University of

"1l Kent Academic Repository

Rodgers, Peter and Vidal, Natalia (2000) Graph Algorithm Animation with
Grrr. In: Agtive99: Applications of Graph Transformations with Industrial
Relevance. Lecture Notes in Computer Science, 1779. pp. 379-394. Springer-Verlag

Downloaded from
https://kar.kent.ac.uk/21906/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21906/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Graph Algorithm Animation with Grrr

Peter J. Rodgers and Natalia Vidal

Computing Laboratory, University of Kent, UK
{P.J.Rodgers, N.Vidal}@ukc.ac.uk

Abstract. We discuss geometric positioning, highlightingvidited nodes and
user defined highlighting that form the algorithniraation facilities in the Grrr
graph rewriting programming language. The main psepof animation was
initially for the debugging and profiling of Grriode, but recently it has been
extended for the purpose of teaching algorithmgnergraduate students. The
animation is restricted to graph based algorithoshsas graph drawing, list
manipulation or more traditional graph theory. Theual nature of the Grrr
system allows much animation to be gained for freiéh no extra user effort
beyond the coding of the algorithm, but we alsawuls user defined anima-
tions, where custom algorithm visualisations can exlicitly defined for
teaching and demonstration purposes.

1 Introduction

Grrr is a visual graph rewriting programming langeid16,17]. It is general purpose,
allowing the implementation of complex graph altoris and has a visual view of
graphs. We believe these factors make it a goda@sys which to code graph algo-
rithm animation. Much of the work described hereswitially designed as debugging
tools for the initial Spider language and laterrGanguage, but their wider applica-
bility has encouraged us to extend the ideas anelale more general animation tech-
niques.

We describe three algorithm animation techniquaismpaper. The first technique is
that of user defined emphasis, which has alwayas beeur system in a limited fash-
ion, as the programmer can use built in transfaionatto highlight chosen nodes and
subgraphs of the host graph. Second, tools for atiom have resulted from the recent
graph drawing variation, Grrr, which allows nodesbe positioned at a geometric
point. The movement of the node on the screen eafollowed for better under-
standing of the progress of the algorithm. Thirék kave recently implemented the
automatic highlighting of subgraphs that have bemtched in the host graph. This
means that sections of the host graph that have \bsiéed are shown.

The animation of node movement and the highlightthghatched subgraphs come
for free in that they can be used without angumput except specifying that anima-
tion is required. The user highlighting is for amt animation and requires a pro-
grammer to ensure that the correct section of tst graph is highlighted during the
progress of the algorithm. The node movement animaian also be used to produce
custom animation by the programmer specifying thefegored location of nodes for
best comprehension. The three techniques givendagree combined as desired.

We do not claim any originality for our animatiorethods, but to our knowledge
this is the first time a graph rewriting languaggs theen associated with algorithm
animation. We believe our system is very suitednémation because of its visual
emphasis, and because the design has resultechamses which are useful for ani-
mation. The visual nature of the programs in Greams there is no impedance mis-
match’that might occur when defining a textualgyeom for visual execution.

Grrr allows the execution of rewriting to be viewed the screen as it happens.
This step view of rewriting is an important parttbé animation process as it allows
highlights and movement to be shown as the algurphogresses. The user can also
step through a program manually, taking their owretto observe the execution.

Another feature of Grrr that helps with algorithmiraation is the ability to hide
subsections of the host graph so that only the statectures that are being manipu-
lated or which are relevant to the user can be, s so the housekeeping under-
neath can be hidden to avoid confusion.

Algorithm animation in Grrr has two main roles:sfiy, the original intended role
was to aid the debugging of programs written inr@G that graph match highlighting
can indicate where the rewrites are operatinghowsg node movement can indicate
the way nodes are manipulated in graph drawing.sBoend role is that of an educa-
tional nature to visualise algorithms in order ¢adh them, the standard motivation
behind algorithm animation systems.

The algorithm animation in Grrr is entirely resteid to graph highlighting and
movement, whereas many dedicated animation systews facilities for more ab-
stract representation, using extra graphics andistpdo aid visualisation [2,3,12,20].
This type of animation is not easy to define wik graph rewriting described in this
paper. However, we note that several systems alowlar types of animation to the
graph oriented approach provided in Grrr, e.g.,l®43], so we feel we are justified
in restricting our system. We must note that masmation systems are primarily
designed for teaching algorithms, but studies tr@vn doubt over the usefulness of
algorithm animation as a learning tool [8,19].

2 Programming with Graph Rewrites

Grrr is a graph rewriting programming languagecdmputes by rewriting a host
graph according to user defined transformation&ey advantage to this approach is
the combination of computational completeness anrdaVv view of both the graph
being rewritten and the transformations that reavthie graph. This combination,
along with features such as serial rewriting antdbbérigger initiation make Grrr a

potentially useful system for inherently visualt bomplex tasks such as graph draw-
ing and algorithm animation.

Previous graph rewriting languages include GOOD],[Progres [18], Dactl
/MONSTR [7,1] andA-grammar programming [11], each of which has a umiiter-
pretation of programming with graph rewrites. Thgsaph rewriting languages vary
in several important aspects: the type of hosthythpt is to be rewritten may be any
graph, or it may be restricted by disallowing doaie nodes or arcs, or indeed may
have some underlying hierarchical structure; treplgrmay be rewritten in a serial or
parallel manner; the transformations may be imtiah a number of ways; the trans-
formations may be applied in serial or parallekl éinere are alternative ways that the
user can specify the transformations. Typically #ystems have general program-
ming features, but are aimed at specific applicatio

Grrr is a development of the Spider graph rewrifinggramming language. Spider
is a prototype system for database programming.ifiddd it forms the basis of Grrr,
a general purpose programming language, which wausing to explore the notions
of visual graph drawing. Graph drawing has beem seegraph rewriting systems
previously [4,21]. Our current project is attempgtito demonstrate that programming
a wide range of graph drawing algorithms is feasibla graph rewriting visual lan-
guage. To achieve this we are in the process afusing hierarchical, force directed
and planar graph drawing algorithms in Grrr. Weertbiat Grrr is still under develop-
ment and future changes both to the semanticsnapléinentation are likely.

Grrr features serial trigger initiation in a twoagh rewrite specification method,
the difference between the LHS and RHS in a revimdiecate the changes to be made
to the host graph. The rewrites are containedansfiormations. When a transforma-
tion is called the LHS graphs are tested agairshtst graph in the top down method
until one matches, that is they are tested in ocofleresentation in the transformation.
We use this approach rather than alternatives asdbest fit' (i.e. classifying LHS by
how specific they are) because of its success atogous textual rule based systems
such as logic and functional languages. Theresis tile problem of interpreting best
fitin a graph based system.

The transformations are called by trigger nodeswshwith a rectangular shape) in
the host graph, and only one trigger is initiated ime. This is achieved by a newest
first execution order for the triggers in the gra@mly one LHS graph is matched at a
time, and the rewriting occurs in a serial mannsing a deterministic subgraph
matching strategy that relies on the nodes and iartse graph having an internal
ordering. The serial nature of Grrr aids algoritanimation as a parallel rewriting or
trigger initiation strategy could hide that the gmess of the algorithm.

The data graph (that is the part of the host gthphholds application data, usually
shown with round nodes) can be distinguished frbengart of the graph that holds
associated information (that is, information dedifeom the data graph and informa-
tion concerning execution, usually shown with avatles). A node type specified in a
rewrite will only match with that node type in thest graph.

Grrr allows arbitrary graphs to rewritten. To avacbiguity when deleting or
adding primitives, duplicate labels which appeahm LHS or RHS must be identified
by the user. The identifier is an integer supepsed to the node label.

Current modifications to the rewriting process umtd attractor nodes, negatives,
once only nodes and single match rewrites. For pl@nfrig. 2 shows a transforma-
tion with a single match rewrite, indicated by adbd background. The LHS of this
rewrite will match once and only once when the aisded trigger node is called.
After matching, the single match rewrite will bengged when further calls of the
particular trigger node are made.

Fig. 2 also shows the use of negative primitivee 8 graphs. Here, the second
rewrite contains a negative node and arc, indicétedhe primitives having thick
outlines (not to be confused with the highlightofghodes in the host graph). For this
LHS to match, the positive part of the graph muatai, and there must be no corre-
sponding match of all the LHS including the negzdiv

Fig. 1 illustrates the use of attractor nodes, wfta RHS of the second rewrite
having the attractor node Minus', indicated byhaded background. Attractor nodes
pick up any dangling arcs after a rewrite has hmeformed. Normally such dangling
arcs are deleted from the host graph.

Not shown in the examples is the use of once ooljes in LHS graphs. Here a
node can be specified to be a once only node, acll 8 node will match no more
than once with each corresponding node in the gagbh. This allows for simple
iteration through a graph.

To perform mathematical calculations and to expgessnetric operations in Grrr,
there are many built in transformations. Many & thilt ins are atomic, however
others have been added for efficiency reasons.

Often the progress of Grrr programs is expresseerins of number of steps. Each
step is an execution of a trigger node, and cacobsidered much like the execution
of a single instruction in a traditional textuabgramming language.

3 Illustrations of Use

Here we give all or part of three programs to thate the varied nature of the anima-
tion in Grrr. The transformations that make up fltegrams contain highlights in
order to distinguish between nodes with differezmmnantic meanings, which should
not be confused with the highlights shown in thathgraphs, which are purely for
animation purposes.

There are three ways of including animation in Qmagrams: by indicating via a
menu option that the matched part of the host gsfyoluld be highlighted, by indicat-
ing via a menu option that any node movement shbeldnimated, and by adding a
built in trigger to highlight a chosen node.

The automatic highlighting of matched subgrapte iseful tool in debugging Grrr
programs as it indicates that the desired parh®fibst graph has been matched by a
LHS graph. However, it can also be used for otleetssof animation by indicating
which part of the host graph has been visited agvshn the shortest path example,
Section 3.2. When nodes and arcs are highlightedliie thickness increase and the
colour changes from black to purple. There is @meint of arbitrariness to this, and
the specification of highlights can be changed.

Animation of node movement is a result of recentknia adding geometric trig-
gers to Grrr, and as with highlighting matched saps it is a feature that can be
used for either debugging or within a custom aniomatWhen producing graph
drawing algorithms, such as the force directed ritlym given in Section 3.1, it is
very useful to observe the process of the algoritbmevaluating the success of the
approach and confirming the correctness of theemphtation. However, in terms of
animation, the bubble sorting example given in i®ac8.3 shows how geometric
operations can be added to a purely graph theaatgarithm in order to clarify the
approach. In terms of visualisation, nodes thatnawged are shown changing position
on the screen.

The notion of adding triggers that change the amme® of nodes is entirely cus-
tom animation directed. The built in triggers irduthose to simply highlight the
nodes. However there are more flexible commanahamge the colour of nodes, and
clear all highlights in the host graph.

3.1 ForceDirected Graph Drawing

The animation of graph drawing algorithms requitesxtra work by the user. The
movement of nodes from one position to anotherlmishown by selecting a menu
option. The fine tuning of algorithms is made eabiecause the immediate effect of
altering parameters, or other changes to the doapwincess can be seen. Also, the
way poor drawings occur can be observed, so allpwiranges to cope with situations
such as subgraphs getting in to local minima oueagodes being misplaced.

Testhist arg
Testhist | agl
gz
—
distance
MpdeSeparation
arge"
TestDist |__aal Elaser arg
istance distance
g2 Y
Divide argz
0 stﬂwc \@
arg1
— ¥ argl
finus
¥
fdinCistance
Fig. 1. The transformation TestDistance’. This brings oected nodes closer together.

The distance they are moved together is greatenwienodes start further apart. The built in
Closer’ transformation moves both argument nodeddentical distance towards each other.
The distance is calculated from the distance theyapart (found using the NodeSeparation’
built in trigger) and the number of iterations thets taken place. The calculations are per-
formed by the Divide’ and Minus’ built ins. Thesar defined transformation MinDistance’
simply returns a constant number 90 in this impletaigon which can be used by Minus’ which
will in turn return a number that can then be usg®ivide'

As an example, we show part of a force directe@lydrawing algorithm, it is dif-
ficult to show the actual animation in a researapgy, but we hope that it is clear that
changing various aspects of this algorithm areegeiétsy, even when the algorithm has
been partially executed. The parameters for nodeement can be altered both in the
transformation definition and in the host grapheThnction used for deriving the
amount of node movement can also be altered frenvéiny simple calculation given
here into a more complex formula that may haveretieal effect on layout.

==

rg

a[g arg
arg

Fig. 2. The transformation ‘Separate’ This finds the notlest are closer than a set
distance from a node and then moves them apamstasd distance. BBox' is a built in trans-
formation that returns the nodes within the spedifiectangle, OverlapBox’is also built in and
returns the rectangle containing the specified sadde single node as in this case). The nodes
within the rectangle are then separated with thik ipuFurther’ transformation that moves both
argument nodes an identical distance from each othe

The method treats arcs as springs between nodesstiag them together, whist
unconnected nodes are repelled. The algorithm preddere first iterates through the
connected node pairs, bringing them closer, and itheéerates through all node pairs
separating the nodes which are within a set distarficeach other. This process is
repeated a number of times, with the distancettieahodes are attracted reducing on
each iteration. Our version of the force directpdraach is a simple variant on those
described in [5,14].

The two built in transformations that move nodes &toser’ and Further’, which
attract and repel node pairs respectively. Theyused in the two transformations
from the program, shown in Fig. 1 and Fig. 2. Tteetshost graph is shown in Fig. 3
and the final host graph is shown in Fig. 4.

oroelirectad

Fig. 3. At the start of execution. There will be 5 iterasoof first closing the nodes
connected by arcs and then separating nodes thtd@rclose

Fig. 4. At the end of execution

3.2 Shortest Path

This algorithm makes use of the highlighting toidadie the success of a graph search.
In this case we are finding a shortest path betw@emodes in an unweighted graph,
so a simple depth first search will suffice. Thisai version of an algorithm given in
[17], hence we only show the major alteration, Bigvhich changes the algorithm by
maintaining the structure of the graph and highirmghthe path found, rather than
deleting the nodes not participating in the pathisTalgorithm is a good example of
using the match highlighting feature for animatjmmrposes. Fig. 6 shows the host
graph at the start of execution. Fig. 7 shows th&t graph at the end of execution.

The search method can be clearly seen when thé gsagiepped through in a slow
manner, as only the matched nodes are visiblepdltte is added after the search has
found the arg2’node.

pathwmay

p athuuay
agged
agged
tagged arg
@ @

tagged 3 arg
@
Fig. 5. The transformation GetThePath’ This is calleceafthe path has been found,

and traverses back along the search tree untibthtethe ‘argl’node) is found

K

Fig. 6. The host graph at the start of execution. The progis searching for a path
between the two round nodes connected to the triggeargl’ and arg2’ arcs. The search is
from the argl’'node to the arg2’'node

[5hortestP ath

00

Fig. 7. The host graph at the end of execution. The blades indicate the nodes vis-
ited which are not in the path, the thick lined e®dndicate the nodes in the path, and the un-
changed nodes are those that have not been viSiedalgorithm finds only one shortest path
of possible candidates, hence the path given wasechover the alternative (using the black
nodes) by the Grrr node ordering system which @sstire matching process is deterministic.
The animation uses different colours when appeasimghe screen, but we are limited to a
black and white display for this paper

3.3 Bubble Sort

Here we give an example of a purely custom visatitia task. This is the sort of
algorithm animation that is a useful teaching &drting is not an ideal task to per-
form with Grrr, as the relative lack of complexif the data structure that is manipu-
lated makes it less suited to our form of graphritavg. The housekeeping concerned
with list iteration, for example, dealing with @ihses of nodes with or without prede-
cessors or successors, means that transformatitars lave many rewrites, one for
each case. We show all the transformations inglogram to indicate some of the
difficulties of producing this sort of custom vidisation task.

The program sorts a list represented by a set dési@onnected by arcs. Bubble
sorting performs several iterations through a &stapping the position of neighbour-
ing list members that are in the wrong positiorilant iteration swaps no more mem-
bers. The algorithm animation here is that of iatlitg the pair of nodes that are being
tested and demonstrating swaps via the physicaingayf the positions of swapped
nodes. Both node highlighting and swapping is defiaxplicitly in the program.

The full bubble sort program is shown in Fig. 8.F and Fig. 10. Some illustra-
tive stages in execution are shown in Fig. 11, Ejand Fig. 13.

BubhleSort HighlightP ai

BubbleSart| least
_@]
arg

f f

BubbleSort
BubhleSort|_lzast N

’ (D
e T
A ighlightFai
BubbleSor
anapped BubbleSart| least

g
f

X Swap 34 HighlightPai
BubbleSort BubbleSot % wl Least

T — fg rg‘1\;rg2
f

BubbleSort| Highlightrai
o BubbleSert ‘il
arg —

arg
NGy GO

BubbleSort
- O
'

Fig. 8. The transformation BubbleSort’ This is the topdetransformation in the pro-

gram and performs the tasks of iterating through likt, calling the transformation Swap’,

which swaps the pairs and HighlightPair’ which iretes which pair of nodes are being
swapped

Closer

distance

deSeparatign

distance
Closer

deSeparatign

distanee

deSeparatign

Fig. 9. The transformation Swap' It has to deal with threases: where is a node to
either side of the swapped pair, where there adesat either end, and where the pair is alone.
It calls two built in transformations: NodeSepawat which finds the distance between the
nodes, and Closer which moves each node clostire@ther by that distance, so animating the

swap by node movement.

HighlightP ai HighlightP ai ClearPrint
—
HighlightP ai Highlight Highlight
Fidl I ar Al
D e
HighlightF ai
Fig. 10. The transformation HighlightPair. The first reweiclears the current highlight

and is not called again because it is once onlg. Sd¢tond rewrite highlights the indicated two
nodes and removes the HighlightPair’ trigger. Timal rewrite is present to deal with the case
that the chosen node does not have a following notlee list. Here the trigger is deleted with
nothing highlighted

BubbleSort

Fig. 11. At the start of the BubbleSort’ program

HighlightF ai
’
BubbleSort

Swuap

Fig. 12. The host graph at step 76 in the rewriting proc@sés is the middle of the
second iteration through the list. The next fevwpsteill exchange both the graph theoretic and
geometric positions of two highlighted nodes. Téwapped’ node indicates that a swap has
already been performed on this iteration. The HigdtiPairs’ trigger will be executed after the
swap and highlight the next pair to be tested

Fig. 13. The host graph after the program has finished em 566. The list is sorted

4 Conclusionsand Further Work

The animation techniques presented here are not Inewever the graph rewriting
method used to create them is novel and the amimaieasy to achieve, as in many
cases it requires no extra effort from the progr@amriVe see this as an application
area that plays on the strengths of graph rewrjtimgramming languages, as they are
the only current systems which combine a visualwvid graph data structures and
computational completeness, so potentially allowatigpossible graph based algo-
rithms to be animated. Indeed, such animation gemt debugging aid when pro-
gramming with Grrr.

The algorithm animation capabilities presented Hfialténto two main visualisation
techniques: animating node movement, and hightightiisited or chosen subgraphs.
The methods used for producing animations can hitipaed into those that can be
used on existing algorithms, such as showing tlike meovement in graph drawing, or
displaying visited nodes and those which are ddfibg the user, such as placing
nodes for illustration and selecting specific nottede highlighted. The techniques
described here can be combined as wished.

There are many possible areas of future work coecewith improving the usabil-
ity of this programming language for the task ajoaithm animation. The first im-
portant requirement for development of graph badgdrithms is graph editing. The
current Grrr editor is proving tricky to use forethigh volume graph production re-
quired for animation. Further flexibility in cutgnand pasting, and general user inter-
face improvements are required.

The definition of node movement and highlightimgtiansformations is currently
explicit, that is, the nodes are moved and higldighby built in transformations. One
can envisage an implicit method for defining nodevement, where a difference in
position of a node from the LHS to a RHS would méas node was moved in the
host graph. Implicit highlighting is also possibiehere a node highlight in a RHS
would be reflected by the corresponding node bkighlighted in the host graph.

Node movement could be made easier by allowing wement path to be defined
by an arc. The node might follow the bends in ttees® as to produce more sophisti-
cated user defined animation.

Because many of the built in transformations do ct@nge the structure of the
graph, it can be difficult at times to ensure thegty are called in the right order. For
example, the current position of a node shoulddumd before that node is moved.
Hence we are considering adding some method forifgpey the order of trigger
node execution in RHS graphs.

Acknowledgements

This work was supported by funding from the UK Eragiring and Physical Sciences
Research Council (EPSRC), grant reference GR/M23564

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Banach R.: MONSTR | -- Fundemental Issues and tasign of MONSTR. Journal of
Universal Computer Science 2,4 (1996) 164-216.

Brown M.H.: The 1992 SRC Algorithm Animation FestivProceedings of theé"9EEE
Symposium on Visual Languages. IEEE Computer Spéletss (1993) 116-123.

Brown M.H and Sedgewick R.: Techniques for Algariti®nimation. IEEE Software 2,1
(1985) 28-39.

Brandenburg F.J.: Layout Graph Grammars: The Planempproach. Proceedingd 4
International Workshop on Graph Grammars and thpplication to Computer Science.
LNCS 532. 144-156.

Eades P.: A Heuristic for Graph Drawing. Congre$éusierantium 42 (1984) 149-160.
Feiner S., Salesin D. and Banchoff T.: Dial: A Demgmatic Animation Language. |IEEE
Computer Graphics and Applications 2,9 (1982) 43-54

Glauert J.R., Kennaway J.R. and Sleep M.R.: Dauatl:Experimental Graph Rewriting
Language. Proceeding8 hternational Workshop on Graph Grammars and thgjiica-
tion to Computer Science. LNCS 532. 378-395.

Gurka J.S and Citrin W.: Testing Effectiveness défokithm Animation. Proceedings of
the 12' IEEE Symposium on Visual Languages (1996) 182-189.

Helttula E., Hyrskykari A. and Réaiha K.-J.: GrapliSpecification of Algorithm Anima-
tions with ALADDIN. Proceedings"2International Conference on System Sciences, Vol.
2 (1989) 892-901.

Hofting F., Wanke E., Balmoean A. and Bergmann L2.Grade - A System for Imple-
mentation, Testing and Animation of Graph AlgoriraNCS 665 (1993) 706-707.
Kaplan S.M., Goering S.K. & Cambell R.H. Specifyit@pncurrent Systems with
Grammars. Proceedings of the Fifth Internationalk&loop on Software Specification and
Design. Society Press (1989). 20-27.

Lahtinen S.P., Sutinen E. and Tarhio J.: Automaeianation of Algorithms with Eliot.
Journal of Visual Languages and Computing Vol.s9 8(1998) 337-349.

Lee M.-C.: An Algorithm Animation Programming Eneirment. LNCS 602 (1992) 368-
379.

Purchase H.C.: Performance of Layout Algorithmsm@rehension, not Computation.
Journal of Visual Languages and Computing (1998419;657.

Paredaens J., Van den Bussche J., Andries M., @y$d4eand Thyssens I.. An Overview
of GOOD. ACM SIGMOD Record, 21,1. (March 1992) 25-3

Rodgers, P.J.: A Graph Rewriting Programming Laggufor Graph Drawing. Proceed-
ings of the 14 IEEE Symposium on Visual Languages, Halifax, N&aotia, Canada.
IEEE Computer Society Press (1998) 32-39.

Rodgers P.J. and King P.J.H.: A Graph RewritinggRamming Language for Database
Programming. The Journal of Visual Languages anditing 8(6), 1997. 641-674.
Schiirr A.: Rapid Programming with Graph Rewrite é&3ulProceedings USENIX Sympo-
sium on Very High Level Languages (VHLL), Santa Betober 1994. 83-100.

Stasko J. and Badre A.: Do Algorithm Animations idssearning? An Empirical Study
and Analysis. Proceedings of ACM INTERC®8 (1993) 61-66.

McWhirter J.D.: AlgorithmExplorer: A Student Centered Algorithm Animation System.
12" |IEEE Symposium on Visual Languages (1996) 174-181.

ZinBmeister G. and McCreary C.L.: Drawing Graphs with Attribute Graph Grammars.
Graph Drawing '94. LNCS 894. (1995) 266-269

