
Meta-learning for Recommending
Metaheuristics for the MaxSAT Problem

Enrico S Miranda1, Fabio Fabris2, Chrystian G M Nascimento1,
Alex A Freitas2, and Alexandre C M Oliveira1,2†

1Department of Informatics - DEINF, UFMA Brazil
2School of Computing, University of Kent, CT2 7NZ, UK

†Corresponding author: alexandre.cesar@ufma.br

Abstract. Solving even moderately-sized Maximum Satisfiability (Max-
SAT) problems exactly can be unfeasible due to their NP-Hardness. This
leads to the use of metaheuristics that find a solution without exact-
ness guarantees but run in a reasonable time. Yet, choosing the best
metaheuristic to solve a MaxSAT problem is hard, justifying the use
of meta-learning algorithms for metaheuristic recommendation. These
meta-learning algorithms use past experience to choose the best meta-
heuristic to solve an unseen problem. As far as we know, this is the first
time a meta-learning approach is proposed to select metaheuristics for
solving a MaxSAT problem. Our approach includes the creation of new
meta-features derived from graph representations of MaxSAT problems
and an interpretation of part of a meta-model. Our approach successfully
selected the best metaheuristic to solve the problems 87% of the time,
the new meta-features have shown to be as good as the state-of-the-
art meta-features, and the meta-model interpretation found interesting
problem-specific knowledge.

1 Introduction

The SATisfiability (SAT) problem is the task of deciding if there is a set of
assignments to the variables of a boolean expression in conjunctive normal form
that meets all clauses. The Maximum SAT (MaxSAT) problem is a generalization
of the SAT problem that seeks to find which variable configuration meets most
clauses, and what is the maximum number of clauses that can be satisfied.

The MaxSAT problem is NP-Hard [1], meaning that beyond a certain size, the
problem becomes intractable. For this reason heuristic algorithms are commonly
applied in large problems (http://www.maxsat.udl.cat/16/results-incomplete/).
Although heuristic algorithms do not guarantee a solution at a fixed bound from
optimum, they return good solutions in a reasonable time budget.

Since no single metaheuristic is the best for every problem [2], it is of great
interest to have a ‘meta-learning’ recommendation system capable of choosing
the best metaheuristic to solve a particular MaxSAT problem. To achieve this,
characteristics of several MaxSAT problems with known performance in several
metaheuristics can be extracted and a data mining algorithm can be used to

learn associations between the characteristics and the best metaheuristics and
thus, induce a model that can predict which metaheuristic should be used to
solve an unseen problem given its characteristics.

Note that meta-learning does not occur at the problem level (where the
metaheuristics operate), rather at a higher level (meta-level), where two design
choices must be made: 1) how to represent a meta-instance (how to create the
meta-features); and 2) how to select the best metaheuristic method given past
experience. In this work we use classification algorithms to solve the second
problem and use existing and novel meta-features to solve the first.

The main objective of this paper is to propose a meta-learning approach
to predict which metaheuristics should be used to solve a particular MaxSAT
problem. This includes the proposal of new meta-features to represent MaxSAT
problems and the interpretation of parts of highly accurate meta-models, so that
useful knowledge can be extracted from past experience.

This paper is organized as follows: Section 2 presents related work, Section 3
provides the background on the MaxSAT problem and meta-learning. Section 4
presents our proposed meta-learning approach. Section 5 presents the computa-
tional results, including an interpretation of some meta-models. Finally, Section
6 highlights the main findings and future research.

2 Related Work

Meta-learning approaches for metaheuristic recommendation have been suc-
cessfully used on NP-Hard problems other than MaxSAT. Meta-features were
extracted from the graph representation of the Traveling Salesman Problems
(TSP). In [3], a meta-learning approach was proposed to select appropriate meta-
heuristics. Authors concluded that their approach was superior to simpler selec-
tion strategies. In [4], meta-features based on k-Nearest Neighbors graphs were
especially helpful for improving the performance of recommendation systems.

Previous works have applied meta-learning to MaxSAT problems, however,
their focus was on choosing the best exact method [5, 6], or on finding how long
would it take for an algorithm to run [7]. In [8], a collaborative filtering approach
for SAT algorithm selection is proposed, in which metaheuristic algorithms are
selected considering previous users’ choices.

In [9], features of various optimization problems (assignment, traveling sales-
person, knapsack, bin-packing, graph coloring, and timetabling) are discussed
in a context of problem-independent landscape metrics in order to gain insights
about how to share features among problems exhibiting similar structures. Meta-
learning has also been applied far beyond classical combinatorial problems, such
as berth allocation problem [10].

In [11], traditional data mining datasets were represented as graphs and
next, some graph-related descriptors were extracted. These descriptors were used
as meta-features for a meta-learning approach for classifier recommendation.
The results showed that the new meta-features are competitive in relation to
traditional meta-features used in meta-learning for classifier recommendation.

2

3 Background

3.1 The MaxSAT problem

The MaxSAT optimization problem comprises a set of clauses C and a set of
variables X. Each ci ∈ C is a clause expressed in the Conjunctive Normal Form
(CNF), that is, Ci ≡ (xj ∨ xk...xl), where xj , xk...xl ∈ X and each x may or
may not be negated. The objective function to be maximised can be expressed
as F (w) =

∑
di(wi), where di(wi) = 0 if ci is unsatisfied and di(wi) = 1 if ci is

satisfied under the variable assignment wi.

There are several exact algorithms for solving MaxSAT problems, most are
based on generic techniques for solving integer optimization problems [5]. Recent
MaxSAT solvers are based on SAT solvers that employ complex analysis of the
problem structure, splitting the original problem into sub-problems, each of them
being either solved or aborted by conflict-driven mechanisms [12]. Unfortunately,
these algorithms have exponential average runtime complexity on the size of
the problem, which makes their application unfeasible in certain moderately-
sized problems. To fill this niche, metaheuristic algorithms without exactness
guarantees, but that run in reasonable times, are used.

Although metaheuristic algorithms can be used to find good solutions for
MaxSAT problems, choosing the best metaheuristic-parameter pair for a partic-
ular problem is not trivial. It is common for the same metaheuristic to perform
well in a problem and poorly in another. Thus, choosing the right metaheuristic
to a problem, given the characteristics of the problem, is hard.

The traditional metaheuristic selection approach is to use expert knowledge
to decide, given the characteristics of the problem, which metaheuristics to use.
Unfortunately, this approach is error-prone and time-consuming. To avoid this,
one can use the Machine Learning approach of “meta-learning for metaheuristic
recommendation” to find relations between problem characteristics and their
past performance in a systematic way, as discussed in the next section.

3.2 Meta-learning

Meta-learning for metaheuristic recommendation is the task of predicting the
performance of a set of metaheuristics (the meta-classes) in a new problem given
their past performance and meta-features that describe the problems (meta-
instances). In this work, we are predicting the best metaheuristic (the meta-class)
to solve a MaxSAT problem (a meta-instance), given characteristics extracted
from the problem (the meta-features). As far as we know, this is the first time
meta-learning is applied to recommending metaheuristics for MaxSAT prob-
lems. We tested several combinations of meta-features and meta-classification
algorithms to solve the meta-learning problem, as shown in the next section.

3

4 Methods

4.1 Definition of the meta-features

MaxSAT problems can be represented in several ways, e.g.: matrices, binary
vectors and graphs. Graph representations are particularly interesting as we can
make use of the vast machinery of Graph Theory to extract meta-features. Also,
graph representations are normally used to solve the MaxSAT problem as a
constraint satisfaction problem [13], which is an indication of their potential.
Choosing a powerful graph representation is also important: different ways of
representing the MaxSAT problems as graphs can generate meta-features with
different predictive power. In the next sections, we explain how we transformed
the MaxSAT problems into graphs and how the meta-features were extracted
from them, creating some novel meta-features. Also, we present traditional (non-
graph related) meta-features, already used in the literature.

Graph-based representations: There are three major graph representations
for MaxSAT problems [13] (all with undirected edges): 1) Variable Graph (VG),
where nodes represent variables and edges link variables that occur in the same
clause at least once; 2) Clause Graph (CG) where nodes represent clauses and
edges link clauses sharing at least one variable; 3) Variable-Clause Graph (VCG),
a bipartite graph where, in the first node subset each node is a variable, and in
the second subset each node is a clause. The edges link a variable (a node in the
first set) to the clauses where they occur (a node in the second set).

The previously defined problem-to-graph mappings are not one-to-one map-
pings. That is, different MaxSAT problems are mapped to the same graph. Even
worse, problems with very different structures are mapped to isomorphic graph
representations. For instance, it does not matter if a pair of variables co-occur in
one or all clauses, the VG representation would be the same. Similarly, clauses
sharing one or all variables are indistinguishable in the CG representation.

To alleviate this issue, we propose new graph representations encoding more
information about the structure of the problem by weighting the edges. The new
representations are called WVG and WCG (W for weighted). In WVG (Fig. 1a)
the weights mean the number of clauses that the variables share, being a way to
signal the strength of the existing relationship between them. Similarly, in WCG
(Fig. 1b) the weights mean the number of variables a pair of clauses shares.

Extracted meta-features: Several non-graph-related meta-features have been
already proposed for MaxSAT problems. For this reason, the first meta-feature
type (MaxSAT-specific meta-features) we evaluated was taken from [13], where
a comprehensive list of such meta-features is compiled. The next two meta-
features, proposed in this work, are: 1) Unweighted meta-features, extracted from
the unweighted graph representations (VG, CG and VCG); and 2) Weighted
meta-features, extracted from the weighted graph representations (WVG and

4

(a) WVG (b) WCG

Fig. 1: Weighted Variable Graphs (WVG) and Weighted Clause Graphs (WCG)
representing the expression (x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ x4) ∧ (¬x1 ∨ ¬x2)

WCG). Note that some meta-features are calculated using the following ‘sum-
mary statistics’: mean, standard deviation, variation coefficient, minimum value,
maximum value, and Shannon entropy [13].

– MaxSAT-specific meta-features (20 meta-features) [13]:
• Problem-size meta-features (2 meta-features) – number of clauses (c)

and number of variables (v);
• Variable-Clause-balance meta-features (3 meta-features) – ratio clauses/

variable (c/v), reciprocal ratio (v/c), linearised ratio (|4.26− c/v|).
• Ratio of positive-to-negative variables across clauses (6 meta-features) –

summary statistics of the rate of positive variables in all clauses.
• Ratio of positive-to-negative variables overall (6 meta-features) – Sum-

mary statistics of the ratio of positive-to-negative occurrence of each
variable.

• Clause complexity (3 meta-features) – Boolean value representing the
presence or absence of unary, binary and ternary clauses.

– Unweighted meta-features (15 meta-features, proposed in this work):
• Simple graph properties (3 meta-features) – number of nodes, number

of edges, density.
• Node-rank meta-features (6 meta-features) – the rank is calculated for

each node and summary statistics are obtained for the graph.
• Weighted clustering coefficient meta-features (6 meta-features)– calcu-

lated for each node by dividing the number of edges of all neighbour
nodes by k(k+1)/2, where k is the number of neighbors of the node [13].
Next, summary statistics are obtained for the graph.

– Weighted meta-features (6 meta-features, proposed in this work):
• Weights meta-features (6 meta-features) – calculated for each node by

summing the weights of its edges. Next, summary statistics are obtained
for the graph.

With these 3 meta-feature types we created 6 datasets: a dataset comprising
the ‘MaxSAT-specific meta-features’ (named ‘Bespoke’); and 5 datasets con-
taining novel meta-feature types, proposed in this work, namely: 3 datasets
comprising ‘Unweighted meta-features’, one for each one of the VG, CG and

5

VCG graph representations (named, respectively, VGMF, CGMF and VCGMF
– MF for ‘Meta-Feature’); and 2 datasets comprising ‘Unweighted+Weighted
meta-features’, one for the VG and another for the CG graph representation
(named, respectively, VGWMF and CGWMF – W for ‘Weighted’).

4.2 Definition of the meta-classes

We defined our meta-classes by running several metaheuristics (varying their pa-
rameter settings) in the MaxSAT problems (the meta-instances) and annotating
each meta-instance with a meta-class-label representing the best metaheuristic
for that problem in terms of number of satisfied clauses.

We have chosen three metaheuristics for this work: Genetic Algorithm (GA)[14],
Particle Swarm Optimization (PSO) [15] and Population-Based Incremental
Learning (PBIL) [16]. For each one we tried 4 parameter settings, namely: a)
two settings with good results obtained after empirical experimentation; b) a set-
ting with a focus on exploitation (smaller populations, more generations); and
c) a setting with a focus on exploration (larger populations, fewer generations).
These parameter settings are based both on expert knowledge (parameters set-
ting ‘a’) and on opposite strategies for solving a problem (parameters ‘b’ and
‘c’). Next, we list the metaheuristics-parameter pairs (the meta-class labels)
used in this work. For more information about the meaning of parameters see
the corresponding references of each metaheuristic.

Genetic Algorithm (GA): For GA, we have considered large and small
population sizes, different selection operators with different selective pressures
(when possible), and operators of crossover and mutation with different rates,
as can be observed in Table 1.

Table 1: GA parameters
Pop. Crossover Rate Mutation Rate Update Selection

50 1 point 60% Det. Bitflip 5% 1% 2-Tourn.
70 2 point 80% Std. Bitflip 90% 1% Stoc. Tourn. 70%
500 1 point 60% Det. Bitflip 5% 10% Stoc. Tourn. 60%
70 1 point 80% Std. Bitflip 75% 1% 5-Tourn.

Particle Swarm Optimization (PSO): For PSO, we used parameter settings
that allowed the testing of various population sizes, neighbourhood topologies
and sizes, as well as the flight parameters (inertia, attraction parameters L1 and
L2). The tested parameters can be seen in Table 2a.

6

Population Based Incremental Learning (PBIL): For PBIL, we chose pa-
rameter settings to evaluate different population sizes, the number of individuals
and learning and tolerances. The tested settings can be seen in Table 2b.

Table 2: PSO and PBIL parameter settings.

(a) PSO parameters

Pop Neigh. Size Inert. L1 L2

20 Linear 3 1.0 1.7 2.3
50 Linear 5 1.0 1.3 1.9
250 Ring 2 1.0 1.0 1.0
50 Star - 0.8 2.0 2.5

(b) PBIL parameters

Pop. nb ηb nw ηw Threshold

50 1 0.1 0 0.01 0.01
50 1 0.1 0 0.01 0.05
200 5 0.05 5 0.10 0.3
30 1 0.1 0 0.01 0.01

Metaheuristics results: The set of MaxSAT problems used to create our
meta-instances was extracted from the 2014 MaxSAT Evaluation programming
challenge (http://www.maxsat.udl.cat/). We collected 555 canonical MaxSAT
problem on the crafted and random categories.

Each one of the 12 metaheuristic-parameter pairs was run on the 555 Max-
SAT problems for 15 seconds each on a single thread in an Intel i3 machine with
2358MB of RAM. This test was repeated 20 times in order to increase robust-
ness (due to the stochastic nature of the metaheuristics). Then, the performance
of each metaheuristic was compared to others using a test of statistical signifi-
cance. The metaheuristic with significantly superior results (p ≤ 0.05) was used
to annotate the meta-instance. A total of 11 instances were removed from the
dataset due to a tie between algorithms (non statistically significant results).
Table 3 shows the 4 metaheuristic-parameter pairs that were the best method in
at least one MaxSAT problem (and the number of times they were the best), and
therefore only these 4 pairs (out of the 12 tried pairs) were used as meta-classes.

It is possible to notice in Table 3 that two metaheuristic-parameter pairs
were far superior to the others. One can interpret the parameter settings of the
dominant metaheuristic, 50-pop GA, as inducing a faster convergence, adjusted
to perform a smaller number of crossovers and mutations when compared to the
second dominant approach, 70-pop GA.

4.3 Meta-learner choice

Now that we have defined the meta-classes and meta-features, we can apply stan-
dard classification algorithms as a meta-learner to predict which metaheuristic
(meta-class) should be applied to a specific MaxSAT problem (meta-instance).
Generally speaking, the classification task is defined as learning a mapping be-
tween the instances’s features and class labels using a training set maximizing
some measure of predictive performance. The training set contains instances

7

Table 3: Number of MaxSAT problems where each metaheuristic and its param-
eter settings was the best method.
Metaheurstic # problems

GA 50 pop, x-over 1pt(60%), det. flip (5% rate, 1% bits), 2-tourn. 344
GA 70 pop, x-over 1pt(80%), std. bitflip (75% rate, 1% bits), 5-tourn 177
PBIL 30 pop, nb = 1, ηb = 0.1, nw = 0, tolerance = 0.01 19
PBIL 50 pop, nb = 1, ηb = 0.1, nw = 0, threshold = 0.01 4

whose class labels are available to the classifier. Usually, the predictive per-
formance of the classification model is estimated by classifying instances in a
testing set, a set of instances with known class labels that were not present in
the training set. The predictions of the classification model in the testing set
are then compared with the actual class labels and some measure of predictive
performance is calculated.

In our meta-learning context, the classification task can be defined as build-
ing a meta-model using the meta-instances in the training set to predict which
metaheuristic should be applied to an unseen MaxSAT problem. Next, we briefly
describe the classification algorithms used as meta-learners.

MultiLayer Perceptron (MLP): The MLP classification algorithm is a type
of Artificial Neural Network (ANN) that is commonly used in Machine Learning.
The MLP algorithm is very powerful: it can induce models representing complex
non-linear decision boundaries to classify the instances.

The MLP algorithm mimics natural neural networks by modelling artificial
neurons. Each neuron contains several inputs and a single output (that can serve
as the input of other neurons). The output of a neuron is defined by multiplying
each input value by a different weight, summing up these values and passing
them to an ‘activation function’ that maps its argument to the [0, 1] domain.
The weights are learned in the training phase of the algorithm.

Support Vector Machine (SVM): The SVM algorithm, like ANNs, learns
complex decision boundaries to separate the instances. However, unlike ANNs,
SVMs learn ‘optimal’ decision boundaries, that is, decision boundaries (also
called hyperplanes) that maximize the distance between the instances closest to
the boundary (the support vectors) and the decision boundary itself.

More precisely, the SVM algorithm maximises the decision margin, the sum
of the minimum distances between the hyperplane and the closest support vec-
tors for each class. This margin is maximized by solving a quadratic optimization
problem. Note that the boundaries found by SVMs tend to have better general-
ization properties (in principle) than the boundaries found by ANNs.

k-Nearest Neighbours (k-NN): The k-NN classifier is based on the intuitive
idea that ‘closely related’ instances probably share the same class label. As the

8

name suggests, to classify an unseen instance, the k-NN classifier finds its k (a
parameter) nearest training instances and outputs the majority class among the
k Nearest Neighbours as the prediction.

Decision Trees (DT): Note that the MLP and SVM algorithms generate
‘black-box’ models (models that are very difficult to parse). The k-NN ‘model’
can arguably be interpreted by analyzing the k nearest neighbours of each in-
stance. But this interpretation is instance-specific, lacking generalisation, and
so, no interesting insights about the overall problem can be extracted. For this
reason, we have also induced an interpretable Decision Tree (DT) meta-model.

The J48 algorithm (WEKA’s version of the C4.5 tree-induction algorithm)
creates a binary decision tree using the training instances, where each non-leaf
node contains a condition that tests the value an instance’s feature against a
constant. Note that every path from the root to a leaf node (where a prediction
is made) in the DT is a rule where the antecedent is a sequence of conditions
(non-leaf nodes) that must be satisfied to ‘activate’ the rule, and the consequent
is the classification of the DT. These rules are potentially interpretable and can
give the user valuable insights about the underlying classification problem.

5 Meta-learning Computational Experiments

5.1 Predictive accuracy results

In this section, we evaluate the performance of the meta-learner classification al-
gorithms (k-NN, SVM, MLP, DT), using the default parameters in the WEKA
data mining tool [17]. The results in Table 4 were obtained by averaging perfor-
mance estimation of 30 runs of the 10-fold cross-validation procedure (10CV).
The 10CV procedure randomly divides the dataset into 10 folds (parts) of equal
size and then, each one of these 10 folds is used a ‘testing set’, whereas the others
9 are used as a ‘training set’. The ‘percentage of correctly classified instances’
is calculated for each testing fold and averaged across the 10 cross-validation
iterations, and returned as the performance estimation of the algorithm. To find
statistically significance differences among classifiers we used the paired t-test,
with α = 0.05, (adjusted for multiple comparisons) [18].

Table 4: Percentage of correctly classified meta-instances. Numbers in bold rep-
resent the best dataset – i.e., the best type of meta-feature – for each classifier
(tied datasets in terms of statistical significance, p > 0.05, are also in bold).

Classifier Bespoke VGMF CGMF VCGMF WVGMF WCGMF

DT 0.8769 0.8732 0.8677 0.8668 0.8704 0.8650
k-NN 0.8082 0.8041 0.8209 0.8212 0.7875 0.8218
SVM 0.8720 0.7632 0.6339 0.8162 0.7891 0.6308
MLP 0.8701 0.8718 0.8650 0.8733 0.8702 0.8692

9

All classifier-dataset pairs achieve statistically significant superior perfor-
mance than the naive approach of always predicting the most frequent meta-
class (p = 0.001), which achieves a predictive performance of 0.6324. In fact,
most classifier-dataset pairs are far superior to the naive approach with the ex-
ception of SVM+CGMF and SVM+WCGMF pairs. We attribute this to the
fact that we have not tried to optimize the SVM kernel nor its parameters.

We can also see in Table 4 that there is no clearly superior dataset (meta-
feature type) for all classifiers: for DT and SVM, the best dataset is the ‘Bespoke’
dataset. For k-NN, the best dataset is the WCGMF dataset (tied with CGMF
and VCGMF). For the MLP, the best dataset is VCGMF (tied with VCMF
and WVGMF). Analysing the impact of the Weighted meta-feature type, we
can conclude that adding weights to the VGMF dataset improved the predictive
performance significantly when using the SVM classifier (p = 10−14) and adding
weights to the CGMF representation improved the predictive performance sig-
nificantly when using the MLP classifier (p = 0.01)

Over all classifier-dataset pairs, the best classifier-dataset pair was the DT
using the ‘Bespoke’ dataset. This classifier pair had better predictive perfor-
mance than all other pairs according to the Hochberg‘s step-up procedure [18]
(p = 0.0003). In the next section, we shall interpret this meta-model.

5.2 Interpreting the best Meta-model (a decision tree)

In this section, we focus our interpretation efforts on rules predicting the meta-
classes GAfast and GAslow, where GAfast corresponds to the fast-converging,
expert-tuned GA (first line of Table 1) and GAslow to the slow-converging,
expert-tuned GA (second line of Table 1). A set of interesting rules (paths from
the root to a leaf node) were manually extracted from the DT induced using the
whole ‘Bespoke’ dataset (the dataset with best predictive accuracy results) as
‘training’, to maximize the rules’ support. Each rule is presented as a sequence of
conditions that the meta-instance must satisfy, followed by the predicted meta-
class label if that sequence of conditions is met. Following the meta-class label,
in parenthesis, we show the total number of training meta-instances associated
with that rule followed by the number of misclassified training meta-instances
associated with that rule (if any). We focus on rules with high recall (the num-
ber of correctly classified meta-instances covered by the rule divided by the
total number of meta-instances with that meta-class label) and high precision
(the number of meta-instances correctly classified by that rule divided by the
number of meta-instances classified by that rule).

The following powerful rule using the ‘Bespoke’ dataset only uses the meta-
feature ‘variables’, i.e., the number of variables in the Max-SAT problem.

IF (variables > 100) THEN GA fast (383.0/40.0)

This rule has a very good recall (0.997) and precision (0.90) for meta-class
label GAfast and encodes the knowledge: ‘if the MaxSAT problem has more than
100 variables, metaheuristic GAfast should be used’. This rule is compatible with

10

the intuitive notion that given that we had a limited time budget (15 seconds per
problem), it is better to use faster-converging metaheuristics when the problem
is big, so that the population has time to converge to a local minimum.

The next rule is used to classify meta-instances as GAslow:

IF (variables ≤ 100) AND (variables > 43) THEN GA slow (112.0/5.0)

This rule has a good recall (0.60) and a very good precision (0.96) for meta-
class label GAslow. The conditions of this rule create the interval 43 < variables
≤ 100, which seems very good to identify MaxSAT problems with high affinity
with metaheuristic GAslow. Again, the rule makes intuitive sense, since problem
sizes in this interval are relatively small and slower-converging metaheuristics
that explore more the search space should be able to perform better than meta-
heuristics that converge quickly.

The next rule is another good predictor of meta class GAslow (precision =
0.70, recall = 0.16).

IF (variables ≤ 100) AND (variables ≤ 43) AND (ratio > 16.15) THEN GA slow (40.0/12.0)

Note that the condition (variables ≤ 100) of this rule is superfluous, so the
rule translates to the phrase: ‘if the MaxSAT problem has less than or exactly
43 variables and the clause-to-variable ratio is greater than 16.15, use GAslow’.
This suggests that GAslow should be used when the problem has few variables
but a relatively complex search space (more than 16.25 clauses per variable).

6 Conclusions and Future Works

The usual approach to metaheuristic parameter optimization is to empirically
fine-tune the parameters for a given problem. In this context, meta-learning
arises as an alternative to recommend parameter-tuned metaheuristics.

In this work, meta-learning was proposed to select the best metaheuristic-
parameter pairs for solving MaxSAT problems. In order to be able to learn at
the meta-level, a set of meta-features describing each MaxSAT problem (meta-
instance) was used. To create the meta-classes, different population-based meta-
heuristics and parameters settings were used to solve the meta-instances.

Every used meta-learner was able to outperform the naive approach of always
choosing the overall best metaheuristic to solve the problem. This result validates
the proposal that meta-learning can successfully choose the best metaheuristics
for MaxSAT. We have also observed that there is no dominant MaxSAT problem
representation, the best representation is heavily dependent on the meta-learner
used. In particular, we have observed that the graph-based representations pro-
posed in this work (i.e., meta-features extracted from graphs) achieved the best
performance when using 2 out of 4 meta-learners. We have also interpreted the
best meta-model and observed that some rules recommending the use of GA and
its parameter settings seem to be sound and in agreement with our intuitions.

11

As future work, we plan to tune the parameters of the meta-learners using
an automated approach, apply our method to more MaxSAT instances and au-
tomatically choose the best parameter settings for each metaheuristic before the
execution of the meta-learning process.

References

1. Jaumard, B., Simeone, B.: On the complexity of the maximum satisfiability prob-
lem for horn formulas. Inf. Process. Lett. 26 (1987) 1–4

2. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Evolu-
tionary Computation, IEEE Transactions on 1(1) (1997) 67–82

3. Kanda, J., de Carvalho, A., Hruschka, E., Soares, C., Brazdil, P.: Meta-learning
to select the best meta-heuristic for the traveling salesman problem: A comparison
of meta-features. Neurocomputing 205 (2016) 393–406

4. Pihera, J., Musliu, N.: Application of machine learning to algorithm selection for
TSP. In: 2014 IEEE 26th Int. Conf. on Tools with AI. (Nov 2014) 47–54

5. Anstegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific
algorithm configuration. In: 28th AAAI Conf. on Art. Intel. (2014)

6. Matos, P., Planes, J., Letombe, F., Marques-Silva, J.: A MaxSAT algorithm port-
folio. Frontiers in Artificial Intelligence and Applications 178 (2008) 911 – 912

7. Zhang, H., Shen, H., Many, F.: Exact algorithms for MaxSAT. Electronic Notes
in Theoretical Computer Science 86(1) (2003) 190 – 203

8. Mısır, M., Sebag, M.: Alors: An algorithm recommender system. Artificial Intelli-
gence 244 (2017) 291–314

9. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Computers & Operations Research 39(5) (2012) 875 – 889

10. de Len, A.D., Lalla-Ruiz, E., Melin-Batista, B., Moreno-Vega, J.M.: A machine
learning-based system for berth scheduling at bulk terminals. Expert Systems with
Applications 87 (2017) 170 – 182

11. Morais, G., Prati, R.C.: Complex network measures for data set characterization.
In: Brazilian Conf. on Intel. Systems (BRACIS), IEEE (2013) 12–18

12. Chen, J.: Building a hybrid SAT solver via conflict-driven, look-ahead and xor
reasoning techniques. In: Theory and Applications of Satisfiability Testing - SAT
2009. (2009) 298–311

13. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: Principles and
Practice of Constraint Programming–CP 2004. Springer (2004) 438–452

14. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine
learning 3(2) (1988) 95–99

15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc., IEEE Intern.
Conf. on Neural Networks,. Volume 4. (1995) 1942–1948 vol.4

16. Baluja, S.: Population-based incremental learning. a method for integrating genetic
search based function optimization and competitive learning. Technical report,
DTIC Document (1994)

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD explorations newsletter
11(1) (2009) 10–18

18. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J.
Mach. Learn. Res. 7 (2006) 1–30

12

