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ABSTRACT Medium-scale or large-scale receive antenna array with digital beamforming can be employed
at receiver to make a significant interference reduction but leads to expensive cost and high complexity of
the RF-chain circuit. To deal with this issue, classic analog-and-digital beamforming (ADB) structure was
proposed in the literature for greatly reducing the number of RF-chains. Based on the ADB structure, in this
paper, we propose a robust hybrid ADB scheme to resist directions of arrival (DOAs) estimation errors.
The key idea of our scheme is to employ null space projection (NSP) in the analog beamforming domain
and diagonal loading (DL) method in digital beamforming domain. The simulation results show that the
proposed scheme performs more robustly, and moreover, it has a significant improvement on the receive
signal-to-interference-plus-noise ratio compared to NSP ADB scheme and DL method.

INDEX TERMS robust, secure, hybrid structure, interference reduction, analog-and-digital beamforming.

I. INTRODUCTION
Physical layer security problem has attracted more and more
research interests from both academia and industry [1],
and now increasingly becomes one of the most impor-
tant problems in wireless networks. In general, interference
reduction [2] is crucial in ensuring the secure acception of
information, especially when enemies send interference sig-
nals to interrupt the reception of the desired signal [3].
In the coming future, the demand for interference reduction
will arise in many potential practical applications such as
unmanned aerial vehicle (UAV) [4], user equipment [5], inter-
net of things (IoT) and so on. As a classic secure transmit

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Wang.

method, directional modulation (DM) [6], [7] preserves the
original signal constellation of transmitted signals along the
desired direction well, and distorts the signal constellation
along the undesired direction [8]. The measurement accuracy
of direction of arrival (DOA) is critical to both DM and
interference reduction. Shu et al. [9] developed three low
complexity hybrid algorithms for multiple-input multiple-
output (MIMO) receive array with phase alignment, which
could achieve the Cramer-Rao lower bound (CRLB) of hybrid
structure. It is clear that the DOA measurement errors of the
desired and undesired signals will lead to some performance
loss in interference reduction.

To alleviate this negative impact, several robust interfer-
ence reduction algorithms have been proposed in the lit-
erature to resist DOAs estimation errors. By reducing the
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mean square error (MSE), [10] presented a variable step
size normalized least mean square (LMS) algorithm. Ref-
erence [11] proposed a self-adaptive algorithm for a robust
direct-sequence spread-spectrum system, which is fast, loop
structures avoiding, easy and cheap to implement in hard-
ware. In [12], with the prior knowledge of possible target
region, a robust deceptive interference reduction method
based on covariance matrix reconstruction with frequency
diverse array (FDA)MIMO radar is proposed. However, all of
these schemes are based on the digital beamforming structure
where each antenna needs one single radio frequency (RF)
chain, so that the large array size and large hardware cost are
inevitable.

In order to make a good balance between circuit cost and
interference reduction performance simultaneously, we in
this paper apply a hybrid analog-and-digital beamforming
(ADB) structure into the receiver. Two distinctive features of
this structure are that each subarray output is viewed as one
single virtual large antenna output and a digital beamforming
operation is performed with an analog beamforming opera-
tion together. Furthermore, built on this structure, we pro-
pose a robust hybrid ADB algorithm that jointly employs
null space projection (NSP) [13] and diagonal loading (DL)
algorithm [14]. It will be shown by simulation that the pro-
posed scheme is more robust to the DOAmeasurement errors
and interference in comparison with existing NSP and DL
methods.

It is known that the hybrid structure has been studied
in many papers. Reference [15] provides a comprehensive
survey of the various incarnations of hybrid structures that
have been proposed in the literature. In [16], two hybrid
structures, i.e., the fully-connected and partially-connected
structures, were proposed to design a hybrid analog and digi-
tal precoding algorithm that can reduce the cost of RF chains.
Reference [17] developed a low-complexity alternating min-
imization precoder by enforcing an orthogonal constraint
on the digital precoder. Ayach et al. [18] presented some
receive baseband combiners with the target of minimizing
MSE between transmitted and processed received signals.
In [19], two precoders based on the principle of manifold
optimization and particle swarm optimization were proposed.
An energy-efficient hybrid precoding for partially-connected
architecture was proposed in [20]. Reference [21] presented
achievable rates of hybrid precoding in multi-user multiple-
input multiple-output (MU-MIMO) system when employing
only one RF chain per user and investigated the impact of
phase error on hybrid structure performance. To make the
optimal tradeoff between energy efficiency and spectrum
efficiency, [22] achieved the green point for fixed product
of the number of transceivers and the number of active
antennas per transceiver. Meanwhile, [23] proposed an iter-
ative hybrid beamforming algorithm for the single user in
mmWave channel, which can approach the rate limit achieved
by unconstrained digital beamforming solutions. However,
most researches about hybrid structure focus on transmit-
ter not receiver. They always investigate different precoding

methods for specific proposes. It should be pointed out that
since the hybrid structure is used at the receiver and the
application target is different in this paper, the derivation of
many parameters is entirely different from the current studies.

The remainder of this paper is organized as follows.
Section II describes the system model. In Section III, a robust
hybrid ADB scheme of combining NSP and DL is proposed
to combat the DOA measurement errors and dramatically
reduce the circuit cost is proposed. Section IV presents sim-
ulation results to evaluate the performance of our proposed
algorithm. Finally, our conclusions are drawn in Section V.

Notation: throughout the paper, matrices, vectors, and
scalars are denoted by letters of bold upper case, bold
lower case, and lower case, respectively. Signs (·)T and
(·)H denote transpose and conjugate transpose, respectively.
Notation E{·} stands for the expectation operation. Matrices
0M × N denotes the M × N matrix of all zeros.

II. SYSTEM MODEL
In this paper, we consider a partially connected receive struc-
ture, where each antenna is connected to one phase shifter.
In Fig. 1, one desired emitter transmits the signal sd (t)ej2π fct ,
where sd (t) is the baseband signal of our desired signal, and
Q interference emitters transmit the narrow band signals:
s1(t)ej2π fct , . . . , sQ(t)ej2π fct , where s1(t), . . . , sQ(t) are the
baseband signals of Q interference signals. These Q + 1
signals are transmitted on the same frequency band, and then
are incident on the hybrid receive array as shown in Fig. 1.

FIGURE 1. ULA hybrid beamforming with sub-connected architecture.

22228 VOLUME 7, 2019



L. Sun et al.: Grant Robust Secure Hybrid Analog and Digital Receive Beamforming Scheme

Hence, the Q interference signals can be seen as the co-
channel interference (CCI) for the receiver.

We assume that the linear uniform linear array (ULA) is
used at the receiver, which consists of N omnidirectional
antenna elements and is equally divided into K disjoint sub-
sets, i.e., each subset has M = N/K antennas. It is fur-
ther assumed that the desired signal comes from the DOA
θd , while the Q interference signals come from the DOAs:
θ1, . . . , θQ, respectively.
Then, for k = 1, 2, . . . ,K , the kth subarray output ỹk (t)

can be represented as

ỹk (t) =
M∑
m=1

sd (t)e(2π fct−2π fcτk,m,d−αk,m)

+

Q∑
q=1

M∑
m=1

sq(t)e(2π fct−2π fcτk,m,q−αk,m) + nk (t). (1)

Here, τk,m,i denotes the propagation delay of the received
signal with the DOA θi for i = d, 1, 2, . . . ,Q, and can be
given by

τk,m,i = τ0 −
((k − 1)M + m− 1) d

c
sin θi, (2)

where τ0 is the propagation delay from the emitter to the first
element on the array, c is the speed of light, and d denotes
the antenna spacing. In (1), αk,m is the corresponding phase
for analog beamformer WRF corresponding to mth antenna
of subarray k . Stacking all K subarray outputs in (1) forms
the following matrix-vector notation

ỹ(t) = ej2π fctWH
RFAs(t)+n(t), (3)

where s(t) = [sd (t), s1(t), · · · , sQ(t)]T , and n(t) =

[n1(t), n2(t), · · · , nK (t)]T is an additive white Gaussian noise
(AWGN) with each element being Gaussian distribution
CN (0, σ 2

n ), whose entries are independent identically dis-
tributed, and the steering matrix A is defined by

A =
[
a(θd ), a(θ1), · · · , a(θQ)

]
, (4)

where a(θ ) is the so-called array manifold

a(θ ) =
[
1, ej

2π
λ
d sin θ , · · · , ej

2π
λ
(N−1)d sin θ

]T
, (5)

and the WRF is an N × K phase shift matrix as follows

WRF =



f1 0 · · · 0

0 f2 · · · 0

...
...

. . .
...

0 0 · · · fK

 , (6)

where fk = 1
√
M

[
ejα1,k , ejα2,k , · · · , ejαM ,k

]T is the analog
beamforming vector of the kth subarray. The RF signal vector
ỹ(t) in (3) passes throughK parallel RF chains, containing the

corresponding down converters and ADCs. Thus, we have the
following baseband signal vector

y(l)=WH
RFAs(l)+ n(l). (7)

Via digital beamforming operation, the above signal vector
becomes

r(l)=wH
BBW

H
RFAs(l)+ wH

BBn(l). (8)

where wBB= [w1,w2, · · · ,wK ]T stands for the digital beam-
former.

III. PROPOSED ROBUST HYBRID ADB SCHEME
In practical applications, we can only obtain the estimated
value of DOA. If we have the prior knowledge of DOA
measurement errors such as their statistical knowledge,
a robust hybrid ADB scheme is proposed and designed to
achieve an obvious interference reduction and combat the
effect of performance loss produced by DOA measurement
errors.

A. DESIGN OF TOTAL BEAMFORMING VECTOR
The total steering matrix A is expressed as [a(θd ) AI ],
where AI is made up of all steering vectors of interfer-
ence signals. The total beamforming vector is defined by
WRFwBB = v and can be viewed as one single opti-
mization variable. According to the criterion of null space
projection (NSP), we consider the following optimization
problem:

maximize ‖vHa(θd )‖2

subject to AH
I v = 0. (9)

In the presence of DOA measurement errors, the ideal
DOA can be represented as

θ = θ̂ +1θ, (10)

where θ̂ denotes the estimated DOA, and 1θ denotes the
measurement error of direction angle. Then, by using (10),
the optimization problem (9) can be rewritten as

maximize ‖vHa(θ̂d +1θd )‖2

subject to AH
I (2I )v = 0,

2I = {θ̂1+1θ1, · · · , θ̂Q +1θQ}. (11)

By assuming that 1θ is uniformly distributed over the
interval [−ε, ε], we define the probability distribution of1θ ,
denoted by p(1θ ), as

p (1θ) =


1
2ε
, −ε ≤ 1θ ≤ ε,

0, otherwise,
(12)

where ε is the maximum DOA estimation error. Due to the
effect of DOA estimation error1θ , the exact DOA θ can also
be viewed as a uniform distribution with nonzero mean. As
such, we have

E[a(θd )] = E[a(θ̂d +1θd )] , r. (13)
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The ith element of r is

ri =
∫ ε

−ε

ej
2π
λ
(i−1)d sin (θ̂d+1θd ) × p (1θ)d(1θd )

=

∫ ε

−ε

ej
2π
λ
(i−1)d(sin θ̂d cos1θd+cos θ̂d sin1θd )

× p (1θ)d(1θd )

=
1
2π

∫ π

−π

eai cos cx+bi sin cxdx, (14)

where ai , j 2π
λ
(i − 1)d sin θ̂d , bi , j 2π

λ
(i − 1)d cos θ̂d and

c , ε
π
.

Furthermore, we have

E[AI (2I )] , R, (15)

The entry of the ith row and the qth column of R is

Riq =
1
2π

∫ π

−π

eaiq cos cx+biq sin cxdx, (16)

where aiq , j 2π
λ
(i− 1)d sin θ̂q, biq , j 2π

λ
(i− 1)d cos θ̂q, and

c , ε
π
.

Substituting r and R into (11) forms the following robust
optimization problem

maximize ‖vHr‖2

subject to RHv = 0. (17)

In accordance with the above equality constraint, the total
beamforming vector v is orthogonal to the null space of
R. To construct v, the singular value decomposition (SVD)
operation is performed on conjugate transpose of interference
matrix R as follows: R = U

∑
VH , where U and V are the

unitary matrices with U ∈ CQ×Q, and V ∈ CN×N . Here,∑
∈ CQ×N is a rectangle matrix with singular values on

its main diagonal and all off-diagonal elements being zeros,

i.e.
∑
=

[
diag

{
σ 2
1 , σ

2
2 , · · · , σ

2
Q

}
, 0Q×(N−Q)

]
. According

to the equality constraint in (17), v can be given by a linear
combination of the N − Q most right column vectors of
matrix V, i.e.,

v = Fṽ, (18)

where F is the N − Q most right columns of V, and ṽ
is a column vector with each entry controlling the linear
combination of right singular vectors and it has normalized
power E(ṽH ṽ) = 1.

Therefore, the optimization problem in (9) can be rewritten
as

maximize ‖ṽHFHr‖2, (19)

which directly yields

ṽopt =
FHr
‖FHr‖

, (20)

and

vopt = Fṽopt . (21)

This completes the design of the total beamforming vector.

B. DL-BASED DIGITAL BEAMFORMER
In what follows, given the initial value of analog beamformer
WRF0 , we show how to optimize the digital beamforming
vector wBB. A wise choice to design WRF0 is to make the
array point towards the DOA of the desired signal at first, i.e.,

αk,m,0 =
2π
λ
((k − 1)M + m− 1) d sin(θ̂d +1θd ). (22)

where αk,m,0 is the initial corresponding phase of WRF0 .
Similar to the derivation of r andR, in order to calculate the

initialization valueWRF0 , the expectation of sin(θ̂d +1θd ) is
adopted to replace the exact sin θd , i.e.,

E[sin θd ] = E[sin(θ̂d +1θd )]

=

∫ ε

−ε

sin(θ̂d +1θd )× p(1θd )d(1θd )

=
1
ε
sin θ̂d sin ε. (23)

Thus, the corresponding phase of WRF0 is given by

αk,m,0 =
2π
ελ
((k − 1)M + m− 1) d sin θ̂d sin ε. (24)

The steering vector of subarray asub is generated with
known WRF0 . Let us define the subarray steering vector of
the desired signal as follows

asub(θ̂d +1θd ) =WH
RF0a(θ̂d +1θd ). (25)

Due to that the perfect information of noise and signals
is usually unavailable in practice, the sampling covariance
matrix is adopted instead. Since the Capon beamforming
method [24] is sensitive to modeling errors, it is not robust
for modeling mismatch, which will deteriorate the output of
Capon beamformer seriously. Therefore, instead of Capon
method, the DL method is employed to design digital beam-
forming vector, which is robust to model mismatch. Via the
regularization operation on Capon method, the optimization
problem of using DL method to optimize the beamforming
vector wBB can be casted as

minimize
wBB

wH
BB

(
R̂+ γ I

)
wBB

subject to wH
BBasub(θ̂d +1θd ) = 1, (26)

where γ denotes the DL factor, and R̂ is the sampling covari-
ance matrix corresponding to K subarrays,

R̂ =
1
L

L∑
l=1

yH (l)y(l), (27)

where L is the number of snapshots. Applying the Lagrange
multiplier method to the optimization problem (26), the asso-
ciated Lagrangian function has the following form

f (wBB, λ) = wH
BB

(
R̂+ γ I

)
wBB

+ λ
(
wH
BBasub(θ̂d +1θd )− 1

)
, (28)
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where the scalar λ is the lagrange multiplier. By taking the
derivation of f (wBB, λ) with respect to wBB and letting it
equal zero, the digital beamformer is

wBB = −λ
(
R̂+ γ I

)−1
asub(θ̂d +1θd ). (29)

Substitute (29) into the equation constraint of (26), then wBB
is expressed as

wBB =

(
R̂+ γ I

)−1
WH

RF0a(θ̂d +1θd )

×

(
WH

RF0a(θ̂d +1θd )
(
R̂+ γ I

)−1
×WH

RF0a(θ̂d +1θd )
)−1

. (30)

Similar to the derivation of total beamformer, r is used to
replace a(θ̂d + 1θd ), therefore, the above equation is writ-
ten as

wBB =

(
R̂+ γ I

)−1
WH

RF0
r

WH
RF0

r
(
R̂+ γ I

)−1
WH

RF0
r
. (31)

Observing the above expression, the main advantage of the
DL method guarantees that the diagonal loading matrix R̂+
γ I is invertible by adding white noise variance to diagonal
elements of sampling covariance matrix R̂.

C. ANALYTIC ANALOG BEAMFORMER
Now, we turn to the construction of the analog beamformer
WRF . To simultaneously reduce the interference and max-
imize the received power of desired signal, we model the
problem of optimizingWRF as follows

minimize ‖vopt −WRFwBB‖. (32)

Based on (6) and expression of fk , the above unconstrained
optimization problem can be decomposed into the following
N independent sub-optimization problems:

minimize ‖vopt (k−1)×M+m −
1
√
M
ejαk,mwk‖, (33)

where k ∈ {1, 2, · · · ,K }, m ∈ {1, 2, · · · ,M}, and voptk and
wk represent the kth element of vopt and wBB, respectively.
The above sub-optimization directly yields the following
closed-form solution

αk,m = 6

(vopt (k−1)×M+m
wk

)
. (34)

Based on the above construction, we summarize our robust
hybrid ADB algorithm in Algorithm I.

IV. SIMULATION RESULTS
In this section, we present simulation results to examine the
performance of the proposed robust hybrid ADB algorithm.
We consider N = 32, K = 4, and antenna spacing d = 0.5λ.
It is assumed that the desired DOA θd = 60◦, and the DOAs
of two interference sources are 30◦ and −15◦, respectively.

Algorithm 1 The Proposed Robust Hybrid ADB Algorithm
Input: r, R 1: InitializeWRF0 by (24);
2: Calculate vopt based on r and R;
3: DL-based digital beamforming vector wBB
is constructed in accordance with (31);
4: Reconstruct αk,m by (34);
output: WRF ,wBB

FIGURE 2. Normalized beam gain patterns for DL algorithm and proposed
robust hybrid ADB without DOA measurement errors.

First, we consider the situation with perfect DOA knowl-
edge. Fig. 2 shows that the curves of beamforming gain versus
direction of the DL method and the proposed algorithm. It
can be seen that the proposed method can attenuate the beam
gain by at least 30dB in the direction of interference signals,
where signal to noise ratios (SNR) of desired and interference
sources are 0dB and 15dB, respectively. In contrast with the
DL algorithm, our method performs well along the direction
of interference and has the same gain in the desired direction.

In Fig. 3, we present the curves of signal to interference
plus noise ratio (SINR) versus SNR of the desired signal by
ranging SNR from −15dB to 15dB. It is seen that the pro-
posed hybrid beamformer almost has the same performance
as DL method in the low SNR region. Moreover, as SNR
increases, our algorithm has a stronger ability to reduce inter-
ference. Specifically, when the SNR of the desired signal is
less than −5dB, the SINR curve of our proposed algorithm
and DL method are identical. Nevertheless, when SNR is
higher than−5dB, the SINR curve of the proposed algorithm
is above that of DL. It is due to the fact that our proposed
algorithm adopts NSP method in the analog beamformer.
In other words, the total beamforming vector is projected onto
the null space of interference steering vectors. This makes
our proposed algorithm perform better than conventional DL
method.

According to the estimator presented by [25], the rootmean
square (RMS) is less than 1◦ under the condition that the SNR
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FIGURE 3. Curves of SINR versus SNR for DL and proposed robust hybrid
ADB method without DOA measurement errors.

of estimated source is 0dB. In order to examine the robust
performance of our proposed method in extreme conditions,
it is supposed that1θ is uniformly distributed and there exists
a maximum estimation error 3◦, i.e., ε = 3◦.

FIGURE 4. Curves of SINR versus SNR with DOA estimation errors.

Fig. 4 illustrates the robustness performance of our pro-
posed algorithm. The curve of the proposed NSP algorithm
with perfect DOA estimation is used as a reference. Observ-
ing this figure, we find, with increase in the value of SNR,
the SINR performance of the NSP hybrid beamforming with
DOA estimation errors is always almost 3dB worse than
that with perfect DOA estimation. It is noted that when the
desired SNR is low, considering the uniformly distributed
DOA estimation errors, the robust algorithm is closer to the
NSP algorithm with perfect DOA, that is, our robust hybrid
beamforming can efficiently reduce interference and retain
robust when there exists direction-finding errors in the low

SNR region, which is the typical situations in interference
reduction.

Fig. 5 plots the curves of RMSE versusmaximummeasure-
ment angle errors ε for the proposed hybrid ADB while the
NSP with perfect DOA is used as a reference. For example,
the red line is the RMSE between our proposed hybrid ADB
with DOA estimation errors and hybrid ADB with perfect
DOA. By our calculation, when there exist DOA estimation
errors, the RMSE differences between the reference and three
methods grow gradually with angle error. It is noted that,
with the increase of ε, the RMSEs of NSP hybrid beamform-
ing, DL method and the robust hybrid beamforming become
worse. However, the RMSE of robust hybrid beamforming
is always lower than that of DL algorithm and NSP hybrid
beamforming. This means that it has a better performance.

FIGURE 5. Curves of RMSE versus DOA estimation error for NSP
beamforming without DOA estimation error and three methods with DOA
measurement errors.

FIGURE 6. Curves of SINR versus snapshot number for three different
SNRs.
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Finally, Fig. 6 illustrates the impact of snapshot number on
the robust hybrid ADB scheme proposed by us. From Fig. 6,
it is seen that the performance of the proposed robust hybrid
beamforming is gradually improved with increasing the snap-
shot number. When the receive SNR of the desired signal
is in the low SNR region, the snapshot number has bigger
impact on the performance improvement. Once the number
of snapshots reaches the limit value 32, further increasing it
has a trivial impact on performance improvement.

V. CONCLUSION
In this paper, a robust hybrid ADB scheme, has been pro-
posed, which are based on DL method, where the NSP rule
is adopted to design the total beamforming vector. In the
case of perfect DOA available, the proposed scheme achieves
a substantial beam gain over DL algorithm in the interfer-
ence direction. In the presence of DOA measurement errors,
the proposed robust hybrid ADB, with uniformly distributed
angle errors, shows a good robustness compared to DL algo-
rithm and the NSP hybrid method. As the maximum angle
error becomes larger, its SINR performance over non-robust
schemes such as DL becomes more significant. In the coming
future, the proposed method may be potentially applied to
future directional modulation networks, satellite communi-
cations, mmWave communications, and UAV.
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