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Abstract. If Rn is partially ordered by a generating closed cone K, then (Rn,K) is
a pre-Riesz space. We show for a disjointness preserving bijection T on (Rn,K) that
the inverse of T is also disjointness preserving. We prove that for T there is k ∈ P(b)
such that T k is band preserving, where b is the number of bands in (Rn,K), and
P(b) the set of orders of permutations on b symbols.
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1. Introduction. If X and Y are Banach lattices and T : X → Y is a disjoint-
ness preserving bijection, then in [8] and [9] it is shown that the inverse T−1 is also
disjointness preserving. Various other conditions under which T−1 is disjointness
preserving are given in [1] and [2], where it is also observed that for a disjointness
preserving bijection between arbitrary vector lattices the inverse is not disjointness
preserving, in general.

In [4] disjointness is introduced in the more general setting of partially ordered
vector spaces. In a finite dimensional partially ordered vector space (Rn,K) with
closed generating cone K, we will show that the inverse of a disjointness preserving
operator is disjointness preserving.

In partially ordered vector spaces, bands are defined in [4] as sets that equal
their double-disjoint complement. In [6] it is shown that the number b of bands in
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(Rn,K) does not exceed 1
42

2n . Using this fact, for a disjointness preserving bijection
T : Rn → Rn we will show that there is k ∈ N such that T k is band preserving.

In the remainder of this section we fix our notation. Let X be a real vector
space and let K be a cone in X, that is, K is a wedge (x, y ∈ K, λ, µ ≥ 0 imply
λx+µy ∈ K) and K ∩ (−K) = {0}. In X a partial order is introduced by defining
x ≤ y if and only if y−x ∈ K; we write (X,K) for a partially ordered vector space.
We call (X,K) Archimedean if for every x, y ∈ X with nx ≤ y for all n ∈ N one
has that x ≤ 0, and directed if X = K −K. Denote for a set M ⊆ X the set of all
upper bounds of M by

Mu = {x ∈ X; ∀m ∈M : x ≥ m} .

For standard notations in the case that (X,K) is a vector lattice see [3].
By a subspace of a partially ordered vector space or a vector lattice we mean

an arbitrary linear subspace with the inherited order. We do not require it to
be a lattice or a sublattice. We call a subspace D of a partially ordered vector
space Y order dense in Y if every y ∈ Y is the greatest lower bound of the set
{d ∈ D; y ≤ d} in Y, i.e.

y = inf{d ∈ D; y ≤ d}.

We continue by a notion which is closely related to the order dense embedding of a
partially ordered vector space into a vector lattice. A partially ordered vector space
X is called pre-Riesz if for every x, y, z ∈ X the inclusion {x+ y, x+ z}u ⊆ {y, z}u
implies x ∈ K [7, Definition 1.1(viii), Theorem 4.15]. Every pre-Riesz space is
directed and every directed Archimedean partially ordered vector space is pre-Riesz
[7]. Clearly, each vector lattice is pre-Riesz.

Recall that a linear map i : X → Y, where X and Y are partially ordered
vector spaces, is called bipositive if for every x ∈ X one has 0 ≤ x if and only if
0 ≤ i(x). An embedding map is required to be linear and bipositive, which implies
injectivity. For sets L ⊆ X and M ⊆ Y we denote i[L] := {i(x); x ∈ L} and
[M ]i := {x ∈ X; i(x) ∈M}.

Let X be a partially ordered vector space. The following statements are equiv-
alent [7, Corollaries 4.9–11 and Theorems 3.5, 3.7, 4.13]:

(i) X is pre-Riesz.

(ii) There exist a vector lattice Y and a bipositive linear map i : X → Y such
that i[X] is order dense in Y.

(iii) There exist a vector lattice Y and a bipositive linear map i : X → Y such
that i[X] is order dense in Y and i[X] generates Y as a vector lattice, i.e. for
every y ∈ Y there are a1, . . . , am, b1, . . . , bn ∈ i[X] such that

y =
m∨
i=1

ai −
n∨

i=1

bi.

A pair (Y, i) as in (ii) is called a vector lattice cover of X, a pair (Y, i) as in (iii)
is called a Riesz completion of X. Since all spaces Y as in (iii) are isomorphic as
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vector lattices, we will speak of the Riesz completion of X and denote it by (Xρ, i).
If X is pre-Riesz and (Y, i) a vector lattice cover of X, then Xρ is the vector lattice
generated by i[X].

Disjointness in a partially ordered vector space (X,K) is introduced in [4]. Two
elements x, y ∈ X are called disjoint, in symbols x ⊥ y, if

{x+ y,−x− y}u = {x− y,−x+ y}u.

If X is a vector lattice, then this notion of disjointness coincides with the usual
one, see [3, Theorem 1.4(4)]. The disjoint complement of a subset M ⊆ X is the
set Md = {y ∈ X; ∀x ∈ M : y ⊥ x} . A subspace B of X is called a band if
B = Bdd. Note that if X is an Archimedean vector lattice, then this notion of
a band coincides with the usual one (i.e. a band is defined to be an order closed
ideal).

Let (X,K) be a pre-Riesz space and (Y, i) a vector lattice cover of X. The order
denseness of i[X] in Y implies that two elements in X are disjoint if and only if
they are disjoint in Y [4, Proposition 2.1]. For a set S ⊆ X this means

Sd = [i[S]d]i. (1)

This implies that disjoint complements in pre-Riesz spaces have similar properties
as the ones in vector lattices, see [5, Theorem 5.10]. In particular, a disjoint
complement is a band in X.

A linear operator T : X → X is called disjointness preserving, if for every
x, y ∈ X with x ⊥ y one has that Tx ⊥ Ty. A linear bijection T : X → X is called
a d-isomorphism if T is disjointness preserving and has a disjointness preserving
inverse.

The paper is organized as follows. In Section 2 we consider disjointness preserv-
ing operators and d-isomorphisms in arbitrary pre-Riesz spaces and collect their
properties in preparation for the main results in Section 3. In Section 3 we restrict
to finite-dimensional pre-Riesz spaces. We prove that the inverse of a disjointness
preserving bijection is also disjointness preserving (Theorem 3.4). Moreover, we
show that a certain power of a disjointness preserving bijection is band preserving
(Theorem 3.5).

2. On d-isomorphisms in pre-Riesz spaces. In the present section, let
(X,K) be a pre-Riesz space and T : X → X a linear operator. Denote

B := {B ⊆ X; B is a band in X}

and define

T : B → B, B 7→ T [B]dd. (2)

If B1, B2 ∈ B are such that B1 ⊆ B2, then T (B1) ⊆ T (B2).

Proposition 2.1. If T is disjointness preserving, then for B1, B2 ∈ B with B1 ⊥
B2 one has T (B1) ⊥ T (B2).
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Proof. For every B ∈ B one has T (B) ⊆ T (Bd)d. Indeed, we show

T [B]dd ⊆ T
[
Bd

]d
= T

[
Bd

]ddd
. (3)

Let x ∈ T [B]dd. Let y ∈ T [Bd] and v ∈ Bd be such that Tv = y. For u ∈ B one has
u ⊥ v and, since T is disjointness preserving, Tu ⊥ Tv, hence y ∈ T [B]d. Therefore
x ⊥ y, which yields (3).

As a consequence, one has T (Bd) = T (Bd)dd ⊆ T (B)d. For B1, B2 ∈ B with
B1 ⊥ B2, from B2 ⊆ Bd

1 one obtains T (B2) ⊆ T (Bd
1 ) ⊆ T (B1)

d, and we conclude
T (B2) ⊥ T (B1). 2

Remark 2.2. If T is, in addition, injective, and B is a non-trivial band, then T (B)
is a non-trivial band. Indeed, B contains an element b ̸= 0, and since T is injective,
one has T (b) ̸= T (0) = 0. Then T (b) ∈ T [B] ⊆ T [B]dd = T (B). Similarly, since Bd

contains a non-zero element c, one has 0 ̸= T (c) ∈ T [Bd] ⊆ T [Bd]dd = T (Bd) ⊆
T (B)d, by Proposition 2.1.

Proposition 2.3. If T is a d-isomorphism and B ∈ B, then T (Bd) = T (B)d.

Proof. Let B ∈ B. Since B ⊥ Bd, by Proposition 2.1 one has T (B) ⊥ T (Bd),
hence T (Bd) ⊆ T (B)d.

Next we show T [B]d ⊆ T [Bd]dd. Let x ∈ T [B]d and v ∈ X be such that Tv = x.
Let y ∈ T [Bd]d. For z ∈ B one has x ⊥ Tz and, since T is a d-isomorphism, v ⊥ z.
Therefore v ∈ Bd, which implies x = Tv ∈ T [Bd]. Consequently y ⊥ x, which
yields x ∈ T [Bd]dd.

It follows that T (B)d = T [B]ddd = T [B]d ⊆ T [Bd]dd = T (Bd). 2

Proposition 2.4. Let T be a d-isomorphism. Then T is band preserving if and
only if T equals the identity.

Proof. Let T be band preserving and B ∈ B. Then T [B] ⊆ B, moreover
T (B) = T [B]dd ⊆ B. Similarly, T (Bd) ⊆ Bd. By Proposition 2.3, T (B)d ⊆ Bd

and therefore B = Bdd ⊆ T (B)dd = T (B). We conclude T (B) = B.

Conversely, let T be the identity and B ∈ B. Then T [B] ⊆ T [B]dd = T (B) = B,
hence T is band preserving. 2

Proposition 2.5. If T is a d-isomorphism, then for every k ∈ N and every B ∈ B
one has T k(B) =

(
T k[B]

)dd
.

Proof. We show T 2(B) =
(
T 2[B]

)dd
, then the assertion follows by similar argu-

ments. First observe that(
T 2[B]

)dd
= T [T [B]]dd ⊆ T

[
T [B]dd

]dd
= T 2(B).
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Similarly,
(
T 2[Bd]

)dd ⊆ T 2
(
Bd

)
. By Proposition 2.1, from B ⊥ Bd it follows that

T 2(B) ⊥ T 2
(
Bd

)
. Therefore

T 2(B) ⊆ T 2
(
Bd

)d ⊆
(
T 2[Bd]

)ddd
=

(
T 2[Bd]

)d
.

It remains to show
(
T 2[Bd]

)d ⊆
(
T 2[B]

)dd
. Indeed, let x ∈

(
T 2[Bd]

)d
. Let y ∈(

T 2[B]
)d

and v ∈ X be such that T 2v = y. For z ∈ B one has T 2z ⊥ y, and, since
T is a d-isomorphism, z ⊥ v. Therefore v ∈ Bd, and hence y = T 2v ∈ T 2[Bd].
Thus, x ⊥ y. 2

If T is a d-isomorphism, then for k ∈ N the operator T k is a d-isomorphism as
well. Combining the Propositions 2.4 and 2.5, we obtain the following result.

Proposition 2.6. Let T be a d-isomorphism and k ∈ N. Then T k is band pre-
serving if and only if T k equals the identity.

Now define
T ′ : B → B, B 7→ [B]T

dd
. (4)

Proposition 2.7. If T is a d-isomorphism, then for every B ∈ B one has T ′(T (B))
= B and T (T ′(B)) = B.

Proof. We show the first equality. Given B ∈ B, then

B ⊆ T ′(T (B)) =
[
T [B]dd

]
T

dd
. (5)

Indeed, let x ∈ B and y ∈
[
T [B]dd

]
T

d
. For z ∈ T [B]dd and v ∈ X with Tv = z, one

has v ⊥ y. Since T is disjointness preserving, we obtain Tv ⊥ Ty, hence z ⊥ Ty.
Thus, Ty ∈ T [B]

ddd
= T [B]

d
. In particular, Tx ⊥ Ty. Since T is a d-isomorphism,

we get x ⊥ y, and hence x ∈
[
T [B]dd

]
T

dd
. One obtains (5), and, moreover,

Bd ⊆ T ′(T (
Bd

))
. (6)

By Proposition 2.1, B ⊥ Bd implies T (B) ⊥ T (Bd). Applying Proposition 2.1 to
the inverse of T, we get T ′(T (B)) ⊥ T ′(T (Bd)). Together with (6), this boils down
to

T ′(T (B)) ⊆ T ′(T (
Bd

))d ⊆ Bdd = B. 2

3. Disjointness preserving bijections in finite dimensions. In this sec-
tion, let K be a generating closed cone in Rn. Note that (Rn,K) is then an
Archimedean directed partially ordered vector space, and, hence, a pre-Riesz space,
so that we can apply the results of the previous section. We intend to show that the
inverse of a disjointness preserving bijection on (Rn,K) is disjointness preserving.
For this purpose, we define

p : B → N, B 7→ dim(B) + dim(Bd),
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and collect properties of p in the subsequent lemmas. The set B of bands in (Rn,K)
is finite, see [6]. Let T : Rn → Rn be a disjointness preserving linear bijection, and
let T be defined as in (2).

Lemma 3.1. (i) For every B ∈ B we have p(T (B)) ≥ p(B).

(ii) If B ∈ B is such that p(T (B)) = p(B), then T (B) = T [B] and T (B)d =
T [Bd].

Proof. (i) Clearly, T [B] ⊆ T [B]dd = T (B), and by Proposition 2.1

T [Bd] ⊆ T [Bd]dd = T (Bd) ⊆ T (B)d.

Hence dim(T (B)) ≥ dim(T [B]) = dim(B) and dim(T (B)d) ≥ dim(T [Bd]) =
dim(Bd), therefore p(T (B)) ≥ p(B).

(ii) Let B be a band such that p(T (B)) = p(B). Since T [B] is a subspace of
T (B), the assumption T (B) ̸= T [B] implies dim(T (B)) > dim(T [B]) = dim(B).
Analogously, T [Bd] is a subspace of T (B)d, and the assumption T (B)d ̸= T [Bd]
implies dim(T (B))d > dim(T [Bd]) = dim(Bd). In both cases a contradiction to
p(T (B)) = p(B) is obtained. 2

Lemma 3.2. (i) If A,B ∈ B are such that T (A) = T [B] and T (A)d = T [Bd],
then A = B.

(ii) If A,B ∈ B are such that T (A) = T (B) and p(T (B)) = p(B), then A = B.

Proof. (i) From T [B] = T (A) = T [A]dd ⊇ T [A] we obtain B ⊇ A. Similarly,
as T is disjointness preserving, we get T [Bd] = T (A)d = T [A]d ⊇ T [Ad], hence
Bd ⊇ Ad. As A and B are bands, it follows that B = Bdd ⊆ Add = A.

(ii) By Lemma 3.1 (ii), we obtain T (A) = T (B) = T [B] and T (A)d = T (B)d =
T [Bd]. Now the statement follows from (i). 2

Next we consider certain sets of non-trivial bands. For k ∈ N we denote

Bk := {B ∈ B \ {Rn, {0}} : p(B) = k} .

Furthermore, let m := max {p(B) : B ∈ B \ {Rn, {0}}} .

Lemma 3.3. (i) For every k ∈ {2, . . . ,m} one has T [Bk] ⊆ Bk, and T : Bk → Bk

is a bijection.

(ii) For every B ∈ B we have T [B] ∈ B. For every B ∈ B there is A ∈ B such
that T [A] = B and T [Ad] = Bd.

Proof. We first consider the case k = m. Let B ∈ Bm. By Remark 2.2, T (B) is a
non-trivial band. From Lemma 3.1 (i) we obtain

m = p(B) ≤ p(T (B)) ≤ m, (7)
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hence T (B) ∈ Bm. To show that T : Bm → Bm is injective, let A,B ∈ Bm be such
that T (A) = T (B). By (7) and Lemma 3.2 (ii), we obtain A = B. As Bm is a finite
set, it follows that T : Bm → Bm is a bijection.

Next, assume that ℓ < m is such that for every k ∈ {ℓ + 1, . . . ,m} we have
T [Bk] ⊆ Bk, and T : Bk → Bk is a bijection. Let A ∈ Bℓ. Suppose that T (A) /∈ Bℓ.
Then, by Lemma 3.1 (i), there is k ∈ {ℓ + 1, . . . ,m} such that T (A) ∈ Bk. Since
T : Bk → Bk is a bijection, there exists B ∈ Bk such that T (B) = T (A). Moreover,
p(T (B)) = p(B) = k, therefore Lemma 3.2 (ii) implies that A = B. This contradicts
p(A) = ℓ < k = p(B). Hence T (A) ∈ Bℓ. We obtain T [Bℓ] ⊆ Bℓ. If A,B ∈ Bℓ are
such that T (A) = T (B), then by the previous step we get p(T (B)) = ℓ = p(B),
such that Lemma 3.2 (ii) implies A = B. Thus, T : Bℓ → Bℓ is injective, and,
moreover, it is a bijection. By induction, the proof is complete.

(ii) For trivial bands the assertion is clear. Let B ∈ B be non-trivial, i.e. there
exists k ∈ N such that B ∈ Bk. By (i), we obtain T (B) ∈ Bk, i.e. p(T (B)) = p(B).
Lemma 3.1 (ii) implies T (B) = T [B], hence T [B] ∈ B. Moreover, by (i) there exists
A ∈ Bk such that T (A) = B. Then p(T (A)) = p(A), and Lemma 3.1 (ii) implies
T (A) = T [A] and T (A)d = T [Ad]. Hence B = T [A] and Bd = T [Ad]. 2

As a consequence of the previous lemma, the main result on the inverses of
disjointness preserving bijections in finite dimensions is obtained next.

Theorem 3.4. Let T : Rn → Rn be a disjointness preserving bijection. Then T is
a d-isomorphism.

Proof. We show that the inverse of T is disjointness preserving. Let u, v ∈ Rn

be such that u ⊥ v, and let x, y ∈ Rn be such that Tx = u and Ty = v. Let
B := {u}dd, then B ∈ B, u ∈ B and v ∈ Bd. By Lemma 3.3 (ii), there exists A ∈ B
such that B = T [A] and Bd = T [Ad]. Then x ∈ A and y ∈ Ad, hence x ⊥ y. 2

The number b of bands in (Rn,K) is less or equal 1
42

2n , see [6]. In the subsequent
theorem, P(b) denotes the set of orders of permutations on b symbols.

Theorem 3.5. Let T : Rn → Rn be a disjointness preserving bijection. Then there
is k ∈ P(b) such that T k is band preserving.

Proof. By Theorem 3.4, T is a d-isomorphism. Due to Proposition 2.7, the map
T is a bijection, i.e. T is a permutation on the finite set B. Hence there is k ∈ P(b)
such that T k is the identity. By Proposition 2.6, T k is band preserving. 2

Theorem 3.4 is a first instance of a theory on inverses of disjointness preserving
operators on suitably normed pre-Riesz spaces. The finite dimensional spaces under
consideration can be such that there are no non-trivial disjoint elements at all or
such that there are even more disjoint elements than in a vector lattice of the same
dimension. Apparently, that does not matter for Theorem 3.4. It is tempting to ask
for similar results in an infinite dimensional setting. As in vector lattices, a general
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theory will at least either require more conditions on the operators or appropriate
norms on the pre-Riesz space, similar to the Banach lattice case.
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