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Abstract 

During aging, etiologies of senescence cause multiple pathologies, leading to morbidity and death. To 

understand aging requires identification of these etiologies. For example, C. elegans hermaphrodites consume 

their own intestinal biomass to support yolk production, which in later life drives intestinal atrophy and ectopic 

yolk deposition. Yolk proteins (vitellogenins) exist as 3 abundant species: YP170, derived from vit-1 - vit-5, 

and YP115 and YP88, derived from vit-6. Here we show that inhibiting YP170 synthesis leads to a reciprocal 

increase in YP115/YP88 levels and vice versa, an effect involving post-transcriptional mechanisms. Inhibiting 

YP170 production alone, despite increasing YP115/YP88 synthesis, reduces intestinal atrophy as much as 

inhibition of all YP synthesis, which increases lifespan. By contrast, inhibiting YP115/YP88 production alone 

accelerates intestinal atrophy and reduces lifespan, an effect that is dependent upon increased YP170 

production. Thus, despite copious abundance of both YP170 and YP115/YP88, only YP170 production is 

coupled to intestinal atrophy and shortened lifespan. In addition, increasing levels of YP115/YP88 but not of 

YP170 increases resistance to oxidative stress; thus, longevity resulting from reduced vitellogenin synthesis is 

not attributable to oxidative stress resistance.  

 

Key words 
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The mechanisms underlying the aging process remain poorly defined. According to the hyper-function theory 

(1-4), one contributory mechanism is futile run-on in later life of developmental and reproductive programs (or 

quasi-programs), leading to development of senescent pathologies, including some that limit lifespan. One way 

of viewing aging (i.e. senescence) is as the set of pathologies that increase in later life (5). This suggests that to 

understand the causes of aging, including in model organisms such as C. elegans, one needs to characterize 

late-life pathologies and then discover their origins. Where pathologies result from quasi-programs, this 

requires identifying the biological programs whose run-on generates them. 

 Aging C. elegans exhibit a number of pathologies that are potentially attributable to run-on (6). One such 

is a steatotic accumulation of yolky lipid, mainly in the body cavity in the form of large oily pools, but also in 

muscles and uterine tumors (7-10). This appears to result from seemingly futile run-on of yolk synthesis in 

later life. Earlier in adulthood, during hermaphrodite reproduction, developing oocytes are provisioned with 

yolk, which is lipoprotein that contains several vitellogenin proteins, products of the genes vit-1 - vit-6. Yolk 

provisioning is assumed to promote larval fitness, although knockdown of yolk production has little effect on 

progeny production under standard lab culture conditions (11). The C. elegans VIT proteins contain domains 

homologous to the apoprotein of human low density lipoprotein (LDL), apoB-100 (12, 13). In C. elegans, yolk 

proteins bind and transport lipids such as triglycerides and cholesterol to oocytes, thereby showing a similar 

function to LDL in mammals (14). Vitellogenin precursors are synthesized in the intestine and then secreted 

into the pseudocoelom (body cavity), from which yolk is taken up by developing oocytes by endocytosis via 

the LDL-like receptor RME-2 (15, 16). 

 On electrophoretic gels, 4 yolk protein (YP) bands are visible: the closely running YP170A and YP170B, 

encoded by vit-3 to -5 and vit-1, -2, respectively, and YP115 and YP88, encoded by vit-6 (17). vit-6 initially 

generates a precursor, YP180, which after leaving the intestine and before being taken up by oocytes is 

cleaved. vit-3 and -4 have >99% sequence similarity to each other and 96% sequence similarity to vit-5, and 

vit-3,-4,-5 are 68% similar to vit-1,-2, while vit-6 is 50% similar to the other vit genes (17). vit-1 was at first 

thought to be a pseudogene, but sequencing of the C. elegans genome showed that this is not so (18, 19). 
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 C. elegans hermaphrodites initially produce sperm but then switch to production of oocytes, which are 

fertilized by self-sperm. Upon depletion of self-sperm after 3-4 days, reproduction ceases, but after this 

vitellogenesis continues and yolk accumulates to high levels in the body cavity (7, 8, 10, 20), with YP170 

levels increasing approximately 6-fold between day 1 and day 8 of adulthood (10, 21). This suggests that C. 

elegans hermaphrodites lack a mechanism to switch off yolk production after sperm depletion, i.e. that there 

exists what is effectively a vitellogenic open faucet (8, 10, 22). 

 Yolk synthesis occurs in the intestine, which in C. elegans is the main metabolic organ, also performing 

the functions of liver and adipose tissue, and is a major site of action of genes with effects on lifespan (23, 24). 

The intestine also exhibits major senescent pathology, most notably severe atrophy, including loss of nuclei 

and microvilli (10, 20). We recently identified a mechanism causing intestinal atrophy, demonstrating that yolk 

synthesis is coupled to intestinal atrophy, as gut biomass is apparently consumed in order to sustain yolk 

synthesis (10). Gut-to-yolk biomass conversion is mediated by autophagy, and promoted by insulin/IGF-1 

signaling, and several interventions that reduce intestinal atrophy also increase lifespan (10).  

 In this study we verify the vitellogenic open faucet model, showing that yolk accumulation results from a 

relatively steady flow of continued synthesis of yolk during adulthood combined with cessation of egg laying. 

We also describe how blocking YP115/YP88 synthesis increases YP170 levels, which accelerates gut atrophy 

and shortens lifespan; thus it is YP170 production specifically that is a major driver of C. elegans senescence. 

In addition, increased YP115/YP88 level protects against oxidative stress, but does not increase lifespan, 

suggesting that lifespan is not limited by oxidative stress. These findings are broadly consistent with the hyper-

function theory (1-4). 
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Culture Methods and Strains 

C. elegans were maintained using standard conditions (25), at 20˚C on nematode growth medium (NGM) 

plates seeded with Escherichia coli OP50, or HT115 for RNAi, performed as previously described (26). RNAi 

trials were initiated from egg hatching, unless otherwise stated. The following strains were used: N2 

hermaphrodite stock (27), DH26 rrf-3(b26) II (formerly fer-15), EG3234 oxIs144 [inx-16p::inx-16::GFP, lin-

15+], GA504 wuIs54 [pPD95.77 sod-1p::sod-1::GFP, rol-6(su1006)] (28), GA631 wuIs177 [ftn-1p::GFP, 

lin-15(+)] (29), JK574 fog-2(q71) V, and LD1171 ldIs3 [gcs-1p::GFP + rol-6(su1006)]. 

 

Mating protocol  

fog-2(q71) or rrf-3(b26) males were used for mating tests. Animals were picked at the L4 stage and added to 

NGM plates at a ratio of 3:1 males to hermaphrodites/females, and left to mature and mate for 24 hr, after 

which males were removed. rrf-3 males were raised and mated at 25˚C, the non-permissive temperature for the 

rrf-3(b26) fertilization defective (Fer) phenotype; after removal of rrf-3 males, fog-2 females were shifted to 

20˚C. 

 

Nematode Protein Content Measurements 

Total protein was measured using bicinchoninic acid (BCA). 100 worms were harvested into 50 μl of M9 

buffer, and frozen at -80˚C until used. Samples were added with 250 μl of Cell Lytic M buffer (Sigma) 

containing 1:1,000 protease inhibitor cocktails, sonicated with a Bioruptor (Cosmo Bio Co., Ltd) for 8 min 

with 30 sec intervals and centrifuged at 4˚C at 6,000 rpm for 15 min. The BCA procedure was performed using 

96-well plates. For each well, 200 μl of testing solution was mixed with 25 μl of sample or bovine serum 

albumin (BSA) standards. The plate was mixed gently, incubated at room temperature for 2 min and incubated 

at 37˚C for 30 min. The plate was measured for absorbance at 620 nm. 

Methods 
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Yolk Protein Measurements 

Yolk levels were quantified by Coomassie blue staining. 20 worms were harvested into 25 μl of M9 buffer and 

frozen at -80˚C until used. Samples were added with 25 μl of 2x Laemmli sample buffer (Sigma), incubated at 

70˚C and vortexed periodically for 15 min, then incubated at 95˚C for 5 min and centrifuged at 6,000 rpm for 

15 min. SDS-PAGE was performed, using Criterion XT Precast Gels 4-12% Bis-Tris (Bio-Rad) and XT 

MOPS (Bio-Rad) as a running buffer. Gels were stained by Coomassie blue following standard protocols. Gels 

were analyzed using ImageQuant LAS-4000 (GE Healthcare). Protein band identification was based on 

published data (21). Yolk proteins were normalized to myosin and the ratio of actin to myosin was used to give 

an indication of the reliability of myosin as a standard. 

 

Microscopy 

Worms were mounted onto 2% agar pads and anesthetized with 0.2% levamisole, and coverslips were gently 

placed onto the pads. Nomarski images of worms were acquired using a Zeiss microscope with a Hamamatsu 

ORCA-ER digital camera C4742-95 using Volocity 6.3 software (Improvision, Perkin-Elmer). For 

fluorescence images, a DAPI filter cube (excitation range 350 – 380 nm, emission > 420 nm) and a FITC/GFP 

filter cube (excitation range 450 – 490 nm, emission range 515 – 565 nm) were used. A constant exposure time 

was maintained between samples in fluorescence intensity comparisons. 

 

Intestinal Atrophy and Yolk Pool Accumulation Measurements 

Intestinal atrophy and yolk pool accumulation measurements were performed as described, using Nomarski 

microscopy (10). Intestinal atrophy was quantified by measuring the intestinal width at the mid-part of the 
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posterior intestine, subtracting the lumen width and dividing by the body width (10). Yolk pool accumulation 

was quantified by measuring total yolk pool area and dividing by body area (10). 

 

RNA Isolation and Quantitative PCR  

Approximately 150 worms were collected in 50 μl of M9, to which 800 μl of Trizol (Sigma) was rapidly 

added, and samples were then stored at -80˚C until processing. cDNA was synthesized using the Superscript 

IV Reverse Transcriptase (Invitrogen). SYBR Green Real Time PCR was performed using a QuantStudio 6 

Flex Real-Time PCR System (Thermo Fisher) and normalized using the ΔΔCt method as previously described 

(30).  

 

Lifespan Assays 

Animals were maintained at 20-25 worms per plate. Lifespans were scored every day or every other day for 

dead worms, starting from day 1 of adulthood. Raw mortality data for all trials is provided (Supplementary 

Dataset 2). 

 

Oxidative Stress Resistance Assays 

L4 stage worms were transferred to plates containing 40 mM paraquat (Sigma) or 7.5 mM tert-

butylhydroperoxide (t-BOOH) (Sigma). These plates had been seeded with HT115 bearing RNAi plasmids for 

2 days. Animals were incubated at 20˚C and, from day 1 of adulthood, scored for survival daily or hourly for 

paraquat or t-BOOH, respectively. Raw mortality data for all trials is provided (Supplementary Dataset 2). 
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The Student’s t test was used. One-way ANOVA was performed for multiple comparisons, and Tukey Kramer 

multiple comparison was used to obtain statistical comparisons between all groups. For survival assays, 

statistical significance was estimated using log rank and Wilcoxon tests using JMP 13.0 software (SAS 

Institute Inc.). Graphs display mean values and all error bars depict standard error of the mean (SEM).  

 

Results  
 

A Vitellogenic Open Faucet Contributes to Yolk Accumulation 

A working hypothesis is that continued vitellogenesis after sperm depletion promotes visceral pathology in C. 

elegans hermaphrodites. According to this view, yolk accumulation is a function of (a) unabated yolk 

production in adult hermaphrodites, and (b) a decline in egg laying. This model is analogous to an open faucet 

filling a sink: the content of the sink reflects the rate of flow of the faucet (cf. yolk synthesis) and the 

presence/absence of an open plug hole (c.f. egg laying)(Figure 1A).  

 An open faucet mechanism predicts a steady rate of YP accumulation after the cessation of egg laying. To 

test this we examined how the rate of vitellogenin accumulation changes with increasing age in selfed wild-

type hermaphrodites, by reanalyzing previously reported YP accumulation data (10). Age changes in yolk 

accumulation rate could reflect changes in yolk production rate per unit mass of intestine and/or changes in 

intestinal biomass. The hermaphrodite intestine increases in size from d1-d4 as the adult hermaphrodite grows, 

and then decreases due to gut atrophy (10). We therefore adjusted YP accumulation rate data for gut volume 

changes. Relative intestinal volume from d1 – d20 was estimated from the diameters of the intestine and 

intestinal lumen, taking the intestine to be a hollow cylinder, and using data for aging N2 hermaphrodites from 

our previous study (10). For YP170 and YP115 adjusted accumulation rate, this revealed an early peak 

followed by an extended period of relatively steady accumulation (Figure 1B; Supplementary Figure 1 
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[representative SDS-PAGE gel and individual trials]; Supplementary Dataset 1 [raw data]). This supports the 

presence of open faucet-type yolk synthesis. Peak accumulation rate was earlier for YP170 than YP115, 

occurring on d4 and d7, respectively, implying a difference in VIT-6 synthesis and/or trafficking. For both 

YP170 and YP115, accumulation ceases abruptly on d15, followed by a phase of apparent decline in YP 

levels.  

 To put these findings into context, adjusted YP170 and YP115 accumulation rate changes were plotted 

against other parameters of senescence: cumulative YP accumulation, declining pharyngeal pumping rate, 

intestinal atrophy, and survival (lifespan) (Figure 1C). This shows that YP accumulation is still occurring when 

the first animals are dying from senescence, and ceases shortly after gut atrophy reaches its peak level. It also 

shows an approximate correspondence between decline in both the YP accumulation rate and pharyngeal 

pumping (i.e. feeding) rate, possibly due to reduced uptake of food to support yolk biosynthesis. Also notable 

is the lag between YP accumulation and intestinal atrophy, which is closely correlated with pseudocoelomic 

lipoprotein pool (PLP, i.e. yolk pool) accumulation (10). This could indicate that gut-to-yolk biomass 

conversion largely contributes to the later stages of yolk accumulation; a further implication is that the growth 

of the PLPs occurs particularly during the later stages of intestinal atrophy, possibly due to release of intestinal 

lipid depots (10).   

 

Cessation of Egg Laying Contributes to Yolk Accumulation 

One possible expectation in the source-sink model (Figure 1A) is that during the egg laying phase, yolk 

production rate is set to approximately match the requirements of egg production, and therefore that YP 

accumulation rate should only rise substantially after d4-5 (20˚C) and sperm depletion. This was true for 

YP115 but not YP170, whose accumulation rate peaked earlier, on d3-4 (Figure 1B). This could imply that rate 

of synthesis of YP170 but not VIT-6 exceeds requirements of egg production.  
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 Another prediction of the source-sink model is that extending the egg laying period will postpone yolk 

accumulation, while blocking egg production will bring it forward. As predicted, extending the egg laying 

period by mating with males largely prevented YP170 accumulation (Figure 1D; Supplementary Figure 2), 

consistent with previous observations of PTPs (10). However, on d2-4 a slight accumulation of YP was seen, 

consistent with a slight biosynthetic surplus; mating was previously shown to increase vit mRNA levels, and 

this could be a contributory factor here (21). 

 The drop in YP accumulation rate after reproduction (Figure 1B), could imply that the presence of sperm 

increases YP production rate. However, an early peak in YP170 accumulation rate was also seen in spermless 

fog-2(q71) mutant females (Figure 1E; Supplementary Figure 3), although YP170 initially accumulated faster, 

probably due to absence of egg laying in fog-2(q71) females; this is consistent with earlier increases in YP 

accumulation previously noted in sterile fem-1(hc17) and fem-3(q20gf) mutant hermaphrodites (21). Similarly, 

blocking yolk transport into oocytes using rme-2 RNAi accelerated YP accumulation (Supplementary Figure 

4). Moreover, mating fog-2 females with rrf-3(b26) (formerly fer-15) males, which can mate but which 

produce fertilization-defective sperm, did not alter yolk accumulation rate (Supplementary Figure 5). Again, 

mating fog-2 females with fog-2 males largely prevented YP accumulation (Supplementary Figure 6).  

 These results verify that YP accumulation pattern is a function of both YP synthesis and YP disposal by 

egg laying, and confirm that post-reproductive hermaphrodites maintain a steady rate of YP accumulation into 

late adulthood.  

 

Knockdown of YP170 Synthesis Increases YP115/YP88 Levels and Vice Versa  

During C. elegans aging, continued yolk production is coupled to intestinal atrophy, and blocking vitellogenin 

synthesis inhibits intestinal atrophy (10). But is this due to synthesis of particular vitellogenins, or overall 

vitellogenin synthesis? Combined vit-5 + vit-6 RNAi is sufficient to largely prevent accumulation of all YP 

species (10). We found that vit-5 RNAi alone largely blocked YP170 accumulation (Figure 2A,B); given the 
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close sequence similarity between vit-3, -4 and -5 (17) it is likely that expression of all three genes is 

abrogated. vit-5 RNAi also greatly reduces vit-2 mRNA levels (Figure 2C). Unexpectedly, vit-5 RNAi also 

increased YP115 and YP88 accumulation by up to 44% (Figure 2A,B). Similarly, vit-6 RNAi blocked YP115 

and YP88 accumulation, but increased YP170 accumulation by up to 55% (Figure 2A,B).  

 vit-5 RNAi had little effect on vit-6 mRNA and vice versa (Figure 2C). Thus, this reciprocal effect does 

not involve a mechanism affecting vit gene transcription. This suggests that reducing abundance of a given vit 

mRNA species leads to increased translation of other vit mRNA species, perhaps reflecting competition 

between vit mRNAs for access to translational machinery. 

 C. elegans hermaphrodites produce copious amounts of yolk, such that as a proportion of total YP levels 

rise from less than 10% on day 1 of adulthood to almost 40% by day 11 (Figure 2D)(10). As expected, this 

increase was entirely suppressed by vit-5,-6 RNAi, but due to reciprocal increases in synthesis, vit-5 or vit-6 

RNAi alone only slightly reduced overall YP content (Figure 2D). This suggests that vit-5,-6 double RNAi but 

not vit-5 or vit-6 RNAi should reduce total worm protein content. But surprisingly not even vit-5,-6 RNAi 

reduced overall protein content (Figure 2E). This implies that other proteins are present in place of vitellogenin 

after vit-5,-6 RNAi.  

 To explore this further we compared Coomassie-stained protein gels of extracts from control and vit-5,-6 

RNAi-treated N2 hermaphrodites. This revealed, in the latter, the presence of numerous bands showing 

increased abundance of proteins other than vitellogenin (Figure 2F).  

 

Vitellogenin Synthesis Reduces Levels of other Intestinal Proteins 

How does vit-5,-6 RNAi increase levels of other proteins? One possibility is that knockdown of all YPs 

increases synthesis of other intestinal proteins, perhaps due to absence of monopolization of the protein 

synthesis machinery in the hermaphrodite intestine by vit mRNAs. To probe this, we tested effects of vit-5, vit-

6 or vit-5,-6 RNAi on selected fluorescent reporters of intestinally-expressed genes (ftn-1, gcs-1, inx-16, and 
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sod-1) on days 1, 4 and 8 of adulthood. The prediction here was that vit-5,-6 RNAi but not vit-5 or vit-6 RNAi 

alone would increase reporter expression. However, against expectation, both vit-5 and vit-5,-6 RNAi 

consistently increased expression of all reporters, while vit-6 RNAi reduced fluorescence (Figure 3A,B). vit-5,-

6 RNAi did not alter ftn-1, gcs-1, inx-16 or sod-1 mRNA levels (d1) (Figure 3C) supporting the view that 

vitellogenin synthesis affects levels of other proteins by post-transcriptional mechanisms.   

 That both vit-5 and vit-5,-6 RNAi, with elevated and reduced levels of YP115/YP88, respectively, 

similarly increase intestinal reporter expression, suggests that synthesis of YP170 but not YP115/YP88 reduces 

levels of other intestinal proteins.  

 

vit-6 RNAi Enhances Intestinal Atrophy and Shortens Lifespan 

Abrogation of yolk accumulation by vit-5,-6 RNAi inhibits intestinal atrophy and extends lifespan (10). Next 

we tested effects of vit-5 or vit-6 RNAi alone on these traits (20˚C). vit-5 RNAi, which increases YP115/YP88 

levels, proved to suppress intestinal atrophy to a similar extent as vit-5,-6 RNAi (Figure 4A). vit-5 RNAi 

caused a modest increase in lifespan that was statistically significant in 1/3 trials (Figure 4B, Supplementary 

Table 1, Supplementary Dataset 2), consistent with previous observations (31). Furthermore, vit-5,-6 RNAi 

more robustly increased lifespan, both relative to RNAi controls (L4440), as previously observed (10), and to 

vit-5 RNAi alone (statistically significant in 2/3 trials in each case; Figure 4B, Supplementary Table 1).  

 Interestingly, vit-6 RNAi, which increases YP170 levels, both enhanced intestinal atrophy (Figure 4A) 

and reduced lifespan (Figure 4B, Supplementary Figure 7, Supplementary Table 1). In 5 trials, mean lifespan 

estimates with vit-6 RNAi were lower than controls, and in 2/5 cases the effect was statistically significant, 

suggesting a modest but real effect on lifespan. Notably, vit-5 RNAi suppresses the life-shortening effects of 

vit-6 RNAi on lifespan (Figure 4B, Supplementary Table 1). Taken together, this implies that production of 

YP170 but not YP115/YP88 promotes intestinal atrophy and reduced lifespan (see Discussion).   
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 vit-5,-6 RNAi also inhibits PLP accumulation (10). However, neither vit-5 RNAi or vit-6 RNAi alone had 

a detectable effect on PLP accumulation (Figure 4C), suggesting that high levels of either YP170 or 

YP115/YP88 are sufficient to assure normal levels of yolk lipid production and/or transport into the body 

cavity. 

 

Increased YP115/YP88 Levels are Associated with Oxidative Stress Resistance 

In aging C. elegans, elevated protein oxidation levels were observed in YP115 (but not YP88) raising the 

possibility that YP115 has antioxidant properties (32). This is consistent with reported antioxidant properties of 

vitellogenin in honey bee workers (33). To test this further, we tested effects on resistance to oxidative stress 

(Oxr), using either 40 mM paraquat, or 7.5 mM t-BOOH, of RNAi of either vit-5 or vit-6, or both. In no cases 

was a reduction in Oxr observed, but vit-5 RNAi, which increases YP115/YP88 levels, increased Oxr in a 

number of trials (statistically significant in 2/6 trials for paraquat and 1/3 for t-BOOH; Figure 5A,B, 

Supplementary Figure 8, Supplementary Table 2, 3). That vit-5,-6 RNAi did not increase Oxr implies that this 

effect of vit-5 RNAi is attributable to increased YP115/YP88 rather than reduced YP170. This suggests that 

YP115 and/or YP88 but not YP170 can protect against oxidative stress.  

 

 

Discussion 

 

This study adds more detail to our understanding of the causes of yolk steatosis in aging C. elegans, and how 

yolk production promotes intestinal senescence. It verifies the presence of a vitellogenic open faucet in post-

reproductive hermaphrodites, and reveals that production of YP170 but not YP115/YP88 is coupled to 

intestinal atrophy, implying that gut-to-yolk biomass conversion specifically involves YP170. Thus, YP170 
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production specifically promotes senescent pathogenesis in C. elegans. More broadly, these results support the 

view that system run-on, rather than system failure or stochastic damage accumulation, causes senescent 

intestinal atrophy and yolk steatosis. 

 

Yolk Accumulation Results from Continued Synthesis and Cessation of Egg Laying 

It has long been known that yolk accumulates in C. elegans hermaphrodites after sperm depletion in C. elegans 

(7, 8, 21). Here a likely candidate mechanism is loss of yolk efflux through egg laying combined with 

continued yolk production. Our findings confirm the presence of such a source and sink mechanism, and also 

reveal a number of additional details. First, there is an early peak of YP170 accumulation prior to sperm 

depletion (Figure 1B,C), suggesting that yolk production exceeds demand during reproduction, at least under 

replete nutritional conditions. Second, this early peak of yolk production is independent of the presence of 

sperm, as shown by its occurrence in spermless fog-2 females (Figure 1E). Third, YP115/YP88 levels peak 

later than those of YP170, suggesting a difference in synthesis and/or trafficking of VIT-6 (Figure 1B,C). 

Fourth, there is a relatively steady rate of yolk accumulation in post-reproductive adults, consistent with an 

unregulated, open faucet mechanism, which ceases abruptly on d15, perhaps as the result of further intestinal 

senescence and incipient death (Figure 1B).  

 We conclude that PLP accumulation, or senescent yolk steatosis, is caused by a combination of post-

reproductive continuation of yolk synthesis, and sperm depletion that is a consequence of the protandrous 

architecture (or bauplan)(34) of the C. elegans hermaphrodite germline (i.e. because it makes sperm first and 

then oocytes). 

 

YP170 Production Drives Intestinal Atrophy and Shortens Lifespan 

New features of the mechanisms of senescent pathogenesis in C. elegans may be deduced from the effects of 

selective inhibition of YP170 or YP115/YP88, as follows. Combined vit-5,-6 RNAi suppressed gut atrophy 
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and increased lifespan to a similar degree to vit-5 RNAi, despite elevated YP115/YP88 levels in the latter 

(Figure 5C). By contrast, vit-6 RNAi, which increases YP170 levels, increased gut atrophy but not if the 

increase in YP170 was abrogated by simultaneous vit-5 RNAi (Figure 5C). Taken together this implies that 

YP170 production or abundance drives intestinal atrophy but that of YP115/YP88 does not. This suggests the 

presence of a senescence-promoting mechanism that specifically couples YP170 synthesis to disappearance of 

intestinal cell contents. Similarly, effects of RNAi on lifespan indicate a predominant role of YP170 in lifespan 

determination. Moreover, that vit-6 RNAi both accelerates gut atrophy and shortens lifespan provides further 

evidence that senescent atrophy of the intestine contributes to late-life mortality.  

 

Possible Causes of Reciprocal Changes in YP Species after vit Gene RNAi 

RNAi knockdown of YP170 caused a reciprocal increase in YP115/YP88 levels, and vice versa. This could 

imply that the intestinal protein biosynthetic machinery is working at full capacity to produce yolk, so that vit 

mRNAs compete with one another for access to ribosomes. Possible reasons for this are hyper-abundance of 

vit mRNAs, and preferential access of vit mRNAs to the translational machinery. We explored both 

possibilities by analysis of published RNA-seq and ribo-seq data from a study of whole worm mRNA extracts 

from young adult hermaphrodites (35). Examining RNA-seq data, vit-6 mRNA was the third most abundant 

(4,981 RPKM) (Supplementary Table 4), and this was exceeded by the sum of mRNAs encoding YP170 (vit-

1-5, 9,628 RPKM) (Supplementary Table 5). Given that these values are for whole worm extracts, this implies 

that vit mRNAs are very abundant indeed within the intestine.  

 As an indicator of possible preferential translation of vit mRNAs, we tested for high representation of vit 

mRNA in ribo-seq profiles relative to RNA-seq profiles. To do this we calculated the ratio of mRNA 

abundance in ribo-seq vs. mRNA seq data, and compared the mean values for the 4 vit mRNAs for which data 

was available with that for the top 20 other most abundant mRNAs (RNA-seq data). This gave values of 1.15 

and 1.63, respectively, consistent with possible under-representation of vit mRNAs on ribosomes 

(Supplementary Table 5), although if one excludes the 3 most abundant ribo-seq mRNAs from this analysis 
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(col-140, eef-1A.1, rps-7) the latter value is reduced to 1.18. The combination of very high vit mRNA 

abundance in RNA-seq profiles and possible under-representation in ribo-seq data suggests that high 

vitellogenin translation levels are caused by high vit mRNA abundance, and that vit mRNA hyper-abundance 

leads to competition between vit mRNA species for access to ribosomes. 

 However, this scenario does not rule out the presence of other mechanisms enhancing vit mRNA 

translation rate, whose presence could be masked by very high vit mRNA levels. Preferential access of vit 

mRNAs to the translational machinery could occur due to mRNA sequence features, or by suppression of non-

vit mRNA translation. During some forms of of viral infection, 5'-cap dependent translation is suppressed and 

viral mRNAs are translated via internal ribosome entry site (IRES) sequences (36). However, examination of 

vit mRNA sequences using the RNAfold web server (37, 38) did not reveal any potential IRES sequences. 

Notably though, none of the vit mRNAs bear spliced leader (SL) sequences (WormBase, www.wormbase.org, 

release WS267, 2018). One possibility is that absence of a requirement for trans-splicing enables faster 

production of mature vit mRNA species.  

 One hypothesis that we entertained is that translation of vit mRNAs competes with translation of other 

intestinal proteins, which contributes to intestinal atrophy. Our tests showed that both vit-5 and vit-5,-6 RNAi 

increased levels of intestinal reporter gene proteins but not their corresponding endogenous mRNAs (Figure 3). 

This could imply that synthesis of YP170 inhibits translation of other proteins. However, reduced reporters 

could reflect the fact that vit-5 and vit-5,-6 RNAi inhibit gut atrophy (Figure 4A), although increased reporter 

levels even on d1 (Figure 3A), long before atrophy appears, argues against this.  

 Taken together, these results favor the view that high vit mRNA abundance rather than preferential 

translation mechanisms leads to competition with other mRNAs for access to translational machinery. 

However, they also suggest a weaker competitive effect of vit-6 mRNA (given that YP170 synthesis 

specifically is coupled to intestinal atrophy). 
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Effects of Vitellogenins on Oxidative Stress Resistance and Lifespan 

vit-5 RNAi increases YP115/YP88 levels and causes Oxr, and both effects are suppressed by vit-6 RNAi 

(Figure 2A,B, Figure 5A,B). This is consistent with a previously suggested antioxidant role for YP115 (32). 

We previously described an age increase in Oxr (t-BOOH) in N2 hermaphrodites (39); one possibility is that 

VIT-6 accumulation contributes to this age increase in Oxr.   

       The early, influential theory that reactive oxygen species (ROS) are a major cause of aging (40, 41) 

suggests that vitellogenins should protect against aging. In fact, knockdown of vitellogenin expression can 

increase lifespan in C. elegans (10, 31)(this study) and in the lubber grasshopper, Romalea microptera (42), 

but reduce it in the honey bee Apis mellifera (43). Here we show that nematodes subjected to vit-6 RNAi are 

Oxr but shorter lived than non-Oxr vit-5,-6 and vit-5 RNAi populations (Figure 4B, Figure 5A,B), i.e. effects 

of vitellogenins on Oxr and longevity can be uncoupled. This is consistent with numerous findings arguing 

against the view that ROS is a major cause of senescence in C. elegans (28, 44, 45). However, it remains 

possible that ROS damage contributes to some senescent pathologies that do not limit C. elegans lifespan 

under standard culture conditions. 

 

 

 

Later Vitellogenesis: Alternative Models of Antagonistic Pleiotropy 

Why after sperm depletion do C. elegans continue to synthesize yolk, even causing intestinal pathology in 

order to do this? We suggest two possibilities, both consistent with the evolutionary principle of antagonistic 

pleiotropy (AP). This principle postulates that genes can exert a variety of effects on phenotype throughout 

life, and that earlier effects will have greater impact due to smaller relative reproductive output at later ages. 

Consequently, selection may favor alleles with greater early life fitness benefits even if they cause pathology in 

later life (i.e. senescence) (1).  
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 The first possibility is that continued yolk production represents non-adaptive run-on of processes that 

contribute to fitness in earlier life (8). The absence of a mechanism to turn yolk production off could reflect the 

lack of any selective advantage that such an off switch would confer. Such a mechanism is consistent with 

Blagosklonny's quasi-program model of AP action, where late-life action of wild-type genes directly promote 

pathogenetic biological programs (rather than indirectly through effects on damage accumulation) (1, 2). 

Quasi-programs are also a major cause of uterine tumor formation in aging C. elegans (4).  

 A second possibility is that continued yolk production contributes to fitness by some mechanism as yet 

unidentified, e.g. by increasing reproductive success after later life mating. Such a mechanism would represent 

a direct reproductive cost comparable, for example, to costs of lactation in female mammals, which include 

bone atrophy due to release of bone calcium for milk production (46). Either way, understanding the 

mechanisms involved should be informative with respect to the identification of general principles of senescent 

pathophysiology. 

 

 

 

 

 

 

 

Supplementary Material 

Supplementary material can be found at:  
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Figure legends 

 

Figure 1. Yolk accumulation results from continued vitellogenesis and cessation of egg laying. (A) Cartoon 

showing faucet and sink model. (B) Age changes in vitellogenin accumulation (left) and accumulation rate 

(right), summed data from 4 trials. Top, YP170; bottom, YP115. Data shown with and without adjustment for 

age changes in intestinal volume. (C) Combined figure showing YP adjusted accumulation and accumulation 

rate, and other age changes. Left, with YP170; right, with YP115. (D) Mating of N2 hermaphrodites with 

males (fog-2) reduces YP170 accumulation. Left, total accumulation. Right, accumulation rate. (E) YP170 

accumulation in spermless fog-2(q71) females. Left, total accumulation. Right, accumulation rate. (D, E) 

Summed data from 3 trials, age-matched comparison. Data are mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 

0.001.  

 

Figure 2. Knockdown of YP170 synthesis reciprocally increases YP115/YP88 levels and vice versa. (A) 

Coomassie gel showing the effects of vit-5 and/or vit-6 RNAi on YP levels. (B) Quantified data, fold change in 

YP levels. Note that vit-5 RNAi increases levels of YP115 and YP88, while vit-6 RNAi increases YP170 

accumulation. Statistical comparisons are to L4440 control on same day. (C) Effect of vit-5 and/or vit-6 RNAi 

on vit-2, vit-5 or vit-6 mRNA levels, compared to L4440 control on the same day. Note that vit-5 RNAi does 

not increase vit-6 mRNA levels and vit-6 RNAi does not increase vit-5 mRNA levels. (D) No change in the YP 

content per worm after vit-5 or vit-6 RNAi. (E) No effect of vit RNAi on total protein content. (F) Appearance 

of new protein bands after vit-5,-6 RNAi. All data are mean ± SEM, * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure 3. Vitellogenin synthesis reduces levels of other intestinal proteins. (A) Effects of vit RNAi on selected 

fluorescent intestinal reporters, compared to L4440 control on same day, data are mean ± SEM, * p < 0.05, ** 

p < 0.01, *** p < 0.001. (B) Selected examples of effects of vit-5,-6 RNAi on intestinal reporter gene 
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expression. Scale bars, 100 μm. (C) Effects of vit RNAi on mRNA for selected intestinal genes, compared to 

L4440 control on same day; data are mean ± SEM. 

 

Figure 4. YP170 production accelerates intestinal atrophy and shortens lifespan. (A) Effect of vit RNAi on 

intestinal atrophy. Left, microscope images, scale bars, 10 μm. Right, quantitation. (B) Effect of vit RNAi on 

lifespan. Bar graphs depicting mean ± SEM of lifespans for individual trials; p, log-rank test. (C) Effect of vit 

RNAi on yolk pool accumulation. Left, microscope images, scale bars, 10 μm. Right, quantitation (A, C) Data 

are mean ± SEM, age-matched comparison, * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Figure 5. Evidence that increased YP115/YP88 can enhance oxidative stress resistance. (A, B) Effect of vit 

RNAi on resistance to oxidative stress caused by 40 mM paraquat (A) and 7.5 mM t-BOOH (B); bar graphs 

depicting mean survival ± SEM for individual trials; p, log-rank test.  (C) Model for distinct roles of YP170 

and YP115/YP88 in C. elegans senescence. Rate of intestinal atrophy is coupled to synthesis of YP170 but not 

YP115/YP88, through gut-to-yolk biomass conversion (10). Higher YP170 levels reduce lifespan, because 

production is coupled to intestinal atrophy; but effects of increased YP170 cannot be ruled out. Blocking both 

YP170 and YP115/YP88 synthesis increases lifespan more than YP170 alone, suggesting that YP115/YP88 

accumulation could contribute to late-life mortality. Wild-type insulin/IGF-1 signaling greatly shortens 

lifespan (47, 48), increases vit gene transcription (31, 49) and translation (21), and global translation (50, 51), 

and intestinal atrophy (10).  
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Figure 5 
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