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Abstract 

 

Resistance formation to chemotherapy remains a major reason for the failure of cancer therapies. 

This project investigated the use of drug-adapted cancer cell lines as models of acquired resistance 

in cancer at different levels. Firstly, we investigated MALDI-ToF fingerprinting approaches in order 

to establish a reliable method for the authentication of cell lines of the same genetic origin. Indeed, 

the MALDI-ToF based spectra of a panel of parental neuroblastoma cell lines and their sub-lines 

adapted to a range of cytotoxic anti-cancer drugs resulted in promising results. However, the 

method needs to be further optimised to reliably authenticate all cell lines. For the understanding 

of the processes underlying resistance formation in cancer cell lines, it is essential to better 

understand the intra-cell line heterogeneity in parental cancer cell lines prior to resistance 

formation. The investigation of ten single cell derived clonal sub-lines of the Neuroblastoma cell 

line UKF-NB-3 by methods including chromosome painting and determination of drug resistance 

profiles revealed a noticeable level of intra-cell line heterogeneity. Next, we established a 

standardised drug adaptation assay that enables the comparison of the potential of a drug to induce 

resistance in a certain cancer cell line. Finally, we introduced and characterised a novel oxaliplatin-

adapted sub line of the neuroblastoma cell line SK-N-AS. Taken together, this project resulted in 

improved methods for use and investigation of drug adapted cancer cell lines as models of acquired 

drug resistance in cancer.  
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Chapter 1 

Introduction  

 

1.1 Cancer statistics and background  

In 2015 there were approximately 360,000 new cases of cancer in the UK alone and of these cases 

the most prevalent were breast, prostate, lung and bowel which accounted for 53% of diagnoses 

(Cancer Research UK at http://www.cancerresearchuk.org/). There were over 160,000 deaths in 

2016 from cancer, despite the improvements in cancer treatments and the discovery of new 

therapeutics. Although the treatment of certain cancers has continued to advance and 

subsequently so have survival rates, others such as pancreatic continue to be problematic to 

diagnose and successfully treat with improved patient outcomes (Kamisawa, T., Wood, L.D., Itoi, T 

and Takaori, K 2016). As the emergence of cancer-drug resistance is ever more prevalent, it is 

therefore imperative that research into new therapeutics and discovery of new drug-targets 

continues alongside a more comprehensive understanding of drug resistance mechanisms 

(Gottesman, M.M 2002). 

 

1.2 Cancer and tumorigenesis 

Simply put, cancer is defined as the uncontrollable growth of cells following acquisition of 

mutations with the potential to undergo metastases and proliferate throughout the body. In order 

to develop into a tumour there are further processes a cancerous cell undergoes which are known 

as the hallmarks of cancer as shown in Figure 1 (Hanahan, D and Weinberg, R.A 2011). 

Characteristics relevant to this project are sustained proliferative signalling as the cell cycle is no 

longer controlled by regulators such as receptor tyrosine kinases therefore cancer cells can enhance 

signalling of receptors such as the epidermal growth factor receptor (EGFR) to promote growth 

(Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K et al 2012). Mutations in tumour 

suppressors are common in many cancer types and are essential for proliferative growth in 

cancerous cells. Tumour suppressors include TP53, a DNA damage sensor which induces apoptosis 

and PTEN, a regulator of the P13K-AKT-mTOR pathway, with nuclear functions as well as 

interactions with TP53 via nutlin (Song, M.S., Salmena, L and Pandolfi, P.P 2012). Alongside 

mutations in tumour suppressors, cancer is also caused by alterations to oncogenes, which encode 

proteins for regulation of proliferation and growth in cells. These include transcription factors, 

growth factor receptors, signal transducers and apoptosis regulators (Croce, C.M 2008). Examples 

of mutated transcription factors include TRIM24 in prostate cancer, involved in the degradation of 

p53 and augmentation of the androgen receptor (AR) (Groner, A.C., Cato, L., Tribolet-Hardy, J.d., 

Bernasocchi, T., Janouskova, H et al 2016). And FOXA1, an established oncogene, found to be 

increased in metastatic breast cancer and is required for proliferation in tamoxifen-resistant cells 

(Schrijver, W., Schuurman, K., van Rossum., A., Droog, M., Jeronimo, C et al 2018). Growth factor 

http://www.cancerresearchuk.org/
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receptor mutations are well documented such as EGFR leading to deregulation in signalling and 

inducing proliferation in cancers such as non-small-cell lung cancer (NSCLC) (Normanno, N., Denis, 

M.G., Thress, K.S., Ratcliffe, M and Reck, M 2017) and ErbB-2/HER2 in breast cancer (Mitri, Z., 

Constantine, T and O’Regan, R., 2012). Mutations in growth factor receptors result in alterations in 

signal transduction pathways as well as in oncogenes encoding members of these pathways. 

Examples include the P13K-PKB/Akt pathway which is commonly mutated in cancer cells which has 

a major role in tumour development and is a viable drug target (Fresno Vara, J.A., Casado, E., de 

Castro, J., Cejas, P., Belda-Iniesta, C et al 2004). Apoptosis regulation is also affected by activation 

of oncogenes such as the BCL2 gene which promotes cell survival via inhibition of pro-apoptotic 

proteins BAX and BAK (Delbridge, A.R.D., Grabow, S., Strasser, A and Vaux, D.L 2016).  

Genomic instability and mutation are also hallmarks relevant to this study, due to our research into 

chromosomal changes in cancer cells and possible underlying mutations related to resistance 

mechanisms. A variety of therapeutics used throughout this study also impact on the hallmarks and 

have been chosen to analyse a variety of responses to drug targets. Taken together, it is therefore 

essential to understand the hallmarks of cancer. This enables further understanding of processes 

which may be valid drug targets or mechanisms of drug-resistance, which can then be 

therapeutically exploited. 

Figure 1: The Hallmarks of cancer (Hanrahan, D and Weinberg, R.A 2011) with the types of anti-
cancer therapy that can be applied to each hallmark in order to overcome the oncogenic effect. For 
this project our main focus was around genome instability and mutation and sustaining proliferative 
signalling but a multitude of different therapeutics with a variety of mechanisms displayed above 
were tested on cell lines. 
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1.2.1 Biomarkers in cancer  

Current diagnosis of cancer depends on several factors such as the type of cancer and the time of 

diagnosis. Solid cancers, such as neuroblastoma or breast may present with symptoms which result 

in detection of the disease, via routine screening or a biomarker may also determine disease 

presence.  Biomarkers are of particular interest for three key reasons: firstly, to successfully 

advance targeted therapy development, it is essential to continue to investigate whether the 

biomarker being targeted is more effective in comparison, to pre-existing treatments. Secondly, to 

determine whether a patient is at risk of developing cancer and finally to establish whether a 

positive outcome would occur in a patient receiving the targeted treatment (Joshi, G 2016). 

Research carried out by Sawyers, C.L 2008 state the difficulty faced in the discovery of biomarkers 

is identifying an ideal patient as a candidate who matches the marker needed to test the new line 

of therapeutics. In order to have a high success rate using biomarkers, there needs to be further 

advances in the clinic determining whether a targeted therapy will be successful.  

There have however, been many successes in discovering biomarkers and treatment responses 

such as the treatment of breast cancer. It is established protocol to check for molecular markers 

such as the oestrogen receptor (ER) and subsequently treat with a corresponding therapeutic such 

as tamoxifen (James, C.R., Quinn, J.E., Mullan, P.B., Johnston, P.G and Harkin, D.P., 2007). As well 

as determining genes such as the BRCA1 in patients, which indicates a higher susceptibility of 

developing the disease and therefore treatment options can be addressed (Davies, H., Glodzik, D., 

Morganella, S., Yates, L.R., Staaf, J et al 2017). However, if a patient presents with a heterogeneous 

tumour which is discovered at a late, aggressive stage, a single effective biomarker is almost 

impossible to find. This leads to intensive systemic therapy in order to eradicate the disseminated 

disease. Furthermore, a targeted therapeutic approach following an identified biomarker can 

invariably lead to resistance and treatment failure.   

 

1.2.2 Treatment of cancer  

Cancer is currently treated in a multitude of ways, the most common can include one or a 

combination of the following: surgery, chemotherapy, radiotherapy, immunotherapy and hormone 

therapy. Although systemic chemotherapy has had remarkable cure rates in cancers such as 

testicular, through the use of effective heavy platinum drugs there are still concerns of adverse 

effects, tumour sensitivity and relapse in patients (Khan, O and Protheroe, A 2007). This has led to 

the development of targeted therapies and personalised medicine with the aim to increase the 

therapeutic window and prevent side effects caused by previous chemotherapy treatments, but 

the main limitation is drug resistance. Targeted treatments have a much higher probability of a 

tumour developing acquired resistance (Russo, M., Misale, S., Wei, G., Siravenga, G., Crisafulli, G., 

et al 2016). There are two clear classes of resistance: intrinsic and acquired, with the former arising 

before treatment occurs and the tumour having pre-existing genetic and epigenetic factors 



 20 

contributing to resistance to therapies. Acquired resistance is the basis of the work presented in 

this thesis, usually occurring following a period of the tumour initially being drug-sensitive before 

relapsing and resistance occurring. In some cases, regression occurs initially, but the tumour can 

then relapse with such an aggressive phenotype that treatment options are often exhausted (Kim, 

J.J and Tannock, I.F 2005). This reduction in sensitivity is imperative to uncover and a great deal of 

research has been carried out to discover which mechanisms occur to enable this.  

In recent years there has been a concerted effort to develop new treatments which promise fewer 

adverse effects and greater response rates when compared to systemic therapies. This has led to 

the design of molecularly targeted and ‘targeted therapies’ antibodies or small molecules such as 

kinase inhibitors which specifically target cancer specific motifs. Examples of more contemporary 

targeted treatments include Imatinib, a tyrosine kinase inhibitor used to treat Chronic Myeloid 

Leukaemia (CML) has a five-year survival rate of 90% (Miranda, M.B., Lauseker, M., Kraus, M-P., 

Proetel, U., Hanfstein, B et al 2016).  And vemurafenib which inhibits the MAPK pathway in 60% 

patients who present with the V600E BRAF mutation in malignant melanoma (Chapman, P.B., 

Hauschild, A., Robert, C., Haanen, J.B., Ascierto, P et al., 2011).  

The development of resistance is a serious issue with targeted therapies and although both the 

diagnosis and treatment of some types of cancer has improved, five-year survival rates in cancers 

such as pancreatic and high-risk malignancies still continue to be very low and require significant 

research into new therapeutics to increase patient survival rates (Taieb, J., Pointet, A.L., Van 

Laethem, J.L., Laquente, B., Pernot, S et al 2017).  

 

1.2.3 The cellular proteome in cancer  

Characterisation of the cancer cell proteome (i.e. the entirety of the proteins expressed within a 

cell) are a fundamental aspect of understanding the development and progression of the disease 

as well as providing potential drug targets (Lawrence, R.T, Perez, E.M., Hernandez, D., Miller, C.P., 

Haas, K.M et al 2015). For example, the proteome is utilised in the classification of breast cancer 

types according to receptor status which clinically relates to appropriate treatment options for the 

patient. (Howlader, N., Altekruse, S.F., Li, C.I., Chen, V.W., Clarke, C.A et al 2014). More recently, 

large scale studies such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome 

Consortium (ICGC) have worked on characterising tens of thousands of tumours to better 

understand the proteomics underlying cancer development (Xhao, W, Li, J and Mills, G.B 2017). The 

study of proteomics is essential in the understanding and subsequent treatment of cancer and is 

particularly applicable in detecting changes in resistant models. Interestingly, using this approach 

and analysing at the protein level rather than genetic may reflect more cellular functions and 

differences between subtypes (Tyanova, S., Albrechtsen, R., Kronqvist, P., Cox, J., Mann, M et al 

2016).  
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Using mass spectrometry-based proteomics for researching cancers is an important analytical 

technique due to its sensitivity, rapidity and being highly quantitative (Lam, S.W., Jimenez, C.R., and 

Boven, E 2013). Matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF) imaging 

mass spectrometry has a multitude of applications in areas such as diagnostics and research. In 

particular, its application in investigating tumour heterogeneity by analysing components of the 

tumour which would include multiple sub-clones if present (Kriegsmann, J., Kriegsmann, M and 

Casadonte, R 2014). Swiatly, A., Horala, A., Hadjuk, J., Matysiak, J., Nowak-Markwitz, E et al 2017 

discuss the use of MALDI-TOF-MS to identify proteomic patterns in ovarian cancer by comparing a 

healthy control group versus disease samples with the aim to identify potential biomarkers.  

Further successes in the use of MALDI-TOF also include the application of identifying 

microorganisms, and the subsequent diagnosis of infectious diseases by comparison of findings 

with a known database (Hadjuk, J., Matysiak, J and Kokot, Z.J 2016). It is this approach we 

investigate in this thesis to assess the potential of MALDI-ToF in identifying drug-resistant sub-lines 

from the sensitive parental cell lines as a means of authentication.  

 

1.3.1 Neuroblastoma  

In this project neuroblastoma cell lines were used as a model system to investigate drug-resistance. 

This included using both sensitive parental cell lines such as UKF-NB-3 and SK-N-AS alongside a 

variety of drug-adapted sub-lines to clinically relevant drugs and single-cell derived clones.  

Neuroblastoma is a paediatric cancer with a median diagnosis age of 17-monthsand is thought to 

arise from neural crest tissue and form embryonal tumours in the sympathetic nervous system 

(Maris, J.M 2010). With a mortality rate of over 50%, children who present with stage IV aggressive 

neuroblastoma have the lowest survival rates due to refractory complications or relapse (Cheung, 

N-K. V., and Dyer, M.A 2013). Approximately 30% of tumours arise in the adrenal medulla, 60% in 

the abdominal paraspinal ganglia and the remaining 10% arise from ganglia in the chest, head, neck 

and pelvis (Louis, C.U and Shohet, J.M 2014). As a complicated and heterogeneous disease 

neuroblastoma also presents in a varied manner, with disease outcomes altered in different 

patients. The disease can regress spontaneously in some patients, but children over the age of 1 

with metastatic disease when diagnosed, have a poor prognosis (Brodeur, G.M 2003). The disease 

can also present with a high number of metastases and despite intensive therapy can still result in 

a 40% survival rate (Oldridge, D.O., Wood, A.C., Maris, J.M., 2015). Other factors taken into 

consideration include age at time of diagnosis, stage of disease and tumour location. In particular, 

patients who present with localised tumours have a higher survival rate, between 70%– 98% and 

this may be due to the chance of removing the tumour and if there is no metastatic disease present 

(Tonini, G.P 2017). The differences in disease response in patients may be due to the intra-tumoural 

heterogeneity in neuroblastoma and the development of acquired drug resistance leading to 

treatment failure.  
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1.3.2 Aetiology of Neuroblastoma 

Neuroblastoma is an extremely complex disease which presents clinically in a variety of ways as 

well as the ability to spontaneously regress with no previous markers. There are two types of 

neuroblastoma, familial and sporadic, with familial only accounting for ~2% of cases with a germline 

mutation in the anaplastic lymphoma kinase (ALK) gene (Mosse, Y.P., Laudenslager, M., Longo, L., 

Cole, K.A., Wood, A., et al 2008). ALK is a member of the branch of the insulin receptor (IR) family 

of receptor tyrosine kinases (RTKs) and is expressed in cells of the central and peripheral nervous 

system (Azarova, A.M., Gautam, G and George, R.E 2011). ALK is involved in in the development of 

sympathoadrenal lineage of the neural crest and is a precursor to transduction pathways of 

RAS/MAPK and P13K/AKT often mutated in cancer cells (Cheung, N.K.V and Dyer, M.A 2013). 

Furthermore, activation of ALK it is often seen alongside an amplification of MYCN and may relate 

to a poor patient outcome (Zhu, S., Lee, J.S., Gui, F., Shin, J., Perez-Atayde, A.R et al, 2012). The 

most common finding in sporadic neuroblastoma is the amplification of MYCN, thought to promote 

growth of the tumour through up-regulation of gene transcription is seen in approximately 22% of 

neuroblastoma tumours and is correlated with poor prognosis and evidence of metastatic disease 

(Kaneko, M., Tsuchida, Y., Mugishima, H., Ohnuma, N., Yamamoto, K et al 2002). MYCN regulates 

cells in the developing central nervous system and is involved in growth, differentiation and survival 

and is expressed in the developing neural crest (Cheung, N-K.V and Dyer, M.A 2013).  

 An extensive classification of neuroblastoma diagnosis has been implemented to ensure patients 

are given the best treatment options. These include the some of the following prognostics but a 

total of 13 factors are used: DNA diploidy, tumour differentiation, chromosomal abnormalities and 

MYCN status (Diede, S.J 2014). Furthermore, patients are grouped into risk categories following 

diagnosis which essentially includes very low, low, intermediate and high risk (Cohn, S.L., Pearson, 

A.D.J., London, W.B., Monclair, T., Ambros, P.F et al 2009). 

 

1.3.3 Treatment of Neuroblastoma  

Neuroblastomas are highly heterogenic in nature making not only diagnosis difficult but the 

designing of effective biomarkers and new treatments a challenge. Furthermore, even with 

intensive chemotherapy, surgery, radiotherapy and immunotherapy there are still 60% of patients 

who relapse with subsequent resistant tumours (Eleveld, T., Oldridge, D.A., Bernard, V., Koster, J., 

Daage, C et al 2015). Better outcomes lie in discovering how certain features of the tumour relate 

to its biology and how this information can then be translated into a clinical setting. In targeted 

therapy, one aim has been to identify mutations within the tumour and then developing specific 

therapeutics, but this is coupled with the ever-present issue of acquired resistance. But as the 

disease is heterogeneous and presents differently, identifying a successful tumour target in 

neuroblastoma is much harder with a low frequency of common mutations. As stated by Cheung, 
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N-K. V and Dyer, M.A 2013, it is thought that a clearer understanding of the developmental biology 

of the disease will allow for new approaches.  

Current treatment of neuroblastoma includes surgical removal of tumours in low-risk patients with 

no metastatic disease present and if necessary following chemotherapy treatment to reduce the 

size of the tumour (Swift, C.C., Eklund, M.J., Kraveka, J.M. and Alazraki, A.L 2018). However, with 

high-risk patients a more aggressive approach is needed with combination therapy such as 

chemotherapy and radiotherapy but following an initial response to chemotherapy a large majority 

of these patients will develop resistance to therapy and relapse (Eleveld, T., Oldridge, D.A., Bernard, 

V., Koster, J., Daage, C et al 2015). Recent studies discuss the findings of possible targets in relapsed 

neuroblastomas due to a high frequency of genetic aberrations and mutations. With an emphasis 

on understanding the current genetic landscape of a tumour and not at diagnosis to better assess 

treatment (Padovan-Merhar, O.M., Raman, P., Ostrovnaya, I., Kalletla, K., Rubnitz, K.R et al 2016). 

The use of drug-adapted cell lines is an invaluable tool in this research to better understand the 

current genomic landscape of a tumour. Chromosomal analysis has also been extensively 

researched to determine patterns in neuroblastoma and possible diagnostic and treatment options. 

Analysing chromosomal changes is another diagnostic technique and a loss of heterozygosity (LOH) 

at chromosome 1p and 11q is a frequent mutation seen in neuroblastoma (Attiyeh, E.F., London, 

W.B., Mosse, Y.P., Wang, Q., Winter, C., et al 2005). High risk patients with stage 4 disease often 

present with several CNV (copy number variants) and the tumours of these patients contain 

multiple chromosomal abnormalities (Tonini, G.A 2017).  

Immunotherapy is another therapeutic approach but has had some difficulty due to low expression 

levels of antigens. However, disialoganglioside (GD2) is highly expressed on the majority of 

neuroblastoma cells and is a promising target for both diagnosis and treatment with the use of 

monoclonal antibodies (mABs) (Seeger, R.C 2011).  

As amplification of MYCN represents approximately 20% of all neuroblastomas and 45% of high risk 

it is a valid target to use in treatment of the disease. (Barone, G., Anderson, J., Pearson, A.D.J., 

Petrie, K and Chesler, L 2013).  A recent study analysed the efficacy of inhibitors such as vismodegib, 

which targets the NF-kB and mTOR pathway, alongside he chemotherapy drug topecan in non-

MYCN and MYCN amplified neuroblastomas. The combination of the two drugs had the highest 

activity in vitro and vivo with decreased tumour growth (Chaturvedi, N.K., McGuire, T.R., Coulter, 

D.W., Shukla, A., McIntyre, E.M et al 2016). 

A great deal of research has been carried out on neuroblastoma and patient outcomes have 

improved but further research is needed to understand the resistance mechanisms underlying 

relapse of the disease. This is the reason neuroblastoma cell lines were used for the research carried 

out in this project, including both sensitive and resistant sub-lines to a range of therapeutics. In 

particular, to better understand the intra-cell line heterogeneity and the clonal evolution seen in 

these cell lines and responses to drugs with varied mechanisms. 
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1.4 Multidrug resistance  

Multidrug resistance (MDR) in cancer is an important issue that needs addressing in the effective 

treatment and management of cancer. 

In cancers such as neuroblastoma, patients are initially responsive to chemotherapy with late stage 

disease but then develop acquired resistance leading to relapse and eventually treatment failure. 

As an example, both MRP1 and MRP4 (multi-resistance associated protein) have an increased 

expression and altered N-link glycosylation which leads to resistance in ovarian tumour cell lines to 

the platinum drug oxaliplatin (Beretta, G.L., Benedetti, V., Cossa, G., Assaraf, Y.G., Bram, E et al 

2010). It Is therefore imperative to understand the underlying resistance mechanisms in order to 

overcome them in the designing of new therapeutics and possible diagnostic markers of the 

emergence of resistance. The most commonly known mechanisms of multidrug resistance include: 

decreased drug uptake, increased drug efflux, activation of detoxifying systems, activation of DNA 

repair mechanisms and evasion of drug induced apoptosis (Housman, G., Byler, S., Heerboth, S., 

Lapinska, K., Longacre, M., Snyder, N et al 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Multidrug resistance mechanisms in cancer cells with the seven key categories: decreased 
drug influx, increased drug efflux through ATP binding cassette transporters, altered drug 
metabolism and detoxification, mutations in drug targets, activation of transduction pathways and 
activation of DNA repair (Yang, X., Cheng, Y., Luo, N and Changyang, G 2014).   

 

1.4.1 ATP binding cassette transporters 

The most extensively studied mechanism for multidrug resistance is the ATP binding cassette (ABC), 

transporters responsible for the efflux of drugs but other mechanisms such as: cell cycle arrest and 

checkpoint alteration, reduced uptake of drug and sequestering of drugs inside the cytoplasm in 

lysosomes (Szakacs, G., Paterson, J.K., Ludwig, J.A., Boothe-Genthe, C., and Gottesman, M.M 2006). 
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One of the members of the ABC transporter family is ABCB1, also known as multidrug resistance 

protein 1 (MDR1) or P-glycoprotein is commonly overexpressed and linked with resistance to 

chemotherapeutics in a multitude of cancers including neuroblastoma (Fletcher, J.I., Haber, M., 

Henderson, M.J. and Norris, M.D 2010). ABCB1 effluxes a spectrum of anti-cancer drugs with 

differing methods of action including, among others: vinca alkaloids, taxanes and kinase inhibitors 

(Katayama, K., Noguchi, K and Sugimoto, Y 2014). This reduces the toxicity to the cancerous cells 

allowing them to continually proliferate in the presence of lower concentrations of the drug 

therefore driving resistance. An elevated expression of ABCB1, therefore, is indicative of poor 

prognosis due to its role in resistance (Vaidyanathan, A., Sawyers, L., Gannon, A.L., Chakravarty, P., 

Scott, A.L 2016).  Decreased uptake of a drug within a cell is another factor in MDR such as a reduced 

uptake of methotrexate due to decreased expression of the reduced-folate carrier (SLC19A1/ 

hRFCT) (Gillet, J.-P and Gottesman, M.M 2009). The SLC family includes passive and ion-coupled 

transporters and any mutations to these transporters could impact the amount of drug transported 

into a cell. Further research discusses the suppression of endocytosis in relation to drug resistance 

which may work in conjunction with drug efflux ultimately reducing the concentration of drug 

within a cell and therefore allowing continual proliferation (Pisco, A.O, Jackson, A.D and Huang, S 

2014).  A reduced uptake of the drug cisplatin in cancer cells can be due to changes in endocytosis 

by membrane protein mislocalisation such as transferrin which is linked to the endocytic recycling 

compartment (ERC) which is altered in resistant cells. (Liang, X-J., Mukherjee, S., Shen, D-W., and 

Maxfield, F.R 2006). Another major influx transporter, the copper transporter receptor 1 (CTR1) has 

also been shown to have a role in platinum drug resistance and reduced accumulation of the 

therapeutics (Kilari, D., Guancial, E and Kim, E.S 2016). 

 

1.4.2 Altered drug metabolism and detoxification 

Drug metabolism, the chemical alteration of a therapeutic by the body, is clearly an important 

process in the treatment of cancer which can be exploited by cancer cells to prevent uptake of the 

drug and subsequent cell death. This can also include drug metabolising enzymes (DMEs) which 

regulate the activation and deactivation of therapeutics and those altered in tumours include 

among others: glutathione-S-transferases (GSTs) and uridine diphospho-glucuronoslytransferases 

(UGTs) (Pathania, S., Bhatia, R., Baldi, A., Singh, R and Rawal, R.K 2018). GSTs are detoxification 

enzymes which in normal cells, offer protection from oxidative stress as well as inhibition of the 

MAPK pathway. An increase in GSTs can then lead to drug resistance for example, cisplatin and 

doxorubicin resistance have been linked to an increase in the production of glutathione and 

detoxification caused by its transferases (Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S 

and Baradaran, B 2017). Ovarian cancer can also present with high expression of GSTs including 

GSTP1, reducing the efficacy of platinum-based therapeutics and facilitating resistance. (Sawyers, 

L., Ferguson, M., Ihrig, B., Young, H., Chakravarty, P et al 2014).  
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1.4.3 Activation of DNA repair 

In normal cells, DNA repair mechanisms including nucleotide excision repair (NER) and base excision 

repair (BER) ensure that genomic integrity of DNA is preserved, and repair damage via a complex 

network known as the DNA damage response (DDR) (Torgovnick, A and Schumacher, B 2015). Cells 

with DNA that is irreparable and extensive damage enter apoptosis, necrosis or senescence (Gillet, 

J-P and Gottesman, M.M 2009). However, in cancerous cells which have acquired resistance, 

defective DNA damage repair allows proliferation of cancerous cells and an increase in mutation 

without leading to cell necrosis. This increase in mutations can lead to outgrowths of phenotypes 

which select for resistance to chemotherapy as well as further DNA damage, leading to a 

combination of further MDR mechanisms. Cells treated with the DNA-damaging agent cisplatin 

develop resistance via decreased membrane transport, increased DNA repair and increased 

tolerance to DNA damage (Kelland, L 2007).   

 

1.4.4 Mutations in drug targets  

Alterations in drug targets is a well-documented mechanism of drug resistance as cancer treatment 

usually relies on the interaction between a therapeutic and an intracellular enzyme. A change in 

these enzymes occurs in resistant cells to render the drug target useless. Mutations in drug targets 

can also cause structural changes which can lead to acquired resistance as the drug may no longer 

be active (Kumar, T., Chaudhary, K., Gupta, S., Singh, H., Kumar, S et al 2013). There is a great deal 

of crossover with other mechanisms due to the alterations in drug targets, but examples include 

EGFR which is targeted by erlotinib and gefitinib, but resistance occurs, and this is due to additional 

mutations to EGFR which cannot be overcome (Regales, L., Gong, Y., Shen, R., de Stanchina, E., 

Vivanco, I et al 2009).  

 

1.4.5 Activation of signal transduction pathways  

Resistance can also be caused by alterations in signalling pathways which control upstream or 

downstream processes. This can lead to an up-regulation in gene expression or produce proteins 

with favourable mutations such as proliferation and apoptosis evasion (Sever, R and Brugge, J.S. 

2015). Signal transduction pathway mutations can cause and/or effect previous mechanisms 

discussed as resistant cells are able to utilise multiple mechanisms. Mutations in these pathways 

can have effects on RTKs, GTPases, lipid kinases as well as transcription factors and cyclins. 

Therefore, the activation of these pathways in resistant cells is a method of continual cell growth 

as well as the other hallmarks of cancer. The continuous unregulated growth of cancerous cells 

leads to further mutations and increased heterogeneity leading to difficulties in subsequent 

treatment of (Sever, R and Brugge, J.S. 2015).  
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1.5 Clonal evolution 

The concept of clonal evolution was first proposed by Peter Nowell in the late 1970s, he 

conceptualised the theory that tumours start from a single progenitor cell having undergone a 

series of mutations. Only one mutation was necessary to instigate the selection process and present 

an advantageous genotype which would lead to the outgrowth of the tumour (Nowell, P.C 1976). 

Nowell also described the notion of personalised therapies, with each patients’ disease presenting 

individually as well as the difficulties arising with resistant sub-clones. Further research tells us that 

cancer is indeed an evolutionary process which Greaves, M and Maley, C.C 2012 describe as an 

expansion of clones and a diversification of genetics resulting in the selection of certain clones. 

These three processes together increase the chances of advantageous mutations promoting pro-

oncogenic effects such as proliferation and resistance to certain therapeutics. Figure 3 illustrates 

the different sub-clones which exist within a tumour and how some of these clones can lead to 

further outgrowths of multi-clonal populations. This is due to the Darwinian evolution of cancer 

cells and the selection of the fittest clones, with those able to withstand and proliferate in the 

presence of drug continually growing within the tumour (De Sousa E Melo F., Vermeulen, L., Fessler, 

E and Medema, J.P 2013). Due to uncontrolled rapidly growing cells within a tumour, the rate of 

copy error is much higher giving rise to a variety of mutations (Burrell, R.A., McGranahan, N., Bartek, 

J and Swanton, C 2013) and further selection.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3: The process of clonal evolution in a primary tumour with a multitude of different sub-
clones derived from a single normal cell. The founder clone drives the growth of further sub-clones 
within the with two leading to metastatic growths. Further clonal evolution is observed in 
metastasis 1 (Caldas, C 2012). 
 

The addition of therapeutics is a selective pressure and can drive clonal selection and the 

heterogeneity of a tumour (Greaves, M and Maley, C.C 2012). With the use of therapeutics 
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potentially enhancing the genetic drift it is vital therefore, to comprehend the impact this has on 

the tumour environment. When a patient is diagnosed it is vital that the correct treatment is 

administered to ensure that the entire tumour is successfully eradicated which is indicative through 

the use of systemic treatment rather than a targeted approach (Marjanovic, N.D., Weinberg, R.A 

and Chaffer, C.L 2013). Interestingly, further analysis using whole exome sequencing of cancer cells 

revealed that intra-tumour heterogeneity and therefore clonal evolution was found at both the 

primary and metastases sites as illustrated in Figure 3 (Caldas, C 2012). Clonal evolution and 

heterogeneity are both essential in the research surrounding drug resistance and part of this thesis 

investigated the similarities and differences seen between a sensitive parental cell line and 10 

single-cell derived clones. This allowed us to look in depth into the clones in the presence of certain 

drugs, their growth patterns and chromosomal changes. Alongside single-cell derived clones we 

also use drug-adapted sub-lines to compare and this could determine underlying evolutionary 

processes that could lead to drug resistance. Ultimately the aim, is to discover novel tumour 

markers, new drug targets and diagnostic markers for resistant cancers.  

 

1.6 Tumour heterogeneity  

A deeper understanding of the heterogeneity involved in tumours is paramount to uncovering the 

key to successfully treating drug resistance. Cancer is a dynamic process and the genomic landscape 

within a tumour is continuously evolving due to the tumour microenvironment and response to 

external therapeutic pressures. Genetic changes (as well as transcriptomic, epigenetic and 

phenotypic) gives rise to heterogeneity in the tumour with cancerous cells presenting different 

sensitivity responses to anti-cancer drugs (Dagogo-Jack, I and Shaw, A.T., 2017). 

Figure 4: Inter-tumour heterogeneity illustrated as patients with the same tumour type presenting 
differently as well as different genetic changes within tumours in the patient. And intra-tumour 
heterogeneity with a tumour presenting with more than one sub-clone which can give rise to 
altered gene expression highlighted using FISH with chromosome 2 in red, chromosome 18 in green 
and DNA in blue (Burrell, R.A., McGranahan, N., Bartek, J and Swanton, C 2013).  
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There are two types of heterogeneity as illustrated in figure 4. Inter-tumour heterogeneity occurs 

as different genetic changes in different tumours from a single patient as well as between patients 

with the same tumour type and intra-tumour heterogeneity where there is a presence of more than 

one clone of cancer cells within the tumour (Yancovitz, M., Litterman, A., Yoon, J., Ng, E., Shapiro, 

R.L et al 2012). The focus of the research in this project was on intratumoural heterogeneity.  

 

1.6.1 Intra-tumour heterogeneity  

It is well documented that patients presenting with the same cancer type can have completely 

different responses to treatment due to the varied genetic landscape bought about by 

heterogeneous tumours. This is known as intra-tumour heterogeneity and in addition, cancer 

diseases are characterised by tremendous intra-tumour heterogeneity (De Sousa E Melo F., 

Vermeulen, L., Fessler, E and Medema, J.P 2013). Evolutionary processes in the genetically unstable 

cancer cells largely drive this process and there are three major factors which includes: mutation, 

selection and drift (Sottoriva, A., Barnes, C.P. and Graham, T.A., 2017). Cancer cells are subject to 

many selective pressures including effects exerted by the tumour microenvironment and anti-

cancer therapies. Even in the absence of a selective pressure, cancer cells are subject to a genetic 

drift due to their mutator phenotype. This increases the intra-tumour heterogeneity and in turn the 

likelihood that cells within the cancer population can survive or adapt to changes in the 

microenvironment (for example during metastasis formation) and to anti-cancer therapies. The key 

mutation is the driver mutation which is believed to give rise to the disease, initially followed by 

passenger mutations which give fundamental information on the development of the cancer 

population over time. Finally, the drift is described as the likelihood that all cells within the 

population have the potential to produce further cells that will continue to survive.  (Sottoriva, A., 

Barnes, C.P. and Graham, T.A., 2017), (Burrell, R.A., McGranahan, N., Bartek, J and Swanton, C 

2013). The tumour microenvironment adds more complexity to the issue as it influences 

phenotypes of cancerous and non-cancerous cells and changes the intra-tumour heterogeneity 

further (Rybinksi, B and Yun, K 2016). Following chemotherapy, this can lead to a regression of the 

tumour, a reduction in tumour size, or relapse followed by the emergence of further outgrowths of 

advantageous clones, as described previously in clonal evolution. It is this varied response which 

makes treating heterogeneous tumours so difficult and therefore hard to predict what the patient 

outcome will be. There is a great deal of variation seen in tumours that derive from the same cell 

type which leads to chromosomal aberrations, patient outcome and importantly drug sensitivity 

(Burrell, R.A., McGranahan, N., Bartek, J and Swanton, C 2013). Multiple studies have now shown 

that the higher the level of intra-tumour heterogeneity the less likely the patient is to respond 

favourably to therapeutics, particularly those which are targeted (O’Connor, J.P.B., Rose, C.J., 

Waterton, J.C., Carano, R.A.D., Parker, G.J.M et al 2014). Advances in techniques such as single-cell 

sequencing has allowed a more comprehensive approach into determining expression profiles of 
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heterogenous cancer populations (Ngan, E.S-W 2015). If only a small section of the tumour is 

removed, the analysis may not capture the full extent of the intra-tumoural heterogeneity. The 

treatment regimen is then based on this analysis which may pave the way for selection pressure on 

the tumour and subsequent resistance (Marusyk, A.V and Polyak, K 2013).  

We are able to study the intra-tumour heterogeneity in the cell lines we used for this project and 

observe the differences seen in populations derived from the same cell type using a cohort of 10 

single-cell derived clone cell lines. Using fluorescence in situ hybridisation (FISH) as a method we 

observed changes in chromosomal aberrations between cell lines i.e. genomic instability as well as 

drug sensitivity assays and growth kinetics. As therapeutic pressures can drive evolutionary 

processes within the tumour, the use of drug-resistant sub-lines and observing these differences, 

in this project was paramount to observing these changes.   

 

1.7 Genome instability in Cancer  

Due to the high levels of genetic instability in cancerous cells there are a high number of 

chromosomal aberrations due to the rapidly dividing cells inducing many mutations. It is a 

characteristic of most cancer cells and is one of the hallmarks of cancer. Genomic stability is 

essential for normal cell growth including prevention of DNA replication errors and tumour cells 

have mutations which enable the bypassing of these checkpoints. There are thought to be three 

main mechanisms of genomic instability: increased frequency of base pair mutation due to the loss 

of function in DNA repair genes BER and NER, decreased mismatch repair impacting on 

microsatellites within the tumour and chromosomal instability (Yao, Y and Dai, W 2014). An 

understanding of chromosome abnormalities in cancer is crucial to tracking diagnosis and disease 

progression and the work in this thesis focused on chromosomal changes between cell lines. These 

aberrations can then be analysed in cohorts of patients to determine if there are any continuous 

patterns, which indicate areas such as prognosis, resistance mechanisms and drug sensitivity.  One 

such example is FISH analysis of neuroblastoma documented by (Bogen, D., Brunner, C., Walder, 

D., Ziegler, A., Abbasi, R et al 2016) where the research carried out indicated an aberration of the 

11q deletion. The intra-tumour heterogeneity of tumours can be researched by the use of FISH to 

discover specific biomarkers for resistance, diagnosis and treatment Studies carried out in 

neuroblastoma suggest that the damage that the chromosomes undergo in particular, within the 

tumour microenvironment is indicative of a key role in the growth of the tumour. A common 

mutation on chromosome 1p was discovered with links to poor prognosis and alongside this a 

tumour suppressor gene KIF1Bβ was located in this region of the chromosome and knockout of 

KIF1Bβ led to a major increase in proliferation and tumour growth (Tonini, G.P, 2017). There has 

been extensive research into reoccurring characteristic chromosomal aberrations seen in cancers 

to utilise in treatment. One example is the anaplastic lymphoma kinase (ALK) gene located on 

chromosome 2 and is altered in cancers including non-small-cell lung cancer (NSCLC) and 
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neuroblastoma, crizotinib was developed to target this mutation (Holla, V.R., Elamin, Y.Y., Bailey, 

A.M., Johnson, A.M., Litzenburger, B.C et al 2017). However, the issue lies following the discovery 

of a specific target in drug resistance and indeed with crizotinib cancer cells can develop alternative 

ALK pathways such as EGFR and INGR (Doebele, R.C., Pilling, A.B., Aisner, D.L., Kutateladze, T.G, Le, 

A.T et al 2012).  

Although many types of cancer continue to have successes and improvements in outcome, it is the 

heterogeneous nature of cancer that contributes to low success rates, higher mortality and a 

difficulty in searching for valid drug targets (Allison, K.H. and Sledge, G.W. 2014). To conclude, 

certain cancers, such as high-risk neuroblastoma, are intrinsically difficult to treat owing to the 

intra-tumour heterogenicity due to genomic instability bought about by various cellular changes.  

 

1.8 Use of cell lines in research   

Cancer cell lines have been a leading model for the investigation of cancer cell biology and for the 

identification of anti-cancer drug targets and anti-cancer drugs (Sharma, S.V., Haber, D.A and 

Settleman, J 2010, Iorio, F., Knijnenburg, T.A., Vis, D.J., Bignell, G.R., Menden, M.P et al., 2016).  It 

is important to use cell lines as a model as it is not possible to monitor tumour progress throughout 

treatment. As the majority of tumours are analysed fully following removal from a patient, studying 

the progression of a tumour and the cell populations could indicate changes which may lead to the 

emergence of certain clones, which are resistant to chemotherapeutics and can result in treatment 

failure. Cancer cell lines also play a major role in the investigation of acquired drug resistance. Since 

it has been shown that the resistance mechanisms underlying acquired resistance can substantially 

differ from those underlying intrinsic resistance (Hata, A.N., Niederst, M.J., Archibald, H.L., Gomez-

Caraballo, M., et al 2016, Carter, L., Rothwell, D.G., Mesquita, B., Smowton, C., Leong, H.S et al., 

2017), pre-clinical model systems of acquired drug resistance are needed to fill this gap. Pre-clinical 

models enable:  

1) the detailed systems level monitoring of processes in cancer cell populations in response to 

therapy over time which is limited in the clinical setting due to intra-tumour heterogeneity 

(Zardavas, D., Irrthum, A., Swanton, C and Piccart, M 2015; Esposito, A., Criscitiello, C., Locatelli, M., 

Milano, M., Curigliano, G 2016).  

2) The study of a large number of different cancer treatments (which is clinically limited by patient 

numbers and patients’ right to the best available therapy).  

3) Extensive functional studies including the comparative testing of different therapy regimens in a 

given cancer population (clinically, every individual patient can only be treated once). In particular, 

‘exceptional responders’ i.e. the small number of patients with a specific form of cancer that can 

benefit from a treatment that is usually not used for this indication (Zardavas, D., Irrthum, A., 

Swanton, C and Piccart, M 2015; Mehra N, Lorente, D and de Bono, J.S.,2015), are very difficult to 

identify.  
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Cancer cell lines enable the generation of a large number of individual models needed to cover the 

complexity of the resistance formation process. Major resistance mechanisms have been 

discovered in drug-adapted cell lines, e.g. the ATP binding cassette (ABC) transporters ABCB1 

(Juliano, R.L and Ling, V., 1976) and ABCB1 (Cole, S.P., Bhardwaj, G., Gerlach, J.H., Mackie, K.E., 

Grant, C.E et al., 1992). Moreover, drug-adapted cancer cell lines have been successfully used by 

different research groups to identify and investigate clinically relevant acquired resistance 

mechanisms to anti-cancer drugs which are targeted (Engelman, J.A., Zejnullahu, K., Mitsudomi, T., 

Song, Y., Hyland, C et al 2007; Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R.C et al 2010; 

Michaelis, M., Rothweiler, F., Barth, S., Cinatl, J., van Rikxoort, M et al 2011; Poulikakos, P.L., 

Persaud, Y., Janakiraman, M., Kong, X., Ng, C et al 2011; Michaelis, M., Rothweiler, F., Agha, B., 

Barth, S., Voges, Y et al  2012; Joseph, J.D., Lu, N., Qian, J., Sensintaffar, J., Shao, G et al 2013; Korpal, 

M., Korn, J.M., Gao, X., Rakiec, D.P., Ruddy, D.A et al 2013; Crystal, A.S., Shaw, A.T., Sequist, L.V., 

Friboulet, L., Niederst, M.J., et al 2014; Hata, A.N., Niederst, M.J., Archibald, H.L., Gomez-Carabello, 

M., Siddiqui, F.M et al 2016; Jung, J., Lee, J.S., Dickson, M.A., Schwartz, G.K., Le Cesne, A  et al 2016) 

and cytotoxic (Domingo-Domenech, J., Vidal, S.J., Rodriguez-Bravo, V., Castillo-Martin, M., Quinn, 

S.A et al 2012; Zahreddine, H.A., Culjkovic-Kraljacic, B., Assouline, S., Gendron, P., Romeo, A.A et 

al., 2014; Gollner, S., Oellerich, T., Agrawal-Singh, S., Schenk, T., Klein, H.U et al 2017; Schneider, C., 

Oellerich, T., Baldauf, H.M., Schwartz, S.M., Thomas, D., et al 2017). In addition, a screen in a panel 

of drug-adapted urothelial cancer cell lines identified the vinca alkaloids: vinblastine and vinflunine, 

the approved second line therapeutic for metastatic urothelial cancer, as the most effective 

compounds (Vallo, S., Michaelis, M., Rothweiler, F., Bartsch, G., Gust, K.M et al 2015).  

There are of course limitations to the use of cancer cell lines, which include the inability to mimic 

the exact tumour microenvironment as well as changes that can occur in culturing (Wilding, J.L and 

Bodmer W.F 2014). However, in order to study cancer effectively, with cells that need to be readily 

and easily available, a model system is ideal to observe mechanisms such as resistance and cell 

growth patterns which could in turn enable us to discover potential biomarkers and drug targets. 

Therefore, drug adapted cell lines which allow for a broad application, are an important aspect of 

understanding mechanisms of resistance in cancer cells as to constantly remove biopsies from a 

patient over time to monitor tumour development is not feasible. In the work carried out for this 

thesis and to study the development of resistance, culturing and analysing neuroblastoma and 

adapting the cell lines to different clinically relevant chemotherapy drugs was vital to obtain the 

research presented.  

 

1.8.1 Authentication of cell lines in research  

Cell line misidentification remains an important issue in cell line-based research and undermines 

research efforts. This problem has been acknowledged since the 1950s with reports indicating HeLa 
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cells to be one of the main cell line contaminants as they are known to out-grow other cells due to 

their rapid and robust growth (Masters, J.R.W., 2010).   

The effects of misidentification are widespread due to the fact that the cell line being researched, 

and later in results published, may not be the cell line it was originally deemed to be. One such 

example, the cell line KU7 (a urothelial carcinoma cell line) was in fact contaminated with HeLa 

following 30 years of research with the cell line (Jager, W., Horiguchi, Y., Shah, J., Hayashi, T., Awrey, 

S., Gust, K.M et al., 2013). This highlights a concern with using cell lines as a model for further 

research, carried out by other labs and if it is found to be either cross-contaminated or indeed a 

different cell line, a substantial amount of money and time has been wasted. Furthermore, 

retractions may also occur due to irreproducibility with cell lines, examples include Clement, V., 

Marino, D., Cudalbu, C., Hamou, M.F., Mlynarik, V et al 2010 and their research group retracting an 

article due to cell line contamination. A further example, with over 1000 articles published, is MDA-

MB-435, a triple negative breast cancer cell line, described as a melanoma cell line M14 (Freedman, 

L.P., Gibson, M.C., Ethier, S.P., Soule, H.R., Neve, R.M., et al 2015). Consequently, there is clearly a 

need for authentication of cell lines, the current gold standard is short tandem repeat (STR) profiling 

in order to verify cell line origin and the generation of databases such as the US National Centre for 

Biotechnology Information, to compile STR data (Masters, J.R., Thomson, J.A., Daly-Burns, B., Reid, 

Y.A., Dirks, W.G et al., 2001). 

Originally used as a forensic method, STR profiling analyses the length of loci in short DNA 

sequences with a varying number of repeats allowing a comparison between cell lines (Somaschini, 

A., Amboldi, N., Nuzzo, A., Scacheri, E., Ukmar, G et al., 2013). This issue also led to the assembly of 

American Type Culture Collection-Standard Development Organisation (ATCC-SDO), with the aim 

of ensuring proper practice and cell line standards in aid to reduce the issues surrounding 

misidentification (Masters, J.R. 2012). However, there is still an unwillingness to report findings 

which implies that there is still a great deal of cell lines being used which are not of the genetic 

origin they are believed to be.  

Whilst STR profiling enables the differentiation between cell lines of different origin, it does not 

discriminate between cell lines of the same genetic origin. Since this project deals with isogenic cell 

lines i.e. single-cell derived clonal and drug adapted sub-lines, we investigated the development of 

a method to authenticate the cell lines. MALDI-ToF is clinically used in the diagnosis of bacterial 

pathogens and diseases (Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.E et al 2009). 

Research using MALDI-ToF for bacterial identification has shown great success demonstrating that 

by using this method, 95.4% of 1660 bacteria samples collected were correctly identified using 

MALDI-ToF rather than the usual Gram staining and other testing methods (Seng, P., Drancourt, M., 

Gouriet, F., La Scola, B., Fournier, P.E et al 2009). With these promising findings and based on a 

protocol that had been developed to characterise Chinese Hamster Ovary (CHO) cell lines for 

industrial biotechnology purposes (Povey, J.F., O’Malley, C.J., Root, T., Martin, E.B., Montague, G.A 
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et al, 2014), we investigated the prospects of the method for authenticating drug-adapted cancer 

cell lines. If proven to differentiate in the future, we hope to compose a database of mass spec 

fingerprints for each cell line and allow for rapid identification and conformation that the correct 

cell line has been used for each set of data.  

 

1.9 Project aims  

This project investigates different aspects of the use of cancer cell lines for research:  

1) Authentication of cell lines of the same genetic origin: 

Since this project uses cell lines of the same generic origin (single cell derived clones and drug-

adapted sub-lines), we examined to which extent a MALDI-ToF based method (Povey, J.F., O’Malley, 

C.J., Root, T., Martin, E.B., Montague, G.A et al, 2014) and analysis of the proteome is suited to 

discriminate between these cell lines.  

2) Investigation of intra-cell line heterogeneity in the Neuroblastoma cell line UKF-NB-3:  

Although intra-cell line heterogeneity has been acknowledged (Goodspeed, A., Heiser, L.M., Gray, 

J.W and Costello, J.C 2016), it has not been subject to systematic investigations. Hence, we 

investigated the UK-F-NB-3 cell line, sub-lines which have been adapted to a wide range of anti-

cancer drugs (Vogues, Y., Michaelis, M., Rothweiler, F., Schaller, T., Schneider, C., et al., 2016; 

Loschmann, N., Michaelis, M., Rothweiler, F., Voges, Y., Balonova, B et al., 2016; Michaelis, M., 

Agha, B., Rothweiler, F., Loschmann, N., Voges, L  et al., 2015; Loschmann, N., Michaelis, M., 

Rothweiler, F., Zehner, R., Cinatl, J., et al 2013) and its intra-cell line heterogeneity. Single cell-

derived clonal UK-F-NB-3 sub lines were characterised for chromosomal aberrations by: multi-

colour FISH, for drug sensitivity and their growth kinetics.  

3) Establishment of a standardised drug adaptation protocol to compare the potential of drugs with 

the same drug targets to induce resistance in a given cancer cell line population:  

Although it is known that different anti-cancer drugs differ in their potential to induce resistance in 

a given cancer cell population, assays to document and quantify these effects are missing. To fill 

this gap, here we established a standardised adaptation protocol and compared the potential of 

four different stabilizing agents with closely related mechanisms of action: cabazitaxel, docetaxel, 

epothilone-B and paclitaxel (Dumontet, C. and Jordan, M.A., 2010; Kavallaris, M., 2010).  

4) Introduction of a novel SK-N-AS sub-line with acquired resistance to oxaliplatin:  

Among models of acquired drug resistance to platinum drugs, oxaliplatin-adapted models are 

particularly lacking. Hence, we here introduce a novel oxaliplatin-adapted sub line of the non-

MYCN-amplified Neuroblastoma cell line SK-N-AS.  
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Chapter 2 

Materials and methods 

2.1 Cell lines and tissue culture 

 

2.1.1 Tissue culture and continuous passage of cell lines  

Cell lines were maintained in Iscove’s Modified Dulbecco’s Media (IMDM) (Invitrogen, UK) 

supplemented with 10% (v/v) Foetal Bovine Serum (FBS) (Sigma–Aldrich, Dorset, UK) and 100 IU/mL 

penicillin and 100 μg / mL streptomycin (Invitrogen, UK) at 37oC and 5% CO2. Cells were passaged 

at 70-80% confluency every 5-7 days in a laminar flow cabinet. Cells were washed using sterile 

Phosphate Buffered Saline (PBS) prepared from pre-formulated tablets (Oxoid Limited, UK) 

according to manufacturer’s instructions. Cells were then detached from the flask using 0.05% (w/v) 

trypsin - 0.02% EDTA (w/v) solution (Invitrogen, UK) prior to re-suspension in fresh IMDM 

supplemented with FBS and antibiotics. Drug-adapted cells were, unless stated otherwise, 

maintained in the presence of the adaptation concentration of the respective drug to sustain the 

selection pressure.  Passage of cell lines was carried out by multiple lab members including Lara 

Sanders, Lyto Yiangou, Georgia Walden, Victor Aderemi, Hannah Onafuye and Joanna Bird.  

 

2.1.2 Cell lines used in this study and their characteristics  

Cell line MYCN-

amplified 

Drug 

concentration  

ALK status 

UKF-NB-3  Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 1  

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 2  

Yes N/A ALK mutation  

UKF-NB- 3 single cell-derived 

Clone 3 

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 4 

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 7 

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 24 

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 56 

Yes N/A ALK mutation  
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UKF-NB-3 single cell-derived 

Clone 64 

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 80 

Yes N/A ALK mutation  

UKF-NB-3 single cell-derived 

Clone 93 

Yes N/A ALK mutation  

UKF-NB-3r Oxaliplatin2000  Yes 2000 ng/ml  ALK mutation  

UKF-NB-3r Cisplatin1000 Yes 1000 ng/ml  ALK mutation  

UKF-NB-3r Carboplatin2000 Yes 2000 ng/ml  ALK mutation  

IMR-5  Yes N/A  

IMR-5r Oxaliplatin4000 Yes 4000 ng/ml   

IMR-5r Vincristine10 Yes 10 ng/ml   

IMR-5r Docetaxel20 Yes 20 ng/ml   

IMR-5r Vinorelbine20 Yes 20 ng/ml   

IMR-5r Dacarbazine40 Yes 40 ng/ml  

IMR-5r Paclitaxel20 Yes 20 ng/ml   

IMR-5r Cisplatin1000 Yes 1000 ng/ml   

IMR-5r Vinblastine20 Yes 20 ng/ml    

IMR-5r Gemcitabine Yes 20 ng/ml   

IMR-32 Yes N/A WT expressed 

IMR-32r Oxaliplatin800 Yes 800 ng/ml WT expressed 

IMR-32r Carboplatin1000 Yes 100 µg/ml WT expressed 

IMR-32r Topotecan7.5 Yes 7.5 ng/ml WT expressed 

IMR-32r Melphalan500 Yes 500 ng/ml WT expressed 

IMR-32r Etoposide100 Yes 100 ng/ml WT expressed 

IMR-32r Gemcitabine25 Yes 25 ng/ml WT expressed 

SK-N-AS  No N/A  

SK-N-ASr Oxaliplatin4000  No 4000 ng/ml   

 

UKF-NB-3 was established from a bone marrow metastasis of a patient suffering from a MYCN-

amplified stage IV neuroblastoma (Kotchetkov, D.R., Driever, P.H., Cinatl, J., Michaelis, M., 

Karaskova, J et al 2005). IMR-32 another MYCN amplified cell line, established from an abdominal 

metastasis, was obtained from DSM (Braunschweig, Germany,). IMR-5, a clonal sub-line of IMR-32, 

was obtained from Dr Angelika Eggert (University Hospital Essen, Germany). The non MYCN-

amplified SK-N-AS cell line was obtained from ATCC (Manassas, VA, US). 



 37 

All resistant sub-lines were established by continuous exposure to stepwise increasing drug 

concentrations as previously described (Michaelis, M, Rothweiler, F, Barth, S., Cinatl, J., van 

Rikxoort, M et al 2011) and derived from the Resistant Cancer Cell Line (RCCL) collection 

(www.kent.ac.uk/stms/cmp/RCCL/RCCLabout .html). As a control for later experiments described 

in chapter 6, the SK-N-ASrOXALI4000 sub-line, SK-N-ASrOXALI-4000, was cultivated for at least 10 

passages in the absence of oxaliplatin.  

 

2.1.3 Drugs  

All drugs used in this study were purchased from (Cambridge Biosciences, Cambridge, UK) and 

dissolved in DMSO (Sigma, Dorset, UK). Cisplatin was obtained from (Sigma, Dorset, UK) and 

dissolved in 0.9% NaCI solution. Carboplatin was purchased from (SUN Pharmaceutical Industries, 

Leeds, UK) and dissolved in 5% glucose solution (Sigma, Dorset, UK) Oxaliplatin solution in 5% 

glucose was obtained from TEVA UK (Castleford, UK) and stored at -20 0C.  

 

Docetaxel Oxaliplatin  

Paclitaxel Carboplatin  

Epothilone-B Cisplatin  

Melphalan Cabazitaxel  

Dacarbazine Losmapimod 

Vincristine 2-methoxyestradiol 

Vinblastine Gemcitabine 

Gemcitabine Doxorubicin 

Doxorubicin Vinorelbine 

Vinorelbine Topotecan 

Topotecan Etoposide 

Etoposide Crizotinib  

NVP-TAE-684  

 
Table 1: All therapeutics used in all results chapters of this thesis with a range of mechanisms 
discussed in the introduction 

 

2.2. Development and assessment of resistance  

 

2.2.1 Cell viability MTT Assay  

To test the cell viability in the presence of different drugs, the 3-(4,5-dimethlythiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay was used. This colorimetric assay is based on the colour 

change of yellow MTT being reduced to an insoluble purple formazan by mitochondrial 

http://www.kent.ac.uk/stms/cmp/RCCL/RCCLabout%20.html
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dehydrogenases in viable cells only. Following the plate reading at the end of the experiment, the 

higher the absorbance value, the higher the concentration of formazan which therefore indicates 

a higher number of viable cells present. The MTT protocol was adapted from (Mosmann, T, 1983) 

as previously described (Michaelis, M., Matousek, J., Vogel, J.U., Slavik, T., Langer, K et al 2000). 

MTT (Serva Electrophoresis, Cambridge, UK) solution (2mg/mL) was prepared by dissolving MTT in 

PBS and sterile filtration through a 0.2 μM filter and was stored at 4 0C and protected from light.  

 

2.2.2 MTT Experiment set up  

Cells were grown as described in 2.1.1, until they were 70- 80% confluent and seeded into a 96 well 

plate (Greiner Bio-One CellStar, Greiner LTD, UK) with 5000 cells per well. Cells were counted using 

a haemocytometer, after diluting 20 μL re-suspended cells with 20 μL PBS and 40 μL trypan blue 

(Sigma-Aldrich, Dorset, UK).  

An 8-point serial dilution was prepared separately in a deep well drug block (VWR, Leicestershire, 

UK) with drugs of interest added to supplemented IMDM. The dilutions were then added to 

corresponding wells in the 96 well plate with two drugs tested in triplicate on each plate against 

the cell line. None of the outer wells were used due to evaporation but media was added to limit 

this effect on the main wells. Figure 5 explains the three steps in setting up the experiment, table 

2A illustrates the pipetting scheme for the MTT assay. Two controls were also included in each 

plate, with column 11 containing only 100 µl per well of supplemented IMDM for background and 

column 2 containing 50 µl of media and 50 µl of cells. Table 2B illustrates the addition of 50 µl of 

cells in each of the wells including column 2. The scheme for table 2C highlights the addition of the 

8-point serial drug dilution series which was carried out for two different drugs and in triplicate. 

Drug dilutions were carried out at 2x the final concentration to account for dilution from IMDM 

media added previously to wells.  The cells were then incubated for 120 hours at 37 0C and 5% CO2. 

25 μL 0.2 % (w/v) MTT solution was added to each well and incubated for a further 4 hours. 20% 

Sodium Dodecyl Sulphate (SDS) (Fisher Scientific, Loughborough, UK) in 1:1 MilliQ water: 

Dimethylformamide (DMF) (Fisher Scientific, Loughborough, UK) adjusted to pH 4.7 was added to 

each well and incubated overnight to solubilise formazan. MTT plates were read at 600 nm using a 

BMG Labtech Fluostar Omega plate reader (Aylesbury, UK)  

 

2.2.3 Cell viability MTT assay data analysis  

Using the OD readings following the plates being read at 600nm, the relative viability values were 

calculated using the following equation: 

Value in the well – Average mean of only IMDM wells / Average mean of IMDM and cells wells – 

Average mean of only IMDM wells. These data were then used to calculate IC50 values using the 

Calcusyn software.  
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Table 2A: Addition of supplemented IMDM to column 2 and 11 as controls  
 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B  50         100  

C  50         100  

D  50         100  

E  50         100  

F  50         100  

G  50         100  

H             

 

Table 2B: Addition of 50µL of cells to each of the wells highlighted 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B  50 50 50 50 50 50 50 50 50   

C  50 50 50 50 50 50 50 50 50   

D  50 50 50 50 50 50 50 50 50   

E  50 50 50 50 50 50 50 50 50   

F  50 50 50 50 50 50 50 50 50   

G  50 50 50 50 50 50 50 50 50   

H             

 

Table 2C: Addition of the 8-point serial drug dilution carried out for two different drugs 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B   1 2 3 4 5 6 7 8   

C   1 2 3 4 5 6 7 8   

D   1 2 3 4 5 6 7 8   

E   1 2 3 4 5 6 7 8   

F   1 2 3 4 5 6 7 8   

G   1 2 3 4 5 6 7 8   

H             

Figure 5:  Pipetting scheme for MTT assay with table 2A illustrating addition of media, 2B addition 
of cells and 2C addition of 8-point serial dilution.  
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2.3 Drug adaptation protocol 

Cell lines were passaged every seven days as described in 2.1.1, one week with the IC50 

concentration of the investigated drugs (docetaxel, paclitaxel, epothilone-B and cabazitaxel) was 

added and one week without the addition of the drug. Initially, 500,000 cells/ 25cm2 were used in 

the weeks with drug and 50,000 cells/ 25cm2 in the weeks without drug. When the cells started to 

adapt to the investigated drugs, the cell numbers had to be adjusted also to 10,000 cells/ 25cm2 in 

the weeks with drug (please refer to the results section for details). 

 

2.4 Proteomic analyses and bioinformatics  

This was a collaborative project with another lab group within the department where I dealt with 

the cell line harvesting and preparation before Jane Povey from the Smales Lab treated the samples 

on the MALDI-ToF.  

 

2.4.1 Collection of cell pellets for intact cell MALDI-TOF mass spectroscopy analysis 

Cell lines were grown to 80% confluent and passaged as described in 2.1.1 for a minimum of 3 

weeks with the required concentration of drug before harvesting samples of 6.25 x 104 cells. This 

sample was then centrifuged at 900 g (Eppendorf, Stevenage, UK) for 5 minutes, supernatant was 

removed, and cells were washed with 200 μL PBS and centrifuged as before. The supernatant was 

removed, and cells were washed with 200 μL 0.35 M sucrose (Sigma, Dorset, UK) and centrifuged. 

The supernatant was removed, and cell pellets were stored at -80 oC.  

 

2.4.2 Preparation of cell pellets for intact cell MALDI-ToF analysis  

Cell pellets were then tested using MALDI-ToF Mass Spectroscopy Analysis and the data analysed 

as described by (Povey, J.F., O’Malley, C.J., Root, T., Martin, E.B., Montague, G.A et al, 2014).  

Cell pellets were thawed to room temperature after removal from -800C then resuspended in 50 μL 

of matrix solution. The matrix solution consisted of 20 mg / mL saturated sinapinic acid added to a 

matrix buffer of 40% acetonitrile, 0.06% TFA and placed in a sonicating water bath for 15 minutes 

before centrifugation. The resuspended cell sample was then incubated for 3 hours at 4 0C before 

1 μL was spotted onto a 384 MTP ground steel MALDI-ToF plate (Bruker) before air-drying and then 

placed into the MALDI-ToF instrument (Bruker Ultraflex). The spectra of the pellets were collected 

using settings described in Povey, J.F., O’Malley, C.J., Root, T., Martin, E.B., Montague, G.A et al, 

2014 and calibration within the machine. Following acquisition of data this was then analysed using 

MATLAB. 
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2.4.3 Generation of PCA (Principal Component Analysis) data  

Following the acquisition of the spectra collected from the MALDI-ToF ms instrument (Bruker 

Ultraflex) machine, principal component analysis was used to analyse the whole cell samples. PCA 

is well established technique of multivariate analysis (Jolliffe, I.T, 2002) and known as a form of 

multidimensional scaling.  

Principal Component 1, which has the largest possible variance was used in generation of the data 

alongside principal component 2 and 3 as other variables. Using these principal components, or 

variables, we identified which cell lines grouped together to indicate differences and similarities 

where they overlapped. Please see further information in the results in chapter 3.  

 

2.5 Fluorescence in situ Hybridisation (FISH) including full genome painting and analysis 

 

2.5.1 Preparation of fresh KCI buffer and fixing reagent  

A fresh stock solution of 750mM KCI (Sigma–Aldrich, Dorset, UK) was made immediately before use 

and a working concentration of 75mM was made with milliQ water and warmed to 37 0C in a water-

bath before use. Fresh fixing reagent (75% methanol and 25% acetic acid) both (Sigma-Aldrich, 

Dorset, UK) was also made immediately before use in a fume cupboard.   

 

2.5.2 Fluorescence in-situ hybridisation (FISH) preparation of cell lines 

Cells were cultivated as described in 2.1.1 until 70-80 % confluent in 25cm2 cell culture flasks, which 

corresponds to approximately 5 x 106 cells/ 25cm2.  100 ng/mL (w/v) of demecolcine (Sigma-Aldrich, 

Dorset, UK) solution was added to the flask and then put back into the incubator at 37 0C and 5% 

CO2 for 40 minutes with the aim to arrest the maximum number of cells in metaphase. After 40 

minutes all medium was removed, cells were subsequently washed carefully with sterile PBS before 

being detached using 0.05% (w/v) trypsin-0.02% (w/v) EDTA solution. Cells were then re-suspended 

in IMDM supplemented with FBS and antibiotics and centrifuged at 300 g for 5 minutes.  

The waste media was removed and the cell pellet remaining in the falcon tube was re-suspended 

drop wise with 6 mL of warmed 75 mM KCI and then placed into a water bath at 370C for 12 minutes.  

After 12 minutes 8 mL of fresh fixing reagent was carefully added at an angle to form two clear 

distinctive layers. The falcon tube was then inverted several times to mix the two solutions and 

then centrifuged at 300 g for 5 minutes. All supernatant was removed, and 6 mL of fresh fixing 

reagent was added to the pellet to re-suspend and then once again centrifuged at 300 g for 5 

minutes. The washing process was repeated a further 6 times until finally suspending the pellet in 

6 mL of fixing reagent.   
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2.5.3 Preparation of microscope slides for analysis of mitotic phases 

10 μL of the 6 mL suspension (containing the cells and fixing reagent) was then dropped onto a 

SUPERFROSTTM slide (ThermoFisher Scientific, UK), followed by the addition of 10 μL of fresh fixing 

solution. This was left to air dry fully before a cover slip with a thin line of VECTASHIELD® Mounting 

Medium with DAPI solution (VECTOR Laboratories, Peterborough, UK) was placed firmly over the 

slide and all air bubbles removed.  

This initial test slide was used to determine the mitotic index of the sample which in this context is 

the number of cells arrested in metaphase identified within a sample. The mitotic index needs to 

be over 10 to order to progress to the next stage of chromosome painting to ensure there are 

enough separate metaphases to observe. Once confirmed using the test slide the Cytocell 

Chromoprobe Multiprobe® OctoChromeTM (Cytocell, Cambridge, UK) kit was used. Table 3 indicates 

the scope of the experiment as 11 full genomes were analysed from the UK-F NB-3 cell line including 

the parental and the 10 single cell derived clones from the parentals.    

Furthermore, each device from Cytocell allows the user to identify 3 chromosomes in each of the 8 

squares by using whole chromosome painting probes for three different chromosomes in three 

different colour fluorophores; red, green and blue highlighted enabling analysis of an entire 

genome on one device. All single cell derived UK-F NB-3 clones were analysed in addition to the 

original UKF-NB-3 parental cell line from where they originated.  

 

Cell line tested  

UKF-NB-3  UKF-NB-3 single cell-

derived Clone 24 

UKF-NB-3 single cell-

derived Clone 1  

UKF-NB-3 single cell-

derived Clone 56 

UKF-NB-3 single cell-

derived Clone 2  

UKF-NB-3 single cell-

derived Clone 64 

UKF-NB- 3 single cell-

derived Clone 3 

UKF-NB-3 single cell-

derived Clone 80 

UKF-NB-3 single cell-

derived Clone 4 

UKF-NB-3 single cell-

derived Clone 93 

UKF-NB-3 single cell-

derived Clone 7 

 

 
Table 3: All cell lines tested in the Fluorescence in Situ Hybridisation protocol to investigate intra-
cell line heterogeneity by observing chromosome pattern and abnormalities.  
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Following the manufacturer’s instructions, 10 μL of the 6 mL solution was added to each of the 

squares and allowed to air-dry before following the manufacturers guidelines and hybridising the 

samples with the device. Following hybridisation, a minimum of 10 images per square were 

captured using SmartCapture3 and Incremental Capture programs on an Olympus, HAMAMATSU, 

ORCA – ER microscope.   

 

 

 

 

 

 

 

 

 

 
Figure 6: Schematic diagram of the Cytocell Chromoprobe Multiprobe® OctoChromeTM which allows 
the user to identify three chromosomes per square using fluorescent probes which detect the 
whole chromosomes and therefore all 24 chromosomes on one slide.   

 

2.6 UKF- NB-3 Clone doubling times and growth kinetics using Roche xCELLigence Real 

Time Cell Analyser (RTCA) 

UKF-NB-3 Clone growth curves and doubling times were determined using the RTCA system (ACEA 

Biosciences, Inc.) following the manufacturer’s instructions. 
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Chapter 3 

Cell line authentication by Intact cell MALDI-ToF mass spectrometry analysis 

 

3.1 Introduction  

Since the use of cell lines in research and now with thousands of labs performing tissue culture, cell 

line misidentification has been identified as a major issue for over 45 years (Editorial, 2009). The 

first established cell line was the HeLa cell line in 1951, from a cervical tumour biopsy taken from 

patient Henrietta Lacks that were found to grow successfully in a lab and in 2013 were cited in over 

75,000 papers (Callaway, E., 2013).  

It has been discovered that HeLa is one of the most common cell line contaminants in several 

different examples across multiple disciplines and can therefore render results impossible to 

reproduce in the reported cell line. Kniss and Summerfield 2014, report that the human 

endometrial epithelial cell line (HES), which was developed in their laboratory in 1989, was in fact 

contaminated with HeLa. The hepatocellular carcinoma HCC cell line has more than 100 cell lines 

derived from it including BEL7402 and SMMC7721 which alongside BEL704 and QGY7701 were 

identified as HeLa reported by another research group, (Rebouissou, S., Zucman-Ross, J., Moreau, 

R., Qui, Z and Hui, L 2017). Further reports of ‘false cell lines’ from (Drexler, H.G., Dirks, W.G., 

MacLeod, R.A and Uphoff, C.C., 2017) examined 848 leukemia, myeloma and lymphoma cell lines 

from 1990 – 2014 and concluded that cell lines derived from secondary sources maintained a high 

cross contamination percentage of 14-18% resulting in a risk of 1:6 of working with a false cell line.  

To summarise, according to the International Cell Line Authentication Committee (ICLAC) roughly 

400 cell lines are misidentified (Capes-Davis, A., Theodosopoulos, A.G., Drexler, H.G., Kohara, A., 

MacLeod, R.A., et al 2010).  

All of this taken together paints a very worrying picture and how widespread the issue is with the 

potential use of incorrectly identified cell lines. What this has led to is a need to develop methods 

to authenticate cell lines effectively, which, from all examples given is clearly essential. Almost all 

HeLa contaminations were discovered using STR analysis, which is the method of choice for 

detecting cell line aberrations, this process works by using primers and amplifying specific loci in 

cell line (Masters, J.A., Thomson, J.A., Daly-Burns, B., Reid, Y.A., Dirks, W.G., et al 2001). This is an 

inexpensive, fairly rapid addition to any research lab ensuring the identity of the cell lines used and 

has high levels of success. STR can therefore be used to identify cell lines from different genetic 

origins but there is still a prevalence of contaminated cell lines due to labs not rigorously testing 

their cell lines. 

Another method used in the identification of intact bacteria is MALDI-ToF mass spectrometry, 

which has shown great success and clinical relevance. The identification of bacteria has been so 

effective due to the library of known fingerprints taken from intact bacteria, so that the bacterial 

cells can then be compared against this database (Wunschel, S., Jarman, K.H., Peterson, C.E., 
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Valentine, N.B and Wahl, K.L et al 2005). The MALDI-ToF method is rapid, inexpensive and easily 

implemented into clinical practice with (Seng, P., Drancourt, M, Gouriet, F., La Scola, B., Fournier, 

P.E., et al 2009) reporting that it can be used as a first line technique with no prior treatments such 

as Gram staining. This basis of identification using MALDI-ToF for bacteria with the use of a database 

with a unique fingerprint has also been applied to the characterisation of mammalian cells. Zhang, 

X., Scalf, M., Berggren, T.W., Westphall, M.S. and Smith, L.M 2006 stated that with MALDI-ToF they 

were able to distinguish between three different mammalian cell lines with reproducible and 

unique mass spectrometry fingerprints. As well as (Rubakhin, S.S and Sweedler, J.V 2007) reporting 

that MALDI-ToF characterized cell to cell signaling peptides and generated mass spectral fingerprint 

for single cells. Povey, J.F., O’Malley, C.J., Root, T., Martin, E.B., Montague, G.A et al, 2014 used the 

intact whole cell MALDI-ToF method with the Chinese hamster ovary (CHO) cell line to predict 

phenotypes in mammalian cell culture.  

It is this same intact whole cell method that is used in our approach to differentiate between 

parental and drug resistant sub-lines. Drug-adapted cell lines are essential for studying mechanisms 

of acquired drug resistance such as the ATP-binding cassette (ABC) transporters ABCB1 (Szakacs, 

G., Paterson, J.K., Ludwig, J.A, Booth-Genthe, C., and Gottesman, M.M 2006) shown to be over-

expressed in cell lines resistant to multiple therapeutics.  

In order to identify drug resistant sub-lines, STR cannot distinguish between the sensitive parental 

cell line and the subsequent derived drug resistant sub-lines, as they are isogenic. Therefore, we 

applied the intact whole cell MALDI-ToF approach to differentiate between isogenic cell lines and 

eventually create a mass spectrometry fingerprint for each drug-adapted cell line as previously 

described. Principal component analysis was used in this project due to the differentiation it allows 

groups to form dependent on similarities or differences the cell lines highlighted. The data shown 

in this chapter is the work of several lab members including Victor Aderemi who contributed in the 

acquisition of samples and cell culturing.  

 

3.2 Initial analysis of the neuroblastoma cell lines UKF-NB-3 and its resistant sub lines 

UKF-NB-3rCDDP1000, UKF-NB3 rOXALI2000 and UKF-NB-3rCARBO2000 

 

Initially, the neuroblastoma cell line UKF-NB-3 (Kotchetkov, R., Driever, P.H., Cinatl, J., Michaelis, 

M., Karasova, J., et al 2005) was compared to its cisplatin-adapted sub-line UKF-NB-3rCDDP1000 

(Michaelis, M., Agha, B., Rothweiler, F., Löschmann, N., Voges, Y., et al 2015) to see if it was in 

principle, possible to differentiate parental cell lines and their drug adapted sub-lines using an 

established Intact cell MALDI-ToF mass spectrometry fingerprinting method (Povey, J.F., O’Malley, 

C.J., Root, T., Martin, E.B., Montague, G.A., et al 2014). In Figure 7A using principal component 

analysis 1 (PCA1) and principal component analysis 2 (PCA2) it was possible to see the two cell lines 

separate and group with other samples from the same cell line. This clear differentiation indicated 
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primarily, that the method was able to distinguish between the drug-adapted UKF-NB-3rCDDP1000 

cell line and the UKF-NB-3 parental cell line. Following analysis using PC1 and PC2 we used a further 

analysis of PC2 and PC3 to see if we could differentiate the cell lines any further. Figure 7B shows 

the results with the cell lines with two samples (one from each cell line) presenting as outliers but 

with the majority of samples clustered fairly close together and formed clear distinct groups. 

 

Figure 3.2A Intact cell MALDI-ToF  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7A: Principal component analysis using PC1 and PC2 to demonstrate clear separation of UKF-
NB-3 parental cell line (red) and UKF-NB-3rCDDP1000 (blue). As UKF-NB-3rCDDP1000 is derived from 
UKF-NB-3 this was a promising initial analysis indicating that the Intact cell method could work as a 
means to differentiate between cell lines. Each data point in the figure represents an individual 
analysis of the investigated cell line. 
 

Following this initial promise and encouraging results using the mass spectroscopy approach, we 

analysed more cell lines by this method. This time a different resistant sub-line, UKF-NB3 rOXALI2000 

resistant to oxaliplatin an alternative platinum drug, was compared with the parental cell line UKF-

NB-3. Interestingly, in comparison, analysing by PCA1 and PCA2 did show some separation as shown 

in Figure 7C with two distinct groups seen. However, there was some overlap between the two cell 

lines which is highlighted with some of the UKF-NB-3 samples sitting within the UKF-NB-3rOXALI2000 

group. When PCA2 and PCA3 was applied as shown in figure 7D this overlap was shown with UKF-

NB-3rOXALI2000 clustering as a group but UKF-NB-3 was much more spread out instead of grouping 

as we have seen previously in Figure 7A and 7B. The final UKF-NB-3 resistant line investigated was 

UKF-NB-3rCARBO2000 (resistant to carboplatin) against the UKF-NB-3 parental. As shown in Figure 

7E the cell lines did not form two distinct groups when PCA2 and PCA3 analysis was applied.  
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Figure 7B: Principal component analysis of UKF-NB-3 (red) and UKF-NB-3rCDDP1000 (blue) using PC2 
and PC3 to further differentiate the cell lines and a stronger separation is seen. There is one UKF-
NB-3 outlier as most other samples have grouped together, UKF-NB-3rCDDP1000 has more 
separation between the samples but still consistent grouping together with no samples crossing 
into the UKF-NB-3 area.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7C: Principal component analysis of UKF-NB-3 (red) and UKF-NB-3rOXALI2000 (pink) using PC1 
and PC2 to differentiate the cell lines. Interestingly, with these two cell lines there is more overlap 
of UKF-NB-3 samples within the clustered group of UKF-NB-3rOXALI2000 as highlighted.  
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The samples of each cell line overlap with one another and although some of the samples do group 

the majority are scattered throughout. This was the only occurrence of PCA2 and PCA3 not 

differentiating the cell lines and this result was not seen in the other resistant sub-lines UKF-NB3 

rOXALI2000 and UKF-NB-3rCDDP1000 when compared to the UKF-NB-3 parental.  

Finally, the parental line UKF-NB-3 was analysed with two resistant sub-lines UKF-NB-3, UKF-NB-

3rCDDP1000 and UKF-NB3 rOXALI2000 using PCA2 and PCA3 as shown in Figure 7F. The method does 

show three groups of the cell line samples in particular the UKF-NB3 rOXALI2000 which has no outliers. 

Both UKF-NB-3 and UKF-NB-3rCDDP1000 had several outliers and some samples grouped together, 

however we still believe the method shows promise and we decided to use different 

Neuroblastoma cell lines to investigate further.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7D: Principal component analysis of UKF-NB-3 (red) and UKF-NB-3rOXALI2000 (pink) using 
PCA2 and PCA3 analysis. The UKF-NB-3 line was much more widespread in this analysis than in 
previous data and formed smaller clusters rather than one clear distinct group. However, these are 
still separate from the UKF-NB-3rOXALI2000 which have formed a clear differentiated group with no 
outliers.  
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Figure 7E: Principal component analysis of UKF-NB-3 (red) and UKF-NB-3rCARBO2000 (black) with PCA 
2 and PCA3 which previously had separated cell lines effectively. This was a different result by 
comparison as the two cell lines do not form two distinct groups and the samples group with each 
other.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7F: Principal component analysis of three UKF-NB-3 cell lines with some clear separation into 
distinct groups using PCA2 and PCA3. UKF-NB-3 (red), UKF-NB-3rCDDP1000 and UKF-NB-3rOXALI2000 

(pink) appear to group with UKF-NB-3rOXALI2000 forming the most separate and clear 
differentiation. UKF-NB-3rCDDP1000 has several outliers along with a clear group of samples which 
group together. UKF-NB-3 also has some samples which group but several which sit outside of the 
cluster and closer to UKF-NB-3rOXALI2000.  
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3.3 Further analysis of Neuroblastoma cell lines IMR-32 and multiple resistant sub-lines 
and IMR-5 a clonal sub-line of IMR-32 and multiple resistant sub-lines 
 

Following the initial findings with UKF-NB-3, we decided to look into using another Neuroblastoma 

cell line, IMR-5 and a selection of derived drug-adapted cell lines including IMR-5rCDDP1000 (adapted 

to cisplatin), IMR-5rDOCE20 (adapted to docetaxel), IMR-5rVCR10 (adapted to vincristine), IMR-

5rVINB20 (adapted to vinblastine), IMR-5rVINOR20 (adapted to vinorelbine), IMR-5rOXALI4000 

(adapted to oxaliplatin), IMR-5rDACARB40 (adapted to dacarbazine), IMR-5rGEMCI20 (adapted to 

gemcitabine) and IMR-5rPCL20 (adapted to paclitaxel). As shown in Figure 8A using PCA 1 and PCA 3 

some of the cell lines including IMR-5rCDDP1000 and IMR-5rVCR10 do show separation from other cell 

lines with IMR-5 parental grouping away from almost all other resistant sub-lines except for IMR-

5rGEMCI20 which it overlaps with.  

Further analysis of the IMR-5 cell line as shown in figure 8B confirmed that the PCA2 and PCA3 

analysis is superior to the PCA1 vs. PCA3 in separating the cell lines. IMR-5 parental did form a group 

away from all other resistant sub-lines aside from IMR-5rGEMCI20 which displayed an overlap with 

IMR-5 seen also in Figure 8A. Interestingly, the three sub-lines with similar mechanisms of action, 

IMR-5rVCR10, IMR-5rVINB20 and IMR-5rVINOR20 did form distinct clusters with some overlap and 

some outliers but were also separate from IMR-5. IMR-5rCDDP1000 indicated with the red circle icon 

and highlighted in Figure 8B formed a clear group aside from all other resistant sub-lines and from 

the parental line. IMR-5rDOCE20, IMR-5rOXALI4000, IMR-5rDACARB40 and IMR-5rPCL20 still displayed 

characteristic distributions although less distinctive, grouped closer together and overlapped when 

compared with the other cell lines.  

Next was the comparison of the Neuroblastoma cell line, IMR-32 parental with six resistant sub-

lines which included: IMR-32rOXALI800 (adapted to oxaliplatin), IMR-32rGEMCIT25 (adapted to 

gemcitabine), IMR-32rCARBO1000 (adapted to carboplatin), IMR-32rETO100 (adapted to etoposide), 

IMR-32rTOPO7.5 (adapted to topotecan) and IMR-32rMEL500(adapted to melphalan). Initial analysis 

as before with PCA1 and PCA3 as shown in Figure 8C indicated that this may not be the best 

principal component analysis method to differentiate the cell lines. IMR-32rGEMCIT25 appears to 

form two distinct groups with some as outliers and there is some crossover with IMR-32 which also 

forms two groups (purple). All remaining resistant sub-lines show a high degree of crossover with 

one another although some groups are still visible.  

Further investigation using the superior PCA2 and PCA3 analysis (figure 8D), differentiation of the 

cell lines was much clearer. IMR-32 and IMR-32rGEMCIT25 as before, formed two distinct groups 

with some overlap from IMR-32rOXALI800 with IMR-32. Both IMR-32rCARBO1000 and IMR-32rTOPO7.5 

were completely separated from all the other sub-lines and from the parental IMR-5 and are 

highlighted in Figure 8D. IMR-32rETO100, IMR-32rMEL500 and IMR-32rOXALI800 formed distinctive 

clusters but were not completely separated and did overlap slightly with one another.  



 51 

Figure 8A: Principal component analysis of IMR-5, IMR-5rCDDP1000, IMR-5rDACARB40, IMR-5rDOCE20, 
IMR-5rGEMCI20, IMR-5rOXALI4000, IMR-5rPCL20, IMR-5rVINB20, IMR-5rVCR10 and IMR-5rVINOR20 using 
PCA1 and PCA3. This analysis was inferior to previous PCA used and is shown by all the cell lines 
overlapping with one another. However, some cell lines such as IMR-5rCDDP1000 (red) does form a 
distinct group, as do IMR-5rVCR10 (green triangles) and IMR-5rVINB20 (green circles). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8B: Principal component analysis of IMR-5, IMR-5rCDDP1000, IMR-5rDACARB40, IMR-5rDOCE20, 
IMR-5rGEMCI20, IMR-5rOXALI4000, IMR-5rPCL20, IMR-5rVINB20, IMR-5rVCR10 and IMR-5rVINOR20 using 
PCA2 and PCA3. IMR-5 (blue squares) formed a distinct group despite an overlap with 
IMR5rGEMCI20. All other resistant lines formed groups separate to the parental with IMR-5rCDDP1000 

(red circles) forming the most distinct group when compared to other resistant lines.  
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Figure 8C: Principal component analysis of IMR-32 parental with six resistant sub-lines including: 
IMR-32rOXALI800, IMR-32rGEMCIT25, IMR-32rCARBO1000, IMR-32rETO100, IMR-32rTOPO7.5 and IMR-
32rMEL500 using PCA1 and PCA3.  As shown previously this analysis is inferior to the PCA2 and PCA3 
as it does not adequately differentiate the cell and resistant sub-lines. However, it is possible to see 
the IMR-32 parental (purple circles) separate from the other sub-lines but there is overlap with 
IMR-32rOXALI800 and IMR-32rGEMCIT25. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8D: Principal component analysis of IMR-32 parental with six resistant sub-lines including: 
IMR-32rOXALI800, IMR-32rGEMCIT25, IMR-32rCARBO1000, IMR-32rETO100, IMR-32rTOPO7.5 and IMR-
32rMEL500 using PCA2 and PCA3. As demonstrated in previous results the PCA2 and PCA3 analysis 
is superior and can differentiate the cell lines more effectively. Here we see IMR-32rCARBO1000 
(green circles) and IMR-32rTOPO7.5 (blue stars) easily distinguishable from the other cell lines.  
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Finally, we compared the parental cell lines UKF-NB-3, IMR-5 and IMR-32 to investigate whether it 

may, in principle, be possible to authenticate cell parental cell lines by the Intact cell MALDI-ToF 

mass spectroscopy approach. Figure 9 shows this analysis using PCA2 and PCA3 which separated all 

three cell lines, which is particularly impressive given that IMR-5 is a clonal sub-line of IMR-32 

(Oberthuer, A., Skowron, M., Spitz, R., Kahlert, Y., Westermann, F., et al 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: The Intact-cell MALDI-ToF mass spectroscopy method is able to distinguish 
Neuroblastoma parental cell lines from one another. Principal component analysis of IMR-32, IMR-
5 (a clonal sub-line of IMR-32) and UKF-NB-3 using PCA2 and PCA3. All three cell lines formed clear 
distinct groups from one another including IMR-5 which is a clonal sub-line of IMR-32 indicating the 
method is effective even to separate parental cell lines.  
 

3.4 Discussion  

Principal component analysis is a well-established technique to analyse MALDI generated data and 

the results in this chapter does show that the Intact whole cell MALDI-ToF mass spectrometry 

method does work in principle to separate parental and resistant sub-lines, but the method needs 

further refinement.  

There was clear separation within the UKF-NB-3 cell line, with UKF-NB-3 and UKF-NB-3rCDDP1000 as 

well as with UKF-NB-3rOXALI2000. Further evidence of the method differentiating sub-lines 

effectively are seen with IMR-32 and the resistant sub-lines which showed clearer separation in 

PCA2 and PCA3 analysis which was across all results. IMR-5 also showed promise with the method 

separating out drug-resistant sub-lines from IMR-5 parental.  

Finally, the method clearly separated all three different neuroblastoma parental cell lines, UKF-NB-

3, IMR-5 and IMR-32. It is therefore possible to separate parental cell lines of the same genetic 
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origin and cell lines that have been adapted to closely related drugs e.g. UKF-NB3rCDDP1000 UKF-NB-

3rOXALI2000 and IMR-5rVCR10 IMR-5rVINB20. 

However, it is worth stating that MALDI Imaging Mass spectrometry (MALDI-IMS) is a powerful 

technique, which can be used to analyse data that other methods are incapable of doing. 

Interestingly, it was used in the identification of cancer characteristics such as biomarkers through 

the identification of certain proteins and so further development of this method has real promise 

to show that MALDI-IMS will differentiate isogenic cell lines (Shone, C., Hofler, H and Walch, A., 

2013). The field of MALDI-ToF has continued to be developed with the emergence of 3-D MALDI 

imaging, which can give a more detailed picture of interactions within samples which would 

continue to develop the authentication and differentiation of the cell lines presented in this chapter 

(Seeley, E and Caprioli, R., 2012).  

To develop this method further there are extensions to the principal component analysis such as 

multiple factor analysis (MFA), which can be used after PCA (Abdi, H., Williams, L.J and Valentin, 

D.,2013). Developments of MALDI-ToF methods exist such as surface-enhanced laser 

desorption/ionization mass spectrometry (SELDI-ToF), which changes the preparation of samples 

and may give a more sensitive result with the differences in the parental and resistant sub-lines 

(Rodrigo, M.A.M., Zitka, O., Krizkova, S., Moulick, A., Adam, V., et al 2014).  

Finally, it may be more practical to use the intact whole cell MALDI-ToF method alongside STR and 

drug sensitivity data to develop a combined authentication analysis technique. This would ensure 

a unique mass spec fingerprint for each cell line and give authenticity to the development of a 

database of all cell lines as a reference.  

To conclude, the authentication of cell lines is essential to prevent the further widespread negative 

impact of misidentified cell lines. Currently, STR is the method of choice but is unable to 

differentiate the drug-adapted sub-lines from parental cell lines used to study acquired drug 

resistance. What we have described and demonstrated is the intact whole cell MALDI-ToF mass 

spectroscopy method is effective at differentiating between isogenic sensitive and drug-adapted 

resistant sub-lines.  With further work it will continue to show progress as a method to 

authenticate, document and create a mass spectrometry database of resistant sub-lines.  
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Chapter 4 

 Development of a drug adaptation protocol 

 

4.1 Introduction 

This project has been an ongoing experiment within the group, which encompasses many lab 

members efforts and has spanned nearly three years of data collection which is still ongoing. The 

project first began with Deborah Kajewole and Lyto Yiangou and was continued by myself and 

Hannah Onafuye.  

Based on previous observations that indicated it is much easier to adapt cancer cells to docetaxel 

and paclitaxel, than to cabazitaxel and epothilone-B (Martin Michaelis, personal communication) a 

standardised protocol was developed. The UKF-NB-3 cell line was split into 20 different cell lines 

with five per drug investigated as shown in Figure 10. IC50 concentrations were determined by MTT 

assay following 120h incubation of the four drugs and this was replicated three times to give the 

final values. Docetaxel IC50 value was 0.37 nM, epothilone-B 1 nM, paclitaxel 50 nM and finally 

cabazitaxel 1 nM.  

The aim of the protocol was to compare directly the potential of the investigated drugs to induce 

resistance in the selected cell line model in this case UKF-NB-3. 2.5 x 10 6 cells per 25cm 2 flask were 

treated with the IC50 concentration of the investigated drugs every second week. In the other week, 

2.5 x 105 cells per 25cm2 flask were cultivated in the absence of drug. In some cell lines, as they 

began to adapt to the treatment, it was necessary to reduce the cell numbers to 2.5 x 10 5 cells also 

in the absence of drug as they were becoming overgrown and stressed. This is indicated in the 

respective figures and at the end of every week the cell numbers were recorded.  

 

4.2 Cell number and IC50 values for epothilone-B 1 nM concentration in UKF-NB-3 cells 

Epothilone-B was set up as per the protocol described above with five separate cell lines, UKF-NB-

3r epo-B 1, UKF-NB-3r epo-B 2, UKF-NB-3r epo-B 3, UKF-NB-3r epo-B 4 and UKF-NB-3r epo-B 5. The 

IC50 concentration of epothilone-B was 1 nM. The cells were passaged at 2.5 x 105 cells/ 25 cm2 flask 

in the presence of drug, and at 2.5 x 104 cells in the absence of drug. In week 19, the cell number 

had also to be reduced to 2.5 x 104 cells in the presence of drug this is due to the cells displaying 

signs of stress due to high confluence at the end of the week.  
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Figure 10: Schematic diagram of the drug adaptation protocol using four investigated drugs 
including IC50 concentrations of docetaxel, epothilone-B, paclitaxel and cabazitaxel. MTT assays 
were carried out on the parental UKF-NB-3 line to determine the IC50 concentration for each drug. 
Once established, UKF-NB-3 was passaged into five new flasks and these were then grown in the 
IC50 concentration bi-weekly.  
 

The UKF-NB-3r epo-B sub-lines displayed similar growth patterns but also a substantial level of 

heterogeneity as shown in Figure 11. In the first few weeks, the cell lines were characterized by 

higher cell numbers in the weeks in which they were treated with drug. This is most probably due 

to the 10-fold higher cell number that was used at the outset of the protocol. This pattern changes 

after week 19, in which the cell number was reduced to 2.5 x 10 4 cells/ 25cm 2 flask in the presence 

of drug. Reduced cell numbers between week 10 and week 17 characterized all sub-lines. Despite 

these similarities, there are also noticeable differences, for example, a drop-in cell number was 

observed in UKF-NB-3r Epo-B 1 in week 4. The differences become more pronounced during the 

later stages of the project, for example UKF-NB-3r Epo-B 2 has a noticeable decrease in cell number 

in week 26 which is not seen in other sub-lines. UKF-NB-3r Epo-B 5 could not be further passaged 

according to the standardised adaptation protocol due to lack of viable clonogenic cells in week 17. 

Finally, the remaining four: UKF-NB-3r Epo-B 1, UKF-NB-3r Epo-B 2, UKF-NB-3r Epo-B 3 and UKF-

NB-3r Epo-B 4 could not be further cultivated in week 47 due to a lack of viable cells. 

 

 
 
 

 

Docetaxel 0.37 nM 

UKF-NB-3  

Paclitaxel 50 nM 

UKF-NB-3  
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Figure 11: Cell numbers of all UKF-NB-3r epo-B 1-5 sub lines grown in IC50 concentration of 1 nM/mL 
recorded in the presence and absence of drug every week. A substantial amount of heterogeneity 
is seen throughout the five cell lines. Please note there is no number recorded for weeks 18-20. In 
week 19, the cell number was reduced to 2.5 x 104 cells/ 25cm2 flask in the presence of drug as the 
cells had started to become overly confluent. UKF-NB-3r epo-B 5 could no longer be passaged after 
week 17 and all remaining cell lines failed in week 47 in the presence of the drug. 

 
Alongside the cell numbers recorded weekly, we also investigated the fold change of the individual 

sub-lines by analysing the cell number at the beginning and the end of every passage as shown in 

Figure 12 and per individual cell line in Figure 13. Despite noticeable differences in detail, the basic 

trend is very similar in all cell lines up to week 17, when UKF-NB-3r Epo-B 5 was lost. At the 

beginning, cell growth is very limited in the weeks of drug treatment and seems to recover in the 

weeks without drug. In the surviving four cell lines, the cell number had to be reduced to 2.5 x 10 4 

cells/ cm 2 also in the presence of drug since the cells became too confluent. From week 19 

onwards, the differences between cell growth in the weeks with and without drug were less 

pronounced. However, the four remaining cell lines could not be further cultivated in week 47. 

 

 

 

 

 

 

 

 

 

 

Figure 12: Fold change in cell number for all five of the UKF-NB-3r Epo-B sub-lines from weeks 1 to 
47 (with the exception of UKF-NB-3 epo-B 5 following week 17). This was calculated using the cell 
number at the beginning and the end of every passage and following week 19 2.5 x 10 4 cells were 
passaged in the presence and absence of drug. The differences are less pronounced but there are 
still changes within the different sub-lines.
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Figure 13: Individual fold change in cell number of all UKF-NB-3r Epo-B sub lines 1 – 5 over 47 weeks with UKF-NB-3r epo-B 5 unable to passage after week 17. All sub-lines 
exhibit similar fold change patterns for the first 19 weeks of the protocol with the fold change higher in the absence of drug. Following the change in protocol in week 19 
reducing the cell number to 2.5 x 104 / cm2 all remaining sub-lines exhibited a difference in fold change. Towards the end of the weeks i.e. 43 onwards all cell lines appeared 
to have a reduced fold change in the absence and presence of drug and eventually were no longer viable enough to continue.         
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Alongside recording cell number, a single MTT assay was carried out every 4 weeks when possible 

on all cell lines as the project progressed to determine epothilone-B IC50 concentration in the cell 

lines. It was only possible to carry out one single MTT as the cells were taken from a single flask 

with often not enough cells to perform the assay, we also had to ensure that there were enough 

cells to passage.  Alongside the UKF-NB-3r epo-B lines MTT assays were also carried out on the 

sensitive UKF-NB-3 line to compare the sub-lines resistance. A 2-fold increase was defined as 

threshold for the definition of a sub-line as resistant. None of the sub-lines consistently displayed 

a >2-fold increase in the epothilone-B IC50 concentrations during the time the sub-lines could be 

cultivated according to the standardised protocol. As shown in Figure 14 none of the five UKF-NB-

3 sub-lines adapted to growth in the presence of epothilone-B using our standardised adaptation 

protocol.  

 

Figure 14: IC50 values determined using 120-day MTT assays for all sub-lines UKF-NB-3r 1-5. Due to 
weeks with low cell number no MTT was carried out in order to continue the protocol. None of the 
five UKF-NB-3r epo-B cell lines showed a consistent > 2-fold increase and therefore were not 
resistant. Please note as only one MTT was carried out every four weeks and therefore no error 
bars are shown for these results.  
 

4.3 Cell number and IC50 values for cabazitaxel 0.25 nM concentration in UKF-NB-3 cells 

Five sub-lines of UKF-NB-3 with the IC50 concentration of 0.25nM/ mL cabazitaxel were set up as 

per the standardised protocol with cells passaged at 2.5 x 10 5 cells/ 25 cm 2 flask in the presence of 

drug and 2.5 x 104 cells in the absence of drug. In week 13, as seen with epothilone-B in week 19, 

the cell number of UKF-NB-3r Caba also had to be reduced to 2.5 x 10 4 cells in the presence of drug, 

as the cells were becoming stressed and beginning to lose viability.  

The sub-lines grew comparably for the first 13 weeks as shown in Figure 15 with all cell lines 

presenting the same growth pattern as seen in the UKF-NB-3r Epo-B sub-lines with higher cell 

numbers in the presence of the drug due to the passage of 2.5 x 105 cells/ 25 cm2 per flask. UKF-NB-

3r Caba 4 did show a slight variation within these weeks with a decline in cell number for three 

weeks consecutively before displaying the same growth pattern as the other sub-lines. 
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Following the alteration in week 13 the growth pattern of the sub-lines changes. All sub-lines have 

varying decreases in cell number between weeks 14 – 17 before adopting a similar pattern again in 

weeks 18 -21 with the cell number increasing gradually. After week 23 passaging sub-lines UKF-NB-

3r Caba 1, 3,4 and 5 was no longer possible. UKF-NB-3r Caba 2 also had a decrease in the same 

week but recovered with a high cell number in week 24 and continued to grow until in week 37 it 

to lost viability. 

Figure 15: Cell number per mL recorded for each week for UKF-NB-3r Caba sub-lines in the presence 
and absence of the IC50 concentration of 0.25 nM/mL cabazitaxel. Following the reduction in cell 
number in week 13 UKF-NB-3r Caba 1,3,4 and 5 failed in week 23 with UKF-NB-3r Caba 2 unable to 
be passaged after week 37. 
 

The sub-line cell numbers were then analysed individually using the fold changes at the beginning 

and end of each week with all sublines show in Figure 16 and individually in Figure 17.  The trend 

seen within the sub-lines is the same as the UKF-NB-3r Epo-B sub-lines with the weeks in drug 

displaying a reduced fold number and without drug recovering with a higher fold number. In week 

13 the cell number was reduced to compensate the over-confluence of the cells in the presence of 

the drug and differences are seen within the sub-lines but overall the growth changes with and 

without drug are not as evident as before week 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Fold change in cell number of UKF-NB-3r Caba sub-lines over 37 weeks with all sub-lines 
failing in week 23 except UKF-NB-3r Caba 2. The trend follows with sub-lines displaying reduced 
fold number in the weeks with the drug added and increased fold change without drug.  
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Figure 17:  Individual fold change for all UKF-NB-3r Caba sub lines for 37 weeks with sub lines 1, 3, 
4 and 5 failing in week 23. Sub-lines all exhibit a similar pattern up to week 13 when all sub-lines 
were passaged with 2.5 x 10 4 cells in the presence of drug. All lines which failed in week 23 have a 
similar fold pattern. UKF-NB-3r Caba 2 has an increase in fold change until failure in week 38. 
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UKF-NB-3r Caba sub-lines IC50 values were determined using an MTT assays every 4 weeks and when 

a 2-fold increase was observed in comparison with the UKF-NB-3 sensitive parental cell line the sub-

line was deemed to resistant. Figure 9 highlights the  

Figure 18 highlights that none of the cell lines, as with UKF-NB-3r Epo-B, consistently displayed a 2-

fold or higher increase in IC50. A very small increase was observed in UKF-NB-3r Caba 2, which was 

also the sub-line that continued the longest but never reached a 2-fold increase. Therefore, as with 

the UKF-NB-3r Epo-B sub-lines, none of the UKF-NB-3r Caba sub-lines adapted to the IC50 

concentration in which they were cultivated 

 

Figure 18: IC50 values for all UKF-NB-3r Caba cell lines following a monthly MTT assay. The cell lines 
were run alongside the UKF-NB-3 parental cell line to compare sensitivity and a consistent >2-fold 
increase was the threshold for resistance formation. None of the cell lines exceeded this figure 
consecutively and were as sensitive if not less than UKF-NB-3. 

 

 

4.4 Cell number, IC50 values and drug-sensitivity profiles for 0.37 nM docetaxel 
concentration in UKF-NB-3 cells  
 

Five separate UKF-NB-3 cell lines were set up as per the protocol outlined previously with an IC50 

concentration of docetaxel at 0.37 nM /mL. As with previous cell lines the cells were overly 

confluent in the presence of drug and this was reduced to 2.5 x 104 cells/ 25cm2 in week 19. 

Cell number was recorded at the end of every week as shown in Figure 19. UKF-NB-3r Doce 3 

decreased in cell viability very quickly and it was not possible to continue to passage the sub-line 

after week 3. The cell numbers were higher in the presence of drug and after the cell number 

change in week 19 UKF-NB-3r Doce 5 dropped in viability preventing further passage until after 

week 25. UKF-NB-3r Doce 2 had consecutive weeks with low cell numbers in the presence and 

absence of drug and eventually could no longer be passaged after week 96. Both UKF-NB-3r Doce 

1 and 4 appear to level out after week 76 and continue to grow consistently in the presence and 

absence of drug. The fold changes observed for all five in the sub-lines are seen in Figure 20, and 

individual fold changes in Figure 21 with the expected trend of a lower fold change in the presence 
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of drug and a higher fold change when grown without drug as seen in the other investigated cell 

lines. Following week 19 the fold pattern changes within all the cell lines, with sub-lines 3 and 5 

there was very low viability resulting in a reduced cell number and therefore low fold changes. All 

remaining sub-lines have less variation in the fold changes with consecutive weeks of sustained fold 

patterns. UKF-NB-3r Doce 4 has the most level of the fold changes from week 88 onwards.  

IC50 values were generated every four weeks for the sub-lines by 120h MTT assay if possible and are 

presented in Figure 22 as with all the other drugs investigated, an IC50 value of > 2-fold was deemed 

resistant. UKF-NB-3r Doce 3 never grew to the minimum of 4 weeks before an MTT could be 

performed and the cell line failed in week 3. UKF-NB-3r Doce 5 never reached a >2-fold increase in 

comparison to the sensitive UKF-NB-3 parental and was therefore not resistant to docetaxel. UKF-

NB-3r Doce 1 and 2 sub-lines after approximately a year, began to indicate a >2-fold increase, 

however after a period of several weeks UKF-NB-3r Doce 2 began decrease in fold change compared 

to the parental and following a low IC50 value the cell line also ceased growing. UKF-NB-3r Doce 4 

has always shown the highest likelihood of acquiring resistance after around 60 weeks of the 

protocol the sub-line indicated >5-fold resistance. UKF-NB-3r Doce 1 also began to show higher fold 

increases but these were much less consistent than UKF-NB-3r Doce 4. 

Following these findings sub-lines UKF-NB-3r Doce 1 and 4 were further characterised using an 8-

drug panel to test various target mechanisms. This panel included: docetaxel, paclitaxel, crizotinib, 

cisplatin, epothilone-B, topotecan, vincristine and cabazitaxel. Figure 23 and 24 show the results of 

the MTT assays for each of the investigated drugs on the sub-lines after a week in the presence and 

absence of drug and compared to the parental line UKF-NB-3 to highlight possible cross resistance. 

With docetaxel, all sub-line conditions were higher in IC50 value than the UKF-NB-3 parental and 

UKF-NB-3r Doce 4 after a week in drug when compared with UKF-NB-3r Doce 1 had a much higher 

IC50 value. This was also seen in topotecan, but the parental line had a comparable IC50 value to the 

other sub-lines. An interesting finding was with paclitaxel where the two sub-lines after a week out 

of drug had a much higher Ic50 than the parental and the weeks after being in the drug. Both 

crizotinib and vincristine resulted in IC50 values in the UKF-NB-3r Doce 4 sub line being more 

resistant than the other two lines. After weeks in no drug there was higher resistance to crizotinib 

and the opposite in vincristine. Epothilone-B had similar results when sub-lines had been in and out 

of drug and UKF-NB-3r Doce 1 was higher than both UKF-NB-3r Doce 4 and UKF-NB-3. Finally, out 

of all the sub-lines tested UKF-NB3-r Doce 1 grown in the absence of docetaxel had the highest 

sensitivity to cisplatin whilst the same sub-line after a week grown in the presence of docetaxel was 

more resistant.  
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Figure 19: Cell number recorded per week both in the presence and absence of docetaxel for sub lines UKF-NB-3r Doce 1 – 5. In week 19 the cell number was reduced to 
2.5 x 104 cells/ 25cm2 flask in the presence of drug due to over confluence and the cells becoming stressed. The cell lines have varying numbers throughout the weeks but 
both UKF-NB-3r Doce 1 and UKF-NB-3 Doce 4 look very similar from weeks 94 – onwards. UKF-NB-3r Doce 3 failed in week 3, UKF-NB-3r Doce 5 failed in week 35 and UKF-
NB-3 Doce 2 in week 96. 
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Figure 20: Fold change in cell number for all five UKF-NB-3r Doce sub lines over 137 weeks. Initially cell lines had lower fold changes in the presence of drug and higher in 
the absence of docetaxel. This is most likely due to the 10-fold difference in passaging. Following week 19 due to over confluence of cell lines the cell number was reduced 
in the weeks when docetaxel was added. However, cell lines still show a similar pattern over some weeks but only UKF-NB-3r Doce 1 and 4 continue after week 96. 
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Figure 21: Individual fold changes for UKF-NB-3r Doce sub lines 1 – 5. Both UKF-NB-3r Doce 1 and 4 show a consistent fold change and more so in UKF-NB-3 Doce 4 which 
also had the most consistent IC50 values. UKF-NB-3r Doce 2 and 5 show an undulating response to the presence and absence of docetaxel and ultimately the cell lines were 
not possible to passage. UKF-NB-3r Doce 2 also indicates a period of consistent fold changes from week 37 – 57 but also failed in week 96.
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Figure 22: Fold change in IC50 values calculated using 120hr MTT assays every 4 weeks when cell 
number was high enough for an MTT to be carried out. Only UKF-NB-3r Doce 1 and 4 have the 
highest fold changes than the >2-fold threshold to be deemed resistant with UKF-NB-3 Doce 4 
showing the highest fold changes 
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Figure 23: Cross resistance profiles for UKF-NB-3r Doce 1 and UKF-NB-3 Doce 4 in the presence and absence of drug when tested against crizotinib, vincristine, epothilone-
B and cisplatin and compared with the parental UKF-NB-3 cell line. UKF-NB-3 Doce 4 was more resistant to both cisplatin and crizotinib in the presence and absence of 
docetaxel and only in the presence of drug when tested against vincristine. UKF-NB-3r Doce 1 was more resistant to epothilone-b for both conditions and more sensitive 
than the parental to cisplatin. (n=3) 
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Figure 24: Cross resistance profiles for UKF-NB-3r Doce 1 and UKF-NB-3r Doce 4 in the presence and absence of docetaxel when tested against docetaxel, topotecan, 
cabazitaxel and paclitaxel and compared with the parental UKF-NB-3.  UKF-NB-3r Doce 4 was more resistant to docetaxel, topotecan and paclitaxel than both UKF-NB-3r 
Doce 1 and UKF-NB-3 and slightly more sensitive to cabazitaxel. (n=3)
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4.5 Discussion 
 

Having chosen similar acting drugs and some within the same family this allowed us to investigate 

the clear differences highlighted in the protocol. A study to look into the differences in adapting 

sub-lines to certain drugs has not been done to this extent, where we have been able to closely 

monitor the growth pattern changes and map these to IC50 values in routinely testing the cell lines 

monthly. 

Using our standardised protocol, it can be concluded that when comparing the adaptation of UKF-

NB-3 cell lines to study the development of acquired resistance to epothilone-B, cabazitaxel, 

docetaxel and paclitaxel, it is much easier to adapt cell lines to docetaxel and paclitaxel than to 

epothilone-B and cabazitaxel. This result is clearly shown in that epothilone-B and cabazitaxel sub-

lines were not possible to continue passaging for as long as the other two drug adapted sub-lines.  

The adaptation of UKF-NB-3 to docetaxel and paclitaxel has been so successful in this project that 

the cell lines are still proliferating steadily in the presence and absence of drug and are continually 

showing resistance when compared to the parental.  

Cabazitaxel is used effectively in the treatment of prostate cancer and interestingly is often 

prescribed after treatment with docetaxel, indicating that cabazitaxel is much more toxic than 

docetaxel and would also explain the difficulty in adapting cell lines to the drug (Pezaro, C.J, Omlin, 

A.G., Altavilla, A., Lorente, D., Ferraldeschi, R et al 2014; Oudard, S and Angelergues, A, 2014).  

Epothilone-B, another tubulin binding agent similar to the taxanes is a highly toxic therapeutic 

which is notorious for difficulty in adapting cell lines to but showed potency in the treatment of 

taxane-resistant cancer cell lines (Cheng, K.L, Bradley, T and Budman, D.R, 2008). This again would 

highlight the difficulty to adapt the sub-lines to this drug due to its efficacy in preventing cell growth 

and also explain the trend seen when the cell lines over time eventually cannot overcome the weeks 

having been in the presence of the drug.  Finally, the UKF-NB-3r docetaxel adapted sub-line was the 

earliest cell line to show the development of acquired resistance with UKF-NB-3r Doce 4 indicating 

it was the most resistant from early stages in the protocol and indeed had the highest fold increase 

when compared to the parental as well as in the 8-drug panel where It is consistently has the 

highest IC50 fold changes in the majority of drugs. Makarovskiy, A.N, Siyaporn, E, Hixson, D.C and 

Akerley, W 2002, discuss an evaluation of docetaxel and paclitaxel effects on prostate cancer cell 

lines and report that when generating docetaxel resistant sub-lines, they too saw enhanced 

sensitivity to paclitaxel which occurs when the sub-lines investigated by this lab had been present 

in docetaxel. Taken together what is apparent is that the mechanisms underlying the resistance to 

paclitaxel and docetaxel are more effective than those in cabazitaxel and epothilone-B. This was a 

systematic approach to observe the cell lines over a long period of time and how they began to 

generate resistance. The remaining docetaxel and paclitaxel lines will be analysed with exome 

sequencing and for their growth kinetics using xCELLigence to better understand these findings. 
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Chapter 5 

Investigation of intra-cell line heterogeneity in the neuroblastoma cell line UKF-NB-3 

 

5.1 Introduction 

The work carried out in this chapter covers the characterisation of 10 UKF-NB-3 single cell 

derived clones in order to investigate and study intra-cell line heterogeneity. The use of single-

cell derived clones allows us to compare the findings back to the original parental cell line UKF-

NB-3 and see any changes which have developed. This chapter has three sections which 

includes: fluorescence in situ hybridisation (FISH) of all 10 single cell derived clones and the 

UKF-NB-3 parental, cross-resistance profiles and doubling times. 

 

5.2 Fluorescence in situ hybridisation (FISH) of UKF-NB-3 clones allowing full 

chromosomal analysis and characterisation of the whole cell genome 

10 single-cell derived UKF-NB-3 clones were used for this project, with metaphases captured to 

allow analysis of chromosomal patterns seen across the cell lines. Each device allows identification 

of three chromosomes in each of the 8 squares using whole chromosome painting probes for three 

different chromosomes which each had three chromosomes in three different colour 

fluorophores; red, green and aqua. For this results chapter, each figure therefore identifies three 

chromosomes in the three fluorophores stated. All images captured were used to determine 

percentages of aberrations and translocations in the cell lines. Each metaphase is expected to 

contain two copies of each chromosome (diploidy) and so the expected appearance would be the 

presence of two clear fluorescent chromosomes for each colour investigated. FISH is an extensive 

tool, which has been used in several applications and is in development with other projects. FISH 

has been used to identify biomarkers in prostate cancer patients, which in turn would predict 

radiosensitivity of the cancers, which could be adapted for a variety of techniques in acquired 

resistance research (Beaton, L.A., Marro, L., Samiee, S., Malone, S., Grimes, S et al 2015). 

The advantage of analyses such as FISH is that it is a non-invasive technique and could be repeated 

during the course of treatment to analyse progress and potential genomic changes. This is of 

important relevance as genomic instability occurs in rapidly dividing cells and can lead to the 

emergence of resistant outgrowths and the insensitivity to therapeutics. Wawrzyniak, E., 

Kotkowska, A., Blonski, J.Z., Siemieniuk-Rys, M., Ziolkowska, E., et al 2014 discuss the use of FISH to 

study changes in the progress of chronic lymphocytic leukemia (CLL), which can be used to identify 

patient outcome and to effectively monitor clonal evolution. 
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5.2.1 Results of chromosome 3, 15 and 17 in UKF-NB3 and 10 single cell derived clones  

For each result shown, a minimum of 5 images of each square was taken in order to demonstrate 

the multiple number of times a metaphase may show the same result. Furthermore, in each of the 

figures the UKF-NB-3 single cell derived clones are compared with the UKF-NB3 parental. The first 

three shown are chromosome 3 in red, 15 with aqua and 17 with green which are highlighted in 

UKF-NB-3 parental in Figure 25A and the 10 UKF-NB-3 clones in Figure 25B. 

In the UKF-NB-3 parental, the majority of metaphases displayed diploidy in chromosome 3 and this 

was also seen in UKF-NB-3 Clones 1, 3, 4, 7, 64 and 93. Differences were seen in UKF-NB-3 Clone 2 

which had a variation of no chromosomes in 25% and 1 copy in 25% of the metaphases. This was 

similar to UKF-NB-3 clone 24 which had 50% with diploidy and 50% with only 1 chromosome 

highlighted. UKF-NB-3 Clone 56 and 80 indicated higher levels of heterogeneity with 75% of the 

metaphases showing an additional chromosome with the remaining metaphases containing no 

chromosome 3, a single or an extra copy. 

Chromosome 15 in the UKF-NB-3 cell line displayed a high (90%) of very small multiple 

chromosomal translocations on various other chromosomes which is highlighted in Figure 25A. This 

was seen in the majority of metaphases of all UKF-NB-3 Clones except for clone 56 which had 

metaphases hard to distinguish. UKF-NB-3 Clone 3 had a higher majority of metaphases showing 

just two copies with no changes as shown in Figure 25B. 

Chromosome 17 had a very clear single translocation seen in 70% of the UKF-NB-3 cell line 

which is highlighted in Figure 25A. When compared to the single cell derived clones in the figure 

25B, the same translocation is seen in the UKF-NB-3 Clones 1, 2, 4, 7, 64, 80 and 93. UKF-NB-3 

Clone 3 and 24 had a higher percentage of metaphases with no translocation. UKF-NB-3 Clone 

56 had more varied results throughout the metaphases captured but there is a single 

translocation of chromosome 17 but with only one copy which is not seen in any other clones 

 

 

 

 

 

 

 

 

 

Figure 25A: UKF-NB-3 with chromosome 3 in red which displayed mainly diploid chromosomes, 
chromosome 15 in aqua which displayed multiple translocations shown by the red arrows and 
chromosome 17 stained with green which indicated a single translocation in 70% of the metaphases 
captured and is highlighted by the red arrow.   

UKF-NB-3  
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Figure 25B: All 10 UKF-NB-3 single-cell derived clones with chromosome 3 (red) which the majority 
of UKF-NB-3 clones displayed two copies of but some such as UKF-NB-3 Clone 24 had some images 
with only one copy as shown by the red arrow. Chromosome 15 (aqua) translocations were in a 
large majority of the clones but UKF-NB-3 clone 3 had two copies only. Chromosome 17 (green) had 
the same single translocation in the large majority of the clones and is highlighted in relevant 
images.  
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5.2.2 Results of chromosome 8, chromosome 12 and chromosome 21 in UKF-NB3 and 10 

single cell derived clones  

 

The next three chromosomes investigated on the second square of the device were 8 (red), 12 

(aqua) and 21 (green). UKF-NB-3 parental had two copies of chromosome 8 in all metaphases 

captured and this was seen in all the UKF-NB-3 clones with no changes observed in any images. 

In 85% of the metaphases taken of UKF-NB-3 there was a single translocation of chromosome 12 

as shown in Figure 26A. Interestingly, a difference was observed from the parental as all the derived 

UKF-NB-3 clones all contained an extra chromosome 12 in the majority of metaphases as 

highlighted in Figure 26B. Except for UKF-NB-3 Clone 4 which was the only sub-line to contain the 

same mutation as the parental line in 100% of the metaphases.  

Chromosome 21 in UKF-NB-3 had two copies in 70% of metaphases captured but the UKF-NB-3 

clones had a great deal of variability as shown in Figure 26B. Clones 1, 2, 24 and 93 had multiple 

translocations of chromosome 21 in over 60% of the metaphases. Metaphases captured of UKF-

NB-3 clones 3, 4 and 80 had multiple translocations in 100% of images taken. UKF-NB-3 Clone 7 had 

the same translocations in 90% of metaphases which only differed by the presence of one or two 

copies of the chromosome UKF-NB-3 56 had over 80% of metaphases displaying multiple 

translocations but the majority were with only one copy of chromosome 21. UKF-NB-3 Clone 64 

had over 70% multiple translocations but as shown in Figure 26B the remaining metaphases 

showed either one or two copies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26A: UKF-NB-3 with chromosome 8 (red) with two copies as seen in all metaphases. 
Chromosome 12 (aqua) had a single translocation in 85% of images captured and is highlighted with 
the red arrow. Chromosome 21 (green) had two copies in 70% of metaphases. 
 

UKF-NB-3  
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Figure 26B: All 10 UKF-NB-3 single-cell derived clones with chromosome 8 in red with two copies in 
all images captured of all clones.  Chromosome 12 in aqua had an extra copy in all metaphases 
captured but only UKF-NB-3 Clone 4 had the same translocation as UKF-NB-3 as highlighted with 
the red arrow. Chromosome 21 in green had high variation in the UKF-NB-3 Clones with the majority 
displaying multiple translocations but UKF-NB-3 Clone 56 had only one copy of the chromosome 
alongside the translocations as highlighted.  
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5.2.3 Results of chromosome 1, chromosome 16 and chromosome 19 in UKF-NB3 and 10 

single cell derived clones  

 

UKF-NB-3 parental had two copies of chromosome 1 (red) in 100% of the metaphases captured as 

clearly shown in Figure 27A. This pattern was also replicated in UKF-NB-3 Clone 1 in 100% of the 

metaphases and UKF-NB-3 Clone 3 in 70% of images taken. UKF-NB-3 Clone 2 had a single 

translocation in 57% of the metaphases. UKF-NB-3 Clone 4 had 78% of metaphases indicating a 

single translocation of chromosome 1 alongside a single copy and UKF-NB-3 Clone 7 and 24 had the 

same result but in 90%. UKF-NB-3 Clone 56 had differences across all images captured with 40% 

showing two copies with the single translocation and 30% of metaphases the same as UKF-NB-3. 

UKF-NB-3 Clone 64 metaphases contained no evidence of a single translocation and displayed the 

same chromosome pattern as UKF-NB-3. UKF-NB-3 Clone 80 and 93 had metaphases showing a 

single translocation in 100% of the images but with varying copies of the chromosomes, UKF-NB-3 

Clone 80 with two and UKF-NB-3 Clone 93 with one.  

Chromosome 16 (aqua) had a varying degree of heterogeneity across the UKF-NB-3 cell line with 

60% of the metaphases displaying an extra chromosome and 40% highlighted a single translocation 

as shown in Figure 27A. When compared with the findings from the UKF-NB-3 Clones the same 

single translocation but not an extra chromosome as shown in Figure 27B. 

Chromosome 19 (green) was observed in UKF-NB-3 to have 60% of metaphases showing 

multiple translocations but only UKF-NB-3 Clone 80 had the same mutation as UKF-NB-3. All 

the remaining clones displayed two copies of chromosome 19 on the majority of metaphases 

captured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 27A: Metaphase captured of UKF-NB-3, Chromosome 1 (red) had two copies in 100% of 
metaphases captured. The red arrow indicates the single translocation of chromosome 16 (aqua) 
seen in 60% of the metaphases captured. Chromosome 19 (green) had two copies in 40% of 
metaphases captured and 60% presented with multiple translocations.  
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Figure 27B: Metaphases captured of all 10 UKF-NB-3 Clones. Chromosome 1 (red) had varied results 
throughout the clones with UKF-NB-3 Clone 1,3 and 64 displaying two copies but UKF-NB-3 Clone 
4, 7 and 24 displayed a single translocation as highlighted. All clones contained a single 
translocation of chromosome 16 (aqua) clearly seen in each metaphase. Chromosome 19 (green) 
had two copies in all UKF-NB-3 clones except for UKF-NB-3 Clone 80 which displayed multiple 
translocations as highlighted.  
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5.2.4 Results of chromosome 2, chromosome 13 and chromosome 20 in UKF-NB3 and 10 

single cell derived clones  

UKF-NB-3 had a single translocation of chromosome 2 (red) in all metaphases captured with only 

the copy number differing with 70% showing two and 30% with one copy as shown in Figure 28A. 

Interestingly, in 90% of the images, separate translocations of chromosome 2 also attached to two 

copies of chromosome 13 (aqua) this was also seen in all the UKF-NB-3 Clones as shown in Figure 

28B. 90% of UKF-NB-3 Clone 1 metaphases displayed multiple translocations of chromosome 2. All 

remaining clones had a higher percentage of metaphases containing the same single translocation 

(with different copy numbers) as the parental as well as some metaphases containing multiple 

translocations.  

Chromosome 13 in UKF-NB-3 had multiple translocations seen in all metaphases captured of UKF-

NB-3 but 20% of these contained only one chromosome. All UKF-NB-3 Clones had multiple 

translocations of chromosome 13 with no difference when compared to the UKF-NB-3 parental 

(Figure 28B). 

Chromosome 20 (green) was observed with one extra chromosome in 90% of the UKF-NB-3 

metaphases captured as shown in Figure 28A. The derived UKF-NB-3 clones all had the same 

mutation in the majority of metaphases as shown in Figure 28B with the exception of UKF-NB-3 

Clone 56 which had a higher proportion of metaphases containing four copies of chromosome 20. 

UKF-NB-3 Clone 80 had the most variation in all the cell lines analysed with equal percentages of 

metaphases which displayed one to four copies of chromosome 20. UKF-NB-3 Clone 93 had a range 

of metaphase patterns with an equal amount presenting two and three copies of chromosome 20 

and a single metaphase with no copies and just multiple translocations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28A: Metaphase captured of UKF-NB-3 displaying a translocation of chromosome 2 (red) as 
highlighted.  Multiple translocations of chromosome 13 (aqua) were observed with varying copy 
numbers. An extra chromosome 20 (green) was observed in 90% of images captured and is 
highlighted above.  
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Figure 28B: Metaphases of all 10 UKF-NB-3 clones with chromosome 2 (red) attaching to two copies 
of chromosome 13 (aqua) in all clones but clearly shown in UKF-NB-3 Clone 3 and Clone 56 as 
highlighted as well as multiple translocations of chromosome 13. A high majority of the clones also 
presented with one extra chromosome 20 (green) as highlighted in UKF-NB-3 Clone 1, 7 and 24.  
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5.2.5 Results of chromosome 9, chromosome 11 and chromosome 22 in UKF-NB3 and 10 

single cell derived clones  

Chromosome 9 (red) in UKF-NB-3 had two copies in 100% of the metaphases captured as 

shown in Figure 29A and this was also replicated in UKF-NB-3 Clone 3, in 60% of the 

metaphases in UKF-NB-3 Clone 4 and Clone 64 and in 80% of UKF-NB-3 Clone 93. UKF-NB-

3 Clone 1 had only one metaphase containing the same two copies and UKF-NB-3 Clone 2 

differed from the parental with three copies of chromosome 9 as shown in Figure 29B. This 

was also seen in UKF-NB-3 Clone 56 in a lower percentage of images and some contained 

only one copy. UKF-NB-3 Clone 7 and 24 also differed from UKF-NB-3 with 100% of 

metaphases displaying a single translocation alongside two copies of the chromosome. 

Finally, UKF-NB-3 Clone 80 had only one copy of chromosome 9 and a single translocation. 

UKF-NB-3 had 80% metaphases that indicated two copies of chromosome 11 (aqua) with 

multiple translocations as shown in Figure 29A.  UKF-NB-3 Clones 1, 2, 3, 4, 7, 64 and 93 al 

contained two copies of chromosome 11. UKF-NB-3 Clone 24 had an extra copy of in both 

metaphases captured, UKF-NB-3 Clone 56 had 40% of metaphases with one and two 

copies, but the remaining 20% contained multiple translocations as seen in UKF-NB-3.UKF-

NB-3 Clone 80 had only one copy of the chromosome in 75% of images analysed. 

UKF-NB-3 had two copies of chromosome 22 (green) and one clear single translocation in 100% 

of metaphases as shown in Figure 29A. UKF-NB-3 Clone 1, 3 and 64 all contained the same 

chromosomal pattern as the parental as shown in Figure 29B. UKF-NB-3 clones 4, 7, 24, 56, 80 

and 93 all had two copies but multiple translocations of chromosome 22. UKF-NB-3 Clone 2 

presented the same result but with one copy of the chromosome. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29A: Chromosome 9 (red), chromosome 11 (aqua) and chromosome 22 (green) in UKF-NB-
3. There are two copies of chromosome 9 seen in 100% of metaphases as well as two copies of 
chromosome 11 with multiple translocations.  The red arrow indicates the single translocation 
observed alongside two copies of chromosome 22 in 100% of images captured.  
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Figure 29B: Metaphases captured of all 10 UKF-NB-3 Clones. Chromosome 9 (red) had different 
patterns in the clones with UKF-NB-3 Clone 7, 24 and 56 expressing a translocation as highlighted 
and others such as UKF-NB-3 Clone 80 with just a single copy of the chromosome. Chromosome 11 
(aqua) presented with two copies in the majority of the clones with some presenting an extra or 
single copy as seen in UKF-NB-3 Clone 80. Chromosome 22 (green) also differed with the majority 
of clones presenting multiple translocations seen in UKF-NB-3 Clone 2 and 4 but others such as UKF-
NB-3 Clone 64 presenting with a single translocation. 
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5.2.6 Results of chromosome 4, chromosome 14 and chromosome 18 in UKF-NB3 and 10 

single cell derived clones  

UKF-NB-3 had two copies of chromosome 4 (red) in the majority of metaphases captured as shown 

in Figure 30A.  In the single-cell derived clones a high percentage of all images contained the same 

two copies as shown in Figure 30B with only a few displaying only one copy. The only difference 

was observed in UKF-NB-3 Clone 2 which contained a single translocation in one metaphase 

captured. 

UKF-NB-3 had two copies of chromosome 14 (aqua) in 100% of metaphases captured again 

highlighted in Figure 30A. There was a high amount of variability in comparison in the UKF-NB-3 

Clones as shown in Figure 30B. UKF-NB-3 Clone 1, 7 and 56 had diploidy but alongside multiple 

translocations in over 80% of images. UKF-NB-3 Clones 2, 3 and 24 all had multiple translocation in 

75% of the metaphases and 25% had the same mutation as the parental. UKF-NB-3 Clone 4 and 64 

had 100% of metaphases indicating two copies and multiple translocations. UKF-NB-3 Clone 80 had 

multiple translocations in 50% of the metaphases and finally UKF-NB-3 Clone 93 was the only cell 

line to have the majority of images displaying diploidy with a single translocation.  

Chromosome 18 (green) had high variation in UKF-NB-3 with 30% of images displaying diploid, 30% 

with two copies and a single translocation and the remainder with a single copy with one 

translocation as shown in Figure 30A. In UKF-NB-3 Clones 1, 2, 3, 56, 64, 80 and 93 the majority of 

metaphases indicated diploidy alongside a single translocation. Interestingly, a difference was 

observed in UKF-NB-3 Clone 4 with over 50% of metaphases presenting with only one copy of 

chromosome 18 and a single translocation. 100% of metaphases from UKF-NB-3 Clone 7 and 24 had 

two copies and a single translocation.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 30A: Chromosome 4 (red), chromosome 14 (aqua) and chromosome 18 (green) in UKF-NB-
3. There are two copies of chromosome 4 seen in the majority of metaphases as well as two copies 
of chromosome 14.  The red arrow indicates a possible single translocation observed alongside one 
copy of chromosome 18 seen in 40% of images captured.  
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Figure 30B: All metaphases of the 10 UKF-NB-3 Clones with chromosome 4 (red) which all displayed 
two copies of the chromosome in the majority of images captured. Chromosome 14 (aqua) had 
mainly two copies in the majority of the UKF-NB-3 Clones with some presenting multiple 
translocations as seen in UKF-NB-3 Clone 7, 24 and 56. Chromosome 18 (green) displayed as two 
copies and a single translocation as shown in UKF-NB-3 Clone 3 and Clone 64 and in the majority of 
clones.  
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5.2.7 Results of chromosome 5, chromosome 10 and chromosome 7 in UKF-NB3 and 10 

single cell derived clones  

 

100% of images taken of UKF-NB-3 identified two copies of chromosome 5 (red) as shown in Figure 

31A, which was seen in almost 100% of the metaphases taken of the UKF-NB-3 Clones with only 

very small percentages presenting just one copy. UKF-NB-3 Clone 7 and 56 also contained one extra 

chromosome in 20% and 30% respectively. 

Chromosome 10 (aqua) displayed a single small translocation in 100% of the metaphases captured 

from UKF-NB-3. This was again seen in all the derived clones in very high percentages as shown in 

Figure 31B with only UKF-NB-3 Clone 93 containing no translocations and just two copies of 

chromosome 10. 

In the UKF-NB-3 cell line, chromosome 7 (green) had two copies in over 90% of images taken as 

shown in Figure 31A. The UKF-NB-3 Clones all presented with similar results with two copies in the 

majority of metaphases captured. There was a translocation in UKF-NB-3 Clone 80 which is 

highlighted in Figure 31B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31A: Chromosome 5 (red), chromosome 10 (aqua) and chromosome 7 (green) in UKF-NB-3. 
There are two copies of chromosome 5 seen in the majority of metaphases. The red arrow indicates 
the single translocation observed alongside two copies of chromosome 10 seen in 100% of the 
images captured. Diploidy of chromosome 7 is also observed.  
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Figure 31B: All 10 UKF-NB-3 Clones with chromosome 5 (red) presenting with two copies in the high 
majority of metaphases captured.  Chromosome 10 (aqua) displayed a single translocation in the 
majority of UKF-NB-3 Clones and is highlighted in the relevant metaphases. Chromosome 7 (green) 
has two copies in the majority of clones with some presenting different patterns such as UKF-NB-3 
Clone 80 with a small translocation.  
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5.2.8 Results of chromosome X, chromosome 6 and chromosome Y in UKF-NB3 and 10 

single cell derived clones  

 

The X chromosome (red) in 100% of the metaphases captured in UKF-NB-3 had only one copy but 

this had small sections for the Y chromosome throughout the chromosome X as shown in Figure 

32A this was result was also seen in all the UKF-NB-3 clones in Figure 32B. 

Chromosome 6 (aqua) in the UKF-NB-3 line had two copies in 100% of the metaphases captured as 

shown in Figure 32A. The majority of all the UKF-NB-3 clones had diploidy with the exception of 

UKF-NB-3 Clone 1, 24 and 80 which all had a few metaphases containing only one copy. 

The Y chromosome (green) was not detected clearly in all the metaphases taken but small 

translocations were seen in many images, in Figure 32A there is a small amount of FITC highlighted 

but this was only seen clearly in two images and not in others. This was similar in the UKF-NB-3 

Clones as shown in Figure 32B with almost all showing no clear Y chromosome but some 

unidentified green fluorescence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32A: Chromosome X (red), chromosome 6 (aqua) and chromosome Y (green) in UKF-NB-3. 
There are two copies of chromosome 5 seen in the majority of metaphases. The red arrow indicates 
the single translocation observed alongside two copies of chromosome 10 seen in 100% of the 
images captured. Diploidy of chromosome 7 is also observed.  
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Figure 32B: All metaphases for all UKF-NB-3 Clones with the X chromosome (red) presented as one 
copy in the majority of metaphases captured. Chromosome 6 (aqua) was displayed as two copies 
in the metaphases captured with some such as UKF-NB-3 Clone 24 as highlighted. The Y 
chromosome (green) was not clearly defined in any of the metaphases.  
 

 

 

5.3 Growth kinetics and doubling times of UKF-NB-3 Clones 1 – 93  

To characterise the ten single cell derived UKF-NB-3 Clones further, we determined doubling times 

for each cell line. The doubling times ranged from 17.9 hours in UKF-NB-3 Clone 7 to 31.3 hours in 

UKF-NB-3 Clone 2. However, the differences did not reach statistical significance and results are 

shown in Figure 33.  

 

Figure 33: Doubling times of all UKF-NB-3 Clones 1-93 generated using the xCELLigence system and 
although there were differences between the cell lines none of them reached statistical significance 
n=3. 
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5.4 Drug sensitivity studies of UKF-NB-3 and 10 UKF-NB-3 single-cell derived clones 

against an 11-drug panel  

 

We determined drug sensitivity profiles of UKF-NB-3 and the ten-single cell-derived UKF-NB-3 

clones to a panel of drugs including: anaplastic lymphoma kinase (ALK) inhibitors (crizotinib and 

NVP-TAE684), tubulin-binding agents (docetaxel, epothilone-B, 2-methoxyestradiol, vincristine, 

vinblastine and combretastatin A4), the p38 inhibitor losmapimod and DNA damaging agents 

(doxorubicin and cisplatin). Notably, a previous lab member (Georgia Walden) had carried out the 

data analysis of UKF-NB-3 Clones 1 – 7 in the presence of all the drugs except for crizotinib, TAE-

NVP-684, doxorubicin, losmapimod and cisplatin.  

UKF-NB-3 and all clonal sub-lines displayed similar IC50 and IC90 values for the ALK inhibitors, 

crizotinib and NVP-TAE684 (Figure 36 and Figure 37). When tested for sensitivity against 

losmapimod (Figure 36) all the derived clones had a >2-fold increase when compared to the UKF-

NB-3 parental except for UKF-NB-3 Clones 3 and 93. The majority of UKF-NB-3 clones had a higher 

sensitivity to doxorubicin (Figure 36) when compared to the parental but UKF-NB-3 Clones 56, 64 

and 80 had a >2-fold increase in IC50 value when compared to UKF-NB-3 Clones 1 and 3. All UKF-NB-

3 Clones tested against cisplatin (Figure 35) had similar IC50 values of around 0.5 M with UKF-NB-

3 Clone 3 and 80 with lower values. Vincristine, vinblastine and epothilone-B resulted in similar IC50 

values in all cell lines displaying a similar sensitivity to the parental line as shown in Figure 34. 

Docetaxel screening presented with a >2-fold increase seen only in UKF-NB-3 Clones 2 and 3 with 

all remaining clones displaying the same sensitivity as the parental Figure 35 2-methoxyestradiol 

IC50 values in all UKF-NB-3 Clones were much higher than the parental with only UKF-NB-3 Clone 4 

displaying a >2-fold increase (Figure 35). None of the UKF-NB-3 clones showed a >2-fold increase in 

combretastatin A4 when compared to the parental although clones 24-93 were higher in value than 

clones 1 – 7 as shown in Figure 37. 
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Figure 34: UKF-NB-3 and all 10 single cell derived UKF-NB-3 clones cross resistance profiles when 
tested against tubulin binding agents vincristine, vinblastine and epothilone-B. The majority of the 
UKF-NB-3 Clones displayed a similar sensitivity to UKF-NB-3 (n=3).  
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Figure 35: UKF-NB-3 and all 10 single-cell derived UKF-NB-3 clones cross resistance profiles tested 
against tubulin binding agents docetaxel which UKF-NB-3 Clone 2 and 3 displayed a > 2-fold increase 
and UKF-NB-3 Clone 4 indicating a > 2-fold increase against 2-methoxyestradiol. All clones had a 
similar IC50 value for DNA damaging agent cisplatin (n=3)  
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Figure 36: UKF-NB-3 and all 10 single-cell derived UKF-NB-3 clones cross resistance profiles tested 
against p38 inhibitor losmapimod where all UKF-NB-3 Clones had a >2-fold increase when 
compared to UKF-NB-3 except for UKF-NB-3 Clone 3 and 93. Resistance profiles against ALK 
inhibitor NVP-TAE684 were similar across all cell lines. UKF-NB-3 Clones were more sensitive to DNA 

damaging agent doxorubicin than UKF-NB-3 (n=3). 
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Figure 37: UKF-NB-3 and all 10 single-cell derived UKF-NB-3 Clones cross resistance profiles against tubulin binding agent combretastatin A4 where none of the cell lines 
had a >2-fold increase but UKF-NB-3 Clones 24-93 had higher values than UKF-NB-3 Clones 1-7. Against the ALK inhibitor crizotinib both the UKF-NB-3 and the UKF-NB-3 
Clones displayed similar IC50 value (n=3).
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5.5 Discussion 
 

It can be concluded that the use of FISH in the investigation of intra-cell line heterogeneity is an 

invaluable tool.  It is clear to see changes between both the UKF-NB-3 parental line and the 10 UKF-

NB-3 derived clones as well as variances between the clones. There are clear differences even 

between the metaphases taken of each clone and allow a huge range of analysis to be utilized.  

UKF-NB-3 contained only two copies of chromosome 3 in every metaphase captured indicating no 

heterogeneity with this chromosome in the parental line. There was a difference in copy number 

of chromosome 3 within the UKF-NB-3 Clones with UKF-NB-3 Clone 56 containing the highest 

percentage (75%) of metaphases with an extra chromosome 3 with the other metaphases 

containing either one or no copies. Chromosome 15 had multiple translocations in both the UKF-

NB-3 line and the clones, indicating that this mutation was passed on to all other cell lines except 

for UKF-NB-3 Clone 3 which contained a much lower percentage of metaphases with mutations. 

Chromosome 17 is well documented in neuroblastoma with the addition of the long arm of the 

chromosome indicative of poor outcome (Theissen, J., Oberthuer, A., Hombach, A., Volland, R., 

Hertwig, F., et al 2014). Chromosome 17 had a single mutation seen as a translocation in a 70% of 

the UKF-NB-3 cell line. Other metaphases indicated changes and almost all clones had exactly the 

same mutations except for UKF-NB-3 Clones 3 and 56, which indicated higher levels of intra-cell 

line heterogeneity with their metaphases displaying a variety of changes. 

There were no changes in chromosome 8 between the UKF-NB-3 line and the UKF-NB-3 Clones with 

all metaphases displaying the same pattern, again indicating no intra-cell line heterogeneity. 

Chromosome 12 had an interesting change seen within the cell lines with the UKF-NB-3 line 

containing a majority of a single translocation but not in all metaphases captured. The amplification 

of aberrations in chromosome 12 is also well reported in Neuroblastoma, which correlates to 

tumour proliferation and development (Fransson, S.M., Kryh, H., Javanmardi, N., Ambros, I., 

Berbegall, A., et al 2015). In the UKF-NB-3 derived clones, UKF-NB-3 Clone 4 was the only cell line 

to contain the same mutation as the parental. The remaining nine clones actually displayed an extra 

chromosome instead of the translocation in the majority of metaphases captured. This is a direct 

difference from the UKF-NB-3 parental and indicates a further mutation, which has progressed from 

a single translocation but not in all clones.  

UKF-NB-3 had various changes in the metaphases containing chromosome 21 but 70% displayed 

two copies with no aberrations indicating a small amount of heterogeneity in the cell line. The UKF-

NB-3 Clones had a great deal of variability with all showing multiple translocations of the 

chromosome. UKF-NB-3 Clone 56 had the highest metaphases containing just one copy of the 

chromosome but alongside multiple translocations with copy number varying across many of the 

clones. This taken together indicates changes seen only within the clones and not identified in the 

parental.  Chromosome 1 had two copies in all UKF-NB-3 metaphases indicating no heterogeneity 

in that cell line from the metaphases captured. Interestingly, all UKF-NB-3 Clones had a single 
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translocation of chromosome 1 in varying percentages, but this translocation was not observed in 

the parental line. The metaphases further differed with copy number of the chromosome with UKF-

NB-3 Clone 56 with the highest level of intra-cell line heterogeneity with a range of changes in all 

metaphases captured. An interesting pattern of heterogeneity within UKF-NB-3 was seen with a 

larger majority of metaphases indicating an extra chromosome 16 with the remaining metaphases 

indicating just a single translocation. With the exception of UKF-NB-3 Clone 93 which retained the 

same mutation as the parental with three copies of the chromosome in the majority of the 

metaphases taken. Further changes were detected in UKF-NB-3 and the UKF-NB-3 derived clones 

with chromosome 19, with the parental line differing by presenting with multiple translocations 

but not in all metaphases taken indicating heterogeneity within the cell line. The clones contained 

no mutations of chromosome 19 as seen in the parental with the exception of UKF-NB-3 Clone 80. 

Chromosome 2 in all metaphases taken of UKF-NB-3 had a single translocation with only copy 

number differing, this was also observed to attach other translocations of each copy of 

chromosome 13. This same mutation was seen in all the UKF-NB-3 Clones with only the copy 

number differing with some metaphases within the clones containing multiple translocations of 

chromosome 2. The cell lines appeared to have very little intra-cell line heterogeneity with the 

mutational patterns of chromosome 2. This is perhaps to be expected due to MYCN and ALK genes, 

both prognosis markers in neuroblastoma are found on chromosome 2 (Morgenstern, D.A et al, 

2014, Pandey, G.K and Kanduri, C, 2015).  

Chromosome 13 presented with multiple translocations in UKF-NB-3 along with the small 

translocations of chromosome 2 seen on the copy of the chromosomes. This exact mutation was 

observed in the UKF-NB-3 Clones with very little variation between the cell lines and within the cell 

lines themselves. Chromosome 20 had more variation within the cell lines with UKF-NB-3 displaying 

one extra chromosome in almost all metaphases with only one presenting a difference. The UKF-

NB-3 Clones appeared to carry the same mutations as the parental with UKF-NB-3 Clone 56 and 

UKF-NB-3 Clone 80 displaying an increase in chromosome copies. UKF-NB-3 Clone 93 had the 

highest amount of intra-cell line heterogeneity with the metaphases displaying different patterns 

of chromosome 20 and one with no copies and another with multiple translocations.  

UKF-NB-3 Clones 7, 24 and 56 showed changes when compared with the parental with 

chromosome 9 and contained a single translocation but there was a great deal of heterogeneity 

within all cell lines with multiple differences. Chromosome 11 had a high number of multiple 

translocations in the UKF-NB-3 parental line with little change between intra-cell line metaphases, 

with almost all derived clones displaying two copies of the chromosome only. UKF-NB-3 Clone 56 

had a high amount of intra-cell line heterogeneity with different metaphases presenting varying 

mutations, but a small percentage had the same mutations as the parental. Chromosome 22 

presented with two copies and a single translocation in the UKF-NB-3 metaphases. The majority of 

UKF-NB-3 Clones also displayed the same mutation but some had multiple translocations. The UKF-
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NB-3 Clones differed from the parental with chromosome 14 as only the UKF-NB-3 Clones displayed 

multiple translocations. Chromosome 18 had mutations seen in both the parental and the UKF-NB-

3 Clones which was seen in all clones with only the copy number differing. A single translocation 

was noted in all cell lines and appeared in the high majority of parental metaphases and this 

mutation was in all single cell derived clones. All UKF-NB-3 Clones and UKF-NB-3 displayed a single 

translocation of chromosome 10 along with two copies seen in the majority of all metaphases.  

Chromosome 7 presented with two copies in the majority of metaphases of both UKF-NB-3 and 

UKF-NB-3 Clones. UKF-NB-3 Clone 56 had three copies in several metaphases as well as UKF-NB-3 

Clone 80 and 93 which had differing mutations with a single translocation.  

The use of FISH is clearly a useful tool in the visualization and investigation of intra-cell line 

heterogeneity with the technique presented all eleven full genomes of all UKF-NB-3 cell lines could 

be analysed. FISH is already used in the detection of known aberrations in chromosomes and 

subsequently used for diagnosis of diseases such as acute lymphoblastic leukemia (ALL) (Bishop, R., 

2010). Further methods, which could be utilized alongside FISH, include chromosome-banding 

techniques, which could be used for both chromosome identification and abnormality detection 

(Bickmore, W.A., 2001).  Further developments in the process would include identifying which 

chromosomes the translocations are locating to and analyse the mutations which are arising within 

the cell lines. With mutations that occur in UKF-NB-3 cell lines, specific FISH probes can be 

generated to give more precise information on the intra-cell line heterogeneity observed in the cell 

lines (Tucker, J.D., 2015). A great deal of research has been carried out on chromosomal aberrations 

in neuroblastoma and a recent publication from (Schramm, A., Koster, J., and Schulte, J.H 2015) 

observed in relapsed neuroblastomas when compared to primary tumours a much higher rate of 

MYCN using FISH probes which detected chromosome 2 and MYCN.  

These uses of FISH as well as the investigation carried out to identify intra-cell line heterogeneity 

have huge promise in the understanding of clonal evolution and deeper understanding into the 

emergence of resistance mutations which may lead to relapsing and remission of tumours and 

ultimately treatment failure.  

A drug-sensitivity screen of all 10 single–cell derived clones compared to the parental UKF-NB-3 

line, highlighted that in the majority of the drugs tested, the cell lines responded fairly similarly. 

There were some variances within the cell lines possibly due to different mechanisms of action of 

the drugs investigated. When taken alongside the FISH analysis, results such as the ALK inhibitors 

(crizotinib and NVP-TAE684) response are very interesting. Almost all metaphases taken from each 

UKF-NB-3 Clone and the UKF-NB-3 parental all indicated translocation or aberration of 

chromosome 2 which is where the ALK gene is located (Hanna, M.G., Najfeld, V., Irie, H.Y., Tripodi, 

J and Nayak, A 2015). The tubulin-binding agents had a mixed response across all UKF-NB-3 clones 

but none showed a higher than 2-fold resistance and no UKF-NB-3 Clone had a consistently higher 
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IC50 across all therapeutics. However, UKF-NB-3 Clone 24 had the highest IC50 value when compared 

to parental and other clones at almost > 2-fold increase when tested against combretastatin A4. 

But In therapeutics such as docetaxel UKF-NB-3 clone 2 and 3 displayed a much higher IC50 value 

than the other UKF-NB-3 Clones and the parental cell line. This may indicate that the UKF-NB-3 

Clones may possess more advantageous mutations to overcome the drug concentration such as a 

higher expression of ABCB1 transporters to effectively efflux the drug as seen in other cell lines 

(Hansen, S.N., Westergaard, D., Thomsen, M.B.H., Vistesen, M., Do, K.N et al 2015). Doxorubicin 

resulted in a varied response across the UKF-NB-3 clones with several displaying a lower sensitivity 

than the UKF-NB-3 parental and this indicated a good deal of intra-cell line heterogeneity across 

the cell lines as UKF-NB-3 Clones 4, 56, 64, 80 and 93 all had the same IC50 value as the parental.   

A more in-depth analysis of the UKF-NB-3 clones has been carried out by other lab members, 

including exome sequencing, which will further elucidate more differences within the clones. It is 

clear however, to see with both the drug sensitivity assays and FISH chromosomal analysis that 

there is a great deal of intra-cell line heterogeneity, as evidenced by the variability between the 

individual clones examined and more future work needed to uncover more information.  

 



Chapter 6 

Introduction of a novel SK-N-AS sub-line with acquired resistance to oxaliplatin 
 

6.1 Introduction 

Although there has been a great deal of progress in the diagnoses and treatment of cancer, patients 

with advanced metastatic disease continue to have five-year survival rates that remain low 

(Minguet, J., Smith., K.H and Bramlage, P., 2016). In order to increase these rates and improve 

patient prognosis, the development of more efficacious systemic treatments able to overcome drug 

resistance in tumours is imperative (Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M 

et al., 2014). The development of drug resistance can intrinsic, where an untreated patient has no 

response to therapy from the beginning of treatment or acquired where a tumour will respond to 

therapy initially but eventually become resistant leading to relapse and treatment failure (Lippert, 

T.H., Ruoff, H.J and Volm, M., 2008). Acquired drug resistance is a major issue across a large majority 

of cancers and therefore it is important to understand the mechanisms underlying the development 

of resistance. Drug-adapted cancer cell lines are vital as model systems to understand the 

development of resistance and to mimic what is also seen in the clinic (Crystal, A.S., Shaw, A.T., 

Sequist, L.V., Friboulet, L., Niederst, M.J., et al 2014). For this project we used neuroblastoma as 

our model system as approximately half of patients diagnosed are high risk and overall survival 

rates are below 50% (Matthay, K.K., Reynolds, P.C., Seeger, R.C., Shimada, H., Adkins, E.S., et al 

2009). Survival rates decrease even further to 10% in high-risk patients who develop acquired 

resistance following initial treatment (Basta, N.O., Halliday, G.C, Makin, G., Birch, J., Feltbower, R et 

al., 2016).  

For this project we introduced and characterised a non-MYCN-amplified novel SK-N-AS sub-line 

with acquired resistance to oxaliplatin (SK-N-ASrOXALI4000). Oxaliplatin has indicated efficacy as a 

treatment for neuroblastoma with less toxicity than other platinum agents and is being trialled in 

several studies (Lam, C.G., Furman, W.L., Wang, C., Spunt, S.L., Wu, J.W et al 2015).   

 

6.2 Results 

6.2.1 Cross resistance profiles of SK-N-AS, SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 

For the investigation of drug resistance profiles of the cell lines, I cultured, harvested and ran MTT 

assays alongside other project members as well as advising on starting concentrations of 

investigated drugs and IC50 values.  SK-N-AS, SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 were tested 

against three platinum agents, oxaliplatin, cisplatin and carboplatin alongside two other DNA 

damaging agents. Doxorubicin, an anthracycline antibiotic which intercalates into DNA, disrupts the 

correct functioning of topoisomerase II and leads eventually to cell death (Thorn, C.F., Oshiro, C., 

Marsh, S., et al 2011). And gemcitabine (2’,2’-difloruo 2’deoxycytidine, dFdC) a cytidine analogue, 

which following influx via nucleoside transporters converts to di and tri-phosphorylated (dFdCDP 

and dFdCTP) gemcitabine (Mini, E., Nobili, B., Caciagli, I., et al 2006). Once phosphorylated 
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gemcitabine cytotoxic effects include inhibition of DNA polymerase, inhibition of production of 

deoxyribonucleotides and the ability for dFdTCP to be hidden from DNA repair enzymes. (Mini, E., 

Nobili, B., Caciagli, I., et al 2006). As shown in Figure 38, SK-N-ASrOXALI4000 had an IC50 value of 834-

fold compared to SK-N-As when tested against oxaliplatin and an IC90 value of 774-fold. SK-N-

ASrOXALI-4000 cells grown in the absence of oxaliplatin had a lower IC50 value than SK-N-ASrOXALI4000 

but were still 487-fold higher than SK-N-AS. This indicates that resistance development does not 

depend on the continuous addition of oxaliplatin. When profiled against cisplatin and carboplatin, 

SK-N-AS had a lower IC50 and IC90 when compared to both SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 

but both drugs were lower in resistance when compared to oxaliplatin. When tested against 

doxorubicin, SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 indicated a lower IC50 and IC90 value than SK-

N-AS suggesting a higher sensitivity of both cell lines to doxorubicin. The same was true of 

gemcitabine with SK-N-AS presenting a higher IC50 and IC90 value when compared to SK-N-

ASrOXALI4000 and SK-N-ASrOXALI-4000. 

 
Figure 38: Viability of SK-NAS cell line, adapted to oxaliplatin (SK-N-ASrOXALI4000) and passaged in the absence 
of oxaliplatin for 10 weeks (SK-N-ASrOXALI-4000) when tested against DNA damaging agents using MTT assays.                           
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For this characterisation I once again cultured, passaged and harvested the cell lines as well as 

advised on the protocol. As oncolytic viruses are in use as a potential treatment for neuroblastoma, 

cell lines were infected with Influenza A H1N1 strain A/WSN133 at different multiplicities of 

infection (MOIs). 

As shown in Figure 39, following 48hr incubation using MTT assay with the infection there was no 

significant reduction in SK-N-AS cell viability up to three MOIs. SK-N-ASrOXALI4000 had reduced cell 

viability between MOIs of one to three and in SK-N-ASrOXALI-4000 at MOI of three. Additionally, when 

infected into MYCN-amplified UKF-NB-3, the cells were much more susceptible to infection with 

Influenza A than non-MYCN SK-N-AS cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Effect of H1N1 influenza A virus infection on cell viability. Four cell lines were investigated 
to determine cell viability after 48hrs following infection with different multiplicities of infection 
and a non-treated control.  Cell lines of interest included non-MYCN-amplified SK-N-AS, SK-N-
ASrOXALI4000 and SK-N-ASrOXALI-4000 and MYCN-amplified UKF-NB-3. Viability of non-infected 
control cells is shown by the dotted line. *P < 0.05 relative to non-infected control cells.  

6.2.2 Chromosomal analysis of cell lines  
 
In order to analyse complete cell line genomes, cell lines were characterised using 24-chromosome 

fluorescence in situ hybridisation (FISH) as shown in Figure 40. Alongside harvesting, culturing and 

maintaining all cell lines I was actively involved in troubleshooting this analysis as well as perfecting 

the technique of capturing the highest concentration of metaphases in the samples needed for 

FISH. Figure 40 shows chromosomal aberrations in chromosomes 2, 12 and 8 in all three of the cell 

lines but notably less in the parental SK-N-AS compared to the oxaliplatin resistant sub-line SK-N-

ASrOXALI4000 and the SK-N-ASrOXALI-4000 cell line (grown for a minimum of 10 passages without the 

addition of oxaliplatin). The percentage of two sets of chromosomes seen across the three cell lines 
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varied with SK-N-AS showing 50% diploidy and SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 with lower 

values of 34% and 38% respectively.  

Figure 40 shows chromosome number 2, 12 and 8 as an example of chromosomal comparison 

across all three of the investigated cell lines. As seen in SK-N-AS there is diploidy seen across all 

three sets of chromosomes with two signals clearly detected in texas red for the cell lines. When 

compared to SK-N-ASrOXALI4000 there are more than two chromosomes with partial labelling seen 

in chromosome 12. Interestingly, when oxaliplatin is removed from the cell line in SK-N-ASrOXALI-

4000 the chromosomal pattern is very similar to SK-N-ASrOXALI4000.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Chromosomes 2, 12 and 8 shown in SK-N-AS, SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 

(whereby oxaliplatin had been omitted for a minimum of 10 passages). The figure shows the 
presence of more chromosomal abnormalities including partial labelling and higher diploidy in SK-
N-ASrOXALI4000 and SK-N-ASrOXALI-4000 than in SK-N-AS.  

 

6.2.3 Receptor Tyrosine Kinase phosphorylation 

 

For this project I was involved in the passaging, harvesting and preparation of cell lines throughout 

the investigation. Phosphorylation status of the cell lines was investigated, and 49 receptor tyrosine 

kinases were analysed using a commercial kit (Proteome Profiler Human Phos-Pho- RTK Array Kit, 

Abingdon, UK). Using ImageJ software, phosphorylation status was determined both visually and 
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densitometrically. In order to be counted as phosphorylated, receptor tyrosine kinases spots had 

to be visible and fold change spot density/ density control membrane to be greater than 2.5.  

Eight of the 49 receptor tyrosine kinases: EGFR, INSR, IGF1R, PDGFRB, AXL, EPHA10, DDR2, and RYK 

were phosphorylated in one of the three cell lines as shown in Figure 41A. DDR2 and EPHA10 

receptor tyrosine kinase phosphorylation was > 2-fold reduced in SK-N-ASrOXALI4000 vs SK-N-AS but 

not in SK-N-ASrOXALI-4000. SK-N-ASrOXALI-4000 compared to SK-N-AS showed increased 

phosphorylation of PDGFRB and IGF1R but no difference was seen in SK-N-ASrOXALI4000 vs SK-N-AS. 

In both oxaliplatin resistant cell lines SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 phosphorylation of 

INSR had a > 2-fold increase. Figure 41B shows that all three cell lines had a similar phosphorylation 

levels of EGFR, AXL and RYK as there were no fold changes smaller than 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 
 
 
 

Figure 41A: Receptor tyrosine 
kinase phosphorylation status 
shown as fold change spot 
density/ density control 
membrane. 41B) Eight of the 
investigated 49 receptor tyrosine 
kinases phosphorylated in one of 
the cell lines SK-N-ASrOXALI4000 

and SK-N-ASrOXALI-4000 when 
compared to SK-N-AS. 
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6.2.4 Oxygen consumption by SK-N-AS and SK-N-ASrOXALI4000 cells 
 
For this section of the project I passaged and harvested the cell lines for the experiments. Following 

investigation using respirometry experiments both SK-N-AS and SK-N-ASrOXALI4000 show functional 

mitochondria and subsequently functional oxidative phosphorylation. Furthermore, it is indicated 

that the cell lines do not display a Warburg metabolism due to oligomycin reducing and FCCP 

enhancing oxygen consumption as shown in Figure 42. Using the evidence of the results taken 

together it appears that oxaliplatin resistance formation is not associated with cancer cell 

metabolism alterations in this cell line.  

 

 
 
Figure 42: Oxygen consumption was investigated using intact cells in the absence of either 
oligomycin (8µg/mL) or FCCP (10 µM) for the baseline. And then shown in response to oligomycin, 
an inhibitor of ATP synthase causing a leak of protons resulting in inhibition of respiration (leak). 
Finally, investigated with intact cells in response to FCCP which detaches the electron transport 
chain and results in oxidative phosphorylation (maximum). 
 

 

6.2.5 Cell sensitivity to ultraviolet C (UVC)-induced DNA damage 

 

For this experiment I advised on the protocol for MTT assays, constructed the UV chamber 

alongside fellow students and harvested and cultured cell lines. 

It is well documented that platinum drugs such as cisplatin, carboplatin and oxaliplatin cause 

induced DNA damage and therefore the nucleotide excision repair (NER) pathway may determine 

sensitivity to these agents. In order to assess this, we observed the NER response in SK-N-AS and 

SK-N-ASrOXALI4000 when treated with UVC radiation, which induces DNA damage repaired by the 

NER pathway.  

Using 120hr MTT assays to test radiation doses, SK-N-ASrOXALI4000 displayed a higher sensitivity to 

UVC than SK-N-AS as shown in Figure 43. A further colony formation assay shown in Figure 43B 

highlights the increased number of colonies in SK-N-AS following radiation than in SK-N-

ASrOXALI4000. Taken together, these results indicate that increased nucleotide excision repair is not 

indicative of oxaliplatin resistance in SK-N-ASrOXALI4000. 
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Figure 43: A) MTT assay results after 5 days following exposure depicting dose-dependent effects of UVC 
on SK-N-AS and SK-N-ASrOXALI4000. B) Quantification of SK-N-AS and SK-N-ASrOXALI4000 colony formation 
following 11 days exposure to UVC (32 J/m2) when compared to non-irradiated control.  
 

 

6.3 Discussion 
 
For this project we characterised and introduced a sub line of the non-MYCN-amplified 

neuroblastoma cell line SK-N-AS, SK-N-ASrOXALI4000 with acquired resistance to oxaliplatin, a DNA 

damaging agent. These cells exhibited clear resistance to oxaliplatin when compared to the 

sensitive parental SK-N-AS cells. This was further compounded when the SK-N-ASrOXALI4000 were 

cultured for 10 passages without the addition of oxaliplatin and the cells still displayed enhanced 

resistance when compared to the parental line indicative of a stable resistance phenotype. 

Alongside cisplatin and carboplatin, oxaliplatin also belongs to the class of platinum-based 

chemotherapeutics. The mechanism of action of oxaliplatin is as a DNA-interacting agent forming 

adducts which in turn disrupts DNA replication and transcription (Martinez-Balibera, E., Martinez-

Cardus, A., Gines, A, Ruiz de Porras, V., Moutinho, C et al 2015). Cisplatin and carboplatin have 

similar modes of action but due to higher cytotoxicity oxaliplatin is a more favourable treatment 

option (Woynarowski, J.M., Faivre, S., Herzig, M.C., Arnett, B., Chapman, W.G., et al 2000). In the 

cross-resistance profiles carried out initially in this project the SK-N-ASrOXALI4000 cells exhibited 

considerable cross-resistance to both cisplatin and carboplatin but oxaliplatin resistance was 

highest of the three tested. When the viability of SK-N-ASrOXALI4000 was tested against doxorubicin 

they did not show cross resistance nor to gemcitabine which was of interest as both of these drugs 

induce DNA damage by different mechanisms to the platinum agents. Doxorubicin is an 
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anthracycline which has several mechanisms in cancer cells including cross linking DNA, disruption 

of DNA replication and inhibition of topoisomerase II (Peng, X., Chen, B, Lim C.C and Sawyer, D.B 

2005). Interestingly, the SK-N-ASrOXALI4000 cells were more sensitive to doxorubicin than the 

parental SK-N-AS and it is unclear as to why this is the case and there is very little documented on 

the sensitivity to doxorubicin in platinum drug-adapted cell lines. When tested against gemcitabine, 

a nucleoside analogue which inhibits DNA synthesis (Cavalcante, L.d.S and Monteiro, G 2014), cell 

lines SK-N-AS and SK-N-ASrOXALI4000 exhibited similar sensitivity.  

Oncolytic viruses are used as anti-cancer therapies by regressing tumours through two main 

mechanisms of action: direct killing of tumour cells by replication dependent apoptosis and an anti-

tumour response (Graaf, J.F. de., Vor, L.de., Fouchier, R.A.M and Hoogen, B.G. van den, 2018). One 

example of a promising treatment is the modified herpes simplex virus-1, talimogene 

laherparepvec (T-VEC) successfully used to treat patients with melanoma (Andtbacka, R.H.I., 

Kaufman, H.L., Collichio, F., Amatruda, T., Senzer, N., et al 2015). For this project approach we used 

Influenza A H1N1 strain A/WSN133 and interestingly SK-N-ASrOXALI4000 cells exhibited higher 

sensitivity to the viral infection when compared to SK-N-AS parental cells. The mechanism behind 

this sensitivity is unknown and further work would need to be carried out to determine the cause. 

However, as (Dayaram, T and Marriot, S.J 2008) discuss a common target of transforming viruses 

are cyclin-dependent kinase (CDK) inhibitor genes which can drive cell cycle progression and 

subsequently viral replication. As CKIs are often mutated in cancer this could explain the sensitivity 

in cancer cell lines to certain viruses, but this remains unclear and was not investigated in SK-N-

ASrOXALI4000 to identify if this was the mechanism.  

Following full chromosomal characterisation of the cell lines SK-N-ASrOXALI4000 cells when 

compared to SK-N-AS cells displayed more chromosomal abnormalities shown as rearrangements 

and aneuploidy. This is somewhat to be expected as the chromosomal irregularities correspond 

with as oxaliplatin being DNA damaging agent.   

49 receptor tyrosine kinases were investigated as part of the project eight of which were 

phosphorylated in a minimum of one cell line. However, the RTKs: DDR2, EPHA10, PDGFRB, IGF1R 

and INSR were found to be of interest due to the difference in phosphorylation between the 

parental SK-N-AS and resistant SK-N-ASrOXALI4000 cells. The results highlighted that phosphorylation 

of DDR2 and EPHA10 were lower in SK-N-ASrOXALI4000 cells when compared with SK-N-AS and higher 

in SK-N-ASrOXALI-4000. These results could indicate that the difference is present because of the 

addition of oxaliplatin continuously during passaging rather than a mechanism which remains with 

the removal of oxaliplatin. DDR2 is a tyrosine kinase receptor which binds collagen and has been 

reported to promote several cellular processes including cell migration, proliferation and survival, 

all of which can be exploited in cancerous cells (Hammerman, P.S., Sos, M.L., Ramos, A.H., Xu, C et 

al 2011). However, its role in a response to platinum drugs is unknown. Our findings demonstrated 

that phosphorylation of DDR2 was lower in SK-N-ASrOXALI4000 cells when compared with SK-N-AS 
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and higher in SK-N-ASrOXALI-4000. EPHA10 is a member of the Eph RTK family and is involved in 

transduction via two-way signalling (Li, Y., Ye, F., Ma, Q., Yang, Z., Liu, D et al 2017).  EPHA10 is 

highly expressed in breast cancer tissue and is used as a tumour marker but further understanding 

of its role is needed (Zang, X., Ding, H., Zhao, X., Li, X., Du, Z., et al 2016). 

SK-N-ASrOXALI-4000 cells showed an increased phosphorylation of IGF1R and PDGFRB when 

compared to SK-N-AS, but this was not seen when comparing SK-N-ASrOXALI4000 to the parental.  

IGF1R is a signalling molecule which is overexpressed in cancer cells leading to effects such as 

apoptosis inhibition and cell motility (Bahr, C and Groner, B., 2004). Studies with IGF1R have shown 

that it may also have a role in drug efflux pumps such as multidrug-resistance-associated protein 2 

(MRP-2) (Denduluri, S.K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., et al 2015). PDGFRB is another 

established anti-cancer drug target and interestingly cisplatin was shown to deplete its expression 

in neuroblastoma cell lines (Wetterskog, D., Moshiri, A., Ozaki, T., Uramoto, H., Nakagawara, A et 

al 2009). Therefore, it may be that the addition of oxaliplatin in SK-N-ASrOXALI4000 cells caused the 

difference in phosphorylation seen in SK-N-ASrOXALI-4000 cells when compared to the parental. 

Finally, both SK-N-ASrOXALI4000 and SK-N-ASrOXALI-4000 cells had increased phosphorylation of INSR 

when compared to SK-N-AS, this may be due to a direct result of oxaliplatin resistance. As INSR has 

so far resulted in limited clinical success due to targeting IGF1R it is unclear as to the role of the RTK 

in acquired resistance (Singh, P., Alex, J.M and Bast F., 2013). 

Experiments to test oxygen consumption by SK-N-AS and SK-N-ASrOXALI4000 cells using respirometry 

tests showed that there was no difference in oxidative phosphorylation. This indicated that the SK-

N-ASrOXALI4000 cells were not showing a Warburg phenotype. This is of interest as platinum-drug 

resistance has previously indicated that a Warburg metabolism may prevent damage caused by the 

therapeutic (Zhao, Y, Butler, E.B and Tan, M., 2013).  

When inducing DNA damage through irradiation with UVC, surprisingly the SK-N-ASrOXALI4000 cells 

displayed a higher sensitivity than the SK-N-AS parental line. It was assumed initially that SK-N-

ASrOXALI4000 cells would show a lower sensitivity to the DNA damage caused by UVC, particularly as 

damage caused by both oxaliplatin and UVC is repaired by nucleotide excision repair (Sancar, A., 

Lindsey-Boltz, L.A, Unsal-Kacmaz, K and Linn, S., 2004). However, there are a multitude of 

mechanisms which contribute to platinum drug resistance and with further examination it may be 

possible to uncover more findings regarding the sensitivity to UVC.  

In conclusion, it appears that oxaliplatin resistant mechanisms are not directly associated with an 

increase in DNA repair capacity and further experimentation and investigation is needed to 

understand the complex underlying resistance mechanisms. As the focus for platinum drug 

investigation has primarily focused on cisplatin and carboplatin resistance which have similar if not 

the same mode of action it is imperative to also focus on models of oxaliplatin resistance.   
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Chapter 7 

Conclusions and future work 

 

This project has provided insight into the use of drug-adapted cancer cell lines in research and 

where they can be utilised. The main cause of treatment failure is the emergence of drug resistance 

in cancer cells whereby the tumour cells are no longer sensitive to the therapeutics given. This is a 

major issue in cancers such as pancreatic, breast and high-risk neuroblastoma, which was the model 

used in this study. It is very difficult to analyse a tumour throughout treatment and to track changes 

as it is not always feasible or ethical to take continued biopsies. Therefore, the use of cancer cell 

lines is crucial in detecting changes in response to chemotherapeutics and the development of 

multidrug resistance.  

The first issue addressed in this work was the authentication of cell lines, the misidentification of 

which is a problem across all research. We propose the use of MALDI-TOF, which has shown huge 

impact clinically in the identification of bacteria through the generation of a known sample 

database (Angeletti, S 2017), as a method to identify cell lines of the same genetic origin. This 

method has shown great promise for differentiating between parental and resistant sub-lines and 

different drug-adapted cell lines. Further work in this project is to generate a mass spec fingerprint 

for each of the cell lines and then to generate a database, this would allow for routine testing to 

confirm authentication and as a means of detecting further differences between cell lines if 

applicable. Coupled with further whole genome and exome sequencing of each of the cell lines a 

full characterisation could be achieved to look at deeper differences between the samples (Diede, 

S.J., 2014).  

This project established a standardised drug adaptation protocol allowing for an in-depth analysis 

of drug adaptation of cell lines when comparing drugs with the same target. Our extensive findings 

indicate, as expected, that it is much harder to induce resistance to cabazitaxel and epothilone-B 

than to docetaxel and paclitaxel. A study of the differences in adapting sub-lines has not been done 

to this extent and the project is still ongoing. The main conclusion is that this systematic approach 

allowed us to observe that UKF-NB-3 cells become resistant to docetaxel and paclitaxel much more 

easily than to the other therapeutics. Further work in this area will be to investigate the remaining 

two docetaxel sub-lines UKF-NB-3 Doce 1 and 4 through exome sequencing, further drug sensitivity 

assays and an in-depth analysis of the ABCB1 transporter. This could include testing against 

cabazitaxel, which interestingly may have an anti-cancer effect in ABCB1 upregulated cells (Duran, 

G.E., Derdau, V., Weitz, D., Philippe, N., Blankenstein, J et al 2018). Another area which might have 

been interesting to investigate is the role of miRNAs in resistance with interesting findings reported 

with miR-27b promoting docetaxel resistance in NSCLC (Armstrong, C.M., Liu, C., Lou, W., Lombard, 

A.P., Evans, C.P et al 2017). Given more time it would have been interesting to have exposed the 

resistant sub-lines to higher doses of docetaxel and to remove weeks without drug added 
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altogether to see if the resistant phenotype remained. These findings taken together demonstrate 

that cancer cells can develop resistance much easier to certain drugs, with others they are unable 

to overcome the drug’s effects. This information could be used for understanding underlying 

mechanisms of resistance with repeated MTT analysis to generate IC50 values to monitor resistance 

formation. Another method for monitoring resistance and studying heterogeneity is through 

circulating tumour DNA (ctDNA) which allows the tracking of alterations of a tumour throughout 

treatment.  Jacob, C.J., Simmons, A.D., Lovejoy, A.F., Esfahani, M.S., Newman, A.M 2016 discuss 

detecting resistance markers such as the EGFR C797S mutation in NSCLC using ctDNA.  

Through the use of intensive FISH chromosomal analysis, we have demonstrated it is an effective 

tool for investigating intra-cell line heterogeneity. The chromosomal aberrations detected changes 

between the UKF-NB-3 clones and the parental cell line they are derived from as well as variances 

between the clones. A direct difference between the UKF-NB-3 parental and the majority of the 

clones was observed with chromosome 12 which had an extra copy in all the UKF-NB-3 clones but 

a single translocation in the parental. Amplification of chromosome 12 is well documented in 

neuroblastoma as well as potential targets from regions 12q13-14 and 12q15 (Fransson, S.M., Kryh, 

H., Javanmardi, N., Ambros, I., Berbegall, A et al 2015). Our finding present that the chromosomal 

changes are seen in the majority of single cell derived clones from UKF-NB-3 indicative of the intra-

cell line heterogeneity within neuroblastoma. One other interesting finding was chromosome 2 

translocations attaching to chromosome 13 in all the UKF-NB-3 clones and this is something we 

would have investigated further, as there appears to be no further research into such a finding. 

MYCN location at chromosome 2 is very well documented and is a criteria in the diagnosis of 

neuroblastoma (Williams, R.D., Chagtai, T., Alcaide-German, M., Apps, J., Wegert, J et al 2015) this 

additional finding could indicate an unknown factor associated with the addition of chromosome 

13. In addition to whole genome analysis we also performed drug sensitivity assays which detected 

more differences as well as similarities. This may be due to differing mechanisms of action of drugs 

investigated but ALK inhibitors crizotinib and NVP-TAE-684 were of particular interest due to 

aberrations seen in chromosome 2 where ALK is located in all the UKF-NB-3 clones. Further work in 

this area would be to investigate ABCB1 in the UKF-NB-3 Clones to identify if some are expressing 

higher levels than others to explain some of the results seen in the drug sensitivity screen. 

Additionally, conducting FISH on a selection of resistant sub-lines to compare to the parental once 

again may indicate further chromosomal changes which could be developed as potential candidates 

for drug targeting. With more time a FISH probe could be generated to look for specific 

chromosomal aberrations which appear frequently in cell lines and tested against drug sensitivity 

assays to determine if there is a link between alteration and acquired drug resistance. DNA FISH 

probes have been used extensively in breast cancer (Magnani, L., Frige, G., Gadaleta, R.M., 

Corleone, G., Fabris, S et al 2017) and leukemia (Hu, L., Ru, K., Zhang, L., Huang, Y., Zhu, X et al 2014) 

among many others. Finally, full karyotyping to establish where the chromosomal aberrations are 
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moving was a next step in the project, to determine which chromosomes the translocations were 

occurring at and to look for patterns within the cell lines and in resistant sub-lines.  

This project established a novel neuroblastoma sub line SK-N-ASrOXALI4000 with acquired resistance 

to oxaliplatin. Oxaliplatin has a much lower cytotoxicity than cisplatin and carboplatin but a 

favourable treatment outcome making it a valid anti-cancer agent to investigate further. SK-N-

ASrOXALI4000 did not exhibit cross resistance to DNA damaging agent’s gemcitabine or doxorubicin 

indicating that the resistance mechanisms differ between different chemotherapeutics targeting 

the DNA. Further work could be carried out here as there is little documentation on the effect of 

doxorubicin and gemcitabine of platinum resistant sub-lines. Interestingly, recent studies have used 

bevacizumab alongside doxorubicin and other chemotherapy agents to treat platinum resistance 

in ovarian cancer and this has significantly improved progression free survival (Poveda, A.M., Selle, 

F., Hilpert, F., Reuss, A., Savarese, et al 2015). Further characterisation of SK-N-ASrOXALI4000 

including treatment relative to the phosphorylation data would be another step to elucidate 

resistance mechanisms further with potential drug targets. Examples include EPHA10 and IGF1R 

which need further examination and cross resistance assays using relevant chemotherapeutics to 

uncover more information. Finally, the discovery that SK-N-ASrOXALI4000 cells had a higher 

sensitivity to UVC radiation may also impact treatment options to oxaliplatin resistance. Further 

examination of this finding is crucial to understanding the mechanisms underlying the changes seen 

when compared to the sensitive SK-N-AS parental and more experiments to investigate DNA 

damage.  

Overall, the work carried out in this thesis is to validate the use of drug-adapted cell lines in cancer 

research and how the findings can uncover resistance mechanisms without the repeated biopsies 

of patients as well as identifying favourable treatment options and sensitivity to certain 

therapeutics.  Translating findings in cell lines into a clinical setting is another step which was limited 

in this project, but the evidence found can influence treatment options by predicting and hopefully 

preventing multidrug resistance and treatment failure in patients.  
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