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Abstract
As we fall sleep, our brain traverses a series of gradual changes at physiological, behavioural and cognitive levels, which are 
not yet fully understood. The loss of responsiveness is a critical event in the transition from wakefulness to sleep. Here we 
seek to understand the electrophysiological signatures that reflect the loss of capacity to respond to external stimuli during 
drowsiness using two complementary methods: spectral connectivity and EEG microstates. Furthermore, we integrate these 
two methods for the first time by investigating the connectivity patterns captured during individual microstate lifetimes. While 
participants performed an auditory semantic classification task, we allowed them to become drowsy and unresponsive. As 
they stopped responding to the stimuli, we report the breakdown of alpha networks and the emergence of theta connectivity. 
Further, we show that the temporal dynamics of all canonical EEG microstates slow down during unresponsiveness. We 
identify a specific microstate (D) whose occurrence and duration are prominently increased during this period. Employing 
machine learning, we show that the temporal properties of microstate D, particularly its prolonged duration, predicts the 
response likelihood to individual stimuli. Finally, we find a novel relationship between microstates and brain networks as 
we show that microstate D uniquely indexes significantly stronger theta connectivity during unresponsiveness. Our findings 
demonstrate that the transition to unconsciousness is not linear, but rather consists of an interplay between transient brain 
networks reflecting different degrees of sleep depth.
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Introduction

As we fall asleep, our brain traverses a series of changes 
which accompany the loss of sensory awareness and respon-
siveness to the external world. Despite the subjective abil-
ity to classify retrospectively one’s own state as “awake” or 
“asleep” (Hori et al. 1994), research continues to unravel 
the gradual transitions happening at behavioural (Ogilvie 
and Wilkinson 1984), cellular (Steriade et al. 1993), physi-
ological (Prerau et al. 2014) and cognitive (Goupil and 
Bekinschtein 2012) level, starting with early drowsiness 
and continuing into the deep stages of sleep (Ogilvie 2001). 
Characterising these transitions and linking across physi-
ological levels is an important step in the modern attempt 
to understand access-consciousness (Block 1996; Koch 
et al. 2016) and its fluctuations in natural, pathological and 
pharmacological alterations: sleep (Hobson and Pace-Schott 
2002), disorders of consciousness (Giacino et al. 2014), 
sedation and anaesthesia (Alkire et al. 2008).
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The transition from wakefulness to sleep involves a pro-
gressive and sometimes nonlinear loss of responsiveness to 
external stimuli (Ogilvie and Wilkinson 1984). Behavioural 
unresponsiveness does not immediately imply unconscious-
ness (Overgaard and Overgaard 2011; Sanders et al. 2013). 
However, from the perspective of levels of consciousness 
(Laureys 2005), the capacity to respond to external stimuli 
offers an objective measurement in the process of transition 
between full wakefulness and sleep-induced unconscious-
ness. The question of how we stop responding to stimuli 
during drowsiness is related to, but distinct from an inves-
tigation of the stages of sleep conventionally defined by 
specific electrophysiological grapho-elements (Iber et al. 
2007; Ogilvie 2001). Indeed, the loss of responsiveness is 
and distributed across sleep stages: one study found a rate of 
unresponsiveness of 28% in stage 1, 76% in stage 2, and 95% 
in stage 3 of sleep (Ogilvie and Wilkinson 1984). Here, we 
are specifically interested in the neural markers that predict 
our inability to respond as we drift to sleep.

A traditional approach for investigating this question is to 
look at the changes in EEG spectral power and connectivity, 
which have been shown to vary across levels of conscious-
ness. During relaxed wakefulness, the EEG of most human 
subjects is characterised by trains of alpha waves, at around 
10 Hz, originating from central-posterior cortical areas 
(Barry et al. 2007; De Gennaro et al. 2016; Niedermeyer 
2005a). During the early onset of sleep, these alpha oscilla-
tions disappear and an alpha rhythm with a different corti-
cal origin (Broughton and Hasan 1995) emerges in anterior 
regions (Tanaka et al. 1997), while theta power increases, 
particularly in central regions (Badia et al. 1994; Nieder-
meyer 2005b; Ogilvie 2001; Wright et al. 1995). Similarly, 
long-range alpha connectivity disintegrates at the onset of 
sleep, while lower-frequency theta and delta connectivity 
increases (Tanaka et al. 2000, 1998; Wright et al. 1995). 
Several power and connectivity patterns have been associ-
ated with the loss of consciousness, sometimes specifically 
with the loss of responsiveness, such as the anteriorisation 
of alpha power and connectivity in EEG, which has been 
described in drug-induced loss of responsiveness (Chennu 
et al. 2016a, b), and frontoparietal connectivity in fMRI, 
which has been proposed as a key signature of conscious-
ness (Laureys 2005) and linked to external awareness (Van-
haudenhuyse et al. 2011). In EEG, the disruption of con-
nectivity between frontal and parietal electrodes at alpha 
(8–12 Hz) frequencies has been shown to occur in disor-
ders of consciousness (Chennu et al. 2014a, b) and seda-
tion (Chennu et al. 2016a, b). Although it is still debated 
whether these are signatures of conscious processing or of 
processes that almost invariably accompany it (Farooqui and 
Manly 2017), brain connectivity patterns currently provide, 
in practice, useful insights into the transitions between levels 
of consciousness.

Another method that can be employed to investigate the 
rapidly changing global state of the brain is that of EEG 
microstates. A microstate represents a quasi-stable spatial 
topography of electric field on the scalp (Lehmann 1990, 
1971; Lehmann et al. 1987). The conventional method of 
analysing microstates in a dataset involves running an unsu-
pervised clustering algorithm on a set of EEG topographies 
of highest variance, followed by labelling of all EEG sam-
ples based on the similarity with the four obtained topogra-
phies (Murray et al. 2008; Pasqual-Marqui et al. 1995). Four 
consistent (Khanna et al. 2014) EEG microstate topogra-
phies have been identified in a large population of healthy 
subjects of all ages during resting-state wakefulness (Koenig 
et al. 2002a, b) and different microstates have been corre-
lated with different cognitive modalities (Lehmann et al. 
2010; Milz et al. 2015; Seitzman et al. 2016), but also with 
mental disorders, such as narcolepsy (Kuhn et al. 2015). A 
resting-state study of sleep (Brodbeck et al. 2012a, b) identi-
fied four EEG microstate topographies in all stages of sleep 
nearly identical to those of wakefulness, but occurring with 
altered temporal parameters. Notably, increased microstate 
duration was associated with deeper sleep. On the contrary, 
a different study (Cantero et al. 1999) reported a shorter 
duration of microstates and suggested a larger repertoire of 
brain states during the hypnagogic period. Microstates are 
thought to reflect momentary, global, synchronised (Koenig 
et al. 2005) networks of the brain, reflecting building blocks 
of large-scale cognitive processing required for the continu-
ous stream of consciousness (Lehmann 1990). The neural 
sources underlying microstates are still being explored (Britz 
et al. 2010; Milz et al. 2017; Pascual-Marqui et al. 2014). 
Still, the dynamics of the sequence of microstates itself can 
be seen as a “syntax” of neural activity that is in and of 
itself an informative tool for modelling and understanding 
the rapidly-fluctuating global dynamics of the brain.

Brain connectivity and microstates hence provide com-
plementary perspectives on the neurodynamics underlying 
the loss of responsiveness as we fall asleep. But what is 
the relationship between brain networks and microstates? 
There is evidence that transient brain networks can be 
resolved in electrophysiological data (Baker et al. 2014; 
Pascual-Marqui et al. 2014; Vidaurre et al. 2016), but it is 
an open question whether these networks co-occur with the 
lifetime of individual microstates. We investigate for the 
first time how spectral connectivity and EEG microstate 
dynamics interact as we lose responsiveness during drows-
iness. We hypothesise that the spectral changes occurring 
with the loss of responsiveness mirror those observed in 
the transition to sleep (Ogilvie 2001), anaesthesia (Chennu 
et al. 2016a, b; Purdon et al. 2013) and in disorders of 
consciousness (Chennu et al. 2014a, b): namely, the dis-
integration of alpha networks, the loss of posterior alpha 
power, and the emergence of lower-frequency connectivity 
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and power. Alongside, building on previous research on 
EEG microstate dynamics during sleep (Brodbeck et al. 
2012a, b), we hypothesise similar changes in microstate 
dynamics accompanying the loss of responsiveness during 
drowsiness. Finally, given that resting-state network activ-
ity is known to fluctuate at millisecond level, we hypoth-
esise that the neural changes in that occur during drowsi-
ness underlie the dynamics of both brain networks and the 
microstates sequence. Specifically, we investigate the pos-
sibility that individual microstates co-occur with distinct 
transient brain networks, reflecting fleeting changes in the 
global state of the brain during drowsiness.

To address these questions, we use a subset of data from 
a previously reported auditory discrimination task where 
subjects became drowsy and unresponsive (Kouider et al. 
2014). The task involved pressing a button corresponding 
to the classification of the auditory stimulus into one of two 
categories (object or animal). We obtain 5 min of data as 
subjects performed this task, before and after the loss of 
responsiveness due to drowsiness. We first characterise the 
responsive and unresponsive periods by analysing micro-
state-blind spectral power and connectivity changes in our 
dataset. Next, we describe the temporal parameters of EEG 
microstates during responsiveness and unresponsiveness. To 
test whether these parameters can reliably predict respon-
siveness to individual stimuli, we apply machine learning 
to predict responses and misses to stimuli in our task, based 
only on pre-stimulus microstate parameters. Finally, we 
investigate the brain connectivity underlying each of the 
four canonical microstates after the loss of responsiveness 
and highlight a previously unknown relationship between 
spectral connectivity and EEG microstates.

Methods

Subjects

Sixteen healthy, native English-speaking, right-handed 
young adults (mean age = 24, SD = 2.75; 6 females) were 
selected for this experiment out of the 18 subjects from 
Experiment 1 in a previous study (Kouider et al. 2014). Two 
subjects from this dataset were excluded by visual inspec-
tion due to a failure to remain asleep for a period longer than 
5 min, as assessed using responsiveness to stimuli. The par-
ticipants were directed to not consume stimulants like coffee 
and to sleep 1–2 h less than normally before the experiment. 
All of the subjects were assessed as easy sleepers on the 
Epworth Sleepiness Scale (scores 7–14). The participants 
signed a consent form and were reimbursed for their par-
ticipation. The experiment was approved by the Cambridge 
Psychology Research Ethics Committee.

Experimental Procedure

The stimuli consisted of 96 spoken English words chosen 
from the CELEX lexical database (Linguistic Data Consor-
tium, University of Pennsylvania). Half of the words denoted 
animals and the other half denoted objects. The subjects 
were asked to classify each stimulus in its respective cat-
egory (animal or object) by pressing a button. The stimuli 
were presented through headphones, with an average dis-
tance of 8.4 s (minimum 6.2 s) between consecutive stimuli, 
as the subjects were lying with their eyes closed in a reclin-
ing chair. To facilitate drowsiness, the task was performed 
in a dark, acoustically and electrically shielded EEG room, 
and the participants were told that they could fall asleep at 
any point during the experiment, although they were asked 
not to stop responding deliberately while still awake.

EEG Data Acquisition

The electroencephalogram was continuously recorded at 500 
samples per second from 64 Ag/AgCl electrodes (Neuro-
Scan Labs system) positioned and labelled according to the 
extended 10/20 system, with Cz as a reference and including 
vertical and horizontal electrooculography channels.

EEG Pre‑processing

All analyses that follow were performed using custom MAT-
LAB scripts (The MathWorks, Inc., Natick, Massachusetts, 
US). The EEGLAB toolbox (Delorme and Makeig 2004) 
was used to facilitate data pre-processing.

The data was filtered between 1 and 40 Hz and the full 
channel mean was subtracted from each channel for baseline 
correction. The HEOG and VEOG channels were removed. 
An Independent Component Analysis (ICA) decomposition 
was performed using the infomax ICA algorithm (Bell and 
Sejnowski 1995). Components capturing ocular or single-
channel artefacts were removed from the data by visual 
inspection and considering the correlation with the HEOG 
and VEOG channels. An average of 11.6 (SD = 8.6) out of 
63 components were removed per subject. Channel FT8 was 
interpolated using spherical interpolation in all subjects as 
it was noisy in most recordings. Finally, channels were re-
referenced offline to the common average.

Data Segmentation

We classified responsive and unresponsive periods by 
inspecting the sequence of hits and misses to individual 
stimuli. We used a liberal window of 6 s to allow for a 
response to a stimulus, regardless of its correctness. A lack 
of response within 6 s was marked as a miss. The choice 
of a 6-s window for responsiveness was based on our own 
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pilot studies, where we investigated the longest interval that 
subjects would make a response during drowsiness in a go 
task. However, note that most reaction times were below 
3 s (Fig. 1) and the reaction times increased gradually and 
later in the task, indicating an increase in drowsiness. This 
was also established in a previous study on the same data 
(Kouider et al. 2014).

For balance across participants and the two behavioural 
states, a total of 5 min of responsiveness and 5 min of unre-
sponsiveness were extracted from each recording (150,000 
samples per state, per recording), as shown in Fig. 1. The 
responsiveness period was taken as the first 0.5–5.5 min of 

data in each recording, acquired immediately after the exper-
iment began and the participants were still alert and wakeful. 
This was confirmed by checking that the large majority of 
the stimuli were followed by responses during this period; 
a very small number of occasional misses occurred in more 
than half of the participants during this period (e.g., due 
to unfamiliarity with the task), but they were not contigu-
ous. Then, a period of unresponsiveness was selected by 
visual inspection of the hits and misses after the end of the 
responsiveness period, with the aim to find a 5-min interval 
consisting of as many misses as possible. If a response was 
present during the period labelled as unresponsiveness, the 
10 s preceding and following the corresponding stimulus 
were excluded.

Microstate Topographies

The idea of electric microstates of the brain comes from the 
observation that the topography of the electric field recorded 
by EEG over the scalp does not fluctuate randomly, but is 
instead comprised of short periods of stability (Lehmann 
1971). Four canonical microstates (Koenig et al. 2002a, b), 
conventionally labelled A, B, C and D, have been shown 
to be consistent across recording sessions (Khanna et al. 
2014) and have been repeatedly confirmed in a wide range 
of health conditions and cognitive tasks across multiple stud-
ies (Britz et al. 2010; Brodbeck et al. 2012a, b; Grieder et al. 
2016; Katayama et al. 2007; Kikuchi et al. 2011; Koenig 
et al. 1999; Kuhn et al. 2015; Milz et al. 2015; Nishida et al. 
2013; Pascual-Marqui et al. 2014; Schlegel et al. 2012; Stre-
lets et al. 2003; Tomescu et al. 2014a, b; Van de Ville et al. 
2010).

To compute the microstate topographies, the Global Field 
Power (GFP), representing the standard deviation of the 
electrode values (Lehmann and Skrandies 1980), was first 
computed at each time point. As the number of GFP peaks 
varied across subjects and condition, we rounded down the 
minimum number of peaks available and retained the first 
5000 peaks in each condition (responsiveness and unrespon-
siveness) from each recording.

The clustering algorithm was implemented in MAT-
LAB and is presented in Box 1. The algorithm is based on 
a variant of the method first introduced by (Lehmann et al. 
1987), as described in (Murray et al. 2008), and involves an 
unsupervised clustering of EEG samples into the specified 
number of classes that best explain the input samples. Note 
that topographical similarity is computed using the absolute 
value of the spatial correlation, and the polarity of the map is 
ignored, as topographies with inverted polarities are consid-
ered to be produced by the same neural generators (Michel 
et al. 2009). The maximum number of iterations was set to 
1000 and the GEV delta was set to 1e-9.

Fig. 1  Reaction times and data segmentation into responsiveness and 
unresponsiveness for individual participants. The horizontal axis rep-
resents recording time and the vertical axis represents reaction time in 
seconds. Blue markers indicate responses, while orange markers indi-
cate misses. The blue area corresponds to the 5-min period of respon-
siveness, while the orange area corresponds to the 5-min period of 
unresponsiveness
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We initially employed a cross-validation criterion (Pas-
qual-Marqui et al. 1995) to determine the optimal number of 
microstates fitting the data, as performed in several previous 
studies (Brodbeck et al. 2012a, b; Koenig et al. 1999). How-
ever, we found that the cross-validation criterion produced 
different results for when the number of electrodes was 
down-sampled from 63 to 30 (7 and 4 maps, respectively). 
This sensitivity of the cross-validation criterion to the num-
ber of electrodes has been documented in previous literature 
(Murray et al. 2008). Hence, we decided to fix the number 
of microstates to four, in line with previous studies that also 
fix this number a priori (Khanna et al. 2014; Kikuchi et al. 
2007; Koenig et al. 2002a, b; Milz et al. 2015; Schlegel et al. 
2012; Strelets et al. 2003; Tomescu et al. 2014a, b).

Microstate Labelling

To obtain the sequence of EEG microstates characterising a 
recording, each EEG sample was individually assigned to the 
microstate with the highest corresponding spatial correla-
tion. To correct for noisy assignments during polarity rever-
sals (Koenig and Brandeis 2016), we applied a previously-
described temporal smoothing algorithm for the microstate 
sequence (Pasqual-Marqui et al. 1995) with parameter b set 
to 5, corresponding to a smoothing neighbourhood of 20 ms. 
This parameter was chosen to be in the range of mean micro-
state durations found by (Gärtner et al. 2015) using a model 
of microstate transition processes based on Markov chains 
(10 ms during wake, 34 ms during deep sleep).

Microstate Properties

Following the full labelling of each recording, three proper-
ties were computed for each microstate per state (responsive-
ness and unresponsiveness) and per recording:

• The microstate temporal coverage, also called the frac-
tional occupancy, indicating the percentage of time spent 
in one microstate;

• The microstate duration, indicating the average length of 
continuous sequences labelled as one microstate;

• The Global Explained Variance (GEV), representing the 
amount of spatial correlation of the samples with their 
corresponding microstate topography, normalised by the 
GFP of the microstate topography.

Statistics

Interactions between microstate parameters and behavioural 
state (responsiveness and unresponsiveness) were performed 
using a two-way repeated measures ANOVA (Hogg and 
Ledolter 1987) with the microstate label and the behavioural 
state as factors. Sphericity was tested using Mauchly’s test 
of sphericity (Mauchly 1940) and, where violated, was cor-
rected using the Greenhouse-Geisser procedure (Greenhouse 
and Geisser 1959). The Tukey–Kramer method (Tukey 
1949) was used to correct for multiple comparisons. After 
correction, a conventional threshold of p = 0.05 was used 
to assess significance. Unless otherwise specified, similar 
statistical tests were also performed for the measures that 
follow.

Responsiveness Prediction

We applied machine learning classification to explore 
whether microstate properties identified in the ongoing brain 
dynamics immediately preceding each auditory stimulus in 
the experimental trials could predict the presence or absence 
of a response to that stimulus. Importantly, all trials were 
considered for classification, both within and outside the 
periods labelled as responsive or unresponsive for the above 
microstate analysis.

Five seconds of EEG data immediately preceding a 
stimulus were used to generate the features for classifica-
tion. We also investigated using shorter pre-stimulus time 
periods, down to 1 s of pre-stimulus data, but we found that 
classification accuracy increased with a larger amount of 
pre-stimulus data over which microstate dynamics could be 
more accurately estimated. At the same time, the amount of 

Box 1  Microstate clustering algorithm

Microstate clustering algorithm
Input: n average-referenced EEG samples (n × number_of_channels) from GFP peaks
Output: k maps that best characterise the data
1. Normalize each input sample to a vector of length 1
2. Pick k random samples as the initial maps
3. Label each sample as i ∈ {1, …k}, where i is the index of the map with highest absolute spatial correlation
4. Re-compute each map i as the first principal component of each cluster of samples labelled i
5. Compute the Global Explained Variance (GEV)
6. If GEV delta is small enough or maximum number of iterations has been reached, end; else, go to 3
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pre-stimulus data was restricted by the overlap with the pre-
vious trial. Trials overlapping with a response correspond-
ing to the previous stimulus were excluded. By setting the 
pre-stimulus window to 5 s, less than 10% of the trials were 
rejected due to overlap with the previous trial.

The input features generated for classification consisted 
of either individual microstate parameters computed during 
the 5-s pre-stimulus period in each trial, or a combination 
of these parameters. The parameters were those we previ-
ously characterised at the group level: namely the mean 
duration, mean coverage, and mean GEV for each micro-
state separately. The classifier was trained separately with 
the above individual and combined features. As a baseline, 
the theta-alpha ratio was also computed for each trial as the 
ratio between the total power spectral density at 5–6 and 
9.5–10.5 Hz respectively, and used as an input feature for 
the classifier. The classification label for each trial was gen-
erated by labelling it as either as a timely response (1) or a 
miss (0).

We employed leave-one-subject-out cross-validation to 
test for the generalisability of the classifier’s performance. 
For this, the data was split into 16 folds, with one fold cor-
responding to a single participant’s trials. A support vector 
machine (SVM) (Christianini and Shawe-Taylor 2000) with 
a radial basis function kernel (Vert et al. 2004) was trained 
repeatedly by excluding one fold at the time from the train-
ing set and using it as a test set. The SVM was optimised by 
exhaustive search to use the optimal value for two param-
eters: the box constraint, which restricts the number of sup-
port vectors, and the kernel scale, both in the range [0.001, 
1000] in logarithmic steps of 10.

Platt’s method (Platt 1999) was used to generate class 
affiliation probabilities from the trained classifier. These con-
tinuously varying probabilities were then used to discrimi-
nate between responses and misses using both the Receiver 
Operator Characteristic (ROC) area under the curve (AUC) 
(Davis and Goadrich 2006) and the classification accuracy as 
the percentage of correct predictions out of the total number 
of predictions. The classification accuracy was also com-
puted by setting the class discrimination threshold as the 
optimal operating point of the ROC curve and calculating 
the percentage of correct predictions, using the threshold as 
a boundary between the two target classes. We used Wil-
coxon signed rank tests (Gibbons and Chakraborti 2011) 
to probe for significant differences between classification 
performances.

Spectral Power and Connectivity Analyses

Spectral power and connectivity during responsiveness and 
unresponsiveness was investigated in both microstate-blind 
and microstate-wise analyses. Before microstate-wise seg-
mentation, the power spectral density was computed at each 

EEG sample between 1 and 20 Hz as the absolute value 
of the Hilbert transform (Marple 1999) of the bandpass 
filtered data within windows of 0.25 Hz. We performed 
most of the analysis on 1–20 Hz and focused on theta and 
alpha power, whose ratio has been shown to track the onset 
of sleep (Šušmáková and Krakovská 2007) and has been 
employed in other studies of drowsiness (Bareham et al. 
2014) or impaired consciousness (Lechinger et al. 2013). 
For each channel in each recording, the spectral power at 
each frequency bin was divided by the sum of spectral power 
at all bins within 1–20 Hz. This ratio was then multiplied by 
100, thereby obtaining relative power contribution percent-
age at that bin.

The connectivity within each pair of channels was ana-
lysed using the Weighted Phase Lag Index (WPLI) (Vinck 
et al. 2011), a connectivity measure based on the distribu-
tion of phase differences between signals designed to correct 
for volume conduction, which has been previously used to 
investigate brain connectivity during loss of consciousness 
(Chennu et al. 2016a, b, 2014a, b; Lee et al. 2013). The 
WPLI was obtained by pooling over the Hilbert phase of 
each sample labelled as belonging to a particular microstate 
(see Suppl. Figure 1).

For both spectral power and connectivity, the median 
across channels was computed to obtain one value per 
microstate and frequency of interest.

To further assess topographical changes in connectivity, 
two sets representing anterior (AFz, Fz, FCz, AF7, AF3, 
F1, FC1, F3, FC3, F5, F7, AF8, AF4, F2, FC2, F4, FC4, F6, 
F8) and posterior (CPz, Pz, POz, Oz, P1, P2, PO3, PO4, O1, 
O2, P3, P5, P7, P4, P6, P8, CP3, CP1, CP2, CP4) electrodes 
were selected for analysis. Median WPLI connectivity was 
computed within the anterior and posterior groups separately 
for each participant.

Results

Behavioural Data

The distribution of responsiveness and reaction times over 
time confirmed that all the subjects were responsive for a 
minimum of 6 min in the beginning of the experimental 
session and became unresponsive at a later point. Dur-
ing the unresponsiveness period, participants predomi-
nantly reached sleep stage N1, and rarely N2, as detailed in 
(Kouider et al. 2014). Figure 1 shows the response reaction 
times and the misses in each participant, in addition to the 
selection of data for the subsequent microstate analysis. Dur-
ing responsive periods, most subjects had no more than one 
miss, with a mean of 2.125% of all responses during this 
period being misses. The grand average of reaction times 
during the responsive period was 1.5 s (SD = 0.7).
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Spectral Power and Connectivity Dynamics

Before delving into microstate analyses, we characterised the 
spectral power and connectivity patterns during responsive 
and unresponsive periods. We performed a microstate-blind 
analysis focusing on previously reported changes related 
to early sleep, but also anaesthesia and disorders of con-
sciousness, including the alteration of posterior, frontal and 
frontoparietal connectivity within and between frontal and 
parietal electrodes. We focused on alpha and theta frequen-
cies, as the theta-alpha ratio has been shown to be the best 
discriminator between wake and sleep stage 1 (Šušmáková 
and Krakovská 2007). We confirmed that there were no sig-
nificant differences in the means of power and median con-
nectivity in beta (12–30 Hz) or gamma (30–40 Hz) between 
the responsive and unresponsive periods. Based on the peaks 
present in alpha and theta bands in our data at 5.5 and 10 Hz 
(also see Fig. 6 later), we defined the spectral frequencies of 
interest in alpha range at 9.5–10.5 Hz and the theta frequen-
cies of interest at 5–6 Hz, for both power contributions and 
connectivity.

We observed a decrease in mean alpha power contribu-
tion (t(1,15) = 3.34, p = 0.0044, Cohen’s d = 0.83) and an 
increase in mean theta power contribution (t(1,15) = 7.1, 
p = 3.5e−6, Cohen’s d = 1.77) going from responsiveness to 
unresponsiveness. As shown in Suppl. Figure 2, we noted 
an alpha peak in spectral power present around 10 Hz in 
the large majority of the participants during the responsive 
period, which faded during the unresponsive period. Lower-
frequency power in the theta frequency range increased 
during unresponsiveness. A single notable exception was 
Subject 12, whose alpha peak did not shift into theta range 
during the unresponsive period, however this subject was 
preserved in the analysis since there was no evidence that 

the experiment instructions were not followed. A grand aver-
age topographic plot of power at alpha and theta frequencies 
(Fig. 2a) revealed that the highest alpha power was located 
in the posterior area during responsiveness. During unre-
sponsiveness, theta power was highest in posterior channels.

Investigating connectivity in alpha and theta frequencies 
using the WPLI, we observed the disintegration of long-
range alpha band connections between frontal and parietal 
electrodes going from responsiveness to unresponsiveness 
(Fig. 2b and Suppl. Figure 3). A paired t-test confirmed that 
the median alpha connectivity between the anterior and pos-
terior channels was significantly higher during responsive-
ness (t(1, 15) = 3.4, p = 0.003, Cohen’s d = 0.85). At the same 
time, an overall increase in median frontoparietal connectiv-
ity was observed in theta frequencies in unresponsiveness, 
but this was not significant (t(1, 15) = 0.4, p = 0.69, Cohen’s 
d = 0.1).

Microstate Topographies

We applied the microstate clustering algorithm on the set 
of combined samples from the responsive and unresponsive 
periods from each subject, in order to obtain four microstate 
topographies. The resulting maps matched the four canonical 
microstate topographies commonly described in literature, 
denoted by letters A to D (Fig. 3). A breakdown of micro-
state topographies obtained for individual participants is also 
shown in Suppl. Figure 4.

Microstate Parameters

We investigated whether the dynamics of the rapid succes-
sion of microstates in the EEG remains the same before and 
after the loss of responsiveness. We computed the duration, 

Fig. 2  Spectral power topography and WPLI frontoparietal connec-
tivity at alpha (9.5–10.5  Hz) and theta (5–6  Hz) peaks before and 
after the loss of responsiveness. Values are averaged across partici-

pants. With loss of responsiveness, power over parietal sensors and 
connectivity between frontal and parietal sensors shifted from the 
alpha to the theta band



322 Brain Topography (2019) 32:315–331

1 3

the temporal coverage and the global explained variance 
(GEV) of each microstate during responsiveness and dur-
ing unresponsiveness (Fig. 4).

A repeated measures ANOVA with the microstate and 
the behavioural state (responsiveness and unresponsive-
ness) as factors found significant interactions between 
microstate and behavioural state in all of the three micro-
state parameters investigated: duration (Finteraction = 16.73, 
Pinteraction = 2e−7, Cohen’s d = 2.11), temporal coverage 
(Finteraction = 13.08, Pinteraction = 3e−6, Cohen’s d = 1.86) and 
GEV (Finteraction = 17.95, Pinteraction = 8e−8, Cohen’s d = 2.18). 
Further exploring the simple effect of state on the param-
eters within each microstate, the ANOVA revealed that 
the duration of all microstates was significantly increased 
during unresponsiveness (Pstate,A = 0.0001, Pstate,B = 0.003, 
Pstate,C = 0.0001, Pstate,D = 3e−6), in agreement with previous 
literature (Brodbeck et al. 2012a, b). Notably, microstate D 
had a striking increase in duration (Fig. 4a). At the same 
time, the temporal coverage of class D was significantly 
higher during unresponsiveness (Fig. 4b), whereas the cov-
erage of microstate B was significantly lower during the 
same period (Pstate,A = 0.056, Pstate,B = 0.001, Pstate,C = 0.26, 
Pstate,D = 1e−5). Similarly, the GEV of microstate D (Fig. 4c) 
was increased during unresponsiveness, while the GEV 
of microstates A and B were decreased (Pstate,A = 0.0002, 
Pstate,B = 0.0002, Pstate,C = 0.17, Pstate,D = 2e−5).

Single‑Trial Responsiveness Prediction

We verified whether microstate parameters in the pre-stim-
ulus window are able to dissociate responsiveness from 
unresponsiveness at an individual trial level during the full 

recordings, and whether these properties could be general-
ised across subjects.

Out of all trials, 8% contained a button press event dur-
ing the 5 s preceding each stimulus and were excluded from 
further analysis. The remaining data had a balanced distri-
bution of 1078 responses and 1117 misses out of a total of 
2195 trials.

Training a radial basis function kernel support-vector 
machine repeatedly on the combined-microstate and micro-
state-wise features to predict the binary outcome of a trial, as 
a response or a miss, using one-subject-out cross-validation, 
confirmed that microstate dynamics were able to predict 
responsiveness at an individual trial level and across sub-
jects, with a performance similar to that of the established 
theta-alpha ratio of spectral power (Fig. 5).

Combining the duration, temporal coverage, and GEV 
of each microstate to obtain a 4 × 5 input feature vector or 
each trial achieved a mean AUC of 0.8552 (mean classifi-
cation accuracy of 75.2%). In comparison, the theta-alpha 
ratio achieved a mean AUC of 0.8519 (mean classification 
accuracy of 74.24%). A Wilcoxon signed rank test did not 
find significant differences between these performance dis-
tributions. When combined, the microstate features and the 
theta-alpha ratio obtained a mean AUC 0.8622 (mean clas-
sification accuracy of 77.1%).

When used individually as input features for the clas-
sification, mean microstate duration performed remarkably 
well, achieving a mean AUC 0.8484 (mean classification 
accuracy of 76.1%). According to Wilcoxon test, this was not 
significantly different from the classification performance of 
the combined microstate parameters. The duration of micro-
state D was significantly better at predicting responsiveness 
than microstates A–C  (pD−{A,B,C} = {0.0005, 0.0006, 0.002).

It is worth noting that the one subject for whom the pre-
diction performance was lower in the group was Subject 
12, who was also the only one whose alpha peak remained 
nearly unshifted after the loss of responsiveness (Suppl. 
Figure 2).

Connectivity Differences Between Microstates

Having established the characteristic temporal patterns 
exhibited by microstate sequences before and after drows-
iness-induced loss of responsiveness, we next proceeded 
to investigate their relationship with the underlying spec-
tral content of the EEG, and the modulation of this rela-
tionship as subjects become unresponsive. To this end, 
we investigated the power contributions and the WPLI 
connectivity computed across samples belonging to each 
microstate before and after the loss of responsiveness. 
While we do not assume a direct relation between neu-
ral sources of EEG microstates and EEG spectral power 
and connectivity, our aim is to assess whether the neural 

Fig. 3  Microstate topographies computed across all subjects. These 
topographies are plotted in correspondence with the four canonical 
microstate topographies commonly described in literature. Microstate 
topographies reported by Brodbeck et al. (2012a, b) and Koenig et al. 
(2002a, b) are shown for comparison (reproduced here with permis-
sion)
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sources of microstates and sources of spectral measures 
covary at a fine temporal scale.

The spectral power contribution (Fig. 6a) displayed the 
characteristic alpha peak around 10 Hz during the respon-
sive period, which faded during the unresponsive period 
into high power at low frequencies. This pattern was simi-
lar during all microstates.

Likewise, spectral connectivity (Fig. 6b) showed a peak 
at 10 Hz during responsiveness during all microstates, 
which faded during unresponsiveness. The only pattern 
dissociating between microstates during responsiveness 
was a decreased 10 Hz peak during microstate A. On 
the other hand, there was a noticeable difference in the 
level of connectivity during unresponsiveness between all 

microstate periods, with microstates D and A exhibiting 
the highest and the lowest connectivity, respectively.

The effect size of the interaction between microstate and 
behavioural state (responsiveness and unresponsiveness) 
computed individually at each frequency was indeed gen-
erally higher in connectivity than in power (Fig. 6c). The 
effect size was largest in connectivity at 5.5 and 10 Hz, cor-
responding to the theta and alpha peaks displayed during all 
microstates during the unresponsive and responsive periods, 
respectively. A peak in power contribution was also found at 
13.5 Hz, potentially due to the emergence of sleep spindles 
at the onset of sleep.

We also attempted to use pre-stimulus WPLI connectiv-
ity levels at alpha and theta frequencies in order to train a 

Fig. 4  Microstate parameters before and after the loss of responsive-
ness in drowsiness. Within each panel of grouped scatter box plots, 
inner boxes represent the standard error of the mean for each micro-
state parameter, and outer boxes represent the standard deviation. The 
mean is shown by a continuous line, the median is shown by a dotted 

line, and individual participants are shown as dots. Asterisks show a 
significant within-subject main effect of state for a microstate. Dura-
tion, temporal coverage and GEV of microstate D all significantly 
increased during unresponsiveness
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classifier to predict responsiveness, using the same proce-
dure as for the microstate spatiotemporal parameters. No 
classifiers could be obtained that exceeded a 60% mean 
accuracy, either microstate-wise or on the full set of pre-
stimulus samples.

Connectivity During Microstate D after the Loss 
of Responsiveness

Gathering from the evidence of increased temporal presence 
of microstate D after the loss of responsiveness, as well as 
the higher connectivity displayed during this microstate dur-
ing unresponsiveness in comparison with the microstates 
A–C, we next sought to understand the spectral connectivity 
patterns captured during microstate D in the selected alpha 
and theta ranges during the unresponsiveness period.

Previous literature suggests that anterior (frontal) and 
posterior (parietal) scalp regions of interest (ROI) show key 
changes in connectivity at the onset of sleep (Morikawa et al. 
1997; Tanaka et al. 2000, 1998; Wright et al. 1995), during 
sedation and after brain injury (Chennu et al. 2017, 2014a, 
b, 2016). Building upon this, we investigated the within-
anterior, within-posterior and between anterior-posterior 
connectivity during microstate D in comparison with micro-
states A–C. For this purpose, we performed three repeated 
measures ANOVA tests to compare the median connectivity 

during microstate D and that during each of the microstates 
A–C in each of the six conditions (two frequency bands X 
three scalp ROIs) during the unresponsive period. Within 
each condition, we corrected for the false discovery rate 
across the three tests (D vs. A, D vs. B and D vs. C) using 
Storey’s procedure (Storey 2002).

Figure 7 exemplifies the most prominent differences 
we found in connectivity between samples covered by 
microstate D and microstates A–C respectively, during 
unresponsiveness.

At the selected theta peak, the t-test results showed 
significantly higher median connectivity within the 
anterior region during microstate D compared to each 
of the other microstates  (PD−{A,B,C} = {0.001, 0.008, 
0.001},  tD−{A,B,C} = {3.958, 3.069, 4.088}, Cohen’s 
 dD−{A,B,C} = {0.990, 0.767, 1.022}). Median connectivity 
between the anterior and posterior regions was also signifi-
cantly higher during microstate D than in microstates A and 
C  (PD−{A,B,C} = {0.003, 0.297, 0.003},  tD−{A,B,C} = {3.578, 
1.081, 3.392}, Cohen’s  dD−{A,B,C} = {0.894, 0.27, 0.848}). 
No significant differences were found in median connectivity 
within the posterior area.

Conversely, at the selected alpha peak, the repeated 
measures ANOVA showed significantly lower median 
connectivity within the posterior area during microstate 
D compared to microstates A–C  (PD{A,B,C} = {0.033, 
0.037, 0.033},  tD−{A,B,C} = {2.686, 2.294, 2.559}, Cohen’s 
 dD−{A,B,C} = {0.672, 0.573, 0.67}). At the same time, 
microstate D captured significantly higher within-anterior 
median connectivity than microstate A  (PD−{A,B,C} = {0.043, 
0.617, 0.055},  tD−{A,B,C} = {2.769, 0.511, 2.297}, Cohen’s 
 dD{A,B,C} = {0.692, 0.128, 0.574}). No significant differ-
ence in median connectivity between anterior and posterior 
regions was found during microstate D compared to micro-
states A–C.

These results confirmed that the timecourse of micro-
state D uniquely capture a simultaneous disintegration of 
posterior alpha connectivity and emergence of frontal theta 
connectivity, which is associated with the suppression of 
responsiveness at the onset of sleep.

Discussion

Summary

In this study, we used high-density EEG to explore the 
transient spatiotemporal and spectral dynamics of electri-
cal brain activity before and after the loss of behavioural 
responsiveness due to drowsiness. Importantly, we exam-
ined the loss of responsiveness as participants became 
drowsy while performing a discrimination task. Hence by 
design, our study is in contrast to and complements studies 

Fig. 5  Classification performance, computed as the area under the 
ROC curve, for a support-vector machine (SVM) trained using 5  s 
of pre-stimulus data to classify responses and misses. Input features 
to the classifier were microstate parameters or the theta–alpha ratio, 
individually or combined. Within each group of grouped scatter box 
plots, inner boxes represent the standard error of the mean, outer 
boxes represent the standard deviation. The mean is shown by a yel-
low line, the median is shown by a green line (where distinct from 
the mean), and individual participants are shown as dots. Microstate 
parameters were able to predict responsiveness at an individual trial 
level across subjects, with a performance similar to that of the theta-
alpha ratio
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of resting brain activity in the absence of any task, which 
have often focused on an investigation of canonical sleep 
stages. Here, unresponsiveness—the failure to respond to 
the auditory cues elicited by increased drowsiness—pro-
vided an objective and non-invasive behavioural criterion 

in the transitional stage in between full wakefulness and 
early sleep.

To summarise our findings, we have shown that dif-
ferences in spectral power and connectivity after the loss 
of responsiveness that have been previously shown to 

Fig. 6  Spectral power (a) and WPLI connectivity (b) captured dur-
ing individual microstates before and after loss of responsiveness 
due to drowsiness. Channel-wise relative power at each frequency 
bin was calculated as the power at that bin as a percentage of total 
power within 1–20 Hz. Within each subject, for both relative power 
and WPLI connectivity, the median across channels is plotted. Fig-

ures show the grand average over all subjects. c Shows the effect size, 
computed as Cohen’s d, of the interaction between behavioural state 
and microstate at each frequency bin for power contributions and for 
connectivity. By convention, 0.2, 0.5 and 0.8 denote small, medium 
and large effect sizes, respectively. The interaction between micro-
state and behavioural state was stronger in connectivity than in power

Fig. 7  Frontal and frontopari-
etal WPLI connectivity at theta 
peak (5–6 Hz). Microstate D 
captured significantly higher 
theta connectivity within frontal 
and between frontoparietal sen-
sors during unresponsiveness, 
compared to microstates A–C
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differentiate between healthy wakefulness and sleep, seda-
tion and disorders of consciousness: a decrease in posterior 
alpha power and the emergence of theta power, as well as 
the disintegration of frontoparietal connectivity in alpha 
band. Further, microstate characteristics before and after 
the loss of responsiveness not only correlate with behaviour 
at the group level, but also predict behaviour at the level of 
individual experimental trials - when microstate D occurred 
more often during the pre-stimulus period, participants were 
less likely to generate a response to the subsequent stimu-
lus. This relationship highlights a possible functional role of 
this microstate in modulating behaviour, and the predictive 
power of this signature to define the capacity to consciously 
respond to abstract/semantic stimuli. Finally, we discovered 
that while relative spectral power is similar across the tem-
poral microstates, spectral connectivity is more distinctive. 
This non-uniform pattern of connectivity across microstates 
is modulated by the loss of responsiveness: the timecourse of 
microstate D captured significantly increased connectivity in 
the theta band after the loss of responsiveness, underpinning 
a novel profile of interaction between the temporal sequence 
of microstates and spectral brain connectivity.

Alpha Power and Connectivity Characterise 
Responsive Wakefulness

Our analysis of EEG connectivity before microstate segmen-
tation strengthens the evidence for the fundamental role of 
the alpha networks in sustaining a state of responsive wake-
fulness. It is important to clarify that attribution of connec-
tivity to specific neuroanatomy is limited by the scalp-level 
analysis we have conducted here, though previous research 
provides some pointers as to its neural origins. An inde-
pendent study by Chennu et al. (2017) involving a different 
group of healthy adults and patients with brain injury has 
provided indirect information about the potential drivers 
of resting alpha connectivity, by correlating it with resting 
metabolism measured with PET imaging. As demonstrated 
in that study, the presence of a robust connectivity network 
in the alpha band was correlated with metabolic activity in 
frontal and parietal cortices encompassing both intrinsic and 
extrinsic awareness networks (Vanhaudenhuyse et al. 2010). 
Further, the body of literature based on simultaneous EEG-
fMRI recordings (Laufs et al. 2003a, b) has indicated nega-
tive correlations between alpha power and BOLD activity 
of frontoparietal areas known to be part of the attentional 
external awareness network. However, further research is 
needed to pinpoint the cortical and subcortical sources of the 
connectivity patterns and changes we have elucidated here.

Our analysis of scalp-level connectivity highlights that it 
is not the full disappearance of all connectivity that drives 
the loss of responsiveness, but specifically connectivity at 
alpha frequency. Indeed, literature shows that connectivity 

shifts from alpha into lower-frequency theta and delta fre-
quencies in many contexts. This shift happens when con-
sciousness fades (Chennu et al. 2014a, b, 2016; Ogilvie 
2001; Tanaka et al. 2000, 1998; Wright et al. 1995), but 
also during natural fluctuations in alpha power during resting 
wakefulness, which accompany increases in theta power and 
BOLD activity in occipital and parietal areas (Laufs et al. 
2006). In the larger picture of states and levels of conscious-
ness, our findings confirm long-range alpha networks as a 
common marker of consciousness, whether this impairment 
is natural (sleep), pathological (disorders of consciousness) 
or pharmacological (sedation).

Microstate D Predicts Responsiveness Across 
Subjects

Upon examining the spatiotemporal parameters of the 
canonical EEG microstates, we found an increase in tem-
poral coverage after the loss of responsiveness uniquely 
specific to microstate D, along with an increase in its global 
explained variance, as compared to responsive periods. 
While the duration of all microstates was longer during 
unresponsiveness, the duration of microstate D had a prom-
inent relative increase. In contrast, the temporal coverage 
of microstate B decreased in the unresponsive period, as 
did the global explained variance of microstates A and B. 
Further, we demonstrated that the general state of aware-
ness, as reflected in the ongoing dynamics of pre-stimulus 
EEG microstates, are indeed informative of the capacity of 
a subject to respond to a stimulus during drowsiness at an 
individual trial level. This finding echoes similar evidence 
from the literature, where pre-stimulus microstate proper-
ties predict perception of weak stimuli (Britz et al. 2014), 
accuracy of working memory (Muthukrishnan et al. 2016) 
and perceptual shifts between bistable stimuli (Britz et al. 
2009). Again, the special significance of microstate D dur-
ing unresponsiveness was visible from its increased ability 
to predict the likelihood of a response, in comparison with 
microstates A-C. In addition, we showed that the increase 
in duration of this microstate is the best predictor of respon-
siveness among all the microstate parameters.

We note that the durations of the microstates we obtained 
were significantly lower than previous reports in the litera-
ture (Brodbeck et al. 2012a, b; Tomescu et al. 2014a, b, 
2018). This might be due in part to our analytical method-
ology: as specified in the methods, we used a smoothing 
neighbourhood of 20 ms, in keeping with the range of mean 
microstate durations reported in the re-analysis of data from 
(Brodbeck et al. 2012a, b) reported by Gärtner et al. (2015, 
Neuroimage). However, our smaller durations could also be 
attributed to the fact that our participants were performing 
an experimental task, which might have led to more rapid 
changes in dynamical brain states. This was in contrast to the 
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reports above, in which data were collected in the absence 
of any task. Nevertheless, despite the shorter durations, we 
confirmed the expected presence of WPLI connectivity in 
the alpha band within each microstate during wakefulness. 
Speculatively, the finer temporal granularity of our micro-
state decomposition might have made the differences in 
connectivity between microstates more apparent during the 
transition to sleep.

Our usage of machine learning allows us to quantify the 
performance of the model using its discrimination accuracy, 
which speaks for the real-world applicability of the method 
(Breiman 2001). Moreover, one-subject-out cross-validation 
allows us to infer that these results are generalizable across 
people. At the same time, as expected, individual variabil-
ity caps the maximum possible accuracy when predicting 
responsiveness. Our results suggest that this cap is around an 
accuracy of 75% (mean AUC around 0.85). Interestingly, the 
theta-alpha ratio, which we used as a baseline given its sen-
sitivity as a sleep index (Šušmáková and Krakovská 2007), 
achieved a similar classification accuracy as the microstate-
based input features. This suggests that microstate dynamics 
and spectral oscillations are potentially correlated. Intrigu-
ingly, we were not able to use connectivity as a feature to 
train a suitable classifier for responsiveness during drowsi-
ness, either considering or ignoring the microstate sequence, 
despite strong evidence of major connectivity changes 
occurring before and after the loss of responsiveness. This 
suggests that connectivity better predicts the level of con-
sciousness estimated over longer time scales, whereas spati-
otemporal microstate dynamics capture short-term changes 
in brain state that predict responsiveness.

Microstate D Captures a Distinct Connectivity Profile 
After Loss of Responsiveness

Alongside the distinctive increase in temporal coverage and 
duration of microstate D, we found a singular spectral con-
nectivity pattern during this microstate after loss of respon-
siveness, indicating increased median connectivity in theta 
band, particularly in connections within frontal and between 
frontal and parietal electrodes. At the same time, median 
posterior connectivity during microstate D was reduced dur-
ing unresponsiveness. Hence, the timecourse of microstate D 
appears to uniquely capture a connectivity pattern specific to 
deeper stages of sleep, in comparison with other microstates 
present during the same sleep stage. (Britz et al. 2010) cor-
related the microstate timecourses with the timecourse of 
average spectral power within canonical frequency bands. 
They reported finding no relationship between microstate 
dynamics and the spectral properties of the EEG signal. Our 
findings represent the first demonstration that in fact, spec-
tral brain connectivity in fact presents a significant interac-
tion with temporal microstate dynamics, underpinned by the 

connectivity captured by microstate D. Estimation of con-
nectivity from EEG can be affected by volume conduction 
and referencing method. We have aimed to minimise the 
influence of the former with the use of WPLI-based connec-
tivity. Further, we verified that re-analysis of WPLI connec-
tivity with reference-free current source density estimates 
(Kayser and Tenke 2015) identified strong interactions in the 
alpha and theta bands, similar to those presented in Fig. 6b 
(see Suppl. Figure 5).

There currently exists no consensus on the meaning of 
individual microstates in terms of their neural generators. 
However, microstate D has occasionally been linked to 
attentional networks. In a study of fMRI resting-state net-
works, (Britz et al. 2010) showed a higher correlation of 
microstate D with ventral and dorsal frontoparietal networks, 
functionally associated with attention switching and direct-
ing attention towards external salient stimuli. A decreased 
duration of this microstate has been reported in schizophre-
nia (Koenig et al. 1999; Lehmann et al. 2005; Nishida et al. 
2013; Tomescu et al. 2014a, b) and hallucination (Kindler 
et al. 2011)—two conditions involving impairments in task 
switching and attention (Collerton et al. 2005; Cornblatt 
and Keilp 1994). An investigation of modalities of think-
ing found an increased microstate D duration in resting-
state compared to visual and verbal task periods (Milz et al. 
2015); this was also interpreted as a confirmation of the 
previously-mentioned study by (Britz et al. 2010) due to a 
higher probability of attention switching during rest (high 
microstate D duration), as opposed to performing a single 
goal-oriented task (lower microstate D duration). On the 
other hand, (Seitzman et al. 2016) have found an increased 
duration of microstate D during a cognitive task as compared 
to wakeful rest.

Given the weak evidence in the literature associating 
microstate D with task-related attention networks, we are 
cautious in interpreting our findings on this basis. A pre-
vious study on the same data (Kouider et al. 2014) found 
that a correct response to stimuli is still prepared during 
unresponsiveness, suggesting preserved attention. It is pos-
sible that our findings indicate more demand from atten-
tion networks as drowsiness increases and subjects become 
unable to respond to the task. In study of microstates during 
sleep in the absence of any task, (Brodbeck et al. 2012a, b) 
did not observe an increase in this microstate during sleep. 
This suggests that microstate D might indeed be specifically 
related to the experimental task. Further, this interpretation 
is compatible with a study by Katayama et al. (2007), which 
found that the duration of microstate D was increased in 
light (but not deep) hypnosis, a state which produces simi-
lar EEG patterns to sleep-induced unresponsiveness (Barker 
and Burgwin 1949).

Nonetheless, the spatiotemporal and spectral connec-
tivity dynamics observed in microstate D after the loss of 
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responsiveness yield an important insight into the dynamics 
of the transition to sleep. While connectivity averaged dur-
ing all microstates reflects typical changes commonly found 
in the loss of consciousness in the onset of sleep, anaes-
thesia or disorders of consciousness—weaker alpha and 
stronger theta long-range networks—the individual time-
course of microstate D captures significantly stronger pat-
terns, despite having a duration no longer than 40 ms. This 
suggests that, after the loss of responsiveness, the process 
of falling asleep is not necessarily linear, but rather consists 
of an interplay between distinct networks, captured by dif-
ferent microstates, which are at different points along the 
transition between wakeful and asleep modes of operation. 
It is worth noting that many subjects often became variable 
in their response times, and eventually unresponsive, within 
5–7 min of starting the recording (see Fig. 1), highlighting 
the natural onset of drowsiness that could confound many 
experimental designs, if not appropriately controlled for 
(Noreika et al. 2017; Tagliazucchi and Laufs 2014). Further, 
our work might lend itself to explaining one of the current 
riddles of sleep research: why is it that, despite the estab-
lishment of a series of clear EEG markers delimiting wake 
and several stages of sleep, finding an EEG-based thresh-
old to separate between the subjective intuition of being 
awake or asleep has not yet been achieved? Indeed, it has 
been reported by Hori et al. (1994) that 26% of all subjects 
stated that they had been awake at times when their EEG 
was classified as stage 2 sleep, which is commonly used to 
define “true sleep” (Ogilvie 2001). The rapid fluctuation of 
brain networks, some of which are closer to wakefulness 
(during microstates A–C) and others closer to sleep (dur-
ing microstate D) could be the reason why our momentary 
introspective state of being “awake” and “asleep” might not 
concur with a coarse-grained assessment of EEG over many 
seconds of data, as usually done during the identification of 
sleep stages. Instead, our findings here highlight that further 
research should focus on the rapidly changing dynamics of 
brain networks that appear to capture key dynamics relevant 
to our behavioural and perhaps even introspective state, as 
we drift into unconsciousness.
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