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Tauvel’s height formula for quantum nilpotent algebras

K R Goodearl∗, S Launois† and T H Lenagan‡

January 30, 2019

Abstract

Tauvel’s height formula, which provides a link between the height of a prime ideal and
the Gelfand-Kirillov dimension of the corresponding factor algebra, is verified for quantum
nilpotent algebras.

1 Introduction

Quantum nilpotent algebras, originally introduced under the name Cauchon-Goodearl-Letzter
extensions [20], are iterated Ore extensions with special properties which cover a wide variety of
algebras, including many of the algebras that appear as quantised coordinate rings. Examples
include quantum Schubert cell algebras, quantum matrix algebras, generic quantised coordinate
rings of affine, symplectic and euclidean spaces, and generic quantised Weyl algebras. The
precise definition of a quantum nilpotent algebra is recalled in Section 2. It is designed to
allow application of both Cauchon’s deleting derivations algorithm and the Goodearl-Letzter
stratification theory for prime ideals.

In studying the prime spectrum of an algebra R, key invariants for a prime ideal P are its
height, ht(P ), and the Gelfand-Kirillov dimension of the factor algebra, GK(R/P ). Tauvel’s
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height formula
GK(R/P ) + ht(P ) = GK(R)

provides a useful connection between these two invariants and it is of interest to know when this
formula holds. The purpose of this paper is to show that Tauvel’s height formula does hold for
all quantum nilpotent algebras.

Several verifications of the height formula for particular classes of algebras have proceeded
by first proving that the algebras are catenary, see, for example, [6, 9, 16, 21, 25, 27, 28]. In
these papers, catenarity is demonstrated by first establishing certain homological conditions and
showing that normal separation holds for the prime spectrum. While the homological conditions
can easily be established for quantum nilpotent algebras, normal separation remains elusive at
the moment, although we do conjecture that this condition holds for all quantum nilpotent
algebras.

The approach taken in the present paper is to exploit Cauchon’s deleting derivations algo-
rithm to establish Tauvel’s height formula for torus-invariant prime ideals of a quantum nilpotent
algebra, then extend this to primitive ideals by using the Goodearl-Letzter stratification theory
by virtue of the fact that the primitive ideals are identifiable as the maximal members in indi-
vidual strata. Finally, the formula is established for arbitrary prime ideals via the link between
the prime spectrum of a given stratum and the prime spectrum of an associated commutative
Laurent polynomial algebra, where the formula is well-known. As far as we are aware, the ap-
proach we use (from torus-invariant primes to primitive ideals, then arbitrary primes) has not
been used before; so this result advertises the approach.

2 Quantum nilpotent algebras and stratification theory

Fix a base field K throughout the paper. Let N denote a positive integer and R an iterated Ore
extension of the form

R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ], (2.1)

where σj is an automorphism of the K-algebra Rj−1 := K[x1][x2;σ2, δ2] . . . [xj−1;σj−1, δj−1] and
δj is a K-linear σj-derivation of Rj−1 for all j ∈ [[2, N ]]. (When needed, we denote R0 := K and
set σ1 := idK, δ1 := 0.) In other words, R is a skew polynomial ring whose multiplication is
determined by:

xja = σj(a)xj + δj(a)

for all j ∈ [[2, N ]] and a ∈ Rj−1. Thus R is a noetherian domain. Henceforth, we assume that R
is a quantum nilpotent algebra, as in the following definition.
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Definition 2.1. The iterated Ore extension R is said to be a quantum nilpotent algebra or a
CGL extension [20, Definition 3.1] if it is equipped with a rational action of a K-torus H = (K∗)d

by K-algebra automorphisms satisfying the following conditions:

(i) The elements x1, . . . , xN are H-eigenvectors.

(ii) For every j ∈ [[2, N ]], δj is a locally nilpotent σj-derivation of Rj−1.

(iii) For every j ∈ [[1, N ]], there exists hj ∈ H such that (hj·)|Rj−1
= σj and hj · xj = qjxj for

some qj ∈ K∗ which is not a root of unity.

(We have omitted the condition σj ◦ δj = qjδjσj from the original definition, as it follows from
the other conditions; see, e.g., [14, Eq. (3.1); comments, p.694].) From (i) and (iii), there exist
scalars λj,i ∈ K∗ such that σj(xi) = λj,ixi for all i < j in [[1, N ]].

A two-sided ideal I of R is said to be H-invariant if h ·I = I for all h ∈ H. An H-prime ideal
of R is a proper H-invariant ideal J of R such that if J contains the product of two H-invariant
ideals of R then J contains at least one of them. We denote by H-Spec(R) the set of all H-prime
ideals of R. Observe that if P is a prime ideal of R then

(P : H) :=
⋂
h∈H

h · P (2.2)

(namely, the largest H-invariant ideal contained in P ) is an H-prime ideal of R. For any H-prime
ideal J of R, we denote by SpecJ(R) the H-stratum associated to J ; that is,

SpecJ(R) := {P ∈ Spec(R) | (P : H) = J}. (2.3)

Then the H-strata of Spec(R) form a partition of Spec(R); that is,

Spec(R) :=
⊔

J∈H-Spec(R)

SpecJ(R). (2.4)

This partition is the so-called H-stratification of Spec(R).
It follows from work of Goodearl and Letzter [12, Proposition 4.2] that every H-prime ideal

of R is completely prime, so H-Spec(R) coincides with the set of H-invariant completely prime
ideals of R. Moreover there are at most 2N H-prime ideals in R. As a consequence, the prime
spectrum of R is partitioned into a finite number of parts, the H-strata. In case R is torsionfree,
meaning that the subgroup 〈λj,i | 1 ≤ i < j ≤ N〉 of K∗ is torsionfree, all prime ideals of R are
completely prime [11, Theorem 2.3].

For each H-prime ideal J of R, the space SpecJ(R) (equipped with the relative Zariski
topology inherited from Spec(R)) is homeomorphic to Spec(K[z±1

1 , . . . , z±1
d ]) for some d which

depends on J [4, Theorems II.2.13 and II.6.4], and the primitive ideals of R are precisely the
prime ideals that are maximal in their H-strata [4, Theorem II.8.4].
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3 Cauchon’s deleting derivations algorithm

As we have seen in the previous section, the H-prime ideals of a quantum nilpotent algebra R
are key in studying the whole prime spectrum. Cauchon’s deleting derivations algorithm [5],
which we summarise below, provides a powerful way of studying the H-prime ideals of R.

3.1 Deleting derivations algorithm

In order to describe the prime spectrum of R, Cauchon [5, Section 3.2] has constructed an
algorithm called the deleting derivations algorithm. This algorithm constructs, for each j =

N + 1, N, . . . , 2, an N -tuple (x
(j)
1 , . . . , x

(j)
N ) of elements of the division ring of fractions Fract(R)

defined as follows:

1. When j = N + 1, we set (x
(N+1)
1 , . . . , x

(N+1)
N ) := (x1, . . . , xN).

2. Assume that j < N + 1 and that the x(j+1)
i (i ∈ [[1, N ]]) are already constructed. Then it

follows from [5, Théorème 3.2.1] that x(j+1)
j 6= 0 and, for each i ∈ [[1, N ]], we set

x
(j)
i :=


x

(j+1)
i if i ≥ j

+∞∑
k=0

(1− qj)−k

[k]!qj
δkj ◦ σ−kj (x

(j+1)
i )(x

(j+1)
j )−k if i < j,

where [k]!qj = [0]qj × · · · × [k]qj with [0]qj = 1 and [i]qj = 1 + qj + · · · + qi−1
j when i ≥ 1.

(Local nilpotence of δj ensures that the displayed summation is well defined.)

For all j ∈ [[2, N + 1]], we denote by R(j) the subalgebra of Fract(R) generated by the x(j)
i ;

that is,
R(j) := K〈x(j)

1 , . . . , x
(j)
N 〉.

The following results were proved by Cauchon [5, Théorème 3.2.1 and Lemme 4.2.1]. For
j ∈ [[2, N + 1]], we have

1. R(j) is isomorphic to an iterated Ore extension of the form

K[Y1] · · · [Yj−1;σj−1, δj−1][Yj; τj] · · · [YN ; τN ]

by an isomorphism that sends x(j)
i to Yi (1 ≤ i ≤ N), where τj, . . . , τN denote the K-linear

automorphisms such that τ`(Yi) = λ`,iYi (1 ≤ i ≤ `).
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2. Assume that j 6= N + 1 and set Sj := {(x(j+1)
j )n | n ∈ N} = {(x(j)

j )n | n ∈ N}. This is a
multiplicative system of regular elements of R(j) and R(j+1), that satisfies the Ore condition
in R(j) and R(j+1). Moreover we have

R(j)S−1
j = R(j+1)S−1

j . (3.1)

It follows from these results that R(j) is a noetherian domain, for all j ∈ [[2, N + 1]].
As in [5], we use the following notation.

Notation 3.1. We set R := R(2) and Ti := x
(2)
i for all i ∈ [[1, N ]].

Note that x(i+1)
i = x

(i)
i = · · · = x

(2)
i = Ti for i ∈ [[1, N ]]. Hence, the structure of R(j) as an

iterated Ore extension can be expressed as

R(j) = K[x
(j)
1 ] · · · [x(j)

j−1;σj−1, δj−1][Tj; τj] · · · [TN ; τN ]. (3.2)

It follows from [5, Proposition 3.2.1] that R is a quantum affine space in the indeterminates
T1, . . . , TN , that is, R is an iterated Ore extension twisted only by automorphisms. It is for
this reason that Cauchon used the expression “effacement des dérivations”. More precisely, let
Λ = (λi,j) ∈ MN(K∗) be the multiplicatively antisymmetric matrix where the λj,i with i < j

come from the quantum nilpotent algebra structure of R (Definition 2.1). Thus,

λj,i =

1 if i = j

λ−1
i,j if i > j.

Then we have

R = K〈T1, . . . , TN | TiTj = λi,jTjTi ∀ i, j ∈ [[1, N ]]〉 = OΛ(KN). (3.3)

3.2 Canonical embedding

The deleting derivations algorithm was used by Cauchon in order to relate the prime spectrum
of a quantum nilpotent algebra R to the prime spectrum of the associated quantum affine space
R. More precisely, he has used this algorithm to construct embeddings

ϕj : Spec(R(j+1)) −→ Spec(R(j)) for j ∈ [[2, N ]]. (3.4)

Recall from [5, Section 4.3] that these embeddings are defined as follows.
Let P ∈ Spec(R(j+1)). Then

ϕj(P ) :=

{
PS−1

j ∩R(j) if x(j+1)
j /∈ P

g−1
j

(
P/〈x(j+1)

j 〉
)

if x(j+1)
j ∈ P,
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where gj denotes the surjective homomorphism

gj : R(j) → R(j+1)/〈x(j+1)
j 〉 defined by gj(x

(j)
i ) := x

(j+1)
i + 〈x(j+1)

j 〉 ∀ i ∈ [[1, N ]]. (3.5)

(For more details see [5, Lemme 4.3.2].) It was proved in [5, Proposition 4.3.1] that ϕj induces an
inclusion-preserving and inclusion-reflecting homeomorphism (that is, both the homeomorphism
and its inverse preserve inclusions) from the topological space

{P ∈ Spec(R(j+1)) | x(j+1)
j /∈ P}

onto
{Q ∈ Spec(R(j)) | x(j)

j /∈ Q};

also, ϕj induces an inclusion-preserving and inclusion-reflecting homeomorphism from

{P ∈ Spec(R(j+1)) | x(j+1)
j ∈ P}

onto its image under ϕj. Note however that, in general, ϕj is not a homeomorphism from
Spec(R(j+1)) onto its image.

Composing these embeddings, we get an embedding

ϕ := ϕ2 ◦ · · · ◦ ϕN : Spec(R) −→ Spec(R), (3.6)

which is called the canonical embedding from Spec(R) into Spec(R).

3.3 Cauchon diagrams

For any subset w of {1, . . . , N}, let Kw denote the H-prime ideal of R generated by the Ti with
i ∈ w. A subset w ⊆ {1, . . . , N} is said to be a Cauchon diagram for R if

Kw = 〈Ti | i ∈ w〉 ∈ ϕ(H-Spec(R)),

in which case we denote by Jw the unique H-prime ideal of R such that

ϕ(Jw) = Kw .

A useful way to represent a Cauchon diagram w is as follows. Draw N boxes in a row, and
colour the i-th box black if and only i ∈ w; the remaining boxes are coloured white. For example,
if N = 5 and w = {1, 2, 5} we draw the diagram
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(In fact, the term “Cauchon diagram” originates from Cauchon’s use of a related representation
in the case of quantum matrices.) We write #black(w) and #white(w) for the number of
black and white boxes, respectively, in a Cauchon diagram w. That is, #black(w) = |w| and
#white(w) = N − |w|.

In Section 5 we will investigate a way in which we can recolour boxes in a given Cauchon
diagram so that the recoloured diagram is still a Cauchon diagram. This will provide us with a
way of constructing descending chains of H-prime ideals of R.

We shall need the fact that the deleting derivations process is H-equivariant, as we now
indicate. The action of H on R of course extends to an action of H on Fract(R) by K-algebra
automorphisms (although this action is not rational). Given any H-eigenvector v ∈ Fract(R),
denote by χ(v) the H-eigenvalue of v, so that h · v = [χ(v)(h)]v for all h ∈ H.

Lemma 3.2. For all j ∈ [[2, N + 1]] and i ∈ [[1, N ]], the element x(j)
i is an H-eigenvector with

χ(x
(j)
i ) = χ(xi).

Proof. We proceed by induction on j = N + 1, . . . , 2, the case J = N + 1 holding trivially.
Assume that j < N + 1 and that the statement holds for all x(j+1)

i . The statement for x(j)
i

then holds trivially in case i ≥ j, so assume that i < j.
By [5, Proposition 2.2], the map θ : K〈x(j+1)

1 , . . . , x
(j+1)
j−1 〉 → Fract(R) given by

θ(a) =
+∞∑
k=0

(1− qj)−k

[k]!qj
δkj ◦ σ−kj (a)(x

(j+1)
j )−k

is a K-algebra homomorphism, and θ is H-equivariant by [20, Lemma 2.6]. Therefore x(j)
i =

θ(x
(j+1)
i ) is an H-eigenvector with χ(x

(j)
i ) = χ(x

(j+1)
i ) = χ(xi), as required.

For any j ∈ [[2, N ]], the algebra R(j+1) is generated by H-eigenvectors and its ideal 〈x(j+1)
j 〉 is

H-invariant, so R(j+1)/〈x(j+1)
j 〉 inherits an induced H-action. In view of Lemma 3.2, we obtain

the following

Corollary 3.3. For each j ∈ [[1, N ]], the homomorphism gj : R(j) → R(j+1)/〈x(j+1)
j 〉 of (3.5) is

H-equivariant.

4 Gelfand-Kirillov dimension and transcendence degree

We denote the Gelfand-Kirillov dimension of a K-algebra A by GK(A). A standard reference
for results concerning Gelfand-Kirillov dimension is [18]. Three key results that we need are the
following.
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Theorem 4.1. Let R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ] be a quantum nilpotent algebra. Then
GK(R) = N .

Proof. This follows easily from [22, Lemma 2.3].

Theorem 4.2. Let A be a noetherian K-algebra and let P be a prime ideal of A. Then

GK(A/P ) + ht(P ) ≤ GK(A).

Proof. Noetherianness is more than is needed here – the result holds if all prime factor rings of
A are right Goldie [18, Corollary 3.16].

Proposition 4.3. If B ⊆ A are K-algebras such that A is finitely generated as a right B-module,
then

GK(A) = GK(B).

Proof. [18, Proposition 5.5].

We shall also make use of the Gelfand-Kirillov transcendence degree of K-algebras A, denoted
Tdeg(A). See [18] or [29], for instance, for the precise definition.

Definition 4.4. A K-algebra A is said to be Tdeg-stable [29] if the following hold:

• GK(A) = Tdeg(A).

• For every multiplicative system S of regular elements of A that satisfies the Ore condition,
we have: Tdeg(S−1A) = Tdeg(A).

A key instance of this property is

Lemma 4.5. Every quantum torus is Tdeg-stable.

Proof. [23, Corollary 2.2] or [29, Proposition 7.2].

We excerpt the following key result from [29].

Proposition 4.6. [29, Proposition 3.5(4)] Let A be a semiprime Goldie K-algebra and let B ⊆
A be a semiprime Goldie subalgebra such that FractB = FractA. If A is Tdeg-stable, then
GK(B) = GK(A) and B is Tdeg-stable.
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An immediate application is that any quantum nilpotent algebra R is Tdeg-stable, since, by
[14, Theorem 4.6], R is trapped between a quantum affine space Oq(KN) and the corresponding
quantum torus Oq((K∗)N). In fact, Tdeg-stability holds for all H-prime factors of R, by the
same argument used in [19, Proposition 1.3.2.2] for the case of quantum matrices. This relies on
a result of Cauchon [5, Théorème 5.4.1] which shows that for any Cauchon diagram w of R, the
algebras R/Jw and R/Kw have isomorphic localizations. For later use, we require the following
H-equivariant version of the result.

Recall that the algebra R/Kw is a quantum affine space with canonical generators given by
the cosets of those Ti with i ∈ [[1, N ]] \ w, where N is the length of R. Let Ew denote the
multiplicative set in R/Kw generated by {Ti | i ∈ [[1, N ]] \ w}. Observe that Ew is an Ore set in
R/Kw and that (R/Kw)E−1

w is a quantum torus of rank N − |w|.

Theorem 4.7. Let R be a quantum nilpotent algebra of length N and let w be a Cauchon diagram
for R. There exists an Ore set Fw of regular H-eigenvectors in R/Jw such that

(a) There is an H-equivariant K-algebra isomorphism (R/Jw)F−1
w → (R/Kw)E−1

w .
(b) SpecJw(R) = {P ∈ Spec(R) | P ⊇ Jw and (P/Jw) ∩ Fw = ∅}.

Proof. The Ore set we label Fw is denoted ΣN+1 in [5, Subsection 5], where we take P = Jw.
It is obtained as the end result of a sequence of Ore sets Σ2, . . . ,ΣN+1 in subalgebras A2

∼=
R/Kw, . . . , AN+1 = R/Jw of Fract(R/Jw), where Σ2 is the image of Ew in A2. Specifically,
Σj+1 = Σj ∩ Aj+1 for j ∈ [[2, N ]].

The action of H on R/Jw by automorphisms extends to an action on Fract(R/Jw) by au-
tomorphisms (although no longer rational). As one notes, the elements of Σ2 are regular H-
eigenvectors, so the same holds for ΣN+1 = Fw. That ΣN+1 satisfies the Ore condition in AN+1

is proved in [5, Proposition 5.4.4(2)].
(a) This isomorphism corresponds to an equality in [5], due to identifications made in that

paper.
In [5], R/Kw is identified with A2 via a K-algebra epimorphism f2 : R2 = R→ A2 with ker-

nel Kw [5, Proposition 5.4.1(2)]. It follows from Lemma 3.2 that f2 is H-equivariant. Therefore
the induced isomorphism (R/Kw)E−1

w → A2Σ−1
2 is H-equivariant. Since A2Σ−1

2 = AN+1Σ−1
N+1 =

(R/Jw)F−1
w [5, Proposition 5.4.4(3)], we obtain (the inverse of) the desired H-equivariant iso-

morphism.
(b) If P ∈ SpecJw(R), then P/Jw contains no nonzero H-invariant ideals, so it cannot contain

any H-eigenvectors. Hence, (P/Jw) ∩ Fw = ∅.
Conversely, suppose P ∈ Spec(R) with P ⊇ Jw and (P/Jw) ∩ Fw = ∅. Then I = (P : H) is

a proper H-invariant ideal of R such that I ⊇ Jw and (I/Jw) ∩ Fw = ∅, and so (I/Jw)F−1
w is a

proper H-invariant ideal of (R/Jw)F−1
w . Under the isomorphism in (a), (I/Jw)F−1

w corresponds
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to a proper H-invariant ideal I ′ of (R/Kw)E−1
w . However, by [5, Lemme 5.5.3], (R/Kw)E−1

w is an
H-simple ring, i.e., it has no nonzero proper H-invariant ideals. Consequently, I ′ = 0, whence
(I/Jw)F−1

w = 0. This forces I/Jw = 0, that is, (P : H) = I = Jw. Therefore P ∈ SpecJw(R).

Corollary 4.8. If R is a quantum nilpotent algebra of length N and w is a Cauchon diagram
for R, then R/Jw is Tdeg-stable and GK(R/Jw) = N − |w| = #white(w).

Proof. By Lemma 4.5, the quantum torus (R/Kw)E−1
w is Tdeg-stable, and we observe that

this algebra has GK-dimension N − |w|. In view of Theorem 4.7, the algebra (R/Jw)F−1
w has

the same properties. Since FractR/Jw = Fract(R/Jw)F−1
w , Proposition 4.6 yields the desired

conclusions.

5 Building height of H-primes by using black boxes

Let R = K[x1][x2;σ2, δ2] · · · [xN ;σN , δN ] be a quantum nilpotent algebra of length N . In
Theorem 4.1 we have seen that GK(R) = N , and Theorem 4.2 says that

GK(R/P ) + ht(P ) ≤ GK(R)

for each prime ideal P of R. We aim to prove that these inequalities are actually equalities.
In this section, we establish the height formula for H-prime ideals of R. As an abbreviation,

we write P C′H A to denote that P is an H-prime ideal in A for any ring A equipped with a
group action by H.

We will show that if we take the Cauchon diagram for an H-prime ideal P of R and change
the final black box to a white box then we again get the Cauchon diagram for an H-prime ideal
and that this new H-prime ideal is necessarily contained in the original H-prime ideal. In this
way, we can build a descending chain of H-prime ideals with length equal to the number of black
boxes. This provides a lower bound for the height of P . Combining this with Corollary 4.8 and
Theorem 4.1, we see that Tauvel’s height formula for the H-primes of R then follows easily, and
that the height of an H-prime P of R is equal to the number of black boxes in the Cauchon
diagram for P .

5.1 Black box removal

Fix an H-prime ideal Jw of R, with w nonempty. Let k be the maximal member of w. We want
to show that w′ := w\{k} is a Cauchon diagram, so that there is an H-prime ideal Jw′ in R

with ϕ(Jw′) = Kw′ . In order to do this, we need to reverse the procedure described in Section 3.
We keep the notation of that section; in particular, R denotes the quantum affine space that

10



is reached at the end of the deleting derivations process, and ϕ : Spec(R) ↪→ Spec(R) is the
canonical embedding.

Recall the iterated Ore extension presentation of R(j) from (3.2). When j ≤ k, because of
the nature of the automorphisms τi with i ≥ j, we may write (with a slight abuse of notation)

R(j) = A(j)[Tk; τk],

where

A(j) := K[x
(j)
1 ] · · · [x(j)

j−1;σj−1, δj−1][Tj; τj] · · · [Tk−1; τk−1][Tk+1; τk+1] · · · [TN ; τN ].

Here for i > k we have written τi for the restriction of the original τi to the algebra

K〈x(j)
1 , . . . , x

(j)
j−1, Tj, . . . , Tk−1, Tk+1, . . . , Ti−1〉.

The following technical lemma, needed in the next result, gives a sufficient criterion for
recognising when an H-ideal is induced from the base ring in an Ore extension endowed with a
suitable H-action.

Lemma 5.1. Let B = A[X;σ] be an Ore extension of K-algebras, and assume that σ extends to
an automorphism σ̂ of B such that σ̂(X) = qX for some q ∈ K∗ which is not a root of unity.
Let I be a σ̂-invariant ideal of B, and suppose that aXn ∈ I implies a ∈ I, for any a ∈ A and
n ∈ N. Then

(i) I = (I ∩ A)B.

(ii) The natural map (A/(I ∩ A))[X;σ]→ B/I is an isomorphism.

Proof. (i) We adapt the proof of [20, Lemma 2.2]. If (i) fails, there exists an element b =∑
i biX

i ∈ I with all bi ∈ A but some bj /∈ I. Set m := min{i | bi /∈ I} and n := max{i | bi /∈ I}.
Since bi ∈ I for i /∈ [[m,n]], we may remove terms with these indices from b, that is, there is no
loss of generality in assuming b =

∑n
i=m biX

i.
If m = n, then bnXn ∈ I with bn /∈ I, contradicting our hypotheses. Thus, m < n. Without

loss of generality, m− n is minimal among instances of elements with the properties of b.
Now I contains the elements

Xb =
n∑

i=m

σ(bi)X
i+1 and σ̂(b) =

n∑
i=m

qiσ(bi)X
i,

and so it also contains the element

σ̂(b)X − qnXb =
n−1∑
i=m

(qi − qn)σ(bi)X
i+1.

11



The minimality of m − n, together with the assumption that q is not a root of unity, implies
that σ(bi) ∈ I for all i ∈ [[m,n− 1]]. But then bm = σ̂−1(σ(bm)) ∈ I, a contradiction.

(ii) This follows easily from (i), e.g. by using the comment in [10, 2.1(vi)].

In the proof below and later, we write 〈X〉A to denote the ideal in a ring A generated by a
set or element X.

Proposition 5.2. Let w be a nonempty Cauchon diagram for R and let k := maxw. The set
w′ := w\{k} is a Cauchon diagram with Jw′ $ Jw.

Proof. If w = {k}, then w′ = ∅. Clearly ϕ(0) = 0 = K∅ ∈ Spec(R), so w′ is a Cauchon diagram
and Jw′ = 0 $ Jw. Hence, we may assume that w % {k}; in particular, k ≥ 2. Note that if s 6= k

then s ∈ w′ if and only if s ∈ w.
As w is a Cauchon diagram, there exist H-prime ideals J (i)

w C′H R
(i) for i ∈ [[2, N + 1]] such

that ϕi(J
(i+1)
w ) = J

(i)
w for i ∈ [[2, N ]], where J (N+1)

w = Jw and J (2)
w = Kw. We aim to construct a

corresponding sequence of H-prime ideals J (i)
w′ C

′
H R

(i).
First, we show that there are H-prime ideals J (2)

w′ C′H R
(2), . . . , J

(k)
w′ C′H R

(k) with A(i)∩J (i)
w ⊆

J
(i)
w′ for each i ∈ [[2, k]] and ϕi(J

(i+1)
w′ ) = J

(i)
w′ for each i ∈ [[2, k− 1]]. To begin, set J (2)

w′ := Kw′ and
observe that A(2) ∩ J (2)

w = 〈Tj | j ∈ w′〉A(2) ⊆ J
(2)
w′ .

Now assume that 2 ≤ s < k and thatH-prime ideals J (2)
w′ C′H R

(2), . . . , J
(s)
w′ C

′
H R

(s) have been
defined with A(i) ∩ J (i)

w ⊆ J
(i)
w′ for each i ∈ [[2, s]] and ϕi(J

(i+1)
w′ ) = J

(i)
w′ for each i ∈ [[2, s− 1]]. We

need to find an H-prime ideal J (s+1)
w′ in R(s+1) such that A(s+1)∩J (s+1)

w ⊆ J
(s+1)
w′ and ϕs(J

(s+1)
w′ ) =

J
(s)
w′ . We distinguish between two possible cases, depending on whether or not s ∈ w′.
Case (i) Assume that s 6∈ w′.

As s < k, we know that s 6∈ w. In this case, set J (s+1)
w′ := J

(s)
w′ [T

−1
s ] ∩R(s+1). It is easy to see

that J (s+1)
w′ C′H R

(s+1) (observe that Ts /∈ J (2)
w′ implies Ts /∈ J (s)

w′ ) and we can check (using (3.1))
that ϕs(J

(s+1)
w′ ) = J

(s)
w′ . Now,

A(s+1) ∩ J (s+1)
w = A(s+1) ∩

(
J (s)
w [T−1

s ] ∩R(s+1)
)
⊆ A(s)[T−1

s ] ∩ J (s)
w [T−1

s ] ∩R(s+1)

⊆ (A(s) ∩ J (s)
w )[T−1

s ] ∩R(s+1) ⊆ J
(s)
w′ [T

−1
s ] ∩R(s+1) = J

(s+1)
w′ ,

as required to finish Case (i). (Here, the first containment and the last equality follow from (3.1),
and the last containment is given by the inductive hypothesis.)
Case (ii) Assume that s ∈ w′. In this case, s ∈ w.

We have Ts ∈ J (2)
w′ and Ts ∈ J (2)

w . It follows that Ts ∈ J (s)
w′ as well as Ts ∈ J

(s)
w and Ts ∈ J (s+1)

w .
In order to set up an application of Lemma 5.1, let

A
(s+1)
k−1 := K〈x(s+1)

1 , . . . , x(s+1)
s , Ts+1, . . . , Tk−1〉 ⊂ A(s+1)

R
(s+1)
k := K〈x(s+1)

1 , . . . , x(s+1)
s , Ts+1, . . . , Tk〉 ⊂ R(s+1),
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so that R(s+1)
k = A

(s+1)
k−1 [Tk; τk]. In view of Lemma 3.2, the restriction of (hk·) to R(s+1)

k (where
hk is the element of H occurring in part (iii) of Definition 2.1) yields an automorphism τ̂k which
extends τk and satisfies τ̂k(Tk) = qkTk.
Claim Suppose that a ∈ A(s+1)

k−1 and aT nk ∈ 〈Ts〉R(s+1)
k

for some n ≥ 0. Then a ∈ 〈Ts〉A(s+1)
k−1

.
Proof of Claim Recall from (3.3) that TkTs = λTsTk where λ = λk,s ∈ K∗.

Suppose that aT nk =
∑

i ciTsdi, with ci, di ∈ R
(s+1)
k . Write ci =

∑
α ciαT

α
k and di =

∑
β diβT

β
k

with ciα, diβ ∈ A(s+1)
k−1 . Thus,

aT nk =
∑
i,α,β

(ciαT
α
k )Ts(diβT

β
k ) =

∑
i,α,β

ciαλ
αTsT

α
k diβT

β
k =

∑
i,α,β

ciαλ
αTsτ

α
k (diβ)Tαk T

β
k

=
∑
i,α,β

ciαλ
αTsτ

α
k (diβ)Tα+β

k =
∞∑
m=0

(∑
i

∑
α+β=m

ciαλ
αTsτ

α
k (diβ)

)
Tmk .

Since R(s+1)
k = A

(s+1)
k−1 [Tk; τk] is an Ore extension, it follows that

a =
∑
i

n∑
α=0

ciαλ
αTsτ

α
k (di,n−α) ∈ 〈Ts〉A(s+1)

k−1
,

as required to establish the truth of the claim.
The case n = 0 of the claim implies that 〈Ts〉R(s+1)

k
∩ A(s+1)

k−1 = 〈Ts〉A(s+1)
k−1

. Applying Lemma
5.1, we obtain

〈Ts〉R(s+1)
k

= 〈Ts〉A(s+1)
k−1

R
(s+1)
k .

Since the ideals 〈Ts〉R(s+1)
k

and 〈Ts〉A(s+1)
k−1

are invariant under τk+1, . . . , τN , it follows that

〈Ts〉R(s+1) = 〈Ts〉R(s+1)
k

R(s+1) and 〈Ts〉A(s+1) = 〈Ts〉A(s+1)
k−1

A(s+1),

whence 〈Ts〉R(s+1) = 〈Ts〉A(s+1)R(s+1). Consequently,

the natural map
(
A(s+1)/〈Ts〉A(s+1)

)
[T k;σk] −→ R(s+1)/〈Ts〉 is an isomorphism. (5.1)

Consider the map gs : R(s) −→ R(s+1)/〈Ts〉 that arises in the deleting derivations process
(3.5). This map induces an isomomorphism from R(s)/ ker(gs) to R(s+1)/〈Ts〉, and we know that
ker(gs) ⊆ J

(s)
w = g−1

s (J
(s+1)
w /〈Ts〉). In fact, there is the isomorphism

R(s)/J (s)
w
∼= R(s+1)/J (s+1)

w

that is induced by gs.
We shall prove that ker(gs) ⊆ J

(s)
w′ . Let x ∈ ker(gs), and write x =

∑
i a

(s)
i T ik with each

a
(s)
i ∈ A(s). Now by (5.1), gs(x) = 0 implies gs(a

(s)
i ) = 0, for each i; so a(s)

i ∈ ker(gs) ∩ A(s) ⊆

13



J
(s)
w ∩ A(s) ⊆ J

(s)
w′ , where the final containment is given by the inductive hypothesis. Hence,

ker(gs) ⊆ J
(s)
w′ , as required.

Since gs is H-equivariant (Corollary 3.3), it follows that there is an H-prime ideal J (s+1)
w′ C′H

R(s+1) such that J (s+1)
w′ ⊇ 〈Ts〉 and gs induces an isomorphism

R(s)/J
(s)
w′
∼= R(s+1)/J

(s+1)
w′ .

In particular, J (s)
w′ = g−1

s (J
(s+1)
w′ /〈Ts〉) = ϕs(J

(s+1)
w′ ).

Let z ∈ A(s+1) ∩J (s+1)
w . There exists z′ ∈ A(s) ∩J (s)

w such that gs(z′) = z ∈ R(s+1)/〈Ts〉. Now,
z′ ∈ J (s)

w′ , by the inductive hypothesis; so z = gs(z
′) ∈ gs(J (s)

w′ ) = J
(s+1)
w′ /〈Ts〉. Since Ts ∈ J (s+1)

w′ ,
this establishes the required inclusion A(s+1) ∩ J (s+1)

w ⊆ J
(s+1)
w′ in this case. This finishes Case

(ii).
At this stage, we have constructed H-prime ideals J (i)

w′ C
′
H R

(i) for i ∈ [[2, k]] with ϕi(J
(i+1)
w′ ) =

J
(i)
w′ for i = [[2, k−1]]. We still need to construct H-prime ideals J (i)

w′ C
′
H R

(i) for i ∈ [[k+1, N+1]]

with ϕi(J
(i+1)
w′ ) = J

(i)
w′ for i ∈ [[k,N ]]. However, for s ≥ k, we know that s 6∈ w′; so the same

reasoning as in the first part of Case (i) above does what is required.
Now J

(N+1)
w′ is an H-prime ideal of R with ϕ(J

(N+1)
w′ ) = J

(2)
w′ = Kw′ , whence w′ is the Cauchon

diagram for J (N+1)
w′ and J (N+1)

w′ = Jw′ . The fact that Jw′ $ Jw follows from [2, Theorem 1.4]

Corollary 5.3. Let J be an H-prime ideal in the quantum nilpotent algebra R. If w is the
Cauchon diagram of J , then ht(J) ≥ #black(w).

5.2 Height formula for H-primes

Theorem 5.4. Let J be an H-prime ideal of the quantum nilpotent algebra R with Cauchon
diagram w. Then

GK(R/J) + ht(J) = GK(R);

that is, Tauvel’s height formula holds for the H-prime ideals of any quantum nilpotent algebra.
Furthermore, GK(R/J) = #white(w) and ht(J) = #black(w).

Proof. We already have GK(R/J) = #white(w), by Corollary 4.8. By using Corollary 5.3 and
Theorem 4.2, we see that

N = GK(R) ≥ GK(R/J) + ht(J) ≥ #white(w) + #black(w) = N.

Tauvel’s height formula for J follows, as does the claim about ht(J).
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In order to extend this result to arbitrary prime ideals, we need to further employ Tdeg-
stability. The necessary details are given in the next section.

The proof of Corollary 5.3 shows that for any H-prime ideal J of R with Cauchon diagram
w, there is a strictly descending chain J0 = J ) J1 ) · · · ) Jm = 0 of H-primes of R with
m = #black(w). In other words, the height of J within the poset H-SpecR is at least #black(w).
Since this value, which we denote htH-SpecR(J), is dominated by htSpecR(J) := ht(J), we obtain
the following from Theorem 5.4.

Corollary 5.5. If J is any H-prime ideal of the quantum nilpotent algebra R, then

htH-SpecR(J) = htSpecR(J). (5.2)

Equation (5.2) had previously been established only under the hypothesis that H-SpecR has
H-normal separation, meaning that for anyH-prime ideals J ( K of R, there is anH-eigenvector
u ∈ K \ J such that u + J is normal in R/J and the corresponding automorphism of R/J is
given by some element of H (see [27, Proposition 5.9]). As a consequence, (5.2) was known for
quantum nilpotent algebras of the form Uw

− (g) (i.e., quantum Schubert cell algebras) [27, Proof
of Theorem 5.8] and for cocycle twists of the Uw

− (g) [28, Section 5].

6 T-degree stability for primitive quotients of quantum nil-
potent algebras

We now require some more precise information about Tdeg and Tdeg-stability. This will be
obtained using the lower transcendence degree (over K) of a K-algebra A, as defined in [30].
This degree, denoted Ld(A), is a value in R≥0 ∪ {∞}; we refer to [30] for the definition. (We do
not require lower transcendence degrees over division subalgebras of A.)

Lemma 6.1. Let B ⊆ A be prime Goldie K-algebras such that all regular elements of B are also
regular in A. If A is finitely generated as a right B-module, then Ld(A) = Ld(B).

Proof. By [30, Theorem 0.3(2)], Ld(A) = Ld(Fract(A)) and Ld(B) = Ld(Fract(B)), so it remains
to show that Ld(Fract(A)) = Ld(Fract(B)). This will follow from [30, Theorem 0.3(1)] once we
show that Fract(A) is finitely generated as a right Fract(B)-module, since Fract(B) is artinian.

Due to the assumption on regular elements, we can identify Fract(B) with a subalgebra of
Fract(A). We have A =

∑n
i=1 aiB for some ai ∈ A. Set D := A ·Fract(B) =

∑n
i=1 ai Fract(B), a

right Fract(B)-submodule of Fract(A) which is finitely generated and thus artinian. Any regular
element a ∈ A is invertible in Fract(A), whence aD ∼= D. Since aD ⊆ D and D is artinian on
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the right, aD = D, whence a−1D = D. Now D is a left ideal of Fract(A), and it contains A, so
D = Fract(A). Therefore Fract(A) is a finitely generated right Fract(B)-module, as desired.

Proposition 6.2. If T is a quantum torus over K and M is a maximal ideal of T , then T/M

is Tdeg-stable.

Proof. As noted in [30, pp. 159–60], it suffices to show that T/M is Ld-stable in the sense that
Ld(T/M) = GK(T/M).

Extension and contraction give inverse bijections between the sets of ideals in Z(T ) and T
(e.g., [4, Proposition II.3.8]), so m := M ∩Z(T ) is a maximal ideal of Z(T ) and M = mT . Since
Z(T ) is a Laurent polynomial algebra over K (e.g., [4, Lemma II.3.7(e)]), the field Z(T )/m is
finite dimensional over K.

Write T = Oq((K∗)n) for some n ∈ N and some multiplicatively skewsymmetric matrix
q = (qij) ∈Mn(K∗). Let y±1

1 , . . . , y±1
n be a standard set of generators for T , so that

T = K〈 y±1
1 , . . . , y±1

n | yiyj = qijyjyi ∀ i, j ∈ [[1, n]] 〉.

Then let {ya | a ∈ Zn} be the corresponding K-basis for T , where

ya := ya11 y
a2
2 · · · yann ∀ a = (a1, . . . , an) ∈ Zn.

Set Z := {a ∈ Zn | ya ∈ Z(T )}, so that Z(T ) =
⊕

a∈Z Kya (e.g., [4, Lemma II.3.7(a)]).
Choose a subgroup W ⊆ Zn maximal with respect to the property W ∩ Z = 0. Then

Zn/(Z ⊕ W ) is finite, and Z ⊕ W is free abelian of rank n. Choose bases (b1, . . . , bl) and
(bl+1, . . . , bn) for Z and W , respectively, and set zi := ybi for all i. Then

Z(T ) =
⊕
a∈Z

Kya = K[z±1
1 , . . . , z±1

l ].

Next, set
C :=

⊕
a∈W

Kya = K〈z±1
l+1, . . . , z

±1
n 〉,

a quantum torus over K of rank r := n− l. Finally, set

B :=
⊕

a∈Z⊕W

Kya = K〈z±1
1 , . . . , z±1

n 〉,

a K-subalgebra of T . Observe that the multiplication map Z(T ) ⊗K C → T gives a K-algebra
isomorphism of Z(T )⊗K C onto B. We identify B with Z(T )⊗K C via this isomorphism.

We next show that C is a central simple K-algebra (meaning only that C is a simple ring
with center K). Simplicity will follow from [24, Proposition 1.3] once we show that Z(C) = K.
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We know that Z(C) is spanned by those ya with a ∈ W and ya ∈ Z(C). Let s := |Zn/(Z⊕W )|,
so that sb ∈ Z ⊕W for all b ∈ Zn. If a ∈ W and ya ∈ Z(C), then ya commutes with ysb for
any b ∈ Zn. There is a scalar λa,b ∈ K∗ such that yayb = λa,by

bya, whence yaysb = λsa,by
sbya =

λsa,by
aysb. But then λsa,b = 1 and so ysayb = ybysa. Consequently, ysa ∈ Z(T ) and sa ∈ Z. Since

also a ∈ W , we must have a = 0. Therefore Z(C) = K, as required.
Since C is a central simple K-algebra, mB = m⊗KC is a maximal ideal of B. Now B/mB =

(Z(T )/m)⊗KC, and we identify C with a subalgebra ofB/mB. Note that anyK-basis for Z(T )/m

provides a finite basis for B/mB as a free right and left C-module. In particular, it follows that all
regular elements of C are also regular in B/mB. Thus, Lemma 6.1 implies Ld(B/mB) = Ld(C).
Now GK(C) = r, and C is Ld-stable by [30, Corollary 6.3(1)], so Ld(C) = r. Taking account of
Proposition 4.3, we therefore have

Ld(B/mB) = GK(B/mB) = r. (6.1)

Since mB is a maximal ideal of B, it must equal B ∩M . We then identify B/mB with its
image in T/M . Observe that T is a free right and left B-module with a basis {yu1 , . . . , yus},
where {u1, . . . , us} is a complete set of coset representatives for Zn/(Z ⊕ W ). Consequently,
T/M = T/mT is a free right and left (B/mB)-module with a basis {yu1 + M, . . . , yus + M}, so
T/M is finitely generated as a right (B/mB)-module and all regular elements of B/mB are also
regular in T/M . Therefore Lemma 6.1 and Proposition 4.3, in combination with (6.1), yield

Ld(T/M) = GK(T/M) = r.

In [3, Theorem 1.6], Tdeg-stability is proved for primitive quotients of uniparameter quantum
nilpotent algebras. Here, we extend the result to all quantum nilpotent algebras.

Theorem 6.3. Let R be a quantum nilpotent algebra and let P be a primitive ideal of R. Suppose
that J = Jw is the H-prime ideal of R such that P ∈ SpecJ(R). Then

(a) There is an Ore set Fw ⊆ R/J of regular H-eigenvectors such that (R/J)F−1
w is a quantum

torus over K and (P/J)F−1
w is a maximal ideal of (R/J)F−1

w .
(b) R/J and R/P are Tdeg-stable.
(c) GK

(
(R/J)F−1

w

)
= GK(R/J) and GK

(
(R/P )F−1

w

)
= GK(R/P ).

Proof. (a) By Theorem 4.7, there is an Ore set Fw ⊂ R/J consisting of regular H-eigenvectors
such that

SpecJ(R) = {P ∈ Spec(R) | P ⊇ J and (P/J) ∩ Fw = ∅}
(R/J)F−1

w
∼= (R/Kw)E−1

w
∼= OΛw((K∗)N−|w|),
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where Λw is a submatrix of Λ (recall (3.3)). In view of [12, Theorem 4.4], the primitive ideal P
is maximal in SpecJ(R), and consequently (P/J)F−1

w is a maximal ideal of (R/J)F−1
w .

(b)(c) We have already shown in Corollary 4.8 that R/J is Tdeg-stable. Note that the
image of Fw in R/P consists of regular elements (e.g., [13, Lemma 10.19]), so that (R/P )F−1

w is
naturally isomorphic to a subalgebra of FractR/P . In view of part (a) and Proposition 6.2, the
second part of (b) and part (c) follow from Proposition 4.6.

7 Tauvel’s height formula

Theorem 7.1. Let P be a prime ideal of the quantum nilpotent algebra R. Then

GK(R/P ) + ht(P ) = GK(R);

that is, Tauvel’s height formula holds for all quantum nilpotent algebras.

Proof. The height formula has been established for the H-prime ideals of R in Theorem 5.4.
Next, we deal with the case where P is a primitive ideal. Suppose that J = Jw is the H-

prime ideal such that P ∈ SpecJ(R). Let Fw be the Ore set contained in R/J that is mentioned
in Theorem 6.3(a). Since (R/J)F−1

w is a quantum torus, its prime spectrum is catenary and
Tauvel’s height formula holds in this algebra (e.g., [4, Theorem II.9.14]).

Now GK
(
(R/J)F−1

w

)
= GK(R/J) and GK

(
(R/P )F−1

w

)
= GK(R/P ) by Theorem 6.3(c).

Hence,

GK(R/P ) = GK
(
(R/P )F−1

w

)
=1 GK

(
(R/J)F−1

w

)
− ht

(
(P/J)F−1

w

)
= GK(R/J)− ht(P/J),

where (=1) follows from Tauvel’s height formula in (R/J)F−1
w , and so we obtain GK(R/J) =

GK(R/P ) + ht(P/J). Consequently,

N ≥ GK(R/P ) + ht(P ) ≥
(
GK(R/J)− ht(P/J)

)
+
(
ht(P/J) + ht(J)

)
= GK(R/J) + ht(J) = N ;

and so GK(R/P ) + ht(P ) = N , as required.
Finally, let P be an arbitrary prime ideal belonging to the J-stratum of Spec(R), and let Q

be a maximal element of that stratum with J ⊆ P ⊆ Q. Then Q is primitive by [12, Theorem
4.4].

Within the stratum, we have catenarity due to the fact that(
SpecJ(R),⊆

) ∼= (Spec
(
(R/J)F−1

w

)
,⊆
)
.
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Consequently,

N ≥ GK(R/P ) + ht(P )

≥
(
GK(R/Q) + ht(Q/P )

)
+
(
ht(P/J) + ht(J)

)
=1 GK(R/Q) +

(
ht(Q/J)− ht(P/J)

)
+ ht(P/J) + ht(J)

= GK(R/Q) + ht(Q/J) + ht(J)

=2 GK(R/Q) +
(
GK(R/J)−GK(R/Q)

)
+ ht(J)

= GK(R/J) + ht(J) = N,

where in (=1) we are using catenarity within the stratum, and (=2) holds by the equality estab-
lished in the primitive case above. Therefore

GK(R/P ) + ht(P ) = N,

as required.

8 Examples

We have shown that quantum nilpotent algebras satisfy Tauvel’s height formula, but the question
as to whether or not they are catenary remains open. We have also seen that in the presence
of suitable homological conditions, normal separation implies catenarity and Tauvel’s height
formula. However, for algebras that are not quantum nilpotent algebras, the notion of catenarity
and Tauvel’s height formula are independent, as we see in the following examples.

Example 8.1. Several examples are known of algebras which are catenary but do not satisfy
Tauvel’s height formula, such as the group algebra of the Heisenberg group (over any field) [1,
Example 3.8] and the enveloping algebra of sl2(K) (for K algebraically closed of characteristic
zero) [1, p.411]. We also point to [1, Example 2.9]: Let A := K[x, y] where charK = 0. Let δ
be the K-linear derivation given by δ = (2y)∂/∂x + (x + y2)∂/∂y. Set R := A[z; δ]. The ring
R has Gelfand-Kirillov dimension three. However, the ideal xR + yR is a prime ideal of height
one, but R/(xR + yR) ∼= K[z] has Gelfand-Kirillov dimension one; so Tauvel’s height formula
fails for this ideal. This example was originally constructed by Jordan in [17].

A modification of the previous example produces an example that is not catenary and does
not satisfy Tauvel’s height formula.

Example 8.2. Let A := K[x, y, z] where charK = 0 and δ is the K-linear derivation given by
δ = (2yz)∂/∂x+ (x+ y2)∂/∂y. Set R := A[w; δ]. See [1, Example 2.10] for details.
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It is easily seen that if Tauvel’s height formula holds in all prime factors of an algebra R,
then R is catenary. In fact, it suffices to know that for any prime ideals P ) Q of R with
ht(P/Q) = 1, the equality GK(R/Q) = GK(R/P ) + 1 holds. Namely, this assumption implies
that for any prime ideals P ) Q of R, all saturated chains of prime ideals between P and Q

have length GK(R/Q)−GK(R/P ).
It appears unlikely that Tauvel’s height formula alone (holding just in an algebra rather than

in all prime factors) implies catenarity, but no examples of non-catenary algebras with finite
GK-dimension which satisfy Tauvel’s height formula are known.

Example 8.3. One might imagine that there would be a complementary result to Proposition
5.2 about replacing a white box by a black box. Specifically, if w is a Cauchon diagram for R
and w 6= [[1, N ]], one could conjecture that there exists a Cauchon diagram w′ % w such that
|w′ \ w| = 1 and Jw′ % Jw. If such a result did hold then applying it iteratively starting with
w empty would yield a chain of H-primes of length equal to GK(R). That fails, e.g. for the
first quantised Weyl algebra, R = Aq1(K) := K〈x1, x2 | x2x1 − qx1x2 = 1〉, with q ∈ K∗ not
a root of unity. Here GK(R) = 2 but there are only two H-primes altogether, namely 0 and
J := 〈x1x2 − x2x1〉. The Cauchon diagrams of 0 and J are ∅ and {1}, respectively. What goes
wrong with the conjectured result is that {1, 2} is not a Cauchon diagram for R.
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