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Abstract 
 Acetone-butanol-ethanol (ABE) fermentation is an established industrial 

process that uses Clostridium bacteria for the conversion of plant-derived 

‘feedstocks’ into solvents (acetone, butanol and ethanol) that can be used as 

biofuels. These solventogenic clostridial strains are naturally adapted to access 

energy/carbon from complex sugars found in common feedstocks made from corn 

and rice, but it is of interest to explore a variety of waste biomass to provide a stable 

supply of feedstock for industrial biofuel production. It was of particular interest to 

investigate microalgae as a feedstock for ABE fermentation: microalgae are 

currently used by project partners Algaecytes® to produce Omega 3, which results 

in large amounts of low-value spent biomass following product extraction. In this 

study, commercially-available Chlorella vulgaris was used as well as a 

Eustigmatophyceae proprietary strain obtained from the project partner. 

Feedstocks were processed in a variety of ways and fermentations were performed 

in serum bottles and 500 mL fermenters to optimise optical detection of clostridial 

growth and solvent production.  The highest solvent yield of 3.27 g/L (acetone: 

0.40 g/L; butanol: 1.40 g/L; ethanol: 1.47 g/L) was achieved with non-autoclaved 

and non-centrifuged 10 % Eustigmatophyceae spent biomass supplemented with 

1 % glucose, whereas a 10 % feedstock of C. vulgaris supplemented with 1% 

glucose had a lower yield of 1.20 g/L (acetone: 0.20 g/L; butanol: 1.00 g/L). These 

yields are significantly lower than those obtained with industrial feedstocks (in 

excess of 20 g/L) where butanol toxicity becomes limiting, so further work will be 

necessary to refine the use of algal biomass as a feedstock. 

 In addition to investigation of alternative feedstocks, there is clear 

biotechnological value in producing a Clostridium strain with increased butanol 

tolerance. Previously, overexpression of the FocA formate transporter has been 

shown to enhance butanol tolerance in Escherichia coli. Cloning/overexpression of 

E. coli focA and the clostridium homologue fdhC were done, with the aim of 

generating a butanol-tolerant strain of C. saccharoperbutylacetonicum. This work 

has the potential to generate higher solvent yields that could improve process 

economics for industrial biofuel production by ABE fermentation. 
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Chapter 1  
Introduction  
 The world is facing an energy shortage, primarily resulting from increasing 

energy demands associated with an increase in global population, which is expected 

to reach 9.7 billion by 2050 (United Nations Department of Economic and Social 

Affair 2017). The combination of these key data points shall further escalate the 

emission of greenhouse gases, and the rapid depletion of fossil fuels will inevitably 

lead to an energy crisis. This significant challenge has attracted many key stake-

holders, businesses, and researchers to the development of sustainable and more 

environmentally friendly energy sources.  Bacterial biofuels are one potential solu-

tion. 

 Acetone, butanol and ethanol (ABE) can be produced by solventogenic 

Clostridium species via the process of ABE fermentation. The main species that are 

employed for ABE production include C. acetobutylicum, C. beijerinckii, C. sac-

charobuytlicum and C. saccharoperbutylacetonicum (Wang et al. 2017). ABE fer-

mentation was first discovered by Louis Pasteur in 1861 (Ndaba et al. 2015). Clos-

tridium species have been used to produce solvents since the early 20th century: 

during the first world war, C. acetobutylicum was used to produce acetone, which 

was used to produce cordite (gun powder). After the war, the demand switched to 

butanol as a solvent for lacquers (Moon et al. 2016; Sreekumar et al. 2015).  

 

1.1. Acetone 

 Acetone is a least undesirable solvent because it cannot be used as fuel. It 

corrodes the rubber and plastic components of the engine. Furthermore, it reduces 

the butanol production (per unit mass of substrate utilised). Hence, the reduction of 

acetone production has been an important aspect of clostridial metabolic engineer-

ing (Xin et al. 2017).  
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1.2. Butanol 

 Butanol (aka 1-butanol) is a four-carbon alcohol. The properties and the 

application of butanol are shown in Table 1.1. In comparison to other contemporary 

biofuels (e.g. ethanol), butanol is known as a “superior biofuel”. The advantages of 

n-butanol are: (1) high heating value. Butanol (C4H10O) has twice as many carbon 

atoms as ethanol (C2H6O), hence, butanol has a better mileage and higher energy 

content (per unit mass); (2) a lower volatility and lower vapour pressure. n-butanol 

is less likely to cause vapour lock (i.e. an interruption in pipeline flow), and hence, 

the need of a special blend during summer and winter is not necessary. Also, n-

butanol is less hazardous and emits fewer volatile organic compounds; (3) fewer 

ignition problems. The ignition temperature of n-butanol is low (ignition tempera-

ture: 35 °C; flash point: 29 °C), and hence, an engine that runs on n-butanol has 

fewer problems during a cold start; (4) lower corrodibility. Thus, distribution and 

storage are easier via existing infrastructure (e.g. pipelines and fuel tanks); (5) 

lower hygroscopicity (low affinity for water). Hence, butanol is better able to tol-

erate water contamination; (6) higher viscosity. The viscosity of n-butanol is higher 

than gasoline, hence, it reduces the chances of problems associated with wear in 

fuel pumps caused by insufficient lubricity; and (7) less flammable. Hence, butanol 

can be blended with gasoline in any proportion. Furthermore, butanol has similar 

characteristics to gasoline (Table 1.1) and therefore fewer engine modifications are 

required (Abdehagh et al. 2014; Gao et al. 2016; Jang et al. 2012a; Jin et al. 2011; 

Lee et al. 2008; Wang et al. 2016).  

  The key constraints for sustainable butanol production include: (1) A lim-

itation of sustainable feedstock (expensive and competition with human food 

sources); (2) A low butanol titre due to the limitation of bacterial tolerance; and (3) 

A high product recovery cost due to low yield of butanol (IPCS 2005; Moon et al. 

2016; Xin et al. 2016; Xin et al. 2017).  
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Table 1.1. Properties of butanol, ethanol and gasoline as biofuel. 

 Butanol Ethanol Gasoline 

Energy density (MJ/L) 29.2 19.6 32 

Air-fuel ratio 11.2 9 14.6 

Heat of vaporization (MJ/kg) 0.43 0.92 0.36 

Octane number 96 108 80-99 

 

1.3. Ethanol 

 Ethanol is the most widely used biofuel in USA and Brazil but it is not as 

ideal as butanol, mainly due to the fact that ethanol corrodes pipelines, and hence 

it must be transported via barge, lorry or rail, and yields lesser energy (Jin et al. 

2011). Furthermore, food feedstocks such as corn and sugarcane are used for the 

production of ethanol (Lopez et al. 2016).  

 The properties and applications of acetone, butanol and ethanol are summa-

rized in Table 1.2.  

 

Table 1.2. Properties and applications of acetone, butanol and ethanol (adapted from 
ChemicalSafetyFacts.org., International Program on Chemistry Safety; Jin et al. 2011; Lee et 
al. 2008; National Centre for Biotechnology Information). 

Properties Solvents 
Acetone Butanol Ethanol 

Melting point -94.9 °C -89.3 °C -114.1 °C 
Boiling point 56.3 °C 117.7 °C 78.2 °C 
Molecular formula C3H6O C4H10O C2H6O 
Molecular weight 58.1 g/mol 74.1 g/mol 46.1 g/mol 

 
Applications 
Acetone Butanol  Ethanol 
Primary ingredient in nail 
polish remover, solvent of 
manufacturing lacquers 

Diluent for brake fluid, re-
placement of gasoline, sol-
vent for the manufacturing 
of antibiotics, vitamins and 
hormones 

Disinfectant, biofuel, food 
additive, common ingredi-
ent in cosmetics and beauty 
products, solvent for manu-
facturing of paint, lacquers, 
varnish  

 

1.4. Commonly used solventogenic clostridial species 

 Solventogenic clostridial are non-pathogenic, Gram-positive, low GC con-

tent, spore forming obligate anaerobe that is rod-shaped (0.4-0.9 µm x 1.6-6.4 µm) 
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and motile (tumbling motion in a forward direction) due to its peritrichous flagella. 

Solventogenic clostridial have a single circular chromosome (Bao et al. 2011; Keis 

et al. 2001; Wu et al. 2012). 

 

1.4.1. Clostridium acetobutylicum  

C. acetobutylicum is well-known as a “Weizmann organism” (Johnson et 

al. 1997). Between 1912 to 1914, C. acetobutylicum was first identified and iso-

lated by Weizmann (Strain: DSM 1732; British patent no. 4845) (Lu 2014; Weiz-

mann and Rosenfeld 1937). C. acetobutylicum is the most commonly used bacteria 

for the butanol production and it is well known as a hyper-butanol producer (Lu 

2014; Zheng et al. 2009). Furthermore, the scale of its ethanol production, C. aceto-

butylicum is ranked second after yeast (Bao et al. 2011).    

Studies had been shown that almost 50% of the previous C. acetobutylicum 

available cultures were actually C. beijerincki. Phenotypic traits were used to dif-

ferentiate solventogenic clostridial. For example, C. acetobutylicum is susceptible 

to rifampicin and produces yellow pigment riboflavin in milk. Whereas, C. bei-

jerinckii and C. saccharoperbutylacetonicum is resistant to rifampicin and does not 

produce riboflavin in milk (Johnson et al. 1997; Keis et al. 2001).     

Besides being a crucial bacterium for industrial used, C. acetobutylicum is 

also used as a model for the study of endospore formation, which was compared 

with Bacillus subtilis (Nölling et al. 2001).   

 

1.4.2. Clostridium beijerinckii  

 C. beijerinckii was first isolated by Marins Beijerinck (Durre 2008). The 

most striking feature of C. beijerinckii (previously known as C. butylicum) is that 

it is able to produce either acetone or further reduce the acetone to isopropanol with 

the help of secondary alcohol dehydrogenase (sadh) (Figure 1.2A) (Alalibo et al. 

2014; Millat and Winzer 2017). However, the amount of isopropanol produced by 

C. beijerinckii is very low. The isopropanol can be added to biodiesel production, 

which reduces the crystallisation at low temperature (Alalibo et al. 2014).  

 C. beijerinckii is more favourable as a solvent producer when compared 

with C. acetobutylicum due to a number of factors such as: (1) higher tolerance to 
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fermentation inhibitors released from the hydrolysis of fibre-rich agriculture bio-

mass such as weak acids (e.g. formic acid) and furan derivatives (hydroxymethyl-

furfural and furfural); (2) less vulnerable to solventogenic degeneration as the genes 

for solventogenesis in C. beijerinckii is located on the chromosome. Whereas, C. 

acetobutylicum carries the gene on the plasmid; (3) exhibits wider substrate range 

(Table 1.4); (4) broader optimum pH for growth and solvent production; and (5) 

higher metabolic capability as the genome size of C. beijerinckii is 50% bigger than 

C. acetobutylicum (Table 1.3) (Cho et al. 2012; Ezeji et al. 2006; Lu 2014; Wang 

et al. 2011).  

 

1.4.3. Clostridium saccharoperbutylacetonicum  

 In 1959, Hongo et al. (1968) was first to isolate a strain of C. saccharoper-

butylacetonicum from soil (strain 97; US patent no. 2945786), which was subse-

quently used by the Sanraku Distillers company in the early 1960s to produce bu-

tanol, although production was ceased by phage issues (Poehlein et al. 2014). The 

species name saccharoperbutylacetonicum (saccharin: sugar juice; per: through-

out; butylum: butanol) refers to the hyper-production of solvents especially butanol 

from a wide range of carbohydrates (Table 1.4). The ability to ferment a wide range 

of carbohydrates is because the bacterium produces a diverse complement of hy-

drolytic enzymes. C. saccharoperbutylacetonicum produces more hydrolytic en-

zymes than the yeast, Saccharomyces cerevisiae, which is a universal ethanol pro-

ducer (Patakova et al. 2013), and is therefore able to grow on a greater range of 

substrates. Substantial actives of hydrolytic enzymes occur during the growth 

phase, which will hydrolyse complex sugars to fermentable sugars that can be used 

for solvent production.  

The desirable traits of C. saccharoperbutylacetonicum are: (1) capability to 

produce a high level of butanol (approximately 85% of the total solvent produc-

tion); (2) as low sporulation frequency; (3) enzymatic and saccharolytic properties; 

(4) it is extremely good at reutilising formed acid as well as supplied acids (Kosaka 

et al. 2007; Patakova et al. 2013; Poehlein et al. 2014).   
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Table 1.3. The commonly used three species of solvent-producing clostridial 
(adapted from Bao et al. 2011; Gérando et al. 2018; Poehlein et al. 2014).  

Species and strain 
Genomic se-
quence size 
(bp) 

Extrachromosomic ele-
ments. Size (bp)  

Nucleotide 
accession 
number 

C. acetobutylicum DSM 
1731 

3,942,462 Two plasmids. 
pSMBa: 191,996 
pSMBb: 11,123 

CP002660, 
CP002661, 
CP002662  

C. beijerinckii DSM6423 6,383,364 Two plasmids. pNF1: 
10,278 
pNF2: 4,282 
One linear double stranded 
DNA bacteriophage; 
ɸ6423: 16,762 

PRJEB11626 

C. saccharoper-
butylacetonicum DSM 
14923  

6,530,257  One megaplasmid; 
Csp_135p: 136,188 

CP004121, 
CP004122 

 
 
Table 1.4. Differences in carbohydrate utilization in three species of solvent-pro-

ducing clostridial (adapted from Keis et al. 2001). 
 

 

 

1.5. ABE fermentative metabolism 

 ABE fermentation produces solvents in the ratio of 3:6:1 for acetone: buta-

nol: ethanol (Gutierrez et al. 1998) and involves biphasic growth consisting of ac-

idogenesis and solventogenesis (Kosaka et al. 2007). According to the ABE ratio 

(3:6:1), more butanol is produced because during acidogenesis phase, more butyr-

ate is formed than acetate as the NADHs formed during glycolysis are only taken 

up in butyrate pathway but not in acetate pathway. Then, more of the butyrate and 

less of the acetate convert to butanol and ethanol, respectively (Zheng et al. 2009). 
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Optimal temperature for solvent production is 30-35 °C. At high pH ranges from 

6.0 to 6.5 triggers organic acids production (Maddox 1989). Whereas, at low pH 

ranges from 4.5 to 5.0 initiates solvent production. On the other hand, the solven-

togenesis will be unproductive if the pH is lower than 4.5 (Al-Shorgani et al. 2015; 

Ellis et al. 2012; Jones and Woods 1986; Keis et al. 2001; Kosaka et al. 2007; Lee 

et al. 2008). The sol operon of C. saccharoperbutylacetonicum (Figure. 1.1) is re-

quired for solventogenesis and consists of genes coding for aldehyde dehydrogen-

ase (aldH), CoA transferase (ctfAB), and acetoacetate decarboxylase (adc). The 

general architecture of the sol operon of C. beijerinckii and C. saccharoper-

butylacetonicum are the same, but differs from the sol operon of C. acetobutylicum 

where the aldehyde/alcohol dehydrogenase gene (aad) replaces aldH, and adc is 

part of a separate operon. Transcription of the sol operon is highly up-regulated 

during solventogenesis in a polycistronic manner. Nakayama et al. (2011) reported 

that quorum-sensing controls the transcription of sol operon and induces solvento-

genesis. Most of the Gram-positive bacteria such as clostridial communicate via 

quorum-sensing, which the bacteria monitor their population density by sensing the 

diffusible signalling molecules. These bacteria use these signalling molecules to 

regulate genes expression. Kosaka et al. (2007) reported that “low-solvent” mutant 

of C. saccharoperbutylacetonicum generates signal compounds to induce solvent 

production. However, further investigation is needed to identify the signal com-

pound (Berezina et al. 2009; Cerror et al. 2013; Kosaka et al. 2007; Nakayama et 

al. 2011; Poehlein et al. 2014; Steiner et al. 2012).  

 

 

 

 

 
Figure 1.1. sol operon in three species of solvent-producing clostridial. (A) C. acetobutyli-
cum. The sol operon structure of C. acetobutylicum is different from beijerinckii, and C. sac-
charoperbutylacetonicum, where the aad replaces aldH, and adc is part of a separate operon; 
(B) C. beijerinckii, and C. saccharoperbutylacetonicum. The sol operon structure of C. bei-
jerinckii, and C. saccharoperbutylacetonicum are the same (adapted from Berezina et al. 2009; 
Kosaka et al. 2007).  
  

 



 Introduction 
 

 8 

 Figure 1.2A depicts the ABE fermentation. During anaerobic ABE fermen-

tation, clostridial species hydrolyse carbohydrate by the action of amylase (Figure 

1.2, 1). Sugars in the form of pentoses and hexoses (in the form of mono-, di-, tri-, 

and polysaccharides) are then metabolized through glycolysis (Embden-Meyerhof 

pathway) to produce pyruvate that is converted to acetyl CoA with the release of 

carbon dioxide (CO2) (Figure 1.2, 2 and 3). Acetyl CoA is further converted to 

other intermediates including acetoacetyl CoA, acetyl-P, and acetaldehyde (Figure 

1.2, 4 and 5) (Ndaba et al. 2015).  

 Acidogenesis happens under specific growth conditions such as during the 

log phase of growth (2 to 12 h of fermentation), pH value more than 5, and limita-

tion of iron. The vegetative cells produce a large amount of organic acids (e.g. ac-

etate, butyrate and lactate), hydrogen, carbon dioxide and accumulate ATP. The 

increased production of organic acids, causes a significant drop of pH. For exam-

ple, the undissociated butyric acid diffuses into the cells. Hence, proton gradient 

between the inside and the outside of the cell is destroyed, which can inhibit the 

cell growth. Clostridial increase the internal pH by switching to solventogenesis 

from acidogenesis (commonly occurs at pH 5.5 or lower), which occurs during the 

late log phase and early stationary of growth (Abdehagh et al. 2014; Cheng et al. 

2015; Jin et al. 2011; Ndaba et al. 2015; Tashiro et al. 2004; Wang et al. 2017). 

Jones and Woods (1986) suggested that the initiation of solvent production appears 

to be a detoxification mechanism, which prevents the cells from inhibitory effects 

that would happen when the organic acids (end products of acidogenesis) reach a 

toxic level. 

 During the solventogenesis (early stationary phase; after 12 hrs of fermen-

tation), the organic acids are assimilated together with the consumption of addi-

tional carbon source to produce acetone, butanol and ethanol. Hence, a low pH 

condition is prerequisite for solvent production (Cheng et al. 2015; Jin et al. 2016; 

Tashiro et al. 2004).   

 Besides the cleavage of pyruvate to acetyl-CoA, clostridial can convert py-

ruvate to lactate under unfavourable conditions such as the inhibition of hydrogen-

ase activity by carbon monoxide or the limitation of iron. This operation is less 

effective for energy generation and allows the continuation of the oxidation of 
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NADH. This pathway is inactive during solventogenesis (Jones and Woods 1986; 

Millat and Winzer 2017).  

 Electron flow in clostridial is governed by ferredoxin, which acts as an elec-

tron carrier and has a role in electron distribution at a very low redox potential (-

410 mV vs. NHE). Under ideal condition(s), the reduced ferredoxin transfers elec-

tron to hydrogenase, which uses proton as a final electron accepter. At this step, the 

ferredoxin is reoxidized, resulting in the release of hydrogen gas from the cell (Fig-

ure 1.2, 3). During acidogenesis, there is a sharp drop of redox potential due to the 

rapid flow of electrons, which is mainly derived from the cleavage of pyruvate. 

During acidogenesis phase, the electron and carbon flow are directed to hydrogen 

and organic acid production, respectively (Jones and Woods 1986). During solven-

togenesis, the production of hydrogen is lesser than the expected amount from the 

oxidation of pyruvate, as the majority of the electron and carbon flow are directed 

to solvent production (Jones and Woods 1986; Rao and Mutharasan 1987). 

 Although the pH-acid effect from acidogenesis act as a key role in the onset 

of solventogenesis, but acid crush might occur when the pH of the medium is lower 

than 4.5. For example, in pH-uncontrolled fed-batch fermentations, when the con-

centration of the acids (mainly acetic and butyric acids, undissociated and dissoci-

ated) in the medium is more than 57-60 mmol/l. Hence, the excess acids are pro-

duced together with insignificant switching of acidogenesis to solventogenesis. As 

a result, the switching of acidogenesis to solventogenesis fails, which then lead to 

the failure of solvent production and a cessation of glucose uptake. The solvento-

genesis can be inhibited when the total acid concentration reaches 240-350 mmol/L 

(Chen and Blaschek 1999; Maddox et al. 2000). 

 There is a significant change in gene expression pattern during the meta-

bolic switch, resulting in the suppression of acidogenic enzymes along with the 

induction of solventogenic enzymes. During the acidogenesis phase, phosphotrans-

acetylase (pta) and acetate kinase (ack) play a role for the production of acetic acid 

from acetyl-CoA (Figure 1.2, 4). The conversion of acetyl-CoA to butyryl-CoA, 

were done by four enzymes, which are thiolase (thl), 3-hydroxybutyryl-CoA dehy-

drogenase (hbd), crotonase (crt), and butyryl-CoA dehydrogenase (bcd) (Figure 

1.2, 7). Then, butyryl-CoA is catalysed by phosphotrans butyrylase (ptb) and bu-

tyrate kinase (buk) to produce butyric acid (Figure 1.2, 8). During the 
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solventogenesis phase, ethanol and butanol are generated by aldehyde dehydrogen-

ase (aldh), and alcohol dehydrogenase (adh) (Figure 1.2, 5 and 9). Acetic and bu-

tanoic acid are re-assimilated by acetoacetyl-CoA transferase (ctfAB), which pro-

duce acetyl CoA and butyryl-CoA, respectively (Figure 1.2, dashes lines). Then, 

acetyl CoA is converted to acetone and ethanol (Figure 1.2, 5 and 6) and butyryl-

CoA is converted to butanol (Figure 1.2, 9) (Kosaka et al. 2007; Patakova et al. 

2013; Wang et al. 2017).  

 Butanol can be produced in two pathways, which are the “hot and cold 

channel(s)” (Figure 1.2B). The “cold channel” is the process of generating butanol 

via the reassimilation of acetate and butyrate into acetyl-CoA and butyryl-CoA, 

respectively through a CoA- transferase (CoA-T) pathway. Then, acetyl-CoA is 

converted to butyryl-CoA or reduced to ethanol. Butyryl-CoA is then reduced to 

butanol. Whereas the “hot channel” prevents organic acid reassimilation and it is 

the only direct route for the conversion of acetyl-CoA to butyryl-CoA followed by 

reduction to butanol. Production of butanol via “hot channel” prevents the yield 

losses to CO2 and acetone as 1 mol of acetoacetate is generated from every mol of 

reassimilated organic acid. The acetoacetate is then decarboxylated into CO2 and 

acetone (Jang et al. 2012b; Ou et al. 2015). However, the study of Jang et al. 

(2012b) showed that reducing the “cold channel” reduced the acetate and butyrate 

production but the butanol yield was rather low. Hence, decreasing “cold channel” 

does not increase the butanol yield unless all the organic acid pathways are halted 

simultaneously (Jang et al. 2012b).   

 Sporulation can occur during solventogenesis, which poses a problem as 

sporulation compromises solvent production as the cells fall into a state of dor-

mancy. The Spo0A regulator is responsible for sporulation and solventogenesis by 

regulating the expression of metabolic enzymes that are crucial for solvent produc-

tion. Kosaka et al. (2007) reported that Spo0A may regulate the sol operon indi-

rectly as no binding site for Spo0A was found near the sol operon. Hence, further 

investigation is required to confirm the regulation of spo0A (Abdehagh et al. 2014; 

Jin et al. 2011; Patakova et al. 2013).  
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Figure 1.2. ABE fermentation pathway. (A) The major products during acidogenesis are 
shown in the blue boxes, while those mainly produced during solventogenesis are shown in the 
green boxes. The dashes lines show the CoA-T pathway, where organic acids are re-assimilated 
during solventogenic growth. Enzymes are shown in italics. Asterisk (*) indicates genes and 
enzymes encoded by the sol operon. Pathway in red arrow indicates isopropanol production 
naturally occurs C. beijerinckii; Pathway in grey arrow indicates lactate production under un-
favourable condition. Numbers are used for easy reference; (B) Butanol formation routes via 
“hot and cold channel(s)” in clostridial. Blue arrows indicate the cold channel, which is the 
organic acid assimilation route. Red arrows indicate the hot channel, which is the direct route 
(Adapted from Alalibo et al. 2014; Jang et al. 2012b; Kosaka et al. 2007; Lee et al. 2008; Moon 
et al. 2016; Ndaba et al. 2015; Ou et al. 2015).  
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1.6. Strategies to improve solvent production 

 The condition and the age of the inoculum plays a crucial role in improving 

the efficiency of ABE fermentation. In order to increase productivity, the best stage 

to seed culture is at the final stage of the acid decreasing phase during the ABE 

fermentation (Ezeji et al. 2013). 

 In anaerobic fermentation, agitation is needed to homogenize the solid-liq-

uid suspension, which is important for the nutrients to transfer into the cells and the 

metabolites to transfer out from the cells (Yerushaimi and Volesky 1985). 

Yerushalmi et al. (1985) reported that solvent production can be increased when 

the agitation rate is set between 190 to 340 rpm. Further increases of agitation re-

sulted in an adverse effect and inhibition of cell growth occurred at agitation rate 

of 560 rpm due to mechanical cell injury (Jones and Woods 1986; Yerushaimi and 

Volesky 1985). In contrast to above, Doremus et al. (1985) reported that low agi-

tation (100 rpm) together with head-space pressure (100 kPa) using hydrogen gas 

improved butanol productivity. Doremus et al. (1985) suggested that head-space 

pressurized (105 to 1,479 kPa) using hydrogen gas supersaturates the medium with 

hydrogen favours the production of reduced products such butanol and ethanol by 

expensing oxidized products such as acetate and butyrate. Whereas, in non-pres-

surized fermentation, the head-space pressure generated naturally by the hydrogen 

gas produced by clostridial is too low to have a marked improvement in solvent 

productivity because during acidogenesis the hydrogen gas acts as a reducing agent, 

which is used for butanol production (Maddox 1989).   

 Iron at an appropriate concentration is crucial for solvent production as the 

iron-sulphur protein ferredoxin oxidoreductase is required for the conversion of 

pyruvate to acetyl-CoA. However, by limiting the iron concentration in the medium 

to 0.2 mg/L, butanol production is elevated (Kótai et al. 2013). Under these condi-

tions of iron limitation, the activity of adc and hydrogenase is decreased by 25% 

and 40%, respectively. In addition, supplementation of ammonium acetate 

(CH3COONH4) is also required to induce solvent synthesis with a high butanol 

content (Jin et al. 2011; Kótai et al. 2013).  

 Studies have shown that butanol production can be enhanced by supple-

mentation with organic acids such as butyric acid in pH-controlled fed-batch cul-

ture as butyric acid is intermediate products of ABE fermentation (Al-Shorgani et 
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al. 2012; Oshiro et al. 2010; Tashiro et al. 2004). Al-Shorgani et al. (2012) demon-

strated that C. saccharoperbutylacetonicum is able to produce butanol with 5-10 

g/L butyric acid supplementation without glucose. However, only butanol is pro-

duced as the fermentation pathway requires butyric acid for butanol production. In 

contrast, Tashiro et al. (2004) also used butyric acid supplementation to increase 

butanol yield, although no butanol was produced without supplementation of glu-

cose as the NADH-dependent dehydrogenase enzymes (e.g., aldh and adh), which 

are responsible for the conversion of butyric acid to butanol require NADH, which 

is obtained from glycolysis. Besides butyric acid supplementation, Sonomoto et al. 

(2010) reported that the supplementation of 5 g/L lactic acid also can increase bu-

tanol production. The effect of organic acid supplementation is greater when the 

acids are added before fermentation, as this can lower the pH which in turn activates 

solventogenic growth (Kótai et al. 2013).  

 Inclusion of acetic acid has positive effects upon solventogenesis such as: 

(1) promoting growth of solventogenic Clostridium species; (2) increasing the buff-

ering capacity, which can prevent “acid crush”, in which the medium can lead to a 

sharp drop of pH to 4.0-4.5 (Chen et al. 1999); and (3) enhancing solvent produc-

tion. The production of acetone is enhanced the most as acetic acid increases CoA 

transferase activity, which is responsible for the production of acetone. However, 

solvent production ceases when acetic acid in the medium exceeds 9.7 g/L (Cho et 

al. 2012; Maddox et al. 2000).  

 Acetate is a valuable substrate for ABE production, as supplementation of 

acetate (2-4 g/l) during acidogenesis and early solventogenesis aids glucose uptake 

and consequently increases solvent production. Furthermore, acetate is sometimes 

viewed as a commercially viable supplement as cost is 5-fold lower than butanol 

(Gao et al. 2015).  

 

1.7. Solvent toxicity 

 Solvent toxicity is a ubiquitous issue with ABE fermentation. During sol-

ventogenesis, Clostridia continues to produce butanol reaches inhibitory levels. Bu-

tanol is the only solvent produced to reach the toxic levels during ABE fermenta-

tion. Butanol is the most toxic solvent due to its lipophilicity. Early studies reported 

that the butanol toxicity exhibits at concentration of 5 g/L or higher and the cell 
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growth was inhibited by 99.7% when butanol level reaches 15 g/L (Al-Shorgani et 

al. 201; Jones and Woods 1986). Butanol increases cell membrane fluidity by dis-

rupting the phospholipid components found in the membrane. The high butanol 

concentration also destroys the membrane-associated functions (e.g. glucose up-

take and membrane-bound ATPase activity), disrupts fatty acid and protein. These 

disruptions impair pH regulation, destroy protein-lipid interaction, and decrease 

energy nutrient transport (Jin et al. 2011; Lee et al. 2008; Moreira et al. 1981). 

Furthermore, Xiao et al. (2011) reported that 8 g/L of butanol inhibits clostridial 

utilising xylose. The culprit of the inhibition is most likely due to the disruption of 

transmembrane enzyme, which responsible for transporting xylose into the cell. On 

the other hand, the levels of acetone and ethanol produced by clostridial do not 

appear to reach the inhibitory level (Jones and Woods 1986).     

 

1.8. Strategies to elevate butanol tolerance  

 Research into butanol tolerance has utilised heterologous host such as Esch-

erichia coli (E. coli) for butanol production, as Clostridium species are less ame-

nable to genetic manipulation, have complex ABE metabolism and a requirement 

for anaerobic conditions (Herman et al. 2017; Ou et al. 2015). Introduction of mem-

brane transporters that can potentially export butanol has been shown to be a prom-

ising approach to enhance butanol tolerance in E. coli, including the FocA formate 

transporter.   Formate (HCO2−) is produced by E. coli during anaerobic mixed-acid 

fermentation. Glucose is decomposed into pyruvate, which then convert into for-

mate and acetyl CoA (Figure 1.3). Formate is an electron donor as well as an energy 

source for the cells. E. coli converts as much as one third of the carbon atom from 

carbohydrate to formate. As a result, formate accumulates rapidly and leads to 

sharp decrease of pH in the cytoplasm. Furthermore, formate has a low pKa (3.77), 

which can cause acidification. Hence, formate is either quickly oxidised to CO2, or 

exported from the cell (Suppmann and Sawers 1994; Beyer et al. 2013).  

 FocA (formate channel) transporter plays a role in regulating intracellular 

fomate pool in E. coli. FocA belongs to the nitrite transporter family (FNT). FocA 

is pH dependent and bidirectional transporter (Figure 1.3). At high pH (pH 7), FocA 

acts as an anionic formate-specific channel. At low pH (pH 5) FocA works as a 

H+/formate symporter. The focA gene is co-transcribed with pyruvate formate-lyase 
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activating enzyme (pflA) and pyruvate formate-lyase (pflB), which responsible for 

formate formation. These genes are encoded in an inducible pfl operon, which can 

be induced under anaerobic condition (Beyer et al. 2013; Lü et al. 2011; Suppmann 

and Sawers 1994; Waight et al. 2010). Reyes et al. (2011) reported that overex-

pression of focA enhances the butanol tolerance in E. coli, possibly by increasing 

the efflux of butanol as focA transporter can be a non-specific transporter.  

 

 

 

 

 

 

 

 
Figure 1.3. FocA transporter activity in high and low pH environment (adapted from 
https://biocyc.org/). 

 

1.9. Feedstock 

 Feedstock is one of the main factors that influences the price of the solvent 

production, especially butanol. Hence, using a renewable, inexpensive, and abun-

dant feedstock has become a desirable part of the economic model for ABE fer-

mentation. The cost of solvent production also can be reduced by optimising the 

upstream (metabolic engineering and the use of inexpensive feedstock), midstream 

(improve fermentation strategies), and downstream (in situ recovery) processes 

(Jang et al. 2012a). 

 First-generation biofuels are produced with feedstocks derived from food 

crops. Sugar-based feedstocks, such as sugarcane, are grown mainly in tropical cli-

mates, whereas starch-based feedstocks are (i.e. mainly grains such as corn) can be 

produced in more temperate climates. Furthermore, corn and wheat are the main 

ingredients of livestock feed. Hence, large scale butanol production for fuel by us-

ing sugar- and starch-based food feedstock is not sustainable (Chen et al. 2013; 

Xue et al. 2013).   

 The second-generation biofuels utilize lignocellulosic material or non-food 

feedstock such as wheat straw, manure, wood, or other agricultural by-products and 
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forest residues. However, using these feedstocks are only beneficial if the biomass 

is produced sustainably. Furthermore, these feedstocks are difficult to degrade and 

unable to convert to biofuels in an economical way (Xue et al. 2013).  The main 

components of lignocellulosic material are cellulose, hemicelluloses and lignin, 

which form the lignin-carbohydrate complex that prevent cellulose degradation. 

Hence, energy intensive pre-treatment is necessary to destroy the lignin-carbohy-

drate complex. Lignin is very difficult to break down, and prevents access of cel-

lulases and hemicellulases. Lignin also acts as an inhibitor during hydrolysis, and 

phenolic inhibitory compounds derived from lignin can affect the cell growth (Chen 

et al. 2013). Hence, feedstocks with a low lignin content are preferable. 

 Biofuels that use microalgae as a feedstock are third-generation biofuels, 

and are an attractive feedstock due to ample availability. Microalgae are photosyn-

thetic microorganisms that grow in aquatic environments where they use sunlight 

to convert water and CO2 to biomass (Abomohra et al. 2016; Demirbas 2011; 

Ndaba et al. 2015). There is a precedent for using microalgae as a feedstock for 

ABE fermentation, as Castro et al. (2015) used pre-treated wastewater microalgae 

to grow C. saccharoperbutylacetonicum. Microalgae are also cultivated to produce 

oil for foods, energy or products, yielding large amount of spent microalgae bio-

mass (SMAB). SMAB is the microalgae biomass collected from the primary use, 

which can take up as much as 70% of whole microalgae biomass and consists of 

carbohydrates, lipids and proteins (Rashid et al. 2013; Snow et al. 2015), which 

could also potentially be used as a feedstock. The advantages of using microalgae 

as a feedstock are: (1) a short harvesting cycle (approximately 14 days cultivation); 

(2) the ability to grow in marine, wastewater (domestic/municipal/industrial 

wastewater) and brackish water. In addition, the cultivation of microalgae with 

wastewater is a technique of bioremediation (e.g., removing nitrogen, phosphorus, 

urea and CO2 sequestration); (3) the cultivation of land is not required, and hence 

there is no further pressure to increase deforestation; (4) the ability to produce 

higher biomass per square meter compare with terrestrial plants; (5) non-food car-

bon substrate; (6) it requires minimal nutrition; (7) continuous harvesting whereas 

most crops can only be harvested seasonally; and (8) the absence of recalcitrant 

lignin (Abomohra  et al. 2016; Castro  et al. 2015; Chen et al. 2013; Demirbas 201l; 

Jang et al. 2012a; Safi et al. 2014; Tashiro et al. 2004). 



 Introduction 
 

 17 

1.10. Microalgal species 

 There are a diverse range of microalgal species, the taxonomy/phylogeny 

of which is beyond the focus of this thesis. This section therefore focusses solely 

on the species used in this study. 

 

1.10.1 Chlorella vulgaris 

 C. vulgaris (chloros: green; ella: green) is unicellular green eukaryotic mi-

croalgae without flagella. It has a spherical cellular morphology with a diameter of 

2-10 µm (Ho et al. 2013b; Safi et al. 2014), and rapidly reproduces asexually. Pre-

vious studies have demonstrated that C. vulgaris is able to accumulate up to 37-

55% carbohydrates per dry weight (Chen et al 2013). The carbohydrates mainly 

reside as structural polysaccharides in the cell wall (Table 1.5) as well as starch 

found in the chloroplast of C. vulgaris (Abomohra et al. 2016; Castro et al. 2015; 

Ellis et al. 2012; Wakasugi et al. 1997; Wang et al. 2014; Wang et al. 2016). Fi-

nally, microalgae-based carbohydrates are not associated with lignin, which makes 

saccharification easier as the pre-treatment with heat/chemicals is not required 

(Chen et al 2013; Gao et al. 2016).  

 Another beneficial trait of C. vulgaris is that after 4 days of cultivation ni-

trogen-depletion can lead to sharp increase in the content carbohydrates and lipids, 

as this forces the cells to transform proteins to carbohydrate and lipids, which are 

high in energy. Furthermore, Gerken et al. (2012) reported THAT when C. vul-

garis was grown under extreme nitrogen-DEPRIVED conditions, the cells SCAV-

ENGED the amino sugar found in the cell wall as an alternative source of nitrogen. 

As a result, the cell walls appear similar to AN lysozyme-digested cell wall. Also, 

C. vulgaris utilizes urea as a nitrogen source which is very cost effective (approxi-

mately $2.00 per kilogram of biomass) compared to other nitrogen sources such as 

nitrate and ammonium ions (Ho et al. 2013b).  
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Table 1.5. Simple sugars composition in the cell wall of C. vulgaris (adapted from Chen et 
al. 2013).  
Simple sugars  Percentage (%) 
Rhamnose 45-54 
Galactose  14-26 
Xylose 7-19 
Arabinose 2-9 
Mannose 2-7 
Glucose 1-4 

 
 C. vulgaris also contains a large amount of protein, and the total protein 

content per dry weight is 42-58%. More than 20% and 50% of the protein can be 

found in the cell wall and internal, respectively. The remaining 30% migrates in 

and out the cell. Proteins promote cell growth, maintain, and repair the cells (Safi 

et al. 2014). Amino acid such as isoleucine, valine, and glutamic acid, asparagine, 

serine, threonine, alanine, and glycine can provide an additional nitrogen source, 

which might promote cell growth and accelerate solvent production. However, cys-

teine and tyrosine may cause some negative effects such as inhibiting fermentation 

and decreasing butanol production. Other amino acids such as leucine, phenylala-

nine, tryptophan, proline, lysine, histidine and arginine are not required for growth 

(Kótai et al. 2013; Lee et al. 2008; Wang et al. 2016).  

 Iron is one of the important minerals require for solvent production in ABE 

fermentation. Approximately 0.38 g/100g of iron can be found in C. vulgaris. Fur-

thermore, C. vulgaris also contains minerals such as sodium, potassium calcium, 

magnesium, phosphorus, chromium, copper, zinc, manganese, selenium, and io-

dine (Chen et al. 2013).    

 

1.10.2. Eustigmatophyceae proprietary strain from Algaecytes®  

 The current study involved collaboration with a company called Al-

gaecytes® (http://algaecytes.com/), which focusses mainly upon on growth of mi-

croalgae for extraction of valuable natural products (e.g. Omega 3). During this 

process, a huge amount of spent biomass is generated, so it was hypothesised that 

this could be used as a feedstock for ABE fermentation. A Eustigmatophyceae pro-

prietary strain was obtained from Algaecytes®, with the carbohydrate and protein 

content being 27% and 43%, respectively. Eustigmatophyceae is a small class of 

eukaryotic algae (30 species), which has a green coccoid morphology (2-25 µm in 
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dimension). Eustigmatophytes thrive in freshwater and terrestrial habits except in 

marine and blackish water, and receive much attention from the sustainable indus-

tries owing to an ability to synthesize valuable omega-3 fatty acids such as eico-

spentaenoic acid (EPA) (Eliáš et al. 2017; Ma et al. 2016).  

 

1.11. Cell disruption of microalgae 

 Microalgae have a strong cell wall which requires a cell wall disruption 

process to extract the intracellular contents. Physical (autoclaving, electroporation, 

French press, homogenization, lyophilization, microwave, thermal, ultrasonication, 

osmotic shock), chemical (acid, alkaline treatment) and biological (enzymatic pol-

ysaccharide, protein degradation) treatments have been used, although the most 

promising techniques is an enzymatic lysis approach (Dalatony et al. 2017; Naghdi 

et al. 2016; Safi et al. 2014) albeit one of the most expensive and challenging pro-

cesses. Hence, minimum pre-treatment or non-pre-treatment feedstock can greatly 

optimize production cost.  

 

1.12. Aims and experimental strategies for the current study 

1) Assess the efficacy of microalgae as an alternative feedstock for clostridial bio-

fuel production.  

Strategy: Measure solvent yields from C. saccharoperbutylacetonicum grown on 

feedstocks prepared from commercially available C. vulgaris and from Al-

gaecytes®, Eustigmatophyceae whole cell and spent biomass. 

2) Engineer a butanol-tolerant bacterial strain. 

Strategy: Clone and overexpress the membrane transporters FocA and FdhC in E. 

coli and C. saccharoperbutylacetonicum. Grow in the presence of various concen-

trations of butanol. 
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Chapter 2 

Materials and Methods 
2.1. Bacterial strains  

The bacterial strains that were used in study are listed in Table 2.1.  

 
Table 2.1. List of microorganisms. MS numbers are used as a numerical ordering system for 
strains in the Shepherd lab. 
MS 
number 

Species/Strain Plasmids Note Reference or 
source 

MS256 C. saccha-
roper-
butylaceton-
icum 
DSM 14923 

Megaplasmid found 
in wild type cells 

Solventogenic 
strain and template 
for amplification 
of fdhC 

American 
Type Culture 
Collection 
(ATCC) 
 

MS449 E. coli JM109  pMTL83353, spec-
tinomycin resistant 

- New Eng-
land Biolabs 

MS2 E. coli 
MG1655 

Template for ampli-
fication of focA 

K12 wild type and 
template for ampli-
fication of focA 

Bachmann 
1996 
 

- E. coli DH5α Competent cells - NEB 
 

2.2. Microalgal biomass 

 C. vulgaris FACHB-31 dry biomass was purchased from Seven Hills 

Wholefood, supplied as fragmented cells. Eustigmatophyceae proprietary strain 

ALG01-CL1 whole cells and spent biomass were obtained from Algaecytes®. 

Eustigmatophyceae culture was harvested, dewatered and spray-dried. Followed by 

esterification and oil extraction. Eustigmatophyceae was in dry powder with an in-

tact cell wall.  

 

2.3. Clostridial growth medium 

 The culture media were made anaerobic either by purging with 0.2 µm fil-

tered N2 gas (BOC, UN1002) for 10 mins or autoclaving for 15 min at 121 °C and 

15 psi (Quirumed, Prestige Medical, 2100 classic 9L without manometer). The se-

rum bottles containing medium were sealed with disposable Butyl rubber septa, 



 Materials and Methods 
 

 21 

which is designed to allow air to be released out from the serum bottle during autoclaving 

and prevents the reentry of air when the temperature is dropped (Behbehani et al. 1982). 

The media were sterilized by autoclaving. The media were stored in an incubator 

at 32 °C. 

 

2.3.1. Reinforced Clostridial medium  

 Reinforced Clostridial medium (RCM) per litre distilled water consisted of 

13 g yeast extract, 10 g peptone, 5 g glucose, 1 g soluble starch, 5 g sodium chlo-

ride, 3 g sodium acetate, 0.5 g cysteine hydrochloride, and 0.5 g agar, pH 6.8±0.2.  

 
2.3.2. Tryptone-yeast-extract medium   

 Tryptone-yeast-extract (TYE) medium contained the following substances 

per litre of distilled water: 50 g glucose, 2.5 g yeast extract, 2.5 g tryptone, 0.5 g 

ammonium sulphate, 0.025 g iron (II) sulphate, and 19.52 g 0.1 M MES free acid. 

Sodium hydroxide was used to adjust the pH to 6.2 to 6.3. 
 
2.3.3. Luria-Bertani medium  

 Luria-Bertani (LB) medium contained the following substances per litre of 

distilled water: 10 g tryptone, 5 g yeast extract and 5 g sodium chloride.  

 

2.3.4. Super Optimal broth with Catabolite repression medium 

 Super Optimal broth with Catabolite repression (SOC) medium contained 

the following substances per litre of distilled water: 20 g tryptone, 5 g yeast ex-

tract, 0.584 g NaCl, 0.186 g KCl, 10 mM MgCl2, 10 mM MgSO4 and 20 mM glu-

cose were added to the autoclaved medium. 

 

2.3.5. 10% microalgal medium 

 The process flowchart for preparation of 10% microalgal medium subjected 

to autoclaving (15 min at 121 °C and 15 psi) and centrifugation is depicted in Figure 

2.1A. 20 g of dry microalgal biomass was weighed and diluted with 100 mL dis-

tilled water to get a final concentration of 20% microalga. The medium was mixed 

until homogenous by using magnetic stirrer. Then, the medium was centrifuged at 

5000 rmp for 20 min at 20 °C. The supernatant was then diluted with distilled water 

with the dilution factor of 1:1 to create a final concentration of 10% microalga. To 
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prepare a supplemented microalgal medium, 1% glucose was added after dilution. 

50 mL of the diluted medium then pipetted into 100 mL serum bottle followed by 

autoclaving. 5 M HCl was used to adjust the Eustigmatophyceae spent biomass to 

pH 6 prior purging (Figure 2.1B and C).   

 
 
Table 2.2 List of microalgal medium used in this study.  
Abbrevia-
tion 

Microalga  1% glucose 
supplemen-
tation 

Autoclav-
ing (15 min 
at 121 °C 
and 15 psi) 

Centrifuga-
tion (5000 
rpm for 5 
min) 

pH adjust-
ment (to pH 
6) 

CV 10% C. vulgaris  N Y Y N 
CVG 10% C. vulgaris Y Y Y N 
EG 10 % Eustigmato-

phyceae whole cell 
Y Y Y N 

EG-NT 10 % Eustigmato-
phyceae whole cell 

Y N N N 

ESBG 10 % Eustigmato-
phyceae spent bio-
mass 

Y Y Y N 

ESBG-NT 10 % Eustigmato-
phyceae spent bio-
mass 

Y N N N 

ESBG-pH 10 % Eustigmato-
phyceae spent bio-
mass 

Y N N Y 

ESBG-ApH 10 % Eustigmato-
phyceae spent bio-
mass 

Y Y N Y 

Y: received indicated treatment or supplementation.   
N: did not received indicated treatment or supplementation. 
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Figure 2.1. Process flowchart for preparation of 10% microalgal medium. (A) preparation 
of 10% microalgal medium treated with autoclaving and centrifugation. *: this step was omitted 
when preparing CV; (B) preparation of 10% microalgal medium without autoclaving and cen-
trifugation; (C) preparation of 10% microalgal medium with pH adjustment. **: this step was 
omitted when preparing ESBG-pH.     
 
 
2.4. Clostridial growth in serum bottles 

 To prepare glycerol stock, 750 µl of the overnight liquid culture was added 

to 250 µl of 60% glycerol (v/v) in a 2 mL cryovial and mixed gently. The glycerol 

stock tube was store at -80 °C. The bacteria were recovered by thawing without 

mixing. The remaining thawed culture was discarded.   

 20 mL of autoclaved (121 °C at 15 psi for 20 min) RCM pH 6.8±0.2 was 

prepared in a 50 mL serum bottle, and was inoculated with 0.5 mL of C. saccha-

roperbutylacetonicum glycerol stock. The serum bottle was sealed and then incu-

bated anaerobically at 32 °C for approximately 18 h until cells had reached station-

ary phase. Prior to the inoculation of the selective fermentation medium, the optical 
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density (OD) of stationary phase cultures was measured to ensure the OD600 was in 

the range 1.5-1.8. The health of cells was assessed under the microscope (GT Vi-

sion, GXML 2800) at x400 magnification (Appendix Figure D1) to ensure the cells 

were not aggregating and were moving in a tumbling motion. 50 mL of selected 

fermentation media, in a 100 mL serum bottle, was then inoculated with 5 mL of 

the stationary phase culture and incubated anaerobically at 32 °C. 

 

2.5. Fermenter setup  

 Fermentation experiments were designed such that three biological repli-

cates were performed (Figure 2.2) in 1000 mL culture vessels with 500 mL of 

growth media. To form a tight seal between culture vessel and flat flange lid, a 

gasket (PTFE seal) was coated with a thin layer of petroleum gel and secured by a 

retaining clip. Rubber turn-over closure (Suba-seal®) and rubber stopper (2 hole) 

were used to seal the flanges of lid. The longer tube of the rubber stopper was con-

nected to 10 mL syringe, which was used to draw samples. The shorter tube was 

connected to a Minisart® filter (pore size: 0.2 µm) for gas outlet during fermentation 

(Figure 2.2C). The culture vessel and medium were sterilized by autoclaving at 

121 °C and 15 psi for 20 min and kept at 32 °C by submerging in 2 L beakers with 

900 mL of distilled water and magnetic bead. After autoclaving, a sterilized ther-

mometer was immersed in the medium through a suba-seal® with hole. The appa-

ratus was placed on the hotplate stirrer with temperature set at 32 °C, and magnetic 

beads were used to gently agitate the medium.  To create an anaerobic environment, 

the medium was purged with filtered N2 gas for 20 min. The fermenters were inoc-

ulated initiated with 1% (v/v) of actively proliferating cells in RCM (Section 2.4). 

The medium was purged with N2 for another 5 min to achieve optimal anaerobic 

conditions. 5 mL samples were collected periodically and centrifuged at 8000 rpm 

for 5 min, and supernatants were stored at -20 °C for subsequent solvent analyses 

by using GCMS (Section 2.6.3).   
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Figure 2.2. Fermenter apparatus setup. (A). Front view. Thermometer and syringe were 
added after autoclaving; (B) Schematic diagram of fermenter apparatus setup. The unused sock-
ets of the flat flange lid were covered with subseals; (C) Top view. Aluminium foils were re-
moved after autoclaving, which exposed the filter for gas outlet and silicone tube, which was 
attached to syringe for sampling outlet.      
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2.6. Analytical procedures 

2.6.1. Optical density measurements 

 Cell growth was measured using a UV-visible spectrophotometer (Agilent 

Technologies, Cary 60 UV-Vis) at OD600. The measurement volume was 1 mL. 

The spectrophotometer was blanked with culture medium. Samples were diluted as 

necessary to achieve OD600 readings below 1.0. The OD600 of microalgal medium 

without centrifugation were not monitored due to the high amount of fragmented 

microalgal biomass. 

 

2.6.2. pH and redox measurements 

 The pH and redox poise were measured by pH (Mettler Toledo InLab® 

Semi-Micro-L) and Ag/AgCl redox (Mettler Toledo InLab® Redox Micro) elec-

trodes. The probes were rinsed with IMS before and after use, as well as between 

measurements. The redox electrode was stored in 3M KCl and calibrated using sat-

urating solutions of quinhydrone at pH4 (expected 264 mV) and pH7 (expected 87 

mV). Correction factors were applied for slight deviations from the expected 

readouts, and data were converted to vs. Normal Hydrogen Electrode (NHE) by 

addition of 210 mV. Hence. the presented redox data was adjusted by adding 210. 

 

2.6.3. Solvent quantitation 

  0.5 mL of culture supernatants were transferred to GCMS vials for solvent 

analysis. Concentrations of acetic acid, butanoic acid, acetone, butanol, and ethanol 

were measured by using an Agilent Technologies, 6890N GCMS system equipped 

with 7HG-G013-11 Zebron column. Helium (>99.999%) was used as the carrier 

gas (mobile phase) and a flow rate of 1 mL/min. Methanol was used as a polar 

solvent. 0.2 µl of water sample was injected with a 100:1 split. The injection tem-

perature was set to 150 °C. The GCMS transfer line temperature was set to 280 °C, 

ion source 230 °C, and quadrapole 150 °C. After injection column temperature was 

held at 30 °C for 5 min, then increased to 150 °C for 20 min.  

 Solvents identification was based on retention times (Table 2.3). The con-

centration of each solvent was calculated by comparing the peak area of the analyte 

in the sample with the peak areas obtained for standard curves.  
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Table 2.3.  Solvent retention times.  
Solvent Retention time (min±0.2) 

Acetic acid 11.23 
Butanoic acid 12.75 

Acetone 2.60 
Butanol 8.60 
Ethanol 5.03 

 
 

2.7. Metabolic engineering  

2.7.1. Preparation of competent cells  

 50mL falcon tubes, Eppendorf tubes, and CaCl2 were pre-chilled to 4 °C. 

10 mL of LB broth was inoculated with a single colony of E. coli DH5α and incu-

bated overnight at 37 °C and 210 rpm. On the following day, 200 mL of LB was 

inoculated with 2 mL of the overnight started culture and incubated at 37 °C and 

210 rpm. When the OD600 reached 0.4-0.6, the cells were placed on ice. The culture 

was split into four 50 mL falcon tubes and centrifuged for 15 min at 4 °C and 4000 

rpm. The supernatants were discarded. Pellets were resuspended in 10 mL of 

100mM CaCl2. The suspensions were then transferred into a single 50 mL falcon 

tube followed by incubation on ice for 1 h. After incubation, the suspension was 

centrifuged for 15 min at 4 °C and 3000 rpm, then, the supernatant was discarded. 

The pellet was resuspended with 100 mL of 100 mM CaCl2, centrifuged for 15 min 

at 4 °C and 3000 rpm, then, the supernatant was discarded. The pellet was resus-

pended in 2 mL of 100 mM CaCl2 and 100 µl aliquots were transferred to Eppen-

dorf tubes on dry ice. The cells were stored at -80 oC for future use. 

 

2.7.2. Vector preparation 

 LB broth (10 mL) supplemented with 10 µl of spectinomycin (50 mg/mL) 

was inoculated with a single colony of E. coli JM109 cells and grown overnight at 

37 °C and 200 rpm. The cells were harvested by centrifugation at 8000 rpm for 3 

min at 20 °C. Plasmids were extracted and purified by using QIAprep Spin Mini-

prep Kit according to the manufacturer’s instructions. Plasmid concentrations were 

measured using a NanoPhotometer (Implen) and the purified plasmid DNA was 

stored at -20 °C for future use. 
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2.7.3. Primer design 

 Gibson Assembly® was performed to clone focA and fdhC genes into the 

pTML83353 shuttle vector (Heap et al. 2009). Primers were designed to amplify 

inserts and plasmid to generate a 18-25 bp overlap (Table 2.4). Primers were man-

ufactured by Integrated DNA Technologies®.  

 
Table 2.4. Primers used in this study.   
MS primer 

number Name Sequence (5′ - 3′) Usage Direction 

360 FocFWD 

GGAGGTGTGTTACAT-
ATGATGAAA-
GCTGACAACCCTTTT-
GATCTTTTAC Amplification of 

focA from E. coli 
MG1655 genomic 
DNA 

Forward 

361 FocRev 

GCTTCTTATTTTTATGCTA
GCTTAG-
TGGTGATGGTGATGATGA
TGGTGGTCGTTTTCAC-
GCAG 

Reverse 

333 FdhCGAF
wd 

GGAGGTGTGTTACAT-
ATGATGATGAGTACAAA-
GAATTATTTAAC Amplification of 

fdhC from C. sac-
charoperbutyla- 
cetonicum genomic 
DNA 

Forward 

334 FdhCGAR
ev 

GCTTCTTATTTTTATGCTA
GCTTAG-
TGGTGATGGTGATGATGT
ATGTC-
TATTTTCTTATCCAAAC 

Reverse 

364 83353GA
_focA_F1 

CTGCGTGAAAACGAC-
CACCATCATCATCAC-
CATCACCACTAAGCTAG-
CATAAAAATAAGAAGC 
CTG Amplification of 

pMTL83353 with 
focA overhang 

Forward 

365 83353GA
_focA_R1 

GTAAAA-
GATCAAAAGGGTT-
GTCAGCTTTCATCAT-
ATGTAACACAC-
CTCCTTAAAAATTAC 

Reverse 

366 83353GA
_fdhC_F1 

GTTTGGATAAGAAAA-
TAGACATACATCATCAC-
CATCACCACTAAGCTAG-
CATAAAAATAAGAAGC 
CTG 

Amplification of 
pMTL83353 with 
fdhC overhang 

Forward 

367 83353GA
_fdhC_R1 

GTTAAATAATTCTTT-
GTACTCATCATCAT-
ATGTAACACAC-
CTCCTTAAAAATTAC 

Reverse 

368 
83353_cP
CR_SCR
N_FWD 

TACAATTTTTTTATCAG-
GAAACAGC 

cPCR screening 

Forward 

369 
83353_cP
CR_SCR
N_REV 

CCCGTAATT-
GAATACATAACAAGTA Reverse 
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2.7.4. Preparative polymerase chain reaction 

 PCR was performed to amplify focA and fdhC from E. coli K-12. and C. 

saccharoperbutylacetonicum, respectively. For amplification of focA, colonies of 

E. coli MG1655 (MS2) were picked and resuspended in 50 µL of sterile water in a 

PCR tube. 2 µl of the supernatant was used as DNA template for PCR. For ampli-

fication of fhdC, genomic DNA was prepared from C. saccharoperbutylacetonicum 

by using a GenEluteTM Bacterial Genomic Kit according to the manufacturer’s in-

structions, and 2 µl was used as a template in the PCR reaction. Vector fragments 

for pTML833353 were amplified using colony PCR with template prepared from 

strain MS449 (E. coli JM109 pTML833353) as described above for MS2. 

The vector fragments and genes were amplified using Applied Biosystems 

PCR machine in 50 µl reactions containing 25 µl of Q5® High-fidelity 2X master 

mix (NEB), 2.5 µl of each primer (300 nM final), 2 µl of insert (1ng - 1µg) or 0.5 

µl of vector (1 ng – 100 ng) and the reactions were topped up with autoclaved milli-

Q® water (MQ water) to 50 µl final volume. Q5® High-fidelity 2X master mix con-

tained the following components: 4.0 mM Mg++, additives, 400 µM of each dNTP, 

and Q5® High Fidelity DNA polymerase. Table 2.5 indicates the program used in 

the thermal cycler.  

 
Table 2.5. Thermocycling conditions for PCR using Q5® High-fidelity 2X master mix. 
Step Temperature (°C) Time  
Initial denaturation 98 30 s 
Denaturation 98 10 s 
Anneal                 x35 50 30 s 
Extension 72 inserts: 40 s; vector: 3 min 30 s 
Final extension 72 2 min 
Hold 10 ∞ 

 
 

2.7.5. Gibson Assembly®  

PCR products were purified using a QIAquick® PCR purification kit ac-

cording to the manufacturer’s instructions. PCR reactions and 1kb DNA ladder 

(Promega) were mixed with loading dye (6X) and loaded on 1.0% agarose gel and 

separated by electrophoresis (80 V, 300 mA, 40 min) in 1X Tris-acetate buffer. 

Gels were stained and soaked with ethidium bromide solution (10 mg/mL) for 30 

min on an orbital shaker. Gels were analysed using a GeneSys gel imager. 
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 The purified vectors and inserts were quantitated using a NanoPhotometer 

(Implen). Cloning was performed using a Gibson Assembly® kit (NEB). Gibson 

assembly master mix consists of T5 exonuclease, Phusion DNA polymerase and 

Taq DNA ligase. The reactions contained 0.02-0.5 pmols vector with 3-fold of ex-

cess insert, 10 µl Gibson assembly master mix (2X) and the reactions were topped 

up with autoclaved miliQ water to a final volume of 20 µl. Reactions without insert 

were used as a negative control. The reactions were incubated in a thermocycler at 

50 °C for 60 min. Following incubation, the reactions were stored at -20 °C for 

subsequent transformation.  

 

2.7.6. Transformations 

 Transformations were performed via the heat shock method using chemi-

cally competent E. coli DH5α cells that were thawed on ice. 10 µl of Gibson As-

sembly reaction was added to 100 µl competent cells and mixed gently by flicking 

the tubes 4-5 times, and the tubes were placed on ice for 30 min. Thereafter, the 

tubes were exposed to heat shock for 30 s at 42 °C and were transferred to ice for 

2 min. 950 µl of SOC medium was added to each tube and incubated 37 °C and 250 

rpm for 60 min. 100 µl of cell suspension was spread on pre-warmed (37 °C) LB 

plates containing 50 µg/mL spectinomycin. The remaining cells were harvested at 

5000 rpm for 5 min, resuspended in 100 µl of supernatant, and spread on pre-

warmed (37 °C) LB plates containing 50 µg/mL spectinomycin. Plates were then 

incubated overnight at 37 °C. 

  

2.7.7. Screening PCR 

 Colonies from the transformation plates were patched onto LB plates con-

taining 50 µg/mL spectinomycin and subjected to colony PCR screening using pri-

mers 83353_cPCR_SCRN_FWD (368) and 83353_cPCR_SCRN_REV (369) (Ta-

ble 2.3) designed to amplify plasmid inserts, 243 bp at 5′ and 249 bp at 3′ flanking 

regions of pTML833353. Colonies were resuspended in 50 µl of sterile water for 

colony PCR. Plates were incubated overnight at 37 °C to confirm specinomycin 

resistance. Colony PCR screening reactions contained 12.5 µl of 2X PCRBIO Taq 

Mix Red (PCR Biosystems), 1 µl of each primer (300 nM final), 1 µl of resuspended 

colony, and were topped up with autoclaved MQ water to 25 µl final volume. 2X 
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PCRBIO Taq Mix Red contains PCBIO Taq DNA Polymerase, 6 mM MgCl2, 2 

mM dNTPs, enhancers, stabilizers and red dye for tracking during gel electropho-

resis. Colony suspensions from competent cells (E. coli DH5α) and MS449 (E. coli 

JM109 pTML833353) were used as controls. Table 2.6. indicates the program used 

in the thermal cycler. The reactions were analysed on 1% agarose gel (80 V, 300 

mA, 45 min). 

 
Table 2.6. Thermocycling conditions for cPCR using 2X PCRBIO Taq Mix Red. 
Step Temperature (°C) Time  
Initial denaturation 95 1 min 
Denaturation 95 15 s 
Anneal                x35 50 15 s 
Extension 72 40 s 
Hold 10 ∞ 

 
  
2.7.8. Plasmid Restriction Digestion 

 Colonies that yielded PCR products with fragments corresponded to the 

correct insert sizes were used to inoculate 10 mL of LB medium supplemented with 

10 µl of spectinomycin (50 mg/mL) and were grown overnight 37 °C and 210 rpm. 

The cells were harvested by centrifugation at 8000 rpm for 3 min at 20 °C, and 

plasmids were purified using a QIAprep Spin Miniprep kit according to the manu-

facturer’s instructions. Restriction digestion reaction contained purified plasmid 

DNA (1 µg), 0.5 µl of NdeI (20,000 U/mL), 1 µl of NheI (10,000 U/mL), and 5 of 

µl 10X CutSmart® buffer (NEB). The reactions were topped up with autoclaved 

MQ water to a final volume of 20 µl. The reactions were incubated at 37 °C for 1 

h and the entire reaction mixtures were analysed on 1% agarose gels (80 V, 300 

mA, 45 min).  
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Chapter 3 
Results 
3.1. Development of a spectrophotometric approach for measuring clostridial 

growth in turbid microalgal growth medium 

 One of the main aims of this work was to test the efficacy of growth medium 

prepared from microalgal biomass for the culture of solventogenic clostridial 

strains. However, growth medium prepared from microalgal biomass contains 

fragmented cells, which could pose a problem for measuring clostridial cells 

density using spectrophotometric approaches. It was therefore necessary to 

measure OD600 values for known cell densities of C. saccharoperbutylacetonicum 

in microalgal medium, and to ensure that a linear relationship exists between OD600 

and cell density. The process flowchart depicted in Figure 3.1 describes the final 

approach undertaken following extensive trial and error with several medium 

compositions and dilutions. Briefly, a C. saccharoperbutylacetonicum culture was 

grown in RCM (i.e. not turbid medium) to an OD600 of 1.5- 2.0, and was divided 

into two equal volumes (25 mL each), followed by centrifugation at 5000 rpm for 

10 min at 20 °C. The pellets were then resuspended with either 5 mL of RCM or 

10% microalgal medium, and dilutions of 1/5, 2/5, 3/5, 4/5 were prepared (using 

RCM or 10% microalgal medium a dilutant). To ensure that cell densities were in 

an appropriate range for spectrophotometric analysis, samples were diluted with 

1/10 with distilled water. The spectrophotometer was blanked with distilled water 

and the OD600 of cell suspensions was measured. While the microalgal medium 

predictably resulted in more background light scattering, Figure 3.2A shows that 

increasing cell density had a linear relationship with OD600 in both RCM and 10 % 

C. vulgaris. Hence, it was possible to subtract ‘zero clostridial cell’ OD600 value 

from subsequent growth curve data to accurately monitor cell growth. Since the 

data shown in Figure 3.2A are for the cell cultures diluted 1/10 in the cuvette, the 

undiluted 5 mL cell cultures had OD600 values of approximately 6. Hence, it is 

possible to measure clostridial cells densities of up to OD600 = 6 in 10% microalgal 

growth medium using this approach.  
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Figure 3.1. Flow chart to depict an experimental approach for measuring clostridial cell 

density in microalgal medium.  

 

To further investigate the relationship between OD600 readings and 

clostridial cell densities, a growth curve of C. saccharoperbutylacetonicum in 10% 

C. vulgaris medium supplemented with 1% glucose was performed with light 

microscopy analysis performed in tandem. Figure 3.2B depicts the growth curve 

for C. saccharoperbutylacetonicum (performed in triplicate in 50 mL serum 

bottles), and Figure 3.2C depicts the microscopy analysis of one of these cultures 

at various timepoints. These data are both consistent with a low number of cells 

during the lag phase followed by a rapid increase in cell density during log phase, 

and finally, no net growth during stationary phase. 
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Figure 3.2. Spectrophotometric analysis of clostridial cell density in 10% C. vulgaris 
medium. (A) OD600 values of varying C. saccharoperbutylacetonicum cell densities in RCM 
and 10% C. vulgaris media. OD600 values are of the cultures in the cuvette (diluted 1/10 water), 
so the original 5 mL undiluted culture had an OD600 ~ 6. Conversion factor of 8.0 x 108 for an 
OD600 of 1.0; (B) Growth curve of C. saccharoperbutylacetonicum in 10% C. vulgaris 
supplemented with 1% glucose. Performed in triplicate, with error bars showing SD values; 
(C) Direct observation of bacterial growth from panel B under the microscope. The 
magnification was x400. Clostridium cells have a green hue when grown in microalgal 
medium. 
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Figure 3.2. Spectrophotometric analysis of clostridial cell density in 10% C. vulgaris 

medium (continued).  

 

3.2. Assessment of ABE fermentation using microalgal medium in serum 

bottles 

 Batch fermentations using a 10% microalgal growth medium were 

conducted to investigate solvent production by C. saccharoperbutylacetonicum. As 

indicated in the literature (Castro et al. 2015, Ellis et al. 2012, Gao et al. 2016), 

growth medium made from 10% microalga was found to be suitable for ABE 

fermentation. Solutions containing 10 % microalga were subjected to 

centrifugation (5000 rpm for 15 min) and autoclaving. ABE fermentation was 

carried out in serum bottles for 72 h. This study assessed the fermentation profile 

in the following growth media: 10% C. vulgaris (CV), 10% C. vulgaris 
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supplemented with 1% glucose (CVG), 10% Eustigmatophyceae whole cell 

supplemented with 1% glucose (EG), 10% Eustigmatophyceae spent biomass 

supplemented with 1% glucose (ESBG), RCM, TYE, 1% glucose and MQ water. 

50 mL of growth media was inoculated with 5 mL of overnight culture in RCM 

with C. saccharoperbutylacetonicum. Since these inocula contained nutrients, a 

medium containing 10% RCM (in water) was used as a negative control. And RCM 

used as positive control. TYE with MES buffer (pH 6.2 to 6.3) is an ideal medium 

for solvent production by C. saccharoperbutylacetonicum as it for contains the 

sufficient amount of carbon and other nutrient (glucose, yeast extract, tryptone, 

ammonium sulphate, iron (II) sulphate), and it was therefore used as second 

positive control for growth. 1% glucose (in water) was used as second negative 

control to assess the extent to which the 1% glucose or the 10% microalga support 

growth and solvent production.    

 Figure 3.3 shows that acidogenesis lasted for 12 h in all the media except 

for ESBG, where acidogenesis lasted for approximately 24 h. The pH and redox 

decreased dramatically during this growth phase, which was accompanied by 

exponential increase in biomass (OD600). Following this, the pH either decreased 

slightly or plateaued, which usually coincides with entry to the solventogenic 

phase. In the latter stages of the growth curves the cells entered stationary phase 

and the ORP reading (i.e. redox poise) reached a plateau.  

 Figure 3.3A depicts the fermentation profile of C. 

saccharoperbutylacetonicum using CV as a growth medium. During acidogenesis, 

the pH dropped from 6.95±0.01 to 6.14±0.01, and the OD600 increased from 

0.110±0.01 to 3.612±0.05. At 6 h, the ORP reached the lowest point, which is 

86±38 mV vs. NHE. At the end of acidogenesis (12 h), acetic and butanoic acids 

levels were 0.24±0.02 and 0.11±0.02 g/L, respectively. During solventogenesis, the 

pH had increased to 6.41±0.02 (72 h). In this period the OD600 started to decrease 

from 3.612±0.05 to 3.461±0.06. At 72 h, acetic and butanoic acid decreased to 

0.32±0.10 and 0.13±0.03 g/L, respectively. And butanol had reached the maximum 

concentration, which was 0.20±0.03 g/L. Table 3.1. shows that the organic acids 

and solvent production found in CV were lower than both of the positive controls 

(TYE and RCM).   
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 The fermentation profile of C. saccharoperbutylacetonicum using CVG had 

slightly different behaviours compared to CV (Figure 3.3B). During the 

acidogenesis phase, the pH dropped from 7.07±0.01 to 5.72±0.03 and the OD600 

increased from 0.107±0.01 to 4.507±0.19. At the end of acidogenesis, acetic and 

butanoic acid concentrations were 0.31±0.14 and 0.17±0.05 g/L (Figure 3.4B), 

respectively. During solventogenesis (after 12 h), the pH decreased slightly from 

5.72±0.03 to 5.62±0.06 and the ORP had reached the lowest point (-139±40 mV 

vs. NHE). In this period, the OD600 increased slightly (4.507±0.19 to 5.700±0.08). 

Acetone and butanol production were observed at 24 and 12 h, respectively. In 

comparison with CV, there was a 12 h delay of butanol production in CV (12 vs. 

24 h). At 72 h, the organic acids and solvent production found in CVG were lower 

than both of the positive control (TYE and RCM), which for CVG were as follows: 

acetic acid=0.80±0.06 g/L; butanoic acid= 0.39±0.04 g/L; acetone=0.18±0.04 g/L; 

and butanol=0.98±0.04 g/L (Table 3.1).  

  Figure 3.3C shows that at the end of acidogenesis (12 h), the OD600 of C. 

saccharoperbutylacetonicum using EG medium increased from OD600 0.361±0.01 

to 1.775±0.10. The pH decreased from 5.87±0.06 to 4.61±0.04. The ORP reached 

the lowest point at -298±7 mV vs. NHE after 2 h of fermentation. During 

solventogenesis (12 to 72 h), there was a moderate increase of OD600 from 

1.761±0.10 to 2.285±0.17. At 48 h, organic acids and solvent production had 

reached as follows: acetic acid=1.39±0.01 g/L; butanoic acid= 0.77±0.24 g/L; 

acetone=0.24±0.11 g/L; and butanol=1.53±0.51 g/L (Table 3.1), in which EG had 

the highest yield of butanol. Table 3.1 shows that the organic acids and solvent 

production found in EG were higher than those produced during growth in RCM 

(positive control) but lower than values obtained for TYE (positive control).  

 The fermentation profile of C. saccharoperbutylacetonicum using ESBG 

was very different. Figure 3.3D shows that acidogenesis lasted for 24 h, which was 

12 h longer than other media. The OD600 remained low for the first 12 h 

(0.312±0.04). Following this, the OD600 increased to 2.864±0.09 at 24 h of 

fermentation and decreased slightly to 2.798±0.33 at the end of the fermentation 

(72 h). The ORP had reached the lowest point (-332±15 mV vs. NHE) at 72 h. The 

initial pH was high, which was 8.73±0.02 and decreased to 6.21±0.06 at the of 

acidogenesis (24 h). The pH then plateaued during solventogenesis (6.21±0.06 at 
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24 h to 6.23±0.10 at 72 h). At 48 h cells grown on ESBG medium had the highest 

level of acetic acid (4.39±1.59 g/L). However, the concentration of butanoic acid 

was 0.23±0.09 g/L, which was lower than both of the positive controls (TYE and 

RCM). The most striking differences in the ESBG fermentation profile were that 

neither acetone nor butanol were detected at 48 h, and high levels (8.41±0.56 g/L) 

of ethanol were detected (Table 3.1). Ethanol was not detected in positive controls 

(TYE and RCM), CV, CVG and EG.    

 Throughout the fermentation time course, no formation of foam was 

observed in cells grown on MQ water and only minor foam production was 

observed in cultures grown on 1% glucose, CV and ESBG. Foam was formed 

vigorously in cells grown on CVG, EG, TYE and RCM (Appendix Figure B1). 
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Figure 3.3. The OD600, pH, and ORP changes of the selected fermentation media 
fermented by C. saccharoperbutylacetonicum. Fermentations were performed in serum 
bottles in a variety of different growth media: (A) CV: 10% C. vulgaris; (B) CVG: 10% C. 
vulgaris supplemented with 1% glucose; (C) EG: 10% Eustigmatophyceae whole cell 
supplemented with 1% glucose; (D) ESBG: 10% Eustigmatophyceae spent biomass 
supplemented with 1% glucose; (E) TYE; (F) RCM; (G) MQ water; and (H) 1% glucose. 
Positive controls: RCM and TYE. Negative controls: 1% glucose and MQ water. CV, 
CVG, EG and ESBG were centrifuged and autoclaved. Operating conditions; temperature: 32 
°C, anaerobic environment without agitation; without pH control; 5 ml of overnight culture in 
liquid RCM with C. saccharoperbutylacetonicum (OD600 range 1.5-1.8) inoculated into 50 mL 
of selected media. Data points are averages of three biological repeats, with error bars showing 
SD values. 
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Figure 3.4. The organic acids and solvent production by C.  saccharoperbutylacetonicum 
grew in (A) CV; and (B) CVG.  Performed in triplicate, with error bars showing SD values. 
Only CV and CVG were subjected to complete GCMS analysis.  
 
 
Table 3.1.  Organic acids and solvent production by C. saccharoperbutylacetonicum after 
24 and 48 h of fermentation in different media.  

Media Acetic acid (g/L±SD) Butanoic acid (g/L±SD) 
24 h 48h 24 h 48h 

CV 0.38±0.14 0.28±0.13 0.13±0.02 0.16±0.02 
CVG 0.48±0.08 0.56±0.19 0.28±0.07 0.36±0.04 
EG 0.82±0.27 1.39±0.01 0.87±0.29 0.77±0.42 

ESBG 4.39±1.59 6.86±0.60 0.23±0.09 0.42±0.03 
TYE 2.97±0.16 3.36±0.25 1.80±1.14 5.83±0.50 
RCM 0.51±0.27 0.92±0.03 0.25±0.19 0.60±0.17 

 
Media Acetone (g/L±SD) Butanol (g/L±SD) Ethanol (g/L±SD) 

 24 h 48 h 24 h 48 h 24 h 48 h 
CV - - 0.03±0.00 0.09±0.02 - - 

CVG 0.17±0.01 0.20±0.02 0.75±0.09 1.00±0.04 - - 
EG 0.04±0.03 0.24±018 0.10±0.07 1.53±088 - - 

ESBG - - - - 6.57±1.00 8.41±0.56 
TYE 0.22±0.01 0.33±0.03 2.63±0.25 3.74±2.16 - - 
RCM 0.06±0.06 0.21±0.15 0.29±0.15 0.50±0.27 - - 

-  undetectable 
Data are averages of three biological controls, and error are SD values. 
Positive controls: RCM and TYE 
GCMS analysis was not done on negative controls (MQ water and 1% glucose). 
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3.3. Assessment of ABE fermentation using 10% C. vulgaris in fermenters 

 A further ABE fermentation study was performed using CV media in a 

larger scale fermenter system which enabled in-line monitoring of pH and redox 

poise, and perhaps is a better approximation of industrial batch fermentations. The 

main differences between the fermentation using CV in fermenters and serum 

bottles were: (1) size of reaction vessel (1000 mL culture vessels vs. 100 mL serum 

bottle); (2) medium volume (fermenter: 500 ml; serum bottle: 50 ml); (3) inoculum 

dilution. The inoculum for the fermenter was a 100-fold dilution, whereas the 

inoculum for serum bottles was a 10-fold dilution; (4) agitation. The rate of 

agitation in fermenters was 100 rpm. No agitation in serum bottles; (5) gas outlet. 

A filter was connected to the fermenter for gas outlet. whereas, no gas outlet in 

serum bottle; (6) headspace. The fermenter had 500 mL of headspace, whereas 

serum bottles had 50 mL of headspace; (7) fermentation duration. Growth in 

fermenters was terminated at 48 h, whereas growth using serum bottles was 

terminated at 72 h.   

 Figure 3.5A shows that the acidogenesis phase lasted for 9 h when ABE 

fermentation was performed in a fermenter, which was 3 h shorter than the 

acidogenesis phase in serum bottles (9 h vs. 12 h). The pH decreased from 

6.81±0.01 to 6.05±0.01. The growth had increased exponentially from OD600 

1.895±0.52 to 4.926±1.00. In this period, acetic acid was produced and reached a 

maximum concentration of 0.15±0.13 g/L. However, butanoic acid production 

reached a maximum concentration of 0.06±0.01 g/L occurring at 27 h (Figure 

3.5B). After 6 h of fermentation, the ORP reached the lowest point (-220±61 mV 

vs. NHE), and the pH reached the lowest point at 9 h (6.05±0.01). Then, pH 

gradually increased to 6.32±0.05 at 48 h, and the OD600 continued to increase at a 

lower rate (from 4.926±1.00 to 6.332±1.17). The amount of acetic acid reached the 

highest point after 12 h of fermentation (0.08±0.04 g/L) and decreased slightly at 

48 h (0.06±0.02 g/L). The butanoic acid concentration reached the highest level at 

27 h (0.06±0.01 g/L) and decreased slightly at 48 h (0.04±0.03 g/L). Butanol 

production was observed after 24 h of fermentation and reached the maximum level 

at 48 h (0.15±0.04 g/L) (Figure 3.5B).   
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Figure 3.5. Fermentation profiles of C. saccharoperbutylacetonicum grown in 10% C. 
vulgaris using fermenters. (A) Time course of the changes in the OD600, pH and redox changes 
in; (B). Organic acids and solvent production by C. saccharoperbutylacetonicum. Operating 
conditions; temperature: 32 °C, anaerobic environment with 100 rpm agitation; without pH 
control; 50 ml of overnight culture in liquid RCM with C. saccharoperbutylacetonicum (OD600 
range 1.5-1.8) inoculated into 500 mL of CV. The fermentation lasted for 48 h. Experiment ran 
in three biological replicates were performed in triplicate, with error bars showing SD values.  
 

3.4. ABE fermentation in serum bottles using medium made from 

Eustigmatophyceae waste biomass 

 The viability of ABE fermentation is greatly dependent on the inexpensive 

fermentation medium used. Hence, use of waste products such as SMAB for ABE 

fermentation has the potential to reduce the cost tremendously and improve product 

sustainability. SMAB was obtained from Algaecytes®, following their lipid 

extraction procedure and was used for the growth of C. 

saccharoperbutylacetonicum: the medium was not autoclaved to mimic conditions 

that might be encountered during industrial ABE fermentation. In addition, the 

Eustigmatophyceae media used in Section 3.2 was also centrifuged, and therefore 

whole cells and larger cell fragments could be lost in this process, which may be a 

valuable source of polysaccharides to fuel ABE fermentation. It was therefore of 

interest to test Eustigmatophyceae media that had not been centrifuged/autoclaved. 

Due to the high turbidity of these media, it was not possible to measure the growth 

of saccharoperbutylacetonicum spectrophotometrically so bacterial cell 

proliferation was monitored using light microscopy. 

Fermentation in non-autoclaved/non-centrifuged 10% Eustigmatophyceae 

whole cell medium supplemented with 1% glucose (EG-NT) was performed to 

investigate the ability of C. saccharoperbutylacetonicum to access intracellular 

material from the Eustigmatophyceae cells. During acidogenesis, the pH decreased 

from 5.92±0.03 to 4.09±0.04. During the first 24 h of fermentation, foam was 
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formed vigorously and reached the top of the serum bottle. Once the fermentation 

entered the solventogenic phase, the pH continued to decreased to 3.94±0.04 (72 

h). The ORP reached the lowest point (-287±1 mV vs. NHE) at the end of the 

fermentation (72 h) (Figure 3.6A). Despite this obvious proliferation of C. 

saccharoperbutylacetonicum, the cell wall of the Eustigmatophyceae appeared to 

remain intact throughout the entire fermentation (Figure 3.7A).  

 In addition to non-autoclaved/non-centrifuged whole Eustigmatophyceae 

cells, it was of interest to investigate Eustigmatophyceae spent biomass that was 

prepared in a similar way. Eustigmatophyceae spent biomass (non-autoclaved/non-

centrifuged) supplemented with 1% glucose (ESBG-NT) was used as a medium for 

ABE fermentation with C. saccharoperbutylacetonicum (Figure 3.6B). These data 

show that the ESBG-NT medium had a high initial pH (10.52±0.05), which was 

probably responsible for inhibition of C. saccharoperbutylacetonicum growth 

(Figure 3.7B). The pH had decreased to 9.96±0.01 at the end of acidogenesis and 

continued to decrease slightly during solventogenesis (9.89±0.01 at 72 h). No 

formation of foam was observed throughout the entire fermentation (Appendix 

Figure B1). The overall ORP was higher than other Eustigmatophyceae media and 

reached the lowest value at 2 h (-250±15 mV vs. NHE). Due to the high initial pH 

and lack of growth, it was therefore of interest to adjusted the pH of ESBG-NT 

medium to 6.0 (to produce ESBG-pH). The fermentation profile showed a very 

different behaviour (Figure 3.6C). The most significant differences were: (1) foam 

was formed vigorously; and (2) ethanol was detected. During the first 12 h 

(acidogenesis), the pH decreased from 6.00±0.00 to 4.87±0.08. The ORP reached 

the lowest point after 4 h (-347±5 mV vs. NHE). When viewed under the 

microscope, the ESBG-pH culture had the highest density of C. 

saccharoperbutylacetonicum (Figure 3.7C). During solventogenesis, the pH 

continued to decrease to 4.45±0.12 (72 h). Solvent analysis was performed after 24 

and 48 h of fermentation. Organic acids and solvent production after 48 h of 

fermentation had reached as follows: acetic acid=2.11±0.17 g/L; butanoic acid= 

0.73±0.08 g/L; acetone=0.40±0.15 g/L; ethanol=1.47±0.57; and 

butanol=1.40±0.40 g/L (Table 3.2).  

 The ESBG-pH medium (non-autoclaved and non-centrifuged, pH adjusted) 

clearly supported much higher levels of butanol compared to the 
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centrifuged/autoclaved ESBG medium in Section 3.2 (Table 3.1). Clearly, pH is a 

major factor but it was also of interest to examine whether the autoclaving also 

diminishes solvent yields. Hence, fermentations with autoclaved 10% 

Eustigmatophyceae spent biomass supplemented with 1% glucose, without 

centrifugation and pH adjusted to 6.0 (ESBG-ApH) were performed. The ESBG-

ApH medium yielded a similar growth profile to ESBG-pH (Figure 3.6D). 

Acidogenesis lasted for 12 h, during which the pH decreased from 6.02±0.04 to 

4.97±0.02. During solventogenesis, the pH continued to decrease slightly to 

4.82±0.03 (at 72 h). Foam was observed throughout the entire fermentation 

(Appendix figure B1). The ORP reached the lowest point at 4 h of fermentation (-

327±4 mV vs. NHE). In comparison with ESBG at 48 h of fermentation (Figure 

3.3D), the main differences were: (1) the acidogenesis in ESBG-ApH was 12 h 

shorter than ESBG (12 vs. 24 h); (2) much lower level of acetic acid was detected 

in ESBG-ApH (2.73±1.44 vs. 4.39±1.59 g/L); (3) much higher level of butanoic 

acid was detected in ESBG-ApH (2.84±0.82 vs. 0.73±0.14 g/L); (4) Acetone 

(0.23±0.02 g/L) and butanol (1.44±0.09 g/L) were detected in ESBG-ApH; and (5) 

much lower level of ethanol was detected in ESBG-ApH (0.99±0.27 vs. 8.41±0.56 

g/L) (Table 3.1 and 3.2). However, when compared with ESBG-pH, autoclaved 

ESBG-ApH did not further improve the solvent production, although the 

production of organic acids improved significantly (Table 3.2).  

 When comparing data for CV, CVG, EG, ESBG, ESBG-pH, and ESBG-

ApH, at 48 h, the cultures grown on ESBG had the highest acetic acid levels 

(6.86±0.60 g/L). As for butanoic acid production, ESBG-ApH had the highest yield 

at 48 h, (2.84±0.82 g/L). Acetone production was not detected in CV only, which 

was not supplemented with 1% glucose. ESBG-ApH had the highest yield of 

acetone at 48 h (0.40±0.15 g/L at 48 h). EG had the highest butanol concentration 

(1.53±088 g/L). At 48 h of fermentation, ethanol production was only observed in 

cultures grown on ESBG (8.41±0.56 g/L), ESBG-pH (1.47±0.57 g/L) and ESBG-

ApH (0.99±0.27 g/L) (Table 3.1 and 3.2). The total ABE solvent concentrations at 

48 h in C. saccharoperbutylacetonicum cultures grown on different media were as 

follows (in order from low to high): ESBG (8.41 g/L) > TYE (4.07 g/L) > ESBG-

pH (3.27 g/L) > ESBG-ApH (2.66 g/L) > EG (1.77 g/l) > CVG (1.20 g/L) > RCM 

(0.71 g/L) > CV in fermenter (0.15 g/L) > CV in serum bottle (0.09 g/L). 
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Interestingly, ESBG had the highest total ABE concentration, which is solely from 

the production of ethanol.  

 

 

Figure 3.6. Fermentation profiles of C. saccharoperbutylacetonicum grown in 10% 
Eustigmatophyceae spent biomass. (A) EG-NT: 10% Eustigmatophyceae whole cell 
supplemented with 1% glucose, non-autoclaved and non-centrifuged; (B) ESBG-NT: 10% 
Eustigmatophyceae spent biomass supplemented with 1% glucose, non-autoclaved and non-
centrifuged; (C) ESBG-pH: 10% Eustigmatophyceae spent biomass supplemented with 1% 
glucose; non-autoclaved, non-centrifuged and pH adjusted to 6.0; (D) ESBG-ApH: 10% 
Eustigmatophyceae spent biomass supplemented with 1% glucose, autoclaved, non-centrifuged 
and pH adjusted to 6.0; OD600 were not monitored due to the high amount of fragmented 
microalgal biomass as the medium was not subjected to centrifugation. Operating conditions; 
temperature: 32 °C, anaerobic environment without agitation; 5 ml of overnight culture in 
liquid RCM with C. saccharoperbutylacetonicum (OD600 range 1.5-1.8) inoculated into 50 mL 
of selected media. The fermentation lasted for 72 h. Performed in triplicate, with error bars 
showing SD values.  
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Figure 3.7. Direct observation of C. saccharoperbutylacetonicum when grown in 
Eustigmatophyceae-derived media. (A) EG-NT: 10% Eustigmatophyceae whole cell 
supplemented with 1% glucose, non-autoclaved and non-centrifugated. The cell wall of the 
Eustigmatophyceae whole cell remained intact during fermentation; (B) ESBG-NT: 10% 
Eustigmatophyceae spent biomass supplemented with 1% glucose, non-autoclaved and non-
centrifuged. Low number of bacterial cells was observed; (C) ESBG-pH: 10% 
Eustigmatophyceae spent biomass supplemented with 1% glucose; non-autoclaved, non-
centrifuged and pH adjusted to 6.0; (D) ESBG-ApH: 10% Eustigmatophyceae spent biomass 
supplemented with 1% glucose, autoclaved, non-centrifuged and pH adjusted to 6.0. The 
magnification was x400. Clostridium cells have a green hue when grown in microalgal 
medium.  
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Table 3.2.  Organic acids and solvent production by C. saccharoperbutylacetonicum after 
24 and 48 h of fermentation in ESBG-pH and ESBG-ApH.  

Media Acetic acid (g/L±SD) Butanoic acid (g/L±SD) 
24 h 48h 24 h 48h 

ESBG-pH 0.39±0.14 2.11±0.13 0.17±0.16 0.73±0.14 
ESBG-ApH 2.73±1.44 3.42±1.08 2.00±1.13 2.84±0.82 

 
Media Acetone (g/L±SD) Butanol (g/L±SD) Ethanol (g/L±SD) 

 24 h 48 h 24 h 48 h 24 h 48 h 
ESBG-pH 0.31±0.13 0.40±0.26 0.89±0.32 1.40±0.69 0.57±0.28 1.47±0.99 

ESBG-ApH 0.22±0.01 0.23±0.02 1.20±0.27 1.44±0.09 1.11±0.40 0.99±0.27 
Data are averages of three biological controls, and error are SD values.   
The solvent production of EG-NT and ESBG-NT were not analysed by GCMS. 
 
 
3.5. Development of butanol-tolerant strains of C. saccharoperbutylacetonicum 

and E. coli 

 During solventogenesis, cellular metabolism can be perturbed when the 

butanol concentration reaches an inhibitory level (greater than 15 g/L). 

Accumulation of butanol disrupts membrane stability as well as inhibiting the 

transportation of nutrients into the cells. E. coli is a good candidate for solvent 

production due to rapid growth, facultative anaerobic nature, lack of spores, and 

ease of genetic modification (Jones and Woods 1986; Zheng et al. 2009). On the 

other hand, clostridial species remain a preferable organism for ABE fermentation 

as they perform this naturally and can utilise a wide range of lignocellulosic carbon 

sources (Keis et al. 2011). Given that butanol toxicity is the major limiting factor 

for solvent production, it was of interest to use genetic approaches to improve 

butanol tolerance in E. coli and C. saccharoperbutylacetonicum. 

It has previously been reported that overexpression of the focA transporter 

from E. coli, which has a primary role in formate transport, enhances butanol 

tolerance in the native host (Reyes et al. 2011). The current work identified the 

fdhC gene of C. saccharoperbutylacetonicum as a homologue of focA and is 

therefore a focus of the current study. Amino sequence alignment of E. coli FocA 

and C. saccharoperbutylacetonicum FdhC proteins suggests a potential common 

function (Figure 3.8).   
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Figure 3.8. Alignment of focA and fdhC amino sequences. focA and fdhC amino sequence 
were taken from E. coli and C. saccharoperbutylacetonicum, respectively. Sequences were 
aligned using Bioedit free software (v7.2.5). Amino acids are coloured to allow differences in 
amino acid sequence to be easily visualised. The sequence identity is 35%, which was 
calculated by using the BLASTp.  
 

 The fdhC and focA genes from C. saccharoperbutylacetonicum and E. coli 

K-12, respectively, were amplified by using the Q5® high-fidelity polymerase. A 

fragment of the E.coli/clostridium shuttle vector pMTL83353 was also amplified 

as the plasmid backbone for Gibson assembly. This vector incorporates a 

ferredoxin promoter that is designed for high levels of expression in clostridium 

species. The primers were designed with 18-25 bp overhangs at both 5′ and 3′ ends 

for annealing of plasmid and insert, and codons for a 6X-Histag were included at 

the 3′ end of the fdhC and focA genes. An overview of the Gibson reaction process 

is shown in Figure 3.9, and detailed plasmid maps of the desired pMTL83353-focA 

and pMTL83353-fdhC expression vectors are shown in Figure 3.10.  

 Figure 3.11A lane 1 shows that PCR amplification of focA with primers 

FocFWD (MS primer #360) and FocRev (MS primer #361) resulted a band around 

1,000 bp, which was close to the expected size of 936 bp. Lane 2 shows that PCR 

amplification of fdhC with primers FdhCGAFwd (MS primer #333) and 

FdhCGARev (MS primer #334) resulted a band around 1000 bp, which was close 

to the expected size of 915 bp. In Figure 3.11B lane 1 shows the PCR of 

pMTL83353 with focA overhangs, which was amplified with primers 

83353GA_focA_F1 (MS primer #364) and 83353GA_focA_R1 (MS primer #365). 

This yielded a band size of approximately 5,000 bp, which was closed to the 
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expected size of 4,758 bp. Lane 2 shows the PCR of pMTL83353 with fdhC 

overhangs, which was amplified with primers 83353GA_fdhC_F1 (MS primer 

#366) and 83353GA_fdhC_R1 (MS primer #367). This resulted in a band size 

around 5,000 bp, which was close to the expected size of 4,755 bp.  

 Following Gibson assembly reactions, transformations of super-competent 

E. coli cells were performed using the heat shock method (Section 2.7.6.). To 

screen colonies for the desired plasmids, colony PCR was performed with primers 

83353_cPCR_SCRN_FWD (MS primer #368) and 83353_cPCR_SCRN_REV 

(MS primer #369) that bind to the pMTL83353 vector with 215 bp upstream and 

218 downstream from the insert. Band sizes of 1,371 bp and 1,392 bp were 

expected for colonies containing pMTL83353-focA and pMTL83353-fdhC, 

respectively. Whereas the control colony PCR with vector alone (pMTL83353) 

gave the expected band size of 751 bp (Figure 3.12), the screening process did not 

identify any plasmids containing focA or fdhC.   

 

 
Figure 3.9. Overview of Gibson assembly for cloning of focA and fdhC genes. 4 primers 
were designed for each Gibson assembly. The primers were designed with 18-25 bp overhangs 
at the 5′ and 3′ ends. Gibson assembly performed in a single tube reaction, in which T5 
exonuclease creates single-strand DNA 3′ overhangs by digesting the DNA 5′ end and exposing 
the complementary sequence for annealing. Then, Phusion DNA polymerase fills in the gaps 
on the annealed regions. Taq DNA ligase then seals the nick and covalently links the DNA 
fragments together. The reactions were incubated at 50 °C for 1 h (adapted from Gibson et al. 
2009).  
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Figure 3.10. Vector maps of the desired plasmid constructs for focA and fdhC. (A) Map 

of pMTL83353-focA with 6X-Histag is shown, with binding sites for the cloning primers 

FocFWD (MS primer #360) and FocRev (MS primer #361), 83353GA_focA_F1 (MS primer 

#364) and 83353GA_focA_R1 (MS primer #365); (B) Map of pMTL83353-fdhC with 6X-

Histag is shown, with binding sites for cloning primers FdhCGAFwd (MS primer #333) and 

FdhCGARev (MS primer #334). pMTL83353 with fdhC overhang was amplified by primer 

83353GA_fdhC_F1 (366) and 83353GA_fdhC_R1 (MS primer #367). Primers 

83353_cPCR_SCRN_FWD (MS primer #368) and 83353_cPCR_SCRN_REV (MS primer 

#369) were used for cPCR screening with 215 bp upstream and 218 downstream from the 

insert. The antibiotic resistance marker for pMTL83353 is spectinomycin.  
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Figure 3.11. PCR amplification of DNA fragments for Gibson assembly. (A) Lane 1: focA 
with pMTL83353 overhang (MS primer #915 bp) was amplified with primers FocFWD (MS 
primer #360) and FocRev (MS primer #361); Lane 2: fdhC with pMTL 83353 overhang (MS 
primer #936 bp) was amplified with primers FdhCGAFwd (MS primer #333) and FdhCGARev 
(MS primer #334); (B) Lane 1: pMTL83353 with focA overhang (4,758 bp) was amplified by 
primer 83353GA_focA_F1 (364) and 83353GA_focA_R1 (MS primer #365) ; Lane 2: 
pMTL83353 with fdhC overhang (4,755 bp) was amplified by primer 83353GA_fdhC_F1 (MS 
primer #366) and 83353GA_fdhC_R1 (MS primer #367). Ladder: 1kb ladder (Promega). 
Gibson assembly fragments were amplified using Q5® High-fidelity 2X master mix. 5 µL of 
PCR reactions were loaded onto 1.0% agarose gel and separated by electrophoresis in 1X Tris-
acetate buffer (80 V, 300 mA, 40 min). 
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Figure 3.12. Colony PCR screen of Gibson Assembly transformants. Colony PCR was 
performed using screening primers 83353_cPCR_SCRN_FWD (MS primer #368) and 
83353_cPCR_SCRN_REV (MS primer #369) to screen for transformants with either focA or 
fdhC incorporated into pMTL83353. Lanes 1 to 10: colonies obtained for focA transformation 
(desired transformant should show a band size of 1,371 bp). Lanes 11 to 20: colonies found for 
fdhC transformation (desired transformant should show a band size of 1,392 bp). Lane 21: 
competent cells only; Lane 22: vector (pMTL83353) only, which gave a band close to the 
expected band size of 751 bp. A faint band around 1,500 bp can be seen in vector only as well 
as transformants.  
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Chapter 4 
Discussion 
 The overarching goals of this study were to assess the efficacy of waste 

algal biomass as a feedstock for ABE fermentation, and to enhance butanol toler-

ance in Clostridium species. However, the initial challenge faced during this project 

was to develop a technique to measure the growth of Clostridium in turbid cultures. 

After considerable optimisation, a protocol for dilution and spectrophotometric 

measurement was devised (Figure 3.1) and comparison with duplicate cultures in 

non-turbid RCM medium (Figure 3.2A-B) confirmed that this approach can be used 

to accurately measure the cell density of C. saccharoperbutylacetonicum cultures 

up to 5 x 109 CFU/mL (i.e. up to 5 x 108 cells in the cuvette with a 1:10 dilution). 

Increases in bacterial cell density were verified using light microscopy (Figure 

3.2C), and this approach was then used to monitor the growth of C. saccharoper-

butylacetonicum in growth media made from microalgal biomass. 

Initial growth experiments (Figure 3.3) with media made from microalgal 

cells (autoclaved and centrifuged) showed that while the nutrients transferred with 

the RCM inoculum could support bacterial growth independently (i.e. MQ water 

medium), the media produced from C. vulgaris (i.e. CV) provided a significant 

contribution to the final bacterial biomass. Furthermore, supplementation with 1% 

glucose provided an additional increase the growth rate and final biomass of Clos-

tridium cells (i.e. CVG vs. CV), as previously observed for clostridial growth where 

addition of low levels of glucose have also been shown to aid the solvent production 

(Ellis et al. 2012; Castro et al. 2015). Indeed, addition of 1% glucose had a dramatic 

effect upon butanol production in CV medium (Figure 3.4). Similar experiments 

with medium produced from Eustigmatophyceae cells supplemented with 1% glu-

cose (EG) did support growth much beyond the MQ water negative control exper-

iments. Waste algal biomass from Algaecytes (following oil extraction) was also 

tested as a feedstock using this approach: this glucose-supplemented medium did 

provide a modest contribution to clostridial biomass, although it could be argued 

that this growth effect was due to the 1% glucose in this medium. 
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 As the medium produced from C. vulgaris seem to be the most promising 

in terms of supporting bacterial growth, this CV medium (without glucose) was 

used for growth of 500 mL cultures in 1 L fermentation vessels to better approxi-

mate conditions found in industrial ABE fermentation. This approach did support 

the growth of C. saccharoperbutylacetonicum (Figure 3.5A), although like the se-

rum bottle experiments, low yields of butanol were obtained in the absence of ex-

ogenous glucose (Figure 3.5B). 

 The experiments described above with autoclaved/centrifuged microalgal 

media did not yield significant levels of butanol (Table 3.1) compared to the TYE 

positive control (3.74 g/L at 48h), although the ESBG medium did produce an im-

pressive 8.41 g/L of ethanol after 48 h but without the production of butanol and 

acetone. Besides, the ESBG medium also produced the highest level of acetic acid, 

which suggested that the reassimilation of the accumulated acetic acid was solely 

converted to ethanol. This is supported by literature, which reported that the reas-

similation of acetic acid is obligate for the production of ethanol (Richter et al. 

2013). The absence of butanol and acetone in this sample is consistent with previ-

ous studies where high ethanol levels decrease acetone and butanol production 

(Brosseau et al. 1985). In an attempt to improve solvent yields for medium pro-

duced using Eustigmatophyceae cells, the protocol for preparation of growth me-

dium was changed. Autoclaving and centrifuging was no longer performed to make 

the process more industrially relevant and to avoid the loss of whole cells or cell 

fragments that could provide complex polysaccharides for ABE fermentation. 

Also, the pH of the medium was adjusted to 6.0 to avoid alkaline conditions ob-

served in ESBG-NT medium previously. Furthermore, to put this work into con-

text, solvent yields are compared to literature values in Table 4.1. This shows that 

untreated ESBG-pH medium (i.e. non-autoclaved, non-centrifuged, pH adjusted) 

was found to be optimal microalgal medium used in the current study for ABE 

production, with elevated nutrient availability relative to ‘pretreated media’ pre-

sumably being a major factor. The influence of external pH is also a known key 

factor in in influencing solvent yields for ABE fermentation (Al-Shorgani et al. 

2015; Keis et al. 2001): this is consistent with this study, with improved bacterial 

growth and better solvent yields found in both pH adjusted media (ESBG-pH and 

ESBG-ApH). In comparison to other studies, relatively low butanol yields were 
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obtained in this study (Table 4.1). This could be explained by low glucose concen-

trations, where more than 15 g/L of glucose is optimal during acidogenesis as de-

mand for ATP is high (Oshiro et al. 2010). Furthermore, clostridia can utilise a 

range of low molecular weight carbohydrates such as glucose, fructose, sucrose, 

lactose, mannose and dextrin, while the main carbohydrates found in microalgae 

are galactose and xylose (Jones and Woods 1986). The modest growth a low sol-

vent yields may also be influenced by carbon catabolite repression (CCR), where 

clostridial species rapidly utilise glucose and repress the catabolism of alternative 

sugars such as xylose and galactose (Essalem and Mitchell 2016; Noguchi et al. 

2013). Indeed, Noguchi et al. (2013) reported that CCR was observed in C. sac-

charoperbutylacetonicum when grown using mixed sugar carbon sources such as 

glucose and xylose. Furthermore, Xiao et al. (2011) reported that C. acetobutylicum 

utilises xylose poorly due to two main reason: (1) weak affinity of the transporter 

(encoded by XylT) for the xylose substrate; and (2) weak xylose-dissimilation en-

zymes activity (e.g. xylose isomerase and xylulose kinase, which are encoded by 

xylA and xylB). One of the reasons C. saccharoperbutylacetonicum was used in this 

study was its ability to utilise a wide range of carbon source, including xylose. 

However, xylose and other carbon sources found in microalgae are stored within 

the cells and may not be readily accessible for C. saccharoperbutylacetonicum to 

utilise. Future work in this area may focus on the phosphotransferase system (PTS), 

which is the environmental sensor for CCR and phosphorylates sugar substrates 

such as glucose. Hence, by manipulating the PTS system one could potentially en-

gineer clostridial species to preferentially utilise alternative sugars such as xylose 

(Mitchell 2015).    

 Another factor for low butanol yields in the current study could be due to 

the low acetone levels (0.20 - 0.40 g/L at 48 h). Diminished acetone production 

could be caused by sub-optimal pH of the cultures. The optimum pH for enzyme 

adc, which is responsible for production of acetone is approximately pH 5 (Jones 

and Woods 1986), and this study also reported that high yields of butanol are im-

possible without the production of acetone.  Furthermore, Jang et al. (2012b) re-

ported that a decrease in acetone production during solventogenesis minimised the 

production of butanol in C. acetobutylicum. Studies have been performed to 
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increase acetone production, for example through overexpression of enzymes in-

volved in acetone production (encoded by adc, cfA, and cfB) (Zheng et al. 2009).  

 Concentrations of organic acids are a crucial factor in influencing solvent 

yields during ABE fermentation, as acetate and butyrate are important intermedi-

ates in this metabolic pathway. Furthermore, acetic acid aids cell survival by in-

creasing the pH buffering capacity, and also enhances CoA-transferase activity, 

which is responsible for the conversion of aceto-acetyl CoA to acetoacetate which 

is subsequently converted to acetone by acetoacetate decarboxylase (Figure 1.2) 

(Chen and Blaschek 1999; Cho et al. 2012). Reports have also shown that an in-

crease in acetic acid concentration from 3.7 to 9.7 g/L increases solvent production 

by 21% (44%, 6% and 42% for butanol, acetone and ethanol, respectively). How-

ever, 11.7 g/L of acetic acid greatly reduced solvent production (Cho et al. 2012; 

Maddox et al. 2000). This is consistent with the results obtained in this study, in 

which both ESBG-pH and ESBG-ApH produced much more acetic acid at 48 h 

compared to CV and CVG (ESBG-pH: 2.11±0.13 and ESBG-ApH: 3.42±1.08 g/L 

vs. CV: 0.28±0.13 and CVG: 0.56±0.19 g/L). Consequently, butanol production in 

EG and ESBG-pH was higher than for CV and CVG (EG: 1.40±0.69 and ESBG-

pH: 1.44±0.09 g/L vs. CV: 0.09 and CVG: 1.00 g/L). Acetic acid levels measured 

in this study were lower than the minimum amount (3.7 g/L) of acetic acid previ-

ously shown to improved butanol production.  

 Physical factors such as low agitation (100 rpm) together with head-space 

pressure (100 kPa) using hydrogen gas have previously been shown to improve 

butanol productivity (Doremus et al. 1985). This could potentially contribute to the 

low butanol yields found in this study, as the serum bottle experiments were not 

subjected to agitation. However, the microalgal media in the fermenter was agitated 

with 100 rpm, which did not result in a significant improvement in solvent yield. 

 Another factor that could result in low butanol yields is the presence of high 

levels of nitrogenous compounds (e.g. amino acids) from microalgal cells (Wang 

et al. 2016).  Previous studies report that low concentrations of nitrogen-containing 

compounds are optimal for solvent production (Jones and Woods 1986; Maddox 

1989). Furthermore, Roos et al. (1985) demonstrated that the rate of solvent pro-

duction increases when the ratio of nitrogen source:carbon source (glucose) de-

creases.  The total protein content per dry weight of C. vulgaris is 42-58%, and the 
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protein content found in Eustigmatophyceae is approximately 43%. Wang et al. 

(2016) reported that butanol production started to decrease when protein concen-

trations in the medium exceed 500 mg/L, which could be provided by approxi-

mately 1 g/L dry microalgal biomass. The 10% microalgal medium used in this 

study would be equivalent to approximately 100 g/L protein, which could poten-

tially cause detrimental effects on cell growth and solvent production. To prevent 

the negative effect caused by excess protein/amino acids, alkali treatment (wash 

with 1% NaOH, then neutralised with 3% H2SO4) could be employed in future 

(Wang et al. 2016).   

 Another obvious reason for the low solvent yields compared to literature 

values (Table 4.1) is that previous studies have employed extensive pre-treatment 

of the growth media. Treatments such as acid hydrolysis, alkaline treatment, enzy-

matic digestion, centrifugation and microwaving were employed to increase fer-

mentable sugar yields from microalgae and to remove protein-related materials 

found in microalgae. Furthermore, some of the microalgal media used in other stud-

ies were supplemented either with TYE medium, T6 medium, or enzymes to further 

improve the butanol yield. As for this study, pre-treatment of media was deliber-

ately avoided where possible so as to produce a baseline assessment of each growth 

medium, and to attempt avoidance of time-consuming and expensive processes 

from the outset.  Future experiments might include the development of more effi-

cient strategies to remove proteinaceous components from microalgal medium, and 

cheaper methods for digestion of the microalgal cell wall. 

 
Table 4.1. Comparison of solvent production by clostridial species using microalgal biomass 

as the feedstock.   

Microalgal me-
dium 

Bacterial strain  Total ABE pro-
duction in g/L 
(acetone: butanol: 
ethanol) 

Growth 
Vessel  

Hours of fer-
mentation 
(h) 

Source 

10% untreated 
Eustigmato-
phyceae ALG01-
CL1 spent bio-
mass supple-
mented with 1% 
glucosea (ESBG-
ApH) 

C. saccharoper-
butylacetonicum 
DSM 14923 

 2.66 (0.23: 1.44: 
0.99) 

serum 
vial  

48 This 
study 
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10% untreated 
Eustigmato-
phyceae ALG01-
CL1 spent bio-
mass supple-
mented with 1% 
glucoseb (ESBG-
pH) 

C. saccharoper-
butylacetonicum 
DSM 14923 

3.27 (0.40: 1.40: 
1.47) 

serum 
vial  

48 This 
study 

10% untreated 
Eustigmato-
phyceae ALG01-
CL1 spent bio-
mass supple-
mented with 1% 
glucosec (ESBG) 

C. saccharoper-
butylacetonicum 
DSM 14923 

8.41 (0.00: 0.00: 
8.41) 

serum 
vial  

48 This 
study 

10% pretreated 
Eustigmato-
phyceae ALG01-
CL1 whole cell 
supplemented 
with 1% glucosec 
(EG) 

C. saccharoper-
butylacetonicum 
DSM 14923 

1.77 (0.24: 1.53: 
0) 

serum 
vial  

48 This 
study 

10% pretreated C. 
vulgaris FACHB-
31 supplemented 
with 1% glucosed 

(CVG) 

C. saccharoper-
butylacetonicum 
DSM 14923 

1.20 (0.20: 1.00: 
0) 

serum 
vial  

48 This 
study 

10% pretreated C. 
vulgaris FACHB-
31d (CV) 

C. saccharoper-
butylacetonicum 
DSM 14923 

0.15 (0: 0.15: 0) fer-
menter 

48 This 
study 

10% pretreated C. 
vulgaris FACHB-
31d (CV) 

C. saccharoper-
butylacetonicum 
DSM 14923 

0.20 (0: 0.20: 0) serum 
vial 

72 This 
study 

10% pretreated 
mixed microalgae 
with T-6 medi-
ume 

C. saccharoper-
butylacetonicum 
N1-4 

5.23 (0.96: 3.74: 
0.53) 

serum 
vial 

NA Castro 
et al. 
2015 

300 g/l of C. so-
rokiniana CY1 
supplemented 
with 400 mg-N/L 
of sodium ammo-
nia; 360 mg/l of 
peptone and 
0.175 mg /l of 
resazurinf 

C. acetobutylicum 
ATCC 824 

6.32 (NA: 3/86: 
NA) 

glass 
bottle  

NA Cheng 
et al. 
2015 

10% pretreated 
wastewater algaeg 

C. saccharoper-
butylacetonicum 
N1-4 (ATCC 
27021) 

2.74 (0.45: 2.26: 
0.03) 

serum 
vial  

96 Ellis et 
al. 2012 

10% pretreated 
wastewater algae 
supplemented 
with 1% glucoseg 

C. saccharoper-
butylacetonicum 
N1-4 (ATCC 
27021) 

7.27 (1.36: 5.61: 
0.30) 

serum 
vial  

96 Ellis et 
al. 2012 

Table 4.1. (Continued) 
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10% pretreated 
wastewater algae 
supplemented 
with 10 U of 
endo-1,4- β xy-
lanlase and 100 U 
of endo-1,4- β-D 
cellulaseg 

C. saccharoper-
butylacetonicum 
N1-4 (ATCC 
27021) 

9.75 (1.43: 7.79: 
0.53) 

serum 
vial  

96 Ellis et 
al. 2012 

10% pretreated C. 
vulgaris UTEX 
2714 with TYE 
mediumh 

C. saccharobuyt-
licum DSM 13864 

12.44 (3.45: 8.05: 
0.94) 

shaker 
flask 

36 Gao et 
al. 2016 

Pretreated C. vul-
garis JSC-6i 

C. acetobutylicum 
ATCC824 

19.65 (4.37: 13.1: 
2.18) 

serum 
vial 

NA Wang et 
al. 2016 

Table 4.1. (Continued) 
a pH adjusted to 6 with 5M HCl; autoclaved (121 °C at 15 psi for 20 min) and non-centrifuged 
b pH adjusted to 6 with 5M HCl; non-autoclaved and non-centrifuged 
c Autoclaved (121 °C at 15 psi for 20 min) and centrifuged (5000 rpm for 15 min) 
d Broken cell wall; centrifuged (5000 rpm for 15 min) and autoclaved (121 °C at 15 psi for 20 min) 
e Mixed microalgae= Scenedesmus, Chlorella, Ankistrosdemus, Micromonas, and Chlamydomonas. 
Treated with acid hydrolysis using 1M H2SO4 for 120 min at 80-90 °C, followed by centrifugation 
(1200 rpm), neutralization (Ca(OH)2), second centrifugation (1200 rpm for 30 min) and sterilization 
(120 °C for 15 min)  
f Mixed with methanol and microwaved for 10 min. Then, subjected to 2% H2SO4 acid hydrolysis, 
followed by 2% NaOH; each step was heated at 121 °C for 60 min; pH was maintained above 4.5 
with CaCO3 
g Treated with 1M H2SO4 followed by 5M NaOH; each step was heated at 90 °C for 30 min 
h Subjected to 2% H2SO4 acid hydrolysis followed by autoclaving (121 °C at 15 psi for 20 min) and 
neutralized to a pH of 6 with 4M NaOH. Then, centrifuged at 3500 rpm  
i Treated with cellulose-hydrolysing enzyme. Then, treated with 1% NaOH followed by centrifuga-
tion (9000 rpm for 10 min), rinsed several times and finally treated with 3% H2SO4. Treatments 
were carried out under autoclaved conditions (121 °C for 20 min).  
NA= not available 
 

The level of butanol detected in all growth media used in this study was 

lower than the minimal level shown to elicit inhibition growth and solvent produc-

tion (> 5.0 g/L) (Jones and Woods 1986). Hence, the low butanol yields in this 

study were not caused by the toxicity of butanol. However, maximising the yield 

of butanol is clearly important for industrial ABE fermentation, so it was therefore 

of interest to engineer C. saccharoperbutylacetonicum to tolerate higher levels of 

butanol. Given that overexpression of the E. coli FocA transporter had previously 

been shown to elicit butanol tolerance in the native host (Reyes et al. 2011), the 

current project aimed to clone focA and fdhC, a homologue from C. saccharoper-

butylacetonicum, for subsequent overexpression in E. coli and Clostridium species. 

The cloning strategy was to insert focA and fdhC downstream of the ferredoxin 

promoter of the pTML83353 vector (Chain Biotech 2010) via Gibson assembly 

(Gibson et al. 2009).  PCR of the vector and insert fragments was successfully 
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performed and following Gibson assembly reaction and transformation into E. coli 

DH5α, several colonies were obtained for both ligations. However, PCR screening 

showed that none of the transformants contained the focA or fdhC genes: the ma-

jority were consistent with empty pTML83353 vector. One explanation for the false 

positives is that a small amount of pTML83353 template DNA present during PCR 

amplification of the vector fragment was transferred to the Gibson reaction. A po-

tential explanation for the lack of positive clones containing focA or fdhC could be 

that high levels of transporter overexpression from the relatively high copy number 

plasmid (~15-20) and strong and constitutive promoter Pfdx may exert a toxic bur-

den over the host cells. Hence, future cloning strategies might include using a dif-

ferent vector such as pMTL84422, which harbours a p15a Gram- replicon (copy 

number ~10) and a weaker promoter, Pthl. This combination should result a lower 

expression, which might help with the cloning of these transporters. 

 If the cloning of focA and fdhC would have been successful, the butanol 

tolerance of cells will evaluate by growing in the RCM containing various concen-

trations of butanol (0, 5, 9, 13 and 17 g/L) then follow by measuring the OD600.   
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Chapter 5 
Conclusion 
 The use of inexpensive feedstocks and high butanol titre are major considerations for 

industrial butanol production by ABE fermentation. This study demonstrated that butanol 

could be successfully produced by C. saccharoperbutylacetonicum grown on media produced 

from the microalgae C. vulgaris and Eustigmatophyceae. While the butanol yields from this 

work were low (< 5 g/L), this work provides a benchmark to test the efficacy of largely 

untreated growth media for ABE fermentation. Interestingly, the most promising growth 

medium in terms of solvent production was ESBG-pH (3.27 g/L solvent), which produced all 

three solvents with the highest total ABE production. It was produced from an industrial waste 

product of no real value. Future work on these microalgal growth media will focus upon pre-

treatments to minimise protein content and maximise sugar release to optimise solvent 

production towards economically-feasible levels.       
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Appendix 
Appendix A. GCMS standard curves  

 

 
Figure A1. Solvents standard curve. (A) Acetic acid; (B) Butanoic acid; (C) Acetone; (D) 

Butanol; (E) Ethanol. Acetic acid and ethanol standard curves were generated over the 

concentration range of 0-10 g/L. Butanoic acid, acetone and butanol standard curve were 

generated over the concentration range of 0-20 g/L.  
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Appendix B. Full range of growth media in serum bottles  

 

Figure B1. Full range of growth media in serum bottle. At 24 h of fermentation, a 
significant amount of foam was observed in TYE, RCM, CV, CVG, EG-NT, and ESBG-pH. 
The foam production subsided after 48 h of fermentation except for EG-NT and ESBG-pH. 
Positive controls: RCM and TYE. Negative controls: 1% glucose and MQ water. CV, 
CVG, EG and ESBG were centrifugated and autoclaved. EG-NT, ESBG-NT were not subjected 
to centrifugation and autoclaving. ESBG-pH was not subjected to centrifugation and 
autoclaving, the initial pH was adjusted to 6.0. ESBG-ApH was subjected to autoclaving and 
without centrifugation, the initial pH was adjusted to 6.0. 
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Appendix C. Microalgae 

 

 
Figure C1. Morphology of microalgae using light microscopy. (1A). Broken cell wall C. 
vulgaris (1B). Autoclaved and centrifugated broken cell wall C. vulgaris; C. vulgaris was 
purchased from Seven Hills Wholefood, supplied as fragmented cells; (2A). 
Eustigmatophyceae whole cells; (2B). Autoclaved and centrifugated Eustigmatophyceae whole 
cells. The cell wall remained intact after centrifugation and autoclaving; (3A). 
Eustigmatophyceae spent biomass following oil extraction; (3B) Autoclaved 
Eustigmatophyceae spent biomass. The cell wall appears to be weakened furthered by 
autoclaving. The magnification was x400.  
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Appendix D. Microscope micrometer 

 

 
Figure D1. Micrometer used in this study. Each division = 0.01mm = 10 µm. x400 
magnification was used throughout this study.    
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Appendix E. List of equipment, reagents, accessories, consumable items 

 
Table E1. List of equipment. 
Equipment Company Model Number 

Autoclave Quirumed, Prestige 
Medical 

2100 classic 9L without 
manometer 

Weighing balance Sartorius CP2202 S 

Oven Gallenkamp Economy incubator size 2 

Capillary GC column Zebron ZA-WAX plus, Part No.7HG-
G013-11 

Centrifuges Eppendorf MiniSpin® Eppendorf AG 22331 Hamburg 

Electrophoresis power 
supplies 

Bio-Rad PowerPac™ HC High-Current 
Power Supply 

GCMS Agilent Technologies 6890N GC system; 5973N Mass 
selective detector;7683 Series 
injector and auto-sampler; 
Enhanced ChemStation G1701 
DA version D00.00.38 

Gas cylinder – N2 BOC UN1002 

Gel imager  GeneSys  G:BOX 

High-speed centrifuge Beckman Coulter Avanti J-26 XP 

Hotplate stirrer Stuart SB 126-3 

Incubator Heraeus Function Line  

Microscope GT Vision GXML 2800 

Milli-Q® water system Thermo- Scientific BernsteadTM EasypureTM II 
Microvolume 
Spectroscopy 

NanoPhotometer® 
IMPLEN 

N50 

Orbital shakers Stuart Scientific mini shaker SO5 
pH electrode Mettler Toledo InLab®  

Semi-Micro-L 
MT51343161 
 

Pipet aid Drummond BC01108BR 

Plasmid mapping 
software 

SnapGene® Viewer 
Vector NTI Software 

Version 4.2.1. 
Version 10.3.1 

Precision weighting 
balance 

A&D Company Limited HR-100A 

Redox probe Mettler Toledo InLab®  
Redox Micro 

MT51343203 
 

Spectrophotometer Agilent Technologies,  
USA 

Cary 60 UV-Vis; Cary WinUV 

PCR thermal cyclers Applied Biosystems Veriti 96 well Thermal Cycler  
Transilluminator Biostep BIOView UV light 
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Ultra-low temperature 
freezer 

New Brunswick Scientific Premium U410 

Water bath shaker Innova® 3100 
Table E1. (Continued) 
 
Table E2. List of reagents. 
Reagent Company  
1-butanol Sigma-Aldrich 
15% glycerol Fisher Scientific 
1 kb DNA ladder Promega 
10X CutSmart® buffer (Cat number: B7204S) NEB 
2X PCRBIO Taq Mix Red (cat number: PB10.11) PCR Biosystems 
Acetic acid glacial Fisher Scientific 
Acetone Fisher Scientific 
Agar technical  Oxoid 
Agarose  Fisher Scientific 
Ammonium sulphate (NH2SO4) Acros Organics 
Butyric acid Sigma-Aldrich 
Calcium chloride (CaCl2) Sigma-Aldrich 
D-Glucose anhydrous Fisher Scientific 
Ethanol denatured (industrial methylated spirit) Fisher Scientific 
GenEluteTM Bacterial Genomic Kit Sigma-Aldrich 
Gibson Assembly® Master mix (2X) (Cat number: 
E2611S)  

NEB 

Hydrochloric acid (HCl) Fisher Scientific 
Industrial methylated spirit; (IMS) Fisher Scientific 
Iron (II) sulphate 7 hydrate (FeSO4.7H2O) AnalaR by BHD 
Loading dye (6X) Fisher Scientific 

Magenesium Chloride (MgCl2) BDH ACS 

Magenesium Sulfate (MgSO4) Sigma-Aldrich 

MES, free acid Merck Millipore 

Potassium chloride (KCl) Sigma-Aldrich 

Restriction enzymes (NdeI and NheI) NED 

Sodium chloride (NaCl) Fisher Scientific 

Spectinomycin  Sigma-Aldrich 
Q5® High-Fidelity 2X Master Mix (Cat number: 
M0492S) 

NEB 

QIAquick® PCR-purification kit QIAGEN 
QIAprep® Spin Miniprep Kit QIAGEN 
Reinforced clostridial medium (RCM) Sigma-Aldrich 
Tryptone Oxoid 
Yeast extract  Oxoid 

 

 
 
 



 Appendix 
 

  ７９ 

Table E3. List of accessories. 
Beaker (500 and 2000 mL)   Horizontal gel box 
Chromacol vial and closure   Magnetic stirrer bar 
Clamps      Masterflex tubing 6”  
Crimping tool for center tears out septa  Metal spatula 
Culture vessel (1000 mL)   Pipette 
Duran bottle (500, 1000, 5000 mL)  Retaining clip 
Flat flange lid (100 mm)   Rubber turn-over closure (Suba-seal®) 
Gasket (PTFE Seal)    Serum vials (30 and 50 mL) 
Gel comb     Shapes bin 
Gel seal      Thermometer  
      UV gel tray 
 
Table E4. List of consumable items. 
Aluminium foil     Needle (2 inches; 1.1 x 50 mm) 
Autoclave tape     PCR tube (0.2 mL) 
Butyl rubber septa (20 mm)   Peroxide-cured silicone tubing  
Center tear out septa (20 mm)   Petri dish (10 cm × 1.5 cm) 
Cryovial (2 mL)    Petroleum gel 
Cuvette, semi-micro (Sarstedt)   Pipette tip (1000, 100 ul) 
Examination glove    Powder-free nitrile glove 
Minisart® filter (pore size: 0.2 µm)  Serological pipette (5 and 50 mL) 
Microscope slide    Syringe (1, 2 and 5 mL) 
Micro tube 2 mL    Weighing boats 
 


