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USING LIE GROUP INTEGRATORS TO SOLVE TWO
DIMENSIONAL VARIATIONAL PROBLEMS WITH SYMMETRY

M. ZADRA AND E.L. MANSFIELD *
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Canterbury, CT2 7FS, UK

(Communicated by the associate editor name)

ABSTRACT. The theory of moving frames has been used successfully to solve
one dimensional (1D) variational problems invariant under a Lie group sym-
metry [7, 8, 9]. Unlike in the 1D case, where Noether’s laws give first integrals
of the Euler-Lagrange equations, in higher dimensional problems the conserva-
tion laws do not enable the exact integration of the Euler-Lagrange system. In
this paper we use a moving frame to solve, numerically, a two dimensional (2D)
variational problem, invariant under a projective action of SL(2). In order to
find a solution to the variational problem, we may solve a related 2D system of
linear, first order, coupled ODEs for the moving frame, evolving on SL(2). We
demonstrate that Lie group integrators [12] may be used in this context, by
showing that such systems are also numerically compatible, up to order 5, that
is, the result is independent of the order of integration. This compatibility is
a testament to the level of geometry built into the Lie group integrators.

1. Introduction. One dimensional (1D) variational problems with Lie group sym-
metries have been solved exactly, by making use of the moving frame theory [7, 8, 9].
The idea behind the method is to define a moving frame for the Lie group action,
find a generating set of differential invariants, and then to rewrite the Lagrangian in
terms of the generating differential invariants and their derivatives. Using the results
of [7, 8, 9], one obtains directly the invariantised Euler-Lagrange (E-L) equations,
as well as a set of conservation laws given in terms of the frame. Once the E-L
equations are solved for the invariants, the frame can be used to find the solution
in terms of the original variables. For a 1D problem, the laws yield algebraic equa-
tions for the frame and these can be used to ease the integration problem for the
minimising solution. For two dimensional (2D) and higher dimensional problems,
the laws do not in general lend themselves to finding exact solutions.

In this paper we reduce the problem of finding the minimiser, to that of solving
the Euler-Lagrange equations for the invariants and then the compatible 2D system
of ODEs

pz = Qp
py =9 (1)
p(z0,%0) = po
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for the frame p, where G is the Lie group, p € G is the moving frame, g is the Lie
algebra of G, and Q%, QY € g are the so—called curvature matrices. The system (1)
is compatible in the sense that p,y = py., that is,

oy 4o _1oe guy —

. dyQ [Q¥, QY] = 0. (2)
The curvature matrices depend on the invariants, which are known as functions of
the independent variables as soon as the E-L equations have been solved. We solve
(1) by showing that the Magnus expansion—based Lie group integrator for a single
such equation, can be applied in a well-defined way, provided the compatibility
condition (2) is satisfied, at least to order 5 in the discretised step sizes.

In section 2 we present the basic concepts of the theory of moving frames which
we will use in our application. We give necessary conditions to define a moving
frame, as well as differential invariants, syzygies and curvature matrices. Examples
will be given for a projective action of SL(2) on a Lagrangian. Further details about
moving frame theory and its application to the calculus of variations can be found
in [7, 8,9, 16, 17].

Section 3 gives a summary of the main results concerning Lie group integrators,
developed for a matrix ODE system evolving on a Lie group (see [1, 4, 12] for
surveys on the topic, [6] for numerical software).

We then present the main result of this paper: that Lie group integrators can be
used to solve the compatible 2D ODE system (1) at least to order 5. We do this
by showing that the numerical integration is independent of the order in which the
ODEs are solved. In fact our result shows more, that a set of N pairwise compatible
equations of the form p,, = Qip, i = 1,..., N, with p € G and Q° € g, may be
solved numerically using a Lie group integrator, at least to order 5.

Our application is to find the minimiser of a 2D variational problem which is
invariant under a projective action of SL(2). Section 4 contains some numerical
tests which confirm our theoretical findings.

We conclude with a conjecture, that compatibility of the system (1) implies the
numerical compatibility of the Lie group integrator, to all orders.

2. Moving frames. The aim of this section is to present the basics of the modern
moving frames Lie group—based theory, and how it can be applied to solve some
problems in the calculus of variations. We show that once the E-L equations are
solved for the invariants, then the minimiser can be obtained by solving for the
frame.

Given an (open) domain X C RP of independent variables with coordinates
x = (21,..,2p) and a domain U C R? of dependent variables with coordinates
u = (u!,..,u?), we consider the n—th jet bundle J"(X xU). Let K = (ky, .., k,) € NP
and |K| = )", k;, then we can introduce the following notation for the derivatives
of the variables in U with respect to the variables in X:

|K|,, o

Lu. (3)
OFigy .- 6kpxp
A point z in J*(X x U) has coordinates z = (21,..,zp,ul, .., ud, ... uk,..) where
|K| < n.

Uy =

Definition 2.1. Given a Lie group G, a left action of G on M = X x U is a map
GxM— M, (9,2) = g-2=2
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FIGURE 1. Geometric construction of a moving frame. Here g,
h € G, O(z) is the orbit through z, and h-z =k € K.

such that e -z = z where e € G is the identity element, and
g-(h-2)=(gh)- -z Vh e G.
We now extend the action to M = J"(X x U). The operator a%i extends to the

total differentiation operator D; acting on the algebra of the smooth functions on
J"(X x U) as

In the case of invariant independent variables (which is the case of our main exam-
ple), an action can be induced on the derivatives of u® as

g+ ufe = ufe = (D) -+ (Dy)"rus
For the general case of independent variables that are not invariant, see [17].

Definition 2.2. A moving frame for a given action, G x M — M, is an equivariant
map p : M — G. For a right frame and a left action, the equivariance takes the

form,
1

plg-z) = p(z)g~

We now construct a right moving frame. For any z € U, we denote the group

orbit passing through z as O(z) = {g - z|g € G}. We assume the following to be
true on some domain U of M:

1. The group orbits all have the dimension of the group and foliate U,

2. There is a surface K C U which crosses the group orbits transversally and for
which the intersection of a given group orbit with K is a single point. The
surface K is called the cross section,

3. For any z € U, the group element h taking z to {k} = O(z) N K is unique.

Under these assumptions, the moving frame p : i — G is defined by p(z) = h where
h is the unique element of G satisfying h - z = k, see Figure 1. The equivariance,
p(g-2) = p(2)g~! follows immediately from assumption 3, as both elements of G
take g - z to KC.

For our main example we will consider two real independent variables, i.e. X =
{(z,y) : z,y € R} and one real dependent variable, i.e U = {u € R}. We are
interested in studying Lagrangians defined on a suitable domain in J"(X x U)
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and which are invariant under the following action of the Lie group SL(2): if

(Ccl Z) =g € SL(2), so that ad — bc = 1, then

au—+b 4

grx=1,  gy=y, gu=_—— (4)

For the action to be well defined on all of R, it is usual to add a point at infinity,

and to define g - 0o = a/c and g - (—d/c) = oco. In order to have conditions 1-3

above, satisfied, we prolong the action to the derivatives of u. In this case we need

two more derivatives and we choose to prolong the action on the derivatives in the
x—direction. The prolongation of action (4) is

Up = —2
gtz = (cu + d)?
Uz (cu + d) — 2cu?
g Ugx = 3
(cu+d)

We follow [8] and consider the cross section K given by
u=0
uy =1 (5)

Uge = 0

Then a moving frame for the action (4), on a domain defined by u, > 0, can be
found by solving the system of equations

g-u=0
g-uy =1 (6)
g Uge =0
for the group element g. The solution to (6) is the moving frame p given by
1 __u
p= (f f) (7)
2u3/? 2ul/?

A frame on the domain defined by u, < 0 is obtained from the cross—section defined
by u =0, u, = —1 and ug,; = 0.

Moving frames can be used to find the generating differential invariants of the
action at hand, as we can see in the following lemma.

Lemma 2.3 ([17]). Given a moving frame and z € U we have
uz) =p(z)- 2
18 tnvariant.
Proof. For a right moving frame and a left action we have
Wg-2)=plg-2)-(g-2) = (p(2)g7") - (g-2) = (p(2)g7"g) - 2 = p(2) - 2 = (2)
O

In fact, any invariant can be written in terms of the components of ¢(z). Indeed,
if F(z) is an invariant so that F'(z) = F(g - z) for all g € G, then setting g = p(z)
yields F(z) = F(p(z) - z) = F(«(z)). We say that the components of ((z) are
generating invariants as they generate the algebra of invariant functions.
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In [17] it is shown that the generating differential invariants related to the frame
(7) are

2
Upze 3 Usy Uy
Uy ’U,x Uy

The differential invariant o is also known in the literature as Schwarzian derivative,
{u;x}. Any Lagrangian which is invariant under the projective action of SL(2) can
be written in terms of o, k and their derivatives.

2.1. Curvature Matrix. In the context of SL(2) acting on surfaces as (4), we can
define two curvature matrices, one for each independent variable.

Definition 2.4. The curvature matrices for the moving frame (7) are defined as
Q' = (Dip)p~ !, i=1,.,p

The components of the curvature matrices can be expressed as a function of the
generating differential invariants and their derivatives. This is the first part of the
next result.

Proposition 1 ([17]). Let g be the Lie algebra associated to the Lie group G, then
for p a smooth moving frame defined on U C J"(X x U) and fori=1,..,p:

1

1. The components of (D;p) p~* are invariant, and

2. (Dip)p~t : JH(X xU) =g

The curvature matrices can be computed knowing only the cross section K and
the group action, without the need of solving for the frame [17]. In the case of
action (4) and the equations (6) for the frame, the curvature matrices are

0 -1 —1k —K
T _ /- 2T
Q= (éo O) Q= (%(/ﬁm—i—m{) 11‘%)
Theorem 2.5 ([17]). The curvature matrices satisfy
D;(Q") = Di(Q') = ([D;, Dilp)p™' +[2, Q. inj=1,..p (9)
where [D],Dl] = D]Dz — DiDj.

N

As we are dealing with standard commutative differential operators, equation (9)
simplifies to
D;(Q") - Di(Q’) - [7Q] =0 (10)
The non—zero components of equation (10) yields differential relations, called syzy-
gies, between the generating differential invariants. In [8] it is shown that for the
action (4) with invariants o and &, there is a single syzygy, namely

Oy = Kggy + 20K, + 0zK (11)

Suppose now we have a variational problem defined by a Lagrangian, which is
invariant under a Lie group action of SL(2). It is possible to write the Lagrangian
in terms of the generating differential invariants and their derivatives, namely

Lz/L(a,n,ax,ay,lix,...)dxdy (12)

In order to effect the variation in our variational problems, it is expedient to in-
troduce a new independent and invariant dummy variable 7. This generates a new
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invariant p-u, = 7= = § and it is possible to express [8] the derivatives of o, x with

respect to 7 as
0 (o) _,,« (D3+20D,+o0,
&(H>_H5_<Dywz+ﬁz 5 (13)

The operator H is known as the syzygy operator and is always linear. It can be
derived using (10) first with respect to the independent variables 7 and x and then
with respect to 7 and y.

Define the E-L operator as

AIEl 9L
v _ K
E (L)_Z(_l)‘ ‘W@
K

then it is proved in [8] that
) =1 (el (14)

where H* is the adjoint of A in (13). Equation (14) provides us with a second
differential relation between the two generating differential invariants. Once we
have solved (11)—(14) for o and &, we can compute the curvature matrices 9%, QY.
Finally, we have the differential system for p,

pz = Q%p
py = Q¥p (15)
p(T0,Y0) = po

where p(zo,y0) = po represents an initial condition for the system. The compati-
bility of this system is guaranteed by Equation (10).

If we can solve the Euler-Lagrange equations for the invariants, so that the
curvature matrices are known as functions of the independent variables, and then
solve (15) for p, we can write down the minimiser, as we now explain. We set

_ (al@,y)  blx,y)
plz,y) = <C(m,y) d(m,y)) (16)

and consider the inverse of the moving frame, acting on surfaces as

-1 du —b

P ru= (17)

—cu+a’
From the first equation in (6), p-u = 0, if we can solve (15) for p, then we obtain
that the solution to the variational problem we are studying is given by

u(z,y)=p 0= -
( 7y) P 0 _C(J;’y) -0+ a(x,y) a(x,y) (18)

3. Lie group integrators. In the previous section we saw how the moving frame
(7) is the solution of the compatible system

pe = Q%p (19)
py = Q%p (20)
p(To,Yo) = po

where the compatibility condition %Qy - din“’ — [Q%, QY] = 0 is guaranteed to
hold.

Equations (19)—(20) are linear coupled ODEs which evolve on a Lie group. It
is possible to solve each of them numerically using numerical schemes developed to



LIE GROUP INTEGRATORS AND 2D VARIATIONAL PROBLEMS 7

solve ODEs on Lie groups: the so—called ‘Lie group integrators’. In the following
subsection we review some aspects of the theory Lie group integrators. In—depth
surveys on this can be found in [1, 4, 12].

3.1. Matrix ODEs. As our focus is on a specific SL(2) action, we will assume we
are dealing with matrix Lie groups.

Definition 3.1. Suppose we have a Lie group G with Lie algebra g. An initial
value problem on G is the system
Y'(t) = A(t, Y)Y (¢)
Y (0) =Y, (21)
t>0
where Y € G and A € g is an element of the (matrix) Lie algebra associated to G.

To solve the initial value problem (21) it is necessary to extend the exponential
function to M, (C), i.e. the set of n x n matrices with coefficients in C.

Definition 3.2 ([11]). If A € g is a n X n matrix, the matriz exponential is defined
as

expm: g — G, AHZH (22)
k=0

It can be proved [11], that if we take a matrix that is sufficiently close to the
identity matrix, not only does the series in (22) converge, but it can also be in-
verted. The inverse function is known as the matriz logarithm and denoted as
logm. Otherwise, expm(A) is always convergent (but not in general invertible), if
A e M,(C).

Definition 3.3 ([12]). Suppose A(t) € g is an n x n matrix. Then the differential
of expm(A), denoted by dexp, is given by

& expm(A(1)) = dexp.q (A'(1)) expm(A()
Consider the function, for fixed A € g,
adg: g—g, Y — [AY]
Then it can be proved [22], that dexp , is an analytic function of ad 4, namely

2. ady B expm(ad,(B))—1I
d B) = — A 23
=0
where I stands for the identity matrix, and we used the notation

ady B=[A,[A,[A,.,[A,[A,B]]] forieN
——

i—1 times

We follow [12] and read the ratio in the second equality of (23) in the sense of the

power series
e’ —1 i 2l
- : '
x — -+

where x is replaced by ad 4 and exp by expm. As dexp is an analytic function, we
can invert it and obtain

dexp;' = (ads) (expm(ada) — 1)~
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This last equation should also be read as a power series, recalling that

T >, B
exp(z) — 1 - 1'2:; e

where B; is the ith-Bernoulli number [5, Eq. 24.2.1]. Hence

dexp! (B) = Y % adiy(B) (24)
=0

We now state the fundamental lemma that lies behind the theory of the Lie group
integrators.

Lemma 3.4 ([12]). There exists a to € R such that the solution of (21) in [0, o]
is given by

Y (t) = expm(©(1))Yy
and ©(t) € g is the solution of

{@(t)' = dexpg ) (A(t,Y))

6(0) = 0 (25)

3.2. The Magnus expansion. We are interested in using a class of numerical
methods, that goes under the name of ‘Magnus expansion’ [13]. This is a particular
case of the Runge-Kutta-Munthe-Kaas methods developed in [18],[19],[20] and [21].
We follow [12] and restrict our focus to linear ODEs where A(t,Y) = A(¢), which
is the case arising in our class of application. In order to solve (25), the method
of Picard iterations is used, which relies on the concept of uniformly Liepschitz
continuous function [10].

Definition 3.5 ([10]). A function f: R™ — R™ is said to be uniformly Liepschitz
continuous if there exists a constant L > 0, such that, for every x,y € R™ it holds

1f (@) = f@W)llen < Lz =y

This definition plays a central role in the Picard-Lindelof theorem:

Rm™

Theorem 3.6 (Picard—Lindelof, [10]). Consider the initial value problem given by

y'(t) = f(t.y(®)y(t) (26)
y(to) = yo

If f(t,y(t)) is uniformly Liepschitz continuous in y and continuous in t, then there
exists € > 0 such that there exists a unique solution to (26) on the interval [to —
€,to + €]. Further, this solution is the limit of the Picard iterations.

As seen in (24), the inverse of dexp can be written as a series involving the ad
operator. Applying the Picard iterations to (25) yields

el =0
Ol — [ dexpgtu ) A(€) d€ = Y2724 Bt [ adiim (¢ A(E) d€

for m = 0,1,2,... As the function dexpé(lt)A(t) has no dependence on Y and is
assumed to be continuous in ¢, Picard’s theorem can be applied, to yield a unique
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local solution to (25), namely O(t) = lim,, o, O")(¢). Tt can be seen [12], that it
is possible to rearrange the terms in © as

o) = 3 Hit) (27)
1=0

where every H;(t) is made by precisely ¢ commutators and ¢ + 1 integrals. The
expression defined in (27) is called Magnus expansion.

3.3. Magnus expansion and coupled systems of ODEs. We are interested
in applying the theory of Lie group integrators based on the Magnus expansion to
solve 2D problems. Let us recall the system we want to solve in order to find the
moving frame p:

pe = Q%p (28)
py = Q%p (29)
p(To,Yo) = po

Recall that p € G and Q%, QY € g. System (28)—(29) is a system of two linear
matrix ODEs to be solved in a suitable domain of R? and we want the solution to
belong to SL(2) at every point where it is defined. We also recall the compatibility
condition (10) for (28)—(29) to have a solution. We denote this condition by R, that
is,

d d o
R=5.9" = 5,9 e (30)

which must be identically zero for the system to be compatible. We apply Lemma
(3.4) to equations (28)—(29), obtaining the coupled system of ODEs

0, (,y) = dexpg, ) Q" (2, y) (31)
®y (IL’, y) = dexpégm7y) Qy (IIZ, y)

which is a coupled system of ODEs in R?. Proceeding in the spirit of the Lie
group integrators based on the Magnus expansion, the method of Picard iterations
is applied to (31) to yield,
H _
@[o] =0
Ol =0
B; rt % T
@[IjL-H] =0 Jo ad@flnl(g,y) Q*(& y) d€
oo B; rt i

@E:LH] =D ico Tt fo adg v (@.6) QY(z,§) d§
for N =0, 1,2, ..., where the iterations of © and " solve the equation for ©, and
©, in (31) respectively. We use the superscripts H and V' to denote the horizontal

and vertical integrations with respect to the standard representation of the (z,y)
plane. As in (27), we rearrange terms such that

oM (y) =Y Mi(y) (32)
i=0

0V (x) =) M}(x) (33)
i=0

where M, M both contain exactly ¢ commutators and ¢ + 1 integrals.
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™
Y
] Yy Corhuy+K)
/ \ /\ Tg
N N
() g (x+h,y) 4

FI1GURE 2. The two different paths ~;,72.

3.4. Lie group integrators based on the Magnus expansions commute
up to order 5. We now show that the Magnus expansion yields a well defined
integration method for a system of the form (28)—(29).

In our calculations, we will make strong use of the Baker—Campbell-Hausdorff
(BCH) formula which shows how two matrix exponentials may be multiplied to
obtain a single matrix exponential. Although we will use a truncated BCH expan-
sion up to order 5, a recursive formula to determine every term has been proved by
Dynkin.

Theorem 3.7 (BCH formula, [15]).

XMyrnxraysz2... XT”YS"]
Z?:l(ri + Si)H?ZITi!Si!

log(expm(X )expm(Y)) = Y (GO 3 [

n
n=1 r1+51>0

Tn+55n>0
where
[X” YT X2y 52 .. .XTnYSn]
— [X’[X,[X,[}/’[Y"[Y7[X7[X’[X’[Y"[Y7Y]]]

T1 S1 Tn Sn

Theorem 3.8. The Magnus expansion yields a well-defined, path—independent in-
tegrator for the compatible system (28)—(29), to order at least 5.

Proof. We discretise our domain with constant step sizes h, k for the x—discretisation
and y-discretisation respectively. To have a well defined integration method, we
need to prove that if we start from the initial data pg = p(zo, yo0), then we obtain a
unique expression for p(zo + h,yo + k), regardless of the order of integration, that
is, regardless of whether we integrate first horizontally or vertically.
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Let us consider two paths, say 1 and 79, such that they both start at (xo,yo)
and end at (zo+h,yo+k) = (z1,y1), but 71 first goes vertically to (zg,y1) and then
horizontally to (z1,y1), while v, travels first horizontally to (x1,yo) before going
upwards to (z1,y1) (see Figure 2). We compute the solution p(x1,y1) along the two
paths, and compare the two results. We call p7*(x1,y1) and p?2(x1,y1) the solution
p(x1,y1) obtained along 7 and 7, respectively. To make the calculations tractable,
we will approximate the solutions p?* and p”2 up to order five. However, as we will
see in the numerical examples in the next section, it seems reasonable to conjecture
that the result holds up to every order.

Using Lemma (3.4) we compute p7(x1,41), p"(21,71) in two steps. First we
obtain the solution of

py = Q% PP = Q%
P (20, Yo) = po P (20,%0) = po
(z,y) € {zo} X [yo, v1] (z,y) € [0, z1] % {wo}
as
p" (20, y1) = expm(0Y (z0))po
P (21, 90) = expm(07 (y9))po

Then the following step is to solve the systems

py = Q% py = Q%
P (20, y1) = expm(OY (20))po P (w1,90) = expm(© (yo))po
(l',y) € [‘T()vxl] X {yl} (xvy) € {xl} X [y()vyl]

and we obtain the two solutions that we want to compare, namely

Y (o)) po

" (y0))po

P (z1, 1) = expm(07 (y1))expm(©
p"(21,51) = expm(©Y (z1))expm (O

Therefore, we consider

logm(p™ pyt) — logm(p™2py ') = logm(expm(0 (y;))expm(0©Y (2)))

34
Y (1))expm(0 (y0)))- oy

— logm(expm(©

We will show that the right hand side is zero to order 5 in h, k.

Suppose now the functions ©% (y) and ©V (z) are continuously differentiable at
least 4 times in both the x and y directions. We begin applying the BCH formula
to the RHS of (34). We truncate the expansion at order 5, so the terms that are
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relevant for our result are

logm(p™ (21, y1)py ) = logm(expm (6 (y1 )expm(0Y (20)))) (35)
= 0" (y1) + 6" (z0) + 50" (11), 0" (20)]

+ % ([0 (1), [0 (1), 8" (x0)]] + [B" (20),[60" (x0), © (3y1)]])

— 57167 (20), [0 (z0), 0" (1), O (x0)]]

_ %0[@‘/(960)7 [0V (o), [0 (20), [8" (20), O (y1)]]]]

- %[GH(W 04 (1), [0 (1), [0 (1), © (0)]]]]

+ %O[GH(yl)? [©Y (20), [OY (20), [0 (x0), O (y1)]]]]

+ %0[@‘/(%0), 07 (1), [0 (11), [0 (11), O (20)]]]]

+ 5510V (o), 0¥ (20), 107 (31),[6" (o), O ()]

+ 25107 (1), [0 (1), [0V (0), [0 (1), O (w)]]] + hiovt.

where ‘h.o.t” stands for higher order terms. The expression for logm(p?2 (z1,%1)po b
is analogous.

We compute p”(x1,91) — p*2(x1,%1) and we expand both © and " around
(z0,yo) as Taylor series. The first thing to note is that the terms of order 0 in h, k
disappear.

The terms we need for the Magnus expansion of @ (y,) are,

x1 z1 &1
o(w) = [ w5 [ [ Qw<§2,yo>d@,gw<§1,yo>] dz,

1 [ & &1
LT [/xo Q" (&2,90) d&a, l ) Qw(&,yo),Qz(&,yO)H dé:

xo 0

+

r1 &1
411/% l/m [Qx(ﬁs,yo)ﬁz’a,Qh(ﬁz,yo)} dgg,Qz(€17yo)‘| &

1 *1 & £ &2
24 l/ro l A Q"(&3,90) d&s, l Qz(€37yo)d§3,QI(€27yo)H dés,,

0 Zo

Q" (&1, yo)] dg,
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1 T &1 &2 &1
- ﬂ [/ [ QI(§3ay0) d§3a QZ(§27y0)‘| d§2, [ Qm(ééayo) dg?a

Zo 0 0 o

Q%(&, yo)H d&,

1 T1 &1 &1 &2
24 [ v Q" (&2 %0); l/f [ i Qz(f&yo)df&Qw(ﬁz,yo)] dés,

Zo Lo Lo

|

1 1 &1 &1 &1
- §/ [ Q"(&2,90), [ Q%(&2,y0) déa, [ Q% (&2,10), Qx(flayo)H

0 0 o zo

&

The expression for OV (zg) is analogous.

Using these to expand the right hand side of (34) around (z¢,y0) as a Taylor
polynomial up to order 5 in h, k, it becomes trivial to integrate the internal expres-
sions as they are polynomial in &, & and . We obtain a polynomial expression
in h and k, whose coefficients depend on Q* and its partial derivatives at (xo,yo)-
The final step is to simplify with respect to the compatibility expression R defined
in (30) and its partial derivatives (evaluated at the arbitrary point (zo,yp)). We
summarise the result in the table below, noting that the coefficient of h™k™ can be
obtained from that of A™k™ by interchanging x and y. It can be seen that every
coefficient is a linear expression in R which is identically zero, and hence the right
hand side of (34) is zero. This ends the proof.

Order Monomial Coefficient

2 hk R
3 hk iD.R
4 h3k iD2R — L ado«(D.R) + & adp, o= (R)
h*k? 102Dy R — § adadg. (0v)(R) — 15 adgu (adg+ (1))
5 htk % D3R — 37 adgs (D2R) + 55 adp2 o« (R)
h3k2 SD2DyR — L adg« (D, Dy R) — 5 adp, g+ (Dy R)

— L adg-(adgy (DTR)) — L adr(DyR) + 3 adp, gv (D, R)
+5adpzov(R) — 55 adg (adp, o= (R)) — 57 adp, gv(adg= (1))
+§ ad[Dm Qv,Q] (R) + 3 ad[Qypm Q7] (R)

O

4. Numerical examples. We showed in the previous section that the Lie group
integrators based on the Magnus expansion commute at least up to order 5, and we
now show some numerical examples. These not only confirm the result, but hint
that the Lie group integrators based on the Magnus expansion will commute for
every order. We consider two variational problems and, in order to solve the system
of coupled matrix ODEs for the frame, we use a sixth-order Magnus series method
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which is included in the Matlab package DiffMan ([6], Algorithm A.2.5). This note
this algorithm is cost efficient [2, 3, 14], which means that not all the terms in the
Magnus expansion are used in the calculations. This does not appear to affect the
numerical compatibility that we demonstrate here.

Recall we are interested in the Lie group SL(2), given by

SL(2){g <i Z) adbcl}

and we let it act projectively on surfaces as

au+b
p— Y=y, u= 36
grx=w, g y=y, gu=_—— (36)
Given the frame p as in (7), the generating differential invariants are:
o Yy
H(Iv y) =P Uy U

x

2
Ugew 2%,

O'($,y) =P Uggx = s QU% .

The two curvature matrices are

r 0 —1 v _ f%nz —K
Q —(;o o) Q—(;mmm) ;M)

and to obtain the moving frame p, we need to solve the 2D system

pz = Q%p
— OV
P($07LZ/O) = Po

(fl?,y) € [an'rn] X [y()vyn]
In the following we will numerically solve some variational problems using two
different methods:

1 integrating first vertically along the line x = g, and then, for j = 0,..,n,
use the points p(z;,yo) as initial condition for the solution found integrating
horizontally along the line y = y;.

2 integrating first horizontally along the line y = yo, and then, for j =0, .., n,
use the points p(xo,y;) as initial condition for the solution found integrating
vertically along the line x = x;.

and we will compare the solutions obtained. Finally, we use (18) to plot the min-
imiser, given the frame.

4.0.1. Ezample 1. Consider the Lagrangian given by
L= / K (z,y) drdy (38)
D
where D is the square [6, 7] x [6, 7] and we choose a step size equal in both directions
h =k = 0.05. The E-L equation in (14) becomes
Ky = 3KKyg

and if we add a boundary condition as x(x,1) = x, then a solution is
x
3y—4

K(‘r’y) = -
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F1cURE 3. Plots of solutions to the variational problem defined by
(38), computed integrating the two different ways; the plots look
identical to the naked eye.

Setting  into the sygyzy equation in (11), we obtain an equation for o,
o To
oy =—2 - =

By—4) (By—4)

and if we impose that o(1,y) = y, we obtain the solution

423 4+ 3y — 4
(T(x,y): T

Inserting (39) and (40) into (37), adding an initial condition

1 V3
po = 3 f
T2 2

and integrating as we described using the two methods above, we obtain two sur-
faces, identical to the naked eye, shown in Figure 3. A plot of the absolute difference
between the two surfaces is shown in Figure 4. We can see in this case, that the
point-wise difference of the two surfaces plotted in Figure 3 is of order at least 7 in
h, k.

(40)

l\)%w

4.0.2. Ezample 2. Consider the Lagrangian given by
L[ ey drdy (41)
D

where D is the square [2, 3] x [1, 2] and we choose a step size equal in both directions
h =k = 0.05. The E-L equation in (14) becomes
Oszaaz + 200020 + 0202 =0

and we notice that all the terms in the differential equation above involve at least
the second derivative in x. So a solution is

o(z,y) =z —y (42)
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FIGURE 4. Absolute value of the difference between the two sur-
faces in Figure 3.

Now we can substitute the expression for o into the sygyzy equation (11), obtaining
an equation for k

Kpze + (20 = 2y)ky +K+1=0 (43)
and if we impose that
k(0,y) =y
K (0,y) =0 (44)
kaa(0,y) =

we obtain a solution in terms of the Airy functions of first and second kind (and
their first derivative). Inserting (42) and the solution to (43)—(44) into (37), adding

an initial condition
1 V3
_ 2 2
po = V3 1
T2 2

and integrating as we described in 1-2 above, we obtain the two surfaces shown
in Figure 5. A plot of the absolute difference between the two surfaces is given in
Figure 6. In this example we obtain that the difference between the two surfaces is
of order greater than 5.

5. Conclusion. In this paper, we have shown that Lie group integrators can be
used to solve, numerically, the system of equations for a moving frame, (1), which
evolves on a Lie group, in the case where the base space has two dimensions. In fact,
our result extends immediately to the system of equations for a moving frame on
an N-dimensional base space, as these equations are pairwise compatible. We have
applied our result to find a minimiser for a variational problem which is invariant
under the projective action of SL(2). Our method can, in principle, be applied to
any variational problem with a Lie group symmetry which can be described and
analysed using a Lie group based moving frame.

Cost efficient Lie group integrators [2, 3, 14] reduce the number of commutators
involved in the numerical computation, and the implementation we have used, [6],
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F1cURE 5. Plots of solutions to the variational problem defined by
(41), computed integrating the two different ways; the plots look
identical to the naked eye.

|u1-u2|

FIGURE 6. Absolute value of the difference between the two sur-
faces in Figure 5.

takes advantage of these ideas. The interplay between compatibility and efficiency
is a topic for further study.

While we have shown that the Lie group integrators are compatible to order 5, it
is clear that our proof of the compatibility (34) could have continued to higher and
higher orders, and our numerical results demonstrate this. However, the calculations
become less and less tractable, and there is no clear, discernible, recursive pattern.
Hence the general result is likely to need a different approach. We conclude by
stating the general result as a conjecture.

Conjecture 1. Lie group integrators are compatible to all orders, that is, the right—
hand side of (34) is identically zero to all orders of h, k.
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