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Abstract 

Gallium-doped phosphate-based glasses (PBGs) have been recently shown to have antibacterial 

activity. However, the delivery of gallium ions from these glasses can be improved by altering the 

calcium ion concentration to control the degradation rate of the glasses. In the present study, the 

effect of increasing calcium content in novel gallium (Ga2O3)-doped PBGs on the susceptibility of 

Pseudomonas aeruginosa is examined. The lack of new antibiotics in development makes gallium-

doped PBG potentially a highly promising new therapeutic agent. The results show that an increase 

in calcium content (14, 15, and 16 mol% CaO) cause a decrease in degradation rate (17.6, 13.5 and 

7.3 µg.mm
2
.h

1
), gallium ion release and antimicrobial activity against planktonic P. aeruginosa. 

The most potent glass composition (containing 14 mol% CaO) was then evaluated for its ability to 

prevent the growth of biofilms of P. aeruginosa. Gallium release was found to reduce biofilm 

growth of P. aeruginosa with a maximum effect (0.86 Log10 CFU reduction compared to Ga2O3-

free glasses) after 48h.  Analysis of the biofilms by confocal microscopy confirmed the anti-biofilm 

effect of these glasses as it showed both viable and non-viable bacteria on the glass surface. Results 

of the solubility and ion release studies show that this glass system is suitable for controlled 

delivery of Ga
3+

. 
71

Ga NMR and Ga K-edge XANES measurements indicate that the gallium is 

octahedrally coordinated by oxygen atoms in all samples. The results presented here suggest that 

PBGs may be useful in controlled drug delivery applications, to deliver gallium ions in order to 

prevent infections due to P. aeruginosa biofilms. 

 

Key words: Glass, Drug delivery, Microbiology, Antimicrobial, Biofilm  

 

 

 

 



 3 

1. Introduction 

Advances in medicine and surgery have led to increasing reliance on a variety of medical 

devices. However, the non-shedding surfaces of medical devices, such as catheters, frequently 

become colonised by members of the indigenous microbiota and opportunistic pathogens such 

as Pseudomonas aeruginosa which can cause hospital-acquired infections (HAIs). Many of 

the diseases caused by P. aeruginosa (such as airway infections in cystic
 
fibrosis (CF) 

patients, chronic wound and sinus infections) appear to
 
be associated with biofilm formation 

and are responsible for significant mortality [1-4]. Biofilm formation occurs as a result of a 

sequence of events: microbial surface attachment, cell proliferation, matrix production and 

detachment [5]. Biofilm-associated
 
bacteria show a decreased susceptibility to antibiotics [6], 

disinfectants [7] and clearance by host defences [3, 8]. A recent study has found that Ga
3+

 

ions inhibit P. aeruginosa growth and biofilm formation in vitro by decreasing bacterial Fe 

uptake and interfering with Fe signalling via the transcriptional regulator pvdS [9]. Other 

studies have demonstrated that gallium is effective against the organisms causing tuberculosis 

[10] and malaria [11] in human beings, and in the treatment of pneumonia due to 

Rhodococcus equi in foals [12]. Further to this, we have recently shown that Ga2O3-doped 

phosphate-based glasses (PBGs) containing Ga
3+

 exhibit a potent antibacterial effect against 

planktonic bacteria including P. aeruginosa, methicillin-resistant Staphylococcus aureus and 

Clostridium difficile [13]. However, bacteria grown planktonically are known to be far more 

susceptible to antibacterial agents compared to their biofilm counterpart [14]. 

 

Ga2O3-doped PBGs are durable materials which can act as a unique system for the delivery of 

gallium ions in a controlled way [13]. Ions incorporated into the glass structures are not a 

separate phase, and thus their rate of release is defined by the overall degradation rate of the 

glass. In the past copper and silver have been incorporated into PBGs and have then been used 
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as wound dressings to prevent infections [15]
 
and also to control urinary tract infections in 

patients needing long-term indwelling catheters
 
[15, 16].  However, there is an underlying 

need to improve the properties of existing biomaterials due to the incidence of HAIs, which 

often lead to revision surgery, and the growing resistance to antibiotics exhibited by these 

bacteria [17]
.
 Despite the recent increase in the number of reported HAIs, there are very few 

new antibacterial drugs with an entirely new mechanism of action that has been introduced in 

the past three decades or are present in the advanced stages of development [18]. Our recent 

work showed the potential of Ga2O3–doped PBGs as a novel drug delivery system in 

combating bacteria associated with HAIs, especially P. aeruginosa [13]. However, in that 

study, it was found that increasing the gallium content of the glasses decreased the rate of 

degradation and subsequent release of gallium ions which highlighted the need to improve the 

controlled delivery of Ga
3+

 for antimicrobial applications. 

 

 The aim of the study reported here is to investigate the effect of increasing calcium content in 

Ga2O3-doped PBGs on their structure, properties and antibacterial activity against both 

planktonic cells and biofilms of P. aeruginosa.  

 

2. Materials and Methods 

2.1.Preparation of Ga2O3-doped PBGs 

PBGs were produced using NaH2PO4 (BDH, 98%), P2O5 (Sigma, 97%), and CaCO3 

(BDH, 98.5%). For the preperation of gallium-containing PBGs, Ga2O3 (Sigma, 99.99%) was 

also used as shown in Table I. The required amount of each reagent was weighed and added 

to a Pt/10%Rh crucible (Johnson Matthey, Royston, UK). The crucible was then placed in a 

preheated furnace at 1100°C for 1 hour. The molten glass was then poured into graphite 

moulds, which had been preheated to 350°C. The glass samples were allowed to cool to room 
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temperature, and the resulting glass rods cut into discs by using a rotary diamond saw 

(Testbourne Ltd, Basingstoke, UK). Density measurements were conducted in triplicate on 

samples using the Archimedes’ Principle. 

 

Gallium-doped glasses of general composition (CaO)x(Na2O)52-x(P2O5)45(Ga2O3)3, where x = 

14, 15 and 16, hereafter given the abbreviations C14, C15 and C16 respectively, were 

prepared along with a sample containing no gallium, hereafter given the abbreviation Ga0, of 

composition (CaO)16(Na2O)36(P2O5)45   

 

2.2.Degradation study 

Ga2O3-doped PBG rods (5 mm diameter and 2 mm thickness) with different CaO contents 

were put in plastic containers, filled with 50 ml of deionised water (pH 7±0.5), and  placed in 

an incubator at 37 °C. At various time points (6, 24, 48, 72 and 120h), the three disks were 

taken out of their respective containers, and excess moisture removed by blotting the samples 

dry with tissue prior to weighing them. All the disks were put into a fresh solution of 

deionised water and placed back into the incubator. To obtain the rate of mass loss, the initial 

weight (M0) of each sample was measured as well as the mass at time t (Mt) to give a mass 

loss per unit area thus: mass loss=(M0–Mt)/A, where A is the surface area (mm
2
). The 

measurements were carried out in triplicate, and the weight loss per unit area plotted against 

time. The slope of this graph gives a degradation rate value in units of mg.mm
2
.h

1
, 

determined by fitting a straight line of the form y = mx. 

 

2.3. pH measurements  

The pH measurements of the medium in which the glass disks had been soaked were taken at 

each time point (6, 24, 48, 72 and 120h) using a Hanna Instruments pH 211 Microprocessor 
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pH meter (BDH, UK) with an attached glass combination pH electrode (BDH, UK). The pH 

electrode was calibrated using pH calibration standards (Colourkey Buffer Solutions, BDH, 

UK). 

 

Both dissolution studies and standards, for ion release study, were prepared using high purity 

water. This was obtained from a PURELAB UHQ-PS system (Elga Labwater, UK) with a 

purity level of 18·2 M cm
1
 resistivity. 

 

2.4. Ion release study 

Ion release studies were simultaneously conducted, and the medium was analysed for Na
+ 

and 

Ca
2+

 using ion chromatography (Dionex, UK). ICP-MS (inductively coupled plasma mass 

spectrometry, Spectromass 2000 by SPECTRO) was used to determine the amount of both 

gallium and phosphorus ions released from all glass compositions at the previously mentioned 

time points. The instrument was calibrated for the concentration range 0.1-1000 ppb by 

mixing single element standards obtained from Sigma and diluting in ultra pure water. 

 

2.5. Effect of increasing calcium concentration on planktonic P. aeruginosa growth 

P. aeruginosa (PA01) cells were inoculated into 10 mL of nutrient broth and incubated 

overnight at 37 °C with 200 rpm agitation in an orbital shaker (Stuart Scientific, UK). The 

overnight cultures were used to inoculate 5 mL volume of phosphate buffer saline (PBS; 

Oxoid) to a standardized optical density of 0.03 at a wavelength of 600 nm (OD600). Ga2O3-

doped PBGs disks of 5 mm diameter and 2 mm thickness were added to each tube, with the 

gallium-free disk (Ga0) used as a control. The tubes were then incubated at 37 °C. At various 

time intervals (1, 12 and 24 h) serial dilutions of the suspensions were carried out in PBS. 50 

l volumes of the suspension and each dilution were spread onto MacConkey agar (Oxoid, 
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Basingstoke, UK) plates. The plates were then incubated aerobically at 30°C for 48 h. For 

each type of disc, viable counts (colony forming units; CFUs) were conducted in triplicate. 

 

2.6.Effect of Ga2O3-doped PBGs on viability of biofilms 

2.6.1. Constant Depth Film Fermentor (CDFF) study 

A CDFF (University College Cardiff, Cardiff, UK), described previously by Mulligan et al. 

[19], was used for the production of biofilms. The CDFF contains a stainless steel turntable 

which can hold up to 15 polytetrafluoroethylene (PTFE) pans; with each PTFE pan holding 5 

PTFE plugs. Discs, 5 mm in diameter, were placed on each plug and recessed to a depth of 

300 m. The PTFE pans were then inserted so that they were flush with the turntable. A 

cylindrical glass vessel and two stainless steel end plates encase the turntable. The top plate 

contains an air inlet port, to which two 0.2 m Hepa-vent air filters (Fisher Scientific, UK) 

were attached. It also contains three media inlet ports. Incoming medium (in this case 

1%TSB) drips onto the rotating turntable and is distributed over the PTFE pans by two 

scraper blades. The scraper blades also serve to maintain the biofilms on the discs at the 

required depth, equal to the depth of the recess. The bottom plate contains a medium outlet 

port. The CDFF was sterilized in a hot air oven, using a temperature of 160 °C for 1 h. During 

all experiments, the CDFF was incubated at 37 °C. The turntable rotated at a speed of 3 rpm. 

2.6.2.Viable counts 

At various time intervals, pans were removed aseptically from the CDFF. Each pan was 

washed with 10 ml of PBS. Discs containing P. aeruginosa biofilms were placed in 1 ml of 

PBS and vortexed for 1 min. to remove the attached biofilms and to disperse them in the 

suspension. Serial dilutions of the suspensions were carried out in PBS. 25 l volumes of the 

suspension and each dilution were spread onto MacConkey Agar (Oxoid) plates. The plates 
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were then incubated aerobically at 37 °C for 48 h. For each type of disc, viable counts (colony 

forming units; CFUs) were conducted in triplicate. 

2.6.3.Confocal laser scanning microscopy (CLSM) 

A viewing solution was first prepared containing 8 ml of PBS together with 2 μl each of 

components A and B of BacLight™ LIVE/DEAD stain (Invitrogen, UK). The biofilm-coated 

discs were placed into a small cell-culture dish (Bibby Sterilin Ltd, Stone,UK), and covered 

with the viewing solution and the stains allowed to develop in the dark for 10 min. The 

biofilms were then examined using a microscope (Olympus BX51 microscope) which 

incorporated a Bio-Rad Radiance 2100 laser scanning system and LUMPlanFI 40x water lens. 

Two-channel (viable ‘Live’/nonviable ‘Dead’) confocal image stacks were collected in 8-bit 

colour depth at a resolution of 1024×1024 pixels. The z-axis step size was typically 0.6 μm, 

however this was optimised for each image stack depending upon the total depth of the 

sample. 

 

2.7. Statistical analysis 

One-way analysis of variance (ANOVA) was used to compare mean viable counts, following 

arcsinh transformation of data. When a significant difference was detected, a Tukey test was 

conducted to find which values were different (GraphPad Software; San Diego, USA.). 

 

2.8. Thermal and Structural analysis of the Ga2O3-doped PBGs 

2.8.1. Density Measurements 

Density measurements were conducted in triplicate using Archimedes’ Principle, on an 

analytical balance (Mettler Toledo, UK) with an attached density kit.  Due to the soluble 

nature of the glasses investigated, ethanol was used as the displaced liquid for these 

measurements.  The density of the glasses ( ) were obtained employing equation (1), 
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liquid

wetdry

dry
--------------------------Equation (1) 

                                                

where Mdry and Mwet are the masses of sample in air and liquid respectively, and liquid is 

density of ethanol at room temperature. 

2.8.2.Differential Thermal Analysis 

Differential Thermal Analysis (DTA) was carried out using a Setaram Differential Thermal 

Analyser (Setaram, France) on powdered glass samples of approximately 60 mg.  Three main 

thermal parameters were measured; Tg, crystallisation temperature (Tc), and melting 

temperature (Tm).  A temperature ramp from ambient up to 1000 °C at a rate of 6.7 °C.min
-1

 

was used under nitrogen purge; an empty platinum crucible was used as a reference.  The data 

were baseline corrected by carrying out a blank run and subtracting this from the original data 

[20, 21]. 

 

2.9. NMR Analysis 

23
Na magic angle spinning (MAS) NMR experiments were conducted using a 3.2 mm 

diameter rotor spinning at 20 kHz.  Spectra were acquired using a Bruker Avance II
+
 

spectrometer attached to a 14.1 T magnet (
23

Na Larmor frequency 158.7 MHz).  Aqueous 

NaCl was used as a reference, with the sharp resonance from this set to 0 ppm.  The liquid 90° 

pulse length was determined as 2.5 µs, although a much shorter pulse length (0.5 µs) was used 

on the solid samples.  A one-pulse sequence was used, with a pre-acquisition delay of 4.5 μs 

and a recycle delay of 5 seconds.  Around 100 scans were acquired for each experiment.  .  

Certain 
23

Na spectra were also recorded at 7.05 T under similar conditions. 

31
P MAS NMR experiments were conducted using a 4 mm diameter rotor spinning at 10 – 

12.5 kHz.  Spectra were acquired using a Chemagnetics Infinity Plus spectrometer attached to 
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a 7.05 T magnet (
31

P Larmor frequency 121.5 MHz).  NH4H2PO4 was used as a secondary 

reference compound, the signal from this set to 0.9 ppm (relative to 85% H3PO4 at 0 ppm).  A 

pulse length of 1.5 µs was used (corresponding to a ~30° tip angle), with a pre-acquisition 

delay of 7.5 μs and a recycle delay of 5 seconds.  Typically, 80 scans were acquired for each 

spectrum. 

 

71
Ga MAS NMR experiments were conducted at 14.1 T (

71
Ga Larmor frequency 183.0 MHz) 

using a Bruker Avance II spectrometer and a 3.2 mm rotor, spinning at approximately 18 kHz.  

A one-pulse sequence was used with a pulse length of 0.75 µs corresponding to a tip angle of 

~30°, a pre-acquisition delay of 4.5 μs and a recycle delay of 2 seconds.  Spectra were 

referenced to a saturated aqueous solution of gallium (III) nitrate at 0 ppm.  Experiment times 

varied from 2 hours for the sample containing the most gallium, to 16 hours for the sample 

containing the least. 

 

The recycle delays were sufficient to produce fully relaxed, quantitative spectra. All spectra 

were processed using TOPSPIN 2.0 or Spinsight and fitted using either dmfit2007
 
[22] or 

QuadFit
 
.[23] 

 

2.10. Ga K-edge XANES spectroscopy 

Ga K-edge X-ray absorption near-edge structure (XANES) measurements were made at room 

temperature on Station 16.5 at the SRS, Daresbury Laboratory, UK, with a ring energy of 2 

GeV and a stored current of 150-250 mA. The spectra were recorded in transmission mode 

using a double crystal Si(220) monochromator (d = 1.92 Å) and ionisation chambers to detect 

the incident and transmitted beam intensities. Finely-ground samples were diluted in 

polyethylene (Aldrich, spectrophotometric grade) and pressed into pellets to give a 



 11 

satisfactory edge jump and total absorption. An encapsulated gallium foil and a third 

ionisation chamber were placed after the sample to allow an absorption spectrum of the foil to 

be collected simultaneously for the purpose of calibration of the energy scale. The energy 

scale was defined by assigning the point of maximum gradient on the absorption edge from 

the Ga foil to 10367 eV. 

 

XANES spectra were collected from 50 eV below to 175 eV above the Ga K-edge in order to 

allow accurate background subtraction. A fine energy step of 0.4 eV was used around the 

edge. The data processing comprised conversion of the data to absorption versus energy, 

calibration of the energy scale, removal of the pre-edge background by straight-line fitting 

and removal of the post-edge background by fitting with a polynomial. All the spectra were 

normalised to have an edge-step of 1. As well as the data from the Ga2O3-doped PBGs, 

spectra were also collected from a series of crystalline reference materials containing Ga
3+

 

ions in well-defined coordination geometries: quartz -GaPO4, -Ga2O3, Ga2(SO4)3 and 

Ga(acac)3. The Ga(acac)3 (Aldrich, 99.99%) and Ga2(SO4)3 (Aldrich, 99.995%) were 

purchased commercially, whilst the quartz -GaPO4 and -Ga2O3 were synthesized. The 

quartz -GaPO4 was prepared by precipitation from an aqueous mixture of GaCl3 (Aldrich, 

99.99%) and H3PO4 by the addition of NH4OH. The product was separated by filtration, 

washed and dried before heating to 800 °C to remove ammonium and hydroxyl groups [24]. 

The -Ga2O3 was prepared by calcination of Aldrich 99.99% Ga2O3 overnight at 1000 °C 

[25]. The gallium foil used for the calibration of the energy scale was prepared by hot-

pressing Aldrich 99.99% Ga metal between two sheets of filter paper and laminating the 

resulting construct in plastic. 
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3. Results  

3.1. Glass degradation, pH and ion release 

3.1.1. Glass degradation 

Degradation of Ga2O3-doped PBGs in aqueous solution leads to mass loss, pH variation and release 

of ions that yield key data to correlate with the in vitro antibacterial reaction experiments. As can be 

observed in figure 1a, the rate of mass loss decreased with increasing CaO content of the 

glasses. However, there were no perceptible differences in the profiles from the 15 and 16 

mol% CaO compositions until 48 hours. The Ga2O3-free PBG was found to dissolve 

completely after 72 hours incubation. The dissolution rates, obtained by applying a line of 

best fit through the data, were 41.7, 17.6, 13.5 and 7.3 µg.mm
2
.h

1
 for the Ga0, C14, C15 and 

C16 compositions, respectively. 

 

3.1.2. pH Analysis 

The pH analysis revealed an increase in pH with decreasing CaO content (Figure 1b). The 

gallium free composition displayed the greatest increase in pH from an initial value of 7.0 to 

8.6. The pH value for both the C14 and C15 samples remained close to neutral for the 

duration of the study. The hydrolysis of PBGs exhibits clear pH dependence; this is supported 

by other studies: Watanabe et al.[27] stated that the rate of hydrolysis of small ring cyclic 

trimeta- and tetrametaphosphates decreases in acidic solutions, and increases in basic 

solutions with an increase in the pH value for all solvents.  

 

3.1.3. Ion release 

The highest levels of Ca
2+

 (Figure 2a) and Na
+
 (Figure 2b) release were observed for the 

compositions with the highest dissolution rate, i.e. the Ga2O3-free and C14 glasses. The Ca
2+

 

ion release data correlates well with the solubility data obtained. For the Ca
2+ 

release profiles 
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(Figure 2a), the gallium-free composition released the greatest amount of ions. Also, 

compositions with higher sodium mol% released more Na
+
 ions into solution, and it was 

directly proportional to the solubility values, suggesting that sodium ions were released into 

solution first. 

 

Both Ca
2+

 (Figure 2a) and Na
+
 (Figure 2b) ion release profiles showed clear differences 

between the compositions investigated, with a decrease in Ca
2+ 

and Na
+
  ion release seen with 

increasing CaO mol% content. The greatest Ca
2+ 

and Na
+ 

release was seen for the Ga2O3-free 

composition and suggests that the presence of gallium ions (Ga
3+

) led to the decrease of glass 

degradation and subsequent release of Ca
2+ 

and Na
+
 ions. 

 

The release of phosphorus ions in this study did not follow a linear trend with time (Figure 

2c).The rate of phosphorus ion release was higher for Ga2O3-free and C14 compositions and 

the Ga2O3-doped PBGs showed a decrease as the CaO content increased in the glasses, with 

C16 releasing the least amount of phosphorus. The use of ICP-MS has enabled the detection 

of the total amount of phosphorous ions, and this method is found to be superior to ion 

chromatography, where the lack of availability of standards restricts the complete detection of 

all the different phosphate species present. 

 

As can be seen from Figure 2d, no Ga
3+

 was detected from the 0 mol% Ga2O3 composition as 

expected. Clear differences are observed between the Ga
3+

 release from the C14, C15 and 

C16 compositions. The C14 composition released the highest levels of Ga
3+

 ions, with the 

C16  composition releasing the least. The Ga and P release profiles reflected the degradation 

rate, as well as Na
+
 and Ca

2+
 ion release of the glasses. 
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3.2. Antimicrobial analysis 

3.2.1. Effect of increasing calcium content on planktonic P.aeruginosa 

The effect of Ga2O3-doped PBGs with increasing CaO concentrations (C14, C15 and C16) on 

the viability of suspensions of P. aeruginosa is shown in Figure 3a. Ga2O3-free PBG samples 

were used as controls, and initial viable counts were conducted prior to addition of the PBGs 

to determine the number of viable bacteria present. Each point represents the log10 of the 

mean number of viable bacteria from three samples. Error bars represent standard deviations. 

The effect of Ga0, C14, C15 and C16 glasses on the pH of the bacterial suspensions was also 

measured and found to be 7.1±0.02. There was no statistically significant difference between 

the pHs of the various suspensions. 

 

The C14, C15 and C16 glasses all showed statistically significant (p=0.0001) reductions in 

the log10 of the mean number of viable cells compared to the control at 4, 12 and 24h (Figure 

3a).  Moreover, the log10 of the mean number of viable cells from C14-treated samples 

displayed maximum reduction throughout the study with the greatest effect at 24h compared 

to C15 and C16 (p=.0001). However, no statistically significant differences (p 0.870) in the 

log10 of the mean number of viable cells were observed between C15 and C16 samples 

throughout the study. The reduction in the log10 of the mean number of viable cells observed 

for all samples, including controls, after 24h incubation suggested that the overall decrease in 

the viable count beyond this time point was largely attributable to nutrient depletion or 

accumulation of toxic end products of metabolism rather than to the presence of gallium. 

However, bacteria grown planktonically are known to be far more susceptible to antibacterial 

agents compared to their biofilm counterpart [14]. Therefore, the most potent glass 

composition (C14) against planktonic growth was evaluated for its effect on the growth of 

biofilms of P. aeruginosa.  
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3.2.2. Effect of C14 glasses on the viable counts of P. aeruginosa in biofilms 

Biofilm growth studies were conducted on C14 glasses with Ga0 glasses and Hydroxyapatite 

(HA) discs as controls (Figure 3b). Each point represents the log10 of the mean number of 

viable counts of three biofilms from one representative CDFF run. Error bars represent 

standard deviations. It should be noted that at least three runs for each experiment were 

performed to confirm the results obtained. The data were not pooled because slight 

differences in the inoculum produced differences in the absolute CFU numbers obtained. 

However, the relative differences found were very repeatable. 

 

At 6 h, the C14 glass showed no significant difference in log10 of the mean number of viable 

cells compared to both the Ga0 and HA (p 0.07) (Figure 3b). At 12 h, the log10 of the mean 

number of viable cells was significantly reduced for the C14 glass compared to both controls 

(p =0.0001). This effect of the C14 glass on the viable count of the biofilms was also 

observed after 24 and 48h - the viable counts were significantly different from both the 

controls (p ≤0.001). The greatest effect of gallium on biofilm growth was observed at 48 h 

(0.86 log10 CFU reduction compared to Ga0 glasses). However, at 72 h the log10 of the mean 

number of viable cells on C14 started to recover from the previous low at 48 h and showed no 

statistically significant difference compared to Ga0 glasses (p =0.1). 

 

3.2.3. Identification of live and dead P. aeruginosa cells using CLSM  

The use of water immersion lenses and a liquid viewing medium (PBS) in the present study 

enabled the observation of biofilms in their natural hydrated state (Figure 3c). As seen in 

normal viewing of BacLight
TM

 LIVE/DEAD stained images, used in the present study, the 

viable cells fluoresce green and the non-viable cells fluoresce blue (Figure 3c). The biofilms 

were submerged in the stains (at a relatively high concentration) for at least 15 min before the 
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CLSM scan. The molecular weights of the BacLight
TM

 LIVE/DEAD stain components are 

similar (component A= 550–750 Da (proprietary information) and component B = 668.4 Da), 

and both have a net positive charge. It is therefore unlikely that there is any significant 

difference in their diffusion characteristics into biofilms. Regions of biofilm composed of 

viable and non-viable bacteria were observed on C14 glass samples (Figure 3c(ii)) as opposed 

to only viable bacteria on Ga0 samples (Figure 3c(i)). These observations confirmed that the 

reduction of biofilm growth was due to the presence of Ga in the glasses.  

 

3.3. Structural analysis of the Ga2O3-doped PBGs 

3.3.1. Density 

Figure 4a shows the density (in g.cm
3
) of the four glasses studied. The results show that the 

addition of 3 mol% Ga causes a slight increase in density. This is to be expected since Ga
3+

 

ions are significantly heavier and smaller than Ca
2+

 and Na
+
 ions. No significant variation in 

density was observed as a function of CaO content.  

3.3.2. Thermal Analysis  

Thermal analysis was carried out on the glass samples in order to measure glass transition 

temperatures (Tg) and investigate crystallisation and melting phenomena. Figure 4b shows DTA 

traces for the four glasses. From the DTA data it can be seen that the glass transition 

temperature (Tg) increased from 327.2  1.2 ºC for 0 mol% Ga2O3 glass to 343.3  2.0 ºC by 

the incorporation of 3 mol% Ga2O3. This increase in Tg could be attributed to the formation of 

more ionic cross-links between the phosphate glass chains by the incorporation of Ga2O3 into 

the glass network.  However, maintaining the same Ga2O3 content while reducing CaO to 15 

and 14 mol% showed no significant difference in the Tg compared to glasses with 16 mol% 

CaO.  The DTA of  0 mol% Ga2O3 glass showed the presence of a single sharp crystallisation 

event at 454 C and two melting peaks at 572 and 650 C.  Incorporation of 3 mol% Ga2O3 
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shifted the crystallisation temperature to 467 C, and also the two melting peaks to 684 and 

745 C respectively. Maintaining the Ga2O3 at 3 mol% while reducing the CaO content to 15 

mol% results in both the crystallisation and melting peaks shifting to lower temperatures. The 

crystallisation peak shifted to 457 C, and the two melting peaks to 607 and 676 C. Further 

reduction of CaO to 14 mol% produced a further shift of the crystallisation and melting peaks 

to even lower temperatures. The crystallisation temperature shifted to 450 C while the 

melting peaks were shifted to 600 and 664 C. This finding correlated well with the glass 

transition temperature data where a reduction in CaO contents resulted in a shift in the thermal 

parameters to lower temperatures. 

3.3.3. NMR analysis 

Solid-state NMR was the primary tool for structural characterisation of Ga2O3-doped PBGs 

and has already been proved to be extremely powerful in elucidating direct information on the 

speciation of the principal network former P2O5 and the gallium coordination environment in 

the glasses [13]. This structural information of the glasses is important to identify the optimal 

glass combination for the antibacterial applications. Figure 5a shows the 
31

P MAS NMR 

spectra obtained from the glasses, with the horizontal scale expanded around the isotropic 

region so that only the centre-bands are shown.  The connectivity of the phosphate network is 

commonly described by Q
n
 notation, where n refers to the number of bridging oxygens in the 

PO4
3

 group [28, 29].  Two peaks are clearly visible at chemical shifts of around −20 and −5 

ppm, representing Q
2
 and Q

1
 phosphorous sites respectively, and figure 5b shows a fit of the 

C16 spectrum, including fitting of the spinning sidebands (the spinning sideband intensities 

were included in calculating the relative abundance of each Q
n
 species).  No Q

3
 or Q

0
 sites 

were observed in any of the 
31

P MAS NMR spectra recorded here.  The peak positions, 

linewidths and relative abundances obtained by such fitting are presented in Table 2. 
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The ~25 % Q
1
 phosphorus sites observed here are to be expected in these glasses since they 

are below the metaphosphate stoichiometry and therefore should contain chain-end groups.  It 

can be seen from Table 2 that those glasses containing Ga show a slightly higher percentage 

of Q
2
 phosphorus sites than the glass without Ga.  This suggests that with the gallium present 

the network undergoes some slight rearrangement increasing the connectivity of the glasses.  

Both the Q
1
 and Q

2
 chemical shifts are more negative for the gallium-containing glasses, 

which is consistent with a previous study of a Ga2O3-containing phosphate glass [30]. 

 

Figure 5c(i) shows the overlaid 
23

Na MAS NMR spectra obtained from the four samples.  

These spectra appear very similar in shape, with just a slight broadening of the line for the 

Ga-containing glasses.  Figure 5c(ii) shows 
23

Na MAS NMR spectra and their simulations for 

the 0 % Ga2O3 glass at two different fields using a Gaussian distribution in quadrupolar 

coupling constant Q [29, 31, 32] to represent the variation in Na environments present in the 

sample due to disorder.  These simulations yielded a mean value of Q = (2.65 ± 0.15) MHz, a 

FWHM distribution in this parameter of (2.15 ± 0.15) MHz, and a chemical shift value of δiso 

= (−3 ± 0.5) ppm.  The asymmetry parameter ηQ was kept as 0 for simplicity, although in 

reality a distribution in CQ would likely mean a distribution in this, as well as the isotropic 

chemical shift.  These parameters gave a good fit to all four 
23

Na spectra, with only a slight 

decrease in the amount of line broadening for the 0 % Ga2O3 glass.  These results imply that 

the extent of disorder of the sodium environment increases slightly with the addition of 3 % 

Ga2O3 but is not significantly affected by the differences in stoichiometries of the 3 % Ga2O3 

samples studied here. 

 

Figure 5d shows the 
71

Ga MAS NMR spectra obtained from the three Ga-containing glasses, 

all obtained at 14.1 T.  The spectra all show a lower signal/noise ratio than the 
23

Na or 
31

P 
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spectra due to the significantly smaller amount of gallium present in the sample, the lower 

natural abundance of the 
71

Ga isotope (39.9 % compared with 100 % for both 
23

Na and 
31

P), 

and also the wider lineshape due to second-order quadrupolar broadening [29,31].  The 

relatively large linewidth in these spectra mean that the spinning sidebands lay very close to 

the centre-band, although they are not very clearly visible due to their amplitudes being 

comparable to that of the noise.  Each spectrum shows a peak centred at approximately −50 

ppm.  The FWHM linewidth of this peak is approximately 100 ppm.  A previous 
71

Ga MAS 

NMR study on Ga2O3-Na2O-P2O5 glasses identified a peak at 60 ppm associated with 

octahedrally coordinated gallium and one at 120 ppm due to tetrahedral gallium [30].  This 

suggests that the 
71

Ga NMR peak observed here arises from octahedrally coordinated gallium.  

The presence of some tetrahedral gallium cannot be ruled out since a small peak may be 

present at the expected position for this coordination (around 100-200 ppm [29]), but is 

obscured by noise and spinning sidebands.  However, the spectra do suggest that the gallium 

is present primarily in the octahedral coordination. 

 

3.3.4. Ga K-edge XANES 

XANES spectra was used to clarify any possible anomalies in antimicrobial effect of Ga2O3-

doped PBGs due the local coordination environment around the gallium in the glasses. 

XANES spectra can give information on the coordination environment of a given probe atom, 

often by comparison of the spectra with those from materials containing the probe atom in a 

well-defined structural site. In this case, data was collected with higher energy resolution in 

the vicinity Ga K-edge from reference materials, (Figure 6a), and the Ga2O3-doped PBGs, 

C14, C15 and C16, (Figure 6b). The reference materials were chosen to have a range of 

gallium coordination environments: quartz -GaPO4 contains tetrahedrally coordinated 

gallium [24], -Ga2O3 an equal mixture of tetrahedral and octahedral gallium [33], and 
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Ga(acac)3 and Ga2(SO4)3 both contain octahedral gallium [33]. Figure 6a shows that for the 

octahedrally-coordinated gallium a broad feature at ~10377 eV is observed, whilst for the 

tetrahedrally-coordinated gallium a distinct two-humped curve is seen in the same region with 

features centred at slightly higher and lower energy. The XANES spectrum from -Ga2O3, the 

mixed-site material, contains features from those observed in both the single-site materials. 

Some variation is observed in the spectra from the compounds containing octahedral gallium: 

the main peak in the Ga2(SO4)3 spectrum is broader and at slightly lower energy (~1 ev) than 

that in the spectrum from Ga(acac)3. These differences can be explained by considering the 

level of distortion around the gallium sites in the two reference compounds. Ga(acac)3 

contains Ga
3+

 ions surrounded by a near-perfect octahedron of oxygen atoms [33], whereas in 

Ga2(SO4)3 there are two gallium sites, both significantly distorted relative to ideal octahedral 

geometry [34]. These qualitative observations are in agreement with previous studies which 

demonstrated that different coordination sites could be distinguished using Ga K-edge 

XANES [25, 33, 35].  

 

4. Discussion 

This paper reports the effect of increasing calcium concentration in Ga2O3-doped PBGs on 

their antibacterial properties, physico-thermal properties, solubility, pH change and ion 

release. It is reported that most of the Q
1
 species identified in the 45 mol% P2O5 glasses are 

phosphate dimers and therefore the packing density would be greater compared to 50 or 

55 mol% P2O5 glasses [36]. Therefore the non-linear data obtained from the thermal and 

solubility analyses in the present study can be attributed to the packing density of the 45mol% 

P2O5 glass compositions. The solubility was seen to decrease with increasing CaO mol%. The 

observed reduction in dissolution rate associated with the increasing CaO content could be 

explained by the increase in the ionic strength of the leaching solution. Glass degradation has 
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been reported to consist of the three synergistic processes of ion exchange, hydration and 

finally hydrolysis of the phosphate chains while in solution [26].  As a result of ion exchange, 

a hydrated gel layer is usually formed on the glass surface and when it leaches into the 

surrounding medium it causes an increase in the ionic strength of the solution resulting in 

reduction of the dissolution rate. Both Ga0 and C14 compositions showed a gradual increase 

in pH with time, due to the depletion of H
+
 in the solution that resulted from exchange with 

the Na
+
 and Ca

2+
 ions released from the glass. The ion release profiles exhibited similar trends 

to the degradation rates obtained, and a decrease in the rate of phosphorus release was 

observed with increasing CaO content.  

 

MAS NMR results suggest that as the sodium is replaced by calcium in the 3 mol% Ga2O3 

glasses there is little change in the relative abundances of the Q
1
 and Q

2
 phosphorus sites. 

Both the Q
1
 and Q

2
 chemical shifts for the 3 mol% Ga-containing glasses move to a slightly 

more negative chemical shift as the sodium in the system is replaced by calcium.  This is 

consistent with the observation reported by Brow et al.[37] that as the cation potential (charge 

to radius ratio) of the modifying cation increases, the phosphorous chemical shift becomes 

more negative (calcium has a larger cation potential than sodium). The Ga K-edge XANES 

spectra presented here from the gallium-doped PBGs (Figure 6b) exhibit no variation as a 

function of composition and show one broad feature that is similar in shape, intensity and 

magnitude to that observed for Ga(acac)3 and Ga2(SO4)3,(Figure 6a) suggesting, in agreement 

with the 
71

Ga NMR results (Figure 5d), that the Ga
3+

 ions in all the glass samples are 

octahedrally coordinated. The position of the peak in the spectra from the glasses is very close 

to that observed in the Ga2(SO4)3 spectrum. Also, in common with the Ga2(SO4)3 spectrum, 

some asymmetry is noted in the peak in the glass spectra. Both of these observations suggest 

some degree of distortion around the gallium site in the glasses. 
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Our previous work suggested that Ga2O3-doped PBGs, with a P2O5 content of 45 mol % and 

CaO content of 16 mol %, are capable of broad-spectrum bactericidal activity against 

planktonic bacteria including P. aeruginosa [13]. In the present study, the sample containing 

14 mol % CaO demonstrated the greatest antibacterial activity against planktonic P. 

aeruginosa and this composition also gave excellent long-term release of Ga
3+

 ions into the 

medium. Recently, an antimicrobial approach using Ga
3+

 was reported that targets bacterial 

Fe
3+

 metabolism by exploiting the chemical similarities between Fe
3+

 and Ga
3+ 

[9]
.
 Trivalent 

gallium is capable of interacting with: 

1. the iron-dependent enzyme such as ribonucleotide reductase causing inhibition of 

DNA synthesis [38] 

2.  superoxide dismutase and catalase that protect against oxidant stress [39] 

3. enzymes involved in oxidative phosphorylation such as cytochromes and others [9].  

The ability of Ga
3+ 

to interfere with iron-dependent enzymes also suggest that Ga
3+

 could act 

on several of the above said targets simultaneously [9] and hence mutation of a single 

intracellular target might not produce high-level Ga
3+

 resistance in subjected bacteria. 

However, in a
 
biofilm environment, microbes exhibit reduced susceptibility to antimicrobial 

agents [14]. The results of this study have shown that the release of Ga
3+

 ions from the 14 

mol% CaO sample can achieve a significant reduction in the growth of P. aeruginosa 

biofilms over at least a 48h period (Figure 3b). CLSM analysis confirmed the presence of 

both viable and non-viable bacteria on the surface of C14 glass samples (Figure 3c(ii)) 

confirming the ability of gallium  to kill P. aeruginosa in biofilms.  

 

5. Conclusions 

Our findings suggest that these Ga2O3-doped PBGs, particularly the C14 composition, hold 

promise as antimicrobial agents and could offer some advantages over conventional 
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therapeutic agents. Firstly, Ga
3+  

is proposed to work by a completely different mechanism to 

conventional drugs [9] that will not lead to high-level Ga
3+

 resistance in subjected bacteria. 

Moreover,  Fe
3+

 levels are so low in human tissues and the activity of Ga
3+ 

is increased when 

Fe
3+

 is limited [9] will enhance the chances of Ga2O3-doped PBGs being more effective under 

physiological conditions  than our in vitro test results presented here. Finally, the fact that, 

Ga
3+

 is approved by FDA for intravenous administration and the ever existing scarcity of new 

antibiotics in development make Ga2O3-doped PBGs a potentially highly promising new 

therapeutic agent against P. aeruginosa.  
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Figure legends 

 

 

Figure 1. Dissolution, determined by mass loss (a), and pH analysis (b) of Gallium free (Ga0) 

and gallium containing (C14, C15 and C16) PBGs as a function of time. 

 

Figure 2.  Cumulative ion release (a) calcium, (b) sodium, (c) phosphorous, and (d) gallium 

as a function of  time Ga0, C14, C15 and C16 PBGs.  

 

Figure 3. [a] The effect of Ga0, C14, C15 and C16 PBGs on the viability of suspensions of P. 

aeruginosa at 4, 12 and 24h of incubation. CFU= colony forming units (mean number of 

viable cells). [b] Log10 CFU/mm
2
 of P. aeruginosa in biofilms formed on hydroxyapatite 

discs (HA), Ga0 and C14 PBGs. [c] CLSM images after 48h of P aeruginosa biofilms on (i) 

Ga0 and (ii) C14 PBGs. Viable (green) and non-viable (blue) bacteria. 

 

Figure 4 [a] Density (g.cm
-3

), [b] DTA trace of Ga0, C14, C15 and C16 PBGs  as a 

function of CaO contents. 

 

Figure 5[a]. 
31

P MAS NMR spectra obtained Ga0, C14, C15 and C16 PBGs at 7.05 T. [b] 

The fit of the 
31

P MAS NMR spectrum from the C16 PBG sample, including the spinning 

sidebands. [c] (i) Overlay of the 
23

Na MAS NMR spectra from Ga0, C14, C15 and C16 PBGs 

at 7.05 T and (ii) simulation of the Ga0 PBG sample at multiple fields.[d] The 
71

Ga MAS 

NMR spectra of the samples containing gallium, C14, C15 and C16 PBGs, at 14.1 T.   

 

Figure 6. Ga K-edge XANES spectra from (a) crystalline reference materials: Ga(acac)3 

(solid line), Ga2(SO4)3 (dashed line), -Ga2O3 (dotted line) and quartz -GaPO4 (dashed-

dotted line), and (b) Ga-doped PBGs: C14 (solid line), C15 (dashed line) and C16 (dotted 

line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

Tables 

 

Table 1. Composition of phosphate-based glasses used in this study  

 

Table 2.  
31

P MAS NMR fit parameters for the Q
1
 and Q

2
 sites. 

 

Table 1 

Glass code        Glass code used 

                              in the text 

Glass composition (mol %) 

Calcium                Sodium              Phosphorous    Gallium 

 Oxide                    Oxide                 Pentoxide          Oxide 

Ca16Na39P45                     Ga0 

Ca14Na38P45Ga3            C14 

Ca15 Na37P45Ga3          C15 

Ca16 Na36P45Ga3          C16 

   16                          39                       45                       0 

   14                          38                       45                       3 

   15                          37                       45                       3 

   16                          36                       45                       3 

 

 

Table 2. 

 

 

 

 

 

 

Glass  Q
2
 Shift / ppm Q

2
 Abundance Q

2
 Linewidth / ppm Q

1
 Shift / ppm Q

1
 Abundance Q

2
 Linewidth / ppm 

code (± 0.1 ppm) / % (± 0.5 %) (± 0.1 ppm) (± 0.1 ppm) / % (± 0.5 %) (± 0.1 ppm) 

Ga0 −20.2 73.5 9.5 −3.6 26.5 8.5 

C14 −20.6 75.9 9.3 −6.2 24.1 11.0 

C15 −20.7 76.0 9.4 −6.3 24.0 10.7 

C16 −20.8 75.2 9.7 −6.4 24.8 10.9 


