex. From the 

392 ponds a subset of 52 were surveyed to approximately match the number of Kent 

survey ponds (Figure 4.1). If permission to survey the pond was denied by the 

landowner, the nearest accessible pond with values similar to those of the original pond 

was surveyed.  To identify if spatial autocorrelation could lead to a lack of independence 

between the Sussex survey sites the joint count permutation test was used from the R 

package spdep (Bivand and Piras 2015) (Chapter 3, methods section).  
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Table 4.1. Environmental variables that may influence the presence of common frogs. The 
variables were used in the propensity modelling to find ponds in Sussex similar to survey ponds 
in Kent to enable a comparison of common frog presence between the two areas. These variables 
were also used in the logistic regression to determine those which were associated with common 
frog presence. 

Variable 
Name 
 

Description Reason for inclusion 

Pond 
density  

Number of ponds 
within a 1 km radius 
divided by pi. Derived 
from a UK wide pond 
dataset provided by 
ARC Trust. 

There is evidence that high pond density is associated 
with presence of great crested newts (Chapter 3) 
(Bormpoudakis et al. 2015; ARG UK 2010; Oldham et 
al. 2000). Great crested newts are known to prey on 
common frogs (Covaciu-Marcov et al. 2010) and may 
be affecting common frog abundance. Common frogs 
need ponds to breed and may initially increase with 
pond density before higher great crested newt 
presence starts to have an impact. Therefore, pond 
density may not have a linear relationship with 
common frog presence, so the squared version of the 
variable was also included in the logistic regression. 

Linear water 
features 

Combined length of 
linear water features 
within a 1 km radius 
divided by pi. Derived 
from Ordnance 
Survey MasterMap 
Water Network (OS 
MasterMap Water 
Network 2015). 

In some areas lots of linear water features are linked to 
livestock grazing which may negatively affect the 
presence of common frogs (Beebee 1980). 

Distance 
from 
broadleaved 
woodland 

Distance from 
broadleaved 
woodland (m). 
Derived from the 
LCM2015 (Rowland 
et al. 2017) 

Common frog presence has been associated with 
woodland (Boissinot et al. 2015; Van Buskirk 2005). 
The species distribution modelling results in Chapter 2 
also found a positive association. 

Distance 
from arable 
land 

Distance from arable 
or horticultural land 
(m). Derived from the 
LCM2015 (Rowland 
et al. 2017). 

Areas of arable land are likely to be detrimental to 
amphibians due to issues such as agricultural runoff 
and overgrowth of ditches (Beebee and Griffiths 2000). 

Distance 
from urban/ 
suburban 
areas 

Distance from urban 
and suburban areas 
(m). Derived from the 
LCM2015 (Rowland 
et al. 2017). 

Common frogs can often occupy urban and suburban 
ponds leading to quite high populations (Beebee and 
Griffiths 2000; Beebee 1979). An interaction with ‘Pond 
density’ was included in the logistic regression 
because great crested newts are less common in 
urban/suburban areas (Beebee and Griffiths 2000; 
Inns 2009), so higher densities of ponds near urban 
areas may not be as detrimental to common frog 
presence. 
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Figure 4.1. Locations of the survey ponds in Kent and Sussex. The 49 survey ponds in Kent were 
selected to be a maximum of 1500 m from a common frog record and a maximum of 500 m from 
a marsh frog record. The 52 survey ponds in Sussex were chosen to match, as far as possible, 
the habitat surrounding the 49 survey ponds in Kent by using propensity modelling. The Sussex 
ponds were also selected to be at least 5 km from a marsh frog record.  

 

4.3.2. Amphibian survey methods 
For both the Kent and Sussex survey areas, the first spawn surveys were carried out in 

late February or early March 2015, with one or two further surveys in mid to late March. 

All accessible banks of the ponds were walked around, and individual common frogs 

spawn clumps were counted in daylight. Spawn mats were measured using the protocol 

from Griffiths, Raper and Brady (1996). If it was not possible to access all banks, 

binoculars were used to look for spawn. To establish the presence of great crested newts 

in the Sussex survey ponds three surveys were conducted between March and early 

June to coincide with great crested newt breeding season. Due to the withdrawal of 

permission only 45 of the 52 Sussex survey ponds were surveyed. Surveys were 

conducted after sunset and the entire margin of the pond was searched using a 

1,000,000 candle power torch. Great crested newts at all life stages were recorded. 

Sussex 

Kent 
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Distinguishing female smooth and female palmate newts while torching was very difficult 

because of their similar appearance, so counts of these species were combined under 

the category ‘small newts’. The same variables used in Chapter 3 to model occupancy 

for great crested newts and marsh frogs were recorded during the spawn surveys or 

added afterwards using ArGIS10.5. These were: ‘Conductivity’, ‘Shade’, ‘Macrophytes’, 

‘Fish’, ‘Fowl’, ‘Pond area’, ‘Pond permanence’, ‘Mean water temperature’, ‘Linear water 

features’, ‘Elevation’, ‘Distance from broadleaved woodland’, ‘Distance from arable land’, 

‘Distance from semi-natural grassland’, ‘HSI’, and ‘Temperature seasonality’ (Chapter 3, 

Table 4.2). 

The matching of variables taken during ponds surveys (e.g. ‘Conductivity’) was obviously 

not possible before selection of the Sussex survey ponds. Therefore, these could differ 

between the Kent and Sussex survey sites. If there is a difference between the number 

of ponds with common frog spawn present in the survey ponds in Sussex compared to 

Kent this could be due to disparities between the environmental conditions of the two 

areas rather than the presence of marsh frogs. For this reason, hypothesis tests were 

used to identify if there were significant differences between the environmental variables 

measured in Kent and Sussex. This also provided a measure of how successful the 

propensity modelling had been.  

Several of the environmental variable samples for the Kent and Sussex survey ponds 

were not normally distributed or had different distributions or variances. Therefore, using 

the Student’s t-test or the Mann-Whitney U-test to test for significant differences in means 

or medians between samples may be unreliable. For this reason, bootstrapping of the t-

statistic was carried out using the function boot.t.test from the R package tpepler/nonpar 

(Pepler 2017; Efron and Tibshirani 1993). The values from the Kent and Sussex surveys 

were combined for a variable. From this, random sampling with replacement was 

undertaken to produce two groups matching the number of survey ponds in Kent and 

Sussex. The test statistic was calculated, and the process repeated 10,000 times. Each 
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of the 10,000 replicate t-scores was compared to the observed t-score (the t-score from 

the original data). The probability of getting a value more extreme than the observed t-

score gives the p-value.  

4.3.3. Logistic regression analysis 

In Kent only eight of the 49 ponds were found to have common frogs. This was too few 

ponds to reliably identify variables which were significant in predicting common frog 

presence. For this reason, the analysis was limited to identifying variables affecting 

presence of common frogs in Sussex and presence of marsh frogs and great crested 

newts in Kent. The presence/absence of great crested newts was not used as an 

explanatory variable in the Sussex logistic regression because only five ponds in Sussex 

were found to contain them. 

4.3.4. Analysis 
The environmental variable values from the survey ponds in Sussex and Kent were 

checked for outliers and skews in the distributions. For the logistic regression of the 

Sussex data the variables ‘Pond area’, and ‘Distance from urban/suburban areas’ were 

square root transformed to reduce effects of outliers. The same variables for the Kent 

data also needed to be square root transformed. 

Spearman’s rank correlation coefficients were calculated to identify collinearity between 

the continuous predictor variables. Where a Spearman’s rho ≥ 0.70 was identified the 

variable that was least likely to be biologically meaningful was not used in the logistic 

regressions. The continuous variables were centred around zero by subtracting the 

sample mean and scaled by dividing by the covariate sample standard deviation. Using 

the survey data from Kent ‘Elevation’ and ‘Maximum temperature warmest month’ were 

found to be correlated (Spearman’s rho = - 0.8). Therefore, ‘Elevation’ was not used in 

the marsh frog logistic regression because higher temperatures were more likely to 

directly affect marsh frogs.  
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4.3.5. Model selection process 
A set of biologically meaningful candidate models were specified based on knowledge 

of common frogs spawning habits, possible interactions with predators, and previous 

studies (Table 4.2). This reduced the likelihood of identifying spurious associations with 

variables (Mazerolle 2006; Burnham and Anderson 2002).  

Table 4.2. Variables used in the models to predict the common frog spawn presence in Sussex 
survey ponds.  

Variable Reason for inclusion 

 

Shade To identify whether the link between common frogs and woodland found in the 
species distribution models in Chapter 2 is also due to shading of a pond. For 
example, tree roots around shaded ponds may be providing areas where 
predatory fish cannot access the frog spawn. Very shaded ponds my dry more 
frequently because they are close to succession, frequent drying can reduce the 
presence of predators (Oldham et al. 2000). The squared version of ‘Shade’ was 
also included in the models because it may only be high levels of pond shading 
that affect common frog presence. 

Pond area Common frogs often spawn in urban and suburban garden ponds which tend to 
be smaller. There may also be a non-linear association with ‘Pond area’. Great 
crested newt presence is less likely in smaller ponds (Oldham et al. 2000) and 
their impact on common frogs in larger ponds may also be less severe because 
of the greater possibility of separation. This could mean the impact of great 
crested newts on common frogs could be more severe in medium sized ponds. 

Fish Fish can prey on common frogs. However, the presence of fish may not affect 
common frog occupancy (Hartel et al. 2007; Van Buskirk 2005), or have a 
positive affect as common frogs may use these ponds to avoid predation by 
great crested newts (Brady 2009). 

Pond drying Ponds that dry out more frequently may reduce the numbers common frog 
predators such as fish (Oldham et al. 2000). 

 

The same survey data was used in marsh frog and great crested newt logistic 

regressions as in the occupancy modelling in Chapter 3. However, it was possible to use 

more variables per model to try and achieve a better fitting model with logistic regression 

because an extra degree of freedom was available as variation in detection between 

ponds was not being accounted for (Babyak 2004). The variables that had a low AICc 

ranking in the occupancy modelling were not used in the marsh frog and great crested 

newt logistic regressions in this chapter. The variable ‘HSI’ is based on the great crested 

newt Habitat Suitability Index (Oldham et al. 2000) and is calculated using several 



98 
 

metrics used as variables on their own e.g. ‘Pond density’ (Chapter 3, Table 4.2) due to 

this ‘HSI’ was not combined with variables used in the calculation of the HSI. 

The models were ranked based on the AIC for small sample sizes (AICc) (Mazerolle 

2006; Burnham and Anderson 2002). Ranking of the models was carried out using the 

R package AICcmodavg (Mazerolle 2015). Model averaging was used to determine the 

strength and precision of each variable (Mazerolle 2006).  Due to the low sample size 

and number of predictor variables, rather than using the global model to calculate the 

overdispersion factor (ĉ), candidate models were divided into subsets each with their 

own ‘sub-global’ model (Tables, S4.1, S4.2, S4.3)  (Burnham and Anderson 2002). If all 

the sub-global models had a ĉ higher than 1 the lowest value of ĉ was used as the 

estimate in the model averaging process and QAICc used to rank the models (Mazerolle 

2015; Burnham and Anderson 2002). 

 

4.4. Results 
4.4.1. Species occupancy in areas with and without marsh frogs 
The results of the spawn surveys found significantly fewer ponds with common frogs 

present in the Kent survey ponds (Fisher’s Exact Test p = 0.005; Table 4.3). The odds 

ratio of 3.7 indicates that the odds of finding common frog spawn in the Sussex survey 

ponds is approximately 3.6 times that of finding them in the Kent survey ponds. However, 

there also were significantly more great crested newts found in the Kent survey ponds 

than in the Sussex ponds (Fisher’s Exact Test p < 0.001). The number of ponds with 

small newts and common toads were not significantly different between areas (Table 

4.3). Two of the Kent survey ponds had both common frog spawn and great crested 

newts; and two of the ponds had both marsh frogs and common frog spawn. In both 

cases there were only a few marsh frogs or great crested newts.  
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Table 4.3. Results of the local level survey showing fractions of amphibian species found in survey 
ponds in Kent and Sussex. The odds ratios, 95% confidence intervals for the odds ratio, and p 
values are shown from the Fisher’s Exact Test which tests whether proportions of the species are 
significantly different between Kent and Sussex survey areas. Smooth newts (Lissotriton vulgaris) 
and palmate newts (Lissotriton helveticus) were grouped together as small newts. 

 Area with 
marsh frogs 

present (Kent) 

Area with 
marsh frogs 

absent (Sussex) 

Odds 
ratio 

95% Confidence 
intervals for the 

odds ratio 

p values 

Fraction of 
ponds with 
common frog 
spawn present  

 

8/49 

 

22/52 

 

3.7 

 

1.36 – 11.02 

 

0.005 

Fraction of 
ponds with 
great crested 
newts present  

 

22/40 

 

5/44 

 

9.2 

 

2.83 – 36.43 

 

<0.001 

Fraction of 
ponds with 
small newts 
present 

 

28/40 

 

31/44 

 

1.0 

 

0.36 – 2.89 

 

1 

Fraction of 
ponds with 
common toads 
present 

 

8/40 

 

13/45 

 

1.77 

 

0.587 – 5.65 

 

0.319 

Fraction of 
ponds with 
marsh frogs 
present 

20/40 0/45 NA NA NA 

 

Despite the propensity modelling that attempted to match the Kent and Sussex pond 

samples, there were differences in environmental variables that may also explain the 

disparities in common frog occupancy between the Kent and Sussex survey ponds. The 

results of the bootstrapped Student’s t-test on the data from Sussex and Kent showed 

that there were significant differences between the two areas for ‘Pond density’ and 

‘Elevation’ (Table 4.4). The mean for ‘Pond density’ in the Kent survey ponds was higher 

than in Sussex. ‘Elevation’ was higher in the Sussex survey ponds.  
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Table 4.4. Student’s t-test results using bootstrapped t-distributions of the environmental variables 
from the Kent and Sussex survey ponds. Ten thousand replicates were used for the bootstrap. 

Variable Variable mean for 
the Kent survey 
ponds (n = 49) 

Variable mean for 
the Sussex survey 

ponds (n = 52) 

Observed t-
statistic for 

Kent Sussex 
survey ponds 

p value for Student’s 
t-test using 

bootstrapped t-
distribution 

Pond 
density 23 ponds/km² 14 ponds/km² 9.43 <0.01 

Distance 
from urban 
areas 

185 m 137 m 1.46 0.15 

Distance 
from 
broadleaved 
woodland 

249 m 203 m 1.35 0.18 

Pond area 372 m² 335 m² 0.53 0.60 

Linear water 
features 4.4 water/km² 4.4 water/km² 0.077 0.94 

Shade 40% 53% -1.81 0.08 

Distance 
from arable 
land 

218 m 316 m -2.23 0.03 

Elevation 36 m 50 m -3.44 <0.01 

 

4.4.2. Common frog logistic regression Sussex 

The highest ranked model for the common frog logistic regression was Model 6 which 

contained the variables ‘Shade’, ‘Pond density’ and ‘Pond density²’ (Table 4.5). Dividing 

the QAICc weight of the top model and the next best model to get the evidence ratio 

indicates that Model 6 is 2.5 times more likely to be the best model compared to Model 

11 (Mazerolle 2006). However, Model 6, Model 11, and Model 18 have a Delta QAICc < 

2 indicating that the three top models have substantial support (Burnham and Anderson 

2002). The Hosmer and Lemeshow goodness of fit tests indicated that there was no 

evidence that these models were a poor fit. In Model 6 ‘Shade’ and ‘Pond density²’ were 

both significantly positively associated with common frog presence (Table 4.6). ‘Pond 

density²’ was also positively associated with common frog presence in Model 11 (Table 

4.7). The covariates in the three highest ranked models (‘Shade’, ‘Pond density’, and 
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‘Distance from urban/suburban areas’) are most likely to be important in predicting 

common frog presence.   

Table 4.5. Top ten models rank by QAICc of the logistic regression of common frog spawn 
presence using survey data from Sussex in areas without marsh frogs. A total of 52 ponds were 
used in the analysis. An extra parameter is included for the estimation of over dispersion in the 
parameter count (K). 

Model specification Model  

no. 
K QAICc 

Delta 
QAICc 

QAICc 
Weight 

Quasi log-
likelihood 

Shade + Pond density + 
Pond density²  

6 5 59.5 0 0.24 -24.1 

Pond density + Pond 
density² 

11 4 60.53 1.03 0.15 -25.84 

Shade + Distance from 
urban/suburban areas 

18 4 61.49 1.99 0.09 -26.32 

Pond area + Distance 
from urban/suburban 
areas 

16 4 61.62 2.12 0.08 
-26.39 

Shade 1 3 61.63 2.13 0.08 -27.57 

Shade + Pond density 5 4 62.34 2.84 0.06 -26.75 

Shade + Distance from 
urban/suburban areas + 
Pond area 

17 5 63.1 3.6 0.04 
-25.9 

Shade + Pond area 3 4 63.39 3.89 0.03 -27.27 

Shade + Shade² 2 4 63.66 4.16 0.03 -27.41 

Linear water features + 
Shade 

9 4 63.69 4.19 0.03 -27.42 

 

Table 4.6. Variable regression coefficients, standard error and p values from Model 6 which was 
the top ranked model using QAICc in the Sussex common frog logistic regression. 

Variable Regression 
coefficient estimate Standard Error 

p value 

Shade 0.67 0.34 0.050 

Pond density -0.34 0.35 0.34 

Pond density² 0.74 0.36 0.037 

 

Table 4.7. Variable regression coefficients, standard error and p values from Model 11 which was 
the model ranked second using QAICc in the Sussex common frog logistic regression. 

Variable Regression 
coefficient estimate Standard Error 

p value 

Pond density -0.29 0.34 0.39 

Pond density² 0.79 0.34 0.019 
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The model averaging showed that ‘Shade’ and ‘Distance from urban/suburban areas’ 

had the most influence and were both positively associated with common frog presence 

(Table 4.8). The model averaged estimate for ‘Pond density’ was -0.38 indicating a 

negative relationship with the presence of common frogs. However, there were broad 

confidence intervals that stretched across zero for ‘Pond density’ so the negative 

association of ‘Pond density’ is less certain. Three of the four highest ranked models 

containing ‘Pond density’ had either a polynomial or interaction term. These were 

excluded from the model averaging because polynomials or interactions containing the 

main effect terms have a different interpretation (Mazerolle 2015). The estimates for both 

‘Pond density’ and its polynomial ‘Pond density²’ show a positive association with 

presence of common frogs in Model 6 and Model 11 (Table 4.9). Plotting Model 11 

(Common frog presence ~ Pond density + Pond density²) shows the predicted presence 

of common frogs is higher at low and high ‘Pond density’ but dips at medium levels 

(Figure 4.2). The model ranking suggests that ‘Pond area’, ‘Distance from broadleaved 

woodland’, and ‘Linear water features’ are not likely to be good predictors of common 

frog presence. This is also apparent in the lower model average estimates and the wider 

confidence intervals (Table 4.8). 

The logistic regression is indicating that common frog presence is more likely in more 

shaded ponds and ponds that are further from urban and suburban areas. There may 

also be a higher likelihood of common frog presence in ponds in high and low pond 

density areas. 
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Table 4.8. Results of model averaging over the candidate models for all the explanatory variables 
used in the Sussex common frog logistic regression. An over dispersion factor (ĉ) of 1.20 
calculated from the eight sub-global models. 

Variable Model-averaged 
estimate 

Unconditional 
Standard Error 

95% Confidence 
intervals 

Shade 0.62 0.38 -0.14, 1.37 

Pond density -0.38 0.34 -1.04, 0.28 

Distance from 
urban/suburban 0.65 0.38 -0.10, 1.40 

Pond area 0.35 0.34 -0.32, 1.02 

Linear water features -0.07 0.33 -0.72, 0.58 

Distance from 
broadleaved woodland -0.28 0.34 -0.94, 0.38 

 

Table 4.9. Estimates of the covariates of the three highest ranked models in common frog logistic 
regression. 

Model Shade Pond 
Density  

Pond 
density^2 

Distance from 
urban areas 

Pond Area 

Model 6  0.67 -0.34 0.74 NA NA 

Model 11 NA -0.29 0.79 NA NA 

Model 18 0.44 NA NA 0.57 NA 

Model 16 NA NA NA 0.57 0.40 

Model 1 0.64 NA NA NA NA 
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Figure 4.2. The observed common frog occurrence state (presence or absence) of each pond 
(open circles). The predicted curve of the logistic regression model Common frog presence ~ 
Pond density + Pond density^2 (Model 11). The x-axis is the centred and scaled version of ‘Pond 
density’. 

 

4.4.3. Marsh frog logistic regression Kent 
The top model ranked by AICc was Model 6 which contained ‘Linear water features’ and 

‘Shade’ (Table 4.10). In Model 6 ‘Shade’ had a negative relationship with marsh frog 

presence (estimate = -1.36, p = 0.0028) by contrast ‘Linear water features’ had a positive 

relationship (estimate = 0.86, p = 0.038). This was also the case for the model averaged 

estimate of ‘Shade’ which was -1.30 and the model averaged estimate of ‘Linear water 

features’ which was 0.94 (Table 4.11). By plotting this model, the strong influence of both 

these variables can be seen (Figure 4.3).  
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Table 4.10. Top ten models rank by AICc of the marsh frog logistic regression models.  A total of 
40 ponds were used in the analysis. The parameter count (K) includes the intercept. 

Model Model no. K AICc Delta AICc AICc 
Weight 

log-
likelihood 

Shade + Linear water 
features 6 3 45.83 0 0.25 0.25 

Shade + Maximum 
temperature warmest 
month 8 3 46.26 0.43 0.2 0.44 

Macrophyte + Linear water 
features 16 3 46.42 0.58 0.18 0.63 

Shade + Conductivity 9 3 47.43 1.59 0.11 0.74 

Shade 3 2 48.47 2.64 0.07 0.81 

Macrophyte + Maximum 
temperature warmest 
month 15 3 48.78 2.94 0.06 0.86 

Shade + Pond density 7 3 49.61 3.78 0.04 0.9 

Macrophyte 5 2 49.89 4.05 0.03 0.93 

Macrophyte + Conductivity 17 3 50.41 4.57 0.03 0.96 

Shade + Distance from 
broadleaved woodland 10 3 50.81 4.98 0.02 0.98 

 

Table 4.11. Results of model averaging over the candidate models for all the explanatory 
variables used in the Kent marsh frog logistic regression. 

Variable Model-averaged 
estimate 

Unconditional 
Standard Error 

95% Confidence 
intervals 

Shade -1.30 0.46 -2.20, -0.40 

Linear water features 0.94 0.47 0.03, 1.86 

Maximum temperature 
warmest month 0.81 0.41 0, 1.61 

Macrophytes 1.37 0.57 0.26, 2.49 

Conductivity 0.74 0.47 -0.18, 1.65 

Pond density -0.45 0.42 -1.26, 0.37 

Distance from 
broadleaved woodland 0.04 0.40 -0.74, 0.83 
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Figure 4.3. Plots of the logistic regression model of marsh frog probability of presence against 
linear water features length/km² at pond shading levels of 0%, 20%, 40%, 60%, 80%, and 100%. 
Variables were not scaled and centred so they are more easily interpreted.  

 

As well as ‘Linear water features’ the model averaging results show that marsh frog 

presence increases with ‘Macrophytes’, ‘Maximum temperature warmest month’, and 

‘Conductivity’. These four variables were all in models with a delta AICc < 2, so are likely 

to be important predictors of marsh frog presence. In Model 8 ‘Maximum temperature 

warmest month’ is positively associated with marsh frog presence and in Model 16 

‘Macrophytes’ also has a positive effect on marsh frog presence (estimate = 1.55, p = 

0.007). However, in Model 9 ‘Conductivity’ does not have a significant affect and the 

model averaging shows that the 95% confidence intervals for ‘Conductivity’ span across 
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zero (Table 4.11). This indicates that the positive relationship between marsh frog 

presence and ‘Conductivity’ is less certain. Therefore, the results indicate that marsh 

frogs are less likely to be found in more shaded ponds and are strongly associated with 

ponds in areas with lots of watercourse in areas with higher summer temperatures. 

4.4.4. Great crested newt logistic regression 
The results of the great crested newt logistic regression were similar to those in the 

occupancy modelling in Chapter 3 with both ‘HSI’ and ‘Fish’ in high ranking models based 

on AICc (Table 4.10). Model 5 (‘HSI’ + ‘Water temperature’) and Model 4 (‘HSI’ and 

‘Precipitation coldest quarter’) were the only two with a delta AICc < 2 suggesting these 

models have the strongest support. The regression coefficient estimates indicated that 

the likelihood of great crested newt presence increased with ‘HSI’ in both Model 5 

(estimate = 1.61, p = 0.002) and Model 4 (estimate = 1.83, p = 0.002). This positive effect 

was also indicated by the model averaging for ‘HSI’ (Table 4.11). ‘Water temperature’ 

was negatively associated with great crested newt presence in Model 5 (estimate = -

1.25, p = 0.023). This negative effect was also found in the model averaging (Table 4.11). 

Although ‘Fish’ was not ranked in the top model using AICc, ‘Fish’ factor level 2 (ponds 

where fish are unlikely to be impacting on amphibians) was positively associated with 

great crested newt presence in Model 2 (estimate = 2.1, p = 0.003) and in the model 

averaging (Table 4.11). Interestingly, there was a positive association with ‘Precipitation 

coldest quarter’ in Model 4 (estimate = 1.3, p = 0.030) which was also found in the model 

averaging, but this is opposite to what was predicted. A negative relationship was thought 

likely because higher winter rainfall has been linked to lower great crested newt survival 

in ponds in Kent (Griffiths, Sewell and McCrea 2010).  

The top performing variables based on the AICc rankings and model averaging suggest 

that great crested newts are associated with ponds that have high HSI scores, few fish, 

and lower water temperatures, which are in areas with more winter rainfall (Table 4.11). 

These habitat preferences would not prevent great crested newts from occupying the 
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same ponds in the same areas as common frogs. Therefore, predation of common frogs 

by great crested newts could be occurring in Kent. 

Table 4.10. Top ten models rank by AICc of the great crested newt logistic regression models.  A 
total of 40 ponds were used in the analysis. The parameter count (K) includes the intercept. 

Model Model no. K AICc Delta 
AICc 

AICc 
Weight 

log-
likelihood 

HSI + Water temperature  5 3 41.81 0 0.52 0.52 

HSI + Precipitation coldest 
quarter 4 3 42.3 0.49 0.41 0.93 

HSI 1 2 46.74 4.94 0.04 0.97 

Fish 2 2 49.18 7.37 0.01 0.99 

Fish + Water temperature 3 3 49.91 8.11 0.01 1 

Precipitation coldest 
quarter + Water 
temperature 7 3 54.42 12.61 0 1 

Mean temperature coldest 
quarter + Water 
temperature 9 3 55.78 13.98 0 1 

Precipitation coldest 
quarter 6 2 56.47 14.66 0 1 

Temperature seasonality 13 2 57.09 15.29 0 1 

Precipitation coldest 
quarter + Water 
temperature 8 2 57.35 15.55 0 1 
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Table 4.11. Results of model averaging over the candidate models for all the explanatory 
variables used in the Kent great crested newt logistic regression. The variable ‘Fish’ is an ordinal 
variable with two levels (1 = Fish impacting on amphibians is likely and 2 = Fish are unlikely to be 
impacting on amphibians). 

Variable Model-averaged 
estimate 

Unconditional 
Standard Error 

95% Confidence 
intervals 

HSI 1.69 0.56 0.59, 2.79 

Fish (2) 2.07 0.76 0.69, 3.55 

Water temperature -1.23 0.55 -2.32, -0.15 

Precipitation coldest 
quarter 1.29 0.60 0.12, 2.47 

Mean temperature 
coldest quarter 0.34 0.34 -0.32, 1.01 

Temperature seasonality -0.44 0.36 -1.15, 0.28 

Shade 0.34 0.34 -0.32, 1.01 

Pond density 0.1 0.35 -0.59, 0.78 

Distance from 
broadleaved woodland 0.15 0.35 -0.53, 0.83 

Distance from semi-
natural grassland 0.01 0.40 -0.77, 0.79 

 

4.5. Discussion 
Common frog presence in the Kent survey ponds that fell within the range of marsh frogs 

was significantly lower compared to the Sussex survey ponds. Indeed, common frog 

presence in the Kent ponds was so low that it was impossible to construct meaningful 

models of their site preferences there. However, this result does not necessarily support 

the hypothesis that marsh frogs are the cause of a reduced common frog population in 

Kent. The results of the logistic regressions provided evidence that other factors are at 

work. In Kent marsh frogs tended to avoid shady ponds. In contrast in Sussex shady 

ponds tended to be preferred by common frogs. This suggests that common frogs and 

marsh frogs are less likely to be occupying the same ponds because of different habitat 

preferences. Therefore, the lower common frog occupancy seen in the Kent survey 

ponds is less likely to be due to competition or predation by marsh frogs.  

The positive association with ‘Maximum temperature warmest month’ and ‘Linear water 

features’ found in the marsh frog logistic regression indicates that marsh frogs favoured 
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ponds in areas with higher summer temperatures and large areas of linear water 

features. These results are consistent with the behaviour and preferences of marsh 

frogs. Marsh frogs tend to bask in sunny spots on the banks of ponds or on floating 

vegetation (Inns 2009; Firth 1984; Frazer 1983). More shaded ponds are likely to have 

fewer areas for basking. Marsh frogs rarely stray far from water, and watercourses are 

also a likely means of spread (Ivanova and Zhigalski 2011; Beebee and Griffiths 2000; 

Wycherley and Joslin 1996). 

The positive link between common frog presence and pond shading is not an intuitive 

one because frog spawn is often found in shallower unshaded parts of ponds (Inns 2009; 

Beebee and Griffiths 2000; Savage 1961). Hypotheses can be developed to try and 

explain the positive association. Where fish are presence spawn is often laid in shallower 

areas inaccessible to predators (Beebee and Griffiths 2000), it is possible that shaded 

ponds are more likely to have tree roots growing on the edge of ponds providing safe 

havens from fish for common frog spawn. Waterfowl that eat frog spawn might not be 

able to spot spawn when flying over shaded ponds. The positive association with shade 

may also be linked to the proximity of woodland. Several studies have found a positive 

association with woodland and common frogs (Boissinot et al. 2015; Vági et al. 2013; 

Hartel et al. 2010; Van Buskirk 2005; Beebee 1985). There was no strong positive 

association with ‘Distance from broadleaved woodland’ in the common frog logistic 

regression models. However, the LCM2015 has a minimum mappable unit of > 0.5 

hectares (Rowland et al. 2017). In areas where broadleaf woodland is not the dominant 

habitat class patches of woodland smaller than this may be dissolved into the 

surrounding landscape.  Ten of the survey ponds with common frog spawn present were 

in small patches of woodland which were not represented in the LCM2015 ‘Broadleaved 

woodland’ layer. Therefore, it is possible that the proximity of small patches of woodland 

could increase the likelihood of common frogs being present.  
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The higher occupancy of great crested newts found in the survey ponds in Kent 

compared to Sussex was consistent with the results of Chapter 2 and other research in 

suggesting that great crested newts are positively associated with high pond densities 

(Bormpoudakis et al. 2015; Oldham et al. 2000). ‘Pond density’ was not found to be 

associated with great crested newt presence in the logistic regression. However, this 

may be due to the survey ponds all being in or near a high pond density area. Therefore, 

a lower pond density in the sample of survey ponds would not affect great crested newt 

presence. The results of the great crested newt logistic regression do not identify any 

habitat features that would prevent coexistence with common frogs, unlike the marsh 

frog result.  Consequently, given that great crested newts are known predators of 

common frogs (Covaciu-Marcov et al. 2010), and the high numbers of great crested 

newts found in the Kent survey ponds, they may be at least one of the drivers of low 

common frog occupancy in the Kent ponds.  

‘Pond density’ was found to be a good predictor of common frog presence (Table 4.5). 

However, rather than confirming the reasons for its inclusion which were that common 

frog presence would initially increase with pond density then reduce as great crested 

newt presence became more abundant, the opposite model fit was produced. At lower 

pond density common frogs were more likely to be present, this dipped at medium values 

then increased again at higher levels of pond density (Figure 4.2). It is possible that 

ponds in medium pond density areas are more likely to have characteristics that are less 

suitable for common frogs, such as deeper ponds that tend to have fish and other 

predators. There is some evidence to suggest that there are more medium sized ponds 

in medium and high pond density areas (Brady 2009). Great crested newts are less likely 

to be found in smaller ponds (Oldham et al. 2000) so at medium pond densities great 

crested newts could be occupying the medium and larger ponds to the detriment of 

common frogs. However, the predicted lower probability of common frog presence at 
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medium pond densities could be a spurious association and an example of the dangers 

in specifying too complex a model with a low sample size. 

The evidence from this study suggests that great crested newts are reducing the 

presence of common frogs in the study area in Kent, rather than marsh frogs. Common 

frogs tended to spawn in ponds that were shaded, and marsh frogs were predominantly 

found in unshaded ponds. Therefore, predation by marsh frogs is unlikely to be reducing 

common frog presence. The sample sizes were relatively low in this study, so it is 

possible these results are not representative of the population the ponds were drawn 

from. However, the results do fit with the behaviour known about the species. Therefore, 

it would be informative to identify if the relationships found in this study are reflected in a 

larger sample size. 

 

4.6. Supplementary Information 
Table S4.1. Sub-global models created for the Sussex common frog logistic regression (n = 52). 
The variance inflation factor is calculated by dividing the residual deviance of the model by the 
degrees of freedom. 

Subglobal model degrees of 
freedom 

Residual 
Deviance 

Over dispersion 
factor (ĉ) 

Shade + Pond area + Shade : Pond area 48 62.96 1.31 

Shade + Pond density + Pond density² 48 57.84 1.20 

Pond area + Pond area² + Pond density 48 67.08 1.40 

Distance from broadleaved woodland + 
Pond density + Pond area 

48 67.08 1.40 

Linear water features + Pond density + 
Shade 

48 63.20 1.32 

Pond density + Pond permanence  48 67.28 1.40 

Shade + Fish 48 61.32 1.28 

Pond density + Distance from 
urban/suburban areas + Pond density : 
Distance from urban/suburban areas 

48 62.16 1.32 
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Table S4.2. Sub-global models created for the Kent marsh frog logistic regression (n = 40). The 
variance inflation factor is calculated by dividing the residual deviance of the model by the degrees 
of freedom. 

Sub-global model degrees of 
freedom 

Residual 
Deviance 

Over dispersion 
factor (ĉ) 

Pond permanence 36 52.63 1.46 

Maximum temperature warmest month + 
Macrophytes 

37 42.11 1.14 

Broadleaved woodland + Pond density 37 56.15 1.52 

Shade + Linear water features + 
Conductivity 

36 36.00 1.00 

 
 
Table S4.3. Sub-global models created for the Kent great crested newt logistic regression (n = 
40). The variance inflation factor is calculated by dividing the residual deviance of the model by 
the degrees of freedom. 

Sub-global model degrees of 
freedom 

Residual 
Deviance 

Over dispersion 
factor (ĉ) 

Fish + Mean temperature coldest quarter 37 40.10 1.08 

HSI + Precipitation Coldest quarter + 
Water temperature 

36 27.58 0.77 

Distance from broadleaved woodland + 
Shade + Pond density 

36 52.98 1.47 

Temperature seasonality + Distance from 
semi-natural grassland 

37 52.12 1.41 
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Chapter 5. The use of eDNA to determine the 

relationship between common frogs, great crested 

newts and marsh frogs 
 

5.1. Abstract 
eDNA techniques can increase the number of sites surveyed by removing the need for 

repeated site visits. This study benefitted from this by using a large data set of the 

presence/absence of common frogs (Rana temporaria), marsh frogs (Pelophylax 

ridibundus), and great crested newts (Triturus cristatus) determined by eDNA 

metabarcoding from previous research. These data were used to investigate common 

frog pond occupancy in an area of Kent with marsh frogs and great crested newts. 

Logistic regression was used to identify the variables associated with common frog 

presence. Only a weak negative association between common frogs and great crested 

newts was found. However, a high proportion of the ponds had great crested newts while 

relatively few had common frogs, supporting the hypothesis that common frog 

populations were lower in areas with large numbers of great crested newts. Common 

frog presence was negatively associated with permanent ponds. Only one pond was 

identified by the eDNA metabarcoding to have marsh frogs suggesting that predation by 

marsh frogs was not contributing to lower a common frog population. Common frog 

spawn surveys were conducted on a subset of the ponds from the eDNA metabarcoding 

The spawn surveys found that there was no link between the detection of common frogs 

by the eDNA metabarcoding in 2014 and the common frog spawn survey results in 2017.  

 

5.2. Introduction 
Recording the absence of a species accurately can often be challenging in ecological 

research. With rare or cryptic species, it can be difficult to determine true absence 
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(Barata, Griffiths and Ridout 2017; MacKenzie et al. 2006; Gu and Swihart 2004; 

MacKenzie et al. 2002). If the potential for false absence is not accounted for this can 

lead to erroneous conclusions (Guillera-Arroita and Lahoz-Monfort 2012; Guillera-

Arroita, Ridout and Morgan 2010). Occupancy modelling solves this problem but requires 

repeated surveys, which may limit the achievable research objectives (Barata, Griffiths 

and Ridout 2017). Amphibians in most cases breed in water bodies which provides a 

convenient focal point for detection. However, even in the UK where the road network is 

extensive and there are very few landscape features that make access difficult, 

resurveying of ponds to enable adequate detection of amphibians can be time-

consuming. Two to nine surveys using standard survey methods are required to reach a 

95% confidence level for detection of the widespread UK native amphibians (Sewell, 

Beebee and Griffiths 2010).  

The development of eDNA techniques to detect species from water samples in many 

cases has reduced the need to repeat surveys to account for detection (Biggs et al. 2015; 

Jerde et al. 2011; Ficetola et al. 2008). DNA is shed by organisms in skin cells, faecal 

matter, and other waist products (Buxton, Groombridge and Griffiths 2017; Lydolph et al. 

2005; Waits and Paetkau 2005). If the environmental conditions are favourable this DNA 

can remain in water for over three weeks (Dejean et al. 2012) and can be detected from 

water samples with high accuracy using PCR techniques such as quantitative PCR 

(qPCR) or DNA metabarcoding (Valentini et al. 2016; Goldberg et al. 2013; Ficetola et 

al. 2008). This means only one visit may be required to a site to determine a species’ 

presence, so many more sites can be surveyed. For example, in the case of UK 

amphibians this has been utilised to estimate occurrence of the great crested newt 

(Triturus cristatus) in three counties in England (Bormpoudakis et al. 2015).  

Another benefit of eDNA techniques is that once water samples have been taken it is 

possible to use the same samples to detect other species or even a broad spectrum of 

species which had not been planned for in the original survey (Harper et al. 2018a; 
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Deiner et al. 2017; Taberlet et al. 2012). The present study has benefitted from this utility. 

eDNA metabarcoding had been used to detect vertebrate species in water samples 

taken as part of the Natural England’s Evidence Enhancement Programme (Harper et 

al. 2018a). The metabarcoding results for common frog (Rana temporaria), great crested 

newts, and marsh frogs (Pelophylax ridibundus) from water samples taken from ponds 

in Kent were made available for this study. The water samples were taken from ponds 

surveyed in the Ashford area of Kent that corresponded to areas of high pond density. 

This area is similar to the locations of the survey ponds used in Chapters 3 and 4 where 

common frogs were only found in low numbers, but marsh frogs and great crested newts 

were more common. It was possible to relate the results of the metabarcoding to 

environmental variables that affect the presence of common frogs in this area. 

Additionally, these data can be used to identify if great crested newts or marsh frogs are 

negatively associated with common frog presence in ponds. 

Common frog presence in ponds established by eDNA techniques do not distinguish 

between ponds where common frogs breed (breeding ponds) and where they are 

present only (non-breeding ponds). Great crested newts prey on common frog spawn 

and tadpoles (Covaciu-Marcov et al. 2010) but not on adult frogs. Therefore, it may only 

be spawning ponds that are negatively associated with great crested newts. The 

accuracy of eDNA techniques can also vary depending on the timing of surveys (Buxton 

et al. 2017; Dejean et al. 2012). The water samples used in the metabarcoding were 

taken in May and June 2014. These months are when the concentration of great crested 

newt eDNA within ponds peaks as breeding is coming to an end (Buxton et al. 2017). 

Although common frogs breed earlier in the year, it is possible frog eDNA may still be 

released in May-June if tadpoles are present.  

This chapter aims to determine: 1) if the presence of common frogs in a high pond density 

area of Kent is affected by great crested newts or marsh frogs based on eDNA 

metabarcoding presence/absence data; 2) what environmental variables are associated 
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with common frog presence using this data; and 3) whether common frog breeding ponds 

alone have different associations with environmental variables compared to the eDNA 

metabarcoding data. To test these issues, logistic regression was used to identify 

significant associations with environmental variables and the presence of common frogs 

from eDNA metabarcoding data recorded in 2014. A subset of the ponds surveyed using 

eDNA metabarcoding were resurveyed for common frog spawn in 2017 to identify 

breeding ponds. 

  5.3. Methods 
5.3.1. Comparing eDNA detection with conventional visual encounter surveys 

Water samples from 508 ponds collected during the spring of 2014 for Natural England’s 

Evidence Enhancement Programme were subjected to DNA metabarcoding (Harper et 

al. 2018a; Harper, et al. 2018b). The collection of the water samples was conducted 

following a standardized protocol (Biggs et al. 2015). The presence/absence status of 

common frog, great crested newts, and marsh frogs for the 508 ponds was determined 

using eDNA metabarcoding by Harper (2018a,b) at the University of Hull. The DNA 

metabarcoding workflow is fully described in Harper et al. (2018b). A subset of these 

data containing 123 ponds in the Low Weald in central Kent were made available for this 

study. From the 123 ponds, the metabarcoding identified 24 ponds that contained 

common frogs, 40 that contained great crested newts, and one that contained marsh 

frogs.  

To test if the metabarcoding results were likely to be detecting both breeding and non-

breeding common frog ponds, spawn surveys were conducted on 44 ponds in Kent that 

had been tested by the metabarcoding. Common frogs had been identified as being 

present in 11 of these ponds in 2014 by the eDNA metabarcoding. The chi-squared test 

was used to measure whether detection of common frogs in 2014 was linked to presence 

of common frog spawn in 2017. The McNemar’s test was used to identify if there were 

more changes from common frog presences in 2014 to absences in 2017 or the reverse.  
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The spawn surveys were conducted between 13th March and 27th March 2017. For each 

spawn survey the banks of the pond were walked around in daylight and the presence 

of spawn recorded. If some banks were inaccessible binoculars were used to search 

these areas for spawn.  Two spawn surveys were conducted on each pond between one 

and two weeks apart to increase the chances of encountering frog spawn which can last 

approximately ten days to two weeks (Beebee and Griffiths 2000). 

5.3.2. Determining predictors of common frog occupancy 
The great crested newt habitat suitability Index metrics (ARG UK 2010; Oldham et al. 

2000) were recorded in May 2014 for each of the 123 ponds subjected to the DNA 

metabarcoding. This information was combined with the environmental variables used 

to predict presence of common frog and great crested newts in Chapters 2,3 and 4. 

These were: ‘Pond density’, ‘Linear water features’, ‘Distance from broadleaved 

woodland’, Distance from urban/suburban areas’, ‘Distance from arable land’, and 

‘Precipitation coldest quarter’. 

A variable was included that was a measure of the distance of the survey ponds to the 

nearest marsh frog record (‘Distance from marsh frogs’). Marsh frog presences recorded 

between 2005 and 2014 to 100 m x 100 m precision from the Kent Reptile and Amphibian 

Group (KRAG) were used. The records were verified as correct by KRAG using 

photographs or were from a trusted recorder (Brady 2010). Marsh frog records recorded 

by the author during amphibian surveys were also included. This variable was created 

to see if the proximity of a marsh frogs could negatively affect common frog presence. 

Grass snakes (Natrix helvetica) prey on both marsh frogs and common frogs. Large 

grass snake populations can coincide with the presence of marsh frogs (Gregory and 

Isaac 2004). It is possible that the presence of marsh frogs in an area is increasing the 

numbers of grass snakes to a level higher than would normally be present. Grass snakes 

may then be preying on common frogs in the vicinity and reducing their population size. 

This variable may link proximity of marsh frogs to a reduced likelihood of common frog 
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presence in a pond. However, there are many other parameters that may affect the size 

of grass snake populations so it cannot be assumed that the presence of marsh frogs 

means a higher population of grass snakes. 

Logistic regression was used to identify variables associated with the presence of 

common frogs. Separate analyses were conducted on the results from the 

metabarcoding on 123 ponds and the results of the spawn surveys of 44 ponds in 2017. 

For both analyses a set of candidate models were specified. Each model was specified 

to test a hypothesis or combination of hypotheses relating to common frog presence 

(Mazerolle 2006) (Table 5.1).   

Table 5.1. Variables used in the logistic regressions of common frog presence data. Each variable 
was used in the model to test a hypothesis (third column). Data used in the logistic regression 
was obtained in 2014 and analysed with eDNA metabarcoding (Harper et al. 2018a). Spawn 
survey data from 2017 was also used in a separate modelling process.  

Variables  Description of variable Hypothesis to test 

Great crested newt Presence or absence of great 
crested newts in 2014 
determined using eDNA 
metabarcoding. 

Whether common frogs were 
negatively associated with 
great crested newts. 

Great crested newt : Pond 
area 

Presence or absence of great 
crested newts with an 
interaction term with ‘Pond 
area’ included. 

Whether any negative effects 
of great crested newts on 
common frogs reduced with 
increasing ‘Pond area’. In large 
ponds common frog tadpoles 
may have less chance of being 
eaten by great crested newts 
because of the spatial 
separation particularly if the 
great crested newt population 
is small.  

Shade Percentage of pond shaded to 
at least 1 m from the shore. 

Whether the positive 
association of common frog 
presence and ‘Shade’ 
identified in Chapter 4 was 
replicated in Kent. 

Distance from broadleaved 
woodland 

Distance from broadleaved 
woodland (m). Derived from 
the LCM2015 (Rowland et al. 
2017). 

Whether research showing 
woodland to be linked to 
common frog presence 
(Boissinot et al. 2015; Van 
Buskirk 2005) would be 
reproduced in this model. 

Pond Density Number of ponds within a 1 
km radius divided by pi. 
Derived from a UK wide pond 
dataset provided by ARC 

If ‘Pond density’ was negatively 
associated with common frog 
presence. 
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Trust. 

Distance from marsh frogs Distance from the nearest 
marsh frog species record 
using records from 2005 to 
2014. 

If ‘Distance from marsh frogs’ 
affected common frog 
presence. Presence of marsh 
frogs may inflate the grass 
snake population and reduce 
common frog presence in the 
area due to increased 
predation. 

Pond permanence The permanence of the pond 
determined by the frequency 
a pond dries from: dries 8 or 9 
years in 10 = 1; dries 3 to 8 
years in 10 = 2; dries every 1 
or 2 years in 10 = 3; and never 
dries = 4. The frequency a 
pond dried was assessed 
using local knowledge and 
surveyor judgement. 
Surveyor judgement was 
based on water level at the 
time of the survey taking 
seasonality into account 
(Harper et al. 2018a; ARG-
UK, 2010; Oldham et al. 
2000). 

If common frogs were 
negatively associated with 
permanent ponds that may 
have increased numbers of 
predators. 

Distance from 
urban/suburban areas 

Distance from urban and 
suburban areas (m). Derived 
from the LCM2015 (Rowland 
et al. 2017). 

Whether the distance from  
urban and suburban areas 
affects common frog presence 
because of their ability to utilise 
urban and suburban garden 
ponds (Beebee and Griffiths 
2000; Beebee 1979). 

Linear water features Combined length of linear 
water features per km². 
Derived from Ordnance 
Survey MasterMap Water 
Network (OS MasterMap 
Water Network 2015). 

Whether density of 
watercourses is a negative 
predictor of common frog 
presence because of a link 
between intensive grazing and 
areas with watercourses 
(Beebee 1980). 

 

The continuous variables specified in the models were plotted using histograms and 

Cleveland plots to identify extreme values that may affect the models produced (Zuur, 

Ieno and Smith 2007). The continuous variables were put into the same scale by 

subtracting the variable’s mean and dividing by the standard deviation. Spearman’s rank 

correlation coefficients were calculated to identify collinearity between variables. There 

were no Spearman’s rho greater the 0.7 so collinearity was not considered a problem 

(Proosdij et al. 2016; Dormann et al. 2013).  
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5.4. Results 
5.4.1. Assessing change in common frog occupancy between 2014 and 2017 
The 2017 common frog spawn survey  found 13 ponds with common frog spawn. In nine 

of the 13 ponds no common frog DNA was identified in the metabarcoding of the water 

samples taken in 2014 (Table 5.2). Common frogs were identified as absent from 24 

ponds in both 2014 metabarcoding and the 2017 spawn surveys. Only four ponds were 

found to be positive for common frogs in both 2014 and 2017 spawn surveys. The chi-

squared test indicated that there was no relationship between the results of the 2014 

metabarcoding and 2017 spawn surveys (X-squared = 0.04 p = 0.85). There was also a 

non-significant result for the McNemar’s test (McNemar’s chi-squared = 0.063, p = 0.80) 

meaning that ponds were no more likely to change from present to absent than absent 

to present between the two survey periods.  

Table 5.2. Contingency table indicating the agreement between the results of metabarcoding of 
44 ponds surveyed in 2014 and the results of common frog spawn surveys on the same ponds in 
2017. 

  Spawn surveys on 44 ponds in 2017 

  Common frog 
spawn present 

Common frog 
spawn absent 

DNA 
metabarcoding 
on 44 ponds 
surveyed in 
2014 

Common 
frog 

present 
4 7 

Common 
frog 

absent 
9 24 

 

5.4.2. Logistic regression on common frog presence identified by eDNA 

metabarcoding in 2014 

In the logistic regression identifying which variables were most associated with common 

frog presence in the 2014 survey data, the ordinal variable ‘Pond permanence’ was in 

the three highest ranked models (Table 5.3). In the highest ranked model (Model 19) the 

regression coefficient for ‘Pond Permanence’ factor level 4 (ponds that never dried) was 

negatively associated with the presence of common frogs (estimate = -2.02, p = 0.007).  
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Model averaging uses averages of the regression coefficients for each variable from all 

the models assessed in the model selection. It weights the regression coefficients using 

the AICc weights from their respective models. This can reduce bias and increase 

precision because it uses information from all the models rather than just relying on the 

top ranked model (Mazerolle 2006; Burnham and Anderson 2002).  Confidence intervals 

from the model averaging can then be used to assess the magnitude of the effect for 

each variable; narrow confidence intervals indicating a precise estimate (Mazerolle 

2006).  

The relatively high regression coefficient in the model averaging showed there was a 

strong negative effect of ponds that never dried on common frog presence (Table 5.4). 

The 95% confidence intervals did not cross zero indicating there is little doubt about the 

direction of the effect. The wide confidence intervals suggest the degree of negative 

relationship is less certain. In Model 19 ‘Pond density’ was negatively associated with 

common frog presence (estimate = -0.67, p = 0.024). This was also reflected in the model 

averaging of ‘Pond density’ (Table 5.4). However, in both cases the regression coefficient 

was small suggesting the negative association of common frog presence with ‘Pond 

density’ was not a strong effect. The model averaging indicated the negative effect was 

consistent across the models in which ‘Pond density’ was included. All the other variables 

used in the models had results indicating their effect on the presence of common frogs 

may be marginal.  The 95% confidence intervals from the model averaging for each of 

the other variables crossed zero. There was little evidence of any other strong effects on 

common frog presence in the model. 
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Table 5.3. Top ten models ranked by AICc of the logistic regression of common frog presence 
using eDNA metabarcoding results from survey ponds in Kent. A total of 123 ponds were used in 
the analysis. 

Model specification Model  

no. 
K AICc 

Delta 
AICc 

AICc 
Weight 

Cumulative 
weight 

Log-
likelihood 

Pond density + 
Distance from 
broadleaved woodland 
+ Pond permanence 

19 6 116.57 0 0.26 0.26 -51.92 

Pond permanence 11 4 117.43 0.87 0.17 0.43 -54.55 

Pond density + Pond 
permanence + 
Distance from 
urban/suburban areas 

20 6 117.91 1.34 0.13 0.56 -52.59 

Pond permanence + 
Pond area 

14 5 119.09 2.53 0.07 0.64 -54.29 

Pond density 17 2 119.51 2.95 0.06 0.7 -57.71 

Great crested newt + 
Pond permanence 

12 5 119.52 2.96 0.06 0.76 -54.51 

Distance from 
urban/suburban areas 
+ Pond density + 
Distance from 
broadleaved woodland 

2 5 119.66 3.1 0.06 0.81 -54.57 

Distance from 
urban/suburban areas 

5 2 120.48 3.92 0.04 0.85 -58.19 

Pond density + 
Distance from 
broadleaved woodland 

18 3 120.51 3.95 0.04 0.89 -57.16 

Distance from marsh 
frog + Pond density 

24 3 121.22 4.65 0.03 0.91 -57.51 

 



124 
 

Table 5.4. Results of model averaging over the candidate models for all the explanatory variables 
used in the logistic regression of common frog presence from metabarcoding of eDNA. ‘Pond 
permanence’ is an ordinal with four factors: dries 8 or 9 years in 10 = 1; dries 3 to 8 years in 10 = 
2; dries every 1 or 2 years in 10 = 3; and never dries = 4. The factor level 1 is represented as the 
intercept. The variables highlighted in bold have the most support in the model because the 
confidence intervals indicate there is little doubt in the direction of their effect (confidence intervals 
do not cross zero). 

Variable Model-averaged 
estimate 

Unconditional 
Standard Error 

95% Confidence 
intervals 

Great crested newt -0.09 0.36 -0.8, 0.62 

Pond area -0.22 0.31 -0.83, 0.31 

Pond permanence (2) -0.19 0.66 -1.49, 1.11 

Pond permanence (3) -0.48 0.86 -2.16, 1.21 

Pond permanence (4) -1.88 0.76 -3.38, -0.38 
Distance from 
urban/suburban 0.36 0.34 -0.30, 1.01 

Pond density -0.60 0.29 -1.18, -0.02 
Distance from 
broadleaved woodland 0.36 0.31 -0.24, 0.97 

Distance from marsh 
frogs 0.07 0.26 -0.43, 0.57 

Linear water features 0.12 0.27 -0.41, 0.64 

 

5.4.3. Logistic regression on common frog presence identified by spawn 

surveys in 2017 
The variables ‘Great crested newt’ and ‘Distance from broadleaved woodland’ are in the 

top two models as ranked by QAICc (Table 5.5). In the highest ranked model (Model 9) 

‘Distance from broadleaved woodland’ is significantly negatively associated with spawn 

presence (estimate = -0.93, p = 0.039) indicating that the likelihood of spawn presence 

decreases with distance from woodland. However, the regression coefficient is not very 

high suggesting a weak negative relationship. The model averaging also shows a 

negative association with ‘Distance from broadleaved woodland’ but the 95% confidence 

intervals cross zero and are quite wide suggesting there is a lack of precision (Table 5.6). 

The model averaging shows that ‘Great crested newt’ is negatively associated with 

presence of common frog spawn but has very wide confidence intervals that span across 

zero, again suggesting a lack of precision (Table 5.6). Also, ‘Great crested newt’ is not 

significant in the top ranked model (estimate = -2.15, p = 0.070). The model averaging 
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showed all the other variables had 95% confidence intervals which crossed zero and 

QAICc weights were also low. This suggests there are no variables with very strong 

support.  

  

Table 5.5. Top ten models rank by QAICc of the logistic regression of common frog spawn 
presence in 2017 using survey data from Kent. A total of 44 ponds were used in the analysis. An 
extra parameter is included for the estimation of over dispersion in the parameter count (K). (c-
hat estimate = 1.17). 

Model specification Model  

no. 
K QAICc 

Delta 
QAICc 

QAICc 
Weight 

Quasi log-
likelihood 

Great crested newt + 
Distance from 
broadleaved woodland 

9 4 47.14 0 0.24 0.24 

Distance from 
broadleaved woodland 

8 3 48.69 1.55 0.11 0.35 

Shade + Great crested 
newt 

15 4 49.05 1.91 0.09 0.45 

Great crested newt 4 3 49.3 2.16 0.08 0.53 

Great crested newt + 
Distance from 
urban/suburban areas 

12 6 49.43 2.29 0.08 0.6 

Shade 14 3 50.13 2.99 0.05 0.66 

Pond density 16 3 50.65 3.5 0.04 0.7 

Pond permanence 11 5 50.68 3.53 0.04 0.74 

Pond density + Distance 
from broadleaved 
woodland 

17 4 51.1 3.96 0.03 0.77 

Great crested newt + 
Distance from 
urban/suburban areas 

6 4 51.47 4.33 0.03 0.8 

 



126 
 

Table 5.6. Results of model averaging over the candidate models for all the explanatory variables 
used in the common frog spawn logistic regression (c-hat estimate = 1.17). ‘Pond permanence’ 
is an ordinal with four factors: dries 8 or 9 years in 10 = 1; dries 3 to 8 years in 10 = 2; dries every 
1 or 2 years in 10 = 3; and never dries = 4. The factor level 1 is represented as the intercept. 

Variable Model-averaged 
estimate 

Unconditional 
Standard error 

95% Confidence 
intervals 

Great crested newt -2.04 1.28 -4.55, 0.47 

Pond area 0.20 0.44 -0.67, 1.06 

Pond permanence (2) 1.93 1.37 -0.76, 4.62 

Pond permanence (3) 2.93 1.73 -0.47, 6.31 

Pond permanence (4) 0.38 1.37 -2.3, 3.06 

Distance from 
urban/suburban 0.12 0.40 -0.68, 0.91 

Pond density -0.30 0.44 -1.16, 0.56 

Distance from 
broadleaved woodland -0.84 0.49 -1.79, 0.11 

Distance from marsh 
frogs -0.18 0.39 -0.94, 0.58 

Linear water features -0.08 0.41 -0.88, 0.72 

Shade 0.61 0.41 -0.19, 1.42 

 

The results of the logistic regression on the common frog spawn survey data indicate 

that none of the variables are reliable predictors of common frog spawn presence. There 

may be a weak positive relationship with proximity to woodland and common frog 

presence. Absence of common frogs may be weakly linked to presence of great crested 

newts. The ‘Pond permanence’ factor level 3 (indicating a pond drying every 1 or 2 years 

in 10) is positively associated with common frog presence but again with wide confidence 

intervals. There is no evidence that proximity of marsh frogs sites has an effect.  

 

5.5. Discussion 
The logistic regression on the metabarcoding results suggests the presence of common 

frogs is not associated with the presence of great crested newts (Table 5.4). Predation 

by great crested newts may still be a reason for lower common frog populations. If great 

crested newt numbers are uniformly high in this area common frogs may have to occupy 

ponds with great crested newts because they have a presence in most of the ponds 
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suitable for amphibians. The number of ponds with common frog DNA detected was 

relatively low (24/123) compared to the number of ponds with great crested newts 

(40/123). This reflects the results of the species distribution modelling which predicted 

lower probability of presence for common frogs and higher presence for great crested 

newts in this area (Chapter 2).  

It was not possible to assess whether eDNA techniques picked up both common frog 

breeding and non-breeding ponds. Common frogs will use ponds they do not breed in. 

During surveys for common frog spawn carried out in Sussex in 2015 (Chapter 4), adult 

common frogs were discovered in April in several ponds where no spawn was found 

earlier in the year. If non-breeding ponds were being detected it would provide another 

reason for the absence of a negative association between great crested newt presence 

and common frog presence in the metabarcoding logistic regression.  

The difference in breeding times between common frogs and great crested newts could 

explain why the metabarcoding may be detecting adult common frogs rather than 

spawning ponds. Peak detection of eDNA can vary depending on breeding times (Buxton 

et al. 2017; Thomsen et al. 2012). The eDNA detection rate for great crested newts peaks 

in May (Buxton et al. 2017), which is when the water samples for the metabarcoding 

analysis were taken. Common frogs usually breed in early spring (Beebee and Griffiths 

2000), so detection of common frogs may be lower by May. Degradation of DNA within 

ponds varies depending on the pond conditions but can be just a few days and is unlikely 

to be beyond 22 days (Buxton, Groombridge and Griffiths 2017; Barnes et al. 2014; 

Thomsen et al. 2012). Abundance has an effect on the detectability of eDNA (Biggs et 

al. 2015). It is possible that the metabarcoding results were only detecting ponds with 

larger common frog breeding populations. In these ponds there are likely to be higher 

numbers of tadpoles which survived long enough for their DNA to be present in the ponds 

when sampling took place. This would also explain the non-significant chi-squared 
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results suggesting that presence/absence of common frogs in 2014 metabarcoding 

results were not linked to presence/absence of common frog spawn in 2017. 

Neither the metabarcoding or spawn logistic regressions found a negative association 

with ‘Distance from a marsh frog record’. Only one pond with marsh frogs was detected 

in the metabarcoding results despite the survey ponds being within marsh frog inhabited 

areas. This suggests it is unlikely that predation by marsh frogs is reducing common frog 

presence in this survey sample. 

The results of the McNemar’s test indicated that there was no significant difference in 

the proportion of ponds changing from common frog positive to common frog negative 

compared to the reverse. The difference in common frog presence between 2014 and 

2017 may just indicate changes in occupancy of spawning ponds. Common frogs do 

show a certain amount of breeding pond fidelity although spawn may not be found in the 

same ponds every year (Loman 2016; Beebee and Griffiths 2000; Savage 1961). It is 

possible false positives could have been caused by the transfer of common frog DNA 

between ponds by waterfowl or other terrestrial species that visit different ponds (Harper 

et al. 2018b; Klymus et al. 2017). There was variation between the metabarcoding and 

qPCR results from the same water samples when detecting great crested newts (Harper, 

Lawson Handley et al. 2018). The spawn surveys do not produce false positives, but 

false negatives are possible although less likely given the visibility of frog spawn (Sewell, 

Beebee and Griffiths 2010). 

The logistic regression on the metabarcoding data showed that there was a strong 

negative association with common frog presence and ponds that did not dry out (Table 

5.4).  Common frogs can be present in a wide variety of waterbody types (Beebee and 

Griffiths 2000).  In permanent ponds predators of amphibians, such as predatory fish, 

can build up making them less favourable habitat (Oldham et al. 2000). Modelling of the 

full metabarcoding data set of 508 ponds over Kent, Cheshire, and Lincolnshire indicated 

that great crested newts were positively associated with pond depth (Harper et al. 
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2018a). ‘Pond depth’ is likely to be correlated to ‘Pond permanence’. The negative 

association with deeper ponds could reflect the common frogs ability to adapt to pond 

drying (Laurila and Kujasalo 1999), compared to the great crested newt that needs a 

longer hydroperiod. 
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Chapter 6. General discussion 
 

Non-native species can exert a variety of different effects on the ecosystems they invade 

(Kraus 2015; Bucciarelli et al. 2014). Effects can range from the negative to positive 

depending on the native species being studied (Shine 2010; Copp et al. 2009; Crossland, 

Alford and Shine 2009; Gregory and Isaac 2004). Many other threats such as habitat 

loss and fragmentation will continue to affect species all over the planet so there will be 

a continual debate about resource allocation in conservation (Wilson et al. 2006). In this 

context it will be vitally important to determine the likely impact of invading species on 

native species so money can be allocated to where it is most needed. This research has 

looked at whether a non-native species the marsh frog (Pelophylax ridibundus) is 

affecting the distribution of a native species (Rana temporaria) in the UK. In doing so, it 

provides insights into how the impact of a non-native can be assessed in situations where 

it is difficult to separate other detrimental forces from the impacts of the non-native 

species. 

The methodology behind this thesis has been to use species distribution models (SDMs) 

at both regional and local level to examine the distribution and potential interactions 

between the species. SDMs can be a useful tool at a landscape scale for many purposes 

such as: identifying suitable habitat for endangered species; predicting invasive species 

range expansions; and predicting species loss under climate change (Ihlow et al. 2016; 

Struebig et al. 2015; Araújo, Thuiller and Pearson 2006). However, care must be taken 

to reduce bias towards more easily sampled areas that can often be found in presence 

only species records (Kramer-Schadt et al. 2013; Syfert, Smith and Coomes 2013; 

Phillips et al. 2009). The presence only nature of the data also means that when 

inferences are made, they should allow for bias due to variability in detection probabilities 

of species (Guillera-Arroita et al. 2015; Lahoz-Monfort, Guillera-Arroita and Wintle 2014). 

These limitations do not prevent SDMs from being able to predict where a non-native 
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may be present and where impacts may occur on native species (Klop‐Toker et al. 2018; 

Ihlow et al. 2016; Sen et al. 2016; Buckland et al. 2014). 

The SDMs in Chapter 2 showed that predicted presence for common frogs in Kent was 

lower in areas where marsh frogs had a higher likelihood of presence. It was then 

necessary to determine what may be causing these divergent distributions. The aquatic 

nature of marsh frogs fitted the predicted distribution which was strongly associated with 

the presence of linear water features and pond density. In contrast, the most influential 

variables in the common frog SDM were the negative effects of linear water features and 

pond density. This explained the patterns seen in the distribution models but not the 

reasons behind them.  

Many of the areas with the greatest density of linear water features in Kent and Sussex 

are coastal or are next to tidal areas of rivers. The surface water in such areas can have 

higher salinity levels (Firth 1984; Beebee 1980). Common frogs are less tolerant of high 

salinity levels than marsh frogs (Beebee and Griffiths 2000; Innocenzi 1995). This may 

be one of the reasons why common frogs were negatively associated with linear water 

features. Beebee (1980) also suggested that increased livestock grazing may be another 

of the causes of low common frog presence in a marsh dyke habitat in Sussex where 

marsh frogs had established themselves. Marsh frogs tend to stay by water and are less 

reliant on terrestrial habitat than common frogs so are likely to be less affected by grazing 

(Kovar et al. 2009; Holenweg 2001; Beebee 1980). This may be another reason for the 

negative association with common frogs and linear water features. However, further 

investigation into whether there is a positive correlation between areas with many 

watercourses and intensively grazed grassland would be needed to provide stronger 

evidence for this hypothesis. 

In high pond density areas great crested newts (Triturus cristatus) may be reducing the 

presence of common frogs through predation. This might be exacerbated by the 

existence of marsh frogs in these areas (Brady 2009). The SDMs in Chapter 2 indicated 
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that great crested newts had a higher predicted probability in high pond density areas of 

Kent. Kent has a much higher pond density than Sussex. This could be causing higher 

densities of great crested newts resulting in fewer common frogs compared to places 

with lower levels of pond density. The SDMs showed that a greater proportion of the 

common frog distribution overlapped with the great crested newt distribution in Sussex. 

This was consistent with the hypothesis that greater densities of great crested newts 

were the cause of lower common frog presence, although other factors may also be 

involved. 

The SDMs identified an area indicating a lower likelihood of common frogs and higher 

likelihood of great crested newts and marsh frogs. The area in question was in central 

and southern Kent and had a higher pond density level compared to other areas in Kent. 

The local level study (Chapter 3 and 4) was used to identify whether common frog 

presence was lower in this area and if this was likely to be due to the presence of great 

crested newts and marsh frogs.  

The local level study found common frog presence was lower in areas with marsh frogs 

present (Kent survey ponds) compared to areas where marsh frogs were absent (Sussex 

survey ponds). Great crested newts occurred more frequently in ponds in Kent. However, 

the logistic regression models identified a negative association with marsh frog presence 

and pond shading in the survey ponds in Kent. This was in direct contrast to the positive 

association of common frog presence with pond shading found by the logistic regression 

on survey ponds in Sussex. These results indicate marsh frogs and common frogs may 

have differing habitat preferences which could reduce the likelihood that marsh frogs 

were negatively affecting common frog presence. No such difference was found between 

common frog and great crested newt pond preferences. Predation by great crested 

newts therefore, was more likely to explain the low presence of common frogs in the 

survey ponds in Kent. 
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Pond shading has been linked to reduced abundance in some amphibian species 

because it can lead to slower larval growth rates (Schiesari, Peacor and Werner 2006; 

Halverson et al. 2003; Skelly, Freidenburg and Kiesecker 2002).  Common frogs tend to 

spawn in the warmer shallower areas of a pond and faster larval growth rates have been 

observed in warmer water (Oromi et al. 2015; Inns 2009; Beebee and Griffiths 2000). 

Therefore, the positive association with common frogs and pond shading in Chapter 4 

could be due to other factors such as a correlation between pond shading and small 

patches of woodland. Woodland and hedgerows can provide benefits for terrestrial 

amphibians such as food, shelter, or as corridors for dispersal (Boissinot, Besnard and 

Lourdais 2019; Boissinot et al. 2015; Vos et al. 2007; Denoel and Lehmann 2006; Van 

Buskirk 2005; Marnell 1998). Boissinot et al. (2015) found a positive association with 

common frog presence and patches of woodland in a farming landscape in western and 

central France which had a network of hedgerows connected to small areas of woodland. 

This type of habitat is similar to the landscape of the survey areas for this study. It is 

feasible that the positive association with pond shading is reflecting benefits to common 

frog populations of woodland rather than pond shading. 

The negative association of marsh frog to pond shading is consistent with marsh frog 

behaviour of basking on sunny banks or floating vegetation (Inns 2009; Innocenzi 1996; 

Firth 1984; Frazer 1983). The tendency of marsh frogs to stay near water means that 

woodland patches may not be as important for foraging compared to other species of 

amphibian (Beebee 1980). Boissinot, Besnard and Lourdais (2019) found a negative 

association with marsh frogs and percentage of woodland cover. Potentially the negative 

association of marsh frogs with woodland from this study could again be due to a 

correlation between pond shading and small patches of woodland.  

No correlation was found between the variable ‘Distance from broadleaved woodland’ 

and ‘Shade’ in any of the logistic regressions in Chapter 4. However, the LCM2015 used 

to derive ‘Distance from broadleaved woodland’ has a minimum mappable unit of 0.5 
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hectares. Parcels of habitat less than this may be dissolved into the surrounding habitat 

(Rowland et al. 2017). Therefore, a finer scale layer quantifying the percentage cover of 

woodland around survey ponds may be needed to determine if there is a correlation 

between pond shading and small patches of woodland. 

The local scale study in Chapter 4 identified variables associated with the presence of 

common frogs in the Sussex survey ponds. However, there were too few of the survey 

ponds in Kent with common frog spawn present to carry out a similar analysis. Chapter 

5 provided this analysis using common frog presence/absence data, assessed using 

eDNA metabarcoding carried out by Harper from the University of Hull (Harper et al. 

2018a; Harper et al. 2018b). The results of a logistic regression analysis on this data 

showed that common frogs were negatively associated with permanent ponds but not 

with the presence of great crested newts. However, the eDNA metabarcoding data 

showed a much higher proportion of ponds occupied by great crested newts (40 ponds 

out of 123) compared to common frogs (24 ponds out of 123). These results were 

consistent with the results from the local level analysis on ponds in Kent (Chapter 4) 

which also showed much higher presence of great crested newts (22 ponds out of 40) 

compared to common frogs (8 ponds out of 49). This supports the hypothesis that high 

numbers of great crested newts in an area could be reducing the presence of common 

frogs.  

Despite the presence of marsh frogs in the area, only one pond was found to have marsh 

frogs from the eDNA metabarcoding data of ponds in Kent. In the local level analysis 

(Chapter 4) the survey ponds were selected to be 500 m from a marsh frog record and 

100 m from a watercourse. This may have increased the number of ponds with marsh 

frogs present in the analysis in Chapter 4. The results of the eDNA metabarcoding justify 

this approach, given that if it was not taken a very low number of ponds with marsh frogs 

may have been identified. The results of the eDNA metabarcoding indicate that the 

proportion of ponds occupied with marsh frogs or common frogs is relatively low 



135 
 

compared to great crested newts when ponds are selected randomly. Therefore, the 

higher proportion of common frogs found in Sussex by the local level study is more likely 

to be due to a lower population of great crested newts in the area rather than the absence 

of marsh frogs. 

The results of this study indicate that marsh frogs are not affecting the distribution of 

common frogs in Kent. However, marsh frogs are a generalist predator and tend to 

consume the prey that is most abundant (Merry 2004). There have been examples of 

marsh frogs eating common frog tadpoles under experimental conditions (Innocenzi 

1995). Therefore, predation on common frogs could be occurring in the few ponds where 

common frogs are breeding, and marsh frogs are present. Roth et al. (2016) found that 

the population size of three native toads species, yellow bellied toads (Bombina 

variegata), common midwife toads (Alytes obstetricans), and natterjack toads (Epidalea 

calamita) were negatively related to expanding water frog populations (including marsh 

frogs).  But as Roth et al. (2016) notes, “…water frogs may only marginally affect the 

total population size of an endangered toad species if they do not share the same habitat 

niche and, thus, if they rarely occur at the same sites”. The evidence provided here 

indicates this may be the situation existing between common frogs and marsh frogs in 

Kent and Sussex, with common frogs and marsh frogs rarely occurring in the same 

ponds due to their differing habitat preferences. The implications for conservation 

practice are therefore neutral and there is no need for a more active policy regarding 

eradication of the species when considering their impacts on common frogs.  

There are other potential risks to native amphibian species from marsh frogs. Marsh 

frogs can breed with other members of the genus Pelophylax. In areas where the pool 

frog is a native species the marsh frog can contaminate the gene pool through 

hybridisation (Luquet et al. 2011; Holsbeek et al. 2008). Pool frogs (Pelophylax lessonae) 

have been recently identified as native to the UK although the last population is thought 

to have died out (Beebee et al. 2005). However, a reintroduction programme has been 



136 
 

established in Norfolk (Baker and Foster 2015). Therefore, potentially if marsh frogs 

spread across the UK this could be a cause for concern (Innocenzi 1995). However, 

apart from their rapid dispersal through the marsh dyke habitat of Kent, marsh frog 

spread has been slow since their introduction in 1935 and limited to contiguous suitable 

habitat (Zeisset and Beebee 2003). Therefore, marsh frogs are unlikely to spread 

naturally to East Anglia unless moved there.  

Pool frogs and edible frogs (Pelophylax esculentus) which are the same genus as marsh 

frogs can be carriers of amphibian disease like ranavirus and the chytrid fungus 

(Batrachochytrium dendrobatidis) (Stoehr et al. 2013; Duffus and Cunningham 2010; 

Ariel et al. 2009). There is evidence that they may be more tolerant to the effects of these 

diseases which may lead to increased persistence in an area (Beebee 2012; Woodhams, 

Bigler and Marschang 2012). However, the limited distribution of marsh frogs will also 

reduce its potential impact as a disease carrier. Therefore, introductions of marsh frogs 

to other parts of the UK should be avoided to maintain this lower disease risk. 

 

6.1. Conclusion 
The effects of non-native species can be severe and lead to changes in the distribution 

of native species (Willson 2017; Buckland et al. 2014). However, the distribution of a 

species can be influenced by many different factors. Identifying the cause of a distribution 

pattern can be difficult particularly if there are complex interactions involved. This 

research has used a combination of species distribution modelling and local level 

comparative studies to provide evidence indicating that marsh frogs are unlikely to be 

causing a change in the distribution of common frogs.  

The distribution modelling enabled the teasing apart of the variables driving common 

frog, marsh frog, and great crested newt distributions in Kent and Sussex. The SDMs 

predicted that common frogs and marsh frogs have a largely non-overlapping distribution 

in Kent. The main cause of this was likely to be the negative association of common frogs 
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with linear water and pond density compared to the positive response of marsh frogs to 

these variables. The positive association of great crested newts with pond density 

suggested that this species could also be affecting the abundance of common frogs in 

an area of Kent with high pond density. 

The local level study showed that the differing habitat preferences of common frogs and 

marsh frogs reduced the likelihood of interactions between them. In high pond density 

areas of Kent, the proportion of ponds occupied by marsh frogs was found to be low. 

Therefore, the opportunity for marsh frogs to prey on common frogs is also less likely. In 

ponds where marsh frogs and common frogs are both present some predation may 

occur, but this is unlikely to be enough to affect the distribution of common frogs. The 

high presence of great crested newts, a known predator of common frogs, could account 

for a lower common frog presence in the areas of high pond density in Kent. Survey 

ponds in Sussex had a lower proportion of great crested newts and a higher proportion 

of common frogs which is consistent with this hypothesis, although other factors could 

influence the abundance of these species. 

Tools to aid the assessment of invasive species impacts continue to be developed and 

have often focussed on assessing the invasive potential of non-natives (Dick et al. 2017; 

Penk et al. 2017; Measey et al. 2016). The objective is to be able to detect the non-native 

species that are most likely to cause impacts, so funding can be appropriately targeted. 

This study has also demonstrated a method that could be used to avoid resources being 

spent on unnecessary non-native species control measures. The advent of eDNA 

techniques has made this type of study less costly by providing a means of increasing 

the sample size with less effort. In situations where the impact of a non-native species is 

difficult to determine this technique is a viable option. Indeed, if eDNA can result in early 

detection of invasives that have hitherto only been detectable using traditional methods 

that can only be used after populations are well-established, it will mean that appropriate 

interventions can be applied earlier and more effectively. 
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