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1. Introduction

We fix a field k of characteristic zero, and recall that by an affine k-algebra one means a 
finitely generated one that is a domain. The aim of this note is to study the representation 
theory and the geometry of affine Poisson–Hopf k-algebras via methods from the model 
theory of differential fields. For the reader unfamiliar with Poisson–Hopf algebras, let 
us mention at this point that these include symmetric algebras of finite-dimensional 
Lie algebras (endowed with their natural Poisson bracket, see Section 2.1). For further 
examples, we refer the reader to [10] and [14].

As it is often the case, classifying simple representations or symplectic leaves of Pois-
son(–Hopf) algebras is too wide a problem, and so we are approaching it by studying 
the so-called Poisson-primitive ideals. There are several equivalent ways to define these 
(prime Poisson) ideals. Given our representation theoretic and geometric motivation, we 
just give two equivalent definitions at this stage. Let A = O(V ) be an affine Poisson 
k-algebra (so that V is a Poisson variety over k). The Poisson-primitive ideals of A are 
the defining ideals of the Zariski closure of the symplectic leaves of V . Equivalently, they 
are precisely the annihilators of the simple Poisson A-modules. Thus, classifying Poisson-
primitive ideals of a Poisson(–Hopf) algebra is a first step towards understanding both 
its symplectic foliation and its representation theory.

The goal of this paper is to provide a topological criterion to characterise Poisson-
primitive ideals among prime Poisson ideals of a Poisson–Hopf algebra. More precisely, 
we prove that Poisson-primitive ideals of a cocommutative affine Poisson–Hopf alge-
bra are exactly those prime ideals that are Poisson-locally closed. In [2], the authors 
together with Bell and Moosa proved that Poisson-primitive ideals coincide with the so-
called Poisson-rational ideals. So, combining this with our results here, we obtain that for 
affine cocommutative Poisson–Hopf algebras, the notions of Poisson-rational, Poisson-
primitive and Poisson-locally closed coincide. The coincidence of these three notions is 
often referred to as the Poisson Dixmier–Moeglin equivalence (see Section 2.2), so that 
we can state our main result as follows.

Theorem 1. Any cocommutative affine Poisson–Hopf k-algebra satisfies the Poisson 
Dixmier–Moeglin equivalence.
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We note that the Poisson Dixmier–Moeglin equivalence does not always hold for a 
Poisson algebra. By [17, 1.7(i), 1.10], in an affine Poisson k-algebra A, we have that 
Poisson-locally closed implies Poisson-primitive, and Poisson-primitive implies Poisson-
rational (this also follows from Proposition 3.5 below). It was shown in [2], that when A
has Krull-dimension at most three, then Poisson-rational implies Poisson-locally closed, 
and so the Poisson-DME holds in this case. However, in that same paper, counterexam-
ples of Krull-dimension d were build, for any d ≥ 4. Hence, the main point of this note is 
to show that those (counter-)examples cannot admit a cocommutative Poisson–Hopf al-
gebra structure; and that in fact in this case Poisson-rational does imply Poisson-locally 
closed.

While in general one cannot remove the Hopf algebra assumption in Theorem 1, one 
natural question to ask at this point is: can we remove the cocommutative assumption? 
That is, does the Poisson Dixmier–Moeglin equivalence hold in any affine Poisson–Hopf 
algebra? While we currently do not have an answer, in Remark 5.6(2) below we suggest 
how one could address this question. We note that in the differential-Hopf algebra con-
text in a single derivation the cocommutative assumption can indeed be removed, see 
[3, Theorem 2.20], and also that Bell and Leung have asked a similar question in the 
noncommutative setting, see [1, Conjecture 1.3].

As symmetric algebras of finite dimensional Lie algebras are examples of cocommuta-
tive affine Poisson–Hopf algebras, Theorem 1 applies to this family of Poisson k-algebras. 
Thus, we obtain (with very different methods) a Poisson analogue of the foundational 
result of Dixmier and Moeglin, later generalized by Irving and Small, that asserts that 
primitive ideals in the enveloping algebra U(g) of a finite-dimensional Lie k-algebra g
are precisely the locally closed prime ideals of U(g) [8].

Theorem 2. If A is the symmetric algebra of a finite dimensional Lie k-algebra g, equipped 
with its natural Poisson bracket, then A satisfies the Poisson Dixmier–Moeglin equiva-
lence.

We expect that our results on the representation theory of Poisson–Hopf algebras will 
help us better understand representations of Hopf algebras in general. This is justified 
by the fact that connected Hopf algebras arise (in a rough sense) as deformations of 
Poisson–Hopf algebras [19].

It is important to note that a significant part of the proof of Theorem 1 makes substan-
tial use of the model theory of differential fields, via the theory of algebraic D-varieties 
and D-groups (see Sections 3 and 4). The novelty of this paper, compared to [2] or 
[3] where the model theory of ordinary differential fields was used, is that we work in 
the context of several possibly noncommuting derivations. While the model theory of 
differential fields with commuting derivations has fruitfully been applied in other ar-
eas of mathematics (for instance, in differential Galois theory, see [13]), to the authors 
knowledge this paper contains the first application of the model-theoretic properties of 
the theory of differential fields where no commutativity assumption is made among the 
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derivations. We expect (and hope) that the ideas presented here will motivate the further 
use of these tools in new areas of algebra, and perhaps initiate the study of the model 
theory of Poisson rings.

2. Some preliminaries

Recall that for us k denotes a field of characteristic zero, and that by an affine algebra 
we mean a finitely generated one that is a domain.

2.1. Poisson–Hopf algebras

Recall that a Poisson k-algebra is a commutative k-algebra A equipped with a Lie 
bracket {−, −} such that

{a, bc} = {a, b}c + b{a, c}, for all a, b, c ∈ A.

In other words, for each a ∈ A, the map {a, −} : A → A is a derivation.
Given a Poisson k-algebra (A, {−, −}) the tensor algebra A ⊗ A can be naturally 

equipped with a Poisson k-algebra structure as follows; define

{a⊗ b, a′ ⊗ b′} = {a, a′} ⊗ b b′ + a a′ ⊗ {b, b′}

for a, b, a′a, b′ ∈ A and extend to all of A ⊗A by k-linearity.

Definition 2.1. A Poisson–Hopf k-algebra A is a Poisson k-algebra with the additional 
structure of a Hopf algebra such that the Poisson bracket {−, −} commutes with co-
product Δ; that is,

Δ({a, b}) = {Δ(a),Δ(b)}

for all a, b ∈ A.

Remark 2.2. Let (A, {−, −}) be a Poisson algebra with a Hopf algebra structure. In order 
to prove that the Poisson bracket commutes with coproduct it suffices to check that if 
G is a set of generators of A (as a k-algebra) then

Δ({a, b}) = {Δ(a),Δ(b)}

for all a ∈ G and b ∈ G. Indeed, suppose a ∈ G and b ∈ A, then b = f(g1, . . . , gs) for some 
polynomial f over k and gi ∈ G. Since {a, −} and {Δ(a), −} are k-linear derivations, we 
get
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Δ({a, b}) = Δ
(

s∑
i=1

∂f

∂ti
(g1, . . . , gs) · {a, gi}

)

=
s∑

i=1

∂f

∂ti
(Δ(g1), . . . ,Δ(gs)) · {Δ(a),Δ(gi)}

= {Δ(a), f(Δ(g1, . . . ,Δ(gs))}

= {Δ(a),Δ(b)}.

The general case, when a, b ∈ A, follows from this in similar fashion; now writing a as 
h(g1, . . . , gs) and using the fact that {−, b} and {−, Δ(b)} are k-linear derivations.

We now describe a general example of cocommutative Poisson–Hopf algebra. Namely, 
let A be the symmetric algebra of a finite dimensional Lie k-algebra g. Such a (symmetric) 
algebra A is of the form k[x1, . . . , xs] where the xi’s form a k-basis for the Lie algebra g. 
It is well known that A becomes a Poisson algebra with Poisson bracket defined by:

{f, g} :=
∑
i<j

[xi, xj ]
(

∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
.

Moreover, we can equip A with a Hopf algebra structure where the xi’s are all primitive 
(so that A is cocommutative). One can check that then the Poisson bracket commutes 
with the coproduct. Indeed, it follows from Remark 2.2 that we only need to prove that

Δ({xi, xj}) = {Δ(xi),Δ(xj)}

for all i, j. Using the fact that every element of g is primitive and that Δ is an algebra 
homomorphism, we get

{Δ(xi),Δ(xj)} = {1 ⊗ xi + xi ⊗ 1, 1 ⊗ xj + xj ⊗ 1}

= 1 ⊗ {xi, xj} + {xi, xj} ⊗ 1

= 1 ⊗ [xi, xj ] + [xi, xj ] ⊗ 1

= Δ([xi, xj ])

= Δ({xi, xj}) for all i, j.

Thus A is indeed a cocommutative affine Poisson–Hopf k-algebra.
Further examples of (affine) Poisson–Hopf algebras are given by the coordinate ring 

of Poisson affine algebraic groups [10]. These examples are not, however, generally co-
commutative, unless of course the algebraic group is abelian.



S. Launois, O. León Sánchez / Advances in Mathematics 346 (2019) 48–69 53
2.2. The Poisson Dixmier–Moeglin equivalence

Let (A, {−, −}) be a Poisson k-algebra. An ideal I of A is a Poisson ideal if {A, I} ⊆ I. 
The Poisson-center of A is defined as

ZP (A) = {a ∈ A : {A, a} = 0}.

Recall that when A is a domain, there is a natural Poisson structure on FracA (induced 
by the quotient rule of derivations).

We denote by SpecPA the subspace of SpecA consisting of Poisson ideals. The Poisson 
core of an ideal I of A is defined as the largest Poisson ideal contained in I. A prime 
Poisson ideal P of A is said to be

• Poisson-locally closed if

⋂
P�Q∈SpecPA

Q �= P

• Poisson-primitive if P is the Poisson core of a maximal ideal of A.
• Poisson-rational if ZP (FracA/P ) is an algebraic extension of k.

We say that A satisfies the Poisson Dixmier–Moeglin equivalence (or Poisson-DME) 
if a prime Poisson ideal of A is Poisson-locally closed iff it is Poisson-primitive iff it is 
Poisson-rational. Let us remark that, by [5, Lemma 3.5], the above definition of Poisson-
primitive does correspond to the equivalent definitions given in the introduction.

2.3. Differential algebras

We now briefly recall some facts about differential k-algebras that will be useful in sub-
sequent sections. For any commutative k-algebra A, we denote by Derk(A) the A-module 
of k-linear derivations on A.

Remark 2.3. Let (A, {−, −}) be a Poisson k-algebra and G a set of generators of A. 
Recall that a Hamiltonian of A is an element of Derk(A) of the form {a, −} for some 
a ∈ A. An easy computation shows that the A-submodule of Derk(A) spanned by the 
Hamiltonians of A is equal to

spanA({a,−} : a ∈ G).

Due to the above remark, to check that an ideal in a Poisson algebra is a Poisson ideal 
one only needs to check that it is invariant under the Hamiltonians of a set of generators. 
More generally, we have
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Lemma 2.4. Let (A, {−, −}) be a Poisson k-algebra. If D ⊆ Derk(A) is such that

spanA D = spanA({a,−} : a ∈ A),

then

1. an ideal I of A is Poisson iff it is a D-ideal (i.e., invariant under D), and
2. the Poisson-center ZP (A) equals the D-constants of A (i.e., ∩δ∈D ker δ). Further-

more, if A is a domain,

ZP (FracA) = D-constants(FracA).

Proof. This is an easy exercise. We leave the details to the reader. �
Suppose A is a commutative k-algebra equipped with a family of k-linear deriva-

tions D. We denote by SpecDA the subspace of SpecA consisting of prime D-ideals. The 
D-core of an ideal I of A is defined as the largest D-ideal contained in I. A prime D-ideal 
P of A is said to be

• D-locally closed if

⋂
P�Q∈SpecDA

Q �= P

• D-primitive if P is the D-core of a maximal ideal of A.
• D-rational if the set of D-constants of FracA/P is an algebraic extension of k.

We say that a A satisfies the D-Dixmier–Moeglin equivalence (or D-DME) if a prime 
D-ideal of A is D-locally closed iff it is D-primitive iff it is D-rational.

The following is an easy consequence of Lemma 2.4.

Corollary 2.5. Let (A, {−, −}) be a Poisson k-algebra. If D ⊆ Derk(A) is such that

spanA D = spanA({a,−} : a ∈ A),

then a prime ideal P of A is

1. Poisson-locally closed iff it is D-locally closed,
2. Poisson-primitive iff it is D-primitive, and
3. Poisson-rational iff it is D-rational.

Consequently, (A, {−, −}) satisfies the Poisson-DME iff it satisfies the D-DME.
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Given a commutative Hopf k-algebra A equipped with a family of k-linear deriva-
tions D, we say that A is a differential-Hopf algebra if each derivation commutes with 
coproduct; that is,

δ(Δ(a)) = Δ(δa)

for all a ∈ A and δ ∈ D. Here recall that the derivations D naturally lift to A ⊗ A as 
follows;

δ(a⊗ b) = δa⊗ b + a⊗ δb

for all a, b ∈ A and extend by k-linearity to all of A ⊗A.

Remark 2.6.

1. As we did in Remark 2.2, one can check that, in a commutative Hopf k-algebra A
equipped with k-linear derivations D, the derivations D commute with coproduct if 
and only if δ(Δ(a)) = Δ(δa) for all δ ∈ D and a varying in a set of generators of A.

2. Suppose (A, {−, −}) is an affine Poisson–Hopf k-algebra, we do not know if there is 
D ⊆ Derk(A) with

spanA D = spanA({a,−} : a ∈ A)

and such that (A, D) is a differential-Hopf algebra. Nonetheless, in Proposition 5.5, 
we prove that it is possible to find such D in the case when k is algebraically closed 
and A is cocommutative.

3. On affine D-varieties and isotriviality

In this section we present the basics of the theory of affine algebraic D-varieties in 
the context of finitely many (possibly noncommuting) derivations, together with the 
notions of isotriviality and compound isotriviality. It is worth noting that the theory of 
D-varieties in the context of commuting derivations appears in [6].

We make, somewhat freely (specially compared to [2,3]), use of basic model-theoretic 
terminology, for which [15] should suffice. The reader is also referred to [3] for back-
ground and motivation for some of the definitions of this paper (prolongations, D-points, 
isotriviality). The appropriate model-theoretic context here is that of fields equipped with 
finitely many (possibly noncommuting) derivations. Fix a positive integer m. We work 
in the first-order language of differential rings equipped with m derivations

Ldiff = Lrings ∪ {δ1, . . . , δm}.

One can easily axiomatize the class of differential fields (K, δ1, . . . , δm) of characteris-
tic zero (where no commutativity assumption is made among the derivations). Such a 
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differential field is called existentially closed if any quantifier-free Ldiff -formula with a 
realization in a differential field extension of K already has a realization in K. Note 
that such differential fields exist (by a standard Zorn’s lemma and chain construction 
argument).

It turns out that there is a first-order axiomatization of the class of existentially closed 
differential fields of characteristic zero. This is a consequence of the general results in [16], 
and following their notation we denote this theory by D -CF0. In that same paper, the 
authors established that this is a complete stable theory with quantifier elimination and 
elimination of imaginaries. Moreover, they showed that given (U , δ1, . . . , δm) |= D -CF0, 
if K is a differential subfield then K = dclU (K), and if additionally K is algebraically 
closed then K = aclU (K).

We now fix a sufficiently large saturated model (U , D = {δ1, . . . , δm}) |= D -CF0. 
This means that given a small (i.e., |K| < |U|) differential subfield K of U , and a 
(possibly infinite) collection Σ of Ldiff -formulas with parameters from K, if every finite 
subcollection of Σ is satisfiable in U then so is all of Σ. One of the most important 
definable subsets of U is its subfield of constants, which is defined as

CU =
m⋂
i=1

ker δi.

A subset of Un that is an arbitrary (possibly infinite) intersection of definable sets will 
be called a type-definable set.

Remark 3.1. The field CU is algebraically closed and it is purely stably embedded. This 
means that any subset of Cn

U that is definable in the Ldiff -structure U , over some differ-
ential subfield K, is actually definable in the Lrings-structure CU over CK . In particular, 
by ω-stability of the theory of algebraically closed fields, if G ⊆ Cn

U is a type-definable 
group over K in the differential structure (U , δ1, . . . , δm), then G is definable over CK in 
the pure-field structure CU .

We now discuss affine algebraic D-varieties. Fix a (small) differential subfield K < U . 
We say that a Zariski closed set V ⊆ Un defined over K is a D-variety if its coordinate 
ring K[V ] is equipped with a family of m derivations ∂̄ = {∂1, . . . , ∂m} such that ∂i
extends δi|K .

We now wish to give a more algebro-geometric characterization of affine D-varieties. 
Given a Zariski closed V ⊆ Un over K and δ ∈ D, the δ-prolongation of V is the 
Zariski-closed set τδ ⊆ U2n defined by the equations

f(x̄) = 0 and
n∑

i=1

∂f

∂xi
(x̄) · yi + fδ(x̄) = 0

for all f ∈ I(V/K) := {f ∈ K[x̄] : f(V ) = 0}, where x̄ = (x1, . . . , xn) and fδ ∈ K[x̄]
is obtained by applying δ to the coefficients of f . It is easy to check that it suffices to 
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vary f in a family of generators of the ideal I(V/K). Consequently, if V is defined over 
a field k of constants (i.e., k < CU ), then τδV is nothing more that the tangent bundle 
TV of V .

More generally, the D-prolongation of V , denoted by τDV ⊂ Un(m+1), is defined as 
the fibred-product

τDV = τδ1V ×V · · · ×V τδmV.

Note that τDV comes equipped with a canonical projection map τDV → V . The 
D-prolongation has the characteristic property that for any a ∈ V we have that

(a, δ1a, . . . , δma) ∈ τDV ;

in other words, the map x̄ �→ (x̄, δ1x̄, . . . , δmx̄) defines a differential regular section of 
τDV → V .

If V is defined over a field k of constants, then τDV equals the m-fold fibred-product 
of TV and hence it comes with a canonical (algebraic) section, the zero section s0 : V →
τDV . On the other hand, for arbitrary V defined over K, the existence of an algebraic 
regular section s : V → τDV over K turns out to be equivalent to a D-variety structure 
on V . Indeed, if ∂̄ = {∂1, . . . , ∂m} are derivations on the coordinate ring K[V ] extending 
those on K, and we let z̄ = (z1, . . . , zn) be its coordinate functions and set

s(z̄) = (z̄, ∂1(z̄), . . . , ∂m(z̄))

where ∂i(z̄) = (∂i(z1), . . . , ∂i(zn)), then it is not hard to check (using the fact that the 
∂i’s are derivations) that this s yields a section of τDV → V which is regular and over K. 
On the other hand, any such section

s = (Id, s1, . . . , sm)

corresponds to the derivations on K[V ] induced by setting ∂i(z̄) = si(z̄).
From now on, we will usually refer to a D-variety as a pair (V, s) where V is an affine 

algebraic variety (viewed as a Zariski closed subset of Un) and s is a section of τDV → V . 
A point a ∈ V will be called a D-point of V if

s(a) = (a, δ1(a), . . . , δm(a)).

We will denote the set of D-points of V by (V, s)#. Note that this is an example of a 
definable set in the structure (U , δ1, . . . , δm) and in fact this will be the main source of 
such examples for us.

Remark 3.2. Note that if V is defined over a field of constants and s = s0 (the zero 
section), then (V, s)# equals V (CU ), the CU -points of V .



58 S. Launois, O. León Sánchez / Advances in Mathematics 346 (2019) 48–69
A Zariski closed subset W of a D-variety (V, s) is said to be a D-subvariety if s(W ) ⊆
τDW ; of course, in this case (W, s|W ) will be a D-variety. Also, a regular map f : V → W

between D-varieties (V, s) and (W, t) is said to be a D-morphism if f maps D-points to 
D-points.

Remark 3.3. It is easy to check that W ⊂ V is a D-subvariety iff the ideal I(W/K) ⊂
K[V ] is a ∂̄-ideal. Also, a regular map between D-varieties f : V → W is a D-morphism 
iff the pull-back f∗ : K[W ] → K[V ] is a ∂̄-ring homomorphism.

Lemma 3.4. Let (V, s) and (W, t) be affine algebraic D-varieties over K and f a 
D-morphism between them. Then,

1. each K-irreducible component of V is a D-subvariety,
2. the set of D-points of V is Zariski-dense in V ,
3. if X is a D-subvariety of W , then f−1(X) is a D-subvariety of V , and
4. if Y is a D-subvariety of V , then the Zariski closure of f(Y ) is a D-subvariety of W .

Proof. (1) Let W be a K-irreducible component of V and a a Zariski K-generic point 
of W . It suffices to show that s(a) ∈ τDW . As a is not contained in any of the other 
K-irreducible components of V , from the nature of the equations defining τDW , we get 
that τDWa (the fibre above a) coincides with τDVa. The claim now follows.

(2) By (1), we may assume that V is K-irreducible. Let W be a proper Zariski closed 
subset of V and a a Zariski K-generic point of V (hence a /∈ W ). Let b = (b1, . . . , bm) ∈
Unm be such that (a, b) = s(a). Since b ∈ τDVa, the equations of τDV yield that there are 
derivations ∂i : K(a, b) → K(a, b), for i = 1, . . . , m, such that ∂i|K = δi|K and ∂i(a) = bi
(see for instance [12, Chapter 7, §5]). By saturation of U , there is a differential field 
embedding (K(a, b), ∂̄) → (U , D) fixing K. So there is a point (a′, b′) in Un(m+1), namely 
the image of (a, b), such that a′ ∈ V \W and

s(a′) = (a′, b′) = (a′, δ1a′, . . . , δma′).

That is, a′ is a D-point of V not in W . Thus, the set of D-points is dense in V .
(3) To prove that f−1(X) is a D-subvariety of V it suffices to show that

I(f−1(X)/K) ⊆ K[V ]

is a D-ideal. Recall that this ideal is given as the radical ideal generated by f∗(I(X/K)). 
As radical ideals of D-ideals are again D-ideals (see [9, Lemma 1.8]), it suffices to show 
that the ideal generated by f∗(I(X/K)) in K[V ] is a D-ideal. Let δ ∈ D, then for an 
expression of the form 

∑
i gif

∗(hi), with gi ∈ K[V ] and hi ∈ I(X/K), we have

δ

(∑
gif

∗(hi)
)

=
∑

δ(gi)f∗(hi) + gif
∗(δhi),
i i
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where we have used that f is a D-morphism (so f∗ commute with δ). Since X is a 
D-subvariety of W , δhi ∈ I(X/K), and so the above term is in the ideal generated by 
f∗(I(X/K)), as desired.

(4) To prove that Z, the Zariski closure of f(Y ), is a D-subvariety of W , it suffices 
to show that each K-irreducible component of Z is such. Thus, we assume that Z is 
K-irreducible. Let a be a Zariski K-generic D-point of an K-irreducible component of 
Y that maps dominantly onto Z. Then, b = f(a) is a Zariski K-generic point of Z, and 
since f is a D-morphism we have that b is a D-point of W . Thus,

s(b) = (b, δ1b, . . . , δmb) ∈ τDZ,

and, by Zariski genericity of b, we must have s(Z) ⊆ τDZ, as desired. �
From the above lemma we see that if (V, s) is K-irreducible (meaning that V is 

K-irreducible), then it contains a Zariski K-generic D-point. Indeed, if this were not the 
case, by saturation of U there would be a finite collection of proper Zariski closed subsets 
of V defined over K that contains all D-points of V . But as V is K-irreducible this finite 
collection does not cover all of V and hence we contradict part (2) of the lemma.

Note that if a is a Zariski K-generic D-point of V (assuming V is K-irreducible), then 
the function field K(V ) ∼= K(a) equipped with the derivations ∂̄ is a differential subfield 
of (U , D). Thus, from now on, we will assume that

(K[V ], ∂̄) ≤ (K(V ), ∂̄) < (U ,D),

and, moreover, we identify ∂̄ with D.

Proposition 3.5. Let k < CU and (V, s) be a k-irreducible affine algebraic D-variety. 
Then, for any prime D-ideal P of k[V ] we have

D-locally closed =⇒ D-primitive =⇒ D-rational.

Furthermore, suppose V is geometrically irreducible (i.e., kalg-irreducible), if in kalg[V ]
a prime D-ideal is D-rational only if it is D-locally closed, then the same holds in k[V ].

Proof. By passing to the quotient k[V ]/P we may assume that P = (0).
Now assume (0) is D-locally closed. This means that

⋂
Q∈SpecDk[V ]\(0)

Q �= (0).

At the level of D-subvarieties of V (recall that each such Q corresponds to a proper 
D-subvariety of V ), this is equivalent to V having a proper D-subvariety W over k that 
contains all such. Take a point a ∈ V \W (kalg). Then I(a/k) ⊂ k[V ] is a maximal ideal 
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and any D-ideal inside it must be zero (as a /∈ W ). This shows that (0) is the D-core of 
a maximal ideal of k[V ]; in other words, (0) is D-primitive.

On the other hand, assume (0) is D-primitive. That is, there is a maximal ideal m
with D-core (0). Let a ∈ V (kalg) be such that m = I(a/k). Now let f be a D-constant 
of k(V ). We must show that f is algebraic over k. We first show that a is not in the 
singular locus of f . Towards a contradiction suppose it is. Then, for every representation 
f = p

q we have q(a) = 0; that is, q ∈ m. Since f is a D-constant, we have that for each 
δ ∈ D

0 = δf = δp · q − p · δq
q2

and so, either δq = 0, or δp
δq = p

q = f in which case δq(a) = 0. In any case, δq ∈ m. 
Repeating this process we obtain that δ′δq ∈ m for any δ′ ∈ D, and so on, hence we 
get that the D-ideal generated by q is contained in m. This contradicts the fact that the 
D-core of m is (0), and so f is defined at a. Write f = p

q where q(a) �= 0. Now let h ∈ k[t]
be the minimal polynomial of f(a) ∈ kalg. There is a sufficiently large integer s such 
that if we set

r = qs · (h ◦ f)

then r ∈ k[V ]; and, since r(a) = qs(a)h(f(a)) = 0, we also have that r ∈ m. Let δ ∈ D, 
since δ(h ◦f) = (h′◦f) ·δf = 0, we get that δr = δ(qs) ·(h ◦f); and so δr(a) = 0, implying 
that δr ∈ m. Repeating this process we obtain that δ′δr ∈ m for any δ′ ∈ D, and so 
on, hence we get that the D-ideal generated by r is contained in m. By the choice of m, 
r must be zero. This implies that h(f) = 0 and so f ∈ kalg. This shows D-rationality 
of (0).

For the ‘furthermore’ clause, suppose V is geometrically irreducible and that a prime 
D-ideal of kalg[V ] is D-rational only if it is D-locally closed. Let P be a prime D-rational 
ideal of k[V ]. We must show that P is D-locally closed. Let W be the k-irreducible 
D-subvariety of V that corresponds to P . Also, let Y be one of the kalg-irreducible 
components of W . By Lemma 3.4(1), Y is a D-subvariety of V (over kalg). Let b be a 
Zariski kalg-generic D-point of Y ; then b is a Zariski k-generic point D-point of W . Since

kalg(Y ) = kalg(b) ⊆ k(b)alg

and the D-constants of k(b) are algebraic over k (by D-rationality of P ), we get that 
the D-constants of kalg(Y ) are precisely kalg. In other words, the D-ideal I(Y/kalg)
of kalg[V ] is D-rational; by our assumption, this ideal is D-locally closed. That is, Y
contains a proper D-subvariety Y ′ over kalg that contains all such. Letting W ′ be the 
Zariski k-closure of Y ′, we obtain a proper D-subvariety of W over k containing all such; 
equivalently, P is D-locally closed. �
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We will need one more piece of model-theoretic terminology. We denote by AutD(U/K)
the differential automorphisms of U fixing K. Given a tuple a ∈ Un, we define the (com-
plete) type of a over K as the orbit of a under the action of AutD(U/K) on Un; in other 
words,

tp(a/K) := {b ∈ Un : σ(a) = b for some σ ∈ AutD(U/K)}.

In model-theoretic parlance, we are identifying a type with its set of realizations in U . 
A type tp(a/K) is always given as an (infinite) intersection of Ldiff -definable sets in U ; 
namely, the intersections of all definable sets over K containing a. We will call the set 
defined by tp(a/K), in Un, the set of its realizations. We say that tp(a/K) is isolated if 
its set of realizations is a definable set (it will necessarily be definable over K).

Remark 3.6. If (V, s) is a K-irreducible D-variety and a is a Zariski K-generic D-point, 
then the type tp(a/K) is precisely the set of all Zariski K-generic D-points of V . Indeed, 
if b is another Zariski K-generic D-point, then, by saturation of U , there is a field 
automorphism σ of U such that b = σ(a). But since both, a and b, are D-points, σ is 
in fact a differential homomorphism, and so σ ∈ AutD(U/K). The other implication is 
obvious.

Proposition 3.7. Let k be a subfield of CU . Let (V, s) be a k-irreducible D-variety, and a a 
Zariski k-generic D-point of V . Then tp(a/k) is isolated if and only if (0) is a D-locally 
closed D-ideal of k[V ].

Proof. Suppose tp(a/k) is isolated. Then its set of realizations is definable over k. By 
quantifier elimination and the fact that all such realizations are D-points of V , this 
definable set must be of the form (V \W ) ∩ (V, s)# where W is a proper Zariski closed 
subset of V defined over k. Since, by Remark 3.6, the realizations of tp(a/K) is precisely 
the set of all Zariski k-generic D-points of V , all proper D-subvarieties of V defined over 
k must be contained in W . At the level of D-ideals of k[V ], this is equivalent to saying 
that all the nonzero D-ideals contain I(W/k). This shows that

⋂
Q∈SpecDk[V ]\(0)

Q �= (0),

and so (0) is D-locally closed.
On the other hand, assume (0) is D-locally closed. Let X be the proper D-subvariety 

of V corresponding to the D-ideal ∩Q∈SpecDk[V ]\(0)Q. Note that X contains all proper 
D-subvarieties of V defined over k. If a ∈ (V \X) is a D-point, then it must a Zariski 
k-generic of V (otherwise, its Zariski k-locus would yield a proper D-subvariety over k
not contained in X). This shows that the set

(V \X) ∩ (V, s)# (3.1)
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coincides with the set of Zariski k-generic D-points of V . By Remark 3.6, this latter 
set is precisely tp(a/K), so this type is given by the formula (3.1) and therefore it is 
isolated. �
Definition 3.8 (cf. [3]). Let (V, s) be a K-irreducible affine algebraic D-variety.

1. We say that (V, s) is isotrivial if there is a differential field F < U extension of K
and an injective D-morphism over F from (V, s) to (W, s0), where W is defined over 
CF and s0 is the zero section.

2. We say that (V, s) is compound isotrivial in �-steps if there is an sequence of 
K-irreducible D-varieties (Vi, si), i = 1, . . . , �, and dominant D-morphisms over K

V = V�

f�
V�−1

f�−1 · · ·
f2

V1
f1

V0 = 0

such that for each i = 0, 1, . . . , � − 1, if a is a Zariski K-generic D-point of Vi, then 
f−1
i+1(a) is isotrivial. Here note that f−1

i+1(a) is a K(a)-irreducible D-subvariety of 
Vi+1 (by Lemma 3.4(3)).

We now prove one of the key results of the paper.

Theorem 3.9. Let V be a K-irreducible affine compound isotrivial D-variety. If CK(V ), 
the D-constants of K(V ), is algebraic over CK , then the type of a Zariski K-generic 
D-point of V is isolated.

Proof. We let a be a Zariski K-generic D-point of V . We must show that tp(a/K) is 
isolated. Suppose V is compound isotrivial in �-steps. We proceed by induction on �.

For the base case, � = 1, V must be isotrivial. By definition, there is a definable (with 
possibly additional parameters) injective map from the D-points of V to a power of CU . 
In model theoretic terms this means that the type tp(a/K) is internal to CU . This in turn 
implies that tp(a/Kalg) is internal to CU as well. On the other hand, the condition that 
CK(a) = CK(V ) ⊂ Calg

K translates in model-theoretic terms to the type tp(a/Kalg) being 
weakly orthogonal to CU . Indeed, to see this, one must show that Kalg(a) ∩Kalg(CU ) is 
contained in Kalg. Taking d in the intersection we get d = h(c) for some polynomial h
over Kalg and tuple c from CU . If X is the set of tuples x from CU such that d = h(x), 
then, by Remark 3.1, X is Lrings-definable in CU over CKalg(a). Hence, there is a tuple 
c′ from Calg

K(a) ⊂ Calg
K that satisfies X; and so d = h(c′) ∈ Kalg, as desired.

It is a well known model-theoretic fact on binding groups of automorphisms (for 
a proof see [7, Appendix B]) that the above two conditions (internality and weak or-
thogonality) imply the existence of a type-definable group G ⊆ Cn

U over Kalg that acts 
definably (over Kalg) and transitively on tp(a/Kalg). By Remark 3.1, G must be defin-
able (over CKalg), and so the realizations of tp(a/Kalg) form a definable set; in other 
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words, tp(a/Kalg) over K is isolated. Since the type of any tuple of Kalg over K is 
isolated, we must have that tp(a/K) is isolated as well, as desired.

Now assume � > 1, and suppose we have

V = V�

f�
V�−1

f�−1
· · ·

f2
V1

f1
V0 = 0

as in Definition 3.8(2). Let b = f�(a), then b is a Zariski K-generic D-point of V�−1. 
Since CK(b) ⊆ CK(a), we have that CK(b) is algebraic over CK ; and so, by induction, 
tp(b/K) is isolated. We now claim that tp(a/K(b)) is also isolated. Indeed, a is a Zariski 
K(b)-generic D-point of W := f−1(b). By definition of compound isotriviality, W is 
isotrivial, and so by the base case (� = 1) the type of a over K(b) is isolated. The result 
now follows from the fact that both types, tp(b/K) and tp(a/K(b)), are isolated (this is 
an easy exercise but a proof appears in [15, Lemma 4.2.21]). �
Corollary 3.10. Let k be a subfield of CU and let (V, s) be a k-irreducible affine compound 
isotrivial D-variety. If (0) is a D-rational ideal of k[V ], then it is also D-locally closed.

Proof. The fact that (0) is D-rational translates to Ck(V ) being algebraic over k = Ck
(this equality holds since k < CU ). Now, by Theorem 3.9, the type of a Zariski k-generic 
D-point of V is isolated; which, by Proposition 3.7, implies that (0) is a D-locally closed 
ideal of k[V ], as desired. �
4. The D-DME for commutative affine D-groups over constants

In this section we discuss affine algebraic D-groups, and show that the connected 
commutative ones defined over the constants are compound isotrivial in 2-steps. We 
carry on the notation from the previous section; in particular, (U , D = {δ1, . . . , δm}) is 
a sufficiently large saturated model of D -CF0 and all base differential fields, k or K, of 
parameters are assumed to be small (i.e., of cardinality less than that of U).

Given an affine algebraic group G over K, just as the tangent bundle TG of G has the 
structure of an algebraic group, the D-prolongation of G also has a canonical structure 
of an algebraic group (over K).

Definition 4.1. An affine algebraic D-group (G, s) over K is an affine algebraic group 
with the additional structure of a D-variety s : G → τDG, both over K, such that s is a 
group homomorphism.

Remark 4.2. At the level of the coordinate ring K[G], a section s : G → τDG is a group 
homomorphism if and only if the derivations D on K[G] commute with coproduct Δ. 
Indeed, the section

s = (Id, s1, . . . , sm) : G → τDG = τδ1G×G · · · ×G τδmG
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is a group homomorphism iff each section

(Id, si) : G → τδiG,

for i = 1, . . . , m, is a group homomorphism. But each such section is a group homomor-
phism iff δi commutes with Δ (this is well known but a proof appears in [3, Lemma 2.19]).

If G is defined over a field of constants k, then the zero section s0 : G → τDG is 
a group homomorphism. Thus, in this case (G, s0) is a D-group. Our main focus here 
is on the (compound) isotriviality of connected commutative D-groups over a field of 
constants. It turns out that to establish compound isotriviality of such D-groups one 
essentially only needs to understand the commutative unipotent case.

Lemma 4.3. Suppose (G, s) is an algebraic D-group over K. If G = G
n
a for some n, then 

(G, s) is isotrivial.

Proof. By the comments in Remark 4.2, each section

(Id, si) : Gn
a → G

2n
a

is a group homomorphism. Thus, si : Gn
a → G

n
a is of the form si(x̄) = Aix̄ for some 

Ai ∈ Matn(K), i = 1, . . . , m. Since U is existentially closed, we can find B ∈ GLn(U)
such that

δiB = AiB

for i = 1, . . . , m. Set f : Gn
a → G

n
a to be the map f(x̄) = B−1x̄. Then, for every D-point 

a of Gn
a we have

δi(f(a)) = δi(B−1a) = B−1 (δi(a) − δi(B)B−1a
)

= B−1 (Aia−AiBB−1a
)

= 0.

Hence, f is an injective D-morphism between (Gn
a , s) and (Gn

a , s0) (where recall that s0
is the zero section). The result follows. �
Proposition 4.4. Suppose (G, s) is a connected algebraic D-group over a field of con-
stants k. If G is commutative, then every k-irreducible D-subvariety is compound isotriv-
ial in 2-steps.

Proof. As G is over a field of constants, namely k, it comes equipped with the zero 
section s0 as well. Set f(x̄) = s(x̄) · s0(x̄)−1 where the product and inverse occur in 
τDG. Then f is a regular (algebraic) map from G to the m-th power of the Lie algebra 
L(G) of G (here we use again that k < CU ). Moreover, as G is commutative, f is group 
homomorphism.
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Let H be the image of f ; then H = G
n
a for some n. The section s induces, via f , 

a D-group structure t on H. Thus, f becomes a surjective group D-morphism between 
(G, s) and (H, t). We claim that

G
f

H 0

witnesses the compound isotriviality of (G, s). Indeed, (H, t) is isotrivial by Lemma 4.3, 
so it suffices to show that if a is a Zariski k-generic D-point of H then f−1(a) is isotrivial. 
Let g be a D-point of f−1(a) and N := ker f . Then g induces an injective D-morphism 
from f−1(a) onto N (as D-subvarieties of G) given by h �→ g−1 ·h. As N is defined over k
and s|N is the zero section, f−1(a) is indeed isotrivial. Note that this argument actually 
shows that f−1(a) is isotrivial for any D-point a of H (not necessarily Zariski generic).

Now let V be an arbitrary k-irreducible D-subvariety of G. Letting W be the 
D-subvariety of H given by the Zariski closure of f(V ) (see Lemma 3.4(4)) and g := f |V , 
we get that

V
g

W 0

witnesses the compound isotriviality of V . Indeed, (W, t|W ) is isotrivial because it is a 
D-subvariety of the isotrivial (H, t). Also, the argument in the above paragraph shows 
that if b is a Zariski k-generic D-point of W then f−1(b) is isotrivial, but then g−1(b) =
f−1(b) ∩ V is isotrivial as well. The result follows. �
Remark 4.5.

1. We note that in Proposition 4.4 one cannot obtain in general compound isotriviality 
in 1-step (in other words, isotriviality). For example, in the single derivative case 
D = {δ}, consider G = Ga ×Gm with D-group structure s : G → TG given by

s(x, y) = (x, y, 0, xy).

Then G is not isotrivial, see [18, §2] for details.
2. It follows from [11, Fact 2.7(iii)], that the center Z(G) of an affine algebraic D-group 

(G, s) is a (normal) D-subgroup. In the case of a single derivation D = {δ}, it was 
shown in [11, Theorem 2.10] that G/Z(G) with its induced D-group structure is 
isotrivial. While this result extends to the case of several commuting derivations, 
it is not yet known if it holds in the general situation of possibly noncommuting 
derivations. It is worth noting that if such a result does hold, then one can extend the 
argument of Proposition 4.4 to show that any connected algebraic D-group over the 
constants is compound isotrivial in 3-steps (this would yield an interesting extension 
of [3, Proposition 2.16]).
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Putting Proposition 4.4 together with the results of Section 3, we obtain

Corollary 4.6. Suppose (G, s) is a connected algebraic D-group over a field of constants k. 
If G is commutative, then (k[G], D) satisfies the D-DME.

Proof. By Proposition 4.4, every k-irreducible D-subvariety of G is compound isotrivial. 
Hence, by Corollary 3.10, a prime D-ideal of k[G] is D-rational only if it is D-locally 
closed. The result now follows from Proposition 3.5. �
5. Main results on Poisson–Hopf algebras

Recall that k denotes a field of characteristic zero. In this section we prove the main 
result of the paper; namely,

Theorem 5.1. Any cocommutative affine Poisson–Hopf k-algebra satisfies the Poisson 
Dixmier–Moeglin equivalence.

Remark 5.2. By [17, 1.7(i), 1.10], in any affine Poisson algebra (A, {−, −}) we have that 
Poisson-locally closed implies Poisson-primitive, and Poisson-primitive implies Poisson-
rational. We note that this also follows from our results in Section 3. Indeed, if we let 
D denote the (finite) family of Hamiltonians of a collection of generators of A, then, 
by Proposition 3.5, in the differential k-algebra (A, D) we have that D-locally closed 
implies D-primitive, and D-primitive implies D-rational. The remark now follows from 
Corollary 2.5.

We will make use of the following consequence of Proposition 3.5.

Lemma 5.3. Let (A, {−, −}) be an affine Poisson k-algebra such that A ⊗kalg is a domain. 
If in A ⊗ kalg a prime ideal is Poisson-rational only if it is Poisson-locally closed, then 
the same holds in A.

Proof. The assumptions imply that A is of the form k[V ] for some geometrically irre-
ducible affine algebraic variety V over k. Letting D be the (finite) family of Hamiltonians 
of a collection of generators of A, we get that in kalg[V ] a prime ideal is D-rational only if 
it is D-locally closed (by Corollary 2.5). By the ‘furthermore’ clause of Proposition 3.5, we 
get the same implication holds in k[V ]. Again by Corollary 2.5, we get that in A = k[V ]
a prime ideal is Poisson-rational only if it is Poisson-locally closed, as desired. �

A commutative and cocommutative affine Hopf k-algebra is nothing more than the 
coordinate ring k[G] of a connected commutative affine algebraic group G over k. The 
following well known theorem characterizes such groups over kalg (see [4] for instance).

Theorem 5.4. Let G be a connected commutative affine algebraic group over k. Then G
is isomorphic over kalg to Gs

a ×G
t
m for some s and t.
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A consequence of this result is that for any affine Hopf k-algebra A, that is commu-
tative and cocommutative, we have that

A⊗ kalg = kalg[x1, . . . , xs, y
±
1 , . . . , y±t ] (5.1)

where the xi’s are primitive and the yi’s are group-like. We use this fact to prove:

Proposition 5.5. Let (A, {−, −}) be an affine Poisson k-algebra. Suppose further that k is 
algebraically closed and A is a cocommutative Hopf algebra. Then, there is D ⊆ Derk(A)
with

spanA D = spanA({a,−} : a ∈ A), (5.2)

and such that (A, {−, −}) is a Poisson–Hopf algebra if and only if (A, D) is a differential-
Hopf algebra.

Proof. Write A = k[G] where G is a connected commutative affine algebraic group 
over k. By Theorem 5.4 (or (5.1) rather), we may assume that

A = k[x1, . . . , xs, y
±
1 , . . . , y±t ]

where the xi’s are primitive and the yi’s are group-like. Consider the Hamiltonians 
δxi

:= {xi, −} : A → A, for i = 1, . . . , s, and the normalized Hamiltonians δyi
:=

y−1
i {yi, −} : A → A, for i = 1, . . . , t. We claim that

D := {δx1 , . . . , δxs
, δy1 , . . . , δyt

}

is the desired set of k-linear derivations. Clearly (5.2) is satisfied (see Remark 2.3). Now 
suppose that (A, {−, −}) is a Poisson–Hopf algebra. Let 1 ≤ i ≤ s and set x := xi. 
Recall that Δx = x ⊗1 +1 ⊗x. Now let a ∈ A, using sumless Sweedler notation we write 
Δa = a(1) ⊗ a(2). We then have

δx(Δ(a)) = δx(a(1) ⊗ a(2))

= δxa(1) ⊗ a(2) + a(1) ⊗ δxa(2)

= {x, a(1)} ⊗ a(2) + a(1) ⊗ {x, a(2)}
= {x⊗ 1, a(1) ⊗ a(2)} + {1 ⊗ x, a(1) ⊗ a(2)}
= {x⊗ 1 + 1 ⊗ x, a(1) ⊗ a(2)}
= {Δx,Δa}
= Δ({x, a}) (since A is a Poisson–Hopf algebra)

= Δ(δxa)
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Now let 1 ≤ j ≤ t and set y = yj . Recall that Δy = y ⊗ y. Now let a ∈ A. We then 
have

δy(Δ(a)) = δy(a(1) ⊗ a(2))

= δya(1) ⊗ a(2) + a(1) ⊗ δya(2)

= y−1{y, a(1)} ⊗ a(2) + a(1) ⊗ y−1{y, a(2)}
=

(
y−1 ⊗ y−1) ({y, a(1)} ⊗ ya(2) + ya(1) ⊗ {y, a(2)}

)
= Δ(y−1) {y ⊗ y, a(1) ⊗ a(2)}
= Δ(y−1) {Δy,Δa}
= Δ(y−1) Δ({y, a}) (since A is a Poisson–Hopf algebra)

= Δ(y−1{y, a})
= Δ(δya)

We have shown that all these derivations commute with coproduct; in other words, that 
(A, D) is a differential-Hopf algebra.

The other implication (i.e., that if D commutes with Δ then {−, −} commutes with Δ) 
follows from a similar series of equalities and applying Remark 2.2. �
Remark 5.6.

1. In terms of Poisson groups over an algebraically closed field k, in the sense of [10, 
§1.3], the above proposition shows that given a commutative affine algebraic group 
G over k equipped with a Poisson variety structure, one can find D ⊆ Derk(k[G])
such that (5.2) holds, with k[G] in place of A, and with the property that G is a 
Poisson algebraic group if and only if it is an algebraic D-group (with respect to D).

2. We do not know at this point whether or not the cocommutativity assumption can 
be removed from Proposition 5.5. Nonetheless, we note that if this were the case and 
if algebraic D-groups over constants were compound isotrivial (see Remark 4.5(2)), 
then the proof below of Theorem 5.1 would work for any (not necessarily cocommu-
tative) affine Poisson–Hopf k-algebra.

We can now prove Theorem 5.1.

Proof of Theorem 5.1. By Remark 5.2, it suffices to show that D-rational implies 
D-locally closed. By Lemma 5.3, we may assume that k is algebraically closed. Write 
A as k[G] where G = G

s
a × G

t
m, and let D be the family of k-linear derivations of A

obtained in Proposition 5.5. Then (A, D) is a differential-Hopf algebra.
By Remark 4.2, the induced section s : G → τDG is a group homomorphism; in other 

words, (G, s) is a D-group. By Corollary 4.6, (A, D) satisfies the D-DME; in particular, 
a prime D-ideal of A is D-rational only if it is D-locally closed. By Corollary 2.5, this in 
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turn implies that a prime Poisson ideal of A if Poisson-rational only if it is Poisson-locally 
closed, as desired. �

We conclude with the following application:

Theorem 5.7. If A is the symmetric algebra of a finite dimensional Lie algebra g over k, 
equipped with its natural Poisson bracket, then A satisfies the Poisson Dixmier–Moeglin 
equivalence.

Proof. We know from Section 2.1 that A is a cocommutative affine Poisson–Hopf 
k-algebra, and so the result follows from Theorem 5.1. �
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