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Abstract 

Research has consistently found unfamiliar face matching to be a highly error prone task. 

Yet, little is known about the decision-making process that underlies this task. Furthermore, 

methods of training observers to improve accuracy have demonstrated mixed success. 

Therefore, the experiments reported in this thesis investigated how matching decisions to 

pairs of unfamiliar faces are made (Chapter 2), and evaluated a novel method for improving 

face matching accuracy (Chapters 3 and 4). Chapter 2 examined whether identifications are 

based on a series of smaller assessments for individual facial features and if so, how these 

evaluations are combined to reach an overall decision, by comparing decisions to whole faces 

with those to isolated feature regions. Individual facial features were found to influence the 

classification of the whole face disproportionately, but performance was best when all 

features were presented as an integrated whole. This thesis also explored whether matching 

performance could be improved by providing observers with clearly-labelled examples 

(Chapters 3 and 4). The benefit of examples was explored at an individual level and revealed 

that observers who were low-performing at baseline improved with the help of examples 

(Chapter 3). This examples advantage was maintained after the examples were removed, 

generalised to previously unseen stimuli taken from the same set as the target pairs, and also 

demonstrated some generalisation to stimuli from a new set with different characteristics. 

Chapter 4 then used eye-tracking to evaluate how examples were utilised during matching 

tasks, but did not reveal a clear improvement with the provision of examples. The different 

pattern of results may have been due to fundamental task differences introduced by the eye-

tracking methodology. Thus, further research is required to fully explore the feasibility of the 

examples manipulation as a method for improving unfamiliar face matching. 
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1.1 Introduction 

Security personnel at international borders are routinely required to conduct identity 

comparisons between photographs on travel documents and their bearers, to determine 

whether they represent an identity-match (the same person) or an identity-mismatch (two 

different individuals). In psychology, this task of contrasting simultaneously-presented faces 

unknown to the viewer is known as unfamiliar face matching. This task is performed on a 

large-scale in applied settings. For example, over 75 million passengers travel through 

Heathrow airport alone each year (Heathrow Airport Limited, 2018). Furthermore, unfamiliar 

face matching is not limited to border control, but is also required in numerous other 

scenarios including age verification for products, such as alcohol and tobacco, entry into 

restricted areas and the identification of criminals from video footage in courtrooms. 

Although face matching in secure settings is becoming increasingly automated, these systems 

still require a human operator to supervise and override decisions where necessary (see 

FRONTEX, 2015). However, despite the wide application of this task, a growing body of 

research has demonstrated that unfamiliar face matching can be highly error prone (for 

reviews see, e.g., Fysh & Bindemann, 2017a; Robertson, Middleton, & Burton, 2015). 

The difficulty of unfamiliar face matching was initially highlighted by one-in-ten 

tasks, where observers are required to match a target face to the corresponding member of a 

ten-photograph line-up, or state they are not there in target-absent line-ups (see Figure 1.1). 

In an early study, observers were required to match a high-quality video still of a target to the 

correct member of a photo line-up (Bruce et al., 1999). When the target was present in the 

line-up, observers identified the wrong face on around 10% of trials and incorrectly stated 

that the target was not in the line-up on approximately 20% of trials. On target-absent trials, 

participants erroneously selected a member of the line-up on 30% of trials. A number of 

studies have since reported similar accuracy levels for this task of around 70% (see, e.g., 
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Bruce, Henderson, Newman, & Burton, 2001; Burton, Miller, Bruce, Hancock, & Henderson, 

2001; Megreya & Burton, 2006a, 2008). Accuracy levels drop further if the pose or 

expression of the target is changed (Bruce et al., 1999). Even if observers are informed that 

the target will be present in every line-up, accuracy only increases to approximately 80% 

(Burton et al., 2001). These high error rates are surprising, as the majority of these studies 

utilised high-quality images for comparison, which were taken on the same day and did not 

present substantial differences between the photographs. One possible explanation is that the 

cognitive load of processing eleven faces may be too great, which may account for the high 

error rates found for one-in-ten matching tasks (Megreya & Burton, 2008). However, 

accuracy levels are similarly low when the number of faces in the line-up is decreased to 

eight (Henderson, Bruce, & Burton, 2001) or five (Megreya, Bindemann, Havard, & Burton, 

2012).  

 

 

FIGURE 1.1. Example of a target-present (A) and a target-absent (B) line-up (reproduced 

from Bruce et al., 1999). Observers are required to indicate whether the target is present in 

each line-up and if so, which number photograph depicts the target. 
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The one-in-ten task requires observers to process a large number of faces at once, 

which may perhaps explain the difficulty of this task. In order to reduce this cognitive load, 

researchers have also examined unfamiliar face matching using one-to-one matching. This 

task is more representative of how unfamiliar face matching typically takes place in specific 

real-life settings such as passport control. However, similarly to the one-in-ten task, one-to-

one face matching is also error-prone (e.g., Bindemann, Avetisyan, & Rakow, 2012; Burton, 

White, & McNeill, 2010; Fysh & Bindemann, 2018a). In an early demonstration of this, 

cashiers were required to verify the identity of confederates using photo credit cards (Kemp, 

Towell, & Pike, 1997). The cashiers incorrectly rejected 10% of genuine card holders and 

accepted over half of the fraudulent cards which depicted a different individual to the holder. 

This suggests that in real-life settings, accuracy is likely to be poor.  

In laboratory-controlled tasks, higher levels of accuracy have been found. For 

example, requiring observers to match high-quality photographs to live actors produces 

accuracy rates of around 85% (Megreya & Burton, 2008), which is comparable to accuracy 

on one-in-ten tasks (e.g., Bruce et al., 2001; Burton et al., 2001). Matching two still images of 

unfamiliar faces is similarly difficult (see, e.g., Bindemann, Avetisyan, & Blackwell, 2010; 

Özbek & Bindemann, 2011). In the Glasgow Face Matching Test (GFMT; Burton et al., 

2010), observers are required to match two high-quality same-day (for match trials) greyscale 

images, with a neutral expression and frontal pose taken on two different cameras (see Figure 

1.2). Even under these optimised conditions, accuracy is still only around 80%. Thus, given 

the important security applications of unfamiliar face matching, there is a need to better 

understand the decision process behind unfamiliar face matching and ultimately improve 

accuracy for this task. 
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FIGURE 1.2. Example identity-match (A) and identity-mismatch (B) pairs taken from the 

GFMT (Burton et al., 2010). The photographs were taken under optimised conditions using 

two different cameras (on the same day for match trials). 

 

 In this review, I will explore why unfamiliar face matching is a difficult task and how 

matching decisions to unfamiliar faces might be made. I will then consider individual 

differences in face matching ability and how these suggest that improving performance on 

this task is theoretically possible. Finally, I will discuss existing attempts to increase 

matching accuracy and train observers to improve their unfamiliar face matching ability. 

 

1.2 Why is unfamiliar face matching difficult? 

Face matching may initially seem to be an easy task, as it is sometimes confused with 

image matching (Jenkins & Burton, 2011). Identity verification of an individual is trivially 

easy when given two identical images to compare (see Figure 1.3). However, the task 

becomes considerably more challenging when given two different images, as these can 

display substantial variation in the appearance of a person (see, e.g., Jenkins, White, Van 

Montfort, & Burton, 2011). An illustration of the importance of this variation comes from 

Bindemann and Sandford (2011), who presented observers with three different ID cards of 

the same individual and found that observers generally correctly matched the IDs with the 

target on 57% of trials. However, less than 40% of participants were able to correctly match 

all three ID cards to the target, indicating that the majority of observers were unaware that all 

three IDs belonged to the same person.  
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FIGURE 1.3. Two images of the same individual can display substantial variation, even if 

these images are taken on the same day. Thus, matching images of the same person is 

considerably easier when provided with two identical photos of the target compared to two 

different images of them.  

 

Another reason the difficulty of face matching may be underestimated is that people 

are generally very good at matching familiar faces, such as those of friends, colleagues, or 

famous people. However, face matching is much more difficult for unfamiliar faces. 

Matching is faster and more accurate for familiar compared to unfamiliar faces (see, e.g., 

Bruce et al., 2001; Clutterbuck & Johnston, 2002, 2005; Young, McWeeny, Hay, & Ellis, 

1986). Even when to-be-matched images are of poor quality (e.g., stills taken from low-

resolution CCTV footage), matching accuracy for familiar faces remains high, whereas 

accuracy for unfamiliar faces deteriorates significantly (Bruce et al., 2001).  

Matching unfamiliar faces may be more difficult than matching familiar faces because 

observers might be overly reliant on external features such as hairstyle, hairline and face 

shape to make identifications for unfamiliar faces (see, e.g., Bruce et al., 1999; Kemp, Caon, 

Howard, & Brooks, 2016; Megreya & Bindemann, 2009). By contrast, for familiar faces, 

internal features such as the eyes, nose and mouth appear to be more important for 

identification (Bonner, Burton, & Bruce, 2003; Campbell, 1999; Clutterbuck & Johnston, 

2002). For example, accuracy for unfamiliar faces deteriorates more when external features 

are obscured compared to when internal features are hidden (Bruce et al., 1999). However, 

when attempting to match difficult face pairs, accuracy can increase by 5% when external 
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features are removed, as observers are forced to utilise information from the internal features 

to make a decision (Kemp et al., 2016). Thus, over-reliance on external features, which can 

easily be altered or changed, can be detrimental to matching accuracy (see, e.g., Kemp et al., 

1997).  

However, this external feature dependency is not present for all cultures. Egyptian 

observers are more accurate at matching unfamiliar faces with only the internal features 

displayed, whereas British observers are more accurate at matching unfamiliar faces with 

only the external features displayed (Megreya & Bindemann, 2009). This ‘headscarf effect’ 

has been attributed to observer experience with face identification based on internal features 

(see, e.g., Megreya, Memon, & Havard, 2012; Wang et al., 2015). In the middle-east, 

headscarves are typically worn, which can obscure external features such as face shape and 

hair. Thus, the Egyptian observers are likely to have had more experience using internal 

features to make identifications. These studies indicate that matching is likely to be more 

difficult for unfamiliar than familiar faces, as observers display an over-reliance on external 

features when greater examination of internal features may be required to make 

identifications.  

 

1.3 Deterioration of unfamiliar matching accuracy 

 Under optimised conditions (i.e., with high-quality, same-day photographs to be 

matched), errors are made on 10-20% of trials on average (see, e.g., Bindemann, Avetisyan et 

al., 2010; Burton et al., 2010). These error rates are already problematic for large-scale 

security operations such as passport control (Dhir, Singh, Kumar, & Singh, 2010; Jenkins & 

Burton, 2008a). For example, over 200,000 passengers travel through Heathrow airport each 

day and if 10-20% errors were made, it could lead to a substantial number of cases being 

classified incorrectly. However, accuracy declines even further under less favourable 
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conditions. For example, face matching is more difficult with poor quality images, such as 

stills or video clips taken from CCTV footage (e.g., Bruce et al., 2001; Henderson et al., 

2001). For low-resolution images, matching performance is close to chance whereas errors 

are substantially reduced for high-resolution images (Bindemann, Attard, Leach, & Johnston, 

2013).  

Matching errors also increase when to-be-matched faces are displayed from different 

viewpoints (e.g., Bruce et al., 1999; Favelle, Hill, & Claes, 2017). For example, pairs 

depicting one face in frontal view and the other in profile view can reduce mismatch accuracy 

by 10% (Estudillo & Bindemann, 2014). This may be due to different identity-related 

information being available for each view (Diamond & Carey, 1986). For example, a frontal 

view provides more information about the configuration of features whereas a profile view 

gives a greater indication of the depth of features. Uneven or unusual lighting also negatively 

impacts face matching performance (e.g., Favelle et al., 2017; Longmore, Liu, & Young, 

2008). For instance, matching accuracy is reduced for bottom-lit faces compared to top-lit 

faces (Hill & Bruce, 1996).  

 While these factors are less likely to be a problem for strictly controlled passport 

photos, other conditions which are more likely to occur in applied settings can also be 

detrimental to unfamiliar face matching performance, such as when images have different 

facial expressions (see, e.g., Bruce, 1982; Bruce et al., 1999). In fact, simply embedding 

photographs within a passport frame containing biographical information appears to be 

sufficient to reduce accuracy (McCaffery & Burton, 2016), as does the usage of images taken 

months or years apart (see Figure 1.4), as is usually the case with a passport photograph and 

its bearer (see, e.g., Fysh & Bindemann, 2018a; Megreya, Sandford, & Burton, 2013). To 

illustrate the potential impact of this problem, matching performance can deteriorate by 20% 

when observers are required to match two images that are taken several months apart, rather 
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than images taken on the same day (Megreya et al., 2013). Similarly, matching accuracy is 

reduced by around 10% when using video footage that is a week old compared to footage 

taken on the same day for target present line-ups (Davis & Valentine, 2009). 

  

 

FIGURE 1.4. When applying for a driving licence in the UK, it is possible to take the photo 

from your current passport. The photograph on the driving licence on the left was taken from 

a passport when the individual depicted was 13 years old. The photograph on the identity 

card on the right is from a current student card. There is an approximate six-year time 

difference between the two photos and substantial variation between them. Yet, both are 

acceptable forms of ID currently used by the individual depicted. 

 

Observers’ performance also deteriorates under conditions typically experienced by 

security personnel, such as when faces need to be matched over extensive time periods (e.g., 

Alenezi & Bindemann, 2013; Alenezi, Bindemann, Fysh, & Johnston, 2015). While accuracy 

for images of the same person can be maintained over time, mismatch accuracy declines 

substantially, such that after 1000 trials, this decreases to only 51% (Alenezi et al., 2015). 

These mismatch trials are representative of real-life imposters (i.e., individuals who are using 

falsely obtained ID), who may be attempting to bypass security for criminal reasons. Thus, 

this finding is especially problematic for real-life security scenarios where imposter detection 

is of vital importance. A further factor that is important for such real-life settings and which 

can impact face matching accuracy is time-pressure (Bindemann, Fysh, Cross, & Watts, 

2016; Fysh & Bindemann, 2017b; Özbek & Bindemann, 2011; Wirth & Carbon, 2017), given 

that security personnel often operate under processing time targets (Border Force, 2018). For 
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example, mismatch accuracy was found to decline by 10% when observers were given two 

seconds to make a matching decision, compared to when they had ten seconds (Bindemann et 

al., 2016). Thus, there is a need to develop means of improving unfamiliar face matching 

performance in order to reduce the negative impact of these detrimental conditions that are 

typical in applied settings such as passport control. 

 

1.4 Decision making in unfamiliar face matching 

Whilst numerous studies have demonstrated that unfamiliar face matching is a 

difficult task (for reviews, see, e.g., Fysh & Bindemann, 2017a; Robertson, Middleton et al., 

2015), far less is known about the decision process that underlies the identity verification of 

unfamiliar faces. In the related field of person recognition, there is a general consensus that 

faces are processed in a holistic manner, and thus, an overall decision is based on the entire 

stimulus with all parts integrated. Evidence for this comes from the composite effect and the 

part-whole effect (see Figure 1.5). In the composite effect, observers struggle to match part of 

a face which comprises of two different identities for the top and bottom halves when these 

are aligned, compared to when these are misaligned (see, e.g., Goffaux & Rossion, 2006; Le 

Grand, Mondloch, Maurer, & Brent, 2004; McKone, 2004). The part-whole effect results 

from observers recognising features more easily in the context of a face than in isolation (see, 

e.g., Donnelly & Davidoff, 1999; Tanaka & Farah, 1993; Tanaka & Sengco, 1997). 

Nevertheless, while these studies may give insight into how faces are processed when face 

recognition is required, it is not clear how such findings apply to face matching. 
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FIGURE 1.5. Examples of the composite effect (A) and the part-whole effect (B). In the 

composite effect, it is more difficult to recognise the top half of the face (Jim Carrey) when 

aligned with the bottom face (Tom Cruise) than when the two are misaligned. In the part-

whole effect, it is easier to select which is the correct nose for Jim Carrey when seen in the 

context of a face compared to when the noses are viewed in isolation. 

 

So how might matching decisions for unfamiliar faces be made? It is possible that 

decisions to pairs of unfamiliar faces are made in a similar holistic way to face recognition 

decisions (see, e.g., Donnelly & Davidoff, 1999; Goffaux & Rossion, 2006; McKone, 2004; 

Tanaka & Sengco, 1997). Observers may therefore base the overall decision on integrated 

information from the whole face. Alternatively, it is possible that an overall decision is based 

on a series of ‘smaller’ judgements to individual features, which can then be combined to 

reach a matching decision for the whole face. Unfamiliar face matching accuracy correlates 

moderately with the Matching Familiar Figures Test (MFFT, see Figure 1.6), which assesses 

object processing (Megreya & Burton, 2006b). The MFFT requires individuals to select the 

identical line-drawing from an array of similar images to the target. Typically, only one 

feature varies on each drawing from the target (e.g., the chimney stack on a boat). Therefore, 

in order to be successful on the MFFT, piecemeal, section-by-section processing is required. 
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This suggests that unfamiliar face matching may entail similar processing, where observers 

have to make judgements to individual features in order to make an overall face matching 

decision. If unfamiliar face matching decisions are made in this way, decisions to individual 

features may predict accuracy for the whole face. 

 

 

FIGURE 1.6. Illustration of a target image and object array taken from the MFFT (Megreya 

& Burton, 2006b). The line-drawings in the array typically only vary from the target by one 

feature (e.g., the direction of the flag), except for the matching image (centre drawing, 

bottom row).  

 

In studies of person recognition, which assess memory for previously seen faces, 

researchers have attempted to pinpoint specific features that are diagnostic for person 
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identification. One feature that seems especially important for recognition accuracy is the 

eyes (see, e.g., Gilad, Meng, & Sinha, 2009; Tanaka & Farah, 1993; Vinette, Gosselin, & 

Schyns, 2004). Recognition accuracy is higher for the eyes (76%) than for the nose (64%) or 

the mouth (63%), when observers are required to recognise these features in isolation after 

learning name associations for the whole faces (Tanaka & Farah, 1993). The bubbles 

technique (see, e.g., Gosselin & Schyns, 2001), which limits the face regions available for 

processing, has also indicated the importance of the eyes for face recognition. When 

participants view faces partially obscured by masks containing small holes or “bubbles”, 

accuracy is better for masks which allow the eyes to be utilised (Vinette et al., 2004). In 

addition, faces in photographic negative are also easier to recognise if the eyes are not 

negated (Gilad et al., 2009). However, this benefit is not found for other features such as the 

mouth. While these studies highlight the importance of the eyes for face recognition, 

alternative features have also been suggested as markers for accurate face recognition. These 

include, but are not limited to, the hair (Ellis, 1986; O’Donnell & Bruce, 2001), the eyebrows 

(Peissig, Goode, & Smith, 2009; Sadr, Jarudi, & Sinha, 2003), and the nose (Hills, Cooper, & 

Pake, 2013; Hsiao & Cottrell, 2008). Although these studies can discern features which are 

associated with successful face recognition, it is unclear how these might inform unfamiliar 

face matching. 

At present, limited evidence exists in terms of whether there are any ‘key’ facial 

features that are more important for successful face matching and whether these can 

determine performance. Nevertheless, in a recent study, observers were required to determine 

perceptual differences in facial features to determine which of these were most ‘critical’ for 

matching (Abudarham & Yovel, 2016). Observers were required to judge features on a 

predefined scale in a feature tagging task (e.g., rate how large the mouth was for a given face) 

and also compare the features across two different faces (e.g., establish which face in a pair 
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had the widest jaw). These two measures were then combined to determine perceptual 

sensitivity for different features. Observers displayed high perceptual sensitivity for lip 

thickness, hair colour and eye colour, and thus these features were deemed to be the most 

important for face matching.  

In another recent study, participants were required to successively rate the similarity 

of different features in pairs of faces, before making an overall matching judgement, to 

determine whether similarity ratings of specific features are related to whole face accuracy 

(Towler, White, & Kemp, 2017). Eleven different features were considered (face shape, ears, 

forehead, eyes, nose, cheek area, mouth, jawline, mouth area, chin and scars/blemishes). 

Using this approach, the ears were found to be the most diagnostic facial feature for 

successful matching. Furthermore, the ears were rated as the most useful feature for face 

matching by forensic examiners completing the task.  

Instructing participants to focus on specific facial features has also informed how the 

contributions of different features to an overall whole face decision can differ (Megreya & 

Bindemann, 2018). After completing an initial accuracy assessment, observers were told to 

concentrate on either the eyebrows, eyes, or ears when making an overall matching decision 

for pairs of faces. Focusing on the eyebrows improved task performance, but attending the 

eyes had no impact on overall accuracy and performance declined when observers 

concentrated on the ears. These studies converge to suggest that individual features can 

strongly contribute to an overall matching decision and thus, decision making for pairs of 

unfamiliar faces may be based on featural processing. However, these studies also prescribe 

different features that are important for face matching, and hence it is possible that accuracy 

for a whole face is not dependent on one specific feature.  

  



21 
 

1.5 Individual differences in face matching ability 

Despite error levels for unfamiliar face matching tasks typically being around 10-20% 

(see, e.g., Bindemann, Avetisyan et al., 2010; Burton et al., 2010; Özbek & Bindemann, 

2011), a growing body of research has found that there is also between-subject variation in 

unfamiliar face matching ability (for a review, see Lander, Bruce, & Bindemann, 2018). 

These individual differences are pronounced, such that on the Glasgow Face Matching Test 

(GFMT, Burton et al., 2010), which has been used extensively to examine face matching 

ability, accuracy for individual observers varies from near-to-chance (i.e., 53%) to perfect 

(see Figure 1.7). Similarly, in the Kent Face Matching Test where observers are required to 

match images taken from student ID cards with a photograph taken at least three months 

later, accuracy ranges from below chance (40%) to 88% (Fysh & Bindemann, 2018a). 

Moreover, large variation in individual performance has been found for a number of 

unfamiliar face matching tasks (see, e.g., Bindemann, Brown, Koyas, & Russ, 2012; Estudillo 

& Bindemann, 2014; Kemp et al., 1997; Megreya & Bindemann, 2013; White, Kemp, 

Jenkins, Matheson, & Burton, 2014). These findings suggest that as some individuals are able 

to obtain perfect accuracy for face matching tasks (see, e.g., Burton et al., 2010), it should be 

possible to train low-performing individuals to improve their task performance. 
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FIGURE 1.7. An illustration of individual differences in performance on the GFMT 

(reproduced from Burton et al., 2010). Individuals range from near chance to perfect 

accuracy. 

 

As well as inter-observer variation, there is also considerable intra-observer variation 

for this task (see, e.g., Bindemann, Avetisyan et al., 2012). Observers can perform 

inconsistently across different days, with perfect accuracy on one day and many errors on 

another, and the same observer can make different matching decisions for the same face pairs 

on different days (Bindemann, Avetisyan et al., 2012). Individual performance for the same 

stimuli also declines over time (Alenezi et al., 2015). This variation within- and between-

observers (see, e.g., Bindemann, Avetisyan et al., 2012; Bruce et al., 1999; Estudillo & 

Bindemann, 2014; Fysh & Bindemann, 2018a; Kemp et al., 1997) suggests that some 

professional matchers, such as passport control officers, may also be poor at matching 

unfamiliar faces.  
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1.6 Professional face matchers and individuals with exceptional face processing ability 

It is especially important that individuals working in security, such as passport 

officers and police officers, are not only accurate but also consistent at this task. These 

individuals would be expected to do particularly well at this task because first, they have had 

substantially more practice than the general public and second, it is likely that they would 

have received training in order to do this task. Researchers have therefore been interested in 

investigating how these ‘professional’ matchers perform compared to other groups.  

There are very few published studies that incorporate the police or passport officers 

due to the number of security restrictions in place. Nevertheless, one such study compared 

passport officers to student participants on an unfamiliar face matching task (White, Kemp, 

Jenkins, Matheson et al., 2014). They found that the passport officers were no more accurate 

than the students and in fact both groups performed poorly. However, passport officers took 

longer to make a decision for a face pair. In a more recent study, passport officers particularly 

struggled with the mismatching pairs and mistakenly accepted up to 25% of these stimuli as 

matches (Wirth & Carbon, 2017). This may be a reflection of the fact that in security 

scenarios such as passport control mismatches are rare. However, mismatch frequency has 

been found not to impair task performance (Bindemann, Avetisyan et al., 2010). Furthermore, 

experience has been found to be a poor indicator of task accuracy both for passport officers 

(e.g., White, Kemp, Jenkins, Matheson, et al., 2014) and other professionals who are required 

to routinely match unfamiliar faces (e.g., Papesh, 2018). As research with passport officers is 

limited, it is difficult to build a clear picture of how they may differ from the general public. 

However, it is clear that there is a need to find ways of improving unfamiliar face matching 

due to its importance in security scenarios. 

While passport officers may not demonstrate superior performance to lay student 

participants, other professional groups have shown improved performance. In the UK, if 
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doubts regarding a face identity match occur in court, trained facial image analysts are 

sometimes used to assess the similarity of the two images (Bobak, Dowsett, & Bate, 2016). 

These individuals have been found to possess superior face matching skills when compared 

to individuals without facial image training (e.g., Norell et al., 2015; White, Phillips, Hahn, 

Hill, & O’Toole, 2015). ‘Super-recognisers’ employed by the Metropolitan Police Force have 

also been found to display enhanced face processing abilities (Robertson, Noyes, Dowsett, 

Jenkins, & Burton, 2016). However, these groups of professionals also display large 

individual differences in ability (see, e.g., White, Dunn, Schmid, & Kemp, 2015). In a recent 

study, forensic examiners (individuals with extensive training who perform rigorous face 

comparisons that can be used to assist expert testimony in courtrooms), facial reviewers 

(individuals trained to perform less thorough comparisons that can be utilised in law-

enforcement) and super-recognisers outperformed fingerprint examiners and students on a 

challenging matching task incorporating images which were relatively unrestricted in terms 

of lighting, expression and appearance (Phillips et al., 2018). However, there were also 

substantial individual differences in performance for all groups. These differences were such 

that there was considerable overlap in the performance, which, for all groups, ranged from 

perfect (or nearly perfect for the student group) to around chance (see Figure 1.8).  
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FIGURE 1.8. Illustration of individual differences in accuracy for forensic examiners, facial 

reviewers, super-recognisers, fingerprint examiners, students for a difficult face matching 

task (reproduced from Phillips et al., 2018). Computer algorithms A2017b, A2017a, A2016, 

A2015 are also plotted on the right-hand side. Task performance was measured using the 

area under the receiver operating curve (AUC), which accounts for both hits and false 

positives made during the task. Although the three ‘professional’ face matching groups 

perform better on average than the fingerprint examiners and students, there is substantial 

overlap in task performance when individual differences are considered. 

 

Studies conducted on non-professionals have also identified individuals who display 

exceptional face identification abilities (see, e.g., Bobak, Hancock, & Bate, 2016; Russell, 

Duchaine, & Nakayama, 2009). Bobak, Dowsett, et al. (2016) tested the face matching ability 

of super recognisers using the GFMT. However, normative performance on the GFMT has 

been found to be reasonably high, around 80-90% (Burton et al., 2010). Therefore, the 

authors also used a more difficult face matching task, the Models Face Matching Test 

(MFMT), to assess the participants (see, e.g., Dowsett & Burton, 2015). The MFMT requires 

individuals to match images of models who have undergone a change in appearance from one 
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image to the next, such as a different hairstyle. Bobak, Dowsett, et al. (2016) found that on 

the GFMT, super recognisers were more accurate overall (97%) than the control group 

(87%). They also found that super recognisers outperformed the control participants on the 

more difficult MFMT, obtaining overall accuracy levels of 83% and 64% respectively. As 

some groups of individuals are able to obtain high levels of accuracy on unfamiliar face 

matching tasks (e.g., Bobak, Dowsett et al., 2016), it suggests that improvement on 

unfamiliar face matching tasks is possible and thus, theoretically it should be possible to train 

individuals to improve their unfamiliar matching accuracy. 

 

1.7 Improving unfamiliar face matching 

As unfamiliar face matching is an error prone task, a large body of research has 

focused on developing ways to try and improve accuracy. This research can be divided into 

two primary approaches; stimulus-focused and observer-focused. Stimulus-based approaches 

seek to increase matching accuracy by providing improved face representations such as 

caricatures (McIntyre, Hancock, Kittler, & Langton, 2013) and averaged faces (e.g., Burton, 

Jenkins, Hancock, & White, 2005) that could be used to redesign photo-ID. Observer-based 

approaches seek to increase accuracy on standard face matching tests (e.g., GFMT) using 

methods such as combining performance of multiple observers (e.g., White, Burton, Kemp, & 

Jenkins, 2013) and providing motivational incentives to increase performance (e.g., Moore & 

Johnston, 2013). Both of these approaches will be discussed in further detail in this section.  

 

1.7.1 Stimulus-focused approaches  

Matching unfamiliar faces from photographic ID may be difficult because the photos 

contain limited information for making an accurate matching decision (Jenkins & Burton, 

2011). This could be viewed as a data-limited problem (Norman & Bobrow, 1975), where the 
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given stimuli do not provide sufficient information to determine the correct response. If 

unfamiliar face matching is a data-limited problem, it may not be possible to obtain 

consistently high levels of accuracy for this task when only a few face stimuli are provided 

(Jenkins & Burton, 2011). In turn, providing multiple images of faces to be matched has been 

found to improve unfamiliar matching accuracy (White, Burton, Jenkins, & Kemp, 2014). 

Observers were shown one, two, three, or four images of the faces to be matched. Accuracy 

increased in line with the number of photos displayed, though this improvement was limited 

to match trials only. However, when shown three different ID cards depicting the same 

person, observers were also more likely to identify the correct target when the faces were 

presented concurrently (85%) than sequentially (60%) (Bindemann & Sandford, 2011). These 

studies suggest that provision of a single photograph of a target may well be insufficient for 

maximising matching accuracy. In contrast, provision of multiple images of an identity 

allows observers to see how a person’s face can change, thus seeing the variation in images 

of a single individual can make the task easier. However, the implementation of multiple 

images for face matching is likely to require more processing time so that the observers can 

make use of the additional photographs, which may in turn reduce the efficiency of high-

pressed security services. 

Passport photographs must depict a neutral expression, even though smiling is a more 

typical facial expression (Jenkins et al., 2011). In a recent study, observers were required to 

match pairs of open-mouth smiling faces and pairs of faces with a neutral expression (Mileva 

& Burton, 2018). Observers were more accurate at matching the open-mouth smiling faces 

than the faces with a neutral expression. This improvement was found for both match and 

mismatch pairs. Smiling may change the face in idiosyncratic ways and provide additional 

information such as teeth shape, which could make matching easier. This is in line with 

previous research that found smiling images of celebrities were rated as more representative 
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of a given identity, than images with a neutral expression (Jenkins et al., 2011). Thus, 

presenting observers with more variation in images such as the idiosyncratic changes 

produced by smiling, could improve matching accuracy. 

Furthermore, averaged faces, which capture more stable face characteristics, can 

improve matching performance (see, e.g., Burton et al., 2005; Jenkins & Burton, 2008a, 

2011; White, Burton et al., 2014). A single photograph may only provide limited information 

for face matching. However, averaged faces take into account a number of images of a person 

and encompass identity-related information, while removing more irrelevant face variation 

(see Figure 1.9). Averaged faces are generated by creating an average texture for the face by 

taking the mean RGB values for each pixel of the images to be used in the average. This 

texture is then morphed on to an average shape for the face, produced by placing and aligning 

feature landmarks for each of the images (see Burton et al., 2005 for more detail on the 

averaging process).  

The naming of celebrity faces is faster when observers are shown an averaged image 

of them compared to a single photograph (Jenkins & Burton, 2011). Face recognition 

software used to unlock smartphones is also more accurate when based on an averaged face 

than a single photograph (Robertson, Kramer, & Burton, 2015). Moreover, averaged images 

also produce a higher hit rate than single photographs. For example, the FaceVACS 

recognition system accurately matched 100% of the averaged celebrity faces to the 

corresponding identity within the database, compared to a hit rate of only 54% for single 

images of the same celebrities (Jenkins & Burton, 2008a). Thus, producing more stable face 

representations which incorporate variation from a multitude of images of an identity for use 

on photographic ID, is likely to improve unfamiliar face matching performance. However, 

the process of creating an average image requires the use of multiple images of an individual. 

The more images are used to create an average, the more effective averages appear to become 
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(Burton et al., 2005). Hence, averaged faces may be difficult to implement for photographic 

ID such as passports and driving licences due to the large number of images required to 

produce them.  

 

 

FIGURE 1.9. Twenty images of John Travolta have been used to produce the averaged image 

in the centre (reproduced from Jenkins & Burton, 2008a). The individual photographs 

display substantial within-person variation, but the averaged image is a more stable 

representation of identity which can be more easily identified.  

 

Another type of face representation which may be used as an alternative to 

photographs is to use caricatures. In the related field of person recognition, caricaturing faces 

has been found to improve memory for and the recognition of faces (Deffenbacher, Johanson, 

Vetter, & O’Toole, 2000; Lee, Byatt, & Rhodes, 2000; Schulz, Kaufmann, Walther, & 

Schweinberger, 2012). Caricatures exaggerate the most distinctive features of faces and can 

make them more identifiable. Caricaturing has been applied to unfamiliar face matching to 

improve accuracy (McIntyre et al., 2013). Slight caricature was found to improve matching 
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accuracy on a one-in-ten line-up task. However, more extensive caricaturing increased the 

likelihood of participants responding that a target is not present in a line-up (McIntyre et al., 

2013). Hence, using images with low levels of caricature may help to improve matching 

accuracy compared to normal photographs as they can help to increase the distinctiveness of 

faces and so make them easier to match. However, caricatures are very time consuming to 

produce, as every face has different distinctive features that would need exaggerating to 

produce an effective caricature. Furthermore, excessive caricaturing may harm matching 

accuracy. 

 

1.7.2 Observer-focused approaches 

While providing improved face representations such as averaged faces and caricatures 

for matching can increase accuracy, these methods may be difficult and time-consuming to 

implement for photo-ID. Observer-focused approaches to improving face matching seek to 

improve performance on tasks which replicate how face matching is typically performed in 

real-world scenarios. One such method is providing motivational incentives, in order to 

manipulate observer behaviour during matching tasks (e.g., Bobak, Dowsett et al., 2016; 

Moore & Johnston, 2013). When observers were offered a food incentive for above-average 

task performance, the incentive did not increase accuracy on match trials but improved 

performance for mismatch trials in the motivation condition (92%) compared to the control 

group (82%) (Moore & Johnston, 2013). Providing financial inducements as motivation also 

increases task accuracy (Bobak, Dowsett et al., 2016). However, such incentives are likely to 

be expensive and impractical to implement in real-world security scenarios, such as passport 

control due to the scale of these operations. Furthermore, passport officers, who should 

already be more motivated to be accurate, do not outperform student participants (White, 

Kemp, Jenkins, Matheson et al., 2014). Thus, while motivational incentives improve 
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accuracy in lab-based tasks, they are likely to have limited applied value for real-world 

matching scenarios. 

An alternative observer-based approach to increasing face-matching accuracy is by 

using the ‘wisdom of crowds’. Aggregating decisions of different individuals to form a group 

decision can lead to improved accuracy rates on unfamiliar face matching tasks (see, e.g., 

Balsdon, Summersby, Kemp, & White, 2018; Dowsett & Burton, 2015; Phillips et al., 2018; 

White et al., 2013). Previous research has found a great deal of within-participant and 

between-participant inconsistency on face matching tasks (e.g., Bindemann, Avetisyan et al., 

2012; Bruce et al., 1999; Burton et al., 2010; Kemp et al., 1997; Megreya & Burton, 2008). 

Therefore, group estimates may be used to average out poor face-matching performance and 

lead to higher accuracy overall. Using a majority rule to reach a group decision was found to 

produce higher accuracy than that of any individual within the group (Balsdon et al., 2018; 

Phillips et al., 2018; White et al., 2013). Furthermore, allowing individuals to complete an 

unfamiliar face-matching task in pairs also resulted in improved accuracy compared to 

observers who completed the task alone (Dowsett & Burton, 2015). Thus, having more than 

one operator verify matching decisions in secure settings is likely to improve overall 

matching accuracy. However, needing multiple officers to verify decisions is also likely to 

reduce the efficiency of these services and so may not be possible to easily implement in real-

life settings. Therefore, a more individual-based approach, such as training, may be more 

useful for improving accuracy in applied settings. 

 

1.8 Training to develop better matching criteria 

 Another method of improving face matching performance is to provide individuals 

with training. Professional face matchers, such as forensic face examiners, receive feature 

comparison training for matching faces more effectively (see, e.g., White, Kemp, Jenkins, 
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Matheson et al., 2014; White, Phillips et al., 2015). These individuals have been found to 

outperform student groups at face matching tasks (see, e.g., Phillips et al., 2018; White, Dunn 

et al., 2015; White, Phillips, et al., 2015). Therefore, some researchers have utilised feature 

training in an attempt to increase task accuracy (see, e.g., Megreya & Bindemann, 2018; 

Towler, White & Kemp, 2014; Towler et al., 2017). An alternative method of training 

individuals to improve accuracy on unfamiliar face matching tasks is to provide them with 

feedback on how they have performed during the task. In real-life settings, observers are 

rarely given the opportunity to learn from their matching errors. Thus, providing them with 

feedback may also be used to improve task performance (see, e.g., Alenezi & Bindemann, 

2013; White, Kemp, Jenkins, & Burton, 2014). Both of these training approaches will be 

discussed further in the following sections. 

 

1.8.1 Training observers with features 

Unfamiliar face matching correlates moderately with the Matching Familiar Figures 

Test (MFFT, Megreya & Burton, 2006b), that requires observers to determine which line 

drawing from an array matches with a target image. Images typically only differ by one 

feature, so in order to complete the task successfully, observers must process the images 

section by section. As unfamiliar face-matching performance is associated with MFFT 

accuracy, it is possible that unfamiliar faces are processed in a similar way whereby decisions 

made to individual features may be utilised to reach an overall matching decision. Moreover, 

facial examiners who perform face matching routinely are typically trained to use a feature 

comparison strategy (see, e.g., White, Kemp, Jenkins, Matheson et al., 2014; White, Phillips 

et al., 2015). Forensic examiners have been found to have enhanced processing skills (see, 

e.g., Phillips et al., 2018; White, Dunn et al., 2015; White, Phillips, et al., 2015), which may 
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be due to their ability to effectively use information from individual features to make an 

overall matching decision.  

Consequently, some training schemes have attempted to improve face matching by 

instructing individuals how to use features to inform an overall matching decision. Forensic 

examiners typically conduct comparisons for facial features such as face shape to reach an 

overall matching decision (see, e.g., White, Phillips et al., 2015). Towler et al. (2014) 

investigated whether training participants to classify face shape improves unfamiliar face-

matching performance. Participants were required to categorise one hundred photos of 

unfamiliar people using their face shape (see Figure 1.10). Observers were unaware that these 

photos consisted of 20 different identities with five photographs of each, two of which were 

identical photographs. The short version of the GFMT (Burton et al., 2010) was used to 

assess the participants’ face-matching ability before and after commencing the face shape 

training. They found that there was low within-participant consistency, as on average, 

participants classified the same identity as having three different face shapes. Additionally, 

the five photos of the same identity were only classified as having the same face shape in 7% 

of cases. Moreover, the pairs of identical photographs were only judged as having the same 

face shape on roughly 50% of these occasions. These findings suggest that face shape is not 

critical for verifying identity and that face shape training is not effective for improving 

accuracy. Classification of face shape may be subjective and may be subject to variation 

when faces are seen from different angles. Therefore, focusing on specific internal features 

may be more likely to produce improvement in face-matching accuracy with training. 
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FIGURE 1.10. Illustration of the seven face shape categories that participants were trained 

to recognise (reproduced from Towler et al., 2014). Observers were required to sort 100 

photographs comprising five images of 20 different identities using these face shapes. 

 

Other training schemes focusing on facial features have been more successful (e.g., 

Towler et al., 2017; Megreya & Bindemann, 2018). Asking observers to sequentially rate the 

similarity of different face regions, such as forehead, eyes, nose and mouth, can improve 

accuracy for pairs of images depicting the same person (Towler et al., 2017). This training 

requires observers to rate 11 different facial features and so observers have to process faces in 

more detail than they might otherwise. Thus, encouraging observers to process faces in a way 

that gives greater consideration to individual features can improve task accuracy. Another 

recent study also found that instructing observers to focus on specific features when making 

an overall matching decision can impact task performance (Megreya & Bindemann, 2018). 

Participants were told to either utilise the eyebrows, eyes or ears for making a matching 

decision for a pair of faces. Focusing on the eyebrows improved accuracy, however, viewing 

the eyes had no impact on matching performance, and matching based on the ears resulted in 

a decline in overall accuracy. Thus, while training observers to attend specific features can 



35 
 

improve accuracy, focusing on some features can also be detrimental to performance and so 

this method of training may need further refinement as well as assessment of other facial 

features. 

 

1.8.2 Training observers with feedback 

Another training method that appears promising for improving matching accuracy is 

the provision of feedback. Errors in real-world face-matching tasks are rarely corrected and 

consequently individuals are not given the opportunity to learn from their mistakes (Jenkins 

& Burton, 2011; Jenkins et al., 2011). For instance, an imposter using false identification 

documents who is allowed to get through passport control, is highly unlikely to alert the 

passport officer of their mistake. Providing feedback can increase accuracy on both 

sequential (Hussain, Sekuler, & Bennett, 2009; Meinhardt-Injac, Persike, & Meinhardt, 2010, 

2011) and simultaneous matching tasks (White, Kemp, Jenkins, & Burton, 2014). Feedback 

training provided while the face pair is still onscreen can also procure benefits for further 

matching tasks where no feedback is provided (White, Kemp, Jenkins, & Burton, 2014). On 

the other hand, Alenezi and Bindemann (2013) found that providing post-trial feedback only 

improved match accuracy. However, providing feedback also reduced a performance decline 

which typically occurs over time on mismatch trials (see, e.g., Alenezi et al., 2015). 

Similarly, in a more recent study the provision of trial-by-trial feedback was found to 

maintain but not increase mismatch accuracy over time (Papesh, Heisick, & Warner, 2018). 

Consequently, and irrespective of whether feedback increases accuracy or reduces the 

performance decline typically found for mismatch trials, feedback appears to have a positive 

impact on unfamiliar face-matching accuracy.  

While feedback appears to be a promising method of improving performance in 

unfamiliar face-matching tasks, it cannot be easily implemented in real-world scenarios as it 
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requires a priori knowledge of the correct matching decision. Furthermore, providing trial-

by-trial feedback was also found to be detrimental when there was a low-prevalence of 

mismatch trials, which is typical in secure settings (Papesh et al., 2018). The authors reasoned 

that this was due to the feedback making the observers more aware of how infrequent the 

mismatches were and thus, made the mismatches more difficult to detect. In light of these 

considerations, an alternative method of ‘feedback’, which utilises clearly-labelled example 

match and mismatch face-pairs to aid observers with their matching decision, may be more 

effective. This approach does not necessitate prior knowledge of the correct decision for pairs 

to be matched and thus, could be utilised in applied settings. 

 

1.9 The structure of this thesis 

Although the difficulty of unfamiliar face matching is well established (for reviews 

see, e.g., Fysh & Bindemann, 2017a; Robertson, Middleton et al., 2015), relatively little is 

known about how matching decisions are made. Thus, the aim of this thesis is to investigate 

how matching decisions to unfamiliar faces are made and whether this can provide a route to 

training. A small number of recent studies have found evidence to suggest that individual 

features can influence the overall matching decision (see, e.g., Abudarham & Yovel, 2016; 

Megreya & Bindemann, 2018; Towler et al., 2017). However, these studies demonstrate 

disagreement in terms of the feature that is most diagnostic. If there is no universal ‘critical’ 

feature that drives accuracy, it is possible that successful face matching requires observers to 

combine matching decisions to individual features to reach an overall decision.  

Chapter 2 examined whether matching decisions made to individual facial features 

(i.e., hair, eyes, nose, mouth) inform the overall decision to the whole stimulus (face) with a 

series of three experiments. For this purpose, observers were required to match photographs 

of whole faces, as well as isolated feature pairs created by horizontally slicing the whole 
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faces into four key feature regions (Experiments 1 and 2). By aggregating and comparing the 

accuracy of the isolated feature pairs with whole face performance, these experiments sought 

to determine whether feature decisions are combined to reach a decision for the overall 

stimulus. For Experiment 3, observers matched whole faces, misaligned whole faces 

(displaying all facial features, but horizontally offset forcing them to be processed 

individually rather than as a whole percept), and misaligned part faces (with only two 

features visible, either the hair and nose or eyes and mouth). Accuracy was contrasted across 

these three presentation types to examine how the quantity of features available to make a 

decision and the integration of these features relate to task performance. 

Chapter 3 then utilised the results of the previous chapter to develop and assess a 

novel method for improving matching accuracy. Feedback is a promising method of 

improving matching performance and has been shown to increase accuracy if provided when 

a just-classified face pair is still on view (White, Kemp, Jenkins & Burton, 2014) and 

maintain mismatch accuracy if delivered after a trial is completed (Alenezi & Bindemann, 

2013; Papesh et al., 2018). However, this manner of feedback requires a priori knowledge of 

the correct decision for each pair and thus, is difficult to apply to real-world matching 

scenarios. The second empirical chapter addressed this shortcoming by providing an 

alternative form of feedback. As matching performance can be improved with feedback, it is 

possible that observers do not have adequate criteria for discriminating identity-match and 

identity-mismatch pairs and that feedback works by improving these criteria. Therefore, 

exemplars of labelled match and mismatch face pairs were provided alongside target face 

pairs over three experiments. As there are large individual differences in the accuracy of 

unfamiliar face matching (see, e.g., Bindemann, Avetisyan et al., 2012; Burton et al., 2010), 

these experiments specifically focused on how the examples manipulation impacted 

performance at an individual level. For all experiments, observers’ baseline performance was 
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measured in an initial block of trials. Observers were then divided into two groups. One 

group was provided with example match and mismatch pairs flanking a target face pair in a 

second block, while the remaining group completed a repetition of the first block and saw no 

example pairs (Experiment 4). Generalisability of the examples was also examined when they 

were no longer displayed, when observers viewed new stimuli from the same set (Experiment 

5) and when observers were presented with stimuli from a new set with different 

characteristics (Experiment 6). By contrasting accuracy for both the example and no-example 

groups, these experiments aimed to assess whether the provision of examples can improve 

task accuracy. 

The last experimental chapter examined how these face exemplars were utilised in a 

matching task using eye-tracking (Experiment 7). Eye-movements were measured to 

determine how observers viewed the examples over the course of the experiment and whether 

their viewing behaviour related to task improvement. The impact of the nature of the 

examples provided was also assessed by providing three separate groups of observers with 

either low-difficulty examples (with little variation between match pairs and more differences 

between mismatch pairs), high-difficulty examples (with more dissimilar match pairs and 

mismatch pairs that appeared more similar) or no examples. Accuracy was compared across 

groups to examine the impact of the nature of the examples on accuracy.  
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Chapter 2 

 

Matching faces and features: 

The whole and the sum of its parts  
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Introduction 

Unfamiliar face matching requires an identity comparison between two 

simultaneously presented faces unknown to the observer, to determine whether they depict 

the same person or two different people. A considerable body of psychological research has 

demonstrated that unfamiliar face matching is highly error prone (for reviews, see, e.g., Fysh 

& Bindemann, 2017a; Robertson, Middleton, & Burton, 2015). This task is challenging even 

for experienced professionals, such as passport control officers, who perform this task 

routinely (White, Kemp, Jenkins, Matheson, & Burton, 2014). Improvements in face 

matching may be possible with better theoretical understanding of the cognitive processes 

underlying this task. So far, however, little is known about the process by which face-

matching decisions are made. 

To understand what underlies performance on tasks requiring unfamiliar face 

identification, researchers have attempted to ascertain critical facial features that drive 

accuracy. In the related field of person recognition, which requires memory for a previously 

seen face, the eyes appear to be diagnostic for identification (see, e.g., Gilad, Meng, & Sinha, 

2009; Keil, 2009; Tanaka & Farah, 1993; Vinette, Gosselin, & Schyns, 2004). Other studies 

have also varyingly emphasized the importance of the eyebrows (Peissig, Goode, & Smith, 

2009; Sadr, Jarudi, & Sinha, 2003), nose (Hills, Cooper, & Pake, 2013; Hsiao & Cottrell, 

2008) and hair (Ellis, 1986; O’Donnell & Bruce, 2001). Although these studies may provide 

insight into features underlying successful recognition, only limited evidence exists with 

regards to whether specific features determine accuracy in face matching. 

To investigate this question, a recent study asked observers to judge discrepancies 

between specific features of pairs of faces (Abudarham & Yovel, 2016). Features for which 

observers displayed high perceptual sensitivity for identifying differences were deemed to be 

the most critical for face matching. Perceptual sensitivity was measured using two methods, 
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comprising the rating of feature characteristics on a predefined scale (e.g., mouth size), and a 

feature-matching task where observers compared features for a pair of faces (e.g., which face 

had the widest jaw). Lip thickness, hair colour and eye colour were found to be most 

diagnostic of identity, suggesting perhaps reliance on cues that can be fit into concrete 

categories (e.g., blue versus brown eyes).  

However, the relevance of features for identification appears to be inconsistent across 

studies and methodologies. In another recent study, for example, observers successively rated 

the similarity of 11 facial features prior to making an identity-matching decision for a pair of 

faces (Towler, White, & Kemp, 2017). This approach showed that similarity ratings for the 

ears, followed by scars and blemishes were most indicative of accurate matching decisions. 

Instructing participants to focus on a specific feature indicates yet another key feature for 

making face-matching decisions (Megreya & Bindemann, 2018). In this study, an 

improvement in matching accuracy was found when observers focused on the eyebrows, but 

not the eyes, and performance declined when participants concentrated on the ears.  

Overall, these studies therefore converge by suggesting distinct facial features can 

differ in their contribution to face-matching decisions. However, these studies also 

demonstrate disagreement in terms of which features are most diagnostic. One way to 

reconcile these results is that face-matching decisions are unlikely to be dependent on a 

universal ‘critical’ feature, but the features that are informative may depend on the individual, 

and the photographs of a specific individual, at hand. This reasoning seems sensible given 

that the same individual can vary substantially in appearance across different photographs 

(see, e.g., Jenkins, White, Van Montfort, & Burton, 2011), and that people vary in appearance 

in systematic but idiosyncratic ways (e.g., Burton, Jenkins, & Schweinberger, 2011; Burton, 

Kramer, Ritchie, & Jenkins, 2016). 
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If a specific feature is unlikely to drive face-matching decisions, then this raises the 

possibility that a combination of identity decisions to a set of individual facial features forms 

the basis of accurate matching decisions for whole faces. In other words, although match-

mismatch decisions to pairs of faces must ultimately reflect a judgement that applies to the 

entire stimulus, these judgements may be proceeded by a series of smaller decisions to 

individual features that factor into the final matching decision. For example, it is conceivable 

observers make match-mismatch decisions to facial features, such as the eyes, nose and 

mouth, which are then combined to arrive at an overall decision as to whether two faces 

depict the same person or two different people. In such a framework, match-mismatch 

decisions for pairs of whole faces might be reached through a ‘summing’ of these smaller 

judgements, whereby the final decision is based on the overall proportion of individual 

decisions for distinct features pointing to the same outcome. In support of this reasoning, 

some evidence already exists to suggest that summing of responses provides insight into face 

matching accuracy. For example, combining face-matching judgements of small groups of 

observers using a majority rule to determine a collective decision produces more correct 

responses than any individual in the group (Balsdon, Summersby, Kemp, & White, 2018; 

Phillips et al., 2018; White, Burton, Kemp, & Jenkins, 2013). Similarly, allowing participants 

to work in pairs on identity-matching tasks improves overall performance (Dowsett & 

Burton, 2015). All of these studies, however, are based on identity judgements of the whole 

face. 

In contrast to previous work, the current study investigated directly whether face 

matching is based on a series of smaller judgements for individual features and, if so, whether 

these judgements are summed to reach an overall decision. To this end, observers were 

presented with pairs of isolated facial features, comprising of hair / forehead, eye, nose and 

mouth regions. Matching decisions to these feature regions were compared with the 
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classification of these faces when these were displayed in their entirety. The accuracy with 

which individual facial features were classified as identity matches and mismatches was then 

assessed, and the relationship of feature accuracy to matching decisions for the whole face.  

 

Experiment 1 

This experiment investigated how decisions to isolated facial features relate to 

matching decisions for the corresponding whole face. For this purpose, participants made 

identity-matching decisions for pairs of isolated hair, eye, nose and mouth regions, as well as 

whole faces. Face matching studies suggest that individual facial features differ in terms of 

their contribution to an overall matching decision, but there is disagreement in terms of which 

features are most useful (see, e.g., Abudarham & Yovel, 2016; Megreya & Bindemann, 2018; 

Towler et al., 2017). Combining decisions to multiple features may therefore give insight for 

whole face accuracy. If an overall matching decision reflects the sum of judgements to 

individual features, one would expect that the more feature pairs classified correctly, the 

more likely the corresponding whole-face decision is to be correct. Applying a strict version 

of such a summation process leads to clear predictions. For example, for face pairs where all 

four features are classified correctly, whole face accuracy should be near perfect. By contrast, 

if only two of the four features are classified correctly, then observers should be equally as 

likely to respond correctly as incorrectly and thus, whole face performance should be close to 

chance.  

 

Method 

Participants 

Twenty-three individuals (4 male, 19 female) from the University of Kent took part in 

this experiment. Observers had a mean age of 19.13 years (SD = 1.25, range: 18-24) and were 



44 
 

given course credit or a small fee for their time. All participants were of Caucasian ethnicity 

and reported normal or corrected-to-normal vision.  

 

Stimuli 

Eighty face pairs from the Glasgow University Face Database (GUFD) were utilised 

as stimuli for this study (see Burton, White, & McNeill, 2010). These comprised of 40 

identity-matches (two different same-day photographs of the same individual) and 40 

identity-mismatches (photographs of two different individuals). All faces were displayed in 

greyscale, with a frontal pose and neutral expression. The faces were cropped to remove 

extraneous background. The maximum size for a face was 90 x 120 mm, with a maximum 

gap between faces in a pair of 50 mm.  

To create the feature stimuli for this experiment, the faces from these 80 pairs were 

also divided into four key sections, comprising of the hair, eye, nose and mouth region, so 

these could be matched in isolation (for an illustration, see Figure 2.1). The original onscreen 

position of these features was maintained, with the rest of the face replaced with background 

colour. This procedure produced 400 trials, reflecting hair, eyes, nose, and mouth regions, 

and whole face for each of the 80 pairs. 

 

 

FIGURE 2.1. Illustration of how whole face stimuli pairs were separated into isolated feature 

regions (hair, eyes, nose, mouth) for Experiments 1 and 2. The original positions of the 

features were maintained, and the rest of the face was cropped out.  
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Procedure 

The experiment was run using ‘PsychoPy’ software (Peirce, 2007). Participants were 

shown each of the 80 whole face pairs and the feature pairs derived from each face. The trials 

were organised into ten blocks, each comprising of 40 trials. All stimulus conditions were 

intermixed within blocks and presented in a randomized order. Participants could take a short 

break between blocks if desired. Observers were required to make a match or mismatch 

decision for each trial by pressing one of two keys on a standard computer keyboard. 

Participants were instructed to take as much time as necessary to complete the task and that 

accuracy was preferred over speed. 

 

Results 

Accuracy by feature 

First, the percentage accuracy of observers’ responses was analysed as a function of 

trial type (match vs. mismatch) and region of interest (ROI: whole face vs. hair vs. eyes vs. 

nose vs. mouth) to determine which feature produced the highest accuracy. The cross-

participant means of this data are illustrated in Figure 2.2. A 2 (trial type) x 5 (ROI) within-

subject ANOVA revealed a main effect of trial type, F(1,22) = 6.04, p < .05, ηp
2 = .22, and of 

ROI, F(4,88) = 48.42, p < .001, ηp
2 = .69, and an interaction between these factors, F(4,88) = 

6.02, p < .001, ηp
2 = .22. Analysis of simple main effects indicated higher accuracy for 

mismatch than match trials for the hair, F(1,22) = 9.65, p < .01, ηp
2 = .31, eyes, F(1,22) = 

5.78, p < .05, ηp
2 = .21 and mouth region, F(1,22) = 8.45, p < .01, ηp

2 = .28. Match and 

mismatch accuracy was comparable for the whole face and nose, both Fs ≤ 0.33, ps ≥ .57. 
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FIGURE 2.2. Percentage accuracy for the whole face and isolated feature pairs (hair, eyes, 

nose and mouth) by trial type for Experiment 1. 

 

In addition, a simple main effect of ROI was found for match trials, F(4,19) = 14.58, 

p ˂ .001, ηp
2 = .75. A series of paired-sample t-tests (with alpha corrected to .05/10 = .005 for 

ten comparisons) revealed higher accuracy for the whole face than all individual features, all 

ts ≥ 4.59, ps ≤ .001. Accuracy was also higher for the eyes than for the hair, t(22) = 4.10, p < 

.001, and mouth, t(22) = 3.59, p < .005, and for the nose than for the hair, t(22) = 4.77, p < 

.001, and mouth, t(22) = 4.05, p < .005. No other comparisons were significant, both ts ≤ 

1.82, ps ≥ .08.  

A simple main effect of ROI was also found for mismatch trials, F(4,19) = 3.33, p < 

.05, ηp
2 = .41. Paired-sample t-tests (with alpha corrected to .05/10 = .005 for ten 

comparisons) revealed higher accuracy for the whole face than the nose, t(22) = 3.27, p < 

.005, and mouth regions, t(22) = 3.32, p < .005. The difference in accuracy was approaching 

significance for the whole face and hair, t(22) = 2.87, p = .01, due to higher accuracy for the 

whole face. Furthermore, the accuracy difference between the eyes and the hair, t(22) = 2.95, 

p = .01, the nose, t(22) = 2.84, p = .01, and the mouth, t(22) = 2.87, p = .01, were also 

approaching significance due to higher accuracy for the eyes than the other features. No other 
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comparisons were significant, all ts ≤ 1.69, ps ≥ .10. Overall, this data shows that accuracy is 

generally higher for the whole face than any of the isolated features. Furthermore, none of the 

individual features demonstrate higher accuracy across both trial types than the other 

features. This suggests that accuracy is not driven by a universal critical feature.  

 Analysis of d’ and criterion has been omitted here for brevity but is available for 

completeness in Appendix A for Experiments 1-3. 

 

By-item analysis 

 To determine how classification of individual facial features relates to identification 

of the whole face, a by-item analysis was performed. For each facial identity pairing, the 

percentage accuracy scores for each feature and the whole face were averaged across 

participants. These scores were then correlated to examine whether accuracy for any of the 

individual features was associated with whole face accuracy. For match trials, accuracy for 

the whole face correlated with the eyes only, r(38) = .71, p < .001. No other correlations were 

found, all rs ≤ .26, ps ≥ .11. This indicates that when viewing images of the same person, the 

overall decision is more likely to be correct if the eyes are also classified correctly. For 

mismatch trials, accuracy for the whole face correlated moderately with the hair, r(38) = .39, 

p < .05, eyes, r(38) = .35, p < .05, and nose, r(38) = .39, p < .05, but not the mouth, r(38) = 

.14, p = .40. These correlations suggest that multiple facial features contribute to whole face 

accuracy when viewing images of two different people. 

 The individual feature pairs were also correlated with each other by trial type, to 

determine whether they provided independent information. For both match and mismatch 

trials, accuracy for the eyes correlated with the nose, both rs ≥ .33, ps ≤ .05. No other 

correlations for either trial type were found, all rs ≤ .28, ps ≥ .08. Overall, this data indicates 

that individual features generally provide independent information for face matching. 
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Number of features correct 

To address the question of main interest, of whether judgements of individual features 

are combined to reach an overall matching decision, the average percentage of face pairs 

where observers classified all four, or three, two, one and zero features correctly was 

calculated. This data is displayed in Figure 2.3. For overall accuracy, this figure shows that 

three or four of the features belonging to the same face pair were classified correctly on most 

trials (29.4% and 41.3%, respectively). These percentages converge with the high mean 

accuracy for whole faces in this task (90.9%). Conversely, there were far fewer occasions on 

which none (0.6%), or only one (4.6%) or two (14.6%) features of a face pair were classified 

correctly. A similar pattern was evident when match and mismatch trials were considered 

separately (see Figure 2.3). 

 

 

FIGURE 2.3. Whole face correct trials broken down by the number of corresponding feature 

pairs correctly matched for Experiment 1. Three or four features correct make up the 

majority of the responses for both match and mismatch trials. 

 

A final step of the analysis sought to determine how the accuracy of these 

classifications, across different features belonging to the same face pairs, relates to the 
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classification of the respective whole faces. For this purpose, the proportion of correct 

responses for the whole face was calculated when participants made no, one, two, three or 

four correct feature decisions to the same identities. Considering the low number of items for 

which no or only one facial feature was classified correctly (see Figure 2.3), responses were 

collapsed across match and mismatch trials. This data is illustrated in Figure 2.4 and shows a 

graded response, whereby the proportion of correct classifications of the whole face pairs 

increases as more of the corresponding features are also classified correctly. In line with this 

observation, a one-way within-subject ANOVA of this data revealed a main effect of feature 

accuracy, F(4,60) = 45.80, p < .001, ηp
2 = .75.  

 

 

FIGURE 2.4. Proportional whole face accuracy for each number of isolated feature 

decisions correct for Experiment 1.  

 

A series of paired sample t-tests (with alpha corrected to .05/10 = .005 for 10 

comparisons) revealed whole face pairs for which none of the individual features were 

classified correctly were less likely to be matched correctly than faces for which all four 
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features, t(15) = 8.76, p < .001, three features, t(15) = 8.37, p < .001, two features, t(15) = 

7.38, p < .001, or only one feature, t(15) = 5.81, p < .001, were correctly matched. In 

addition, the proportion of whole face pairs classified correctly was lower when only one 

feature decision was correct, compared to four, three, or two features correct, all ts ≥ 4.32, ps 

≤ .001. Whole face pairs were also matched correctly on fewer occasions when two features 

were correct compared to four features, t(22) = 3.75, p < .005, and was approaching 

significance for three features, t(22) = 2.31, p = .03. There was no difference in whole face 

accuracy when three or four features were correctly classified, t(22) = 0.87, p = .40. Overall 

this data indicates the less feature regions correctly classified, the less likely the whole face 

decision is to also be correct.  

Finally, one-sample t-tests were conducted to compare proportional whole face 

accuracy for each number of features correct to chance accuracy (i.e., 50%). This revealed 

that the proportion of whole face trials classified correctly was above chance when one, two, 

three or four features were also classified correctly, all ts ≥ 3.84, ps ≤ .01. However, the 

proportion of correctly matched whole face trials was below chance when no feature 

decisions were correct, t(15) = 3.96, p < .01. Thus, providing that observers classified at least 

one individual feature correctly, the whole face pairs for the same identities were also likely 

to have been classified correctly. 

 

Discussion 

This experiment investigated how decisions to isolated features may be utilised for 

reaching an overall matching decision. For this purpose, observers matched pairs of whole 

faces and isolated feature pairs (hair, eyes, nose and mouth) derived from these faces. 

Generally, accuracy for the whole face exceeded that of any of the individual features and 

none of the isolated feature pairs demonstrated consistently higher accuracy, across both 
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match and mismatch trials, than the other feature pairs. These findings are consistent with the 

notion put forward here that there is not a universal feature that primarily drives matching 

decisions. This is in line with previous studies demonstrating disagreement in terms of a 

critical feature, varyingly emphasising lip thickness (Abudarham & Yovel, 2016), ears 

(Towler et al., 2017) and eyebrows (Megreya & Bindemann, 2018).  

Accuracy for the whole face and isolated features was also correlated to establish 

feature contributions for the overall matching decision. This analysis indicated that for match 

trials, observers are more likely to classify the whole face correctly if they have classified the 

eyes correctly. Thus, the eyes may be important for verifying images of the same person. For 

mismatch trials, on the other hand, hair, eyes and nose all correlated with the whole face, 

suggesting several features contribute to overall accuracy. Generally, however, the 

correlations were moderate in strength, suggesting that a specific feature is not related tightly, 

across all stimuli, to classification of whole faces. 

To address the question of main interest, judgements for isolated features were 

compared with whole-face decisions to determine whether the number of features correct 

reflects overall accuracy. Here, more correct feature decisions increased the likelihood of the 

whole face decision being accurate. This suggests that judgements for individual features 

may be summed to reach a decision for the whole face. It is interesting to note, however, that 

even when only one feature decision is correct (i.e., most of the features are misleading and 

classified incorrectly), the proportion of correct whole face responses remains surprisingly 

high (around 70%). This may be counter-intuitive as one would predict that if feature 

judgements are summed to reach an overall decision, the whole face decision should reflect 

the majority feature judgement and should therefore be incorrect in these instances. Hence, it 

is possible that feature judgements are not always summed to reach a whole face decision, but 

that a single feature can also dominate the overall decision.  
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These conclusions are tempered by an aspect of the experimental design, as a two-

alternative forced-choice task was employed. Thus, observers were required to register a 

match/mismatch decision for individual features even when these may have provided limited 

or inconclusive information for classification. If this resulted in a substantial number of 

feature errors, then this might explain those cases in which whole face accuracy was high 

despite the incorrect classification of most individual features. In the next experiment, this 

issue is addressed by adding a ‘don’t know’ option, to clarify the findings of Experiment 1 

and replicate the key results. 

 

Experiment 2 

Experiment 1 found whole face accuracy increased in line with the number of 

corresponding feature decisions that were correct. However, even when only one out of four 

features was classified correctly, the whole face decision was much more likely to be correct 

than incorrect. A possible explanation for this seeming anomaly may reflect the two-

alternative forced-choice experimental procedure, which required participants to commit to a 

matching decision even when a stimulus pairing provided inclusive information. In those 

cases, observers were therefore obliged to guess, which may have inflated errors in this task. 

Considering that the individual feature conditions inevitably provided more limited visual 

content for matching than the whole face, this procedural aspect may have exerted a 

disproportionate effect on those feature trials. This might explain in part the cases in which 

several features of the same face are classified incorrectly. In turn, when matching whole 

faces, accuracy may have been maintained as a result of information from other features 

compensating for feature pairs that did not provide adequate matching information. If this can 

account for cases in which the majority of individual features are classified incorrectly but the 

whole face is classified correctly nonetheless, then these instances should be eliminated by 
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providing observers with an additional ‘don’t know’ response option. This was examined in 

Experiment 2. 

 

Method 

Participants, stimuli and procedure 

Twenty new individuals (4 male, 16 female), with a mean age of 27.20 years (SD = 

11.34, range: 18-51), took part in this experiment. The participants were given course credit 

for their time. All observers were of Caucasian ethnicity and reported normal or corrected-to-

normal vision. 

The stimuli and procedure were the same as for Experiment 1, but for one exception. 

In addition to the match and mismatch response options given previously, participants were 

also given the option of eliciting a ‘don’t know’ response via a third response key. Before 

commencing the experiment, participants were instructed to make use of this ‘don’t know’ 

option for difficult trials where they were unsure, rather than guessing. 

 

Results 

Accuracy by feature 

As in Experiment 1, the percentage accuracy of participants’ responses was analysed 

as a function of trial type (match vs. mismatch) and ROI (whole face vs. hair vs. eyes vs. nose 

vs. mouth) to determine which feature produced the highest accuracy levels. The cross-

participant means of this data are illustrated in Figure 2.5. A 2 (trial type) x 5 (ROI) within-

subject ANOVA did not reveal a main effect of trial type, F(1,19) = 0.56, p = .46, ηp
2 = .03, 

but a main effect of ROI, F(4,76) = 46.01, p < .001, ηp
2 = .71, and an interaction between trial 

type and ROI, F(4,76) = 4.25, p < .01, ηp
2 = .18. Analysis of simple main effects did not 

indicate a difference in accuracy for match and mismatch trials for the whole face, eyes, nose 
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or mouth, all Fs ≤ 1.38, ps ≥ .26. However, the difference in accuracy between trial types was 

approaching significance for hair, F(1,19) = 3.91, p = .06, ηp
2 = .17, due to higher mismatch 

accuracy. 

 

 

FIGURE 2.5. Percentage accuracy for the whole face pairs and the feature in isolation pairs 

(hair, eyes, nose and mouth) by trial type for Experiment 2. 

 

 In addition, a simple main effect of ROI was found for match trials, F(4,16) = 29.48, 

p < .001, ηp
2 = .88. A series of paired-sample t-tests (with alpha corrected to .05/10 = .005 for 

ten comparisons) revealed higher accuracy for the whole face than for all individual features, 

all ts ≥ 4.81, ps ≤ .001. Accuracy was also higher for the eyes than for the hair, t(19) = 6.18, p 

< .001, and mouth, t(19) = 4.05, p < .005, and for the nose than for the hair, t(19) = 3.51, p < 

.005, and was approaching significance for the mouth, t(19) = 2.31, p < .03. No other 

comparisons were significant, both ts ≤ 1.87, ps ≥ .08.  

A simple main effect of ROI was also found for mismatch trials, F(4,16) = 9.43, p < 

.001, ηp
2 = .70. Paired-sample t-tests revealed higher accuracy for the whole face than for the 

hair, nose and mouth, all ts ≥ 4.38, ps ≤ .001. The difference was also approaching 

significance between the whole face and eyes, t(19) = 2.88, p = .01, due to higher whole face 
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accuracy. Accuracy for the eyes was also higher than for the nose, t(19) = 3.95, p < .005, and 

was approaching significance for the hair, t(19) = 2.49, p = .02, and mouth, t(19) = 3.20, p = 

.01. No other comparisons were significant, all ts ≤ 1.09, ps ≥ .29. Overall, this data shows 

that as in Experiment 1, accuracy is higher for the whole face compared to the isolated 

features. In addition, accuracy for the eyes is higher than for some of the other isolated 

features, but not consistently across both trial types.  

 

By-item analysis 

 To establish whether a relationship exists between accuracy for any of the isolated 

features and the whole face, percentage accuracy for each feature was averaged across 

participants by trial and correlated with the means for the whole face pairs for each trial type. 

For match trials, accuracy for the whole face correlated with the hair, r(38) = .32, p < .05, 

eyes, r(38) = .44, p < .01, nose, r(38) = .36, p < .05, and mouth, r(38) = .52, p < .01. 

Similarly, for mismatch trials, accuracy for the whole face correlated with the hair, r(38) = 

.46, p < .01, nose, r(38) = .46, p < .01, and mouth, r(38) = .32, p < .05, but not the eyes, r(38) 

= .13, p = .44. These correlations suggest multiple features contribute to overall accuracy, 

thus suggesting that it is not a single feature that drives classification of the whole face but a 

combination of features. 

 The isolated feature pairs were also correlated with each other to assess their 

independence. For match trials, accuracy for the hair correlated with the eyes, r(38) = .32, p < 

.05, and accuracy for the nose correlated with the mouth, r(38) = .46, p < .01, but none of the 

other features correlated, all rs ≤ .21, ps ≥ .20. For mismatch trials, none of the isolated 

features correlated with each other, all rs ≤ .31, ps ≥ .05. These correlations show most of the 

isolated features provide independent matching information and those that do correlate are 

not strongly associated.  
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Number of features correct 

In this experiment, participants had an additional response option of ‘don’t know’ as 

well as match and mismatch. However, this option was utilised on only 6.7% of trials. To 

determine whether decisions to isolated feature pairs reflect the whole face decision, the 

proportion of whole face trials correctly classified was calculated when observers matched 

four, three, two, one and none of the corresponding features correctly. This data is illustrated 

in Figure 2.6. Similarly to Experiment 1, for the majority of trials, three or four of the 

features derived from the same face pair were classified correctly (32.1% and 38.5% 

respectively). Only two, one or zero features were matched correctly on far fewer occasions. 

This pattern was evident for both match and mismatch trials. 

 

 

FIGURE 2.6. Whole face correct trials broken down by the number of corresponding feature 

pairs correctly matched for Experiment 2. For most of the face pairs, three or four of the 

corresponding features were classified correctly. 

 

To determine the effect of feature decision accuracy on whole face performance, a 

one-way within-subject ANOVA was conducted. ANOVA revealed a main effect of feature 

accuracy, F(4,52) = 9.55, p < .001, ηp
2 = .42 (see Figure 2.7). A series of paired-sample t-
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tests (with alpha corrected to .05/10 = .005 for 10 comparisons) revealed that having no 

correct feature decisions reduced the likelihood of the whole face decision for the same 

identities being correct compared to four, t(13) = 4.20, p < .005, three, t(13) = 4.03, p < .005, 

or two, t(13) = 3.62, p < .005, correct feature decisions. Similarly, one correct feature 

decision resulted in a lower proportion of correct whole face responses than four, t(18) = 

3.50, p < .005, and was approaching significance for three, t(18) = 3.16, p = .01, and two, 

t(18) = 2.44, p = .03. The whole face was also less likely to be classified correctly when only 

half the features (i.e., two) were correct compared to when all the features (i.e., four), t(19) = 

4.60, p < .001, or three, t(19) = 3.39, p < .005, were correctly matched. No other comparisons 

were significant, both ts ≤ 1.71, ps ≥ .10. Overall, this data shows that decisions to whole face 

pairings were more likely to be correct as more of the features belonging to the same 

identities were also classified correctly.  

 

 

FIGURE 2.7. Proportional whole face accuracy by number of isolated feature decisions 

correct for Experiment 2.  
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Finally, one sample t-tests were also conducted to compare whole face accuracy for 

each number of features correct to chance performance. Observers performed above chance 

for whole face pairs when one, two, three or four feature decisions were correct, all ts ≥ 2.29, 

p ≤ .05. Whole face accuracy was at chance level when participants classified none of the 

corresponding features correctly, t(13) = 0.29, p = .78.  

 

Discussion 

This experiment aimed to replicate the findings of Experiment 1 with the addition of a 

‘don’t know’ response option, to reduce the need for observers to make a forced choice for 

facial features that contained limited information for matching decisions. As before, mean 

accuracy data and correlations indicated that multiple features determine identification of the 

whole faces, emphasising the importance of understanding how features are combined to 

reach an overall decision. Similarly to Experiment 1, this experiment demonstrated that the 

more isolated feature pairs that are classified correctly, the more likely the decision for the 

corresponding whole face pair is to be correct. This graded pattern for number of features 

correct suggests that observers may aggregate matching decisions for individual features to 

reach an overall decision. However, Experiment 2 also corroborated the previous experiment 

by demonstrating that whole face accuracy remained high even when only one or two feature 

decisions were correct. This finding suggests that there are cases in which an overall 

matching decision can be dominated by a single feature, suggesting that information provided 

by individual features is weighed to reach a decision for the whole face. One possibility is 

that such key features dominate the overall matching decision by being particularly 

distinctive, akin to the mechanisms by which distinctive (whole) faces are also better 

remembered and can be recognised more easily than more average faces (see, e.g., Bartlett, 
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Hurry, & Thorley, 1984; Schulz, Kaufmann, Walther, & Schweinberger, 2012; Winograd, 

1981).  

However, the present experiment also found that even when all feature pairs were 

classified incorrectly (i.e., when there were no distinctive features to aid the overall decision), 

the whole face was still classified correctly on nearly half of these occasions. The percentage 

of these trials was low (0.8%) but is surprising considering that the combination of four 

isolated features should essentially provide the same visual information as the whole face. 

Despite this, a different decision is made when the same information is displayed together, in 

whole face pairs, then as individual features. This suggests that the visual context in which 

the features are viewed, or their integration, is important for unfamiliar face matching. This 

was investigated directly in Experiment 3.  

 

Experiment 3 

Experiments 1 and 2 found that the proportion of whole face correct responses 

increased with the number of features that were classified correctly in isolation. However, 

both experiments also showed that even when most feature decisions were incorrect (i.e., 

only one feature correct), accuracy for the whole face remained at nearly 70%. One possible 

explanation for this finding is that some features dominate matching decisions in the context 

of the whole faces, to the point where these can overturn contradictory matching information 

from several other features.  

However, in Experiment 2, observers were also still able to classify the whole face 

correctly on nearly half of the trials where all features were classified incorrectly. This 

surprising finding suggests that the context in which features are displayed is important, 

whereby features may be processed differently in the context of a whole face. In the related 

field of person recognition, a number of studies have demonstrated faces are processed in a 
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holistic manner, whereby faces are considered in their entirety with all features being 

processed at once (see, e.g., Davidoff & Donnelly, 1990; Donnelly & Davidoff, 1999; 

Goffaux & Rossion, 2006; McKone, 2004; Tanaka & Farah, 1993; Tanaka & Sengco, 1997). 

Evidence of holistic processing in face matching tasks comes, for example, from the 

composite face effect whereby observers struggle to correctly match top halves of faces 

depicting the same individual when they are aligned with bottom halves displaying two 

different individuals (see, e.g., Hole, 1994; Le Grand, Mondloch, Maurer, & Brent, 2004). 

Face matching is also more impaired when observers are forced to view features individually, 

compared to when they see the whole face except for the feature they are directly looking at 

(Van Belle, De Graef, Verfaillie, Busigny, & Rossion, 2010). Thus, an alternative 

explanation for whole face accuracy being higher than expected when observers classify only 

a minority of features correctly, is that unfamiliar faces are processed in a holistic manner. 

Accordingly, featural information may be particularly useful for identification when 

information from different features is integrated into a complete face percept.  

To investigate whether holistic face processing can explain the whole face advantage 

that was observed in Experiment 1 and 2, this experiment compared identification of whole 

faces with two new conditions. One condition was comprised of misaligned whole faces, in 

which the same visual information was presented, but the four isolated features of the 

preceding experiment were offset horizontally to disrupt holistic processing. The other new 

condition, termed the misaligned parts condition, was based on the same displays, but only 

two of the four features were shown. In line with the preceding experiments, performance for 

the misaligned whole face condition should generally be higher than for misaligned part face 

displays, by virtue of the fact that a greater number of features are visible. Crucially, 

however, if face matching is enhanced by the holistic presentation of faces, then whole faces 
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should outperform the misaligned whole face condition, despite providing identical featural 

content. 

 

Method 

Participants 

Twenty-four new individuals (5 male, 19 female) participated in this experiment. 

Observers had a mean age of 20.71 years (SD = 4.55, range: 18-41) and were given course 

credit or a small fee for their time. All participants were of Caucasian ethnicity and reported 

normal or corrected-to-normal vision. 

 

Stimuli  

One hundred and twenty face pairs (80 from Experiment 1, 40 new pairs) taken from 

the GUFD were utilised as stimuli for this experiment (see Burton et al., 2010). As in 

previous experiments, half of the pairs were identity-matches and the other half were identity-

mismatches. All pairs were presented in greyscale, depicting a neutral expression and frontal 

pose, with the background cropped out. The maximum size for a face was 90 x 120 mm and 

the maximum gap between faces in a pair was 50 mm.  

These face pairs were either displayed as they were (whole faces), with the four main 

features (hair, eyes, nose, mouth) misaligned horizontally, or in the misaligned part face 

condition, in which only two of the four horizontally-offset features were shown. The hair 

and nose were offset 20 and 60 pixels to the left respectively from their original positions in 

the whole face. The eyes and mouth were shifted 70 and 10 pixels to right respectively. In 

this condition, either the hair and nose feature regions, or the eye and mouth regions were 

retained. This process created 480 trials (120 whole face, 120 misaligned whole face, and 240 

misaligned part face). However, each participant only viewed half of the part face pairs 
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(either the hair and nose or the eyes and mouth in 120 trials; counterbalanced across 

observers) and so completed 360 trials over the course of the experiment. Example stimuli 

are illustrated in Figure 2.8. 

 

FIGURE 2.8. Example whole face (left), misaligned part face (centre) and misaligned whole 

face pairs (right) used as stimuli in Experiment 3. Participants only see one set of the 

misaligned part face pairs (either hair and nose or eyes and mouth).  

 

Procedure  

The experiment was run using ‘PsychoPy’ software (Peirce, 2007). Each participant 

completed 360 trials (120 each of the whole face, misaligned whole face, and misaligned part 

face condition), which were organised into nine blocks of 40 trials. All stimulus types were 

intermixed within blocks and displayed in a randomised order. Participants were able to take 

a short break between blocks if needed. Observers were required to make a match or 

mismatch decision for each stimulus by pressing one of two response keys on a standard 

computer keyboard. Participants were told that accuracy was preferred over speed and to take 

as much time as necessary to complete each trial. Once a decision was made, a blank screen 

was shown for 500 ms, and then the next stimuli appeared on screen.  
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Results 

 The percentage accuracy of participants’ responses was analysed as a function of trial 

type (match vs. mismatch) and face type (whole face vs. misaligned whole face vs. 

misaligned part face). The cross-subject means of this data are illustrated in Figure 2.9. A 2 

(trial type) x 3 (face type) within-subject ANOVA did not reveal a main effect of trial type, 

F(1,23) = 0.16, p = .70, ηp
2 = .01, but a main effect of face type, F(2,46) = 6.93, p < .01, ηp

2 = 

.23, and an interaction between factors, F(2,46) = 4.81, p < .05, ηp
2 = .17. Analysis of simple 

main effects showed that match and mismatch accuracy was comparable in the misaligned 

whole face condition, F(1,23) = 0.18, p = .68, ηp
2 = .01, and the misaligned part face 

condition, F(1,23) = 0.80, p = .38, ηp
2 = .38, but match accuracy was higher than mismatch 

accuracy for whole faces, F(1,23) = 8.24, p < .01, ηp
2 = .26. A simple main effect of face type 

was also found for match trials, F(2,22) = 9.39, p < .01, ηp
2 = .46. A series of paired-sample 

t-tests (with alpha corrected to .05/3 = .017 for three comparisons) revealed higher accuracy 

for whole faces than misaligned whole faces, t(23) = 3.83, p < .017, and misaligned part 

faces, t(23) = 4.05, p < .001, whereas accuracy was similar for the two misaligned conditions, 

t(23) = 0.58, p = .57. By contrast, a simple main effect of face type was not found for 

mismatch trials, F(2,22) = 0.03, p = .97, ηp
2 = .00. These results therefore indicate that face-

matching accuracy is best when features are presented as an integrated percept, but that this is 

evident only for match but not mismatch trials. 
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FIGURE 2.9. Percentage accuracy for the whole face, part face and split face pairs by trial 

type for Experiment 3. 

 

To determine if there was a relationship between match and mismatch accuracy, 

performance for each face type was correlated for these two trials types. Match and mismatch 

performance was not related for the whole face, r(22) = -.11, p = .62, misaligned whole face, 

r(22) = -.15, p = .50, or misaligned part face, r(22) = -.10, p = .65. This finding suggests that 

match and mismatch performance for this task may be driven by dissociable factors. 

Accuracy for the three different face types was also correlated by trial type. For match trials, 

performance for the whole face did not correlate with accuracy for the misaligned whole face, 

r(22) = .28, p = .19, or the misaligned part face, r(22) = .30, p = .16. However, performance 

for the misaligned whole face was correlated with the misaligned part face, r(22) = .59, p < 

.01. Similarly, for mismatch trials, whole face accuracy was not associated with accuracy for 

the misaligned whole face, r(22) = .36, p = .08, or misaligned part face, r(22) = .25, p = .24. 

However, there was a relationship between performance for misaligned whole faces and 
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misaligned part faces, r(22) = .65, p < .01. Taken together, these findings indicate that 

misaligned faces may be processed differently from whole faces. 

 

Discussion 

Experiment 3 expanded on the previous two experiments by comparing accuracy of 

whole faces, misaligned whole faces and misaligned part faces, to determine how the number 

of features available and the integration of these features relates to overall matching accuracy. 

For both match and mismatch trials, performance for misaligned whole faces was akin to 

misaligned part faces. This finding suggests that the additional visual information (features) 

available in the whole face pairs does not account for the increased accuracy for the whole 

face pairs compared to the isolated feature pairs seen in Experiments 1 and 2.  

For match trials, accuracy was higher for the whole face pairs than the misaligned 

whole or part face pairs. These results indicate that viewing all features is not sufficient to 

maximise accuracy, but rather that the integration of these features into a coherent stimulus 

enhances observers’ ability to make correct matching decisions. This effect is likened to the 

holistic processing advantage for faces that has been reported extensively in the face 

recognition literature (see, e.g., Donnelly & Davidoff, 1999; Goffaux & Rossion, 2006; 

McKone, 2004; Tanaka & Sengco, 1997). A similar reliance on holistic processing has also 

been found in face matching tasks using the composite effect and gaze-contingent paradigms 

(see, e.g., Hole, 1994; Le Grand et al., 2004; Van Belle et al., 2010). Furthermore, 

performance for misaligned whole faces increased in line with performance for misaligned 

part faces for both trial types, which suggests they are processed in the same way. However, 

accuracy for the two misaligned pair types was not associated with whole face accuracy. This 

finding provides further evidence that observers may use an alternative (holistic) mechanism 

to process integrated whole faces and so may account for the increase in match accuracy for 
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the whole face pairs. However, an advantage of viewing an integrated whole face was not 

found for mismatch trials. Performance for match and mismatch stimuli has been found to be 

dissociable (see, e.g., Kokje, Bindemann, & Megreya, 2018; Megreya & Burton, 2006b, 

2007). Thus, it is possible that these two trial types rely on different mechanisms and that 

holistic processing is more critical for telling people together than telling people apart.  

 

General Discussion 

Unfamiliar face matching is a highly error-prone task (for reviews see, e.g., Fysh & 

Bindemann, 2017a; Robertson, Middleton et al., 2015) and yet, the decision-making process 

behind this task is not well understood. One possibility is that matching decisions to pairs of 

whole faces reflect a series of ‘smaller’ decisions to individual features, which are then 

combined to reach an overall decision. The current study investigated this possibility by 

comparing matching of individual features with that of the whole face. Specifically, this 

study sought to explore whether the likelihood that the whole face is classified correctly is 

related to the proportion of its constituent features that are classified in the same way.  

In Experiments 1 and 2, a graded response pattern was observed whereby accuracy for 

whole face pairs improved in line with the number of correct feature decisions. Whole face 

accuracy was highest when three or four (out of a possible four) feature decisions were 

classified correctly. This suggests a summing of feature information to achieve an overall 

matching decision. However, if all matching decisions for features are combined in this way 

to reach a whole face decision, then one would expect overall accuracy to be near chance 

level when only half of the features are classified correctly. Classifying two features as a 

match and the other two as a mismatch should provide a conflict such that when viewing the 

whole face, observers are equally as likely to respond correctly as they are incorrectly. 

Contrary to this reasoning, observers can still maintain high levels of accuracy for pairs of 
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whole faces even if only one or two features are matched correctly, which suggests that 

individual features can correctly determine the overall matching decision. Notably, the cases 

in which three features are classified correctly suggest that the reverse of this scenario, 

whereby a single feature decision leads to incorrect classification of whole faces, is rarely 

found. 

So why are observers able to maintain high levels of accuracy for the whole face even 

if only a minority of the features have been classified correctly? One possibility is that for 

some faces the decision process may reflect a weighing of feature decisions as opposed to a 

summing of these decisions. Accordingly, if one feature provides especially compelling 

matching information, it may dominate the decision process. For example, it is conceivable 

the hair, eyes and mouth of two different faces look highly similar, but the noses appear 

notably different, leading observers to decide these faces ultimately depict different people. 

On the Matching Familiar Figures Test (MFFT), which correlates with unfamiliar face 

matching performance (see Megreya & Burton, 2006b), observers must typically rely on a 

difference in a single feature to discriminate between line drawings of an object (e.g., a 

chimney on a ferry boat). Thus, to reach the correct decision on the MFFT, participants must 

base their decision on one feature, which provides conflicting matching information to the 

rest of the stimulus. Unfamiliar face matching might rely on a similar weighting of decisions 

for individual features before an overall matching decision is made. 

One visual characteristic that might support such a weighing process is 

distinctiveness, whereby an usual variant of a facial feature may provide more compelling 

matching information than the other features of a face. Distinctive faces are better 

remembered and more easily recognised than average looking faces (e.g., Bartlett et al., 1984; 

Schulz et al., 2012; Winograd, 1981). Furthermore, using caricature to increase the 

distinctiveness of faces has been found to improve face matching accuracy (McIntyre, 
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Hancock, Kittler, & Langton, 2013). Thus, it is possible distinctive faces are also easier to 

match. A decision for one distinctive feature could override decisions to other features, 

making it possible for observers to still classify the whole face correctly. However, as neither 

Experiment 1 or 2 indicated a universal feature which drives accuracy, it is possible the 

distinctive (dominant) feature varies from face to face. This converges with studies that 

suggest individual variation in facial appearance is highly idiosyncratic (see, e.g., Burton et 

al., 2011; Burton et al., 2016; Jenkins et al., 2011). 

However, in Experiments 1 and 2 accuracy for whole faces also exceeded any of the 

individual feature pairs. Furthermore, Experiment 2 indicated that even when all of the 

isolated feature pairs were classified incorrectly, the correct decision for the corresponding 

whole face could still be reached on half of these occasions. One possibility is that features 

are integrated into a holistic face percept, which facilitates facial identification. Experiment 3 

addressed and explored this possibility directly by contrasting accuracy for whole face pairs 

in which all features were aligned to form a holistic stimulus or misaligned to disrupt such 

processing. In this experiment, aligned faces outperformed misaligned whole face pairs on 

match trials. This converges with the findings of the first two experiments that whole face 

accuracy is higher than that of any of the individual features and suggests that, while 

individual features can strongly influence the overall decision, integration of features into a 

coherent face percept ultimately gives the best possible performance. However, a similar 

whole face advantage was not found for mismatch trials. Previous research has demonstrated 

that accuracy for match and mismatch trials may be driven by dissociable factors (see, e.g., 

Megreya & Burton, 2006b, 2007). This suggests that holistic processing may be more 

important for pairs of faces which depict the same individual, than pairs which incorporate 

two different people.  
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An alternative explanation for high whole face accuracy when only one or two 

features are classified correctly, is that there is simply more information in the whole face 

pairs (four features as opposed to one). However, accuracy for whole faces was also reliably 

higher than accuracy for misaligned faces (Experiment 3). The misaligned face stimuli were 

designed to force observers to process the face pairs feature by feature as opposed to in a 

more holistic manner. Therefore, as integration of features appears to be important for 

successful matching, it is possible that judging the similarity of features in isolation is 

different to evaluating them in the context of a whole face. In the related field of person 

recognition, a number of studies have demonstrated faces are processed in a holistic manner 

(see, e.g., Goffaux & Rossion, 2006; Le Grand et al., 2004; Tanaka & Farah, 1993; Tanaka & 

Sengco, 1997). Asking participants to make decisions to individual features may therefore be 

forcing them to process the faces atypically and make decisions that are not normally part of 

the whole face decision process.  

In summary, this chapter demonstrated classifying more individual features correctly 

increases the likelihood of the overall decision being accurate (Experiments 1 and 2). There 

did not appear to be a single universal feature that drove accuracy. However, a matching 

decision for single feature can disproportionately influence the overall (whole face) matching 

decision. Furthermore, as face variation is idiosyncratic (see, e.g., Burton et al., 2011; Burton 

et al., 2016; Jenkins et al., 2011) it is likely that the dominant feature varies from face to face. 

Experiment 3 found whole face accuracy was better than misaligned whole face and 

misaligned part face performance, which converges with whole face accuracy exceeding that 

of any of the individual features for Experiments 1 and 2. This indicates that, while a decision 

for one feature can strongly influence the overall decision, an integration of features into a 

holistic percept helps to maximise performance. However, this whole face advantage was 
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only found for match trials, and thus it is possible that match trials require a greater reliance 

on holistic processing than mismatch trials.  
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Chapter 3 

 

Examples improve face-matching accuracy in low-

performing individuals 

  



72 
 

Introduction 

Chapter 2 investigated the decision process that underlies unfamiliar face matching. 

The previous chapter demonstrated that judgements for individual facial features can strongly 

influence the overall matching decision (Experiments 1 and 2). However, accuracy is 

ultimately best when the face is processed as an integrated percept (Experiment 3). This 

Chapter will address a further question of interest, whether unfamiliar face matching 

performance can be improved. Despite the ubiquity of this task in security settings, such as 

passport control, a substantial body of psychological research demonstrates that unfamiliar-

face matching is prone to error (for reviews, see, e.g., Fysh & Bindemann, 2017a; Jenkins & 

Burton, 2011; Robertson, Middleton, & Burton, 2015).  

Under idealised conditions, in which observers are asked to compare same-day high-

quality photographs of faces, errors are made on 10-20% of trials (see, e.g., Bindemann, 

Avetisyan, & Blackwell, 2010; Burton, White, & McNeill, 2010; Megreya & Burton, 2006b). 

These error rates are already considered problematic for large-scale security operations, 

where a small percentage of errors can result in a large number of cases that give rise to 

incorrect decisions (Dhir, Singh, Kumar, & Singh, 2010; Jenkins & Burton, 2008b). 

Accuracy declines further under conditions that are likely to present in applied settings, such 

as when to-be-compared face photographs were taken many months apart, as is typically the 

case with a passport photograph and its bearer (Megreya, Sandford, & Burton, 2013), when 

faces have to be matched over extended time periods (Alenezi & Bindemann, 2013; Alenezi, 

Bindemann, Fysh, & Johnston, 2015), when operatives are under time pressure to perform 

this task (Bindemann, Fysh, Cross, & Watts, 2016; Fysh & Bindemann, 2017b; Özbek & 

Bindemann, 2011; Wirth & Carbon, 2017), and during human supervision of automated 

facial recognition decisions (Fysh & Bindemann, 2018b; White, Dunn, Schmid, & Kemp, 

2015). 
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These findings highlight that face matching is generally challenging, but are based on 

measures of mean performance, across groups of participants. In addition, substantial 

individual differences also exist in this task, which are such that some people perform close-

to-chance when others achieve perfect accuracy (see, e.g., Bindemann, Avetisyan, & Rakow, 

2012; Burton et al., 2010; Estudillo & Bindemann, 2014; Fysh & Bindemann, 2018a). This 

range in performance is important for demonstrating that security could be enhanced by 

selecting individuals with a specific aptitude for face processing (see, e.g., Bobak, Dowsett, 

& Bate, 2016; Bobak, Hancock, & Bate, 2016; White, Kemp, Jenkins, Matheson, & Burton, 

2014). These individual differences indicate also that many face-matching errors do not arise 

from data limits, whereby stimuli carry insufficient information to allow accurate 

identifications to be made, but from the failure of some observers to correctly use the 

available information within some stimuli (see, e.g., Fysh & Bindemann, 2017a; Jenkins & 

Burton, 2011). In turn, the observation that some people can successfully match the same 

stimuli is important for indicating that improvements in accuracy for other people, who do 

not perform to the same level, are in principle possible. 

To date, limited research still exists on methods to improve a person’s face-matching 

accuracy, and not all methods procure benefits. Training observers to classify face shapes, for 

example, does not improve face-matching accuracy (Towler, White, & Kemp, 2014). 

However, one method that has been shown to improve unfamiliar-face matching is the 

application of feedback. Real-word scenarios provide very limited scope to correct face-

matching errors. Consequently, observers rarely have the opportunity to recognise, and learn 

from, their own face-matching mistakes (Jenkins & Burton, 2011). Providing such feedback 

immediately after a face-matching trial can help to maintain accuracy in subsequent trials of 

this task (Alenezi & Bindemann, 2013), and feedback can improve subsequent performance 

when this is provided whilst a just-classified face pair is still in view (White, Kemp, Jenkins, 
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& Burton, 2014). However, such trial-by-trial feedback cannot be easily implemented in 

applied settings, as the accuracy of matching decisions is not known at the point of an 

identification. 

In this study, an alternative form of ‘feedback’ that could be provided in applied 

settings was therefore investigated, to determine if this confers improvements in face-

matching accuracy. Our approach is based on providing example face-pairs of identity-

matches and mismatches, which are clearly labelled as such, to the left and right of a 

centrally-presented target face-pair. The rationale for this manipulation is that face-matching 

errors may arise because observers do not have clearly defined criteria for distinguishing 

same- and different-identity face pairs. The observation that trial-by-trial feedback improves 

accuracy supports this reasoning and suggests that the feedback benefit arises by helping 

observers to refine their face-matching criteria.  

In contrast to the trial-by-trial feedback manipulations of previous studies (Alenezi & 

Bindemann, 2013; White, Kemp, Jenkins, & Burton, 2014), the examples manipulation that is 

investigated here has greater potential to be implemented in applied settings because it does 

not require prior knowledge of the nature of the target face pair. To determine if such a 

benefit is found, observers’ face-matching accuracy was first assessed without examples, to 

obtain a baseline measure of their performance. Examples were then provided in a second 

block of trials to look for improvement in performance. Observers in this condition were also 

compared with another group, who were not provided with examples in the second block, on 

a between-subjects basis.  

This group-level comparison provides a useful contrast to assess the general impact of 

examples on face matching performance. However, considering the broad differences that 

exist in face-matching accuracy between observers (e.g., Bindemann, Avetisyan et al., 2012; 

Bobak, Pampoulov, & Bate, 2016; Burton et al., 2010; White, Kemp, Jenkins, Matheson, et 
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al., 2014; for a review, see Lander, Bruce, & Bindemann, 2018), this study was also 

interested in how examples influenced accuracy at an individual level, by comparing any 

changes in performance with a person’s baseline performance. For example, one might 

expect that observers with high ability have limited scope for improvement and are therefore 

unlikely to benefit from examples. On the other hand, it is also possible that observers at the 

other end of the face-matching ability spectrum lack the capacity to improve. An analysis of 

individual improvement in the examples condition, compared to baseline performance, 

should reveal this. 

If an improvement in face matching accuracy with the provision of examples is found, 

then it is also important to determine whether this is transferable to conditions in which 

examples are no longer seen. To address this question, in Experiments 5 and 6 participants 

were given two additional blocks that were presented after the examples were withdrawn. 

One of these blocks comprised a repetition of the target face pairs from the examples block, 

but these were now shown without the example stimuli. The other block presented new target 

face pairs, which had not been encountered before in the experiment, but were taken from the 

same stimulus set (Experiment 5). In addition, this study sought to assess whether any 

example-advantage would generalise to a completely different new set of face stimuli. For 

this purpose, a second group was also given a repetition of the target face pairs from the 

examples block (without the example stimuli), followed by a block of trials from a different 

face-matching test (Experiment 6). The contrast of these conditions should reveal whether 

any improvements in performance with examples generalise to previously unseen faces from 

the stimulus set from which the target and example pairs were drawn, and to face pairs from a 

different stimulus set. 
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Experiment 4 

This experiment investigated whether the provision of clearly-labelled match and 

mismatch examples, presented to the left and right, improves classification of centrally-

presented target face pairs. Participants first completed a block without such examples to 

establish a measure of baseline performance. Examples were then provided in a second block 

in an attempt to improve face-matching accuracy. In addition, a second group of observers 

completed the experiment without such examples, to determine improvements in accuracy on 

a between-subject basis. 

 

Method 

Participants 

Sixty students (57 female, 3 male) from the University of Kent, with a mean age of 

21.5 years (SD = 6.2; range: 18-49), took part in this experiment. The participants were given 

course credit for their time. All participants were of Caucasian ethnicity and reported normal 

or corrected-to-normal vision. All experiments reported here were approved by the Ethics 

Committee of the School of Psychology at the University of Kent and conducted according to 

BPS ethical guidelines. 

 

Stimuli 

Eighty face pairs from the Glasgow University Face Database (GUFD) were 

employed as stimuli in this study (see Burton et al., 2010). These were comprised of 40 

identity-matches, in which two different same-day photographs of the same person were 

shown, and 40 identity-mismatches, depicting two different individuals in each pair. All the 

faces were depicted in greyscale, a frontal pose, and with a neutral expression, and were 

cropped to remove extraneous background. The maximum size for a face was 43 x 54 mm, 
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while the maximum gap between faces in a pair was 25 mm. Each face pair was shown 

beneath the question “Match or Mismatch?”. 

In the experiment, 40 of these face pairs (20 matches, 20 mismatches) were employed 

as the stimuli in Block 1, and were then repeated as the centrally-presented target stimuli in 

Block 2. Repeating the stimuli in this way ensures that any changes in individual 

performance cannot be attributed to variation in stimulus content across blocks. In the 

experimental condition, another 40 face pairs were presented as example stimuli to the left 

and right of the target pairs in Block 2. Two example face pairs were provided with each 

target stimulus and were clearly labelled as identity-matches and mismatches. These example 

face pairs were randomly selected, but each pair occurred with equal frequency during the 

experiment. In addition, the sex of the example faces always matched that of the target face 

pair. For an illustration of a stimulus array, see Figure 3.1. 

 

 

FIGURE 3.1. Illustration of a stimulus array from Block 2 of the experimental condition, 

comprising a centrally-presented pair of target faces, and labelled example match and 

mismatch pairs. In the no-examples condition, the match and mismatch stimuli to the left and 

right of the target pair were not shown. 

 

Procedure 

The experiment was run using ‘PsychoPy’ software (Peirce, 2007). Participants were 

shown two blocks, each containing 20 match and 20 mismatch trials displayed in a randomly 

intermixed order. Half of the participants (N = 30) were allocated to the no-examples 
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condition, where the same face pairs were shown in both of these blocks. The remaining 

participants (N = 30) were assigned to the examples condition, where Block 1 was identical 

to the no-examples condition, but the target face pairs were flanked by example match and 

mismatch face pairs in Block 2. All participants were instructed to classify the centrally-

presented face pairs as identity-matches or mismatches as accurately as possible, by pressing 

one of two response keys on a standard computer keyboard. In addition, participants in the 

experimental condition were given additional instructions prior to Block 2, which explained 

the presence of the examples and encouraged observers to make use of these to aid their 

identification decisions. After each trial of Block 2, these participants were also asked to 

indicate whether they had made use of the examples to aid their last decision, by pressing one 

of two response keys on the computer keyboard.  

 

Results 

Group-level accuracy 

Participants’ responses indicated that examples were utilised on 26.3% (SD = 17.9) of 

trials, demonstrating that these stimuli were used by observers in an attempt to enhance 

performance. To determine the effect of examples on face matching, the percentage accuracy 

of observers’ responses was analysed as a function of condition (examples vs. no-examples), 

block (Block 1 vs. Block 2), and trial type (match vs. mismatch). The cross-subjects means of 

these data are illustrated in Figure 3.2. A 2 (condition) x 2 (block) x 2 (trial type) mixed-

factor ANOVA revealed a three-way interaction between these factors, F(1,58) = 9.93, p < 

.01, ηp
2 = .15. To explore this interaction, separate 2 (block) x 2 (trial type) ANOVAs were 

conducted for the examples and no-examples conditions. 
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FIGURE 3.2. Percentage accuracy by trial type (error bars show the standard error of the 

mean) and overall baseline accuracy correlated with percentage improvement for the no-

examples and examples conditions in Experiment 4.  

 

For the examples condition, no main effect of trial type was found, F(1,29) = 0.01, p 

= .92, ηp
2 = .00, but a main effect of block, F(1,29) = 5.17, p < .05, ηp

2 = .15, and an 

interaction between these factors, F(1,29) = 15.65, p < .001, ηp
2 = .35. Analysis of simple 

main effects showed that accuracy was similar for match and mismatch trials in Block 1, 

F(1,29) = 2.94, p = .10, ηp
2 = .09, and Block 2, F(1,29) = 3.11, p = .09, ηp

2 = .10. Mismatch 

accuracy was also comparable across both blocks, F(1,29) = 0.96, p = .34, ηp
2 = .03. 
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However, an increase in match accuracy was observed from Block 1 to Block 2, F(1,29) = 

15.58, p < .001, ηp
2 = .35, suggesting an improvement in performance for this trial type. 

For the no-examples condition, ANOVA indicated a main effect of trial type, F(1,29) 

= 6.67, p < .05, ηp
2 = .19, due to higher accuracy on mismatch trials. ANOVA did not reveal 

a main effect of block, F(1,29) = 0.02, p = .88, ηp
2 = .00, or an interaction between these 

factors, F(1,29) = 0.28, p = .60, ηp
2 = .01.  

Note that analysis of d’ and criterion are omitted here for brevity, but these data are 

provided for completeness in Appendix B for Experiments 4-6. 

 

Individual differences 

The question of main interest was how examples affected performance at an 

individual level. To analyse individual differences, observers’ percentage accuracy in Block 1 

was subtracted from Block 2 to provide a measure of change in performance. This score was 

then correlated with Block 1 to determine whether any improvements in accuracy were 

related to individual differences in baseline performance. This data is also illustrated in 

Figure 3.2 and shows that there was no correlation between baseline accuracy and change in 

performance in the no-examples condition, r(28) = -.16, p = .39. By contrast, change 

correlated negatively with baseline accuracy in the examples condition, r(28) = -.60, p < .01. 

This indicates that observers who performed with lower accuracy at baseline were more 

likely to improve with the provision of example face pairs. 

These correlations were also conducted separately for match and mismatch trials. For 

the examples condition, baseline accuracy correlated negatively with change for identity-

matches, r(28) = -.86, p < .001, but not identity-mismatches, r(28) = .04, p = .84. This 

demonstrates, once again, that poor-performing observers were more likely to improve under 

the provision of example face pairs, but indicates that this effect was driven by identity-match 
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trials. By contrast, a correlation between baseline accuracy and change was not found for 

identity-matches in the no-examples condition, r(28) = -.26, p = .17. However, baseline 

accuracy correlated negatively with change for identity-mismatches, r(28) = -.45, p < .05. 

 

Discussion 

This experiment assessed whether the provision of examples can improve unfamiliar 

face-matching accuracy, by presenting match and mismatch face pairs either side of central 

target pairs. At a group level, examples elicited an increase in performance of 8%, but this 

was only present for identity-matches. These findings were qualified by an analysis of 

individual differences, which showed that observers did not benefit equally from the 

provision of examples. Those who already performed with higher accuracy at baseline 

showed more limited improvement thereafter. By contrast, the observers who displayed lower 

accuracy at baseline were more likely to improve with the provision of examples. This 

improvement was observed in overall accuracy but was driven by performance on identity-

match trials. Thus, the provision of examples enhances face-matching accuracy in low-

performing individuals, but performance gains appear to be limited to decisions confirming 

that two different face photographs of an individual, depict the same person. However, a 

similar association between baseline accuracy and performance was also found for the 

mismatch trials of the no-examples condition, which casts some doubt on the examples 

effect. A second experiment was therefore conducted to explore these findings. 

 

Experiment 5 

In Experiment 4, example stimuli displayed concurrently alongside a target face pair 

helped improve identity-matching accuracy. However, this improvement was dependent on 

observers’ baseline performance and appeared to be driven mainly by identity-match trials. 
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The aim of Experiment 5 was to provide a replication to establish the robustness of these 

effects. In addition, for this manipulation to be useful for applied settings, it is important to 

assess whether the examples-advantage transfers to different stimuli which have not been 

previously viewed in conjunction with the examples. Therefore, this study also sought to 

explore the examples-advantage further, by assessing the generalisability of this effect. 

Specifically, this study investigated whether any enhancement in accuracy persists only 

whilst examples are on display, or whether such an effect remains present after examples are 

removed. If so, then the question arises also of whether such an effect is present only for 

repetition of target face pairs that were seen previously with examples, or whether it 

generalises to new, previously-unseen target face pairs. To address these questions, 

Experiment 5 replicated the design of Experiment 4 but with two additional blocks that were 

presented after the examples were withdrawn. One of these blocks comprised of a repetition 

of the target face pairs from the examples block, but these were now shown without the 

example stimuli. The other block presented new target face pairs, which had not been 

encountered before in the experiment. 

 

Method 

Participants 

Sixty-two new individuals (45 female, 17 male) with a mean age of 22.5 years (SD = 

7.4, range: 18-57), took part in this study. Two of these participants were excluded from 

analysis for showing limited task engagement, exhibited by repeatedly pressing the same 

response key (i.e., on more than 25% of consecutive trials in a block) irrespective of trial 

content and producing these responses at very short speeds (i.e., of less than one second). 

Participants were given course credit or paid a small fee in exchange for their time. All 

participants were of Caucasian ethnicity and reported normal or corrected-to-normal vision. 
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Stimuli and procedure 

One hundred and twenty face pairs (80 from Experiment 4, 40 new pairs) from the 

GFMT (see Burton et al., 2010) served as stimuli for this study. As in Experiment 4, half of 

these stimuli were identity-match and half were identity-mismatch pairs. Experiment 5 

progressed in the same way as Experiment 4, except that participants were required to 

complete two additional blocks after the baseline (Block 1) and the experimental block 

(Block 2; in which examples or no examples were provided on a between-subject basis). The 

first additional block was a repetition of the stimuli from Block 1, to determine whether any 

increases in face-matching accuracy from viewing examples were retained when these were 

no longer present (i.e., Block Old Faces). The second additional block contained 40 

previously unseen face pairs (20 matches and 20 mismatches) from the GFMT and was 

included to assess whether any performance gains generalised to such new stimuli (Block 

New Faces). The order of these two new blocks was counterbalanced across participants. 

Trial order was randomised in all blocks. 

 

Results 

Group-level accuracy 

Participants’ responses indicated that examples were utilised on 25.0% (SD = 15.0) of 

trials. The percentage accuracy of observers’ responses was analysed as a function of 

condition (examples vs. no-examples), trial type (match vs. mismatch), and block (Block 1 

vs. Block 2 vs. Block Old Faces vs. Block New Faces). The cross-subjects means of this data 

are illustrated in Figure 3.3. A 2 (condition) x 2 (trial type) x 4 (block) mixed-factor ANOVA 

revealed a three-way interaction between factors, F(3,174) = 5.01, p < .01, ηp
2 = .08. To 

analyse this interaction, separate 2 (trial type) x 4 (block) ANOVAs were conducted for the 

examples and no-examples conditions.  
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FIGURE 3.3. Percentage accuracy by trial type (error bars show the standard error of the 

mean) and overall baseline accuracy correlated with percentage improvement for the no-

examples and examples conditions across blocks in Experiment 5. 
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For the examples condition, this analysis revealed a main effect of trial type, F(1,29) 

= 8.15, p < .01, ηp
2 = .22, due to higher accuracy on match trials. ANOVA did not reveal a 

main effect of block, F(3,87) = 0.62, p = .61, ηp
2 = .02, or an interaction between factors, 

F(3,87) = 0.87, p = .46, ηp
2 = .03.  

In the no-examples condition, no main effect of block, F(3,87) = 2.03, p = .12, ηp
2 = 

.07, or of trial type, F(1,29) = 2.68, p = .11, ηp
2 = .08, was found. However, ANOVA 

revealed an interaction between factors, F(3,87) = 17.75, p < .001, ηp
2 = .38. Analysis of 

simple main effects indicated that there was no difference in accuracy for match and 

mismatch trials in Block 1, F(1,29) = 0.53, p = .47, ηp
2 = .02, and Block 2, F(1,29) = 0.54, p 

= .47, ηp
2 = .02. However, match accuracy was higher than mismatch accuracy in Block Old 

Faces, F(1,29) = 5.19, p < .05, ηp
2 = .15, and Block New Faces, F(1,29) = 11.37, p < .01, ηp

2 

= .28. In addition, a simple main effect of block was observed for match trials, F(3,27) = 

5.30, p < .01, ηp
2 = .37. Paired-sample t-tests (with alpha corrected to .05/6 = .008 for six 

comparisons) revealed that match accuracy was lower for Block 1 compared to Block Old 

Faces, t(29) = 3.32, p < .008, and Block New Faces, t(29) = 3.28, p < .008. Match accuracy 

was also lower for Block 2 than for Block Old Faces, t(29) = 3.47, p < .008. No other 

comparisons reached significance, all ts ≤ 2.63, ps ≥ .01. A simple main effect of block was 

also observed for mismatch trials, F(3,27) = 7.39, p < .01, ηp
2 = .45, due to higher mismatch 

accuracy in Block 1 compared to Block 2, t(29) = 2.94, p < .008, Block Old Faces, t(29) = 

3.43, p < .008, and Block New Faces, t(29) = 4.23, p < .001. Mismatch accuracy was also 

higher for Block 2 than Block Old Faces, t(29) = 3.16, p < .008. No other comparisons 

reached significance, both ts ≤ 2.33, ps ≥ .03. 
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Individual differences 

Once again, in the main step of the analyses, individual differences in performance 

were assessed by correlating baseline performance (Block 1) with change in accuracy from 

Block 1 to Block 2 and the subsequent blocks (Block Old Faces / Block New Faces minus 

Block 1). This data is illustrated in Figure 3.3 and shows that change in Block 2 correlated 

negatively with baseline accuracy in the examples condition, r(28) = -.67, p < .001. This 

indicates that lower-performing observers at baseline improved more with the provision of 

examples than higher-performing individuals. Similar correlations were also observed for 

Block Old Faces, r(28) = -.73, p < .001, and Block New Faces, r(28) = -.45, p < .05, which 

suggests that improvements in accuracy were maintained after the removal of the example 

stimuli and generalised to previously-unseen target face pairs. By contrast, correlations 

between baseline accuracy and change were not observed in Block 2, r(28) = -.13, p = .51, 

Block Old Faces, r(28) = -.09, p = .64, or Block New Faces, r(28) = .11, p = .56, of the no-

examples condition. 

These correlations were also conducted separately for match and mismatch trials. In 

the examples condition, baseline accuracy for match trials correlated with change for Block 

2, r(28) = -.77, p < .001, and Block Old Faces, r(28) = -.72, p < .001, and was approaching 

significance for Block New Faces, r(28) = -.34, p = .06. Similarly, mismatch accuracy at 

baseline correlated with change for Block 2, r(28) = -.74, p < .001, Block Old Faces, r(28) = -

.68, p < .001, and Block New Faces, r(28) = -.56, p < .01. These results converge with the 

correlations for overall accuracy to show that lower-performing observers benefitted more 

from the examples, and this effect persisted when examples were removed and carried over to 

new match and mismatch face pairs. However, in the no-examples condition, baseline 

accuracy for match trials also correlated with change for Block 2, r(28) = -.40, p < .05, Block 

Old Faces, r(28) = -.79, p < .001, and Block New Faces, r(28) = -.74, p < .001. In contrast, 
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baseline accuracy for mismatch trials did not correlate with change for Block 2, r(28) = .18, p 

= .34, or Block New Faces, r(28) = .35, p = .06, and correlated positively with Block Old 

Faces, r(28) = .52, p < .01. 

 

Discussion 

 Experiment 4 found an improvement in face-matching accuracy with the provision of 

example stimuli for individuals who displayed lower accuracy at baseline. The current 

experiment aimed to replicate these findings. In addition, this experiment examined whether 

the benefits of examples could be retained after their removal, and whether these would 

generalise to previously unseen face pairs. At a group level, examples did not produce an 

improvement in performance. However, mismatch accuracy declined, and match accuracy 

increased in the no-examples condition over the course of the experiment. This pattern 

converges with reports of a bias to classify face pairs as identity matches, which grows over 

the course of face matching experiments (Alenezi & Bindemann, 2013; Alenezi et al., 2015; 

Bindemann et al., 2016; Fysh & Bindemann, 2017b; Papesh, Heisick, & Warner, 2018). This 

contrast between the examples and the control condition suggest that provision of examples 

might serve to prevent development of the match bias, similar to the effect of feedback on 

face matching (see Alenezi & Bindemann, 2013; Papesh et al., 2018). This finding will be 

explored further in the General Discussion. 

More importantly, analysis of individual differences in this experiment showed that, 

similarly to Experiment 4, examples also helped to improve individuals who performed with 

low accuracy at baseline. This improvement was found for overall accuracy when examples 

were present (Block 2), when examples were then removed but the same target stimuli were 

repeated (Block Old Faces), and for new stimuli taken from the same stimulus set (Block 

New Faces). This pattern persisted when overall accuracy was broken down into match and 
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mismatch trials. For mismatch trials, for example, correlational analysis revealed accuracy 

improvements during the examples block (Block 2) compared to baseline (Block 1), and 

when examples were then removed (Block Old Faces), and when new stimuli were shown 

(Block New Faces). Similar correlations were observed for match trials for the examples 

block (Block 2) and after the examples were removed (Block Old Faces), whilst the 

correlation between baseline and Block New Faces was approaching significance.  

However, not all aspects of the results were clear-cut, as correlations with baseline 

performance were also found for match trials with the experimental block (Block 2) and for 

repeated and new stimuli (Block Old / New Faces) in the no-examples group. These 

correlations likely reflect the increase in match accuracy that was observed at a group level in 

this condition, which was most pronounced for observers with lower baseline accuracy as 

these have more scope for such an improvement. At the same time, it is noted that such 

correlations were not observed with mismatches despite a corresponding decrease in accuracy 

for this trial type across blocks. The issue of these match-trial correlations in this experiment 

is complicated by a comparison with Experiment 4, in which baseline accuracy correlated 

negatively only with improvement for identity-matches in the examples condition, but such a 

correlation was also observed for identity-mismatches in the no-examples condition.  

Taken together, these data show firstly that improvement correlations were 

consistently found in the examples conditions of Experiment 4 and 5, but the expression of 

these effects varied somewhat. Secondly, some seemingly similar correlations are observed in 

the no-examples condition, albeit in fewer measures and blocks, but these effects are also 

expressed inconsistently across experiments. In an attempt to clarify these results further, a 

third experiment was conducted. 
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Experiment 6 

In Experiment 4, example match and mismatch pairs that flanked a centrally 

displayed target pair were found to improve matching accuracy. However, the improvement 

was dependent on observers’ baseline accuracy, with lower-performing individuals 

benefitting from the examples most. In Experiment 5, the benefits of examples for poor-

performing individuals were found to persist after the examples were removed again, and for 

previously unseen face pairs taken from the same stimuli set. However, the expression of this 

improvement effect was somewhat inconsistent across both experiments, and a seemingly 

similar pattern was observed in some measures of the no-examples conditions. The aim of 

Experiment 6 was, therefore, to provide a further replication of the improvement correlations 

that were observed with examples in Experiments 4 and 5, and also to replicate the finding 

that the example-advantage persists once these are removed. Furthermore, this study aimed to 

assess whether any example-advantage would generalise to a completely different new set of 

face stimuli. For this purpose, this experiment replicated the design of Experiment 5, but the 

block of previously unseen stimuli from the GFMT (Block New Faces) was replaced with 

face pairs from the Kent Face Matching Test (KFMT; see Fysh & Bindemann, 2018a). 

 

Method 

Participants 

 Sixty-two new individuals (40 female, 22 male), with a mean age of 20.4 years (SD = 

2.1, range: 18-29), took part in this study. Two participants demonstrated limited task 

engagement by repeatedly pressing the same response key (i.e., on more than 25% of 

consecutive trials in a block) regardless of trial content and produced these responses within 

one second of viewing the stimulus and thus, were excluded from the analysis. Participants 
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were given course credit or a small fee for their time. All participants were of Caucasian 

ethnicity and reported normal or corrected-to-normal vision.  

 

Stimuli and procedure 

 The design was identical to Experiment 5, comprising a baseline block of 40 matching 

trials (Block 1), followed by a block in which the same face pairs were flanked by examples 

(Block 2). This was followed by a third block containing identical stimuli to Block 1 (called 

Block Old Faces in Experiment 5, but referred to here as Block GFMT). In addition, a further 

block of 40 trials was included comprising 20 match and 20 mismatch stimuli from the 

KFMT (see Fysh & Bindemann, 2018a). In contrast to the GFMT face pairs, the KFMT 

presents a relatively uncontrolled image from student photo-ID alongside a portrait that was 

recorded under controlled conditions (see Figure 3.4). These different photographs were 

taken months apart for each identity and vary in terms of, for example, hairstyle, expression, 

and so forth (for full details, see Fysh & Bindemann, 2018a). In contrast to the face pairs 

from the GFMT, the KFMT stimuli therefore capture greater variation in appearance within 

identities. In this experiment, the KFMT portraits were presented at a size of 63 x 65 mm, 

whereas the photo-ID photographs measured 32 x 36 mm. Both photos were displayed on a 

blank white canvas, 65 mm apart. In the experiment, Block 1 and Block 2 were always shown 

first. These were followed by Block GFMT and Block KFMT, but the order of these latter 

blocks was counterbalanced across participants. 
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FIGURE 3.4. Illustration of match (left) and mismatch (right) stimuli from Block KFMT.  

 

Results 

Group-level accuracy 

 Participants’ responses indicated that examples were utilised on 27.2% (SD = 22.4) of 

trials. The percentage accuracy of observers’ responses was analysed as a function of 

condition (examples vs. no-examples), block (Block 1 vs. Block 2 vs. Block GFMT vs. Block 

KFMT), and trial type (match vs. mismatch). The cross-subjects means of this data are 

illustrated in Figure 3.5. A 2 (condition) x 2 (trial type) x 4 (block) mixed-factor ANOVA of 

this data did not reveal a main effect of condition, F(1,58) = 0.05, p = .83, ηp
2 = .00, or an 

interaction between condition and trial type, F(1,58) = 0.34, p = .56, ηp
2 = .01, or condition 

and block, F(3,174) = 0.88, p = .45, ηp
2 = .02. Furthermore, a three-way interaction between 

condition, trial type and block was not found, F(3,174) = 0.53, p = .67, ηp
2 = .01. However, 

when the data was collapsed across both conditions, ANOVA showed main effects of block, 

F(3,174) = 534.78, p < .001, ηp
2 = .90, and trial type, F(1,58) = 4.73, p < .05, ηp

2 = .08, and 

an interaction between these factors, F(3,174) = 5.70, p < .01, ηp
2 = .09.  
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FIGURE 3.5. Percentage accuracy by trial type (error bars show the standard error of the 

mean) and overall baseline accuracy correlated with percentage improvement for the no-

examples and examples conditions across blocks in Experiment 6. Note that accuracy on the 

KFMT is consistently lower than the GFMT (see Fysh & Bindemann, 2018a). Therefore, to 

make the KFMT score compatible with the GFMT scores for the correlational figures, the 

mean difference between baseline and KFMT accuracy was calculated (28.8%) and then 

added to each KFMT score. 
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Analysis of simple main effects did not reveal a main effect of trial type for Block 1, 

F(1,58) = 0.23, p = .64, ηp
2 = .00. However, the effect of trial type was approaching 

significance for Block 2, F(1,58) = 3.69, p = .06, ηp
2 = .06, and was reliable for Block 

GFMT, F(1,58) = 12.03, p < .01, ηp
2 = .17, and Block KFMT, F(1,58) = 5.38, p < .05, ηp

2 = 

.09, due to higher accuracy on match than mismatch trials. 

Analysis of simple main effects also revealed a main effect of block for match trials, 

F(3,56) = 60.38, p < .001, ηp
2 = .76. A series of paired-sample t-tests (with alpha corrected to 

.05/6 = .008 for six comparisons) revealed that match accuracy for Block 1 was lower than 

for Block 2, t(59) = 4.51, p < .001, and Block GFMT, t(59) = 5.36, p < .001, whereas no 

difference in match accuracy was found between Block 2 and Block GFMT, t(59) = 2.08, p = 

.04. These comparisons indicate that match accuracy for face pairs from the GFMT increased 

after the first block of this experiment. In addition, accuracy for Block KFMT was lower than 

for Block 1, t(59) = 11.53, p < .001, Block 2, t(59) = 13.67, p < .001, and Block GFMT, t(59) 

= 13.41, p < .001, reflecting the established greater difficulty of face pairs from the KFMT 

than the GFMT (see Fysh & Bindemann, 2018a). 

A simple main effect of block was also found for mismatch trials, F(3,56) = 89.48, p 

< .001, ηp
2 = .83. Paired-sample t-tests (with alpha corrected to .05/6 = .008 for six 

comparisons) revealed that mismatch accuracy for Block KFMT was lower than for Block 1, 

t(59) = 15.24, p < .001, Block 2, t(59) = 16.79, p < .001, and Block GFMT, t(59) = 15.06, p < 

.001. No other comparisons were significant, all ts ≤ 1.31, ps ≥ .20.  
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Individual differences 

As in previous experiments, the differences in accuracy between Block 1 and all 

subsequent blocks were calculated to provide a measure of change in performance across 

blocks. These change scores were then correlated with baseline (Block 1) accuracy (see 

Figure 3.5). For overall accuracy in the examples condition, baseline performance correlated 

negatively with change for Block 2 and Block GFMT, r(28) = -.51, p < .01 and r(28) = -.55, 

p < .01, respectively. This indicates that examples most improved the individuals who 

performed with lower accuracy at baseline. This correlation was also found for Block KFMT, 

r(28) = -.40, p < .05, indicating generalization of the examples effect onto face pairs from a 

different stimulus set.  

Once again, these correlations were also conducted separately for match and 

mismatch trials. In the examples condition, baseline accuracy for match and mismatch trials 

correlated with change for Block 2, r(28) = -.60, p < .01 and r(28) = -.53, p < .01, and for 

Block GFMT, r(28) = -.81, p < .001 and r(28) = -.60, p < .001, again indicating improvement 

in accuracy with examples which was most pronounced for lower-performing individuals at 

baseline. However, these correlations for match and mismatch trials were not reliable for 

Block KFMT, r(28) = .03, p = .89 and r(28) = -.21, p = .28, which indicates that 

generalizability of the examples effect onto stimuli from a different face set was not robust 

here when this was assessed by trial type. 

In the no-examples condition, overall accuracy at baseline did not correlate with 

change in Block 2, r(28) = -.30, p = .11, Block GFMT, r(28) = -.14, p = .46, or Block KFMT, 

r(28) = -.20, p = .28. Similarly, a breakdown of this data shows that baseline accuracy on 

mismatch trials did not correlate with changes in accuracy for Block 2, r(28) = -.15, p = .42, 

Block GFMT, r(28) = -.13, p = .51, or Block KFMT, r(28) = .04, p = .82. However, such 
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correlations were observed for match trials on Block 2, r(28) = -.87, p < .001, and Block 

GFMT, r(28) = -.89, p < .001, but not Block KFMT, r(28) = -.05, p = .79. 

 

Discussion 

This experiment aimed to consolidate the findings of Experiments 4 and 5, which 

suggest that the provision of example stimuli during face matching improves identification 

accuracy, particularly in lower-performing individuals. In terms of correlations using 

individuals’ overall accuracy, Experiment 6 replicates the examples improvement of the 

preceding experiments and shows also that the beneficial effect of the examples is retained 

when the example pairs are no longer displayed. In addition, Experiment 6 also demonstrates 

that such generalisation extends to an entirely different stimulus set, comprising face pairs 

from the KFMT (Fysh & Bindemann, 2018a). However, unlike the examples improvement 

with GFMT stimuli, generalization of improvement onto KFMT stimuli was observed only in 

overall accuracy, but not when match and mismatch trials were considered separately. 

Together, these findings consistently indicate the existence of generalization of the examples 

improvement onto previously unseen stimuli but suggest also that this effect is less robust 

with stimuli from a different source to the examples, with differing characteristics. 

As in Experiment 5, these conclusions are tempered by an inspection of the no-

examples group, which also revealed negative correlations between baseline performance and 

accuracy on all subsequent blocks with GFMT faces. In contrast to the examples condition, 

these correlations were observed only with match trials and occurred in the context of an 

increase in match responses at group level, which increased during the experiment. It is 

therefore possible that the correlations in the no-examples condition arise from a match bias 

that develops over the course of face matching experiments (see, e.g., Alenezi & Bindemann, 

2013; Alenezi et al., 2015; Bindemann et al., 2016; Fysh & Bindemann, 2017b; Papesh et al., 



96 
 

2018). However, the correlation on match trials of the no-examples condition, and the group-

level increase in match responses across blocks, were not observed consistently across all 

three experiments. It is possible that this arises from the limited sample sizes for the current 

experiments in conjunction with the large individual differences that are typically observed in 

face matching experiments (see, e.g., Bindemann, Avetisyan et al., 2012; Bobak, Hancock et 

al., 2016; Burton et al., 2010). Therefore, an additional analysis was conducted to explore the 

robustness of these findings, by combining the data of all experiments. 

 

Comparison across experiments 

Combining data from all three experiments, the effect of examples on face matching 

accuracy was first examined at a group level, based on the cross-subject means of observers 

mean percentage accuracy. A 2 (condition: examples vs. no-examples) x 2 (block: Block 1 

vs. Block 2), x 2 (trial type: match vs. mismatch) ANOVA of this data revealed an interaction 

of block and condition, F(1,178) = 7.08, p < .01, ηp
2 = .04. Analysis of simple main effects 

showed that overall accuracy was similar for the examples condition and the no-examples 

condition in Block 1 (91.6 % and 92.6%), F(1,178) = 0.81, p = .37, ηp
2 = .01, and Block 2 

(93.9% and 92.6%), F(1,178) = 1.58, p = .21, ηp
2 = .01, and was also comparable across 

blocks in the no-examples condition (92.6% and 92.6%), F(1,178) = 0.00, p = 1.00, ηp
2 = .00. 

However, accuracy increased from Block 1 to Block 2 in the examples condition (91.6% and 

93.9%), F(1,178) = 14.16, p < .001, ηp
2 = .07. 

ANOVA also revealed a main effect of block, F(1,178) = 7.08, p < .01, ηp
2 = .04, and 

an interaction between block and trial type, F(1,178) = 17.37, p < .001, ηp
2 = .09. This 

interaction reflects that match and mismatch accuracy was comparable for Block 1 (91.1% 

and 93.1%), F(1,178) = 2.86, p = .09, ηp
2 = .02, and mismatch accuracy was also similar 

across both blocks (93.1% and 92.2%), F(1,178) = 1.91, p = .17, ηp
2 = .01. In contrast, match 



97 
 

accuracy increased from Block 1 to Block 2 (91.1% and 94.3%), F(1,178) = 21.52, p < .001, 

ηp
2 = .11, and the difference in accuracy between match and mismatch trials in Block 2 was 

also approaching significance for Block 2 (94.3% and 92.2%), F(1,178) = 3.37, p = .07, ηp
2 = 

.02, due to higher accuracy on match trials. Overall, these analyses therefore demonstrate that 

two separable effects occurred across all experiments at a group level. The first presents an 

improvement in face-matching accuracy with the provision of examples. The second suggests 

that the proportion of correct match responses increased across blocks over the course of the 

experiments. None of the remaining main effects or interactions were significant, all Fs ≤ 

2.19, ps ≥ .14, ηp
2 ≤ .01. 

The next step of this analysis sought to explore the role of individual differences in 

face matching, by repeating the correlational analysis for the full sample of participants, 

pooled across all three experiments here. This analysis was motivated by variation in the 

pattern of significant correlations that were observed across experiments. A summary of these 

correlations is provided in Table 3.1. Firstly, this data reveals some notable consistencies. For 

example, in each of the three experiments, improvement correlations were always observed 

for overall accuracy in Block 2 of the examples condition. At the same time, such 

correlations were never observed in Block 2 of the no-examples condition. This data 

therefore provides converging evidence that the provision of example stimuli improves face-

matching accuracy, particularly in lower-performing individuals. In addition, similar 

correlations in overall accuracy were also observed in the examples condition when GFMT 

face pairs were repeated without examples in Experiment 5 (i.e., in Block Old Faces) and 

Experiment 6 (Block GFMT), when previously unseen faces from the GFMT were presented 

in Experiment 5 (Block New Faces), and when faces from a different stimulus set were 

presented in Experiment 6 (Block KFMT). Again, the same correlations were always absent 
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in the corresponding blocks of the no-examples condition, thus further strengthening the 

conclusion that examples improved face-matching accuracy. 

Whilst the overall accuracy data presents a clear picture, the pattern of effects is more 

complex when the data is broken down into match and mismatch trials (see Table 3.1). This 

shows, for example, that an improvement correlation was observed in Block 2 of the 

examples condition of Experiment 4 for match trials, but not for mismatch trials. In contrast, 

these correlations were significant for both trial types in Experiment 5 and 6. In addition, 

some correlations were also observed in the no-examples condition, such as for identity-

mismatches in Block 2 of Experiment 4 and for matches in Block 2 of Experiments 5 and 6. 

At present, it is not possible to explain this variation in effects. However, face matching is 

characterised by very broad individual differences in accuracy among observers (see, e.g., 

Burton et al., 2010; Fysh & Bindemann, 2018a; White, Kemp, Jenkins, Matheson, et al., 

2014), as well as inconsistent responding on a block-by-block basis when the same 

individuals are tested repeatedly (e.g., Alenezi & Bindemann, 2013; Alenezi et al., 2015; 

Bindemann, Avetisyan et al., 2012, Bindemann et al., 2016; Fysh & Bindemann, 2017b). 

These inter- and intra-individual differences may underlie the variation in correlations that 

was observed here, particularly considering that sample size was limited for each experiment 

(with N = 30 per condition).  
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TABLE 3.1. Summary of correlations for Experiments 4 to 6, and for the combined data for 

these experiments, with and without potential outliers (all and w/o outliers), and for median-

split data to show correlations for the worst (lower accuracy) and best performers (higher 

accuracy) at baseline. 

 

To explore this issue further, the data from Block 2 was collated across experiments 

(see Table 3.1 and Figure 3.6). For the examples condition, this analysis reveals clear 

improvement correlations for overall accuracy as well as for match and mismatch trials. 

Inspection of Figure 3.6 suggests the presence of three potential outliers (i.e., accuracy lower 

Experiment 1 Block 2

Examples Overall r (28) = -.60 **

Matches r (28) = -.86 ***

Mismatches r (28) = .04

No-Examples Overall r (28) = -.16

Matches r (28) = -.26

Mismatches r (28) = -.45 *

Experiment 2 Block 2 Block Old Faces Block New Faces

Examples Overall r (28) = -.67 *** r (28) = -.73 *** r (28) = -.45 *

Matches r (28) = -.77 *** r (28) = -.72 *** r (28) = -.34 

Mismatches r (28) = -.74 *** r (28) = -.68 *** r (28) = -.56 **

No-Examples Overall r (28) = -.13 r (28) = -.09 r (28) = .11

Matches r (28) = -.40 * r (28) = -.79 *** r (28) = -.74 ***

Mismatches r (28) = .18 r (28) = .52 ** r (28) = .35

Experiment 3 Block 2 Block GFMT Block KFMT

Examples Overall r (28) = -.51 ** r (28) = -.55 ** r (28) = -.40 *

Matches r (28) = -.60 ** r (28) = -.81 ** r (28) = .03

Mismatches r (28) = -.53 ** r (28) = -.60 *** r (28) = -.21

No-Examples Overall r (28) = -.30 r (28) = -.14 r (28) = -.20

Matches r (28) = -.87 *** r (28) = -.89 *** r (28) = -.05

Mismatches r (28) = -.15 r (28) = -.13 r (28) = .04

Overall

All W/o outliers Lower accuracy Higher accuracy

Examples Overall r (88) = -.60 *** r (85) = -.53 *** r (42) = -.45 ** r (28) = .06

Matches r (88) = -.78 *** r (85) = -.86 *** r (42) = -.75 *** r (28) = -.48 **

Mismatches r (88) = -.39 *** r (85) = -.330 ** r (42) = -.30 * r (28) = .09

No-Examples Overall r (88) = -.19 r (88) = -.19 r (43) = -.01 r (43) = -.28

Matches r (88) = -.38 *** r (88) = -.38 *** r (43) = -.31 * r (43) = -.43 **

Mismatches r (88) = -.10 r (88) = -.10 r (43) = -.12 r (43) = -.03

* = p  < .05, ** = p  < .01, *** = p  < .001

Block 2
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than 70%), but the pattern of correlations remains the same when these data points are 

removed (see Table 3.1). This study also sought to explore further whether these correlations 

are genuinely driven by improvement in the lower-performing observers at baseline, or 

whether these could be attributed, at least in part, to high performing observers. This is 

plausible considering that the best-performing observers were at or near-ceiling. Thus, these 

observers can essentially only maintain their baseline accuracy level in Block 2, or drop 

below this level, which could potentially underpin the negative correlations that were 

observed here. Crucially, however, such a pattern would contradict the conclusion that 

examples improved performance. To investigate this possibility, participants were sorted by 

their baseline accuracy and conducted a median split on these data. The correlations were 

then repeated for observers with the lower baseline accuracy and the higher baseline 

accuracy. The outcome of this analysis is also displayed in Table 3.1 and shows clearly that 

the improvement correlations were driven by observers with lower baseline accuracy. Taken 

together, the analyses presented here therefore provide clear evidence that examples 

improved face-matching accuracy in the current experiments, particularly in lower-

performing individuals. 
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FIGURE 3.6. Baseline accuracy correlated with improvement from Block 1 to Block 2 

collapsed across all three experiments. Black markers denote potential outliers (observers 

who scored less than 70% overall at baseline). 

 

The pooling of data across experiments also serves to clarify the variation in 

significant and non-significant correlations that were observed in the no-examples condition 

across individual experiments. Analysis of the pooled data reveals consistently negative 

correlations between baseline performance and change in accuracy on subsequent blocks for 

match trials. Contrary to the examples condition, however, such correlations were not present 

for mismatch trials and overall accuracy. In the context of the block by trial type interaction 

at a group level, which was driven by an increase in accuracy during the experiment on match 

trials, the correlations on match trials may be attributed to a tendency to record increasingly 

more correct match responses over the course of the experiment. There is logically more 

scope for the lower-performing observers from the baseline block to record such an increase 

in Block 2, thus leading to the negative correlations that were observed in the no-examples 

condition here. A similar increase in match responses over the course of experiments has now 
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been observed in several studies (Alenezi & Bindemann, 2013; Bindemann et al., 2016; Fysh 

& Bindemann, 2017b; Papesh et al., 2018), though the cause of this effect remains unclear 

(see Alenezi et al., 2015). 

 

General Discussion 

Unfamiliar face matching is difficult and error-prone (see, e.g., Bindemann, 

Avetisyan et al., 2012; Burton et al., 2010; Henderson, Bruce, & Burton, 2001; Megreya & 

Burton, 2006b), even for experienced professionals who perform this task routinely (e.g., 

White, Kemp, Jenkins, Matheson et al., 2014; White, Philips, Hahn, Hill, & O’Toole, 2015). 

Therefore, this study examined whether matching accuracy can be improved by the provision 

of example face pairs, which were displayed either side of a target face pair and clearly-

labelled as identity-matches or mismatches. Examples improved performance at a group level 

when data was pooled across all three experiments presented here. Correlational analyses 

revealed that examples also improved individual performance, but particularly in observers 

who were least accurate at the beginning of the experiment. This improvement was observed 

consistently in overall accuracy in each of the three experiments reported here, and also in 

match and mismatch trials when data was collated across all experiments to boost sample size 

for correlational analysis. In addition, this improvement generalised to new face pairs when 

these were taken from the same stimulus set as the examples (the GFMT, in Experiment 5) 

and, to a lesser extent, to face pairs from a different stimulus set (the KFMT in Experiment 

6). 

 How might examples help to improve face-matching performance? One possibility is 

that observers have limited a priori criteria for knowing what constitutes an identity-match or 

mismatch. This idea is compelling considering that faces display considerable within-person 

variation in appearance (Jenkins, White, Van Montfort, & Burton, 2011). As a consequence, 
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identification rates can vary for different face pairs of the same person, even when these are 

acquired on the same day but with different image-capture methods (Bindemann & Sandford, 

2011). Thus, face matching could be characterised as a rather ‘fluid’ task, in which different 

criteria might be required to make an identification depending on the images at hand, even 

when these depict the same person. In turn, this implies that one source of poor performance 

on this task could be the criteria that observers have available to solve it. 

 A range of evidence might support such an account. Firstly, poor performance in 

unfamiliar-face matching indicates that many individuals have a limited idea of what 

constitutes a match or mismatch (see, e.g., Bindemann, Avetisyan et al., 2010; Megreya & 

Burton, 2008). However, some individuals also perform exceptionally well at matching tasks 

(see, e.g., Bindemann, Avetisyan et al., 2012; Bobak, Dowsett et al., 2016; Bobak, Hancock 

et al., 2016; Bobak, Pampoulov et al., 2016; Burton et al., 2010; Estudillo & Bindemann, 

2014; Robertson, Noyes, Dowsett, Jenkins, & Burton, 2016). This indicates a possible 

resource limit problem, whereby to-be-matched face pairs contain the necessary visual 

information to make an identification, but some individuals simply do not know how to 

utilize this information effectively (see, e.g., Fysh & Bindemann, 2017a; Jenkins & Burton, 

2011). 

 Secondly, many observers appear to have limited insight into their own ability to 

process unfamiliar faces (see, e.g., Bindemann, Attard, & Johnson, 2014; Bobak, Mileva, & 

Hancock, 2018; Palermo et al., 2017), which also makes it likely that they possess inadequate 

criteria for identification. This notion receives further support from the phenomenon of 

choice blindness, which shows that individuals will unwittingly justify a matching decision 

for face pairs, even if they did, in fact, originally make a different identification decision to 

the same stimuli (Sauerland et al., 2016). This phenomenon should simply not present if 

people had definitive, stable criteria for categorizing identity-match and mismatch face pairs. 
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In turn, providing criteria of some kind seems to help improve this task. For example, 

trial-by-trial feedback for an observer’s responses can improve their face-matching accuracy 

(White, Kemp, Jenkins, & Burton, 2014), but only if this feedback is delivered whilst the 

stimuli remain on display (c.f., Alenezi & Bindemann, 2013; White, Kemp, Jenkins, & 

Burton, 2014). This suggests that such feedback might work by enhancing participants’ face-

matching criteria. However, such feedback can only be administered if the nature of a face 

pair (i.e., as an identity-match or mismatch) is already known, which is not typically the case 

in applied settings at the point of identification. Thus, it is possible that the provision of 

examples might enhance face-matching accuracy in a similar manner, by providing 

information about what constitutes an identity-match or mismatch, but with the advantage 

that this is not dependent on prior knowledge of the nature of a target face pair. 

The current experiments show that the examples-advantage generalises to face pairs 

from the same set (i.e., the GFMT, Burton et al., 2010) even after the examples are no longer 

presented. This indicates that the face-matching criteria that are acquired from the examples 

are internalised by observers and can continue to improve performance after their removal. At 

the same time, such generalisation was more limited for face pairs from a different stimulus 

set (the KFMT; see Fysh & Bindemann, 2018a). This is a potential limitation if one were to 

consider the provision of examples for improving face-matching performance in applied 

settings, such as passport control, where observers would inevitably encounter faces from a 

broad range of types and ethnicities. It is noted, however, that other methods currently under 

investigation for improving face-matching accuracy, such as feature comparison strategies 

(Towler, White, & Kemp, 2017) and feature instructions (Megreya & Bindemann, 2018), also 

show limited generalisation to other stimulus sets. One possible explanation for this finding is 

that the criteria that are required for identity-matching vary across different face sets. In 

support of this reasoning, it is already known that different visual features carry identity 
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information in faces of different races (see, e.g., Hills, Cooper, & Pake, 2013; Hills & Pake, 

2013). If the same applies to different face sets of the same race, then this could explain why 

reduced generalisation is found for the KFMT faces in Experiment 6. To this point, it is noted 

that the GFMT and KFMT differ in construction considerably, whereby one test offers same-

day face pairs that are optimised for identity-matching, whereas the other comprises more 

variable stimuli that were taken months apart (c.f., Burton et al., 2010; Fysh & Bindemann, 

2018a). 

 In conclusion, the current chapter shows that the provision of examples improves 

face-matching accuracy, particularly in lower-performing individuals. This examples-

advantage persists after these are removed from view and generalises to previously unseen 

face pairs that are drawn from the same and a different stimulus set. Therefore, these findings 

suggest that examples aid performance by providing criteria to distinguish identity-matches 

and mismatches that observers would otherwise have to deduce by their own judgement 

during face matching. 

 

  



106 
 

 

 

 

 

 

 

Chapter 4 

 

Understanding the examples advantage: 

An eye-tracking investigation 
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Introduction 

Chapter 3 introduced examples as a method of improving unfamiliar face matching 

accuracy by providing observers with a kind of simultaneous feedback, without the need for 

knowledge of the correct decision for a given pair. Provision of example matches and 

mismatches improved identification accuracy for target face pairs (Experiment 4), especially 

for observers who initially performed poorly at this task. This examples-advantage was 

maintained after examples were removed, generalised to new face pairs from the same 

stimulus set (Experiment 5), and demonstrated generalisation to face pairs from a different 

stimuli set (Experiment 6). However, although observers improved with the provision of 

examples, self-reported example usage was low across experiments (approximately 25% of 

trials) and did not show a clear relationship with accuracy on a trial-by-trial basis. 

Furthermore, self-reported example usage was not associated with individual improvement in 

face-matching performance (r(88) = .05, p = .65).  

Observers have limited insight into their internal cognitive processes (Nisbett & 

Wilson, 1977; Wilson & Dunn, 2004). For example, participants demonstrate poor awareness 

of their eye-movements (see, e.g., Clarke, Mahon, Irvine, & Hunt, 2017; Mahon, Clarke, & 

Hunt, 2018) and struggle to accurately report where they have looked previously (see, e.g., 

Kok, Aizenman, Võ, & Wolfe, 2017; Võ, Aizenman, & Wolfe, 2016). If observers show a 

similar lack of insight for their viewing and processing of the example pairs, it is likely that 

the self-report measure of Chapter 3 did not accurately capture observers’ example usage. 

Furthermore, the task instructions implied that examples should be utilised for particularly 

difficult trials, hence participants may display demand characteristics by reporting the use of 

examples when they found a trial particularly challenging, regardless of their actual usage. 

Another possibility is that the definition of what constituted a ‘use’ of example pairs may 

have varied across observers. For instance, some participants may have classed the mere 
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viewing of examples as usage, whilst for others, a use may have constituted actively using 

information provided by the examples in their target identification. Thus, the question arises 

of whether we can gain a clearer understanding of how examples impact face-matching 

performance with a more direct measure of example usage. In this chapter, eye-tracking is 

employed to provide such a measure.  

Eye-tracking gives a direct measure of observers’ looking behaviour and can be used 

to monitor ongoing cognitive processing (see, e.g., Henderson, 2003, 2007; Rayner, 1998). 

Eye-tracking has been used in numerous studies of face processing (e.g., Fletcher, Butavicius, 

& Lee, 2008; Heisz & Shore, 2008; Luria & Strauss, 1978; Smilek, Birmingham, Cameron, 

Bischof, & Kingstone, 2006; Walker-Smith, Gale, & Findlay, 2013). Studying eye 

movements has given insights into face perception (e.g., Bindemann, Scheepers, & Burton, 

2009; Blais, Jack, Scheepers, Fiset, & Caldara, 2008), face learning (e.g., Estudillo & 

Bindemann, 2017; Millen, Hope, Hillstrom, & Vrij, 2017), face detection (e.g., Bindemann, 

Scheepers, Ferguson, & Burton, 2010; Crouzet, Kirchner, & Thorpe, 2010) and face memory 

(e.g., Althoff & Cohen, 1999; Henderson, Williams, & Falk, 2005). Eye-tracking has also 

informed face viewing strategies, such as the order in which facial features are viewed (e.g., 

Bindemann et al., 2009), how pairs of faces are fixated when a matching decision is required 

(e.g., Özbek & Bindemann, 2011), how a target is selected in a line-up (e.g., Mansour & 

Flowe, 2010) and where observers look in scenes with people present (e.g., Birmingham, 

Bischof, & Kingstone, 2008a, 2008b, 2009). Thus, it is likely that eye-tracking can also be 

used to determine how observers’ view and utilise examples in an unfamiliar face matching 

task and so give a more sensitive measure of how examples are used over the course of the 

experiment. 

A second question arising from the experiments reported in Chapter 3 is how much 

does the nature of the examples provided influence the improvement effect found? In the 
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previous chapter, it was suggested that examples may improve accuracy by helping 

individuals to solidify the criteria they use to make matching decisions. Observers appear to 

have limited insight into their own face processing capabilities (Bindemann, Attard, & 

Johnston, 2014; Bobak, Mileva, & Hancock, 2018; Bobak, Pampoulov, & Bate, 2016; 

Palermo et al., 2017, but see Livingston & Shah, 2017; Ventura, Livingston, & Shah, 2018), 

and therefore may have inadequate matching criteria for discriminating match and mismatch 

trials (see, e.g., Lander, Bruce, & Bindemann, 2018). Thus, example pairs that help shape 

these criteria are likely to be the most effective for this task.  

In the preceding experiments, the difficulty of example face pairs was not 

manipulated systematically. However, there is good reason to assume that this may impact on 

the task, as faces can display considerable within-person variation (Jenkins, White, Van 

Montfort, & Burton, 2011). Consequently, matching accuracy of images of the same person 

can be highly variable, even if the photos are taken on the same day but using different 

cameras (Bindemann & Sandford, 2011). Moreover, viewing more varied images of 

individuals has been shown to improve learning of unfamiliar faces (e.g., Burton, 2013; 

Burton, Kramer, Ritchie, & Jenkins, 2016; Ritchie & Burton, 2017). It is therefore likely that 

example match pairs with greater variation between images of the same individual will be 

more useful for this experiment. In turn, for unfamiliar face matching tasks, mismatch pairs 

are typically selected by finding individuals within the stimuli set who look similar to each 

other (see, e.g., Burton, White, & McNeill, 2010; Fysh & Bindemann, 2018a). This practice 

reflects how in a real-life matching scenario, impostors will aim to make themselves as close 

in appearance to their falsely obtained photo IDs as possible. However, variation exists in the 

extent to which such mismatches can be achieved (see, e.g., by-item mismatch data in Fysh & 

Bindemann, 2018a). Mismatch pairs that are of high similarity should also be more useful for 

refining observers’ existing matching criteria, by illustrating more ways in which the faces of 
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different people can appear very similar, as well as more subtle differences between persons, 

than mismatches that are of lesser difficulty. 

In addition to the self-report measure of example usage employed in the previous 

chapter, this study utilised eye-tracking to assess how examples are used to help improve 

unfamiliar face matching. Eye-tracking is a more sensitive measure than self-report so should 

help to clarify how examples are utilised for this task. Moreover, viewing time appears to 

relate to matching accuracy, whereby more prolonged viewing improves matching decisions 

(see, e.g., Özbek & Bindemann, 2011; Fysh & Bindemann, 2017b). Thus, it is expected that 

the duration of the example fixations should reflect accuracy such that the more time spent 

looking at examples, the greater the likelihood of task improvement. To further explore 

whether the nature of examples provided impacts unfamiliar face matching improvement, 

observers were provided with either low-difficulty examples (match pairs with little variation, 

greater dissimilarity between mismatch pairs) or high-difficulty examples (increased 

variation between match pairs, mismatch pairs consisting of more similar looking 

individuals). A further group of observers did not view the example pairs to provide an 

accuracy baseline.  

 

Experiment 7 

Method 

Participants 

Ninety individuals (71 female, 19 male) from the University of Kent, with a mean age 

of 20.5 years (SD = 3.8; range: 18-39), took part in this experiment. The participants were 

given course credit or a small fee for their time. All participants were of Caucasian ethnicity 

and reported normal or corrected-to-normal vision. The experiment reported here was 
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approved by the Ethics Committee of the School of Psychology at the University of Kent and 

conducted according to BPS guidelines. 

 

Stimuli 

Sixty-four face pairs from the Glasgow University Face Database (GUFD) provided 

stimuli for this study (see Burton et al., 2010). These consisted of 32 match pairs (two 

different same-day photographs of the same person) and 32 mismatch pairs (two different 

individuals in each pair). All the faces were presented in greyscale, with a front pose and 

neutral expression. The faces were cropped to remove extraneous background. The maximum 

size for a face was 43 x 54 mm, with a maximum gap between faces in a pair of 25 mm.  

In the experiment, 40 pairs (20 matches, 20 mismatches) were utilised as the target 

pairs for observers to match. Each target pair was shown beneath the question “Match or 

Mismatch?”. These pairs were centrally presented and repeated across three blocks. The 

remaining pairs were divided in to ‘low’ and ‘high’ difficulty (based on average observer 

performance in the previous chapter) to serve as example face pairs. The mean accuracy for 

the low and high difficulty examples was 96.9% and 85.1% respectively. An independent 

samples t-test confirmed performance was higher for the low-difficulty than the high-

difficulty pairs, t(22) = 7.54, p < .001. These face pairs were then employed as example 

stimuli in Block 2 and flanked the target pair for the two experimental conditions. Two 

examples were provided for each target, one matching and one mismatching pair and were 

clearly labelled as such. The example pairs for each target were selected randomly, but the 

sex of the example faces was matched to the target face for all trials. For an illustration of 

stimulus arrays, see Figure 4.1. 
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FIGURE 4.1. Example stimulus arrays for Blocks 1 and 3 (top row) for all conditions and 

Block 2 for the low-difficulty examples (middle row) and high-difficulty examples (bottom 

row) for Experiment 7. In the no-examples condition, Block 2 was the same as Blocks 1 and 3 

(top row).  

 

Procedure 

 SR-Research Experiment Builder software (VERSION 1.1.0) was utilised to display 

the stimuli for this experiment. The stimuli were presented on a 21-inch colour monitor with 

a screen resolution of 1024 x 768. An SR-Research Eyelink 1000 was employed to track eye 

movements, using a sampling rate of 1000 Hz, a spatial resolution < 0.01˚ and gaze position 
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accuracy < 0.5˚. Observers were positioned 60 cm from the monitor, with a chinrest to 

maintain the distance and head position. Only the left eye was tracked for each participant 

and was calibrated using the standard Eyelink nine-point fixation procedure. Hence, 

observers viewed a set of nine fixation targets, with a second sequence of nine targets to 

validate the calibration. If this process revealed a measurement error of greater than 1˚ of 

visual angle, the calibration procedure was repeated. A fixation cross was shown at the 

beginning of each trial to allow for drift correction, followed by a grey screen for a duration 

of one second. The stimuli were then displayed until the observer confirmed their matching 

decision by pressing one of two response keys on a standard computer keyboard. All 

participants completed a total of three blocks, each containing 40 trials (20 match, 20 

mismatch). In the second block of the example conditions, each stimuli screen followed with 

a screen asking participants to use one of two different response keys to indicate whether they 

had utilised the examples.  

 

Results 

Group-level accuracy 

In the first step of analysis, a 2 (trial type: match vs. mismatch) x 3 (example type: no-

examples vs. low-difficulty vs. high-difficulty) x 3 (block: Block 1 vs. Block 2 vs. Block 3) 

mixed-factor ANOVA was conducted to determine whether the nature of the examples 

presented can impact task performance. The cross-subject means of this data are displayed in 

Figure 4.2. ANOVA revealed the main effect of trial type was approaching significance, 

F(1,87) = 4.06, p = .05, ηp
2 = .05, due to higher accuracy on match trials. There was also a 

main effect of block, F(2,174) = 6.85, p < .01, ηp
2 = .07, and an interaction between these two 

factors, F(2,174) = 11.27, p < .001, ηp
2 = .12.  
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FIGURE 4.2. Percentage accuracy across blocks by trial type (top row) and percentage 

change in accuracy between blocks correlated with baseline accuracy (bottom row) for no-

examples, low-difficulty examples and high-difficulty examples for Experiment 7.  
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Analysis of simple main effects did not reveal a main effect of trial type for Block 1, 

F(1,87) = 0.64, p = .43, ηp
2 = .01. However, there were reliable main effects of trial type for 

Block 2, F(1,87) = 7.94, p < .01, ηp
2 = .08, and Block 3, F(1,87) = 13.06, p < .01, ηp

2 = .13, 

due to higher accuracy on match trials compared to mismatch trials. There was also a main 

effect of block for match trials, F(2,86) = 12.43, p < .001, ηp
2 = .22. A series of paired-sample 

t-tests with alpha corrected to .05/3 = .017 for three comparisons) revealed match accuracy 

for Block 1 was lower than for Block 2, t(89) = 4.51, p < .001, and Block 3, t(89) = 5.04, p < 

.001. No difference in match accuracy was found between Block 2 and Block 3, t(89) = 1.59, 

p = .12. These comparisons indicate that match accuracy increased for all conditions after 

Block 1 of this experiment. A main effect of block was not found for mismatch trials, F(2,86) 

= 0.62, p = .54, ηp
2 = .01.  

ANOVA did not reveal a main effect of example type, F(2,87) = 0.59, p = .55, ηp
2 = 

.01, or an interaction between example type and block, F(2,87) = 0.75, p = .48, ηp
2 = .02, or 

trial type, F(4,174) = 1.70, p = .15, ηp
2 = .04. The three-way interaction between these factors 

was also not significant, F(4,174) = 0.46, p = .76, ηp
2 = .01.  

Individual differences 

 To assess individual differences, a measure of change in performance was calculated 

by subtracting observers’ percentage accuracy on Block 1 from Block 2 and Block 3 

respectively. These scores were then correlated with Block 1 accuracy to determine if 

improvements in accuracy were associated with baseline performance1. This data is 

illustrated in Table 4.1. Negative correlations were consistently observed between baseline 

accuracy and change in performance in the low-difficulty and high-difficulty examples 

conditions, but also in the no-examples condition. However, there were a few exceptions. No 

                                                           
1 In the previous chapter, three outliers (i.e., with a baseline accuracy of <70%) were identified. However, for 

this experiment, the minimum overall accuracy observed at baseline was 77.5%. Therefore, no data points were 

identified as outliers in this experiment as all individuals obtained high levels of accuracy and exhibited 

normative performance for the GFMT (see Burton et al., 2010).  
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correlation was found for overall accuracy or mismatch accuracy in Block 2 for the no-

examples condition. In addition, no correlation was found for mismatch accuracy in Block 2 

or Block 3 for the high-difficulty examples condition. Thus, in general, observers who 

perform worse at baseline perform better in Blocks 2 and 3 across all three conditions.  

 

 

TABLE 4.1. Summary of correlations for Experiment 7. Baseline (Block 1) accuracy was 

correlated with change in performance (Block 2 / 3 performance minus Block 1 performance) 

when observers were or were not given examples (Block 2) and in the subsequent block were 

examples were removed if provided previously (Block 3).  

 

Example Usage 

This experiment also aimed to assess how observers use examples in an unfamiliar 

face matching task and thus, participants’ eye-movements were analysed. Prior to analysis, 

eye-movements were filtered to amalgamate fixations of less than 80 ms with the prior or 

subsequent fixation if it was within half a degree of visual angle. If not, these short fixations 

were discounted. As processing is unlikely to stop during an eye-blink, when these occurred, 

their duration was added to the immediately previous fixation.   

Experiment 7 Block 2 Block 3

No-Examples Overall r (28) = -.25 r (28) = -.59 **

Matches r (28) = -.87 *** r (28) = -.90 ***

Mismatches r (28) = .02 r (28) = -.46 *

Low-Difficulty Examples Overall r (28) = -.71 *** r (28) = -.78 ***

Matches r (28) = -.86 *** r (28) = -.96 ***

Mismatches r (28) = -.42 * r (28) = -.65 ***

High-Difficulty Examples Overall r (28) = -.59 ** r (28) = -.39 *

Matches r (28) = -.83 *** r (28) = -.71 ***

Mismatches r (28) = -.35 r (28) = -.19

* = p  < .05, ** = p  < .01, *** = p  < .001
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For this experiment example usage data was collected using two methods; self-report 

(as in Chapter 3) and observers’ fixations on the example stimuli. Participants reported 

utilising examples on 28.3 % (SD = 12.7) and 28.3% (SD = 14.5) of trials for low-difficulty 

and high-difficulty examples respectively. In contrast, participants fixated the low-difficulty 

example pairs on 73.1% (SD = 20.0) of trials and looked at the high-difficulty example pairs 

on 80.8% (SD = 22.9) of trials. A 2 (example difficulty: low-difficulty vs. high-difficulty) x 2 

(measure: fixation vs. self-report) revealed a main effect of measure, F(1,58) = 305.11, p < 

.001, ηp
2 = .84, due to more fixation to example pairs than reported use of them (see Figure 

4.3). Observers therefore look at examples on far more trials than they report utilising them to 

make their matching decisions. There was no main effect of condition, F(1,58) = 1.08, p = 

.30, ηp
2 = .02, and no interaction between these variables, F(1,58) = 1.86, p = .18, ηp

2 = .03.  

Fixation and self-report of example usage was also correlated to determine the 

agreement between these two measures (see Figure 4.3). For low-difficulty examples, 

fixation to the example pairs did not correlate with report of example usage, r(28) = .16, p = 

.39. However, for high-difficulty examples, fixation and report of example usage were 

positively correlated, r(28) = .43, p < .05. This suggests observers felt that they learned more 

from the high-difficulty examples as the more observers look at the examples, the more they 

report using them. As increased fixation to low-difficulty examples did not predict observers 

reported usage, it suggests that observers perceived these to be less useful for improving 

classification of the target pairs.  
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FIGURE 4.3. Percentage of trials where participants fixated on and reported utilising 

examples for the low-difficulty and high-difficulty example observers for Experiment 7. These 

two variables were also correlated for each condition to determine if the number of trials 

fixated predicts report of example usage. 

 

Example usage and Improvement 

 To determine if reported example usage is related to improved task performance, 

change in performance was correlated with self-reported example usage (see Figure 4.4). For 

the low-difficulty examples, self-reported example usage did not correlate with change in 
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performance for Block 2, r(28) = -.02, p = .91, or Block 3, r(28) = .03, p = .86. Similarly, for 

the high-difficulty examples, reported example usage did not correlate with change in 

performance for Block 2, r(28) = .18, p = .35, or Block 3, r(28) = -.07, p = .72. These 

findings corroborate those of the previous chapter that self-report is not a reliable measure of 

example usage on this task.  

 

 

FIGURE 4.4. Correlation between percentage change in performance from Block 1 to Block 

2 with the percentage of trials fixated, the percentage of trials where observers reported 

viewing examples and the duration of example viewing for the low-difficulty and high-

difficulty examples conditions for Experiment 7. 

 

Change in performance was also correlated with fixation to example pairs to establish 

whether looking at example pairs on more trials is associated with improved task 

performance (see Figure 4.4). For the low-difficulty examples, fixation did not correlate with 

change in performance for Block 2, r(28) = -.32, p = .09, or Block 3, r(28) = -.11, p = .56. 

Likewise, for the high-difficulty examples, fixation did not correlate with change in 
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performance for either Block 2, r(28) = .16, p = .40, or Block 3, r(28) = .09, p = .64. This 

suggests that observers learning from examples does not relate directly to the number of 

times these are viewed. 

 

Fixation Duration 

In this experiment, fixation only captured whether or not observers looked at the 

examples and did not discriminate between merely glancing at the examples or carefully 

studying them. The time spent looking at examples may therefore provide a better measure of 

example usage than simply assessing whether or not examples were looked at. A paired 

sample t-test indicated that time spent viewing the example pairs was comparable for the low-

difficulty and high-difficulty example condition, t(58) = 0.94, p = .35. However, whereas 

duration did not correlate with change in performance for low-difficulty examples in Block 2, 

r(28) = -.10, p = .62, or Block 3, r(28) = -.16, p = .41, duration was positively correlated with 

change in performance for the high-difficulty examples for Block 2, r(28) = .59, p < .01, but 

not Block 3, r(28) = .21, p = .26 (see Figure 4.4). This indicates that the high-difficulty 

examples procured a benefit for target classification on trials in which these were viewed for 

longer. 

 

Discussion 

In the previous chapter, the provision of example match and mismatch face pairs was 

found to improve unfamiliar face matching accuracy, especially for individuals who were 

low-performing at baseline. However, self-report of example usage was low across 

experiments (approximately 25% of trials). Furthermore, increased example usage did not 

predict task improvement, which suggests that self-reported example usage is inaccurate. 

Previous research has demonstrated that observers have limited insight into their own 
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cognitive processes (Nisbett & Wilson, 1977; Wilson & Dunn, 2004). Thus, the present study 

examined whether eye-tracking provided better insight into how observers utilise example 

pairs to improve their task performance. In addition, this study aimed to investigate how the 

nature of the examples provided relates to task performance, by affording participants no-

examples, or by providing low- and high-difficulty examples. 

For both the low-difficulty and high-difficulty examples conditions, observers fixated 

on the examples on substantially more trials than they reported using them. This is in line 

with previous studies that suggest observers struggle to accurately report their cognitive 

processes (see, e.g., Clarke et al., 2017; Mahon et al., 2018). Although observers fixated on 

the examples and reported using the examples on a similar percentage of trials for both 

example types, these two variables were only correlated for the high-difficulty examples. 

This suggests that observers feel they are using the high-difficulty examples more for 

discriminating between match and mismatch trials when they look at them.  

However, self-reported example usage did not inform task improvement for either the 

low- or high-difficulty examples. Previous studies have found that observers have limited 

insight into their own face processing ability (see, e.g., Bindemann et al., 2014; Bobak, 

Pampoulov et al., 2016; Palermo et al., 2017, but see Ventura et al., 2018). Thus, it is possible 

that observers are also unaware of when the examples are needed to make a decision and 

when the examples have influenced their decision. Participants were asked to report whether 

or not they had utilised the examples for their decision after each trial, however, their 

interpretation of the word ‘use’ may be subjective. For instance, some observers may report 

utilising the example pairs if they simply look at them during the trials, whereas others may 

only report using the examples if they have used the pair in their decision-making process 

(e.g., as a contrast to the target pair). Furthermore, the task instructions implied that the 

examples should be utilised on difficult trials. Therefore, observers may have reported using 
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the examples if they found a trial challenging, regardless of whether they actually used the 

example to help reach their decision. 

To explore these questions, eye movements to the examples were also recorded. This 

data indicates that the percentage of trials where examples were fixated also did not relate to 

improvement. However, the fixation measure only determines whether the example pair was 

looked at (and does not discriminate between observers merely glancing at the examples or 

carefully studying them). Therefore, it was also necessary to consider the duration of these 

fixations. For the high-difficulty examples, more time viewing the examples increased the 

likelihood of improvement. However, no such association was found for the low-difficulty 

examples condition. Accurate matching decisions for unfamiliar face pairs can be made 

within two seconds of viewing (see, e.g., Bindemann, Fysh, Cross, & Watts, 2016; Fysh & 

Bindemann, 2017b; Özbek & Bindemann, 2011). Thus, it is possible that as the low-difficulty 

examples consist of pairs that are clear matches and mismatches, looking at them for longer 

time periods does not increase learning. The high-difficulty pairs are likely to require more 

processing, as the match pairs have more variation between faces and the mismatch pairs are 

greater in similarity and therefore, need to be studied for longer for learning to take place. 

Taken together, these results suggest that the nature of the examples provided impacts the 

way the examples are processed and used in an unfamiliar matching task.  

This experiment also investigated how the nature of the examples provided impacts 

task accuracy. At a group level, the provision of examples (low-difficulty or high-difficulty) 

did not improve task performance. However, in the previous chapter the difference in group 

level accuracy was numerically small and required a larger sample size to detect. 

Furthermore, observers were found to not benefit equally from the provision of examples. 

Correlational analyses for Blocks 2 and 3 revealed a similar pattern to the previous chapter, 

indicating an overall improvement for low-performing individuals for both groups provided 
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with examples. When broken down into match and mismatch trials, a match improvement 

was found for both examples groups, but a mismatch improvement for poor-performing 

individuals was only found for the low-difficulty condition. However, a match improvement 

was observed not only for the two examples groups but also for the no-examples group. This 

match effect is in line with the previous chapter and is likely to be a result of an increase in 

match responses over time that has been observed in numerous studies (see, e.g., Alenezi, 

Bindemann, Fysh, & Johnston, 2015; Bindemann et al., 2016; Fysh & Bindemann, 2017b; 

Papesh, Heisick, & Warner, 2018). However, in contrast to the previous chapter, change in 

performance was also associated with overall baseline accuracy and mismatch accuracy in 

Block 3 for the no-examples group. This implies that in the final block, low-performing 

individuals were also able to improve in the absence of examples. Therefore, this experiment 

did not provide clear evidence that examples improve performance at a group or individual 

level. 

So why might some observers have demonstrated task improvement without the help 

of examples? One potential explanation is that this experiment differed in fundamental ways 

to those reported in the previous chapter. For example, eye-tracking requires the experimenter 

to initiate every trial due to the drift correction, which slowed observers down completing the 

task so may have increased their accuracy. Furthermore, the eye-tracking set-up requires the 

experimenter to be present in the room and sitting next to the participant as they complete the 

task. Previous studies have indicated that food and money can act as motivational incentives 

that improve unfamiliar face matching accuracy (e.g., Bobak, Dowsett, & Bate, 2016; Moore 

& Johnston, 2013). Thus, the presence of the experimenter may have acted as a similar 

motivation to perform better at the task. Moreover, the proximity of the experimenter as well 

as the eye-tracking nature of the task may have led participants to feel they were being 

closely monitored as they completed the experiment. The perception of being watched has 
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been shown to impact behaviour in a number of different scenarios (see, e.g., Bateson, 

Callow, Holmes, Redmond Roche, & Nettle, 2013; Bateson, Nettle, & Roberts, 2006; Fathi, 

Bateson, & Nettle, 2014; Nettle, Nott, & Bateson, 2012). For example, telling observers they 

are being monitored has been shown to reduce processing speed and ultimately increase 

accuracy on visual search tasks (Miyazaki, 2013). Hence, the perception of being monitored 

by the experimenter during the task may have increased task performance.  

These explanations are in line with higher overall accuracy and a reduced range of 

scores at baseline for the present study (M = 94.47, SD = 5.20, range: 77.5-100) compared to 

in the previous chapter (M = 92.10, SD = 7.22, range: 50-100; t(268) = 2.78, p < .01). The 

GFMT is a relatively easy face matching task with a high normative performance of around 

80-90% (Burton et al., 2010). While this was not a problem in the studies reported in the 

previous chapter, this in combination with the increases in accuracy that likely resulted from 

fundamental task differences (such as the proximity of the experimenter), meant there was 

very little room for improvement with the provision of examples as task performance was 

near ceiling. Consequently, performance was far more likely to decline over the course of the 

task than improve (see, e.g., Alenezi & Bindemann, 2013; Fysh & Bindemann, 2017b; 

Papesh et al., 2018). This decline is evident in the correlations between baseline accuracy and 

change in accuracy across the three conditions, which appear to be driven by higher 

performing individuals getting worse over time as opposed to lower performing individuals 

improving (see Figure 4.2).  

 For future research, it would be interesting to manipulate the eye-tracking set up so 

that the experimenter does not need to be in the room with the participants while they 

complete the task. This may help to address the near ceiling level performance found at 

baseline which likely resulted from the perception of being watched or being more motivated 

to be accurate due to the presence of the experimenter. Alternatively, the use of a more 
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challenging stimuli set such as the Kent Face Matching Test (KFMT, Fysh & Bindemann, 

2018a) or the Models Face Matching Test (MFMT, Dowsett & Burton, 2015), would provide 

more room for improvement and thus, would allow a better insight into if and how the 

provision of examples improves accuracy for unfamiliar face matching.  

In summary, this experiment provides insight into how examples are utilised to make 

decisions in an unfamiliar face matching task. In line with previous research, this study 

suggests that participants struggle to accurately report cognitive processing, as participants 

fixate on examples on substantially more trials than they report using them. Observers appear 

to feel that high-difficulty examples are more useful. However, these examples require more 

processing (i.e., a longer fixation duration) to facilitate learning and procure a benefit. 

However, in contrast to the experiments reported in the previous chapter, the present study 

did not provide clear evidence that the provision of examples can improve performance at a 

group or individual level. This was likely due to a combination of using relatively easy 

GFMT stimuli and the nature of the eye-tracking setup (i.e., the close proximity of the 

experimenter to the participant) motivating observers to be more accurate on the task across 

all three conditions. Consequently, more challenging stimuli such as the KFMT (Fysh & 

Bindemann, 2018a) or the MFMT (Dowsett & Burton, 2015) or an alternative eye-tracking 

set up (i.e., where the experimenter is not in the room with the participant) may be required to 

clarify the benefit of the provision of examples for unfamiliar face matching. 
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Chapter 5 

 

Summary, conclusions and future research 
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This thesis investigated how matching decisions are reached for pairs of unfamiliar 

faces and assessed a novel training method for improving accuracy in this task. A large body 

of psychological research has demonstrated that unfamiliar-face matching is a surprisingly 

error-prone task (for reviews, see, e.g., Fysh & Bindemann, 2017a; Robertson, Middleton, & 

Burton, 2015). However, while the difficulty of this task is well established, much less is 

known about the decision-making process that underlies it. Improved understanding of how 

observers perform this task may help to inform training, which could in turn increase 

matching performance. To this end, a small number of recent studies have attempted to 

establish whether there are ‘critical’ features that drive task accuracy (see, e.g., Abudarham & 

Yovel, 2016; Megreya & Bindemann, 2018; Towler, White, & Kemp, 2017). These studies 

converge to suggest that specific individual facial features can influence an overall matching 

decision for a pair of faces. However, these studies also demonstrate disagreement in terms of 

which feature is most important, variously emphasising lip thickness, hair and eye colour 

(Abudarham & Yovel, 2016), the eyebrows (Megreya & Bindemann, 2018) or ears (Towler 

et al., 2017). It is therefore possible that the most important features for reaching face-

matching decisions vary across different face images and individuals. This reasoning is 

supported by the notion that face photographs of a single individual can display substantial 

variation (see, e.g., Jenkins, White, Van Montfort, & Burton, 2011).  

If there is no universal facial feature that drives accuracy, then it is possible that 

matching requires a combination of judgements for different features to reach a decision for 

the whole face. In other words, while an overall face-matching decision must be based on the 

assessment of the entire stimulus, it is possible that a number of smaller evaluations are first 

made for individual facial features. Chapter 2 investigated this possibility with a series of 

three experiments. For this purpose, observers were required to make match or mismatch 

decisions to pairs of whole faces as well as isolated feature regions (Experiment 1) or could 



128 
 

also respond ‘don’t know’ if unsure of the correct response (Experiment 2). The feature 

regions comprised of the hair / forehead, eyes, nose and mouth. By comparing whole-face 

accuracy for identity pairs for which different numbers of individual features were classified 

correctly, Chapter 2 sought to determine whether overall matching decisions reflect 

judgements to individual facial features, and if so, how these smaller feature assessments are 

utilised or combined to reach the final decision for the whole stimulus.  

These initial experiments demonstrated a graded response pattern such that accuracy 

for the whole-face pairs increased in line with the number of correct feature decisions. 

Performance was best for the whole face when three or four of the corresponding feature 

regions had been classified correctly. This suggests that judgements made to individual 

features might be summed to reach a decision for the whole face. However, accuracy for the 

whole-face pairs was also high, at nearly 90%, when only two of the four features under 

investigation here were classified correctly. If half of the feature regions were classified as a 

match and the other half as a mismatch, one might expect this to cause sufficient conflict 

such that observers should be equally likely to classify the whole face as a match or 

mismatch. Thus, one would expect accuracy to be closer to chance. Moreover, whole-face 

accuracy also remained relatively high, at around 70%, when only one feature was classified 

correctly. Thus, despite three of four features being classified incorrectly, observers still 

reached the correct decision for the whole face on the majority of these occasions.  

These findings are in line with previous research that demonstrates that individual 

facial features can strongly influence the overall matching decision (see, e.g., Abudarham & 

Yovel, 2016; Megreya & Bindemann, 2018; Towler et al., 2017). These studies have 

attempted to identify a universal critical feature that underlies face matching accuracy. 

However, Experiments 1 and 2 did not reveal any single facial feature that was matched 

consistently more accurately than the others. This finding may suggest that there is not a 
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universal feature which underpins matching accuracy, but instead that the ‘critical’ feature 

varies from face to face.  

So how can high levels of accuracy be maintained for the whole face even when most 

of the facial features are misleading and point to the incorrect matching decision? One 

possibility is that for some faces, feature decisions may need to be weighted rather than 

summed. In these cases, some facial features may dominate the decision process if they 

provide particularly compelling information. For instance, it is conceivable that for a pair of 

faces, the hair, nose and mouth look similar, but the eyes appear distinctly different, leading 

an observer to conclude that the pair is a mismatch. This reasoning receives some support 

from the Matching Familiar Figures Test (MFFT), where observers must rely on differences 

in a single aspect of a line drawing (e.g., the direction of a flag on a ferry boat) to determine 

which item in a line-up is an exact match to a target object (Megreya & Burton, 2006b). 

MFFT performance correlates moderately with unfamiliar face matching accuracy, 

suggesting that a similar reliance on a single feature may sometimes inform the correct 

decision for the whole face. 

In Experiments 1 and 2, accuracy for the whole face pairs surpassed that of any of the 

isolated feature regions. This may have been a result of the additional matching information 

(facial features) available in the whole face pairs, and so may provide an alternative 

explanation of why whole face accuracy remained high when only one or two features were 

classified correctly. However, even when observers classified none of the feature regions 

correctly in Experiment 2, they were still able to reach the correct overall decision on nearly 

half of these occasions. This suggests there is an advantage, over and beyond observing all 

features of a face in isolation, of viewing faces as an integrated whole. Therefore, the extra 

featural information available in the whole face pairs may not adequately explain the 

increased accuracy for this stimulus type.  
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To investigate this further, observers were required to match pairs consisting of whole 

faces, misaligned whole faces (with all features horizontally offset to disrupt holistic 

processing) and misaligned part faces (which either displayed the hair and nose regions or the 

eye and mouth regions) in Experiment 3. For both match and mismatch pairs, performance 

for misaligned whole face pairs was comparable to misaligned part faces. Therefore, the 

additional featural information available is unlikely to account for the increased accuracy for 

whole faces observed in Experiments 1 and 2. For match trials, performance was also better 

for whole face pairs than misaligned whole or part face pairs. This suggests that viewing all 

facial features at the same time is not sufficient to increase matching accuracy, but that these 

features need to be integrated into a whole face to maximise performance. This effect may be 

similar to the holistic processing advantage described in the face recognition literature (see, 

e.g., Goffaux & Rossion, 2006; McKone, 2004; Tanaka & Sengco, 1997). Thus, ultimately 

whether face processing is required for matching or recognition, the context in which facial 

features are viewed is important. However, there was no such advantage of viewing the 

whole face for mismatch trials. Previous research has shown that performance for match and 

mismatch stimuli is dissociable (see, e.g., Kokje, Bindemann, & Megreya, 2018; Megreya & 

Burton, 2006b, 2007). Hence, it is possible these trial types rely on different mechanisms, 

whereby holistic processing is more important for processing face pairs consisting of the 

same person.  

The experiments reported in Chapter 2 suggest that observers can adapt the strategy 

they use for face matching based on the specific face pair at hand. For example, when the 

majority of feature judgements point to the same decision, observers appear to sum these 

judgements to reach an overall decision. However, when feature judgements are conflicting, 

observers can utilise information from a compelling feature to reach the correct overall 

decision. Judgements for particularly compelling facial features may be weighted such that 
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they can dominate a matching decision, even if all other facial features point to the incorrect 

decision (Experiments 1 and 2). As there was no single feature that determined task accuracy 

in these experiments, it is likely that the most compelling or most useful feature varied from 

face to face. This is supported by the notion that faces vary in an idiosyncratic manner, so 

images of the same individual can appear very different from each other (Jenkins et al., 

2011). Despite this, Experiment 3 demonstrated that the integration of facial features, in a 

whole face, is required to maximise performance. Therefore, a combination of featural and 

holistic processing is likely required to reach the correct matching decision. However, as the 

whole face advantage was only found for match trials, it is possible that holistic processing is 

more important for “telling people together” than for “telling them apart”.  

These findings raise some interesting questions for future research. The experiments 

in Chapter 2 suggest that observers may employ different matching strategies for different 

face pairs. This finding could be explored further by using an eye-tracking paradigm to 

investigate how different facial features are viewed during this task. Analysing eye-

movements for different items may give further insight into whether people employ different 

matching strategies for different faces. For example, if observers sum feature judgements to 

reach a decision for a particular pair, it is possible that all features are viewed initially and 

then re-scanned just before an overall decision is made. If, on the other hand, a matching 

decision is dominated by one compelling feature, then observers may view this feature 

disproportionately, and last, just before a decision is made.  

Individual performance for face-matching tasks is highly variable (for a review see, 

Lander, Bruce, & Bindemann, 2018). These differences are such that some individuals excel 

at face matching tasks (see, e.g., Bobak, Dowsett, & Bate, 2016; Norell et al., 2015; White, 

Phillips, Hahn, Hill, & O’Toole, 2015), whereas, others perform close to chance (see e.g., 

Burton, White, & McNeill, 2010; Fysh & Bindemann, 2018a). Thus, it would be interesting 
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to also explore the decision-making processes and viewing strategies of both low- and high-

performing individuals with eye-tracking. Using this method, it may be possible to identify 

strategies that are most effective for face matching in order to improve accuracy for poor-

performing individuals. For example, it may be possible to examine whether the high-

performing individuals notice details that other observers miss, which allow them to be more 

accurate (see Figure 5.1). As images of the same individual can be highly variable (Jenkins et 

al., 2011), it is possible that different matching strategies are required to reach the correct 

decision for different pairs of faces. Furthermore, the most important identity-related 

information may need to be derived from different features according to the specific face pair 

at hand. Thus, analysing eye-movements for individual items as well as individual 

participants may give greater insight into how observers approach unfamiliar face matching 

tasks and why performance across participants is highly variable. 

 

 

FIGURE 5.1. These two example faces taken from the KFMT (Fysh & Bindemann, 2018a) 

appear very different but are in fact the same individual. However, a characteristic pattern of 

moles is visible in both images which helps to identify them as the same person. It is possible 

that higher-performing individuals are more likely to notice such details than other 

observers, helping them to be more accurate.  
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Experiment 3 indicates that holistic processing appears to be more important for pairs 

that depict the same individual than pairs consisting of two different people. It is possible that 

holistic processing is more important for match trials, because for images of the same person, 

the features should all point to the same decision (i.e., to the faces depicted being the same 

identity). By contrast, while mismatch trials are constructed to incorporate two individuals 

who look highly similar, these ultimately do not depict the same person, so concurrent 

dissimilarities between faces must also be present. Thus, featural processing may be more 

important for mismatch pairs, as comparing individual features is more likely to allow the 

detection of differences. Again, it would be interesting to investigate these matching 

strategies further with eye-tracking. Comparing eye-movements for whole faces and 

misaligned whole faces for these two trial types may give further insight into how observers 

approach this task.  

Observers may use different strategies to process the whole face and misaligned 

whole face pairs. For example, it is possible that when presented with whole face pairs, 

observers view one face in its entirety and then view the other face, before making feature 

comparisons. However, for misaligned faces where holistic processing of the entire face is 

more difficult, they may only compare specific features across the faces. Thus, comparing 

viewing strategies for these two pair types may demonstrate whether performance was lower 

for the misaligned faces because observers are only able to use one strategy. Furthermore, 

when eye-movements for identity-match and identity-mismatch pairs are considered 

separately, this may reveal if observers spend longer comparing features for mismatch trials, 

which could indicate that featural processing is more important for these stimuli.  

A potential limitation of Experiment 3 was that the stimuli remained on screen until 

the observers made a matching decision. Consequently, observers had time to use featural 

processing to carefully compare the face sections for the misaligned whole and part face 
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stimuli. This may explain why accuracy for the misaligned conditions was comparable to 

whole face accuracy for mismatch trials. Hole (1994) found that subjects were more 

successful on a composite task which required the matching of the top half of upright or 

upside-down chimeric faces, when the faces were presented for 2 s compared to 80 ms. 

Viewing the faces for 2 s allowed observers to engage in feature comparison across the two 

faces thus, reducing errors. However, the 80 ms condition forced observers to process the 

composites holistically and therefore reduced accuracy. It would therefore be interesting to 

replicate Experiment 3 with the faces only displayed for a short duration, to force holistic 

processing of all stimuli types. It is likely that this manipulation would significantly reduce 

accuracy for the misaligned stimuli and thus may reveal a whole face advantage for both 

match and mismatch trials.  

Whilst Chapter 2 provides insight into the decision-making process for unfamiliar 

face matching, another topic that is currently of growing interest to researchers is whether it 

is possible to increase performance on face-matching tasks. Experiments 1-3 suggest that 

training individuals to improve matching by relying on a specific facial feature or strategy 

may be difficult. Accordingly, training using facial features has demonstrated mixed success. 

For example, training observers to use face shape does not work (Towler, White, & Kemp, 

2014). Other featural training methods have been more successful, such as training observers 

to compare different facial features before making an overall decision (Towler et al., 2017) 

and focusing on a specific feature such as the eyebrows (Megreya & Bindemann, 2018). 

However, while both of these approaches have been shown to improve accuracy, 

generalisation to new faces has been more limited.  

Therefore, this thesis also investigated a novel means of improving unfamiliar face-

matching accuracy. Previous methods for increasing matching performance, can be divided 

into stimulus-based and observer-based approaches. Stimulus-based approaches focus on 
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providing observers with improved face representations for matching, such as averaged faces 

or caricatures (see, e.g., Burton, Jenkins, Hancock, & White, 2005; McIntyre, Hancock, 

Kittler, & Langton, 2013; Robertson, Kramer, & Burton, 2015). However, such stimulus-

based approaches can be time-consuming or impractical to apply to photographic ID. 

Construction of average faces, for example, requires multiple images of an individual, and 

this process becomes more effective as more photographs are incorporated (Burton et al., 

2005).  

Observer-based approaches, on the other hand, seek to improve the accuracy of 

individuals conducting face matching, using methods such as combining the performance of 

multiple observers or by providing training (see, e.g., Balsdon, Summersby, Kemp, & White, 

2018; Megreya & Bindemann, 2018; Towler et al., 2017; White, Burton, Kemp, & Jenkins, 

2013). One such method of training is the provision of feedback for a person’s face-matching 

accuracy. In real-world matching scenarios, observers typically do not have the opportunity 

to learn from their errors (Jenkins & Burton, 2011). Training strategies that allow observers 

to develop their matching criteria (see, e.g., Lander et al., 2018), such as training with 

feedback, can improve task performance. For example, matching accuracy increases if 

feedback is provided while a just-classified stimulus is still on view (White, Kemp, Jenkins, 

& Burton, 2014). Similarly, providing feedback after a trial can help to maintain mismatch 

accuracy (Alenezi & Bindemann, 2013; Papesh, Heisick, & Warner, 2018) which typically 

declines over the course of a matching task (see, e.g., Alenezi, Bindemann, Fysh, & Johnston, 

2015). The improvement that feedback produces on task performance suggests that 

individuals may have limited criteria for discerning between a match and mismatch (see, e.g., 

Lander et al., 2018). Therefore, feedback may work by providing observers with a platform 

where they can deduce matching criteria they need to successfully complete the task. 

However, providing feedback in this manner requires knowledge of the nature of the face 
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pairs (i.e., whether these are matches or mismatches) at the point of identification, which is 

not possible in real-world scenarios.  

To address this shortcoming, Chapter 3 investigated an alternative form of feedback 

which does not require prior knowledge of the correct matching decision for a face pair. This 

method utilised match and mismatch examples as a method of improving match accuracy. 

Across three experiments, participants first completed a block of target face pairs to establish 

baseline accuracy, half then completed a second block where the target faces were flanked by 

example pairs in the examples condition, while the remainder saw the target faces only in the 

no-examples condition. The examples displayed either side of the target face pairs constituted 

clearly-labelled match and mismatch pairs, which observers could use to help inform their 

decision for the central pair (Experiment 4). By comparing the accuracy of the examples and 

no-examples groups, this chapter investigated the general effect of examples on face 

matching. However, as there are also substantial individual differences in matching accuracy 

(see, e.g., Bindemann, Avetisyan, & Rakow, 2012; Burton et al., 2010; Estudillo & 

Bindemann, 2014; Fysh & Bindemann, 2018a), the impact of examples was primarily 

assessed at an individual level. In addition, the experiments in this chapter also assessed 

whether any improvement with examples is maintained after these are removed again, and 

whether improvements with examples generalised to new stimuli. For this purpose, observers 

also completed a third block of stimuli consisting of target pairs only (Experiments 5 and 6). 

A further block of stimuli that comprised either previously unseen stimuli from the same set 

(Experiment 5) or new stimuli with different characteristics (Experiment 6) was also included 

to determine whether the observers had learnt something about the face-matching task which 

could then be applied to different stimuli.  

When data was pooled across experiments, examples were found to increase matching 

performance at a group level. However, this effect was numerically small (less than 3%) and 
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inconsistent across experiments. In contrast, analysis of individual differences revealed more 

clearly that examples improved performance and showed that this was the case particularly 

for individuals whose accuracy was comparatively low at baseline. This advantage was found 

consistently across all three experiments, and for match and mismatch performance as well as 

for overall accuracy. A similar association was found for individuals in the no-examples 

group, but this was limited to match trials only. In the context of the block by trial type 

interaction that was observed in the cross-experiment data at a group level, and which was 

driven by an increase in accuracy during the experiments on match trials, the match trial 

correlations in the no-examples condition also appear to reflect a tendency to make 

increasingly more match responses over the course of the experiment. This pattern has now 

been reported in a number of studies (see, e.g., Alenezi & Bindemann, 2013; Alenezi et al., 

2015; Fysh & Bindemann, 2017b). 

So how might examples improve task performance? Examples may work by helping 

to refine observers’ criteria for dissociating between match and mismatch trials. Face 

matching is highly error-prone, which suggests that some individuals may not have sufficient 

criteria to easily discriminate between match and mismatch trials (see, e.g., Lander et al., 

2018). If observers had concrete criteria for what constitutes a match or mismatch face pair, 

then it is possible that matching errors might be reduced. Further evidence that might support 

some observers having limited criteria for effectively completing this task is that some 

individuals can excel at this task (see, e.g., Bobak, Hancock, & Bate, 2016; Norell et al., 

2015; Phillips et al., 2018; White, Phillips et al., 2015). Thus, it is possible poor performance 

is a result of a resource-limit problem, where face pairs encompass all the visual information 

needed to make the correct identification, but some observers are unable to apply this 

information effectively.  
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In addition, individuals seem to have limited awareness of their own unfamiliar face 

processing ability (see, e.g., Bindemann, Attard, & Johnston, 2014; Bobak, Mileva, & 

Hancock, 2018; Palermo et al., 2017), which suggests they may not have stable criteria for 

completing the task. Moreover, the phenomenon of choice blindness has shown that 

individuals will justify a matching decision for a pair of faces even if this contradicts their 

original judgement (Sauerland et al., 2016). If observers had clear criteria for dissociating 

identity-matches and mismatches, choice blindness should not occur. In turn, providing 

observers with some sort of criteria, such as trial-by-trial feedback can improve accuracy 

(White, Kemp, Jenkins, & Burton, 2014) or reduce the decline in mismatch accuracy over 

time (see, e.g., Alenezi & Bindemann, 2013; Papesh et al., 2018). Thus, this feedback may 

work by helping to refine observers’ matching criteria, which may in turn increase accuracy 

on this task.  

Examples may provide observers with a platform by which they can deduce their own 

matching criteria, thus allowing them to improve their matching accuracy. Further evidence 

for this notion comes from a recent study that demonstrated feedback can improve accuracy if 

it is provided while a just classified stimulus is still in view (White, Kemp, Jenkins, & 

Burton, 2014). Allowing observers to view a target pair in conjunction with feedback is likely 

to develop their matching criteria and thus, may account for their increase in accuracy. 

Furthermore, pairs of observers can also outperform individuals in face-matching tasks 

(Dowsett & Burton, 2015). Discussing the reasoning for a matching decision with another 

observer may strengthen the criteria of both individuals in a similar manner to the provision 

of feedback. Therefore, in contrast to other training approaches such as feature comparison 

(Towler et al., 2017) and focusing on specific features (Megreya & Bindemann, 2018), the 

examples method allows observers to develop their own matching strategies and adapt their 

strategy based on the face pair at hand. 
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Chapter 3 also found that the examples-advantage was maintained after examples 

were removed and generalised to previously unseen stimuli from the same GFMT set 

(Experiment 5). As the examples still procure a benefit when they are no longer in view, it 

suggests that observers learn from the examples and may internalise the criteria so that their 

performance can continue to improve without the examples. Despite this, the generalisation 

to pairs from the new KFMT stimulus set, which has different characteristics, was more 

limited (Experiment 6). This finding may reduce the applied value of examples for security 

settings, such as passport control, where operators are likely to encounter a diverse range of 

faces. However, other training strategies such as feature comparison (Towler et al., 2017) and 

feature instructions (Megreya & Bindemann, 2018) have also demonstrated limited 

generalisation to new stimuli sets. It is therefore possible that different face stimuli require 

different criteria to be applied to successfully discriminate between identity-match and 

mismatch pairs.  

The more limited generalisation to the KFMT stimuli suggests that the benefits of the 

examples may be stimuli specific (i.e., exposure to GFMT examples specifically improves 

GFMT performance). It is possible that examples improve performance by helping to shape 

the criteria observers use to complete the matching task. Viewing examples may provide a 

platform that allows observers to deduce what level of variation is likely to occur between 

images of the same person and the degree of similarity possible between images of two 

different people. The GFMT stimuli were produced by taking images of individuals using 

two different cameras a few minutes apart for match pairs and selecting similar looking 

individuals from within the set for mismatch pairs (see Burton, White & McNeill, 2010). 

Exposure to example pairs taken from the GFMT may therefore lead observers to expect 

matching pairs to show very little variation between images. This observation may change the 

criteria they use to discriminate match and mismatch pairs. However, match pairs in the 
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KFMT are compiled differently, as images of the same individual are taken at least three 

months apart. Hence, there is more within-person variability in images of the same person for 

the KFMT.  

If observers’ matching criteria were influenced by the GFMT examples that suggested 

matches should exhibit very little variation, their criteria were likely to be less effective for 

the KFMT which may explain the more limited generalisation seen in Experiment 6. It is 

therefore possible that in order to obtain an improvement on the KFMT, observers would 

need to view KFMT examples that provide an indication of the variability within that 

particular stimuli set. Therefore, replicating these experiments using only KFMT stimuli is 

likely to further clarify whether the examples advantage is stimuli specific. Furthermore, it 

would be interesting to examine whether training using KFMT examples would demonstrate 

similarly limited generalisation to GFMT target face pairs. However, it is also important to 

note that within-person variation can be larger than between-person variation (Jenkins et al., 

2011). The KFMT is specifically designed to incorporate within-person variation into match 

pairs. Thus, it is possible that variation may be greater between match pairs for the KFMT 

than mismatch pairs, which is likely to make it more difficult for observers to develop 

effective criteria for differentiating match and mismatch trials for the this task. 

The notion that the examples may produce stimuli-specific benefits, has important 

applications for training individuals who are required to perform identity comparisons 

routinely in applied settings. Experiments 5 and 6 suggest that observers need to be trained on 

examples specific to those they are likely to encounter. For example, passport officers may 

need to see examples of different race faces and images that have been taken months or years 

apart which they are likely to encounter on a daily basis. Both of these factors can make face 

matching more difficult (see, e.g., Fysh & Bindemann, 2018a; Hills, Cooper & Pake, 2013; 

Hills & Pake, 2013; Megreya, Sandford, & Burton, 2013). Training in this way should allow 
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observers to determine the level of variation they are likely to encounter for match pairs and 

the degree of similarity possible for mismatch pairs and may ultimately improve their 

accuracy for unfamiliar face matching.  

Although the provision of examples was found to improve unfamiliar face matching 

for low-performing individuals, reported example usage was low (approximately 25% of 

trials) across Experiments 4, 5 and 6. Furthermore, self-reported example usage was not 

associated with task improvement. Therefore, the final experimental chapter sought to 

investigate the discrepancy between self-reported example usage and task improvement that 

was observed in Chapter 3. Individuals demonstrate limited awareness into their own 

cognitive processes (Nisbett & Wilson, 1977; Wilson & Dunn, 2004). Hence, it is likely that 

observers’ example usage was not accurately captured by the self-report measure utilised in 

Chapter 3. Eye-tracking has been utilised in a wide range of studies to give greater insight 

into face processing (see, e.g., Fletcher, Butavicius, & Lee, 2008; Heisz & Shore, 2008; 

Smilek, Birmingham, Cameron, Bischof, & Kingstone, 2006; Walker-Smith, Gale, & 

Findlay, 2013). Thus, Chapter 4 employed eye-tracking to provide a more sensitive measure 

of how observers view and utilise examples for unfamiliar-face matching (Experiment 7). 

A further question arising from Chapter 3 concerned whether the nature of examples 

provided impacted task improvement. Examples may help to improve the matching criteria 

that observers apply to conduct unfamiliar face matching tasks. However, faces demonstrate 

considerable within-person variation (Jenkins et al., 2011), so it is likely some example pairs 

are more beneficial than others. Affording observers with more variable images of 

individuals can improve face learning (e.g., Burton, 2013; Burton, Kramer, Ritchie, & 

Jenkins, 2016; Ritchie & Burton, 2017). Thus, example pairs that incorporate more variation 

between images of the same individual may be more useful for face matching. On the other 

hand, mismatch pairs for unfamiliar face-matching tasks are usually selected by choosing the 
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individuals who look the most alike from the stimuli set (see, e.g., Burton et al., 2010; Fysh 

& Bindemann, 2018a). This process is representative of imposters attempting to make 

themselves appear as similar as possible to their falsely-obtained photo-IDs in real-life 

matching scenarios. Thus, example mismatch pairs that demonstrate more subtle differences 

between persons, by depicting two individuals who are very similar in appearance, may also 

be more useful for improving face matching.  

In Experiment 7, observers completed an initial block of stimuli to establish an 

accuracy baseline. Observers were then divided into three groups, comprising low-difficulty 

examples, high-difficulty examples and no-examples conditions. For participants in the two 

example conditions, the target pairs in the second block were flanked by clearly-labelled 

match and mismatch pairs. The low-difficulty examples consisted of highly similar match 

pairs as well as mismatch pairs that depicted more different-looking individuals. By contrast, 

the high-difficulty examples comprised match pairs which incorporated more variability and 

mismatch pairs with more subtle differences. After each trial, the observers were then asked 

to indicate whether or not they had used the examples to reach a matching decision. 

Individuals in the no-examples condition saw the target pairs only. All participants then 

completed a final block of stimuli without examples to determine whether any benefits of 

viewing the example pairs could be retained when these were no longer in view.  

For both example conditions, eye movements revealed that observers fixated the 

examples on considerably more trials than they had overtly reported using them. This finding 

is supported by previous research, which demonstrates that individuals find it difficult to 

accurately report their cognitive processes (see, e.g., Kok, Aizenman, Võ, & Wolfe, 2017; 

Nisbett & Wilson, 1977; Võ, Aizenman, & Wolfe, 2016). Furthermore, task improvement 

was not associated with self-reported example usage for the low- or high-difficulty examples. 

As observers appear to have limited insight into their own face processing ability (see, e.g., 
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Bindemann et al., 2014; Bobak, Pampoulov, & Bate, 2016; Palermo et al., 2017, but see 

Ventura, Livingston, & Shah, 2018), it is possible that individuals have a similar lack of 

awareness for when examples are needed to help them reach a correct matching decision. If 

this is the case, then it may explain why self-report of example usage did not relate to task 

improvement. 

However, fixation of the examples, as measured via eye movements, was also found 

not to be related to reported example usage. The fixation measure only assesses whether or 

not the examples were looked at during the task, but not the length of these fixations. 

Therefore, the duration of these fixations was also considered. A relationship between task 

improvement and fixation duration was found for high-difficulty examples, such that the 

longer these pairs were studied, the more likely an improvement was to occur. However, a 

similar association did not occur for the low-difficulty examples. It is possible for individuals 

to make accurate matching decisions within two seconds of viewing a face pair (see, e.g., 

Özbek & Bindemann, 2011; Bindemann, Fysh, Cross, & Watts, 2016; Fysh & Bindemann, 

2017b). Thus, viewing the low-difficulty examples, which comprised of clear match and 

mismatch pairs, may not encourage sufficient learning from this example type. In contrast, 

the high-difficulty pairs likely needed to be processed for longer for learning to occur, as the 

match pairs were more dissimilar and the mismatch pairs more similar. Hence, the more time 

observers spent viewing the high-difficulty examples, the more likely they were to improve 

overall. These findings imply that the nature of the examples that are provided may influence 

the way the examples are processed and utilised to aid face matching. 

In addition, Experiment 7 also examined whether the nature of the provided examples 

affected accuracy at a group-level, by comparing those given no-examples to observers given 

low-difficulty and high-difficulty examples. There was no benefit of the provision of low- or 

high- difficultly examples at a group-level. However, as in the previous chapter, this 
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experiment was primarily interested in whether examples produce an improvement at an 

individual level. Similarly, to Chapter 3, the provision of both example types improved 

overall accuracy for low-performing individuals both when the examples were displayed 

(Block 2) and after the examples were removed (Block 3). When accuracy was broken down 

by trial type, this also revealed a match improvement for the low- and high-difficulty 

examples conditions, but a mismatch improvement was limited to the low-difficulty examples 

only. However, a match improvement was also found for the no-examples group. A match 

improvement was found for this group in the previous chapter but is likely due to an 

increased propensity to make a match response over the course of a trial, which has been 

found in a number of recent studies (see, e.g., Alenezi & Bindemann, 2013; Bindemann et al., 

2016; Fysh & Bindemann, 2017b; Papesh et al., 2018). However, contrary to the previous 

chapter, there was also a relationship between overall baseline accuracy and change in 

performance for Block 3 in the no-examples condition. This finding suggests that it is 

possible for poor-performing observers to increase their accuracy without the help of 

examples. Thus, Experiment 7 did not provide clear evidence of an examples-advantage at a 

group or an individual level. Further research is therefore needed to explore the examples 

method. 

While Chapter 3 indicates that the provision of example pairs can improve matching 

accuracy, especially in low-performing individuals, this advantage was not clear in Chapter 4. 

The findings of Chapter 4 raise the question of how observers were able to improve face 

matching performance in the absence of the examples. At present it is unresolved why this is 

the case. One possible explanation is that there are fundamental task differences between the 

eye-tracking task reported in Experiment 7 and the tasks completed in Experiments 4, 5 and 

6. For instance, the drift correction in the eye-tracking task requires the researcher to initiate 

every trial manually for the participant. This is likely to have slowed observers down during 



145 
 

the task, which may have increased their accuracy. Requiring observers to perform face-

matching tasks under time-pressure reduces task accuracy (see, e.g., Bindemann et al., 2016; 

Fysh & Bindemann, 2017b). In turn, slowing observers down during the task may have had 

the opposite effect and improved performance.  

Moreover, the experimenter had to be present in the room, sitting next to the 

participant in order to conduct the eye-tracking. Motivational incentives have been shown to 

increase accuracy on unfamiliar face matching tasks (see, e.g., Bobak, Dowsett, et al., 2016; 

Moore & Johnston, 2013). The presence of the experimenter may have acted as similar 

motivation and thus, may have increased task performance. Furthermore, as the experimenter 

was in the room with the participant and they had their eye-movements recorded throughout 

the task, participants may have felt that they were being closely monitored during the task. 

Awareness of being watched can change individuals’ behaviour during a number of tasks 

(see, e.g., Bateson, Callow, Holmes, Redmond Roche, & Nettle, 2013; Bateson, Nettle, & 

Roberts, 2006; Fathi, Bateson, & Nettle, 2014). Furthermore, making observers aware that 

they are being monitored during a visual search task can reduce processing speed and 

improve performance (Miyazaki, 2013). Therefore, it is possible that the perception of being 

watched during the experiment could have improved task accuracy. It would be interesting to 

change the eye-tracking set-up so that close proximity of the experimenter is not required to 

determine if this could explain the different pattern of results obtained. 

The results in both Chapter 3 and Chapter 4 were limited by ceiling effects as a result 

of using the relatively easy GFMT stimuli in Experiments 4-7. Despite high normative 

performance for the GFMT of around 80-90% (Burton et al., 2010), there was a small group 

level improvement found in Chapter 3 when data was collapsed across Experiments 4-6. 

However, while the use of these stimuli was less of an issue for the studies reported in 

Chapter 3, using the GFMT faces in combination with the eye-tracking task in Experiment 7, 
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may have meant that there was very little room for improvement. In support of this reasoning, 

it is notable that baseline accuracy was higher in Experiment 7, and the range in individual 

performance was also reduced (M = 94.47, range: 77.5-100), compared with Experiments 4-6 

(M = 92.10, range: 50-100). As such, accuracy was more likely to decline during the eye-

tracking task than to increase (see, e.g., Alenezi et al., 2015; Fysh & Bindemann, 2017b), 

which could account for the pattern of correlations observed in both the examples and no-

examples conditions in Experiment 7. 

The GFMT stimuli were selected for this thesis as they have been widely tested (see 

e.g., Bindemann, Avetisyan & Rakow, 2012; White, Burton, Kemp & Jenkins, 2013) and 

utilised in other training studies (see, e.g., Towler, White & Kemp, 2014; Towler, White & 

Kemp, 2017). Furthermore, the GFMT has also been utilised to assess the impact of 

providing feedback on unfamiliar face matching (see, e.g., Alenezi & Bindemann, 2013; 

White, Kemp, Jenkins & Burton, 2014). As examples may act as a form of simultaneous 

feedback, using the GFMT to evaluate examples makes the work in this thesis more 

comparable to the existing literature. Furthermore, while normative performance is high, 

individual differences in performance on the GFMT can range from near chance to perfect 

accuracy (see, e.g., Bindemann et al., 2012; Burton et al., 2010). Therefore, as individual 

differences in performance were the primary focus of this thesis, the GFMT was deemed to 

be an appropriate for evaluating the impact of the examples at an individual level. 

Despite this, the ceiling effects obtained in Chapters 3 and 4 suggest using a more 

challenging stimulus set may help to clarify the potential of providing examples as a method 

for improving unfamiliar face matching accuracy. Replication of the experiments reported in 

Chapters 3 and 4 with more difficult stimuli sets that have recently become available such as 

the Models Face Matching Test (MFMT, Dowsett & Burton, 2015) or Kent Face Matching 

Test (KFMT, Fysh & Bindemann, 2018a), may help clarify how beneficial examples can be 
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for this task. Other studies have started to include more challenging stimuli sets in addition to 

or instead of the GFMT (see, e.g., Bobak, Dowsett et al., 2016; Fysh, 2018) in order to 

combat such ceiling effects. Furthermore, as the KFMT has a normative performance of 

around 60% and individual performance can range from 40 - 88%, using this stimulus set 

may allow high performers to also benefit from the examples as well as the lower-performing 

individuals who were shown to improve with the provision of GFMT examples. 

In conclusion, the experiments reported in this thesis suggest that observers can 

employ different strategies in order to accurately categorise face pairs as identity matches or 

mismatches (Experiments 1-3). Furthermore, the identity-related information for reaching a 

decision may be based on different features according to the specific face at hand. Thus, 

training individuals to use specific strategies or features may not be an effective method of 

improving accuracy. As an alternative approach, the examples method described in this thesis 

may provide observers with a platform to increase accuracy by developing their own 

matching criteria. Examples were found to aid individuals with lower baseline performance 

(Experiments 4-6), however, this effect was less clear when observers were eye-tracked 

during the task (Experiment 7). Future research employing a more difficult stimulus set may 

further reveal whether an improvement can be found for low-performing individuals under an 

eye-tracking set up and clarify the benefit of the examples training for unfamiliar face 

matching. 
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Appendix A 

Experiment 1: d’ and criterion 

 The accuracy data for the features was also translated into signal detection measures 

of sensitivity (d’) and bias (criterion), which are illustrated in Figure A1. For d’ a one-way 

repeated measures ANOVA revealed a main effect of region, F(4,88) = 56.59, p < .001, ηp
2 = 

.72. A series of paired samples t-tests (with alpha corrected to .05/10 = .005 for ten 

comparisons) revealed higher d’ for the whole face compared to the hair, eyes, nose and 

mouth, all ts ≥ 6.58, ps ≤ .001. In addition, d’ was higher for the eyes than the hair, nose and 

mouth, all ts ≥ 4.12, ps < .001. No other comparisons were significant, all ts ≤ 2.64, ps ≥ .02. 

Thus, sensitivity for the whole faces exceeds that of any of the individual features. 

Furthermore, sensitivity for the eyes is higher than the other facial features. 

 

 

FIGURE A1. Sensitivity (d’) and bias (criterion) for the examples and no-examples 

conditions in Experiment 1. 

 

 For criterion, an analogous ANOVA found a main effect of region, F(4,88) = 5.98, p 

< .001, ηp
2 = .21. A series of paired samples t-tests (with alpha corrected to .05/10 = .005 for 

ten comparisons) revealed a change in criterion from whole face to hair, t(22) = 3.37, p < 

.005. Whereby, bias towards match decisions changed to bias towards mismatch decisions. In 
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addition, bias towards mismatch decisions was reduced for the nose compared to the hair, 

t(22) = 3.44, p < .005. No other comparisons were significant, all ts ≤ 3.09, ps ≥ .01.  

 The mean criterion values were also compared to zero to determine whether there was 

a bias towards a particular response (match or mismatch) for any of the features. One-sample 

t-tests revealed a mismatch bias for the hair, t(22) = 3.15, p < .01, the eyes, t(22) = 2.49, p < 

.05, and mouth, t(22) = 2.76, p < .05. Thus, observers were more likely to classify these 

feature pairs as belonging to two different individuals. No such bias was found for the whole 

face or nose, both ts ≤ 0.70, ps ≥ .49. 

 

Experiment 2: d’ and criterion 

 As in Experiment 1, the accuracy data for the features was translated into signal 

detection measures of sensitivity (d’) and bias (criterion), which are illustrated in Figure A2. 

For d’ a one-way repeated measures ANOVA revealed a main effect of region, F(4,76) = 

72.17, p < .001, ηp
2 = .79. A series of paired samples t-tests (with alpha corrected to .05/10 = 

.005 for ten comparisons) revealed higher d’ for the whole face compared to the hair, eyes, 

nose and mouth, all ts ≥ 7.45, ps ≤ .001. In addition, d’ was higher for the eyes than the hair, 

nose and mouth, all ts ≥ 5.07, ps ≤ .001. No other comparisons were significant, all ts ≤ 2.85, 

ps ≥ .01. Hence, sensitivity for the whole face was higher than for all of the isolated features. 

Sensitivity for the eyes also exceeded that of the other features. 
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FIGURE A2. Sensitivity (d’) and bias (criterion) for the examples and no-examples 

conditions in Experiment 2. 

 

 For criterion, an analogous ANOVA found a main effect of feature, F(4,76) = 4.34, p 

< .01, ηp
2 = .19. A series of paired samples t-tests (with alpha corrected to .05/10 = .005 for 

ten comparisons) did not reveal a difference in criterion for any of the features, all ts ≤ 3.19, 

ps ≥ .01.  

The mean criterion values were also compared to zero to determine whether there was 

a bias towards a particular response (match or mismatch) for any of the features. One-sample 

t-tests did not reveal a bias for the whole face, eyes, nose or mouth, all ts ≤ 1.02, ps ≥ .32. For 

the hair a bias towards a mismatch response was approaching significance, t(22) = 2.05, p = 

.05. Thus, the addition of the ‘don’t know’ option is likely to have reduced the mismatch bias 

found for most of the features in Experiment 1.  

 

Experiment 3: d’ and criterion 

The accuracy data for the different face types was converted into signal detection 

measures of sensitivity (d’) and (criterion), which are illustrated in Figure A3. For d’ a one-

way repeated measures ANOVA revealed a main effect of face type, F(2,46) = 9.23, p < 

.001, ηp
2 = .29. A series of paired samples t-tests (with alpha corrected to .05/3 = .017 for 

three comparisons) revealed higher d’ for whole face pairs compared to split face pairs, t(23) 
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= 4.40, p < .001, and part face pairs, t(23) = 3.23, p < .01. For split and part face pairs, d’ was 

similar, t(23) = 0.23, p = .82.  

 

 

FIGURE A3. Sensitivity (d’) and bias (criterion) for the examples and no-examples 

conditions in Experiment 3. 

 

For criterion, an analogous ANOVA found a main effect of face type, F(2,46) = 6.47, 

p < .01, ηp
2 = .22. A series of paired samples t-tests (with alpha corrected to .05/3 = .017 for 

three comparisons) revealed a change in criterion from whole face to part face, t(23) = 3.35, 

p < .017. Whereby, bias towards match decisions was reduced and shifted to a mismatch bias. 

A similar pattern was observed for the whole face and split face pairs, and was approaching 

significance, t(23) = 2.56, p = .018. Criterion was comparable for split face and part face 

pairs, t(23) = 0.65, p = .52.  

The criterion values for each face type were also compared to zero to determine 

whether there was a significant bias towards either trial type (match or mismatch). One-

sample t-tests revealed a match bias for whole face pairs, t(23) = 3.17, p < .01, but no bias 

was found for split face or part face pairs, both ts ≤ 0.96, ps ≥ .35.  
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Appendix B 

Experiment 4: d’ and criterion 

The accuracy data was also converted into signal detection measures of sensitivity 

(d’) and bias (criterion), which are illustrated in Figure B1. For d’, a 2 (block) x 2 (condition) 

mixed-factor ANOVA did not show a main effect of condition, F(1,58) = 0.07, p = .79, ηp
2 = 

.00, but revealed a main effect of block, F(1,58) = 6.07, p < .05, ηp
2 = .10, and an interaction 

between factors, F(1,58) = 5.04, p < .05, ηp
2 = .08. Analysis of simple main effects showed 

that d’ was comparable across conditions in Block 1, F(1,58) = 1.12, p = .29, ηp
2 = .02, and in 

Block 2, F(1,58) = 0.36, p = .55, ηp
2 = .01. In addition, d’ was comparable across Block 1 and 

Block 2 in the no-examples condition, F(1,58) = 0.02, p = .88, ηp
2 = .00. In contrast, d’ 

increased from Block 1 to Block 2 in the examples condition, F(1,58) = 11.08, p < .01, ηp
2 = 

.16. 

 

 

FIGURE B1. Sensitivity (d’) and bias (criterion) for the examples and no-examples 

conditions in Experiment 4. 

 

For criterion, an analogous ANOVA found no main effect of condition, F(1,58) = 

3.42, p = .07, ηp
2 = .06, but a main effect of block, F(1,58) = 6.55, p < .05, ηp

2 = .10, and an 
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interaction between factors, F(1,58) = 9.60, p < .01, ηp
2 = .14. Analysis of simple main 

effects showed that criterion was comparable across conditions in Block 1, F(1,58) = 0.08, p 

= .77, ηp
2 = .00, but not in Block 2, F(1,58) = 9.50, p < .01, ηp

2 = .14. In addition, criterion 

was comparable across Block 1 and 2 in the no-examples condition, F(1,58) = 0.15, p = .70, 

ηp
2 = .00. By contrast, a change in criterion was observed from Block 1 to Block 2 in the 

examples condition, F(1,58) = 16.00, p < .001, ηp
2 = .22, whereby observers’ initial bias 

towards making mismatch decisions was reduced and they became more likely to make 

identity-match responses. 

 

Experiment 5: d’ and criterion 

The accuracy data was also converted into d’ and criterion (see Figure B2). For d’, a 2 

(condition) x 4 (block) mixed-factor ANOVA, did not show a main effect of block, F(3,174) 

= 0.73, p = .54, ηp
2 = .01, or a main effect of condition, F(1,58) = 0.48, p = .49, ηp

2 = .01, or 

an interaction between these factors, F(3,174) = 0.25, p = .86, ηp
2 = .00.  

 

 

FIGURE B2. Sensitivity (d’) and bias (criterion) for the examples and no-examples 

conditions in Experiment 5. 

 

For criterion, an analogous ANOVA found no main effect of condition, F(1,58) = 

0.14, p = .71, ηp
2 = .00, but a main effect of block, F(3,174) = 11.16, p < .001, ηp

2 = .16, and 
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an interaction between factors, F(3,174) = 4.21, p < .01, ηp
2 = .07. Further analysis revealed 

no simple main effects of condition for any of the blocks, all Fs ≤ 3.33, ps ≥ .07, and no 

simple main effect of block for the examples condition, F(3,56) = 0.85, p = .48, ηp
2 = .04. 

However, a simple main effect of block was observed for the no-examples condition, F(3, 56) 

= 12.15, p < .001, ηp
2 = .39. A series of paired-samples t-tests (with alpha corrected to .05/6 = 

.008 for six comparisons) revealed an increased bias towards an identity-match response from 

Block 1 to Block Old Faces, t(29) = 4.50, p < .001 and Block New Faces, t(29) = 5.95, p < 

.001. There was also an increase in match bias from Block 2 to Block Old Faces, t(29) = 3.75, 

p < .008, and Block New Faces, t(29) = 4.17, p < .001. No other comparisons were 

significant, all ts ≤ 2.21, ps ≥ .04.  

 

Experiment 6: d’ and criterion 

 The accuracy data was also translated into signal detection measures of sensitivity (d’) 

and bias (criterion), and is illustrated in Figure B3. For d’, a 2 (condition) x 4 (block) mixed-

factor ANOVA did not reveal a main effect of condition, F(1,58) = 0.02, p = .90, ηp
2 = .00, or 

an interaction between condition and block, F(3,174) = 0.88, p = .45, ηp
2 = .02. However, 

ANOVA revealed a main effect of block, F(3,174) = 482.66, p < .001, ηp
2 = .89. A series of 

paired-samples t-tests (with alpha corrected to .05/6 = .008 for six comparisons) indicated 

this was due to a decrease in d’ in Block KFMT compared to Block 1, t(59) = 26.45, p < .001, 

Block 2, t(59) = 29.57, p < .001 and Block GFMT, t(59) = 24.72, p < .001. Furthermore, d’ 

was lower in Block 1 compared to Block 2, t(59) = 3.53, p < .008, and Block GFMT, t(59) = 

3.21, p < .008. There was no change in d’ from Block 2 to Block GFMT, t(59) = 0.21, p = 

.83. 
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FIGURE B3. Sensitivity (d’) and bias (criterion) for the examples and no-examples 

conditions in Experiment 6. 

 

 For criterion, an analogous ANOVA did not reveal a main effect of condition, F(1,58) 

= 0.16, p = .69, ηp
2 = .00, or an interaction between condition and block, F(3,174) = 1.17, p = 

.32, ηp
2 = .02. However, ANOVA found a main effect of block, F(3,174) = 6.94, p < .001, ηp

2 

= .11. A series of paired-sample t-tests (with alpha corrected to .05/6 = .008 for six 

comparisons) indicated this was due to shift in bias from mismatch in Block 1 to match in 

Block 2, t(59) = 2.93, p < .008, Block GFMT, t(59) = 3.83, p < .001, and Block KFMT, t(59) 

= 3.25, p < .008. No other comparisons were significant, all ts ≤ 2.15, ps ≥ .04. 

 

 


