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Tools and environments 
 

Lauri Malmi, Ian Utting, Andrew J. Ko 
 
1 Introduction 
 
The roots of computing as a discipline stem from the need to present and manipulate data 
automatically. Building software tools has therefore always been an important activity in the 
field, both in professional practice and in academic work. Correspondingly, learning to use tools 
needed for professional programming has been one of the core elements in computing 
education. Languages have, of course, changed and developed over the decades, but the basic 
skills in using compilers, interpreters, editors, and debuggers have always been necessary to 
learn. In current computing education, similar learning goals persist even though modern IDEs, 
like Eclipse, have reduced (but not excluded) the need to learn to use separate tools. 
 
There is a large diversity of types of tools that contribute to the learning of computing. Some 
programming languages and environments have been developed primarily as tools for 
education. Early examples of these included BASIC (Kemeny & Kurtz, 1964) and Pascal (Wirth, 
1973). More recent cases include, for example, Scratch (Resnick et al., 2009) and Alice (Cooper 
et al., 2000). The basic idea behind these languages has been to provide a simplified 
environment for learning programming, and hide many complexities in the world of professional 
programming. The more recent graphical programming environments also aim at reaching the 
younger population (e.g., Meerbaum-Salant et al., 2013), from preschool onwards, instead of 
tertiary-level students only. Though, some institutions also use these environments as a gentle 
introduction to programming (Cooper et al., 2003). 
 
Other attempts at simplifying tools and environments for beginners have looked at ameliorating 
the complexity of elements of the professional tools which tend to be more complex and general 
than is needed in education. Areas of concern have been I/O and graphics libraries (Wolz & 
Koffman, 1999; Bruce et al., 2001), and even the language itself, revealing more complete 
subsets of the language as beginners develop their skills (Felleisen et al., 1998) 
  
Learning programming has always been challenging for a large number of students. Therefore, 
it is natural that computing educators have started to develop educational tools which focus on 
supporting various aspects of students’ learning process. A notable early example was the 
BALSA algorithm animation tool (Brown and Sedgewick, 1984), which provided visualizations of 
algorithm execution. Such tools were initially standalone applications and were often 
platform-dependent, limiting access to them.  With the widespread availability of network access 
to resources which came with the internet, dissemination of tools became much easier. 
Moreover, due to the rapid expansion in the number and diversity of web development tools, 
and with the dramatic increase in the bandwidth available to students (at least in some 



countries), most current educational tools are either wholly browser-based or have a browser 
interface which interacts with server-side applications. 
 
In this chapter we seek to survey these various categories of tools and the research on them. 
We start by discussing the motivation for such research, what forms of tools exist and for whom 
they have been developed. Then, we present overviews of several important application areas. 
Finally, we discuss some generic challenges in tools research. 
  
2 Why are tools important for Computing Education? 
 
Computing is partly a practical field, and so most computer science education focuses on 
teaching students to design and implement complex systems to solve problems. Tools are 
usually a central part of the learning, but only implicitly, as technical implementations needed to 
reach a desired goal. It is therefore natural that computing educators have been highly active in 
developing and evaluating tools to support learning, as well as their own work as teachers. 
Tools can often be considered pedagogical support mechanisms, and compared with many 
other fields, computer scientists have the privilege that they (and their students) are much more 
often capable of designing and building the tools themselves. 
 
It is thus not surprising that  significant share of computing education research concern tools. 
Valentine (2004) surveyed 444 papers addressing CS1/CS2-level education published in 
1983-2004 in SIGCSE Symposium proceedings, and identified that in 99 of them (22%) the 
main topic was some form of tool. Simon (2007) analyzed 4 years of ACE and NACCQ 
conferences (2004-2007) and identified that in 16% of the papers the topic was 
teaching/learning/assessment tools. In further analysis Simon (2009), showed that 26% of 
conference papers in the first 7 years (2001-2007) of the Koli Calling conference concerned 
tools, as did 17% of ITiCSE papers in years 2005-2008 (Sheard et al., 2009). 
 
3 What is a tool? 
  
Educational tools in computing take many forms. An obvious case is a ​software application​, 
which one can download and install, such as BlueJ (www.bluej.org) environment for learning 
object-oriented programming in Java. A tool could also be a ​web application providing some 
service​, like Problets (www.problets.org), which are “problem solving software assistants for 
learning, reinforcement and assessment of programming concepts”, and PeerWise 
(peerwise.cs.auckland.ac.nz), which supports student-generated multiple choice questions as a 
pedagogical method. On the other hand, there are hundreds or thousands of small interactive 
applications available via the web which demonstrate the operation of individual concepts, like 
particular data structures or sorting algorithms. Often these have been developed as student 
projects, and published, “as is”, sometimes collected and curated, and possibly incorporating 
other non-tool resources such as YouTube videos.  
  



Another class of tools includes ​software frameworks ​that can be used to build new educational 
applications. For example, Tango (Stasko, 1990) was a software library to build algorithm 
animations. The increase in availability of rich interactive content, also called smart learning 
content (Brusilovsky et al., 2014), is often the result of the availability of such frameworks, 
because the same technological framework can been used to generate multiple different 
instances of examples or exercises. For instance, the jsVEE framework (Sirkiä, 2016) has been 
developed to enable building visualizations of Scala and Python programs, and jsParsons 
(Helminen et al., 2012) is a tool for building Parsons problems.  Instances of these visualizations 
and problems have been made available at the ACOS content server (Sirkiä and Haaranen, 
2017, acos.cs.hut.fi), which is a software architecture supporting dissemination of smart learning 
content into different learning management systems. All of these frameworks and servers can 
be considered tools for teachers to create and disseminate smart learning content for students.  
  
However, a tool can also be a ​definition language​. Initially, the Pascal language was designed 
as an educational programming language. While, there had to be Pascal compilers to build 
executable programs, these were separate tools generating code for different platforms. 
Another example of language tools is that some algorithm visualization systems, like JAWAA 
(www.cs.duke.edu/csed/jawaa2), are built on using a scripting language, which can be 
processed into a visualization (Rodger, 2002). 
 
Of course, there are many tools used in computing education that are not specific to the 
discipline, and many tools which are specific to the discipline but are not in essence 
educational. In the rest of this chapter we will leave aside discussion of generic educational 
tools and platforms such as learning management and support systems like Moodle or 
PeerWise, and general interactive tutorial systems.  Professional tools, like Eclipse or general 
purpose programming languages and corresponding systems software are frequently used in 
computing education, and learning to use them is an important goal of learning in computing 
curriculum. While these may be complex for novices, it is then possible for teachers to focus on 
using only a core set of operations, and even provide a simplified user interface for students. 
Later on, actual professional tools can be adopted. We do not discuss professional tools 
explicitly in this chapter. 
 
Finally, we restrict our discussions to software tools, leaving out tools for physical computing or 
CS unplugged (​www.csunplugged.org​) (Chapters 3.7 and 3.11​ ​focus on these topics). 
 
4 Stakeholders 
  
Tools can be considered from several stakeholders’ points of view. Many educational tools and 
applications focus on supporting ​students’​ work, including, for example, tools for visualizing and 
concretizing program execution (program visualization, algorithm visualization), intelligent 
tutoring systems, automatic feedback tools, etc. But some tools have primarily been developed 
for ​teachers​, such as plagiarism detection tools, (e,g. Lancaster & Culwin, 2004; Rosales et al., 

http://www.csunplugged.org/


2008) or frameworks (see above) which allow teachers to build new learning content or assist in 
assessment. These tools can, of course, also be used by students, for instance in project work 
where the task is to delve into some topic and prepare a learning resource as the outcome. 
  
Teachers can act both as ​producers​ and ​consumers​. Firstly, teachers can build new learning 
content using some tool and use it in their own education, while also providing other teachers 
the possibility to access and adopt the material. Then the other teachers act as consumers. 
They might use the available resources as such, but they could also wish to tune them, for 
example, by adding annotations to the material. Kelmu (Sirkiä, 2016) is such a tool for 
consumers, which has been used to annotate program visualizations, but could be used to 
annotate other types of animations, too. 
  
Finally there are ​developers​, who implement and maintain tools. Of course, teachers could act 
as developers, too, and often do. However, it is useful to differentiate between these roles, 
because the needs for tools are quite different from the point of views of various roles. For 
teachers and students, easy access, low learning curve and high usability are important, while 
for developers, maintainability, code quality, choice of technologies, architecture, and available 
documentation are more important. 
  
5 Classification of tools 
  
The range of tools  computing education is broad, and it is impossible to discuss thoroughly all 
tools research in this chapter. It is, however, useful to provide some structure for the area. A 
good resource here is the paper by Kelleher and Pausch (2005) who presented a taxonomy of 
educational tools for programming, identifying several dozen different tools designed for novice 
programmers to learn to code. While the paper focuses narrowly on programming, and not all 
topics in computing, their paper actually covers a great majority of the tools relevant tools to this 
chapter.  
 
Kelleher and Pausch split tools into two major categories. ​Teaching systems ​attempt to teach 
programming for its own sake and have goals, such as simplifying the creation of code, finding 
alternatives to typing programs, providing new ways of structuring programs, supporting better 
understanding of program execution, supporting social learning, and providing a motivating 
context. The second major category they called ​empowering systems​. They argued that “the 
designers of these [latter] systems are not concerned with how well users can translate 
knowledge ... to a standard programming language. Instead, they focus on trying to create 
languages and methods of programming that allow people to build as much as possible.”  Here 
they identify systems which support new methods of specifying the program logic, 
improvements in programming languages, and applications in entertainment and education in 
other domains of knowledge. 
 



Another, more narrow, survey of tools supporting programming education, published at roughly 
same time, is the work of Gómez-Albarrán (2005). It focuses on 20 important tools operating in 
four different domains: reducing the complexity of the development environment; providing 
examples [to guide/of] programming; visualizing program/algorithm execution; and providing a 
simulated world where the programmer can control activities. These fall in the domain of 
teaching systems in the categorization of Kelleher and Pausch. 
 
While this top level categorization is helpful for comparing the goals of the system, it does not 
provide much granularity about the instructional and learning properties in prior work. Moreover, 
there has been more than a decade of additional work since its publication. The rest of this 
chapter will attempt to provide some of this increased granularity, with sections discussing some 
of the most important types of tools that have been designed to support different aspects of 
learning computing. 
 
A broad area could be described as tools for ​scaffolding learning. ​First, there are tools and 
environments which support ​planning, designing, analyzing and constructing programs ​(section 
5.1). These tools provide a simplified environment, which hides some of the complexity of 
programming concepts and processes as compared to working directly with professional tools. 
For example, block-based programming languages and environments, like Scratch or Blockly 
(developers.google.com/blockly) efficiently remove the requirement for students to engage with 
fine details of syntax. 
 
A second category of scaffolding tools covers different types of ​feedback​ for students on their 
work. As an example, ​automatic assessment tools​ (section 5.4) can provide feedback on 
students’ programs in terms of their correctness, style, structure, and efficiency. There are also 
tools for analysing formal design specifications. Such tools are naturally valuable for teachers, 
too, because they can reduce their workload by analyzing and grading student work 
automatically. Teachers can then use their time more for guidance and giving feedback on such 
aspects of student work that are hard to analyze automatically, such as design choices or use of 
algorithms. 
 
Third, computing concepts are frequently abstract and invisible. Therefore scaffolding student 
learning with ​visualization​ and ​animation​ (section 5.5) is a broadly explored area of tools 
research. Some such tools provide opportunities for various types of interaction with the 
visualization, such as responding to questions, browsing or zooming in and out in the dynamic 
presentation, or providing input values and thus ​simulating​ a system or operation.  
 
In all of the above categories, one important aspect of tool-based scaffolding is the pace: getting 
immediate feedback on one’s solution or work is valuable because it supports personal 
reflection on learning much better than getting teachers’ feedback several days or even weeks 
later. Many tools also allow students to re-submit a revised solution or explore interactively how 
a particular system or concept works, although some impose a delay to avoid very fine-grained 
interaction.  



 
The fourth area of scaffolding concerns support for students’ motivation. This is an area where 
various forms of ​educational games ​and ​gamified approaches​ work (section 5.2). Finally, there 
is research carried out on ​e-books​ which form comprehensive interactive resources for learning 
programming (section 5.3). 
 
We discuss each of these areas in more depth below. 
 
5.1 Supporting the writing of programs 
Since educational programming languages and environments first came into existence, there 
has always been a tension between providing specific tools to decrease barriers to entry and 
engage learners with with professional tools as their abilities grow. 
  
Languages designed, or adapted, for use in education have long been integrated with 
development environments tailored to that purpose, from BASIC in the 60s through Turbo 
Pascal in the 80s and on to graphical IDEs (e.g. Scratch) in the 21st century. 
  
In the early stages of their development, although these IDEs were designed to be used by 
professional software developers, they were simple enough to be used by beginners without 
significant learning overheads, but as they matured beyond the simple edit-compile-run cycle to 
include the rapidly expanding software development toolchain, they became less and less 
accessible. For their target professional audience, this is not a major problem as they are 
expected to use the tools every day and be prepared to invest in learning their increasingly 
complex interfaces, but for beginners, the barrier to entry became increasingly high. This led to 
a number of attempts from around 2000 to subset existing and emerging IDEs (Eclipse for 
Education, Visual Studio Express), or provide plugins specific to educational settings (the 
NetBeans BlueJ plugin). These efforts have largely been abandoned due to the cost of 
maintenance, or subsumed into a more general “freemium” licensing model where they have 
lost any specific educational focus. 
  
A more successful approach has focussed on the creation of IDEs specifically targeting learners 
and existing languages: Dr Scheme for Scheme (Findler et al., 2002) which later became 
DrRacket, BlueJ for Java (Kölling, 2003) and DrJava (Allen et al., 2002). As well as providing 
features for learners (such as BlueJ’s direct object manipulation and Dr Scheme’s Read 
Evaluate Print Loop), these tools typically included a subset of the functionality of professional 
IDEs, which over time expanded to include access to other components of the modern software 
development tool chain such as static code analysis (Cardell-Oliver & Wu, 2011) and revision 
control systems (Fisker et al., 2008). The latter has particularly opened up research 
opportunities using students’ commits of evolving source code as a research tool (Spacco et al., 
2006) 
  
Despite the existence of this wide variety of IDEs for education, the use of command line tools 
alone for teaching introductory programming is remarkably persistent, with Davies et al. (2011) 



reporting that 15% of their sample of 367 US institutions used the command line alone in their 
CS1 course. A similar proportion was reported for Australian institutions in 2010 by Mason et al. 
(2010), although they report a decline from 45% in the previous 10 years citing as the major 
reason a change of perception from IDEs representing an increase in cognitive load (“learning 
to use the IDE”) to a reduction (“reducing the amount that the students had to learn”). With a few 
exceptions (e.g., Uysal, 2016) these perceptions remain largely untested by research, with such 
work as has been done largely subsidiary to comparisons of programming languages (e.g. 
McIver, 2001). 
 
5.2 Games and learning programming 
 
Whereas many of the tools discussed above have played the role of being supportive of 
learning by simplifying programming languages or providing more supportive code editors or 
programming environments (Kelleher & Pausch, 2005), some tools have tried to explicitly 
structure, scaffold, and guide the entire learning experiences. These environments are much 
more than tools, often offering whole curricula for a set of learning objectives. These 
environments fall roughly into two categories: ​interactive games​ and ​e-books ​(which are similar 
to tutorials and tutors). Both types of environments offer learning materials, curricula, and some 
form of sequencing to guide learning but differ in how they motivate and reinforce learning. 
 
Game-based learning environments motivate learning by creating extrinsic​ ​motivation (Gee, 
2014) and applying game mechanics and instructional principles to achieve particular learning 
objectives (Aleven et al., 2010). There have been numerous games that teach aspects of 
programming. Among the earliest were the Rocky’s Boots and Robot Odyssey games (Robinett 
& Grimm, 1982), which offered a series of increasingly difficult puzzles in which players 
connected logic gates to achieve particular program outputs. This puzzle-based paradigm is 
followed in numerous other commercial games, including Lightbot (lightbot.com),  CodeCombat 
(codecombat.com) and Human Resource Machine 
(tomorrowcorporation.com/humanresourcemachine). These tend to each offer their own 
simplified programming language, with game-specific commands and operations to manipulate 
a game world of some kind. Some other games focus on low level programming and/or building 
hardware, such as Shenzhen IO (www.zachtronics.com/shenzhen-io), Silicon Zeroes 
(store.steampowered.com/app/684270/Silicon_Zeroes) and TIS 100 
(www.zachtronics.com/tis-100). It is also worth noting that while all these games focus on 
programming or computing concepts, there is variation over whether the focus of the game is 
mainly educational or entertainment. 
 
Some researchers have explored the paradigm of puzzle-based programming games in more 
depth. For example, Gidget (Lee et al., 2014) explored a collaborative (rather than competitive) 
framing of a player’s relationship with the computer, framing the computer as a reliable but 
fallible collaborator incapable of problem-solving; it also focused players on fixing defective 
programs rather than expecting players to write programs from scratch. Others have explored 
how to use games to teach more advanced topics, such as concrete debugging strategies 



(Miljanovic & Bradbury, 2017), SQL queries (Soflano et al., 2015), test case generation 
(Tillmann & Bishop, 2014), and software engineering requirements gathering (Connolly & 
Stansfield, 2006). There is some evidence that programming games are well-liked (Ibrahim et 
al., 2010), that they quickly shift attitudes about programming to positive (Charters et al., 2014), 
and can lead to better learning outcomes than environments with similar interactive features that 
are not framed as games (Lee & Ko, 2015). However, there is little evidence that playing these 
games leads to transferable knowledge to other programming contexts. Moreover, even if they 
do, there is some evidence that most players play only a few levels of these games before 
abandoning them once they encounter difficulties and cannot find help (Yan et al., 2017). 
 
While the focus of the previous tools was teaching programming or some aspects of it, there are 
also other game related approaches which support building motivation for learning 
programming. There are many games that allow the user to enhance their capabilities through 
programming. Kerbal Space Program (kerbalspaceprogram.com/en) is a game where the player 
designs and flies spaceships and rockets to explore the planetary 
system in the game. There is an additional component called kOS (ksp-kos.github.io/ 
KOS) which adds a custom programming language to the game enabling players to control the 
rockets programmatically. Another example is the popular game Minecraft (minecraft.net) and 
its “redstone” mechanism to create logical operations. Interestingly Minecraft has been used to 
create some very complex artefacts, like a Basic interpreter 
(www.youtube.com/watch?v=t4e7PjRygt0) or Atari 2600 Emulator 
(www.youtube.com/watch?v=jPRkjNDmTlc). While these examples can be considered as their 
author’s heroic achievements in using such frameworks, there is more to it than this. In gaming 
communities a highly popular activity is game streaming, where a game player streams the 
game play with oral comments on the working. The above videos of minecraft belong to this 
category.  Another category is live-streaming, for example in Twitch.tv, where the audience can 
also interact with the author through chat discussion. Streaming playing an educational game 
like Shenzhen I/O has a clear educational perspective, and can act as a method of attracting 
followers to learn more about programming (Haaranen and Duran, 2017). Such streaming has 
also extended to live programming (Haaranen, 2017).  There is very little research currently on 
these novel approaches to demonstrating CS concepts and programming in this context. 
 
5.3 E-books 
 
Whereas programming games offer extrinsic motivations to learn, interactive e-book 
environments lack any game-specific premise or extrinsic motive, expecting learners to bring 
their own motivations to reading and completing the book. Unlike games, however, e-books 
often provide more explicit instruction and feedback on learning objectives. For example, 
commercial coding tutorials such as Codecademy (codecademy.com) and Khan Academy 
(khanacademy.org) offer structured curriculum for programming language basics, OpenDSA 
(Fouh et al., 2014, opendsa.org/) is an e-book on data structures and algorithms, and CS 
Principles (Ericson et al., 2016) is an interactive book on Python programming 



(www.interactivepython.org/runestone/static/StudentCSP/index.html). All three of these are 
essentially content, expecting learners to be in a motivating context. 
 
Research environments have focused on providing more detailed, interactive explanations of 
concepts. For example, some offer interactive program visualizations that supplement natural 
language explanations of concepts (Rossling & Vellaramkalayil, 2009; Miller & Ranum, 2012; 
Fouh et al., 2014), providing learners with opportunities to see programs execute. Some of 
these, such as the PLTutor environment, place program visualizations at the center of the 
experience, focusing learner attention on the specific effects of a programming language’s 
semantics on a program’s control flow and state, using natural language explanations to 
supplement the visualization (Nelson et al., 2017). Several studies of e-books have shown that 
use of e-book features varies wildly between different students (Alvarado et al., 2012), and 
different populations of users such as students and teachers (Ericson et al., 2015; Parker et al., 
2017), but that deeper engagement with an e-book’s interactive features is generally associated 
with better learning outcomes (Alvarado et al., 2012). One of the only studies of the causal 
effect of integrated program visualizations on learning showed that, at least with highly granular 
visualizations of program behaviour, learning outcomes are significantly higher than with no 
program visualizations at all (Nelson et al., 2017). 
 
While games, e-books, tutorials, and tutors offer promising opportunities for learning, the body 
of evidence of their efficacy is still quite shallow, with only a few studies evaluating learning 
outcomes. Moreover, pedagogical analyses of these genres of learning technology show that all 
but the most carefully-designed research environments fail to meet even basic learning 
principles, such as adapting instruction to prior knowledge, providing personalized feedback on 
practice, and promoting self-regulated learning (Kim & Ko, 2016). There is considerable room 
for future work to personalize learning, while sustainably engaging learners in the use of these 
learning environments. 
 
5.4 Supporting assessment and feedback 
 
Assessment and feedback have always been a fundamental part of programming education, 
and grading student work in large introductory programming courses is very labour intensive. It 
is therefore no wonder that developing tools for automatic assessment of students’ exercises 
has always received considerable interest among computing educators. Hollingsworth (1960) 
reported an early implementation of a mainframe tool for running submitted work against a set 
of tests and producing a grade from the results. This paper already notes the advantages in 
terms of cost (although here it’s the cost of machine time), 
 
Later work includes systems like ASSESS and AUTOMARK (Redish & Smyth, 1986), ASSYST 
(Jackson & Usher, 1997), Ceilidh (Burke et al., 1994) and PASS (Thorburn & Rowe, 1997). 
These systems analyze various aspects of programming assignments, such as program 
correctness, programming style, efficiency, and code complexity. ASSYST also evaluated 
students’ test coverage and PASS compared student’s submission with the teacher’s solution 



plan, and thus also focused on code design. Later important tools include BOSS (Joy et al., 
2005), CourseMaster (Higgins et al., 2002) and Web-CAT (Edwards, 2003, www.web-cat.org). 
For more information, there are several survey papers, which cover the area well, except for the 
most recent work (Ala-Mutka, 2005; Douce et al., 2005; Ihantola et al., 2010).  
 
Most work in automatic assessment tools has focussed on analyzing programming submissions, 
where several different aspects can be assessed. ​Program correctness ​is the most widely 
analyzed feature, which, in most cases, is implemented by running a student’s program in a 
safe sandbox against teacher-defined test cases and comparing the results against teachers’ 
model results. Text§-based comparison of output is the most common approach, but is fraught 
with difficulty in detecting semantically uninteresting variations in formatting, and is gradually 
being replaced by the use of automated testing frameworks such as JUnit (www.junit.org). 
Programming style ​is also a frequent measure, covering aspects like code indentation, function 
lengths, variable names etc. and may include analyzing ​code complexity​ using well-known 
software metrics. More recent work with Web-CAT (Edwards et al., 2017) reports using 
commercial static analysis programs to perform this function, but cautions that their 
comprehensive nature can result in over-emphasis on superficial “faults”. Some more 
pedagogically-focussed systems trace whether certain ​syntactic structures ​have been used, 
either because they were requested in the assignment, or their use was denied. For example 
Scheme-robo (Saikkonen et al., 2001) compared the actual list structure which student’s 
programs used against a model solution. ​Code efficiency ​can be measured by running the 
programs against test cases with different run time expectations. Some tools analyze also 
program design/structure ​ by analyzing the functional structure (Thorburn & Rowe, 1997; 
Saikkonen et al., 2001).  
 
ASSYST, and more recently Web-CAT, also analyze students’ ​test cases​. The rationale here is 
that many students start using automatic systems as kind of debugging tools, focusing only on 
passing teachers’ test cases while the focus should be in their own testing. Edwards (2003) 
emphasizes test-driven development by analyzing how well students’ own test cases have 
covered the source code (and that the code passes them) and additionally how well the 
program passes teachers’ test cases. The results are combined and it is impossible for students 
to get high marks with only poor code coverage from their own tests. 
 
While mainstream research has focussed on programming submissions, there are also other 
applications areas. CourseMaster (Higgins et al., 2002) provides tools to analyze flow-charts, 
OO diagrams and even electrical circuits. Ali et al. (2007) present a tool for analyzing UML 
diagrams. Shukur et al. (1999) present a tool for automatic analysis of formal specifications 
written in the Z language. Dekeyser et al. (2007) describe a tool for analyzing students’ skills in 
SQL queries. Malmi et al. (2004) developed an algorithm simulation system called TRAKLA2 
which allowed students to simulate, in terms of GUI manipulation operations, how an algorithm 
changes a given data structure, for example sorting an array of keys. The simulation sequence 
log is compared with the sequence generated by a correct implementation of the algorithm to 
provide feedback for the students. Students can view the model execution as an algorithm 



animation, and restart the exercise with new randomized data; thus they can rehearse and 
refine their solution with no limitations until their final submission. 
 
Automatic assessment tools can be used in different ways. Firstly, they can provide highly 
valuable ​formative feedback​ for students, because they can allow students to ​resubmit​ their 
work after considering the feedback, and refining their solution. Secondly, they can act as 
pre-filters for incomplete student submissions (Ala-Mutka et al., 2004; Joy et al., 2005) by 
checking, for example, that the program passes a number of tests, satisfies code quality 
requirements etc., before the submission is forwarded for teacher evaluation. The final marking 
is carried out by the teacher, who has access to the automatic analysis results of the 
submission. Plagiarism detection may also be included in this filtering phase. Finally, the tools 
can also be used for ​summative assessment​ where the results are automatically recorded as 
(part of) the grade awarded. In this kind of approach, it is important that the student gets 
information about how the marking was carried out, and, if in doubt, can contact the teacher for 
clarifying issues with the grading. 
 
There are many challenges with automatic assessment, such as: 
 

● What is the appropriate level and specificity of feedback? Mitrovic et al. (2000) analyzed 
the impact of 5 different detail levels of feedback by SQL-tutor, ranging from a ***simple 
report of success/failure to providing complete model solution, and explored the role of 
feedback level and student success. Best results were reported when students’ were 
given relevant hints where to focus when correcting the erroneous solution, but 
challenges remain in identifying the “relevant” and  delivering it in a timely fashion. 

● In tools that allow students to revise their solution and resubmit it to the system, what is 
the appropriate number of allowed submissions and what kind of policy in general is 
good to use?  As reported above, one problem is that students use the system as a 
testing tool instead of testing their programs themselves. Edwards (2003) provided one 
solution to this. Other solutions, if test case evaluation is not available, include limiting 
the number of submissions, imposing a penalty for excessive submissions, or slowing 
the process of providing feedback. Karavirta et al. (2006) and Malmi et al. (2005) have 
analyzed the impact of various resubmission policies in students work in the context of 
TRAKLA2 algorithm simulation exercises. 

● How can students be discouraged from “working to the test” by iteratively creating 
programs which only pass the tests applied to them on submission? This can be 
addressed by randomising either the choice of tests, or details of the tests applied, but 
such randomization is not always trivial, as some cases are more likely to trigger test 
failures than others. 

 
Chapter 3.3 elaborates on more on challenges in assessment. 
 
5.5 Concretising the virtual/revealing the hidden 
 



Software is a complex artifact. Its structure is in principle visible in program code but the length 
and complexity of the code can obscure the structure and make it difficult to capture even for 
professionals. The dynamic execution of a program is invisible. We can see only the effect 
(output) of the program, which could be correct or incorrect, or that the execution ends in an 
error. While error messages may give information about the proximate cause of the problem, the 
initial causes of the problem are generally not accessible by looking at the error messages or 
incorrect results only (Eisenstadt called this the “Cause/Effect Chasm” (1997). Therefore, both 
program code and the actual execution process both need to be considered. ​Software 
visualization ​is an area of research which seeks to address these challenges. It covers both 
educational and professional applications to understand software, its development and 
execution. Good overviews of the field include Diehl (2007) and Stasko (1998).  
  
For educational purposes there are two main areas of software visualization: ​program 
visualization (PV) ​and ​algorithm visualization (AV). ​Program Visualization is “the visualization of 
actual program code or data structures in either static or dynamic form” (Stasko, 1998). It is a 
field which aims to make the code level execution of a program visible for a programmer. Some 
well-known examples are: Jeliot (Ben-Ari et al., 2011), jGrasp (www.jgrasp.org) and Online 
Python tutor (Guo et al., 2013). Sorva et al. presented a fairly recent survey of the whole field 
(2013). Most PVs are targeted to novices and are restricted to small, illustrative, programs since 
step-by-step execution of large software systems to investigate their logic is beyond the scope 
of reasonable work. 
 
One way to view the goal of PV is to help learners understand a ​notional machine ​(Du Boulay, 
1986), which is an abstract, most often simplified, model of what happens in program memory. 
Most PV systems target helping understanding of program execution on a notional machine 
level by showing how the program execution proceeds statement by statement, and visualizing 
variable values, simple data structures, stack frames and heap structures. Visualization is not 
popular on hardware (processor) level, because modern computers and processors are so 
complex that exact understanding of all details is frequently out of scope for even advanced 
practitioners. However, moderate understanding of, for example, what happens during the 
execution of Java or C programs is essential for becoming a competent programmer.  
 
It is worth emphasizing that a notional machine is not a strictly defined concept; the level of 
abstraction can vary depending on what level of details are relevant for the stage and goals of 
education. The PLTutor system (Nelson et al., 2017) targeted a precise and comprehension 
level of understanding about JavaScript, providing detailed pedagogy about each individual 
operation at the instruction-level, rather than the line or sub-expression level of a program. The 
system was based on a theory of programming language semantics knowledge that argues that 
learning a language involves learning a mapping between syntax and the causal effects of 
syntax defined by the language’s semantics. To teach this mapping, the tutor interleaves 
conceptual instruction about language semantics with explanations of the side effects of 
individual components or language constructs. In one of the few studies of PV effects on 



learning outcomes, this low-level of semantic granularity led to significantly better learning 
outcomes than coding tutorials that involve writing simple programs with these constructs. 
 
Algorithm visualization (AV) ​is a genre of learning technologies  that aim at visualizing program 
and data at a more abstract level, focusing more on data structures (typically depicted as 
graphical entities) and how a program manipulates those structures. While algorithm code is 
frequently included, the visualization focuses on what happens with data and not so much on 
code level details. The boundary between program and algorithm visualization is not strict and 
many systems include features on both levels. Some famous systems include 
Sorting-out-sorting video (Backer & Sherman, 1983), Tango (Stasko, 1990), jHAVÉ (Naps et al., 
2000), TRAKLA2 (Malmi et al., 2004), ALVIE (Crescenzi, 2010), Animal (Rößling & Freisleben, 
2002) and jFLAP (Rodger, 2006). A somewhat dated but useful survey of the field can be found 
in (Shaffer, 2010).  A collection of algorithm visualization systems and resources can be found 
in www.algoviz.org.  
  
Most program and algorithm visualization systems focus on ​animation ​of the execution, where 
the user can browse the dynamic execution stepwise, possibly choosing the granularity of steps, 
while executions is carried out by the computer.  An alternative approach is ​program simulation 
or ​algorithm simulation,​ where the user acts as the processor and executes the program or 
algorithm using available graphical interaction tools. The system can evaluate the correctness of 
the steps and provide feedback for the student. An example of program simulation systems is 
UUhistle (Sorva and SIrkiä, 2010) and examples of algorithm simulation systems include 
TRAKLA2 (Malmi et al., 2004) and jSAV (Karavirta & Shaffer, 2013). 
 
The literature in this area also uses other terms. ​Code visualization ​and ​code animation​ overlap 
with program visualization but focus solely on code level details. ​Program animation​ is 
sometimes used as a synonym of PV. ​Static program visualization​ refers to (static) visualization 
of program structures rather than (dynamic) execution. ​Visual debugging​ refers to debuggers 
which include visualizations of program and data structures instead of textual program code 
only.  ​Visual programming​ is, on the other hand, an entirely separate genre of programming 
language and environments, which focuses on constructing programs using visual rather than 
textual entities. These visual languages have nothing to do with visualization tools. 
  
There has been considerably empirical research on PV and AV systems, especially the latter. 
Research has mainly focused on engagement and presentation. A milestone in the research 
was the meta-study of empirical evaluations of AV systems by Hundhausen et al. (2002). The 
results indicated that the main difference between studies where better learning results of using 
AV systems in education were reported or not reported, was ​student engagement. ​That is, if 
students were actively working with the visualizations vs. merely viewing them, they learned 
better.  An important follow-up work was carried out in an ITiCSE working group (Naps et al., 
2002) who defined the ​engagement taxonomy ​for differentiating between various forms of 
engaging activities while using AV systems. This widely cited framework has guided much of the 
consequent research. In its original form it identified six different modes. ​No viewing​ (nothing) 



and ​viewing​ were the lowest levels with no engaging activity involved. In ​responding ​mode 
learners are presented with questions related to the visualization. ​Changing ​level allows them to 
modify the visualization, for example, by varying the input data set.  In ​construction ​mode they 
can create their own visualization of a program or an algorithm and finally in ​presenting ​mode 
they present visualizations to others for feedback and discussion.  
 
Many studies have been carried out to evaluate whether the assumption holds that higher 
engagement levels would lead to higher learning results. While many positive results have been 
found, there is also critique that the taxonomy is insufficient, and should be revised or 
augmented. Myller et al. (2009) extended the taxonomy with finer variations in the interaction 
with visualization tool and used it to analyze collaborative learning process.  Sorva et al. (2013) 
presented another extension by adding a second dimension concerning the ownership of the 
task at hand. That is, the engagement is also related to whether learners only manipulate given 
content or provide their own input cases, modify the visualization software, or even create their 
own software. Furthermore, few studies actually investigate whether program visualization tools 
cause better learning. The most recent evaluation of PLTutor (Nelson et al., 2017) involved a 
controlled experiment that holistically demonstrated improved learning outcomes, but this study 
did not separate the effect of the visualization from other aspects of its surrounding instruction. 
 
While the engagement taxonomy has had a significant impact on research, there are no 
compelling results to confirm that the original taxonomy or its extensions reflect accurately the 
relation of engagement and learning outcomes. These remain open questions.  Moreover, the 
taxonomy also does not consider the role of how information is presented in the visualization 
and what kind of textual or audio information supports the visualization.  
 
6 Discussion 
 
6.1 Incentives for tools research 
 
Tool contributions in computing education research are likely to be of continued importance. 
First, digitalization and massification are transforming education at all levels. While the 
emergence of massive open online courses (MOOCs) a few years ago did not cause the 
revolution many teachers in computing education feared (Eckerdal et al, 2014; Sheard et al. 
2014), they have become a part of mainstream education and have a significant role both in 
tertiary education and, particularly, Continuing Professional Development. Due to the sheer 
number of participants, often many thousands, MOOCs cannot be operated without software 
tools. With the increased number of students pursuing computing education in higher education, 
many of these same challenges of teaching at scale have reached traditional institutions of 
education, thus creating an incentive for development and deployment of automatic assessment 
and feedback tools. Moreover, because MOOCs cannot generally build on pedagogical 
foundations that require student-teacher interaction, there is an obvious need for tools 
supporting self-study of computing topics. Peer review and group work are also widely used in 



MOOCs and so there is also an incentive to develop more computing-specific tools supporting 
these methods. 
  
The influence of MOOCs is also apparent in ​blended learning​, which has become a mainstream 
method for organizing and managing traditional face-to-face teaching and learning in the face of 
rising enrollments, providing similar incentives for tool development and use. Furthermore, 
pedagogical practices are moving towards student-centered approaches that generally activate 
students more compared with the teacher-centered tradition. While practical exercises using 
either professional or educational tools have always been a central part of computing education, 
the shift towards even more active methods further drives efforts on tool development and 
research. 
  
The second important factor promoting tools is the demographic change in students. This is 
visible in two ways. First, students of this generation have used digital tools for their whole life 
and often expect that digital tools are a natural part of their studying. To keep students 
motivated, learning environments have to develop to include more (appropriate) digital content 
and opportunities for student interaction. Secondly, institutions have a large and growing 
number of non-traditional students, who study from distance either temporarily or permanently 
and who thus need more digital content and services than traditional students. They are 
blended learners by necessity. 
  
The use of learning analytics (see Chapter 3.14) is a third factor. They are increasingly applied 
in education at all levels to analyze student behavior. Compared with traditional methods, digital 
content and tools can log student activities in great detail and provide huge opportunities to 
monitor students’ progress either in course or at the program level. The gathered data can also 
be used to generate feedback for students themselves, for example, on their study practices 
(Auvinen et al., 2015), and feedback for curriculum developers about hot and cold spots in their 
instructional design as well as cohort-level feedback about difficulties. For example, Code.org 
iterates on its curriculum based on both qualitative feedback, but also instrumentation of the use 
of it’s online tools. However, applying these logging facilities needs careful ethical consideration 
in research.  For example, the granularity of logging (e.g., submission level logging, key-level 
logging, even accessing information about other activities students are doing while working on 
their tasks) should be treated with care to avoid ethical conflicts. 
 
6.2 Challenges in computing education tools research 
 
Conducting research on learning technologies for computing education poses some unique 
challenges.  
 
In many cases, tool development requires significant effort. Usability and efficiency 
considerations are crucial if the tool is to be used at scale in real course environments, possibly 
with large numbers of students. These is even true for running carefully controlled laboratory 



studies, as there are a range of confounding factors in tool design that can mask the benefits of 
the tool. Ko et al. (2015) present a detailed guide for evaluating programming tools.. 
 
Publishing details of the functionality of new tools, supported only by small single-cohort 
satisfaction analyses, is becoming increasingly difficult with many conferences and journals, 
which require more rigorous evaluation studies. Thus the time (and effort) between deployment 
of a new tool and dissemination of its features and advantages has increased significantly. 
Papers describing such systems ​per se​ may be publishable in other venues (e.g. Software 
Engineering, Programming, or CHI conferences and workshops) but for that they often need to 
make a significant, novel, technical contribution in the domain of the publication, which is not 
always clearly the case. A similar problem arises when an existing tool is re-implemented for 
use in a different programming language, such as DrJava (Allen et al., 2002), derived from 
DrScheme which was itself originally reported in a symposium on programming languages 
(Findler et al., 1997). 
 
Sustaining tool research is another challenge.  Tools are often designed and implemented as a 
part of a fixed-term research project, or a PhD student’s work, and there is no one to continue 
maintenance and development after the project funding finishes or the thesis is submitted and 
the student has moved on. Numerous tools have suffered such a fate, and are therefore 
inaccessible to a wider audience or for continuing research. Obviously for any teacher or 
institution, adopting a tool that has unclear prospects of long-term support is a significant risk. 
Bugs might not get fixed, hosted services might terminate at short notice, and support may not 
be available. Some tools lack features which are required for widespread use, such as 
comprehensive support for internationalisation (e.g. character set and interface translations) or 
accessibility features for students with disabilities. The latter is a particular issue for tools with 
custom graphical interfaces, which take them beyond the reach of the facilities provided as 
standard by the underlying platform. Although it’s not often considered in an educational setting, 
there may also be issues around ownership or licensing of intellectual property in work created 
using a tool, especially in cases where the tool is inextricably linked with students’ work (e.g. 
Scratch or Greenfoot). 
 
A problem for tool sustainability is that technologies evolve rapidly. This applies both to the 
technologies the tools use, as well as those they teach. While ten years ago many tools were 
delivered as Java applets or Flash applications, current web browsers no longer support these 
technologies and so the tools are inaccessible. The same problems apply to tools implemented 
as plugins for professional tools (e.g. Eclipse or NetBeans) with rapidly changing APIs. Old 
versions may simply cease working when platforms change, and therefore constant updating or 
even re-implementations are needed. This is work which has little scientific value, even though 
from practical point of view it may be essential. Tools which aim to teach rapidly evolving topics 
or languages such as Java or Python, or libraries like JUnit are also at the mercy of changes in 
their infrastructure. 
 



Only a few tools have been able to reach a state where there is an established research group, 
or a dedicated individual, or external funding, which can ensure their long-term future. Examples 
include BlueJ, Web-CAT, jGRASP, DrRacket, Scratch, and Alice. Sometimes the development 
team has been able to build a business which develops and supports the tool by, for example, 
charging for enhanced support or back-end services. Sometimes a large enough developer 
community has emerged, providing the resources to maintain and further develop the tool. 
Some tools have also formed successful user communities which provide valuable feedback for 
developers, as well as showcases and discussion forums which can serve as peer and 
developer support for users (Roque at al., 2012). 
 
Finally, research on tools often posses some common weaknesses. Many papers motivate the 
tool development by a teacher’s observations, and these observations may or may not reflect 
the students actual learning problems. It would be valuable to demonstrate evidence of learning 
or studying problems, generate a hypothesis how the problem can be addressed, and build the 
tool as a test machine for the hypothesis. Secondly, another related aspect is that tools 
research is frequently disconnected to any educational or psychological theories about students’ 
learning or behavior. Such theories could direct future research, by providing more explicit 
arguments for the observed learning problems, generated hypotheses and interpretation of 
empirical results.  The field needs theories specific to programming and computing to help build 
a more robust understanding of how tools mediate learning. 
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