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Summary:  

Integrated population modelling is widely used in statistical ecology. It allows data from population 

time series and independent surveys to be analysed simultaneously. In classical analysis the time-series 

likelihood component can be conveniently approximated using Kalman filter methodology. However, 

the natural way to model systems which have a discrete state space is to use hidden Markov models 

(HMMs). The proposed method avoids the Kalman filter approximations and Monte Carlo simulations. 

Subject to possible numerical sensitivity analysis, it is exact, flexible, and allows the use of standard 

techniques of classical inference. We apply the approach to data on Little owls, where the model is 

shown to require a one-dimensional state space, and Northern lapwings, with a two-dimensional state 

space. In the former example the method identifies a parameter redundancy which changes the 

perception of the data needed to estimate immigration in integrated population modelling. The latter 

example may be analysed using either first- or second-order HMMs, describing numbers of one-year 

olds and adults or adults only, respectively. The use of first-order chains is found to be more efficient, 

mainly due to the smaller number of one-year olds than adults in this application. For the lapwing 

modelling it is necessary to group the states in order to reduce the large dimension of the state space. 

Results check with Bayesian and Kalman filter analyses, and avenues for future research are identified. 

This article is protected by copyright. All rights reserved 
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Exact integrated population modelling 1

1. Introduction19

Integrated population modelling (IPM) is the state-of-the-art approach for estimating pa-20

rameters of population dynamics when independent data sets are available at the population21

and individual levels on members of the same wild animal population. These data sets22

typically relate to animal survival, productivity and abundance, in the last case through23

time series of counts. The models can be fitted by maximum-likelihood (Besbeas et al., 2002;24

deValpine, 2012) or computational Bayesian methods (Brooks et al., 2004; Kéry and Schaub,25

2012, Chapter 11). Important demographic parameters for which there is no direct survey26

information might be estimated using IPM: this was productivity in the case of Besbeas27

et al. (2002) and immigration in the case of Abadi et al. (2010). Literature surveys of IPM28

are provided by Schaub and Abadi (2011), and in fisheries science, by Maunder and Punt29

(2013). For recent research in IPM see for example Besbeas and Morgan (2017), Finke et al.30

(2019) and Lahoz-Monfort et al. (2017).31

The aim of this paper is to show how to utilise efficient hidden Markov model (HMM)32

methodology to provide the time-series likelihood, which is typically central to IPM. This33

then allows exact IPM using maximum likelihood, and provides useful tools from classical34

inference, including model comparison and goodness-of-fit. Bayesian analysis is also exact,35

but requires Markov chain Monte Carlo. The new approach is flexible, avoids making the36

assumptions involved in using the Kalman filter to approximate the likelihood for population37

time-series data, and is simpler than the alternative approaches of deValpine (2012) and38

Knape et al. (2011), the latter of which focusses on modelling time series of population39

counts alone.40

In Section 2 we describe the two case studies of the paper. In Section 3 we present models41

for data from studies of capture-recapture, ring-recovery and productivity. We describe the42

main current methods that are used to model population time-series, and introduce the43

This article is protected by copyright. All rights reserved
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2 Biometrics, November 2018

HMM approach. We also explain how component likelihoods for independent data sets are44

combined to form a single, integrated likelihood. Section 4 illustrates the HMM method of45

this paper on the two data sets. Comparisons are made with the results of Bayesian analysis46

and using the Kalman filter. Section 5 outlines the potential of the HMM approach and new47

avenues for research.48

2. Data49

2.1 Little owl, Athene noctua50

The data are available from the supplementary material for Abadi et al. (2010). They describe51

data on the Little owl, obtained from 1978 to 2003 from birds nesting in nest boxes in52

Göppingen, providing recapture information on survival, stratified by age and sex, as well as53

data on productivity and on population size. The primary prey of Little owls is voles, and54

annual spring vole abundance is described by means of a binary covariate, indicating either55

high or low abundance.56

2.2 Northern lapwing, Vanellus vanellus57

Two data sets provide information on survival and counts for the Northern lapwing; there is58

no sex information and age is known for survival. The count data were collected from 1965 –59

1998, and are illustrated in Besbeas et al. (2002). They are obtained from 447 sites surveyed60

under the Common Birds Census (CBC) of the British Trust for Ornithology (BTO), and61

may be regarded as providing information on the total population of lapwings for those 44762

sites. Birds were ringed as nestlings between 1963–1997 and ring-recovery data were obtained63

from the reporting of dead birds. In addition a covariate provides the number of days between64

April in year t and March in year t+1 that the temperature at a central England location was65

below freezing, which is used to model survival. The complete data, including a transformed66

This article is protected by copyright. All rights reserved
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Exact integrated population modelling 3

version of the covariate, are embedded in the WinBUGS code provided by Brooks et al.67

(2004).68

3. Component and integrated modelling69

Throughout we use boldface to indicate generic parameters which may involve several coef-70

ficients due to variation over time and/or by age.71

3.1 Survival72

Ring-recovery and recapture data each result in multinomial distributions for the numbers73

of marked animals encountered in successive years following marking, recorded as dead in74

the case of recovery, and alive in the case of recapture. For either type of data the likelihood75

is then the product of multinomial probabilities, with one multinomial for each year of76

the study, parameterised in terms of annual survival probabilities. Note that we adopt the77

standard convention that, in modelling recovery data S denotes annual survival probabilities,78

and in modelling recapture data φ denotes apparent survival probabilities, with elements that79

are products of survival and retention probabilities. Models are completed with appropriate80

nuisance probability parameters for recovery, λ, or recapture p, as appropriate; see McCrea81

and Morgan (2014, Chapter 4).82

We denote the likelihood for capture-recapture data as LC(φ,p;m), in which we use m83

to denote the matrix of numbers of recaptures, commonly called the m-array (McCrea and84

Morgan, 2014, p.69). The corresponding notation adopted for the likelihood for recovery data85

is LR(S,λ;d), where d is the matrix of numbers of recoveries. For both matrices, each row86

contains the recorded numbers for the year of release of marked individuals corresponding87

to that row, and the columns indicate the year of recovery or recapture, respectively. The88

vector R provides the annual totals of marked birds released. For illustration we provide89

below formulations for when there are fully time-dependent parameters, for annual studies90

This article is protected by copyright. All rights reserved
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4 Biometrics, November 2018

of length T years. There will be straightforward extensions to incorporate degrees of age-91

dependence in survival in both the case studies.92

3.1.1 Cormack-Jolly-Seber (CJS) model. The basic CJS model has time-dependent pa-93

rameters for apparent survival and recapture probability; see McCrea and Morgan (2014,94

p.70).95

We define apparent survival φi, for animals alive at time ti which remain in the study area

until time ti+1 and define pj as the probability an individual which is alive at occasion tj is

recaptured at that time. The probability associated with the (i, j) cell of the m-array is then

given by:

νij =

{
j−1∏
k=i

φk

j−1∏
`=i+1

(1− p`)

}
pj for 1 6 i < j 6 T ,

and we define χi = 1−
∑T

j=i+1 νij = 1− φi{1− (1− pi+1)χi+1}, for 1 6 i < T , and χT = 1.

The product-multinomial likelihood is then given by

LC(φ,p;m) ∝
T−1∏
i=1

T∏
j=i+1

ν
mij

ij × χ
Ri−

∑T
j=i+1mij

i , (1)

where Ri is the number of marked animals released at time ti. The CJS model is parameter96

redundant as not all of the apparent survival and capture probabilities can be estimated:97

parameters φT−1 and pT are confounded and only their product can be estimated. However98

all the other probabilities can in principle be estimated, and explicit expressions exist for99

maximum-likelihood estimates (McCrea and Morgan, 2014, pp 70–71). We build on this100

model in Section 4.1.101

3.1.2 Ring-recovery model. We illustrate the likelihood with time-dependent survival prob-

abilities {Si} and probabilities {λj} for the reporting of dead animals. We assume that dij

individuals from the ith cohort of marked individuals are reported dead at time tj. Making use

of the assumption of independence of individuals between cohorts, the data can be modelled

This article is protected by copyright. All rights reserved
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Exact integrated population modelling 5

by a product of multinomials, as above, and the likelihood is now given by

LR(S,λ;d) ∝
T−1∏
i=1

T∏
j=i+1

δ
dij
ij × ε

Ri−
∑T

j=i+1 dij
i , (2)

where Ri denotes the number of marked individuals released at time ti,

δij =

 (1− Si)λi i = j − 1∏j−2
k=1 Sk(1− Sj−1)λj−1 i < j − 1,

for 1 6 i < j 6 T , and εi = 1−
∑T

j=i+1 δij, for 1 6 i < T.102

3.2 Productivity103

Abadi et al. (2010) adopt yearly estimation of time-dependent model fecundities, assumed to

have Poisson distributions, {Jt} ∼ Pois(Vtrt), where Vt is the known number of reproducing

females, rt is the common individual productivity, and Jt is the number of total recorded

offspring, all in year t. Assuming independence across years, we can write the likelihood for

the productivity data alone as

LP (r; j,V ) ∝
T∏
t=1

e−Vtrt(Vtrt)
jt ,

and we use this likelihood in the Little owl data analysis. Thus taken in isolation, fitting104

the productivity data of year t, with Jt = jt, the model for productivity results in the105

maximum-likelihood estimates, r̂t = jt/Vt, with estimated standard errors
√
jt/Vt.106

3.3 Population counts107

Models for population time-series data are state-space models, taking discrete values, typi-

cally at integer times, which is true of the two case studies. Virtually all existing IPM has

included state-space modelling of the population time-series data, which we take as annual.

We denote the unobserved state vector at time t by N t = (N1,t, . . . , NK,t)
′, for t = 1, . . . , T ,

where Nj,t is the number of individuals in state 1 6 j 6 K at time t, and the annual

population counts, {yt}, form an M -variate time series, for M > 1. The general formulation

for state-space models links the state and observation processes as follows (Newman et al.,

This article is protected by copyright. All rights reserved
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6 Biometrics, November 2018

2014, p. 43)

N 1 ∼ g1(n|θ), (3)

N t+1|N t ∼ gt(n|N t, θ), for t > 1, (4)

yt|N t ∼ ft(y|N t,ψ), (5)

for an initial state distribution, g1, a state distribution at time t, gt, and an observation108

distribution ft, where θ denotes model parameters for the state process and ψ are parameters109

for the observation process. The state distribution gt can be extended to greater than first-110

order dependence. We just consider linear models, although the approach of the paper is111

general, except when the Kalman filter is used; see Besbeas and Morgan (2018).112

We write the likelihood for the time-series data when survival estimation is based upon113

capture-recapture data as LT (φ, r,σ,N 1;yt), if variance parameters σ for the observation114

equation and N 1 are included in the model, and similarly for recovery data.115

3.3.1 Kalman filter. Besbeas et al. (2002) provide a convenient approximation to LT for

state-space population dynamics models based on the Kalman filter. Appropriate discrete

state distributions such as Poisson and binomial, are suitably approximated by normal

distributions, and the observation distributions are also taken as normal. Thus corresponding

to Equations 4 and 5, we have the multivariate normal distributions,

N t+1|N t ∼ N(ΛtN t,Ω) for t > 1, (6)

yt|N t ∼ N(ZtN t,Σ) for t > 1, (7)

where Λt is a K ×K Leslie matrix, Zt is an appropriate M ×K matrix and Ω and Σ are116

dispersion matrices.117

In addition random variables appearing in the variance terms in the state Equation 6118

are approximated by their expectations. The likelihood is easily formed, the method is119

This article is protected by copyright. All rights reserved
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Exact integrated population modelling 7

fast, performs well and is robust with respect to departures from the assumptions and120

approximations made, even for small population sizes; see Brooks et al. (2004).121

3.3.2 Hidden Markov models. Discrete time-series data can in principle be fitted exactly122

by classical inference using the efficient machinery of HMMs, without the need of the123

approximations used in Kalman filter analysis; see Cowen et al. (2017), King (2012), King124

(2014), and Zucchini et al. (2016) for general introductions and applications of HMMs.125

Exact analysis also facilitates extensions such as incorporation of density dependence in Λt;126

cf Besbeas and Morgan (2012). The approach involves setting an upper bound, Nmax, for127

each state variable in the model, resulting in a finite NK
max-state Markov chain; we generalise128

this notation later. As the state vector for the approach adopted describes the number of129

individuals in a population, potentially also stratified by age, then the dimension of the state130

space may become large, and we shall discuss alternative ways of dealing with this feature.131

In general, a HMM likelihood LT, can be written as a product of the initial distribution

vector δ, corresponding to g1(n|θ) of Equation 3, the appropriate, year-dependent, transition

probability matrices {Γt}, corresponding to gt(n|N t,θ) of Equation 4 which describe the

state transitions in the latent process, and the state-dependent probability matrices {P (yt)}

for each year t, for the observation process, corresponding to ft(y|N t,ψ) of Equation 5. We

can then write

LT = δP (y1)Γ1 · · ·ΓT−1P (yT )1′, (8)

where 1 denotes the unit row vector, which is the standard forward probability formulation132

for HMM likelihoods (Zucchini et al., 2016, p. 37).133

3.3.3 Bayesian inference. The Bayesian approach uses MCMC and also does not need134

to make the assumptions of the classical analysis using the Kalman filter; see Brooks et al.,135

This article is protected by copyright. All rights reserved
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8 Biometrics, November 2018

2004 and Kéry and Schaub, 2012, Section 11.2, who describe a state-space model for the136

time-series likelihood.137

3.4 Integrated population modelling138

Under the assumption that the data from the different surveys are independent, the likeli-

hood for integrated modelling, LI , is given as the product of the corresponding component

likelihoods. Then for capture-recapture, for example, and the models of Sections 3.1.1, 3.2

and 3.3 we obtain

LI(r,φ,σ,p,N 1; j,V ,yt,m) = LP (r; j,V )LT (φ, r,σ,N 1;yt)LC(φ,p;m), (9)

with a similar equation for recovery data when productivity data are available. The expres-139

sions when productivity data are absent are obvious. In Equation 9, the likelihood, LI, for the140

time-series data is pivotal, as it links the likelihood components together through common141

parameters. In classical inference maximisation takes place of LI , with respect to all of the142

model parameters, while for Bayesian inference the posterior distribution is the product of143

LI and the appropriate joint prior distribution. Note that N 1 and/or σ may not form part144

of the parameter set, as explained below.145

4. Specific models and results for the case studies146

4.1 Estimating immigration of Little owls147

Abadi et al. (2010) use Bayesian inference to fit an IPM which integrates models for data on

capture-recapture, productivity and also population count data. The model for (apparent)

survival and capture probability assumed by Abadi et al. (2010) is the CJS model of Section

3.1.1 extended to include specific sex and age effects. There are two age classes for apparent

survival: for birds aged one year, and for all older birds (taken not to vary with age); there is

logistic-linear regression on year and additive parameters to distinguish between age and sex.

The recapture probability has a different value for each year, and an additive parameter on

This article is protected by copyright. All rights reserved
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Exact integrated population modelling 9

the logistic scale to distinguish sex. Productivity also has a different value for each year. We

parameterise the model using standard logistic and logarithmic transformations as follows:

logit(φf,1,t) = β0 + β1t; logit(φf,a,t) = β0 + θ + β1t

logit(φm,1,t) = β0 + δ + β1t; logit(φm,a,t) = β0 + θ + δ + β1t

logit(pf,t) = κt; logit(pm,t) = ζ + κt; log(rt) = ξt.

Here t indicates year, φf,1,t(φm,1,t) is the survival probability of female (male) birds in their148

first year of life at time t; φf,a,t (φm,a,t) is the survival probability of older female (male) birds149

and pf,t (pm,t) is the recapture probability of female (male) birds at time t. The complete150

parameter set for modelling survival is: {β0, β1, θ, δ, {κt}, ζ}. Abadi et al. (2010) and Schaub151

and Fletcher (2015) take immigration to be proportional to the total population size of the152

observed population. Schaub and Fletcher (2015) also consider the case where immigration153

is taken to be a population-independent parameter, with one parameter for each year. The154

model of Abadi et al. (2010) simply adds the migration rate to the adult apparent survival155

probability, as we shall see in Equation 12, so that the model in effect remains a birth156

and death process, whereas in the alternative modelling of Schaub and Fletcher (2015),157

immigration is always present. A further possibility would be for the immigration rate to158

decrease as the population grows, for example through an appropriate logistic function to159

limit population size. Here we just use the model of Abadi et al. (2010), but alternative160

possibilities are easily explored.161

Abadi et al. (2010) only analyse count data on female birds. They assume that breeding

starts at age 1, and a balanced sex ratio at birth, so that in an obvious notation, their state

equations, which only consider the female population, are given as:

N1,t+1|N t ∼ Pois(Ntrtφf,1,t/2), (10)

Na,t+1|N t ∼ Bin(Nt, φf,a,t) + Pois(Ntγ), (11)

This article is protected by copyright. All rights reserved
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10 Biometrics, November 2018

where N1,t and Na,t denote the numbers of one-year old female birds and (adult) female

birds aged > 2 years respectively at time t, γ is the immigration rate, N t = (N1,t, Na,t)

and Nt = N1,t + Na,t, for t = 1, 2, . . . , T. In terms of a Leslie matrix for a Kalman filter

analysis, we can write the state equations asN1,t+1

Na,t+1

 =

rtφf,1,t/2 rtφf,1,t/2

φf,a,t + γ φf,a,t + γ


N1,t

Na,t

+

η1,t
ηa,t

 , (12)

where the additive binomial and Poisson error terms are specified above. The state process

of Abadi et al. (2010) is thus two-dimensional. However adding Equations 10 and 11 gives

Nt+1|Nt ∼ Bin(Nt, φf,a,t) + Pois(Nt(γ + rtφf,1,t/2)). (13)

We note that we obtain the same expression as that of Equation 13 if the γ terms appear in162

the first row of the Leslie matrix of Equation 12, rather than the second row, corresponding163

to making a different assumption for the unknown age of immigrant birds, respectively aged164

1 year and at least 2 years. Should estimates of, eg., {N1,t}, be required, then they can be165

deduced from Equation 10.166

The observation equation adopted by Abadi et al. (2010) is given by

yt|Nt ∼ Pois(Nt), t = 1, . . . , T, (14)

so that there is no separate variance for the observation equation in this case. In combination,167

Equations 13 and 14 specify a one-dimensional state-space model which we fit using HMMs.168

The elements of the transition probability matrices {Γt} are the binomial-Poisson convolution169

probabilities of Equation 13, and the probability matrices {P (yt)} are diagonal matrices170

providing the Poisson probabilities from Equation 14. The likelihood of Equation 8 is easily171

programmed, and the potential complication of dealing with matrices of very large dimension172

does not arise in the case of the Little owl data. For the initial distribution vector δ of173

Equation 8 we assume a Poisson distribution over states.174

For the Kalman-filter analysis, we approximate Nt+1|Nt ∼ N(Nt(φf,a,t+γ+rtφf,1,t/2), ω2),175

This article is protected by copyright. All rights reserved
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Exact integrated population modelling 11

with ω2 = Nt{φf,a,t(1− φf,a,t) + (γ + rtφf,1,t/2)}, and take yt|Nt ≈ N(Nt, at), where at is the176

one-step-ahead prediction from the Kalman filter; see McCrea and Morgan (2014, p. 214)177

and Newman et al. (2014, p.64).178

4.2 Little owl results179

We present in Figure 1 illustrative results from hidden Markov modelling, the Bayesian180

analysis, taken from Abadi et al. (2010), and from using the Kalman filter, when the181

productivity data are included in the integrated analysis. We note the close correspondence182

of the results from the three methods, and the large confidence intervals which suggest that183

survival probabilities can be taken as constant. The productivity estimates are essentially184

the values of {r̂t = jt/Vt} given in Section 3.2.185

[Figure 1 about here.]186

[Figure 2 about here.]187

Figure 2 shows that when productivity is taken as constant, r, and the productivity data188

are omitted from the integrated analysis then the log-likelihood surface possess a ridge. The189

model is parameter redundant, and it is not possible to estimate the immigration rate; the190

same feature applies when productivity varies with time. This can be verified formally using191

a modification of the Maple code associated with Cole and McCrea (2016). A check for weak192

identifiability in Bayesian modelling is provided by Gimenez et al. (2009), which might also193

be used in this context. Thus in the absence of productivity data, the parameter estimates194

for the productivity obtained by Abadi et al. (2010) can be seen to be driven primarily by195

the U(0, 5) prior used for the productivity: from the values presented in Appendix S2-C of196

Abadi et al. (2010), the time-averaged estimates of productivity mean and standard error are197

respectively 2.21 and 1.53, compared with 2.5 and 1.44 for the U(0, 5) prior distribution used.198

Appendix S2-B of Abadi et al. (2010) provides parameter estimates for when the productivity199

This article is protected by copyright. All rights reserved
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12 Biometrics, November 2018

data are included in the IPM. It is a coincidence that the average productivity is then 2.34.200

We note here also an example in Barry et al. (2003), in which a likelihood surface with a201

flat ridge and flat priors can result in univariate marginal posterior distributions that are202

unimodal.203

When analysing all of the data, Abadi et al. (2010) investigate alternative models for the204

immigration parameter, considering whether it varies over time or varies with an indicator of205

the presence of voles, on which Little owls prey. Using classical inference, AIC can be used,206

and in Table 1 we compare a range of models for immigration also considered by Abadi et al.207

(2010). We see that the best model has constant immigration, and the model with regression208

on the vole indicator is a competitor; Abadi et al. (2010) drew a similar conclusion based on209

the DIC.210

[Table 1 about here.]211

4.3 Northern lapwings212

The state equations for Northern lapwings are taken from Besbeas et al. (2002)

N1,t+1|N t ∼ Pois(Na,trtS1,t/2),

Na,t+1|N t ∼ Bin(N1,t +Na,t, Sa,t), (15)

which for the Kalman filter analysis have the matrix formulation,N1,t+1

Na,t+1

 =

 0 rtS1,t/2

Sa,t Sa,t


N1,t

Na,t

+

η1,t
ηa,t

 . (16)

Here again, N1,t and Na,t denote the numbers of one-year old female birds and (adult) female213

birds aged > 2 years respectively at time t, S1,t and Sa,t are respectively the annual survival214

probabilities of birds in their first year of life and of birds aged 1 year and older at time t,215

and rt denotes productivity at time t. We assume no sex effect on survival and in this case216

that breeding starts at age 2. It is clear from Equation 16 that in this case the state space217
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Exact integrated population modelling 13

is two-dimensional. For hidden Markov modelling we shall assume that N1,t 6 N1,max and218

Na,t 6 Na,max, for all t, for values N1,max and Na,max which need to be determined.219

We are not able to observe {N1,t}, as information is available only on the numbers breeding,

{Na,t}, and the observation equation adopted by Besbeas et al. (2002) is given by

yt|N t ∼ N(Na,t, σ
2),

where σ2 is a free parameter to estimate.220

Eliminating {N1,t} from Equation 15, we can see that a hidden process for {Na,t} alone is

a second-order Markov chain, with state-space dimension N2
a,max, as

Pr(Na,t+1 = k|Na,t, Na,t−1) =
∞∑
j=0

(
j +Na,t

k

)
Ska,t(1− Sa,t)j+Na,t−k×

e(−Na,t−1rtS1,t/2)(Na,t−1rtS1,t/2)j/j!.

This explains in part why it is more efficient to use the first-order chain, given below, when,

as here, we have N1,max < Na,max. We therefore use the first-order chain with state vector

the set of values taken by the ordered pair, (N1,t, Na,t). Thus the potential values taken by

the state vector are:

(0, 0), (0, 1), . . . (0, Na,max), (1, 0), . . . (1, Na,max) . . . (N1,max, 0), . . . (N1,max, Na,max)

and the entries of Γt are

Pr(N1,t+1 = w,Na,t+1 = x|N1,t = u,Na,t = v) = exp−λvλwv /w!×
(
u+ v

x

)
Sxa,t(1− Sa,t)u+v−x,

(17)

where λv = vrtS1,t/2, w = 0, 1, 2, . . . , x = 0, 1, . . . , u+ v.221

The matrix Γt is a partitioned matrix with the block structure given below:

Γt =



A1,1 A1,2 · · · A1,N1,max,1

A2,1 A2,2 · · · A2,N1,max,1

...
. . .

...

AN1,max,1 AN1,max,2 · · · AN1,max,N1,max


,
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14 Biometrics, November 2018

where each submatrix has dimension Na,max ×Na,max. We now describe the submatrices.222

Conditional upon N1,t = u, and Na,t = v, the appropriate submatrices of Γt are those223

that comprise the uth row, and the probabilities of Equation 17 form the entries of the224

vth rows of the sub matrices, with w = i for the ith column sub matrices. Apart from the225

first term in Equation 17, these rows are identical, and the only difference arises from the226

Poisson probability multiplier in Equation 17. Computationally, it is convenient to express227

Γt in terms of ordinary and nested Kronecker product operations of binomial and Poisson228

probabilities as follows, where we suppress the time dependence for convenience.229

Define

Bu =

{(
u+ v

x

)
Sxa (1− Sa)u+v−x

}
Na,max×Na,max

,

for

v = 0, . . . , Na,max, x = 0 . . . , Na,max u = 0, . . . , N1,max,

and set

B = 1⊗



B1

B2

...

BN1,max


,

where 1 is now a 1×N1,max row vector of 1s, and ⊗ is the Kronecker product operator.230

Define the column vector Rw by

Rw =

{
e−λvλwv
w!

}
Na,max×1

,

for

v = 0, 1, . . . , Na,max, w = 1, . . . , N1,max,

and let

Cw = 1ᵀ ⊗ (1⊗Rw), and
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Exact integrated population modelling 15

C = [C1,C2, . . . ,CN1,max].

Then in terms of the Hadamard product we can write,

Γ = C ◦B. (18)

The P (yt) are diagonal, (N1,maxNa,max ×N1,maxNa,max) matrices with appropriate entries231

for the normal probability density function of the observations, {yt|Na,t}, replicated for each232

of the sub matrices of Γ. Thus we can write P = IN1,max ⊗ Q, where Q is a diagonal233

Na,max ×Na,max matrix containing the probability density terms for {yt|Na,t}.234

4.4 The use of binning235

In contrast to the Little owl example, as a consequence of the binomial index of Equation 15,236

the state vector is a one-dimensional vector of size N1,maxNa,max. In the lapwing application237

we take N1,max = 800 and Na,max = 2200, following experimentation; in such a situation we238

use binning to group elements of the state vector to reduce its size, and it is inefficient to239

use the same bin widths for the different age components of the state vector. Note that for240

computing Γt, for rows we take the mid points of bins, whereas for columns we appropriately241

use the cumulative distribution function for the appropriate discrete distributions. In the242

lapwing example, the results from Besbeas et al. (2002), obtained from using the Kalman243

filter, demonstrate that the estimates of {N1,t} are generally far smaller than those for {Na,t}.244

This suggests using more bins for the adult age class than for the younger one. For the heron245

data analysis of Besbeas et al. (2002) there were three age classes: again the oldest age246

class has the largest estimated numbers, and the same consideration applies. A preliminary247

analysis for these models is straightforward, for example using the approximate Kalman248

filter approach or using a time-homogeneous HMM. This can suggest the use of differential249

bin sizes according to component of the state vector. A further approach would be to have250

several bin widths within each age class, with widths increasing with distance from the values251

estimated from the Kalman filter analysis.252
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16 Biometrics, November 2018

4.5 Lapwing results253

The HMM modelling of the lapwing data is more complex than that of the Little owl data,254

as the model is two-dimensional, and population sizes are appreciably larger. The approach255

of using a second-order Markov chain (Zucchini et al., 2016, p. 148) was found to give the256

same results as using a first-order chain, but to be substantially less efficient, as anticipated257

above. The survival parameters are taken as logit(S1,t) = α0 + α1ct and logit(Sa,t) = β0 +258

β1ct. Similarly, the reporting probability of dead birds is logistically regressed on time, with259

parameters γ0, γ1, and productivity is logarithmically regressed on time, with parameters260

δ0, δ1. We present the results of several analyses using binning, as well as Kalman filter261

and Bayesian results, in Table 2. Two Kalman filter approaches are used, one requiring262

initialisation and the other including maximum-likelihood estimation of the initial state263

(Besbeas and Morgan, 2010), which is directly comparable to the HMM approach. Four264

values of the bin width are used, viz., w = 10, 20, 40, 50. We can see that the smallest values265

of w generally result in virtually identical estimates to using the Kalman filter. However266

there is little difference between the different analyses, which agree also with the Bayesian267

results of Brooks et al. (2004).268

If we take two different bin widths for the two age classes, then we can denote the bin269

widths as w1 and wa, for the aged 1 and older age classes respectively. Then for example,270

if we take w1 = 20 and wa = 40, the dimension of the state vector is 2296, compared with271

values of 765, 4551 and 17901 when w1 = wa = 50, w1 = wa = 20 and w1 = wa = 10,272

respectively.273

[Table 2 about here.]274

We can see from Table 3 how changing the bin widths can affect the computation time for275

a likelihood evaluation. In this example, with larger values for the numbers of adult birds it276
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Exact integrated population modelling 17

is best to take wa > w1. As shown in Table 2, below a certain value, changing bin widths277

has little effect on parameter estimates.278

We can test for additive vs multiplicative errors in the observation equation quite easily279

using the HMM format. In this application, taking w1 = wa = 20, assuming normal errors280

results in a log-likelihood maximum value of -7379.4, compared with -7380.3 for the lognormal281

case. Changing w1 and wa makes no appreciable change to this comparison, and we see here282

that there is little difference between these models for this application.283

[Table 3 about here.]284

5. Discussion and future research285

5.1 State-space dimension286

Much IPM will be one-dimensional; see for example the models of Baillie et al. (2009) and287

Robinson et al. (2014), of wide-ranging importance for typical long-term data on short-lived288

species. The same is true of models for seasonal insects, see Freeman (2009), and models289

commonly used in fisheries, for example using a Gompertz model; see Knape et al. (2011).290

Analysis of population time-series alone in such cases using HMM is the topic of Besbeas291

and Morgan (2018). As we have seen in modelling Little owl data, the dimensionality of a292

state space may be reduced. Besbeas et al. (2002) adopt the following transition equation293

for Grey herons, Ardea cinerea294


N1,t+1

N2,t+1

Na,t+1

 =


0 rS1,t/2 rS1,t/2

S2,t 0 0

0 Sa,t Sa,t




N1,t

N2,t

Na,t

+


η1,t

η2,t

ηa,t,

 , (19)

where N2,t is the number of birds of age 2 at time t and Na,t denotes the number of birds295

aged > 3 at time t. We can see that here too the dimension of the state space can be reduced296
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18 Biometrics, November 2018

in size by one. Whilst it will depend on the age of breeding assumed, this simplifying feature297

will commonly be the case. See for example Finke et al. (2019) for a further illustration.298

The extension of Equation 18 to the case of more than 2 age classes is in principle299

straightforward, and dependent on the specifics of the Leslie matrix used in the model.300

5.2 Numerical choices and potential301

The HMM approach opens the way to using standard likelihood tools, to check for parameter302

redundancy (Cole et al., 2010), goodness-of-fit (Besbeas and Morgan, 2014), over dispersion,303

to perform model selection (Besbeas et al., 2015), to include non-linearity, for example to304

describe density-dependence, and to compare the performance of alternative distributions,305

as for the observation equation case in the last section; cf Knape et al. (2011). The only306

costs are those of deciding on a suitable size(s) of bin width when binning is needed,307

and on the maximum length(s) for the state vector, which can be obtained experimentally.308

Thus in comparison with the Kalman-filter approach, we are in effect replacing statistical309

approximations with numerical ones. For state spaces of dimension > 1, binning will probably310

be necessary. For dimensions > 2, then ways of speeding up the HMM approach may be311

necessary, for example by combining the bin-width selection procedures that we suggest,312

and exploiting the sparse structure of the Γt matrices. This is a promising research area.313

6. Supplementary materials314

A zip file containing MATLAB R© program files, a README file and an illustrative example315

are available with this paper at the Biometrics website on Wiley Online Library.316

Acknowledgements We thank the editor, associate editor and two referees for their317

positive and helpful comments, and Diana Cole for confirming parameter redundancy for318

the Little owl analysis. We acknowledge those responsible for the CBC data. The CBC was319

supported by the BTO and the Joint Nature Conservation Committee. PTB was partly320

This article is protected by copyright. All rights reserved

 
 

  
 A

cc
ep

te
d

   A
rt

ic
le

 

 

 

 

 

 

 

 

  

 
 
 



Exact integrated population modelling 19

supported by an Original Research Grant, AUEB. BJTM was supported by a Leverhulme321

Emeritus Fellowship.322

References323

Abadi, F., Gimenez, O., Ullrich, B., Arlettaz, R., and Schaub, M. (2010). Estimation of324

immigration rate using integrated population models. Journal of Applied Ecology 47,325

393–400.326

Baillie, S. R., Brooks, S. P., King, R., and Thomas, L. (2009). Using a state-space model327

of the British song thrush Turdus philomelos population to diagnose the causes of a328

population decline. In Thomson, D. L., Cooch, E. G., and Conroy, M. J., editors,329

Modelling Demographic Processes in Marked Populations, pages 541–561. Springer.330

Barry, S. C., Brooks, S. P., Catchpole, E. A., and Morgan, B. J. T. (2003). The analysis of331

ring-recovery data using random effects. Biometrics 59, 54–65.332

Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002). Integrating mark-333

recapture-recovery and census data to estimate animal abundance and demographic334

parameters. Biometrics 58, 540–547.335

Besbeas, P., McCrea, R. S., and Morgan, B. J. T. (2015). Integrated population model336

selection in ecology. Technical report, University of Kent, Canterbury CT2 7FS, England.337

Besbeas, P. and Morgan, B. J. T. (2010). Kalman filter initialisation for integrated population338

modelling. Applied Statistics 61, 151–162.339

Besbeas, P. and Morgan, B. J. T. (2012). A threshold model for heron productivity. Journal340

of Agricultural, Biological, and Environmental Statistics 17, 128–141.341

Besbeas, P. and Morgan, B. J. T. (2014). Goodness of fit of integrated population models342

using calibrated simulation. Methods in Ecology and Evolution 5, 1373–1382.343

Besbeas, P. and Morgan, B. J. T. (2017). Variance estimation for integrated population344

models. AStA Advances in Statistical Analysis 101, 1–22.345

This article is protected by copyright. All rights reserved

 
 

  
 A

cc
ep

te
d

   A
rt

ic
le

 

 

 

 

 

 

 

 

  

 
 
 



20 Biometrics, November 2018

Besbeas, P. and Morgan, B. J. T. (2018). A general framework for modelling population346

abundance data: paper under revision. Technical report, University of Kent, Canterbury347

CT2 7FS, England.348

Brooks, S. P., King, R., and Morgan, B. J. T. (2004). A Bayesian approach to combining349

animal abundance and demographic data. Animal Biodiversity and Conservation 27,350

515–529.351

Cole, D. J. and McCrea, R. S. (2016). Parameter redundancy in discrete state-space and352

integrated models. Biometrical Journal 5, 1071–1090.353

Cole, D. J., Morgan, B. J. T., and Titterington, D. M. (2010). The parametric structure of354

models. Mathematical Biosciences 228, 16–30.355

Cowen, L., Besbeas, P. T., Morgan, B. J. T., and Schwarz, C. (2017). Hidden Markov models356

for extended batch data. Biometrics page DOI: 10.1111/biom.12701.357

deValpine, P. (2012). Frequentist analysis of hierarchical models for population dynamics358

and demographic data. Journal of Ornithology 152, Supplement 2, S393–S408.359

Finke, A., King, R., Beskos, A., and Dellaportas, P. (2019). Efficient sequential Monte Carlo360

algorithms for integrated population models. Journal of Agricultural, Biological and361

Environmental Statistics https://doi.org/10.1007/s13253-018-00349-9.362

Freeman, S. (2009). Towards a method for the estimation and use of averaged multi-species363

trends, as indicators of patterns of change in butterfly populations. Technical report,364

Centre for Ecology and Hydrology, Wallingford, OX10 8BB, England.365

Gimenez, O., Morgan, B. J. T., and Brooks, S. P. (2009). Weak identiability in models for366

mark-recapture-recovery data. In Thomson, D. L., Cooch, E. G., and Conroy, M. J.,367

editors, Modelling Demographic Processes in Marked Populations. Springer.368
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Exact integrated population modelling 23

Figure 1. Results from IPM: comparison of Bayesian, Kalman filter and exact HMM
analyses of the Little owl data. All three data sets are included in the integrated population
model. Black denotes results from HMM, dashed lines are results from the Bayesian analysis
and dashed and dotted lines are the results from using the Kalman filter (KF). Also shown,
with dotted lines, are 95 % confidence bands from the HMM. The figure appears in colour
online.
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24 Biometrics, November 2018

Figure 2. Two-parameter profile log likelihood for the Little owl data, showing the
likelihood surface ridge, when the data on productivity are not included in the HMM analysis.
For this analysis productivity is taken as constant, r.
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Exact integrated population modelling 25

Table 1
Fitting Little owl data using the HMM approach: statistics from fitting 5 different models to investigate regressions
of the immigration rate, γ, on time and on the vole indicator variable; ` denotes the maximised log-likelihood value;
∆AIC denotes the change in the Akaike information criterion (AIC) compared with the model with the smallest AIC

value.

model for γ −` ∆AIC

constant 410.8 0.0
linear regression on vole indicator 410.5 1.4
linear regression on year 410.6 3.6
quadratic regression on year 410.0 4.4
full time dependence 405.8 58.0
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26 Biometrics, November 2018

Table 2
Maximum-likelihood parameter estimates corresponding to different ways of fitting a model to the lapwing data.

The“Diffuse” results are taken from Besbeas et al. (2002), when the Kalman filter used a vague prior for the initial
population sizes. The “MLE KF” results follow from using the Kalman filter with maximum-likelihood estimation of
the initial population sizes, N1, Na. The hidden Markov modelling results are for the the bin widths shown; see text
for details. Estimated standard errors are indicated by SE.The “Bayes” results are taken from Brooks et al. (2004),

suitably adjusted for the different scaling of the weather covariates used, and in that case the values for N̂1 and N̂a

are estimated from Figure 4 of that paper; when available, estimated standard deviations are indicated by SD.

Model α̂0 α̂1 β̂0 β̂1 γ̂0 γ̂1 δ̂0 δ̂1 σ̂ log(N̂1) log(N̂a )

Diffuse KF 0.523 -0.023 1.521 -0.028 -4.562 -0.584 -1.151 -0.432 159.469
SE 0.067 0.007 0.069 0.005 0.035 0.064 0.088 0.074 21.870
MLE KF 0.523 -0.023 1.521 -0.028 -4.563 -0.584 -1.178 -0.425 155.867 5.966 7.015
SE 0.068 0.007 0.070 0.005 0.035 0.064 0.091 0.076 21.198 0.546 0.135

w1 = wa = 50 0.520 -0.023 1.504 -0.028 -4.566 -0.582 -1.156 -0.406 152.170 5.941 7.803
SE 0.068 0.008 0.067 0.004 0.035 0.064 0.094 0.078 21.456 0.250 0.082
w1 = wa = 40 0.520 -0.023 1.509 -0.028 -4.565 -0.583 -1.165 -0.417 153.961 5.956 7.021
SE 0.067 0.007 0.069 0.005 0.035 0.064 0.091 0.076 21.332 0.577 0.144
w1 = wa = 20 0.523 -0.023 1.520 -0.028 -4.563 -0.584 -1.181 -0.427 155.711 5.966 7.014
SE 0.068 0.007 0.069 0.005 0.035 0.064 0.091 0.077 21.332 0.557 0.140
w1 = wa = 10 0.523 -0.023 1.520 -0.028 -4.563 -0.584 -1.182 -0.427 156.179 5.965 7.014
SE 0.067 0.007 0.069 0.005 0.035 0.064 0.091 0.076 21.412 0.577 0.145

Bayes 0.543 -0.024 1.550 -0.029 -4.522 -0.578 -1.154 -0.459 169.112 6.016 7.003
SD 0.067 0.007 0.070 0.005 0.035 0.069 0.089 0.079 23.001
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Exact integrated population modelling 27

Table 3
A comparison of timings, in seconds, for a likelihood evaluation for the lapwing analysis, as bin widths w1 and wa

vary.

wa

50 40 20 10

50 1.17 1.72 6.23 21.75
w1 40 1.41 1.92 8.24 27.18

20 3.48 5.31 17.30 57.09
10 7.98 11.45 38.09 135.39
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