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Abstract 
 

The emergence of antibiotic resistance has been a serious concern for the last few 

decades. It hinders the treatment of infectious diseases, raising mortality and morbidity 

rates, as well as increasing the cost of healthcare. To investigate the problem of antibiotic 

resistant E. coli, 50 E. coli bacteraemia clinical isolates (Kent collection) were collected 

from East Kent Hospitals University NHS Foundation and phenotypically/genotypically 

characterized for antibiotic resistance, virulence factors, and the presence of putative 

plasmids. High levels of resistance were detected for amoxicillin and trimethoprim, and 

14% of the isolates showed a multidrug-resistant phenotype. ST73 isolates exhibited the 

highest virulence potential while ST131 exhibited the highest levels of antibiotic 

resistance, although no correlation was detected between the two variables. In accordance 

with previous observations, co-carriage of CTX-M-15 and aac(3)-IIa, aac(6')Ib-cr, and 

blaOXA was observed in the collection, providing a possible explanation on why ESBL-

producing isolates are often multidrug resistant. 

The production of nitric oxide (NO) by the mammalian immune system and its 

well-known anti-bacterial properties has prompted the investigation exogenously 

administered NO as an alternative to antibiotics. While combinatorial treatments of NO 

and antibiotics have proved to be successful against bacterial biofilms, this strategy has 

not been investigated in planktonic bacterial cells. Moreover, recent studies have shown 

that the generation of reactive oxygen species (ROS) resulting from hyperactivation of 

the aerobic respiratory chain of E. coli occurs in response to treatment with bactericidal 

antibiotics. This secondary effect of antibiotics is an important part of the as part of the 

lethality of bactericidal antibiotics under aerobic conditions. Given that NO is a well-

known respiratory inhibitor, it was hypothesised this would diminish the toxic effects of 

antibiotics. To test this hypothesis, the effect of NO upon the lethality of a bactericidal 

antibiotic (gentamicin) was tested on a multidrug resistant E. coli. Pre-exposure to the 

NO-donor GSNO or NOC-12 prior to gentamicin treatment was found to increase 

bacterial tolerance to the antibiotic in planktonic cells: the presence of NO elicits a 10-

fold increase in IC50 for gentamicin lethality against an E. coli clinical isolate. Further 

investigation showed that cytochrome bd-I, a NO-tolerant respiratory oxidase expressed 

maximally under microaerobic conditions in E. coli, is largely responsible for the 

sensitization of E. coli to gentamicin during NO exposure. 

The work herein reports that NO elicits a dramatic increase in the tolerance of E. 

coli to antibiotics. Hence, this work has revealed a huge void in knowledge related to 
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antibiotic potency during conditions relevant to infection (i.e. in the presence of NO). 

Furthermore, this work reveals that the cytochrome bd-I respiratory oxidase sensitises E. 

coli to antibiotics in the presence of NO.  These findings shed light on how NO 

encountered during infection could impair the function of antibiotics and will prompt 

future research into how controlling levels of respiratory inhibition during infection may 

be used to improve antibiotic efficacy. 
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1.1. The Antibiotic Paradox 
 

1.1.1. A brief history of antibiotics 

Ever since the discovery of penicillin by Sir Alexander Fleming (Fleming, 1929) 

in 1928, antibiotics have undoubtedly become one of medicines greatest achievements. 

Their use drastically improved the treatment of infectious diseases, patient outcome, and 

transformed the face of medicine: invasive surgeries became common practice, immune-

compromising therapies were introduced to fight cancer, organ transplant procedures 

helped save the lives of millions of people. The combined result was the improvement in 

quality of life and increase in life expectancy. Fleming’s discovery might have 

revolutionized medicine, but antibiotics have been around for much longer. In 1980, 

tetracycline-stained human Nubian bones from a civilization that pre-dates the modern 

antibiotic era were discovered (Bassett et al., 1980); the medical properties of mould have 

been known since ancient times (Aminov, 2010), and most antibiotics are natural products 

or derived from natural products (Harvey, 2000). 

In the four decades following the discovery of penicillin, also known as the 

‘golden era of antibiotic discovery’, ten new classes of antibiotics were discovered 

(Figure 1.1), but in the 1960s the discovery of new antibiotic classes halted. Alternatively, 

the chemical modification of the natural scaffolds of existing antibiotics was successfully 

implemented during this period, but the limited number of effective iterations soon also 

placed this strategy in hiatus. Only two synthetic classes of antibiotics (fluoroquinolones 

– e.g. ciprofloxacin; and oxazolidinones - e.g. linezolid) were discovered during the 

golden era. Despite the technological advances and efforts, mainly driven by the 

pharmaceutical industry, no new synthetic drug has emerged  in the last 20 years 

(Aminov, 2010; Lewis, 2013) with similar efficacy to conventional antibiotics (Brown 

and Wright, 2016). One of the biggest obstacles of synthetic compounds is the bacterial 

membrane, as fully synthetic compounds do not have the benefit of evolution to facilitate 

membrane transit (Lewis, 2013; Brown and Wright, 2016). The difficulty of producing 

compounds with a broad spectrum of activity combined with avoiding toxic and possible 

life-threatening side effects, and the low profit margins compared to other drugs has 

resulted in many pharmaceutical companies ceasing research and development on 

antibiotics. 
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1.1.2. Antibiotic Resistance 

1.1.2.1. Causes, consequences, and prevention 

 Antibiotics were a turning point in human history and have saved many lives. 

Nevertheless, public health is now compromised due to the emergence of antibiotic-

resistant bacteria. Shortly after the discovery of penicillin, strains of staphylococci 

resistant to this antibiotic were found (Barber, 1947), a trend that has now been observed 

over several decades for many other bacterial species and antibiotics (Figure 1.1), with 

some bacteria developing resistance to two or more classes of antibiotics making the 

treatment of infections very problematic, sometimes even impossible. 

 The Centre for Disease Control (CDC) has estimated that over two million people 

every year are afflicted with an antibiotic-resistant infection in the United States, with 

23,000 dying as a result (CDC, 2013). In Europe, the number of deaths per year resulting 

from antibiotic-resistant infections is 25,000 (ECDC/EMEA Joint Working Group, 2009). 

If no measures and policies are put in place in an effort to counteract this problem, these 

numbers will only get worse: a recent British study claimed that by the year 2050, 10 

million people could die every year due to infections cause by antibiotic-resistant 

microorganisms (Review on Antimicrobial Resistance, 2016). 

 To successfully tackle the problem of antibiotic resistance, it is important to 

understand the causes. Paradoxically, the main driver of antibiotic resistance is the use of 

antibiotics. Ever since their discovery, millions of tons of antibiotics have been produced, 

used, and discarded into the environment creating a selective pressure that facilitates the 

Figure 1.1 – Timeline of antibiotic discovery and appearance of resistance. The golden era of 

antibiotic discovery started in the 1930s. After four decades, antibiotic discovery decreased 

significantly, aggravating the problem posed by the emergence of antibiotic resistant bacteria. 
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survival of bacteria carrying the resistance determinant. Antibiotics are often incorrectly 

prescribed to treat viral infections, against which antibiotics are ineffective. Increases in 

human-life expectancy and the advance of medicine has led to the survival of severely ill 

patients and elderly patients, both of which are at higher risk for infection. One prime 

example are cystic fibrosis patients which are known to be at higher risk for pulmonary 

infections and thus frequently require administration of antibiotics. In fact, Pseudomonas 

aeruginosa, an opportunistic Gram-negative bacterium, is known to cause chronic 

infections in cystic fibrosis patients and is currently listed as a “Serious Threats” by the 

CDC (CDC, 2013). Antibiotics are also used in agriculture to promote the growth of 

livestock, and although this practice has been banned in the European Union, it continues 

in other countries, such as the United States, providing an excellent reservoir for 

antibiotic-resistant bacterial populations and a means to later colonize humans. It was 

estimated that antibiotic consumption in livestock increased by 30% in the last decade 

and it is projected to increase by another 37% by 2030 (Van Boeckel et al., 2015).  

 The consequences of antibiotic resistance are two-fold: increase in the cost of 

healthcare and increase in mortality. Infections caused by antibiotic-resistant bacteria, and 

especially multidrug-resistant bacteria, are difficult to treat and lead to an increase in the 

duration of hospital stay, thus increasing healthcare expenses. Moreover, the therapy may 

be unsuccessful, thus increasing the mortality rate associate with infectious diseases. The 

CDC estimated a loss of $20 billion US dollars per year in healthcare expenditures due 

to antibiotic resistant infections, with indirect costs due to loss of members of the work 

force estimated to be $35 billion US dollars (CDC, 2013). In Europe, the total cost was 

estimated to be €1.5 billion per year (ECDC/EMEA Joint Working Group, 2009). 

Additionally, antibiotic resistance has an impact on the world economy. Low-income 

countries could experience an increase of up to 25% per year in healthcare costs by 2050, 

compared to the 15% and 6% estimated for middle and high-income countries, 

respectively, increasing the economic rift between high- and low-income countries and 

sending millions of people into extreme poverty (Adeyi et al., 2017). 

 Irresponsible  use of antibiotics combined with the adaptability of bacteria has led 

to the emergence and alarming dissemination of antibiotic resistance, and has  left us on 

the brink of a post-antibiotic era (World Health Organization (WHO), 2014). Thus, it is 

of the utmost importance to combat antibiotic resistance. Local, national and global 

surveillance systems need to be put in place to monitor antibiotic resistance and facilitate 

the choice of treatment and implementation of policies to help control resistance. 

Moreover, in the face of decrease in antibiotic efficacy, it is imperative to use them wisely 
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and decrease their usage in general. This could be accomplished by decreasing the usage 

of antibiotics in agriculture, development of fast and reliable tests to identify the causative 

agent and its resistance pattern which would allow for a more targeted treatment, and 

public awareness and education on the dangers of antibiotic misuse and overuse (Aminov, 

2010; Davies and Davies, 2010; Michael et al., 2014). More importantly, there is a dire 

need for the development of new safe and efficient drugs and alternative therapies, a 

problem that will require more private and public investment in research (Alanis, 2005). 

  

1.1.2.2. Mechanisms of Antibiotic Resistance 

 Antibiotic resistance is a natural phenomenon. In fact, even before the widespread 

use of penicillin, observations made by Abraham and Chain suggested that bacteria could 

destroy penicillin (Abraham and Chain, 1940). Over the years, the continued selective 

pressure led to the emergence of bacteria exhibiting different resistance mechanisms than 

that initially identified for penicillin but, overall, resistance mechanisms can be divided 

into three categories: 1) Inactivation or modification of the antibiotic molecule; 2) 

Mutation or substitution of the target; and 3) Decreased uptake or efflux of antibiotic 

(Table 1.1).  

The best-known example of antibiotic inactivation are beta-lactamases. This 

group of enzymes is very diverse, varying in physical/chemical properties and spectrum 

of activity (Bush et al., 1995). They are responsible for the inactivation of beta-lactam 

antibiotic classes, which includes penicillins, cephalosporins, monobactams, and 

carbapenems. Bacteria expressing these enzymes export it into the periplasmic space 

where the antibiotic is inactivated through the hydrolysis of the beta-lactam ring. 

Presently, one of the biggest concerns is the emergence of extended-spectrum beta-

lactamases (ESBLs). Initially detected in Klebsiella pneumoniae (K. pneumoniae) 

(Bradford, 2001), these enzymes have since spread to other members of the 

Enterobacteriaceae family, such as Escherichia coli (E. coli), and are currently widely 

disseminated and responsible for many ‘difficult-to-treat’ infections  (Lau et al., 2008; 

Croxall et al., 2011). Alternatively, antibiotic modifications can be achieved by addition 

of an adenylyl, phosphoryl, or acetyl groups to the molecule through the action of 

nucleotidyltransferases, phosphotransferases, and acetyltransferases, respectively 

(Alekshun and Levy, 2007). Many aminoglycosides, such as streptomycin and 

gentamicin, are inactivated through this mechanism. Another example is 

chloramphenicol, which is inactivated by the action of a chloramphenicol 

acetyltransferase that is usually encoded by the cat gene. 
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 Owing to the specificity of the antibiotic:target interaction, subtle structural 

changes in the cellular target can prevent said interaction while still allowing the target to 

maintain normal function. For example, high-level resistance to fluoroquinolones in E. 

coli is mainly attributed to mutations in genes encoding subunit A of DNA gyrase (gyrA) 

(McDermott et al., 2003; Alekshun and Levy, 2007). Structural alterations in bacterial 

lipopolysaccharide (LPS) have also enabled K. pneumoniae to evade the action of 

polymyxins: mutations in mgrB result in increased synthesis of sugar 4-amino-4-deoxy-

L-arabinose (L-ara4N), and its insertion in the lipid A moiety of LPS results in an altered 

target (Cannatelli et al., 2013; Cannatelli et al., 2014; Poirel et al., 2015). Bacteria can 

also evade antibiotic toxicity through expression of alternative forms of the targeted 

enzyme. The prototypical example is a penicillin-binding–protein (PBP) variant in 

methicillin-resistant Staphylococcus aureus (MRSA). This variant is encoded by mecA 

and exhibits low affinity for derivatives of penicillin, and cell wall biosynthesis therefore 

remains unaffected by exposure to these beta-lactam antibiotics (Alekshun and Levy, 

2007). 

With the exception of polymyxins, all antibiotics currently available target 

intracellular bacterial proteins. As such, efficacy is dependent on whether the antibiotic 

reaches the target in sufficient quantity. Bacteria can prevent intracellular accumulation 

of the antibiotic by changing membrane permeability or through the export of the 

antibiotic by efflux pumps. The latter can be specific to an antibiotic or antibiotic class, 

or can be promiscuous and capable of exporting a wide array of antibiotics resulting in a 

multidrug-resistant phenotype (McDermott et al., 2003; Džidić et al., 2008). 

Interestingly, recent studies have shown a synergy between efflux pumps and mutations 

in intracellular drug targets (Fange et al., 2009; Lovmar et al., 2009). Lovmar and 

colleagues (Lovmar et al., 2009) showed that mutations in the L22 protein of the 50S 

subunit of the E. coli ribosome, conferring erythromycin resistance, was only effective in 

a drug efflux pump proficient E. coli strain, whilst in an E. coli strain unable to effectively 

export antibiotic, susceptibility to erythromycin was similar to that observed in the E. coli 

strain without the ribosomal mutation, i.e. sensitive to erythromycin. This shows that drug 

efflux deficiency can “mask” antibiotic resistance arising from drug target mutations. 

Furthermore, it also shows that inhibition of efflux pumps of pathogenic bacteria with 

altered cytoplasmic drug targets, arising due to mutation, could provide an alternative 

therapy to fight antibiotic resistant bacterial infections. 
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Table 1.1 – Targets and common resistance mechanism for different antibiotic 

classes. 

 

Antibiotic class Target Resistance mechanism 

Aminoglycosides (Streptomycin, 

Gentamycin) 

Protein synthesis Antibiotic modification 

Beta-lactams (Penicillins, 

Monobactams, Cephalosporins, 

Carbapenems) 

Cell wall synthesis Hydrolysis; Target 

modification/substitution 

Phenicols (Chloramphenicol) Protein synthesis Antibiotic modification 

Fluoroquinolones 

(Ciprofloxacin) 

DNA Replication Target modification 

Glycopeptides (Vancomycin) Cell wall synthesis Target 

modification/substitution 

Polypeptides (Polymyxins) Cell membrane Target 

modification/substitution; 

Efflux 

Pyrimidines (Trimethroprim) Folic acid metabolism Target 

modification/substitution; 

Efflux 

Rifamycins (Rifampin) Transcription Target 

modification/substitution; 

Efflux 

Sulphonamides Folic acid metabolism Target 

modification/substitution; 

Efflux 

Tetracyclines Protein synthesis Target 

modification/substitution; 

Efflux 

 

1.1.2.3. Genetics of Antibiotic Resistance 

Resistance to antibiotics can be intrinsic (natural) or acquired. In intrinsic 

resistance, the bacterium exhibits the innate ability to resist the activity of specific 

antibiotics mediated by, for example, the bacterial outer membrane or by efflux pumps 

(Henriques Normark and Normark, 2002). However, studies have shown that there are 

many other naturally-occurring genes in different bacterial species that also contribute to 

an antibiotic-resistant phenotype. One such example is the chromosomal-encoded AmpC 

beta-lactamase of E. coli, which confers resistance to many beta-lactam antibiotics 

(Alekshun and Levy, 2007). Interestingly, work by Adam et al. (2008) suggests that 

epigenetic effects occurring during exposure to low concentrations of ampicillin are 

responsible for further activation AmpC expression, usually poorly expressed in E. coli 

and thus unable provide substantial protection to ampicillin, thus resulting in a more 

potent antibiotic resistance. This study by Adam and colleagues further shows the 

complexity of antibiotic resistance.  
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Acquired resistance arises through mutations in chromosomal genes, or horizontal 

gene transfer (HGT), via transduction (transfer of genetic material using a bacteriophage 

as a vector), conjugation (direct transfer between bacterial cells through the pilus 

produced by the donor cell), or transformation (direct uptake of exogenous DNA) 

(McDermott et al., 2003; Alekshun and Levy, 2007; Džidić et al., 2008), During HGT 

resistance genes are carried on mobile genetic elements (plasmids, transposons, and 

integrons) and acquired by the host bacterium from other bacterial species. Plasmid-

mediated transmission of resistance genes is, by far, the most common form of HGT and 

main contributor to antibiotic resistance among clinical isolates (Davies and Davies, 

2010). Plasmids are extra-chromosomal DNA segments that replicate independently of 

the hosts chromosome, can be transferred to other bacteria and often carry genes that 

provide the host with a selective advantage, such as resistance to an antibiotic 

(McDermott et al., 2003) Moreover, plasmids can also provide a vehicle for other mobile 

genetic elements, such as transposons and integrons. Transposons are mobile genetic 

elements which can be incorporated into a plasmid or the hosts chromosome via the action 

of the site-specific transposases encoded within the transposon (Henriques Normark and 

Normark, 2002; McDermott et al., 2003; Alekshun and Levy, 2007). Integrons represent 

an interesting situation and provide a unique, albeit problematic, role to the antibiotic 

resistance problem. Integrons are DNA elements that promote the capture of one or more 

resistance genes to form a cluster that is under the control of a single strong promoter. 

Hence, due to this co-expression, exerting a selective pressure with one antibiotic will 

also select the remaining adjacent genes, resulting in a multidrug resistant phenotype 

(Henriques Normark and Normark, 2002; McDermott et al., 2003; Džidić et al., 2008; 

Davies and Davies, 2010). Taken together, the existence of different mobile genetic 

elements and modes of transmission, combined with the increasing selective pressure 

caused by the growing use of antibiotics, resulted in the perfect set of conditions that gave 

rise to the alarming emergence and dissemination of antibiotic resistance currently 

observed. 

It is important to note that acquisition and expression of resistance determinants 

genetically encoded is not the only method of antibiotic resistance. Bacteria can also 

develop a tolerant phenotype, i.e. alter their physiology and metabolism in response to 

environmental conditions which result in an antibiotic resistant phenotype (adaptive 

resistance). Persister cells are a prime example of this. Persister cells are a phenotypic 

variant that forms within a bacterial population (Lechner et al., 2012; Lewis, 2013). 

Whilst the mechanism by which they form is still not well understood, their metabolically 
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inactive phenotype allows for persister cells to survive treatment with antibiotics (e.g. 

Fluoroquinolones target DNA synthesis and, thus, are only effective against actively 

dividing cells) (Lewis, 2013). Another mechanism of adaptive resistance is epigenetic 

inheritance (Adam et al., 2008): DNA methylation, resulting in different gene expression 

patterns, and methylation of bacterial ribosomal RNA (rRNA) have both been shown to 

lead to the development of drug resistance (Motta et al., 2015; Manderwad, 2017). 

 

1.2. Nitric Oxide 
 

1.2.1. Physical and chemical properties of nitric oxide 

Nitric oxide (NO), discovered by Joseph Priestly in 1772, is in gaseous form under 

atmospheric conditions and for a long time it was thought that it was merely a product of 

pollution. It wasn’t until the 1980s that the role of NO in biological systems started to 

unravel.  

In mammals, NO is synthesized by nitric oxide synthase (NOS), which converts 

the amino acid L-arginine into NO and citrulline, and is involved in critical roles, such as  

vasoregulation, smooth muscle relaxation, platelet aggregation, and neurotransmission 

(Snyder and Bredt, 1992; Vallance, 2003). 

The reactivity of NO is highly dependent on its physical and chemical properties. 

NO is a small diatomic molecule of lipophilic nature and high diffusivity (Hughes, 2008). 

However, its unpaired electron is the most significant property of NO conferring it its 

radical natural and determining its high reactivity (Hughes, 2008; Lancaster Jr, 2015) and, 

consequently, its short half-life (5-15 seconds) (Kröncke et al., 1997; Lancaster Jr, 1997; 

Hughes, 2008). Due to the presence of the unpaired electron NO displays high chemical 

reactivity towards other free radicals, such as superoxide, giving rise to higher reactive 

species with different biological consequences (Mateo and de Artiñano, 2000; Hughes, 

2008). NO can also react with transition metals, such as iron, copper, and zinc, an 

interaction which results in the formation of a metal-nitrosyl complex which may lead to 

changes in the function of the targeted protein. A prime example is the interaction with 

soluble guanylyl cyclase (sGC), a well-known intracellular receptor of NO in mammals. 

The binding of NO to the haem prosthetic group of sGC results in an increase of cGMP 

levels, which in turn regulates downstream processes involved in smooth muscle 

relaxation, vasodilatation, and neurotransmission (Nisbett and Boon, 2016). NO can also 

react with thiol groups of molecules, forming S-nitrosothiols, compounds which can 

either be an inert form of NO storage but also a S-nitrosating agent, thus capable of 
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altering or inhibiting the function of other target proteins (MacMicking et al., 1997; 

Schindler and Bogdan, 2001).  

Whilst its reactivity, high rate of diffusion, and lipophilic nature provide NO with 

the necessary properties to carry out its important role as a messenger molecule, it is 

important to note that in high concentrations NO is highly toxic. Indeed, NO has been 

implicated in many pathophysiological states including septic shock, hypertension, and 

neurodegenerative diseases (Vallance, 2003; Pacher et al., 2007). As such, its synthesis 

must be tightly regulated to prevent cytotoxicity. However, high levels of NO are known 

to be produced by iNOS, the inducible NOS expressed by cells of the mammalian immune 

system (macrophages and neutrophils) (Schairer et al., 2012; Nisbett and Boon, 2016), in 

response to infection (see section 1.2.2.). 

 

1.2.2. Nitric oxide and immunity 

An important feature of NO, and of particular interest in this antibiotic resistance 

era, is its antimicrobial activity. Immune cells such as macrophages and neutrophils 

express the inducible form of NOS (iNOS) upon activation with proinflammatory 

cytokines (Figure 1.2), which in turn produces NO from L-arginine. The highly reactive 

nature of NO makes the biochemistry and antimicrobial activity of NO very complex. On 

its own, NO can strongly bind to the iron of haem groups and iron-sulphur ([Fe-S]) 

clusters, both important cofactors in a plethora of bacterial proteins (Wink et al., 2011). 

The destruction of [Fe-S] clusters by NO prompts the release of  ferrous iron (Fe2+), which 

in combination with hydrogen peroxide (H2O2) leads to formation of the highly toxic 

hydroxyl radical (Kröncke et al., 1997).  However, it is the ability to react with other free 

radicals and create other nitrogen oxides that makes NO so toxic. Peroxynitrite (ONOO-

) is a reactive nitrogen species (RNS) formed through the fast reaction of NO with 

superoxide (O2
-). It rapidly reacts with lipids and proteins, limiting its ability to diffuse 

into target cells but nonetheless has a much greater cytotoxicity than NO and superoxide 

alone. Peroxynitrite can also lead to the formation of other toxic RNS, including 

dinitrogen trioxide (N2O3) and nitrogen dioxide (NO2) (Bogdan, 2001; Pacher et al., 

2007). Additionally, peroxynitrite is more effective at producing highly-toxic hydroxyl 

radicals than the Fenton reaction, which forms hydroxyl radicals through the reaction of 

hydrogen peroxide (H2O2) with  ferrous iron (Fe2+) (Pacher et al., 2007). NO can also 

react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), a S-nitrosating agent 

involved in signalling and NO storage in mammalian cells, but also toxic to bacteria due 

to its ability to nitrosylate cysteines. Hence, NO is capable of directly and indirectly 



24 

 

damaging or inhibiting important cellular functions, such as damaging DNA, inhibiting 

protein synthesis, inhibiting protein function through S-nitrosylation or disruption of [Fe-

S] clusters and haem groups, and disruption of cellular membrane through lipid 

peroxidation. Although the toxic effects of NO contribute to the host defence against 

invading pathogens, they are also toxic to mammalian cells in high concentrations. 

Protection from the toxic effects of NO and related RNS in mammalian cells occurs 

through formation of inert NO-storage/transport compounds, which also allow for a more 

efficient and far-reaching NO signalling, since the reactivity of NO towards a plethora of 

cellular components and radicals limits its diffusion (Kröncke et al., 1997; MacMicking 

et al., 1997; Mateo and de Artiñano, 2000; Villanueva and Giulivi, 2011), and through 

compartmentalization (e.g. acidic compartments such as lysosomes), which restricts the 

toxic effects of NO and its RNS derivatives to a small sub-cellular location (Villanueva 

and Giulivi, 2011). 

 

 

 

 

Figure 1.2 – Chemistry of nitric oxide. In the mammalian immune system, NO is produced by 

iNOS and rapidly reacts with superoxide (O2
-) to form peroxynitrite. (ONOO-), a highly toxic 

RNS capable of forming other RNS through reaction with carbon dioxide (CO2) and hydroxyl 

radicals (.OH). NO also reacts with glutathione (GSH) to form S-nitrosoglutathione (GSNO), a 

S-nitrosating agent. All these species combined can lead to DNA damage, protein damage and 

peroxidation of membrane lipids, and are an effective means of combating bacterial infections. 
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It is important to note that the role of NO in immunity extends beyond its 

antimicrobial properties: NO synthesized by iNOS also exerts a regulatory function, most 

notably a role in the maturation and regulation of the activity of Natural Killer (NK) cells 

(Coleman, 2001; Wink et al., 2011), required for a robust immune response. 

 

1.2.3. Nitrosative stress in E. coli 

 Bacteria encounter NO in a wide range of environments: during infection, 

neutrophils and activated macrophages are a source of NO which is used to combat 

invading pathogens; NO can also be produced at low concentrations as a by-product of 

bacterial anaerobic respiration (Bender and Conrad, 1994) or by bacterial homologues of 

the mammalian NOS (Crane, 2008; Sudhamsu and Crane, 2009; Crane et al., 2010). 

 

Figure 1.3 – NO resistance mechanisms of E. coli. A) Periplasmic cytochrome c nitrite 

reductase (NrfA, the catalytic subunit of the Nrf complex) reduces nitrite to ammonium, releasing 

NO in the process, which in turn can be also converted to ammonium by NrfA; B) Cytochrome 

bd-I is a NO-tolerant respiratory oxidase that facilitates aerobic respiration; C) Flavohaemoglobin 

Hmp converts NO to nitrate or to nitrous oxide in the presence or absence of oxygen respectively; 

D) The hybrid cluster protein, Hcp, and its partner reductase, Hcr, convert NO to nitrous oxide 

under anoxic conditions; E) Flavorubredoxin, NorV, and its partner reductase, Flavorubredoxin 

reductase NorW, converts NO to nitrous oxide under anaerobic conditions; F) YtfE, a di-iron 

protein, repairs iron-sulphur clusters damaged by nitrosative stress. 
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Like many other bacteria, E. coli has a remarkable capacity to respond to 

environmental stresses through a series of well-coordinated mechanisms. Thus, the 

existence of mechanisms in E. coli that helps to circumvent the toxic effects of NO and 

its derivatives is unsurprising (Figure 1.3). Studies have shown that bacterial NO 

detoxification increases in response to NO or NO-releasing molecules such as GSNO 

(Hausladen et al., 1998; Flatley et al., 2005; Jarboe et al., 2008). E. coli possesses various 

NO-detoxifying enzymes, including the periplasmic cytochrome c nitrite reductase 

(NrfA), the cytoplasmic flavohaemoglobin (Hmp), flavorubredoxin (NorV), and hybrid-

cluster protein (Hcp). Alongside them there are mechanisms that repair the damage 

caused by NO, such as via the action of YtfE which repairs [Fe-S] clusters. Furthermore, 

the NO-tolerannt cytochrome bd-I respiratory oxidase facilitates aerobic respiration in the 

presence of NO. These mechanisms are discussed in more detail below. 

 

1.2.3.1. Flavohaemoglobin Hmp 

 Flavohaemoglobins are widely distributed microbial proteins comprising two 

domains: a N-terminal globin-like domain containing haem b, and a C-terminal 

ferredoxin-NADP+ reductase (FNR)-like domain with binding sites for FAD and 

NAD(P)H. As the best studied microbial flavohaemoglobin, the role of E. coli Hmp 

during nitrosative stress has been intensely studied. Encoded by the hmp gene in E. coli, 

microarray studies have shown that Hmp expression is up-regulated after cells are 

exposed to NO (Justino et al., 2005), GSNO (Mukhopadhyay et al., 2004; Flatley et al., 

2005), and NO-releasing compounds (NOC) (Pullan et al., 2007), both aerobically and 

anaerobically. In the presence of oxygen this cytoplasmic protein catalyses a NO 

dioxygenation reaction by binding O2 at the ferrous haem giving rise to a ferrous (Fe2+) 

haem:superoxide intermediate that rapidly reacts with NO and produces nitrate. The FAD 

cofactor at the C-terminal catalyses the reduction of the now ferric (Fe3+) haem to its 

original ferrous form through a sequential electron transfer from NADH to the bound 

haem in the globin-like domain (Figure 1.4). A hmp mutant was shown to be unable to 

catalyse NO consumption (Hausladen et al., 1998) and exhibited a more pronounced 

growth inhibition compared to wild-type cells when in presence NO or S-nitrosothiols 

(Gardner et al., 1998; Hausladen et al., 1998). NO consumption by Hmp was inhibited 

by cyanide, indicating that the NO reaction occurs at the oxyhaem, and possibly arises 

due to interference of cyanide in the reduction of ferric haem to ferrous haem (Hausladen 

et al., 1998). Additionally, Hmp was found to have higher affinity for NADH rather than 

NADPH, with Km for NADPH being 10-fold higher than that of NADH (Anjum et al., 
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1998). In addition, Wu et al. (2004) and Membrillo-Hernández et al. (1996) demonstrated 

formation of superoxide by Hmp during aerobic NO turnover in vitro and in vivo, the 

latter accomplished by monitoring the transcription of sodA (superoxide dismutase), 

which is up-regulated in the presence of superoxide. Under anoxic conditions, Hmp 

catalyses the NADH-dependent reduction of NO to nitrous oxide (N2O) with formation 

of a nitrosyl intermediate complex (Hausladen et al., 1998; Kim et al., 1999). Taken 

together these findings support the proposed reaction described and presented in figure 

1.4. 

 

 

NO inhibits the function of many bacterial proteins by binding to their cofactors, 

such as haem and [Fe-S] clusters. This includes the haem-binding respiratory oxidase 

complexes involved in  aerobic respiration, which have been shown to be inhibited in E. 

coli by NO in an O2-dependent manner, i.e. respiratory inhibition is more profound at 

lower oxygen tensions (Yu et al., 1997). Hmp is able to protect aerobic respiration 

catalysed by cytochrome bo’  or cytochrome bd from NO-mediated inhibition (Stevanin 

et al., 2000). Respiration rates in cells lacking either cytochrome bd or cytochrome bo’ 

was measured following the addition of NO gas and it was shown that inhibition of 

respiration catalysed by either cytochrome was more profound in a hmp mutant, thus 

establishing the importance of a functional Hmp in alleviating NO-mediated respiratory 

inhibition (Stevanin et al., 2000). Hmp has also been shown to protect the activity of 

aconitase, an important enzyme of the citric acid cycle with a [4Fe-4S]  cofactor, from 

NO-mediated inhibition  (Gardner and Gardner, 2002). 

Figure 1.4 – NO detoxification by Hmp. Electrons are transferred from NADH to FAD and then 

to the haem group where under aerobic conditions (left) O2 is reduced to form superoxide, which 

in turn reacts with NO (oxygenation reaction) yielding nitrate. Under anaerobic conditions (right), 

ferrous heam reacts with NO giving rise to a nitrosyl species. Further reaction yields nitrous oxide 

as the final product. 



28 

 

The protection against NO that is conferred by Hmp make it a valuable virulence 

factor during infection. In Salmonella, the virulence of different mutant strains was 

investigated in a mouse infection model, which showed that compared to the parental 

strain, the hmp mutant exhibited an almost complete loss of virulence, which was restored 

after addition of an iNOS inhibitor, hence suggesting that loss of virulence was due to 

inability of mutant to cope with RNS produced by the host during infection (Bang et al., 

2006). In E. coli, survival of a hmp mutant is significantly reduced in both murine 

macrophages and human neutrophils (Shepherd et al., 2016). In addition to NO tolerance, 

the generation of reactive ROS by Hmp (Membrillo-Hernández et al., 1996; Mills et al., 

2001; Wu et al., 2004) leads to intracellular oxidative stress and, as such, some systems 

involved in the response to oxidative stress are activated (Membrillo-Hernandez et al., 

1999). This shows that not only is the presence of a functional Hmp important during 

infection for protection of bacterial cells against host-derived RNS, but it is also important 

for the expression of other important virulence factors and induction of a more robust 

SOS response. 

 Overexpression of Hmp has been shown to exacerbate oxidative stress in both 

Salmonella (Bang et al., 2006; McLean et al., 2010) and E. coli (Membrillo-Hernández 

et al., 1996; Mills et al., 2001; Wu et al., 2004). Thus, Hmp expression needs to be tightly 

regulated to prevent intracellular oxidative stress (Figure 1.5). Fumarate nitrate reduction 

(FNR) regulator is a member of the cyclic-AMP receptor family of transcriptional 

regulators and a repressor of Hmp expression (Poole et al., 1996). The [4Fe-4S] cluster 

of FNR is sensitive to both O2 and NO, with both inhibiting DNA-binding activity of FNR 

and allowing de-repression of genes involved in anaerobic metabolism and respiration, 

including hmp (Green et al., 2014). FNR is able to detect NO levels as low as 5 µM, 

making it a relevant NO-sensor in vivo (Cruz-Ramos et al., 2002). MetR is a 

transcriptional regulator involved in the control of genes encoding proteins that 

participate in methionine biosynthesis, and has also been implicated in the induction of 

the hmp gene by GSNO and sodium nitroprusside (SNP) (Membrillo-Hernández et al., 

1998). Interestingly, microarray studies by Pullan et al. (2007) using NOC compounds to 

induce nitrosative stress revealed no upregulation of the met genes, which was attributed 

to GSNO and NOC compounds behaving differently with respect to homocycteine (Hcy), 

the cofactor of MetR: GSNO reacts with Hcy forming S-nitroso-Hcy and depleting the 

Hcy intracellular pool; in the absence of Hcy, MetR binds to the promoter of hmp and 

activates transcription (Membrillo-Hernández et al., 1998; Pullan et al., 2007). However, 

NO released by NOC compounds did not nitrosylate the homocysteine pool.  
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NsrR (Nitrite-sensitive repressor) is a NO-sensor with a [2Fe-2S] cluster that is 

nitrosylated by NO, which results in the formation of a cysteine-bound dinitrosyl iron 

complex that abolishes the DNA-binding activity of NsrR, resulting in de-repression of 

hmp transcription (Figure 1.5) (Filenko et al., 2007; Tucker et al., 2008). 

 

1.2.3.2. Flavorubredoxin NorV and partner reductase NorW 

Flavorubredoxin (FIRd) is encoded by the norV gene in E. coli and the NorV 

protein possesses three distinct domains: a N-terminal metallo-beta-lactamase domain 

containing a non-haem di-iron centre, a flavodoxin-like domain containing one FMN 

element, and a C-terminal rubredoxin (Rd)-like domain (Gomes et al., 2000; Gomes et 

al., 2002; Vicente et al., 2007). FIRd is associated with FIRd-reductase, a member of the 

NAD(P)H:rubredoxin oxireductase family of proteins encoded by the norW gene in E. 

coli. FIRd-reductase catalyses the transport of electrons from NADH to the Rd domain 

of FIRd, which then proceed to the FMN moiety followed by transfer to the di-iron site 

where they become available to efficiently reduce NO to nitrous oxide (Gomes et al., 

2000; Gomes et al., 2002; Vicente et al., 2007) (Figure 1.6). 

Figure 1.5 – Regulation of Hmp expression. FNR and NsrR are both negative regulators of hmp 

transcription. NO interacts with the [Fe-S] clusters of these transcriptional factors and prevents 

DNA-binding, leading to de-repression of hmp. MetR-dependent transcriptional activation of hmp 

was shown to occur only in the presence of nitrosating compounds, such as GSNO, which depletes 

the intracellular homocysteine pool resulting in MetR activation. 
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Total RNA transcriptomics showed an increase in mRNA levels for norV and 

norW in response to GSNO (Mukhopadhyay et al., 2004; Flatley et al., 2005), NO 

(Justino et al., 2005), and NOC compounds (Pullan et al., 2007), in both aerobic and 

anaerobic conditions.  Interestingly, studies using norV-lacZ and norW-lacZ fusions have 

shown that induction of norV and norW was significantly inhibited in fully aerated 

conditions (200- and 20-fold less for norV and norW, respectively, compared to anoxic 

conditions), and other studies have also revealed NorVW has higher NO-metabolizing 

activity under anaerobic conditions (Gardner et al., 2002). Combined with the observation 

by Gardner and Gardner (2002) that NO consumption in cells expressing high levels of 

Hmp is higher in the presence of oxygen, and only in the presence of oxygen was Hmp 

capable of protecting aconitase activity from NO-dependent inactivation, it was 

hypothesized that under anaerobic conditions NorVW plays a more predominant role in 

NO detoxification than Hmp. Conversely, Hmp was proposed to be more important in the 

presence of oxygen. This hypothesis was supported by studies that monitored Hmp and 

NorVW protein levels following exposure to NO in an anoxic environment: expression 

of NorV occurred immediately after NO-exposure and remained constant throughout the 

experiment, while Hmp expression reached maximal expression much later (Justino et 

al., 2005). Interestingly, deletion of both norV and hmp results in a severe impairment of 

growth in the presence of nitrosative stress under anoxic conditions, more so than in hmp 

or norV single mutants suggesting that despite the predominant role of NorVW in NO-

detoxification in anaerobic conditions, Hmp still plays an important, albeit minor, role 

(Justino et al., 2005). 

Figure 1.6 – NO reduction by NorVW. FIRd-reductase catalyses the electron transfer from 

NADH to FIRd, which in turn reduce NO to nitrous oxide. Sourced from Vicente et al. (2007). 
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The NO-sensing transcription factor NorR, encoded by the norR gene in E. coli 

that is divergently transcribed from norVW, is responsible for NO-mediated regulation of 

the norVW operon (Figure 1.7). NorR has three domains: a N-terminal GAF domain 

containing a mononuclear non-haem iron which reversibly binds NO and is responsible 

for signal sensing (Gardner et al., 2003; D’Autréaux et al., 2005); a central AAA domain 

with ATPase activity; and a C-terminal DNA-binding domain (D’Autréaux et al., 2005; 

Spiro, 2007). Binding of NO stimulates the ATPase activity of the central AAA domain 

and initiates transcription of the norVW operon (D’Autréaux et al., 2005; Spiro, 2007). 

 

 

1.2.3.3. Hybrid-cluster protein system: Hcp-Hcr 

The hybrid cluster protein (Hcp), encoded by hcp in E. coli, is a cytoplasmic 

protein of approximately 60 kDa with unique [Fe-S] cluster properties: it contains one 

conventional [2Fe-2S] cluster and a hybrid [4Fe-2S-2O] cluster (van den Berg et al., 

2000; Aragão et al., 2008). Downstream the hcp gene, the gene hcr encodes a NAD(P)H 

oxidoreductase of approximately 34.6 kDa that binds a FAD cofactor and a [2Fe-2S] 

cluster (van den Berg et al., 2000). Hcr catalyses the reduction of Hcp in vitro in the 

presence of the electron donor NADH, to which Hcr demonstrates relatively high affinity 

(Km=10 µM for NADH while Km for NADPH is approximately 0.3 mM). Electrons are 

transferred from NADH to the hybrid [4Fe-2S-2O] cluster of Hcp via the [2Fe-2S] 

clusters of Hcr and Hcp, which are used in the subsequent reduction of NO to nitrous 

oxide (van den Berg et al., 2000). 

Induction of Hcp-Hcr was shown to occur in both aerobic and anaerobic cultures 

exposed to either GSNO (Flatley et al., 2005) or NOC compounds (Pullan et al., 2007), 

however the rate of NO reduction by Hcp in cells grown aerobically was low, suggesting 

oxygen inactivates Hcp activity in vivo (Wang et al., 2016). In anoxic conditions, deletion 

Figure 1.7 – NorRVW transcriptional unit. In the presence of NO, NorR is activated and 

initiates transcription of the norVW operon. Activated NorR is capable of self-regulation. 
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of hcp resulted in a NO-mediated growth impairment and loss of activity of aconitase and 

fumarase, two enzymes involved in central carbon metabolism that are dependent on 

functional [Fe-S] clusters (Wang et al., 2016). Despite the role in NO detoxification, Hcp 

inactivation is triggered by NO concentrations above 200 nM. Thus, it was suggested that 

Hcp-Hcr provides protection against nitrosative stress under anaerobic conditions only 

when NO concentrations are low and unable to cause substrate-mediated inactivation of 

Hcp (Karlinsey et al., 2012; Wang et al., 2016).  

The hcp-hcr genes are regulated by FNR and NsrR. In an E. coli fnr mutant, 

exposure to NO-donor spermine NONOate is unable to induce transcription of hcp to 

wild-type levels, suggesting that FNR is responsible for the activation of hcp-hcr operon 

transcription under anaerobic conditions (Filenko et al., 2007; Wang et al., 2016). 

Furthermore, gel-shift assays showed binding of FNR to hcp promoter in vitro, further 

supporting the role of FNR in transcriptional regulation of hcp-hcr regulon (Filenko et 

al., 2007). In Salmonella, the putative consensus binding site of NsrR is present in the 

predicted promoter region of hcp-hcr operon, and microarray and qRT-PCR data showed 

it was a part of the NsrR regulon in this Gram-negative bacterium (Karlinsey et al., 2012). 

Moreover, a Salmonella nsrR mutant displayed a 678.1-fold induction of the hcp-hcr 

operon compared to wild-type (Karlinsey et al., 2012), with similar results obtained for a 

E. coli nsrR mutant (Filenko et al., 2007). In an assay involving a multi-copy plasmid 

containing the promoter of a known NsrR target, thus relieving NsrR-mediated repression 

of the target genes through titration of NsrR, a strong induction of hcp-hcr was observed  

(Filenko et al., 2007). Taken together this data shows that NsrR is a repressor of hcp-hcr 

operon.  

 

 

Figure 1.8 – Transcriptional regulation of the hcp-hcr operon. In the presence of NO, NsrR-

mediated repression is lifted; FNR acts as a transcriptional activator under anaerobic conditions. 
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1.2.3.4. Detoxification of NO by NrfA 

The periplasmic cytochrome c nitrite reductase of E. coli, NrfA, is a homodimeric 

protein containing five c-type haems per monomer. Expressed under microaerobic and 

anaerobic conditions in the presence of nitrate or nitrite (Wang and Gunsalus, 2000), NrfA 

catalyses the reduction of nitrite to ammonium (Darwin et al., 1993) via a NO 

intermediate (Figure 1.3). NO consumption by NrfA was observed by Poock et al. (2002) 

using an E. coli strain with a nirA- background to better assess the contribution of NrfA 

towards NO consumption. NirA is a cytoplasmic nitrite reductase expressed under 

microaerobic or anoxic conditions, and thus could mask the effect of NrfA on NO 

metabolism. Under aerobic conditions, the nirA- nrfA+ strain reduced NO at a maximal 

rate 300 nmol of NO (mg of protein-1 min-1), whilst NO consumption was abolished in a 

nirA- nrfA- strain under aerobic condition, consistent with the absence of  NrfA expression 

in these conditions (Poock et al., 2002). Furthermore, anaerobic growth of nrfA- strains 

has been shown to be more sensitive to NO than the parental strain, further suggesting a 

role for NrfA in NO tolerance (Poock et al., 2002; Pittman et al., 2007; van Wonderen et 

al., 2008). The periplasmic location of NrfA is well-suited for NO detoxification in vivo, 

metabolizing NO before it enters the cell. Interestingly, NrfA has also been implicated in 

NO production as a consequence of its anaerobic nitrite reductase activity (Corker and 

Poole, 2003). Nevertheless, the low NO levels produced by NrfA during anaerobic 

respiration of nitrite can be easily dealt with by Hmp and NorVW, preventing inactivation 

of FNR, an important transcriptional regulator of various important genes, including NrfA 

(Corker and Poole, 2003). 

The gene encoding NrfA is positively regulated by FNR (Spiro, 2006). However, 

due to sensitivity of its [Fe-S] cluster, FNR is prone to NO-mediated inactivation resulting 

in NrfA down-regulation (Pullan et al., 2007), a result that is not consistent with its 

proposed protective role during nitrosative stress. A possible explanation for this 

phenomenon arose from studying the role of NrfA in Salmonella. Mills et al. (2008) 

showed that under NrfA-inducing conditions (i.e. anaerobic growth in minimal medium 

with glycerol as a carbon source and nitrate and fumarate as respiratory electron 

acceptors), NrfA is unable to protect Salmonella from NO in the absence of NorV and 

Hmp, suggesting that NrfA is not a vital component of the immediate response to NO 

under these conditions. Hence, whereas the NO-reductase activity of NrfA provides an 

advantage under conditions in which NrfA is already being expressed, its absence due to 

inactivation of FNR by NO does not affect cellular viability in response to nitrosative 
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stress. A microarray study has shown that nrfA transcription increases 2.2-fold in a nsrR 

mutant, suggesting that nrfA is a member of the NsrR regulon (Filenko et al., 2007).  

  

1.2.3.5. Iron-sulphur cluster repair: YtfE 

[Fe-S] clusters are prosthetic groups that are present in a variety of important 

bacterial proteins. Since NO is well-known to nitrosylate [Fe-S] clusters, it is unsurprising 

that bacteria possess systems capable of repairing the damage inflicted to these cofactors 

during nitrosative stress. In E. coli, YtfE is a member of the Repair of Iron Centres (RIC) 

family of proteins with a di-iron centre and aids in the tolerance of E. coli to nitrosative 

stress by repairing [Fe-S] clusters (Justino et al., 2006; Justino et al., 2007). Several 

microarray studies of total RNA have shown an increase in ytfE transcription in response 

to NO (Justino et al., 2005), GSNO (Mukhopadhyay et al., 2004; Flatley et al., 2005), 

and NOC compounds (Pullan et al., 2007), suggesting a protective role for YtfE during 

nitrosative stress. This hypothesis was further corroborated by Justino et al. (2005) when 

a ytfE E. coli mutant showed higher sensitivity than parental strain to 50 µM NO. 

Furthermore, activity of the [Fe-S] cluster containing enzymes aconitase and fumarase 

was diminished following exposure to NO in cells lacking ytfE (Justino et al., 2007). 

Importantly, activity of aconitase and fumarase was restored in the parental strain after a 

period of time, but cells lacking ytfE were unable to do so, suggesting that NO caused 

damage that was irreversible due to lack of a functional repair system (Justino et al., 2006; 

Justino et al., 2007). Deletion of ytfE in E. coli has also been shown to exhibit increased 

sensitivity to killing by human neutrophils and decreased survival in murine macrophages 

(Shepherd et al., 2016).  

In E. coli, the ytfE gene has been shown to be a part of both the FNR and NsrR 

regulons (Figure 1.9). Filenko et al. (2007) showed ytfE to be one of the most up-regulated 

genes in response to NsrR titration, strongly implicating NsrR as a transcriptional 

repressor of ytfE. This was also inferred for Salmonella, as ytfE exhibits a 314.5-fold 

induction in the absence of nsrR (Karlinsey et al., 2012). In a fnr strain of E. coli, ytfE 

mRNA levels are elevated (Justino et al., 2006), although no FNR binding site motif was 

found in the putative promoter of ytfE, suggesting the possibility of an indirect mechanism 

for FNR-mediated regulation (Justino et al., 2006).  
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1.2.3.6. Cytochrome bd-I and NO tolerance 

One key target of NO are respiratory oxidases such as cytochrome bo' and 

cytochrome bd-I, the latter containing three haem cofactors: b558, b595, and d. (Goldman 

et al., 1996). Both cytochromes are expressed in the presence of oxygen, with cytochrome 

bo’ exhibiting maximal expression under aerobic conditions and cytochrome bd-I 

achieving maximal expression in microaerobic environments (Cotter et al., 1990; Fu et 

al., 1991; Cotter et al., 1997). This differential expression allows for the best suited 

cytochrome to be expressed in different conditions, with cytochrome bd-I being more 

suitable under microaerobic conditions due to its high affinity for oxygen, with a Km of 

3-8 nM (D’mello et al., 1996) compared to a Km of 0.016-0.085 µM for cytochrome bo’ 

(D’Mello et al., 1995). This fine-tuned expression of cytochrome bd-I, encoded by the 

genes cydABX in E. coli, is achieved through the combined effects of FNR and the 

oxidative-sensing two-component system ArcAB (aerobic respiration control proteins) 

(Figure 1.10). In oxygen rich environments, neither FNR nor ArcAB are active. However, 

when oxygen levels drop, ArcB phosphorylates ArcA which binds to the promoter of the 

cydABX operon, initiating transcription. When oxygen is absent, FNR is activated and 

mediates cydABX repression. The antagonistic effects of ArcA and FNR on cydABX were 

demonstrated by Tseng et al. (1996) by determining expression of a cyd-lacZ fusion in a 

range of different oxygen concentrations in both fnr and arcA single mutants. To date, 

induction of cydABX expression in response to nitrosative stress has only been shown to 

occur under anoxic conditions (Pullan et al., 2007) and it is in agreement with the current 

model for cydABX regulation: FNR inactivation by NO will impede repression of the 

operon under anaerobic conditions.  

Figure 1.9 – FNR- and NsrR-dependent transcription of ytfE. Both transcription factors FNR 

and NsrR have been implicated in regulation of ytfE expression, with the effects of FNR possibly 

being indirect. 
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The correct assembly of cytochrome bd-I is dependent on the cydDC operon 

(Georgiou et al., 1987; Poole et al., 1994; Goldman et al., 1996), which encodes a 

heterodimeric ABC transporter (Cook et al., 2002) important for the maintenance of the 

periplasmic redox balance through export of the low molecular weight thiols glutathione 

and cysteine (Pittman et al., 2002; Pittman et al., 2005). Deletion of the cydC gene in E. 

coli results in a non-functional cytochrome bd-I due to absence of haem incorporation 

(Georgiou et al., 1987). Predictably, a cydDC mutant strain exhibits many of the same 

phenotypic traits as a cydAB mutant, namely temperature sensitivity, hypersensitivity to 

hydrogen peroxide, and loss of viability in stationary phase under aerobic conditions 

(Poole et al., 1994; Goldman et al., 1996; Siegele et al., 1996). All of these phenotypes 

were shown to be corrected by overexpression of cydAB from a plasmid (Goldman et al., 

1996), suggesting the phenotypes can be solely attributed to loss of a functional 

cytochrome bd-I in a cydDC mutant.    

Cytochrome bd-I was first thought to be involved in NO tolerance after a 

transcriptomic study revealed cydA and cydB to be upregulated after exposure to a NOC 

compound under anoxic conditions (Pullan et al., 2007). Growth and respiratory rates of 

E. coli strains lacking either cytochrome bo’ (cyo- cyd+) or cytochrome bd-I (cyo+ cyd-) 

in response to NO were assessed, with data revealing a significant growth inhibition of 

cyo+ cyd- compared to wild-type (Mason et al., 2009; Shepherd et al., 2016). IC50 values 

for NO were greater in cyo- cyd+ cells, meaning cytochrome bd-I has higher tolerance for 

NO than cytochrome bo’ (Mason et al., 2009). Moreover, a faster respiratory recovery 

was observed in cytochrome bd-I, with NO dissociating faster from cytochrome bd-I 

resulting in weaker binding of NO to cytochrome bd-I (NO off rate (koff) = 0.163 s-1) 

compared to cytochrome bo’ (NO off rate (koff) = 0.03 s-1) (Mason et al., 2009). In E. coli, 

a cydAB mutant exhibited increased susceptibility to killing by human neutrophils and 

murine macrophages and showed impaired virulence in a mouse urinary tract infection 

model (Shepherd et al., 2016), revealing its importance during infection. The contribution 

of CydDC towards cytochrome bd-I-mediated NO tolerance has also been investigated. 

Interestingly, deletion of cydDC resulted in a more profound NO-sensitive phenotype 

than the one exhibited by the cytochrome bd-I mutant, and it was suggested the low 

molecular weight thiols exported by CydDC to the periplasm interact with NO in the 

periplasm and restrict the flow of NO into the cytoplasm (Holyoake et al., 2016). Taken 

together, these results show that cytochrome bd-I and the ABC transporter CydDC both 

provides a physiological advantage in the presence of nitrosative stress. 
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1.2.3.7. Secondary NO sensors: Fur, OxyR, and SoxR 

Transcriptomic analysis of the bacterial response to nitrosative stress 

(Mukhopadhyay et al., 2004; Justino et al., 2005; Pullan et al., 2007) revealed up-

regulation of genes from specific regulons controlled by transcriptional regulators with 

primary functions unrelated to nitrosative stress: these were therefore described as 

secondary NO sensors. A prototypal example of such a sensor is FNR, which primarily 

senses oxygen. However, due to its involvement in the regulation of many of the NO-

tolerant mechanisms described so far, FNR will not be described in this section. 

The ferric uptake regulator (Fur) is an iron-dependent transcriptional repressor 

responsible for sensing iron limitation: in an iron-limited environment Fur is inactivated 

due to lack of a ferrous iron cofactor (Fe2+), allowing de-repression of genes involved in 

iron acquisition (Andrews et al., 2003). A possible role in responding to  nitrosative stress 

was suggested for Fur after transcriptomic studies revealed de-repression of Fur-targeted 

genes in response to GSNO (Mukhopadhyay et al., 2004) and NO (Justino et al., 2005): 

notable examples include genes of the suf operon, which encode the machinery necessary 

for assembly of [Fe-S] clusters. This contrasts with the data obtained for defined media 

transcriptomic studies, which indicated that Fur was not involved in the response to 

GSNO (Flatley et al., 2005) or NOC compounds (Pullan et al., 2007). It was suggested 

the results observed in the work of Justino et al. (2005) and Mukhopadhyay et al. (2004) 

are an artefact due to poor bioavailability of iron (Flatley et al., 2005). In vitro studies 

revealed inactivation of Fur by NO (D’Autreaux et al., 2002; D’Autréaux et al., 2004) 

Figure 1.10 – Transcriptional regulation of cydABX. Under aerobic conditions, neither FNR 

nor ArcAB are active and expression of cydABX is kept at very low basal levels. As the oxygen 

in the environment decreases, ArcB phosphorylates ArcA which binds to the promoter and 

induces transcription of the cydABX operon. In an anaerobic environment, FNR is activated and 

represses expression of cydABX. In the presence of NO, FNR is inactivated, resulting in an 

abolishment of FNR-mediated repression of cydABX transcription under anaerobic conditions. 
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providing further insight into the possible role of Fur during nitrosative stress. However, 

whether Fur has a more prominent role in NO tolerance or if the Fur-mediated effects 

during nitrosative stress are a consequence of Fur being a target of NO are still to be 

determined. 

OxyR (oxidative stress regulator) is a thiol-containing transcriptional regulator 

responsible for primarily coordinating bacterial response to hydrogen peroxide. However 

studies have shown OxyR can be activated by S-nitrosylation (Hausladen et al., 1996). 

Furthermore, S-nitrosylated but not S-oxidized OxyR stimulated in vitro transcription at 

the hcp promoter (Seth et al., 2012). Hence it was proposed that S-oxidised and S-

nitrosylated OxyR control different regulons, with exposure to nitrosative stress resulting 

in a different regulatory output than the one caused by oxidative stress (Seth et al., 2012; 

Green et al., 2014) (Figure 1.11). This hypothesis could explain why transcriptomic 

studies so far have not shown significant induction of members of the OxyR oxidative 

stress regulon. 

The superoxide response protein (SoxR) controls the expression of many genes in 

response to superoxide (Green et al., 2014). Expression of soxS-lacZ, controlled by SoxR, 

was found to be up-regulated in response to NO gas with an even greater induction 

observed under anoxic conditions, suggesting that NO itself and not a downstream 

product is responsible for this increase in SoxS expression (Nunoshiba et al., 1993). Both 

in vivo and in vitro data reveal that both oxidation or nitrosylation of the two [2Fe-2S] 

clusters of SoxR are equally capable of activating this protein (Ding and Demple, 2000; 

Vasil’eva et al., 2001). Interestingly, while expression of soxS was observed in three 

different transcriptomic studies (Mukhopadhyay et al., 2004; Justino et al., 2005; Pullan 

et al., 2007), little to no change was observed in the remaining members of the SoxRS 

regulon, possibly because the levels of SoxS are insufficient to trigger induction of the 

remaining genes (Pullan et al., 2007).  

 It is important to note that in spite of the different mechanisms of NO-

detoxification present in E. coli, these are not redundant systems but in fact provide E. 

coli with the necessary versatility to withstand the different environments it encounters. 
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1.2.4. Nitric oxide role in bacterial pathogenicity 

Nitric oxide is involved in many important biological processes in mammals. In 

bacteria, NO was initially thought to be only an intermediate product of anaerobic 

respiration, but the intrinsic role of NO as a bacterial signalling molecule capable of 

affecting bacterial metabolism and gene expression soon became obvious.  This is 

exemplified by the NO sensors NsrR and NorR regulating the expression of different 

genes involved in the protection against nitrosative stress (discussed at length in section 

1.2.1.). However, in this section the roles of NO in bacterial pathogenesis, beyond the 

nitrosative stress response, will be discussed. 

  

1.2.4.1. Bacterial biofilms 

Bacterial biofilms are complex multicellular structures that allow bacterial 

communities to withstand adverse environmental conditions such as osmotic pressure, 

extreme pH and temperature changes, and oxidative stress (Laverty et al., 2014). The 

formation of biofilms is initiated by environmental stresses sensed by planktonic bacterial 

cells that then attach to a surface, a process dependent on the expression of adhesion 

structures such as type I fimbriae encoded by the fim operon in E. coli, type IV pili 

encoded by the bfp operon in E. coli and necessary for attachment and twitching and 

swarming motility, and P pili encoded by the pap operon in E. coli (Laverty et al., 2014). 

Figure 1.11 – Activation of OxyR. OxyR contains thiols which are oxidised in the presence of 

hydrogen peroxide, activating the expression of genes involved in the SOS response to oxidative 

stress. During nitrosative stress, the thiols are nitrosylated and a different set of genes is activated. 
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This is followed by a maturation stage where the bacteria grow and attach more firmly to 

the surface, increasing the production of an extracellular polymeric substance which acts 

as a protective layer and stabilizer of the biofilm structure (Kostakioti et al., 2013; Laverty 

et al., 2014). The life cycle is complete with the dispersal stage, wherein some cells detach 

from the three-dimensional structure returning to their planktonic form and thus allowing 

colonization of new surfaces (Kostakioti et al., 2013). The primary reason for biofilm 

formation is to facilitate bacterial survival in harsh environments, which interestingly 

includes resistance to most antibiotics: bacterial cells can exhibit extreme sensitivity to 

an antibiotic when in planktonic form yet biofilms of the same organism can be up to 

1000 times more resistant to that same antibiotic (Mah and O’Toole, 2001). Increased 

resistance to antibiotics in a biofilm has been attributed to low permeability of the biofilm, 

decreased metabolic rate of the biofilm-contained cells, and heterogeneity of the structure 

(i.e. biofilms can often contain different bacterial species or cells in different metabolic 

states (Mah and O’Toole, 2001; Stewart and William Costerton, 2001; de la Fuente-

Núñez, Reffuveille, Fernández, et al., 2013)).  

Bacterial biofilms have had a serious impact upon the treatment of infections and 

are implicated in 65% of infections (de la Fuente-Núñez, Reffuveille, Fernández, et al., 

2013), most occurring in cases where a medical device (e.g.: catheter or surgical implant) 

has been used. Biofilm-related infections are very difficult to treat and very often lead to 

relapse or chronic infection, as it is the case of cystic fibrosis patients. This contributes to 

the spread of antibiotic resistance, especially since biofilms can also facilitate transfer of 

plasmids and other genetic material (Ong et al., 2009) that encode antibiotic resistance 

determinants. Strategies have been designed to combat biofilm-mediated infection, 

ranging from hindering initial adhesion to the development of drugs capable of 

penetrating the biofilm. Another possible therapeutic approach is the dispersal of the 

biofilm followed by antibiotic treatment, since planktonic cells are more susceptible to 

antimicrobials. 

Detection of nitrosative stress inside P. aeruginosa and S. aureus biofilms 

(Barraud et al., 2006; Miranda et al., 2011) prompted the investigation of the role of NO 

in biofilm formation. Exposure of P. aeruginosa biofilms to 500 nM of the NO-donor 

SNP led to a 80% decrease in biofilm biomass, with similar results observed when 1 µM 

GSNO was used instead of SNP (Barraud et al., 2006). In contrast, high concentrations 

of SNP resulted in an increase of biofilm biomass (Barraud et al., 2006). Furthermore, a 

nitrite reductase-deficient strain of P. aeruginosa (i.e. unable to endogenously produce 

NO) exhibited impaired swarming motility, a feature important for biofilm formation (de 
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la Fuente-Núñez, Reffuveille, Fairfull-Smith, et al., 2013), and low levels of SNP are 

shown to increase swimming and swarming motility in P. aeruginosa planktonic cells by 

25% and 77%, respectively (Barraud et al., 2006). This data suggests that NO plays an 

important role in biofilm biogenesis and dispersal. Importantly, pre-exposure to SNP 

potentiated the effect of various antimicrobial agents (Barraud et al., 2006), and similar 

results were obtained when P. aeruginosa and E. coli biofilms were treated with the 

nitroxide Carboxy-TEMPO (a compound with NO mimetic properties) in combination 

with the antibiotic ciprofloxacin (Reffuveille et al., 2015).  

 

1.2.4.2. Bacterial nitric oxide synthases 

In mammals, NO can be synthesized by nitric oxide synthase (NOS) enzymes that 

concomitantly convert L-arginine to citrulline. Mammalian NOS enzymes are 

homodimers with a haem oxygenase domain and a reductase domain (Figure 1.12) 

(Crane, 2008; Crane et al., 2010). Analysis of various bacterial genomes led to the 

discovery that some Gram-positive bacteria, such as B. subtilis, B. anthracis, and S. 

aureus encode proteins similar to the oxidase domain of mammalian NOS. Bacterial NOS 

(bNOS) proteins are also homodimer, bind haem cofactors and catalyse the same 

conversion of arginine to produce NO (Crane, 2008). However, one striking difference is 

the lack of a reductase domain in bNOS (Figure 1.12) (Crane, 2008; Gusarov et al., 2008; 

Crane et al., 2010). In B. subtillis, bNOS was shown to be a somewhat promiscuous 

enzyme with different bacterial flavodoxins shown to be capable of supporting the bNOS-

catalysed reaction in vitro (Wang et al., 2007).  

 

 

In B. subtillis and B. anthracis, bNOS-derived NO production has been implicated 

in the protection against oxidative stress (Gusarov and Nudler, 2005; Shatalin et al., 

Figure 1.12 – Domain arrangement of mammalian and bacterial nitric oxide synthases. The 

haem-binding oxygenase domain is present in both NOS enzymes. However, bNOS does not have 

a reductase domain. 
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2008). Endogenously-produced NO prevents the reduction of cysteine, an abundant thiol 

in Bacillus species that is responsible for maintaining redox balance. This in turn 

consequently interferes with the recycling of ferrous iron in the cell and ROS production 

via Fenton chemistry (Figure 1.13). Furthermore, NO stimulates the activity of KatA, a 

catalase enzyme that detoxifies hydrogen peroxide (Park and Imlay, 2003; Gusarov and 

Nudler, 2005; Shatalin et al., 2008).  S. aureus also exhibited increased oxidative stress 

sensitivity when the nos gene was deleted (Van Sorge et al., 2013), further demonstrating 

the importance of bNOS in cytoprotection. The ability of bNOS-derived NO to rapidly 

activate antioxidant protective systems provides an advantage during the oxidative stress 

burst that often occurs during host infection (Shatalin et al., 2008). Furthermore, 

endogenously-produced NO also provides protection against antibiotics that mediate their 

toxic effects via the production of ROS (Gusarov et al., 2009; Van Sorge et al., 2013; 

Dwyer et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13 – Cysteine oxidation drives Fenton chemistry in Bacillus species. In species of 

Bacillus, cysteine reduces ferric iron to ferrous iron. The reaction between hydrogen peroxide 

and ferrous iron results in the formation of hydroxyl radicals, which causes DNA damage. The 

NO synthesized by bNOS transiently inhibits the reduction of cysteine to cystine, stopping the 

Fenton reaction from proceeding. 
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1.3.  Project Aims 
 

As antibiotic resistance becomes more and more common, the treatment of 

infections becomes more problematic, often relying on drugs that cause severe side-

effects. Hence, the development of new strategies is of the utmost importance. The natural 

occurrence of nitric oxide in the mammalian immune system and its documented 

antimicrobial activity against bacterial pathogens make it a tempting candidate to use as 

an alternative therapy or even in combination with conventional antibiotics as a means to 

potentiate their action. 

The overarching goal of this project was to determine the antimicrobial effects of 

NO in pathogenic E. coli and determine its suitability as a stand-alone therapy or in 

combination with conventional antibiotics. A collection of 50 E. coli clinical isolates 

(herein referred to as the Kent collection) was characterized for their antibiotic resistance, 

virulence gene carriage, plasmid content, and GSNO-susceptibility. Moreover, the effect 

of GSNO and NOC-compound in the survival of a pathogenic E. coli strain when 

combined with an antibiotic was tested, in both planktonic and biofilm-growing cells. 

 Another important aim of this project was to engineer an E. coli NO-producing E. 

coli strain that was also resistant to NO, and ultimately to determine if this strain could 

out-compete pathogenic strains of E. coli. 
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2.1. Bacteriological Methods 
 

2.1.1. Bacterial strains and plasmids 

All bacterial strains and plasmids are listed in Table 2.1 and Table 2.2, 

respectively. All bacterial strains are E. coli, unless otherwise stated. The 50 E. coli blood 

culture isolates were collected from East Kent Hospitals University NHS Foundation 

Trust with approval from the Research Ethics Council in (ref: 12/SC/0673). 

 

Table 2.1 – List of bacterial strains 

 

 

 

Strain Characteristics Reference 

MS1 
CFT073; Uropathogenic strain (UPEC) belonging to 

clonal group ST73 
Welch et al., 2002 

MS2 MG1655; E. coli K-12 strain Bachmann, 1996 

MS3 MG1655 harbouring pKD46 Prof. Mark Schembri 

MS10 EC958; UPEC strain belonging to clonal group ST131 Totsika et al., 2011 

MS11 EC958 harbouring pKOBEG Prof. Mark Schembri 

MS16 EC958 cydAB::Cm 
Prof. Mark Schembri; 

Shepherd et al., 2016 

MS52 

BW25113 F-, ∆(araD-araB)597, 

∆lacZ4787(del)::rrnB-3, LAM-, rph-1, ∆(rhaD-

rhaB)568, hdR514 

Baba et al., 2006 

MS92 EC958 hmp::Cm harbouring pSU2718-G-hmp 
Prof. Mark Schembri; 

Shepherd et al., 2016 

MS188 to 

MS237 

Collection of 50 E. coli blood isolates from Kent 

belonging to different sequence types (Appendix A-1) 
This work 

MS343 83972; Asymptomatic bacteriuria strain 
Prof. Mark Schembri; 

Klemm et al., 2006 

MS344 83972 harbouring pKD46 Prof. Mark Schembri 

MS345 BW25141 harbouring pKD3 
Datsenko and Wanner, 

2000 

MS388 EC958 cydDC::Cm 

Prof. Mark Schembri; 

Shepherd et al., 2016 

MS389 EC958 ytfE::Cm 

MS390 EC958 hmp::Cm 

MS391 EC958 norVW::Cm 

MS392 EC958 nrfA::Cm 

MS403 EC958 cydAB::Cm pSU2718-G-cydABX 

MS436 MG1655 Phmp::Pbla-Cm This work 

MS472 BW25113 pSU2718-bNOS This work 

MS486 RKP2176 Phmp-lacZ 

Same as RKP2178 

from Membrillo-

Hernández et al., 1996 

MS491 RKP2176 Phmp-lacZ harbouring pSU2718-bNOS This work 

MS505 EC958 harbouring pSU2718-bNOS This work 

MS506 EC958 cyoA::Cm (Appendix G.1) This work  

MS546 RKP2176 Phmp-lacZ harbouring pSU2718 This work 

MS547 EC958 harbouring pSU2718 This work 
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Table 2.2 – List of plasmids 

 

2.1.2. Oligonucleotides 

All oligonucleotides used during this work are listed in Table 2.3. 

Oligonucleotides were designed using Vector NTI Advance 10. Each pair of primers were 

designed with less than 5°C difference in melting temperature (Tm) and less than a 5% 

difference in their GC content. Oligonucleotides were synthesized by Eurofins MWG. 

 

2.1.3. Chemicals and water 

All chemicals were purchased from Sigma unless otherwise stated. Nutrient agar, 

tryptone, and yeast extract were purchased from Oxoid. Distilled-deionized water was 

used throughout this work. Mili-Q water was used whenever a high degree of purity was 

required. Solutions were sterilised by autoclaving at 121°C, 15 psi (pound force per 

square inch) for 15 min, or by filtering using Millipore filters with a pore size of 0.22 µm. 

 

2.1.4. Media and buffer solutions 

2.1.4.1. Luria-Bertani medium 

Luria-Bertani (LB) medium contained 10 g tryptone, 5 g yeast extract, and 5 g 

NaCl per litre. pH was adjusted to 7.0. 

 

2.1.4.2. Iso-Sensitest Broth and Iso-Sensitest Agar 

Both media were purchased from Oxoid and prepared according to manufacturer 

instructions. 

Plasmid Characteristics Antibiotic Reference  

pKD46 
λ-red recombinase, Temperature 

sensitive (Ts) replicon 
AmpR 

Datsenko and 

Wanner, 2000 
pKD3 

Chloramphenicol resistance cassette 

flanked by FRT sites 
CmR 

pKOBEG 
λ-red recombinase; Temperature 

sensitive (Ts) replicon 
GentR 

Chaveroche et al., 

2000 

pSU2718-G-

hmp 

Complementation plasmid for hmp 

knockout 
GentR 

Prof. Mark 

Schembri pSU2718-G-

cydABX 

Complementation plasmid for cydAB 

knockout 
GentR 

pSU2718 

Empty plasmid control for bacterial 

nitric oxide synthase (bNOS) 

expression 

CmR This work 

pSU2718-bNOS 

Plasmid for IPTG-inducible expression 

of bacterial nitric oxide synthase 

(bNOS) 

CmR This work 
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Table 2.3 – List of oligonucleotides 

 

Name 5'-3' Sequence Use Direction 

pSU2718nssR_seqF AAAAGCACCGCCGGACATCA For screening of bNOS insert into 

pSU2718 vector 

Forward 

pSU2718nssR_seqR CGAATTCGAGCTCGGTACCC Reverse 

hmp_Pbla_F 
TAAGATGCATTTGAGATACATCAATTAAGATGCAAAAAAAGGAAGAC

CATCATATGAATATCCTCCTTAG 
Amplification of CmR cassette 

and Pbla promoter from pKD3 for 

substitution of native promoter of 

hmp 

Forward 

hmp_Pbla_R 
AGTAAAGGGATGGTGGCTTTTACTGTAGCGATGGTTTGAGCGTCAAGC

ATACTCTTCCTTTTTCAATATT 
Reverse 

Hmp_Sc_fw GGCTACGCAAGGCTTTGGAG For screening of Pbla promoter 

insertion upstream hmp gene 

Forward 

Hmp_Sc_rev CTGGCGTAGGCGGCAATAGC Reverse 

SaUSA300_bNOS_Fw CCCTGCGCATATAATTGCATATGCTACAC Amplification of bNOS from S. 

aureus USA300 for pSU2718-

hmp cloning 

Forward 

SabNOS_Rev2 CCCGGATCCTTAACAGGAAACAGCTATGTTATTTAAAGAGGCTCA Reverse 

cyoA_Cm_fw 
CCGAACATCTTTATTCTTCCTCAACCCCTTTAATGGGCGGATTCCGCGT

GGTGTAGGCTGGAGCTGCTTC For cyoA KO in EC958 

background 

Forward 

cyoA_Cm_rev2 
CCACACACTTTAAACGCCACCAGATCCCGTGGAATTGAGGTCGTTAAA

TGCATATGAATATCCTCCTTAG 
Reverse 

cyoA_Sc_fw GTCAACGGAGGTCAGCCACT 
To screen cyoA KO mutants 

Forward 

cyoA_Sc_rev2 CGCCCTTTTGCAACAGCTTC Reverse 

pSU2718seq_200_F GTCGGGTGATGCTGCCAACT 
For sequencing of pSU2718-

bNOS 

Forward 

pSU2718seq_200_R GCAGCTGGCACGACAGGTTT Reverse 

bNOS_sq150_rev GGTGCTAAAATGGCTTGGCG Reverse 

pSU2718_Fw GGATCCCCGGGTACCGAGCTC For amplification of pSU2718 

backbone 

Forward 

pSU2718_Rev TGCGCAGCCTGAATGGCGAA Reverse 
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2.1.4.3. M9 minimal medium 

5x M9 salts were prepared [80.24 g Na2HPO4.2H2O, 15 g KH2PO4, 2.5 g NaCl, 

and 5 g NH4Cl per litre], autoclaved, and left to cool before use. To prepare 1L of 1X M9 

medium, the following solutions were mixed: 200 mL of 5x M9 salts, 2 mL of a 1 M 

MgSO4 filter sterilized solution, 100 µL of a 1 M CaCl2 filter sterilized solution, 20 mL 

of 20% (w/v) glucose (filter-sterilized), 778 mL of autoclaved water. 

 

2.1.4.4. SOB medium 

 SOB medium contained 20 g tryptone, 5 g yeast extract, 0.584 g NaCl, and 0.186 

g KCl per litre.  

 

2.1.4.5. SOC medium 

 One litre of SOC medium was prepared by addition of 10 mL of 2 M Mg2+ solution 

[20.33 g MgCl2 and 24.65 g MgSO4 per 100 mL. The solution was autoclaved and 

allowed to cool down before use] and 20 mL of a 1 M glucose sterile solution to 970 mL 

of sterile SOB medium. 

 

2.1.4.6. Dulbecco’s Modified Eagle Medium (DMEM) 

 DMEM medium was purchased from Thermo Fisher Scientific. The purchased 

medium is a complex medium containing high levels of glucose, L-glutamine, phenol red, 

sodium pyruvate, whereas the buffer HEPES is absent. 

 

2.1.4.7. Sodium Phosphate Buffer 

 A 50 mM sodium phosphate buffer pH 8.0 was prepared with 94.7 mL 50 mM 

Na2HPO4 and 5.3 mL 50 mM NaH2PO4. The pH was checked prior to filter sterilization. 

The sterile buffer was then aliquoted and stored at 4°C. 

 

2.1.4.8. Tris-Acetate-EDTA (TAE) Buffer 

 A 50x solution of Tris-Acetate-EDTA (TAE) buffer was prepared by adding 242 

g of Tris base, 57.1 mL of acetic acid, and 100 mL of 0.5M EDTA to 900 mL of dH2O. 

The pH was adjusted to 8.5 prior to adjusting the volume to one litre. For a working 

concentration of 1x, 20 mL of the 50x TAE buffer stock was diluted in 980 mL of water. 

 

2.1.4.9. Z- Buffer 
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 Z-buffer contained 60 mM Na2HPO4.7H2O, 40 mM NaH2PO4.H2O, 10 mM KCl, 

1 mM MgSO4.7H2O. Prior to the addition of 50 mM beta-mercaptoethanol, the pH was 

adjusted to 7.0. The buffer was protected from light and stored at 4°C. 

 

2.1.4.10. Phosphate-Buffered Saline (PBS) 

 A 10x concentrated solution of Phosphate-Buffered Saline (PBS) buffer contained 

80 g NaCl, 2 g KCl, 15.4 g Na2HPO4.2H2O, and 2.4 g KH2PO4 per litre. The pH was 

adjusted to 7.4 prior to volume being adjusted to one litre. The buffer solution was 

autoclaved and diluted to a working concentration of 1x by mixing 100 mL of the 10x 

stock solution with 900 mL of sterile milli-Q water. 

 

2.1.5. Media Supplements 

2.1.5.1. Antibiotics 

 Where appropriate, growth media was supplemented with 125 µg/mL of 

ampicillin, 25 µg/mL chloramphenicol, or 20 µg/mL gentamicin. 

 

2.1.5.2. Casamino acids solution 

 A 2% (w/v) casamino acids solution was prepared by adding 2 g of dried casamino 

acids per 100 mL dH2O, after which the solution was autoclaved and allowed to cool 

down before use.  

 

2.1.5.3. Fumarate Solution 

 For anaerobic growth, it was necessary to supplement media with a respiratory 

electron acceptor as an alternative to oxygen. To that end, a 1 M stock solution of fumarate 

was prepared. Briefly, 116.07 g of fumaric acid was added to 500 mL of water. The pH 

was adjusted to 7.0 using NaOH prior to the volume being adjusted to 1L. The solution 

was filter sterilized, aliquoted, and stored at -20°C. 

 

2.1.5.4. Nutrient agar 

15 g of nutrient agar was used per litre of growth medium. Agar plates, unless 

otherwise stated, were inverted and incubated at 37°C. 

 

2.1.6. Culture conditions 

10 mL starter cultures were inoculated from single colonies and grown overnight 

in LB (37°C and 180 rpm). A 1% inoculum of overnight starter culture was used to 
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inoculate fresh media. Liquid cultures were grown in a New Brunswick™ Innova® 3100 

water bath at 37°C and 180 rpm in 50 mL conical flasks containing 10 mL of LB medium, 

unless otherwise stated.  

 

2.1.6.1. Culture optical density 

 The optical density of cultures was measured at 600 nm (OD600nm) using a 

Shimadzu UV-1800 spectrophotometer in cuvettes with a 1 cm path length. 

 

2.1.6.2. Preparation of E. coli glycerol stocks 

Glycerol stocks of E. coli were prepared by mixing 750 µL of sterile 50% (v/v) 

glycerol with 750 µL of an overnight culture in a cryotube. The stocks were stored at -

80°C. 

 

2.1.7. Antibiotic susceptibility assays 

Breakpoint values were obtained from the British Society for Antimicrobial 

Chemotherapy (BSAC) (version 13.0 from June 2014). 

 

2.1.7.1. Antibiotic preparation 

 Antibiotics used to determine antibiotic susceptibility were prepared as shown in 

Table 2.4.  

 

Table 2.4 – List of antibiotics tested 

 

 

2.1.7.2. 0.5 McFarland Standard 

 A stock of 0.5 McFarland solution, corresponding to a cell density of 107-108 

CFU/mL, was prepared by mixing 0.5 mL of 0.048 M BaCl2 and 99.5 mL of 0.18 M 

H2SO4. The cell suspension was then mixed prior to absorbance reading at 625 nm 

Antibiotic Solvent Stock concentration (mg/mL) Disc content (µg) 

Amoxicillin DMSO 2 10 

Cefotaxime Water 6 30 

Chloramphenicol Ethanol 6 30 

Ciprofloxacin Water 0.2 1 

Gentamicin Water 2 10 

Meropenem Water 2 10 

Nitrofurantoin DMSO 50 200 

Trimethoprim DMSO 0.7 2.5 

Polymixin E (Colistin) Water 10 - 
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(A625nm). If the absorbance was between 0.08 and 0.13, the solution was then aliquoted 

into glass vials, protected from light, and stored at room temperature. 

 

2.1.7.3. Preparation of inoculum 

Inocula were prepared according to the British Society for Antimicrobial 

Chemotherapy (BSAC) guidelines (Andrews, 2001b; Howe and Andrews, 2012). Briefly, 

colonies were used to inoculate 5 mL of Iso-Sensitest broth and incubated at 37°C and 

180 rpm until visible turbidity was greater than that of the 0.5 McFarland standard. The 

density of the culture was adjusted to that of the 0.5 McFarland standard with sterile milli-

Q water.  

 

2.1.7.4. Disc diffusion assay 

Iso-Sensitest agar plates were prepared and dried on the day of use. Each plate (90 

mm) contained 20 mL of agar. Cell suspensions prepared as described in section 2.1.7.3 

were diluted 1:100 in sterile milli-Q water. A sterile swab was dipped into the dilution 

and excess liquid was removed by pressing the swab against the side of the falcon tube. 

The inoculum was swabbed over the Iso-Sensitest agar in three different directions to 

obtain an even spread. A 5 mm sterile filter paper disc (Whatman™ No. 1) containing the 

appropriate antibiotic (see Table 2.4) was placed on the agar. Plates were incubated at 

37°C for 16 ± 2 h prior to measuring zones of inhibition. BSAC testing v13.0 was used 

for the zone diameter breakpoint values. 

 

2.1.7.5. Microdilution assay 

 Due to the poor agar diffusion of polymyxin E (colistin), susceptibility to this 

antibiotic was tested using the microdilution assay (Andrews, 2001a). A dilution range 

(two-fold from 0.0625 to 4 mg/L) of polymyxin E was prepared in Iso-Sensitest broth, 

and 75 µL of each dilution was dispensed to a sterile 96-well microtiter plate in duplicate. 

Cell suspensions prepared as described in section 2.1.7.3 were diluted 1:10 in sterile milli-

Q water, and then further diluted 1:100 in Iso-Sensitest broth prior to 75 µL being added 

in duplicate to each antibiotic dilution. Incubation was carried out for 16 ± 2 hs at 37°C. 

BSAC testing v13.0 was used for the MIC breakpoint values. 

 

2.1.8. Biofilm formation assay 

 An overnight starter culture was used to inoculate 5 mL of fresh M9 minimal 

medium supplemented with 0.1% casamino acids. This culture was then incubated at 
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37°C and 180 rpm for 1 h. 150 µL of the growing culture was dispensed into six wells of 

a 96-well microtiter plate, with a negative control consisting of 150 µL of fresh M9 

medium included in each plate. A 24-h static incubation at 37°C was carried out, after 

which the media was completely discarded and 150 µL of a 0.1% (w/v) crystal violet 

solution was dispensed into each well, followed by a 30 min incubation at 4°C. The crystal 

violet solution was discarded and wells were washed until the negative control wells were 

clear. 150 µL of an ethanol/acetone (80:20 ratio) mix was added to each well and the 

microtiter plate was left on a rocker for 1 h at 60 rpm. Absorbance at 595 nm (A595nm) 

was recorded using a SPECTROstar nano microplate reader (BMG Labtech). 

 

2.1.9. Nitric oxide susceptibility  

2.1.9.1. S-Nitrosoglutathione (GSNO) preparation 

 S-nitrosoglutathione (GSNO) was prepared as previously described by Hart 

(1985). Briefly, a solution containing 3.08 g of reduced glutathione, 0.69 g of NaNO2, 

0.83 mL of 12.1 M HCl, and 18 mL of distilled water was stirred for 40 min whilst in an 

ice bath. Following the addition of 20 mL of acetone, the solution was stirred for another 

10 min. The red precipitate was collected by vacuum filtration and washed with five 2 

mL volumes of cold distilled water, three 10 mL volumes of acetone, and three 10 mL 

volumes of ether. The precipitate was then dried overnight in a vacuum desiccator and 

kept at -80°C for no longer than one month. Immediately before use, GSNO was dissolved 

in distilled water, filter sterilized and quantified using a Cary 60 UV-vis 

spectrophotometer (Agilent Technologies) before use (Extinction coefficient (ɛ) at 545nm 

= 15.9 M-1 cm-1). 

 

2.1.9.2. Well-diffusion assay 

 Cultures were prepared in M9 minimal medium supplemented with 0.1% 

casamino acids and incubated at 37°C and 180 rpm until OD600nm was approximately 0.4-

0.5. Cultures were then plated in M9 minimal agar using the pour plate method, i.e. 1 mL 

of culture was mixed with 19 mL of agar and poured into a 90 mm petri dish. Agar was 

allowed to set, at which point six 6 mm wells were cut into the agar and filled with 80 µL 

of an 80 mM solution of GSNO. Plates were incubated in an upright position at 37°C 

under aerobic (for 16 ±2 h), microaerobic (2% oxygen in an InvivO2 300 Hypoxia 

Workstation) (for 32 ± 2 h), or anaerobic (32 ± 2 h) conditions. For the latter, 50 mM 

fumarate was added to the agar and the plates were secured in an anaerobic jar with an 
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oxygen indicator and an anaerobic gas pouch (both purchased from Oxoid). After 

incubation, zones of inhibition were measured.  

 

2.1.9.3. GSNO growth curves under microaerobic conditions 

 An overnight starter culture of strains MS2 and MS436 in M9 minimal medium 

supplemented with 0.1% casamino acids was used to inoculate 10 mL of fresh M9 

minimal medium supplemented with 0.1% casamino acids and 0, 1, or 5 mM of GSNO 

to an initial OD600nm of 0.04. The culture was dispensed into five wells of a 96-well 

microtiter in 200 µL aliquots and incubated at 37°C and 100 rpm in a SPECTROstar nano 

microplate reader (BMG Labtech). OD600nm was followed every 15 min for at least 8 h. 

 

2.1.9.4. GSNO growth curves under anaerobic conditions 

 An overnight starter culture of strains MS2 and MS436 in M9 minimal medium 

supplemented with 0.1% casamino acids was used to inoculate 30 mL of fresh M9 

minimal medium supplemented with 0.1% casamino acids, 50 mM fumarate, and 0, 1, or 

5 mM of GSNO to an initial OD600nm of 0.04. Cultures were grown statically in a sealed 

serum glass bottle at 37°C, and OD600nm was followed every hour for 6 h. 

 

2.1.9.5. NOC-12 preparation 

 Growth curves were carried out using NOC-12 (purchased from Calbiochem), a 

nitric oxide donor with a half-life of 100 min at 37°C, pH 7.4. A 0.1 M stock of NOC-12 

was prepared in 50 mM sodium phosphate buffer (pH 8) (see section 2.1.4.6.) 

immediately before use. To ensure an effect on bacterial growth was observed, a range of 

concentrations between 0.1 mM and 0.75 mM ware tested. 

 

2.1.9.6. NOC-12 growth curves 

 An overnight starter culture in M9 minimal medium supplemented with 0.1% 

casamino acids was used to inoculate 10 mL of fresh M9 minimal medium supplemented 

with 0.1% casamino acids to an initial OD600nm of 0.01. The culture was dispensed into 

five wells of a 96-well microtiter in 200 µL aliquots and incubated at 37°C and 100 rpm 

in a SPECTROstar nano microplate reader (BMG Labtech) until OD600nm was 

approximately 0.04, at which point the NOC-12 compound was added. In control wells, 

50 mM sodium phosphate buffer was added instead of NOC-12 solution. Incubation was 

carried out as before NOC-12 addition, and OD600nm was followed every 15 min for at 

least 8 h.  
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2.1.10. Gentamicin cell survival assay 

2.1.10.1. Exogenous nitric oxide source 

An overnight starter culture in LB of EC958 wild-type (MS10), EC958 

cydAB::Cm (MS16), or EC958 cyoA::Cm (MS506) was used to inoculate 10 mL of fresh 

M9 media supplemented with 0.1% (v/v) casamino acids, and incubated at 37°C and 180 

rpm until OD600nm~0.3 or higher. The culture was diluted to an OD600nm of approximately 

0.125 (1x108 cells/mL) in fresh M9 supplemented with 0.1% casamino acids, and 0 or 15 

mM of GSNO, or 0 or 1 mM of NOC-12, was added, and cultures were incubated at 37°C 

for 30 min. Cells were further incubated at 37°C with different concentrations of 

gentamicin for 90 min. Serial dilutions were performed and 5 µL drops were plated in 

triplicate on LB-agar plates. Plates were incubated at 37°C overnight, and colony counts 

performed to determine CFU/mL. 

For in vitro biofilm assay, all steps were as described above with the following 

exceptions: 200 µL of the 1x108 cell/mL suspension was dispensed onto a 96-microtitre 

and incubated at 37°C statically for 24 h to allow biofilm formation. After the incubation 

biofilms were washed 2x with 1x PBS followed by an incubation at 37°C for 90 min with 

different concentrations of gentamicin and with or without 15 mM GSNO. Subsequently, 

biofilms were washed 2x with 1x PBS and resuspended in 200 µL of 1x PBS with 

vigorous pipetting and vortexing. Serial dilutions were performed and 5 µL drops were 

plated, in triplicate, on LB-agar plates. Plates were incubated at 37°C overnight, and 

colony counts performed to determine CFU/mL. 

 

2.1.10.2. Endogenous nitric oxide source 

All steps were as described in section 2.1.10.1, with the following exceptions: 

strains EC958 pSU2718 and EC958 pSU2718-bNOS were used. After diluting cultures 

to an OD600nm of approximately 0.125 (1x108 cells/mL) in fresh M9 supplemented with 

0.1% casamino acids, 0.4 mM IPTG and 10 mM L-arginine were added followed by an 

incubation at 37°C for 30 min.  

 

2.1.11. Intra-macrophage survival assays 

2.1.11.1. Cell line maintenance 

For this assay, the Raw-Blue™ macrophage cell line (InvivoGen) was used. This 

murine cell line was maintained in complete medium (DMEM medium supplemented 

with 10% (v/v) of foetal bovine serum (FBS; purchased from Gibco®)) supplemented 
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with 200 units of penicillin, and 200 µg/mL of streptomycin, and incubated at 37°C in 

5% CO2 until approximately 80% confluency was reached. 

 

2.1.11.2. Preparation of bacterial cells for infection 

Approximately 1.8 mL of an overnight culture of EC958 wild-type (MS10) was 

placed in a sterile eppendorf tube and cells were pelleted by centrifugation (1 min at 

16 000 xg). The supernatant was carefully discarded, and the cell pellet washed twice 

with 1 mL of 1x PBS. The cell pellet was re-suspended in 1.5 mL of 1x PBS and further 

diluted 1:5 in 1x PBS. The bacterial suspension was further diluted in 1x PBS until and 

OD600nm of approximately 0.5 was reached (approximately 4x108 cells/mL), at which 

point the appropriate volume of the suspension to achieve 1.5x107 cells/mL was diluted 

in complete medium with or without 2 mM of Nω-Nitro-L-arginine methyl ester (L-

NAME), an inhibitor iNOS. 

 

2.1.11.3. Preparation of macrophage cells for infection 

Macrophage cells were allowed to proliferate in a T-75 flask to approximately 

80% confluency, at which point they were collected with gentle scraping. The cell 

suspension was transferred to a sterile 15 mL falcon tube and centrifuged in an Eppendorf 

centrifuge 5418 for 5 min at 500 xg. The cell pellet was re-suspended in 5 mL of complete 

medium and the number of cells/mL determined using an hemocytometer. Each well on 

a 96-well microtitre was seeded with 1.5x105 cells. For macrophage activation 1 µg/mL 

of lipopolysaccharides (LPS) from Escherichia coli O127:B8 and 10 ng/mL of interferon 

gamma (IFN-γ; purchased from ThermoFisher) were added per well, with or without 2 

mM of L-NAME. Cells were incubated for 18 ± 2 h at 37°C, 5% CO2. 

 

2.1.11.4. Macrophage infection  

Media was carefully removed from each well, as to not disturb the macrophage 

cells, and replaced with 100 µL of the 1.5x107 cells/mL bacterial cell suspension prepared 

in section 2.4.1.2., resulting in a multiplicity of infection (MOI) of approximately 10:1 

(bacteria:macrophage). After a 20 min incubation at 37°C in 5% CO2, the medium was 

removed and the cells washed 2x with complete media supplemented with 200 µg/mL 

gentamicin. After a 20 min incubation in complete medium supplemented with 200 

µg/mL at 37°C in 5% CO2, the media was removed and cells were washed 3x with 

complete media. 100 µL of complete media, with or without 2 mM L-NAME and 

different concentrations of gentamicin (20 or 200 µg/mL) was added to each well and a 
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90 min incubation was carried out at 37°C in 5% CO2. Cells were washed 3x with 1x PBS 

and lysed with a 0.1% (v/v) solution of Triton-X in 1x PBS. The lysate was serial diluted 

in 1x PBS and 5 µL drops were plated on LB-agar in triplicate. Plates were incubated 

overnight at 37°C and colony counts performed to determine CFU/mL. An uptake plate 

to determine the average uptake of bacteria by macrophages per condition was also 

prepared for every assay and used to normalize CFU/well.  

 

2.2. Genetic Methods 
 

2.2.1. Isolation of plasmid DNA 

 Plasmid DNA was isolated using QIAprep Spin Miniprep Kit (QIAGEN) 

according to manufacturers’ instructions. Overnight cultures were pelleted at 7155 xg for 

10 min using a Sigma Laboratory Centrifuge 2k15. Following this step, all centrifugations 

were carried out at 16000 xg in an Eppendorf 5415R micro centrifuge. 

 

2.2.2. Polymerase chain reaction (PCR) 

For colony PCR, each bacterial colony was re-suspended in 50 µL of sterile water, 

and 2 µL were used as template in the PCR reaction. A typical colony PCR reaction would 

contain 400 nM of each primer (forward and reverse), 12.5 µL of 2x PCRBIO Taq Mix 

Red (PCRBiosystems), and sterile water to make up the end volume to 25 µL. PCR tubes 

were then placed in a T3000 thermocycler machine (Biometra®) programmed with the 

following: one cycle at 95°C for 4 min, 35 cycles at 95°C for 15 s, 55°C to 65°C 

(annealing temperature depending on the primers used) for 15 s and 72°C for 15 s per kilo 

base (extension time dependent on the length of the expected PCR product), and finally 

one cycle at 72°C for 2 min. 

 

2.2.3. DNA electrophoresis on agarose gels 

1% (w/v) agarose gels were prepared in 1x TAE buffer (see section 2.1.4.7) and 

electrophoresis was carried out using a gel apparatus at 150 V, 300 mA, for 45 min, in 1x 

TAE buffer. 5 µL samples were mixed with 1 µL of Blue/Orange 6x loading dye 

(Promega) before being loaded onto gel wells. A 1 kb DNA ladder (Promega) was also 

loaded onto the gel in order to determine the size of the DNA present in the sample. Gels 

were stained post-electrophoresis for 30 min at 60 rpm in 100 mL of water containing 0.5 

mg/mL of ethidium bromide and visualised with a UV box. 
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2.2.4. Cloning bacterial nitric oxide synthase (bNOS) into pSU2718 

2.2.4.1. Preparation of bNOS fragment for cloning 

 A PCR reaction to amplify a bacterial nitric oxide synthase (bNOS) gene 

contained the following:  25 µL Q5 2x Mastermix (NEB), 500 nM SaUSA300_bNOS_Fw 

primer, 500 nM SabNOS_Rev2 primer, 5 µL of a 1:10 dilution of Staphylococcus aureus 

USA300 genomic DNA, and 15 µL of sterile water for a total of 50 µL. The reaction was 

then transferred to a T3000 thermocycler machine (Biometra®) programmed with the 

following: 98°C for 30 s, 35 cycles of 98°C for 10 s, 60°C for 30 s, and 72°C for 1 min, 

and finally 72°C for 2 min. The PCR product was purified using a QIAquick PCR 

purification kit (QIAGEN) and digested with BamHI-HF (NEB) and FspI (NEB) 

restriction enzymes according to manufacturers’ instructions. The digested product was 

again purified using a QIAquick PCR purification kit (QIAGEN), and the DNA 

concentration was quantified with a NanoPhotometer® N50 (Implen) prior to use in a 

ligation reaction with pSU2718 (see section 2.2.4.3). 

 

2.2.4.2. Preparation of pSU2718 for cloning 

 pSU2718-hmp plasmid was isolated from MS18 (see section 2.2.1.) and digested 

with BamHI-HF (NEB) and FspI (NEB) restriction enzymes according to manufacturers’ 

instructions. This restriction digest would result in two DNA fragments, one being the 

desired plasmid backbone (2167 bp) and the other corresponding to the hmp gene (1345 

bp). The restriction digest reaction was loaded onto an agarose gel (see section 2.2.3.) and 

the desired fragment extracted and purified using QIAquick Gel Extraction kit 

(QIAGEN). DNA concentration in the sample was quantified with NanoPhotometer® 

N50 (Implen) prior to use in a ligation reaction with bNOS fragment (see section 2.2.4.3.). 

pSU2718 backbone for re-ligation was amplified by PCR using primers pSU2718_Fw 

and pSU2718_Rev. 

 

2.2.4.3. Ligation reaction 

 Ligation reactions were carried out using T4 DNA ligase (Promega) according to 

manufacturers’ instructions. Briefly, 50 ng of cut pSU2718 plasmid was incubated in 1x 

T4 DNA ligase Reaction Buffer with bNOS fragment in a 1:3 ratio (vector:insert), along 

with 1.5U T4 DNA ligase and sterile water to make up 10 µL. The reaction was incubated 

at 15°C for 16 ± 2 h and used to transform BW25113 competent cells (see sections 2.2.5. 

and 2.2.6.). To obtain the pSU2718 empty plasmid, the PCR-amplified backbone was 

used in a ligation reaction as described above, but bNOS was omitted from the reaction. 
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2.2.5. Preparation of E. coli competent cells 

 An overnight starter culture in LB was used for a 1% (v/v) inoculation of 10 mL 

of fresh LB medium. This culture was incubated at 37°C and 180 rpm until OD600nm was 

approximately 0.5, at which point 1 mL of culture was pelleted at 2300 xg for 5 min. The 

supernatant was discarded and the cell pellet re-suspended in 750 µL of ice-cold 100 mM 

CaCl2, followed by a 1 h incubation on ice. The cells were again pelleted as described 

above, supernatant carefully removed, and cell pellet re-suspended in 100 µL of ice-cold 

100 mM CaCl2. Following another incubation on ice for 1 h the cells were transformed 

with plasmid DNA. 

 

2.2.6. Transformation of E. coli competent cells 

 Plasmid DNA (2-5 µL) or various volumes of ligation reaction were mixed with 

100 µL of competent cells and incubated on ice for 30 min before being heat shocked for 

45 s at 42°C. The transformation mixture was immediately incubated on ice for 2 min 

after the heat shock, and 900 µL of SOC medium was added to aid recovery. An 

incubation at 37°C and 180 rpm was carried out for 1 h, followed by a centrifugation step 

at 2300 xg for 5 min. 900 µL of supernatant was carefully removed, and cells were re-

suspended in the remaining 100 µL prior to being plated onto the appropriate selective 

LB-agar plate. 

 

2.2.7. λ-red mutagenesis 

 The λ-red mutagenesis (Datsenko and Wanner, 2000) approach was used to 

replace the cyoA gene in E. coli EC958 background with a chloramphenicol resistance 

cassette (Figure 2.1), and also to replace the hmp native promoter with a Pbla promoter in 

a E. coli MG1655 background. The phage λ-Red recombinase system is encoded in a 

temperature sensitive plasmid and under the control of an arabinose-induced promoter. 

The recombinase system allows homologous recombination between the PCR product 

and the genome, which results in a knockout mutation. 

 

2.2.7.1. Amplification of PCR fragment for λ-Red mutagenesis 

 For the amplification of the PCR fragment containing the chloramphenicol 

resistance cassette alone (cyoA gene knockout) or the chloramphenicol resistance cassette 

and the Pbla promoter, PCR reactions was prepared as follows: 25 µL 2x PCRBIO Taq 

Mix Red (PCRBiosystems), 400 nM of appropriate forward primer, 400 nM of 

appropriate reverse primer, 0.5 µL pKD3 plasmid, and sterile water was used to top-up 
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the volume to 50 µL. PCR tubes were placed in a T3000 thermocycler machine 

(Biometra®) programmed with the following: 95°C for 1 min, 35 cycles at 95°C for 15 s, 

50°C for 15 s and 72°C for 30 s, and finally one cycle at 72°C for 2 min. Reaction was 

purified using a QIAquick PCR purification kit (QIAGEN), eluted in sterile mili-Q water, 

and used to transform MG1655 pKD46-containing strain (MS3) or EC958 pKOBEG-

containing strain (MS11) (see sections 2.2.7.3 and 2.2.7.4). 

 

 

2.2.7.2. Preparation of electro-competent cells 

 Electro-competent cells were prepared using strains MS3 and MS11, containing 

the temperature sensitive plasmid pKD46 (ApR) and pKOBEG (GmR) respectively. These 

plasmids encode the phage λ-derived Red recombination system and allows the 

homologous recombination between a PCR product and the genome. An overnight starter 

culture in LB grown at 28°C and 180 rpm was used for a 1% inoculation of 50 mL of 

fresh SOB medium (see section 2.1.4.4.) supplemented with the appropriate antibiotic 

and 20 mM L-arabinose, to induce expression of the λ-Red system from the PBAD 

Figure 2.1 – λ-red mutagenesis. In the procedure described by Datsenko and Wanner (2000), 

an antibiotic resistance cassette is amplified by PCR with primers that will allow the synthesis 

of extremities homologous to the regions flanking the gene of interest in the genome (1). The 

PCR product is then used to transform cells expressing the λ-red recombinase system, which 

will allow homologous recombination between the PCR product and the genome (2), thus 

creating a knockout mutant (3). 
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promoter. Cells were incubated at 28°C and 180 rpm until OD600nm was between 0.4-0.8, 

at which point the cells were transferred to a chilled 50 mL falcon tube and spun at 3000 

xg, 4°C, for 10 min. Supernatant was discarded and the cell pellet was gently re-

suspended in 5 mL of ice-cold 10% (v/v) glycerol. This step was repeated a total of three 

times prior to the cell pellet being re-suspended in a final volume of 200 µL of ice-cold 

10% (v/v) glycerol. 40 µL of the now electro-competent cells were used per 

transformation by electroporation (see section 2.2.7.3.). 

 

2.2.7.3. Transformation by electroporation 

 DNA was placed into a chilled 2-mm electroporation cuvette prior to 40 µL of 

electro-competent cells being added. Adequate mixing and placement of the sample at 

the bottom was achieved by tapping the cuvette. The cuvette was then placed into the 

chamber of the electroporator (Bio-Rad) and pulsed at 2.45 kV, 200 Ω resistance, and 25 

µF capacitance. To aid cell recovery, 1 mL of SOC (see section 2.1.4.5.) was added to 

the cuvette and then transferred into a 1.5 mL Eppendorf for incubation at 37°C and 180 

rpm for 1 h. To select for incorporation of resistance gene onto the chromosome, cells 

were plated onto LB-agar supplemented with the appropriate antibiotic, and colony PCR 

was carried out to identify mutant colonies.  

 

2.2.8. Sequencing of DNA 

 To confirm successful knockout of the gene or successful cloning of fragment into 

plasmid, DNA samples were sequenced by GeneWiz and data was analysed using BioEdit 

v7.2.5 (Hall, 1999). For whole genome sequencing, library preparation was performed 

using Nextera® XT DNA Library Prep Kit from Illumina® following manufacturers’ 

instructions. Library preps were then sequenced on an Illumina® MiSeq benchtop 

sequencer using a MiSeq reagent kit v3. 

 

2.3. Biochemical Methods 
 

2.3.1. Beta-galactosidase assay 

 For NO detection using a beta-galactosidase assay, RKP2176 was transformed 

with pSU2718 and pSU2718-bNOS.  RKP2176 is an E. coli strain similar to RKP2178 

used by Poole et al. (1996) in which the native lacZ gene was inactivated and a hmp-lacZ 

fusion (Φ hmp-lacZ) was engineered. 



61 

 

 Overnight starter cultures of both RKP2176 harbouring pSU2718 (MS546) and 

pSU2718-bNOS (MS491) were used for a 1% inoculation of 10 mL of fresh M9 minimal 

medium supplemented with 0.1% casamino acids and 25 µg/mL chloramphenicol. 

Cultures were incubated at 37°C and 180 rpm until OD600nm was approximately 0.15, at 

which point 0.4 mM of IPTG and 10 mM of L-arginine were added. Beta-galactosidase 

activity was measured every 30 min as follows: OD600nm of each culture was recorded at 

every time point, and 50 µL of cell culture directly removed from the cuvette was mixed 

with 450 µL of Z-buffer (see section 2.1.4.8.) in a glass test tube. 5 µL of a 0.1% (w/v) 

sodium dodecyl sulphate (SDS) solution and 10 µL of chloroform were added to each 

tube, and samples were vortexed for at least 10 s, to ensure disruption of the cell 

membrane, and placed in a water bath at 28°C for 5 min. The assay was started by adding 

100 µL of a 4 mg/mL ortho-Nitrophenyl-β-galactoside (ONPG; dissolved in Z-buffer) 

solution, and the reaction was stopped when a yellow colour developed by adding 250 µL 

of a 1 M Na2CO3 solution. Both start and end times were recorded. Absorbance at 420 nm 

(A4420nm) and at 550 nm (A550nm) were measured for each sample in quartz cuvettes and 

using a “no cell” control sample (50 µL of fresh M9 minimal medium supplemented with 

0.1% casamino acid was used instead of cell culture) to blank the Shimadzu UV-1800 

spectrophotometer.  Miller units were calculated as follows: 

 

𝑀𝑖𝑙𝑙𝑒𝑟 𝑈𝑛𝑖𝑡𝑠 = 1000 × 
(𝐴420 − (1.75 × 𝐴550))

(𝑡 ×  (2 ×  𝑉)  ×  𝑂𝐷600)
 

 

in which ‘A420’ is absorbance at 420 nm, ‘A550’ is absorbance at 550 nm, ‘t’ is time of 

assay (in min), ‘V’ is volume of cell culture used (in mL), and ‘OD600’ is the optical 

density of culture at 600 nm.  

 

2.3.2. Griess assay 

Activation of macrophages was assessed by indirectly assessing NO production 

through quantification of one of the oxidation products, nitrite. This was achieved using 

the Griess assay (Griess, 1879). Briefly, nitrite standard solutions with concentrations 

ranging from 0 to 25 µM were prepared in DMEM complete medium and dispensed into 

a 96-well microtiter in triplicate (50 µL per well). 50 µL samples of culture supernatants 

(from activated macrophages) were also dispensed in triplicate. 50 µL of a sulphanilamide 

solution (1% sulphanilamide in 5% phosphoric acid) was added to both sample and nitrite 

standard wells. After a 10 min incubation at room temperature in the dark, 50 µL of a 
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0.1% (w/v) solution of N-(1-naphtyl) ethylenediamine dihydrochloride (NED) was added 

to each well, followed by a 10 min incubation at room temperature in the dark. 

Absorbance at 540nm (A540nm) was read using a SPECTROstar nano microplate reader 

(BMG Labtech). The data was averaged, and the average of the 0 µM standard was 

subtracted from all other averages obtained for the standards, as well as the samples, prior 

to plotting, and a line was fitted using linear regression. The concentration of nitrite from 

experimental samples was obtained using the equation of the line fitted for the standard 

samples. 

 

2.4. Bioinformatics Methods 
 

2.4.1. Whole genome sequencing data 

2.4.1.1. Assembly and annotation 

Prior to assembling the reads obtained with Illumina® MiSeq, their quality was 

assessed with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and 

trimmed using Trimmomatic (Bolger et al., 2014), which improves the quality of the 

reads by removing sequencing adapters, trimming bases at beginning and end of reads if 

they fall below the stipulated quality threshold and eliminates reads that do not possess 

the necessary minimum read length (36 bp by default). A de novo assembly of the reads 

was carried out using SPAdes Genome Assembler (Bankevich et al., 2012), and Mauve 

(Darling et al., 2004) was used to order the resulting contigs to a reference genome. For 

this purpose, the genome sequence of E. coli MG1655 (NC_000913.3) was used followed 

by an automated annotation using Prokka (Seemann, 2014). With the exception of 

FastQC, trimmommatic, and Mauve, all other tools were accessed and used through the 

MRC CLIMB microbial informatics infrastructure funded under grant reference 

MR/L015080/1. 

 

2.4.1.2. Screening for antibiotic resistance genes, virulence genes, and replicons 

Genome sequences were mined for acquired antibiotic resistance genes, virulence 

genes, and replicon presence using ABRicate (https://github.com/tseemann/abricate) to 

search the ResFinder v2.1 database (Zankari et al., 2012) for hits above 98% identity and 

above 90% coverage, the VFDB database (Chen et al., 2005) also for hits above 98% 

identity and above 90% coverage, and the PlasmidFinder v1.3 database (Carattoli et al., 

2014) for hits above 80% identity and above 90% coverage, respectively. For detection 

of fluoroquinolone resistance, the protein sequence of gyrase subunit A was extracted 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://github.com/tseemann/abricate
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from all the genomes, and aligned with T-Coffee (Notredame et al., 2000). Shading was 

accomplished using BoxShade 3.21 server (https://embnet.vital-

it.ch/software/BOX_form.html). ABRicate was accessed and used through MRC CLIMB 

microbial informatics infrastructure funded under grant reference MR/L015080/1. 

 

2.4.1.3. Protein and DNA alignments  

 Protein sequences were aligned with T-Coffee (Notredame et al., 2000), and 

BioEdit v.7.2.5 (Hall, 1999) was used to calculate protein identity and similarity of each 

pairwise alignment. Where required, alignments were carried out with references 

MG1655 (NC_000913.3), EC958 wild-type (NZ_HG941718.1), and CFT073 

(NC_004431.1). Structural analyses were performed using RaptorX (Källberg et al., 

2012) and CCP4MG software (McNicholas et al., 2011). Whole-genome sequence 

alignments were achieved using the online tool GVIEW server (https://server.gview.ca/). 

In brief, the genbank file of E. coli MG1655 (NC_000913.3) genome was uploaded as 

the reference genome, and FASTA files of each of the isolates of the Kent collection were 

uploaded as query files and organized accordingly to their sequence-type. The default 

settings were applied for comparison (i.e. 100% sequence coverage; 80% sequence 

identity). 

 

2.4.1.4. Phylogenetic analysis 

The core genome of the isolates in the Kent collection was determined with Roary 

(Page et al., 2015) using MG1655 genome sequence as a reference (NC_000913.3) and 

default settings for percentage sequence identity (95%). The core genome gene alignment 

output by Roary was then used as input in FastTree v2.1.9 (Price et al., 2009; Price et al., 

2010), and phylogenetic relationships between the isolates determined. The resulting file 

was upload into the online tool iTOL v3 (Letunic and Bork, 2016) for editing. For 

phylogenetic group determination, the Clermont method was used (Clermont et al., 2011; 

Clermont et al., 2013). In brief, the genomic sequence of each isolate was concatenated 

in FASTA format and used for in silico PCR using Unipro UGENE platform 

(Okonechnikov et al., 2012) with the primer sequences used by Clermont et al. (2013). 

Both Roary and FastTree were used through MRC CLIMB microbial informatics 

infrastructure funded under grant reference MR/L015080/1. 

 

 

 

https://embnet.vital-it.ch/software/BOX_form.html
https://embnet.vital-it.ch/software/BOX_form.html
https://server.gview.ca/
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Chapter 3 
 

 

 

Exploring the use of NO as an 

antimicrobial to combat pathogenic E. 

coli 
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3.1. Summary 

 

Urinary tract infections (UTI) are amongst the most common infections in 

humans, with E. coli being the etiological agent responsible for many UTIs worldwide. 

As the antibiotic resistance problem worsens, treatment of UTIs becomes increasingly 

more problematic. Hence, the development of new drugs and alternative therapies is 

imperative. Nitric oxide is endogenously produced by the mammalian immune system in 

response to invading pathogens and, as such, the use of NO as a stand-alone alternative 

therapeutic or in combination with conventional antibiotics is an attractive option. This 

chapter explores the potential for engineering a NO-producing asymptomatic UTI strain 

of E. coli to out-compete disease-causing strains in the bladder. 

An attempt to engineer NO-production into E. coli UTI strain 83972 was carried 

out by expression of the NO synthase enzyme (bNOS) from S. aureus, and the efficacy 

of this system (i.e. NO production) was assessed using a Φhmp-lacZ fusion E. coli strain. 

In addition, it was of interest to engineer NO tolerance in the same strain: various NO-

tolerance mechanisms present in E. coli were tested for their importance in uropathogenic 

strains under different oxygen conditions, and it is shown that under microaerobic 

conditions (i.e. the conditions encountered by E. coli during urinary tract infection), 

flavohaemoglobin Hmp-mediated protection has a predominant role. Simultaneous 

overexpression of Hmp and bNOS in E. coli 83972 under microaerobic conditions and 

endogenous production of NO by E. coli, which naturally outcompetes other 

uropathogenic strains of E. coli, could provide an alternative to conventional antibiotics. 

Overexpression of flavohaemoglobin Hmp resulted in increased sensitivity to GSNO in 

both the presence (low aeration) and absence of oxygen, leading us to speculate that the 

overexpression of Hmp is toxic to bacterial cells beyond the formation of superoxide. 

While insertion of the bNOS gene into the chromosome of E. coli 83972 was unsuccessful 

despite the many attempts, it was possible to clone a functional bNOS gene from S. aureus 

USA300 into a plasmid.  
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3.2. Introduction 

 

 For the most part, E. coli is a harmless bacterium and part of the intestinal flora 

of many mammals. However, some strains have acquired virulence traits that allows them 

to colonize different niches and establish infection. Urinary tract infections (UTI) are the 

most common infections in humans, and E. coli (i.e. uropathogenic E. coli – UPEC) is 

responsible for more than 80% of UTIs (Totsika et al., 2012; Bien et al., 2012). 

Conventional antibiotics such as amoxicillin were used for the treatment of 

uncomplicated UTI for a long time, but emergence of antibiotic resistance has forced a 

switch to other antibiotics. Currently nitrofurantoin is the antibiotic of choice, however it 

shows decreased efficacy in the treatment of acute kidney infection (pyelonephritis) due 

to its poor tissue penetration (Totsika et al., 2012).  

 

3.2.1. Asymptomatic bacteriuria (ABU) 83972 

Urinary tract infections can be symptomatic or asymptomatic. Symptomatic UTI 

are caused by uropathogenic strains of E. coli actively expressing a plethora of virulence 

factors, while asymptomatic UTIs are caused by asymptomatic bacteriuria (ABU) E. coli 

strains. The reasons why patients infected with ABU strains do not develop symptoms 

are still poorly understood, although transcriptomic and comparative genomic studies of 

ABU prototype strain 83972 revealed that this may not be due to a lack of virulence 

potential (i.e. potential to cause disease due to presence of virulence genes). 96% of the 

genes expressed by 83972 are also found in CFT073 (Welch et al., 2002), a well-known 

UPEC strain that is highly virulent (Hancock and Klemm, 2007). Interestingly, 

microarray studies from the urine of infected patients have revealed that most of the 

virulence genes of E. coli 83972 were down-regulated (Roos et al., 2006; Roos and 

Klemm, 2006), leading to the hypothesis that the down-regulation of virulence genes was 

necessary for long-term colonization, since some virulence genes, such as fimbriae, are 

responsible for activation of the immune system (Roos et al., 2006). Interestingly, E. coli 

83972 does not express functional type I fimbriae due to a truncation in the fim operon, 

and also possesses a non-functional pap operon, both of which have previously been 

shown to be important for ascending UTI (Klemm et al., 2006). Nevertheless, the growth 

rate of E. coli 83972 in urine is higher than other more virulent UPEC strains, and it has 

been shown by Roos et al. (2006) that E. coli 83972 is capable of outcompeting other 

UPEC strains. These characteristics of E. coli 83972 make this strain useful as a 
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prophylactic treatment in spinal injury patients that are susceptible to recurring UTI (Hull 

et al., 2000). 

In this work, it was hypothesized that engineering of an E. coli 83972 NO 

tolerant/NO producing strain by overexpression of its flavohaemoglobin Hmp and 

insertion of a functional bNOS gene onto its chromosome, combined with its natural 

ability to outcompete other UPEC strains, would result in an alternative and more 

aggressive form of treatment for UTIs (Figure 3.1).  

 

 

 

 

 

 

 

 

 

Figure 3.1 – NO-tolerant/NO-producing E. coli 83972 as an alternative treatment for UTIs. 

It was hypothesized that overexpression of flavohaemoglobin Hmp and insertion and expression 

of bNOS in E. coli 83972, an asymptomatic strain of E. coli capable of long-term colonization of 

the bladder and of naturally outcompeting UPEC strains, would result in an aggressive alternative 

treatment for hard-to-treat UTIs. Colour scheme: light-orange - NO-tolerant/NO-producing E. 

coli 83972; green – invading UPEC strains. 
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3.3. Results 

 

3.3.1. Assessment of the role of bacterial NO protective mechanisms in pathogenic 

E. coli  

E. coli possesses several mechanisms that allow it to cope with the toxic effects 

of NO and other RNS (Figure 1.3). These mechanisms have been intensely studied in E. 

coli K-12 strains, although studies of their importance in pathogenic strains are scarce. 

To investigate the importance of each known mechanism that participates in NO-

tolerance, several single knockouts mutations were engineered into E. coli EC958, a well-

characterized ST131 multidrug resistant UPEC (Totsika et al., 2011; Forde et al., 2014). 

The role of the hybrid cluster Hcp-Hcr system in NO tolerance was exhibited and 

published by Wang et al. (2016) at a later date, and as such this system was not tested in 

the present studies.  

 

3.3.1.1. Well-diffusion assays 

In several previous studies, a disc-diffusion assay has been used to test the 

sensitivity of E. coli to different NO-donors. In Flatley et al. (2005), discs were saturated 

with a 100 mM solution of the NO-donor (and nitrosating agent) GSNO and placed on 

bacterial lawns to assess tolerance to GSNO. In this work, a similar protocol was followed 

to assess sensitivity to GSNO of the different EC958 knockout mutants. However, the 

protocol proved ineffective as no zones of inhibition were observed for any of the mutants 

in either M9 minimal agar or LB agar. It was hypothesized that the reactive nature of 

GSNO combined with poor agar diffusion could be limiting its potency. Hence, a well-

diffusion assay was combined with a ‘pour plate’ technique for generating bacterial 

lawns. In this assay, mid-exponential growing cultures were mixed with M9 minimal agar 

before pouring into petri plates; 6-mm wells were cut into the agar and a freshly prepared 

80 mM solution of GSNO was used to fill each well. This method allowed us to not only 

use more GSNO solution (80 µL per well) but also to improve the exposure of bacteria to 

GSNO (Figure 3.2), thus increasing the overall efficacy. 

Under aerobic conditions, both cydAB and cydDC mutants show higher sensitivity 

for GSNO compared to the isogenic wild-type strain (Figure 3.3), with the cydAB strain 

also exhibiting sensitivity under microaerobic conditions (Student’s unpaired t-test; p-

value < 0.05). Loss of hmp also impairs growth in the presence of GSNO under both 

aerobic and microaerobic conditions (Student’s unpaired t-test; p-value < 0.05). In anoxic  
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conditions, only the loss of flavorubredoxin NorV and the partner reductase NorW 

induces GSNO sensitivity (Student’s unpaired t-test; p-value < 0.05) (Figure 3.3). 

 

 

3.3.1.2. NOC-12 growth curves and complementation 

To determine if the growth inhibition observed in the well diffusion assay is NO 

specific and not merely due to other by-products of GSNO decomposition, the wild-type, 

hmp and cydAB strains (hmp- and cydAB- respectively) were grown in M9 minimal 

medium supplemented with 0.1 % casamino acids in the presence and absence of an 

alternative NO-donor, NOC-12. In addition, to determine if the growth impairment was 

solely due to the loss of hmp or cydAB, and not a result of polar effects caused by 

Figure 3.2 – Diagram of GSNO diffusion. A) In a disc diffusion assay, a filter paper disc 

saturated with GSNO solution is placed on top of a growing lawn of bacteria. The diffusion of 

GSNO occurs in two directions (arrows). However, downward diffusion will have minimal 

impact on the lawn of bacteria at the surface of the agar. B) In a well diffusion assay, bacteria 

are imbedded in the agar and GSNO diffusion from the well occurs only sideways, enhancing 

exposure of bacteria to GSNO. 

Figure 3.3 – GSNO sensitivity of EC958 knockout mutants. GSNO sensitivity of each mutant 

was tested in different oxygen conditions and compared to wild-type isogenic strain. Each data 

point reflects the mean of six replicates from three independent cultures. Error bars represent 

standard deviation. (*: Student’s unpaired t-test p-value < 0.05). 
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insertional mutagenesis, the knockout strains were transformed with a plasmid encoding 

hmp or cydAB (hmp+ and cydAB+ respectively) cloned downstream of the inducible lac 

promoter. In the presence of 0.1 mM NOC-12 both hmp- and cydAB- exhibited growth 

impairment (Figure 3.4C and 3.4E), with doubling times (Figure 3.4A) being significantly  

 

Figure 3.4 – Complementation of the NOC-12-sensitive growth phenotype of hmp and cydAB 

mutants. EC958 knockout hmp and cydAB mutants were transformed with pSU2718-G-hmp and 

pSU2718-G-cydABX expression plasmids, respectively. Cultures were grown in M9 minimal 

media supplemented with 0.1% casamino acids and with glucose as the carbon source. 96-well 

plates were incubated at 37°C and 100 rpm, the latter providing low aeration and better mimicking 

the microaerobic conditions encountered in the human urinary tract (B to F). Doubling times (A) 

were measured for 1.5h following addition of NOC-12 (0 or 0.1 mM) for all strains. Each data 

point reflects the mean of five replicates. Error bars represent standard deviation. (*: Student’s 

unpaired t-test p-value < 0.05). 
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different (Student’s unpaired t-test p-value < 0.05) than the no treatment control (0 mM 

NOC-12); complemented strains show no significant difference to the ‘no treatment’ 

control (Student’s unpaired t-test p-value > 0.05). No NOC-12 growth sensitive 

phenotype was observed for the EC958 wild-type isogenic strains (Figure 3.4A-B). 

GSNO sensitivity for the complemented mutant strains was also assessed using the well-

diffusion assay (Figure 3.5). While the diffuse nature of zones of inhibition for the cydAB- 

strain precluded a quantitative measure of sensitivity, restoration of growth was 

confirmed qualitatively for both hmp+ (Figure 3.5A-B) and cydAB+ strains (Figure 3.5C-

D). 

 

 

3.3.2. Engineering NO-tolerance in E. coli 

3.3.2.1. Overexpression of hmp 

The loss of hmp and cydAB resulted in a significant increase in GSNO 

susceptibility under microaerobic conditions (Figure 3.3). Thus, we hypothesized that 

overexpression of hmp could increase tolerance to NO. To test this hypothesis, a strategy 

Figure 3.5 – Complementation of GSNO-sensitive growth phenotype of hmp and cydAB 

mutants. Well-diffusion assay was used for a qualitative observation of the complementation of 

the GSNO-sensitive growth phenotype. EC958 cydAB and hmp mutants (hmp- and cydAB-, panels 

A and C respectively) and their respective complemented strains (hmp+ and cydAB+, panels B 

and D respectively) were grown in M9 minimal media to OD600nm~0.5, at which point 1 mL of 

culture was mixed with 19 mL of M9 minimal agar and plated. Wells were cut into the agar and 

filled with 80 µL of 80 mM GSNO. 
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Figure 3.6 – Desired locus of the hmp gene following replacement of the native promoter with Pbla. Substitution of the native hmp promoter with the constitutive 

ampicillin resistance gene promoter (Pbla). A chloramphenicol cassette and Pbla were amplified from pKD3 – with primers Hmp_Pbla_F and Hmp_Pbla_R – and 

introduced onto the E. coli chromosome via lambda-red insertional mutagenesis.  To achieve this, the primers contained 50 bp regions that were homologous to regions 

of the hmp locus (as indicated on the diagram by the grey areas identified as “Homology_region”). Primers Hmp_Sc_fw and Hmp_Sc_rev were the screening primers 

used for the colony PCR. 
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was devised to constitutively express the chromosomal copy of hmp in E. coli 83972, 

which involved substitution of the native hmp promoter with the constitutive promoter of 

the ampicillin resistance gene (Pbla). Primers were designed to amplify the Pbla promoter 

from the pKD3 plasmid (Datsenko and Wanner, 2000) to generate a fragment that also 

included the chloramphenicol resistance cassette to be used as a selective marker (Figure 

3.6). The primers also included a 50 bp overhang each, homologous to the desired 

recombination sites on the E. coli chromosome. The resulting PCR fragment was inserted 

into 83972 and MG1655 strains of E. coli (via electroporation), both harbouring pKD46 

that encodes the lambda-red recombinase (Datsenko and Wanner, 2000). Several attempts 

to produce a Hmp-overexpressing (Pbla-hmp) E. coli 83972 strain proved unsuccessful. 

However, insertion of the ampicillin resistance gene promoter upstream of hmp was 

achieved for E. coli MG1655: colony PCR revealed two colonies with a band between 

1500-2000 bp (expected molecular size for positive colonies: 1859 bp). E. coli MG1655 

wild-type strain was used as a positive control (expected molecular size: 387 bp) (Figure 

3.7). 

 

 

3.3.2.2. Assessment of hmp-overexpressing E. coli MG1655 sensitivity to GSNO 

Figure 3.7 – Colony PCR confirming insertion of fragment. Insertion of Pbla promoter-

containing fragment into chromosome of E. coli MG1655 was confirmed in two transformants 

(‘Colony 1’ and ‘Colony 2’ lanes) by colony PCR using screening primers Hmp_Sc_fw and 

Hmp_Sc_rev. For the negative control (‘Negative’ lane), DNA template was omitted from the 

reaction. For the positive control (‘Positive’ lane), one colony from E. coli MG1655 wild-type 

strain was used for DNA template (expected molecular size: 387 bp). 
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To determine whether constitutive expression of hmp afforded additional 

protection to GSNO, wild type and Pbla-hmp MG1655 strains were grown under low 

aeration/microaerobic conditions (Figure 3.8A-B) in M9 minimal medium in the presence 

of different concentrations of GSNO (0 mM, 1 mM, or 5 mM). Under low 

aeration/microaerobic conditions the Pbla-hmp strain exhibited a longer lag phase both in 

the presence and absence of GSNO. Despite reaching similar final cell densities, in the 

presence of 5 mM GSNO the lag phase is much longer in Pbla-hmp, suggesting a higher 

sensitivity to this compound. For growth under anoxic conditions, cells were growth 

statically at 37°C in sealed serum bottles filled to the top with M9 minimal media. As 

expected, the overall growth for both strains is lower under anaerobic conditions 

compared to microaerobic conditions. Moreover, Pbla-hmp (Figure 3.8D) exhibits higher 

sensitivity to GSNO than the wild-type strain (Figure 3.8C) under these conditions, with 

growth in the presence of 5 mM GSNO being almost abolished. 

  

  

Figure 3.8 – Sensitivity of hmp-overexpressing strain to GSNO. Cells were grown in M9 

minimal media at 37°C in 96-well plates at 100 rpm (for low aeration/microaerobic growth; panels 

A and B) or at 37°C, statically in filled serum bottles (for anaerobic growth; panels C and D). A 

fresh solution of GSNO was added for a final concentration of 0, 1, or 5 mM. Each data point 

reflects the mean of at least three different replicates from three independent cultures. Error bars 

represent standard deviation. 
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3.3.3. Engineering a NO-producing E. coli strain 

An initial aim was to insert the bNOS-encoding gene from S. aureus into the non-

functional fim locus of E. coli 83972. This, along with overexpression of the chromosomal 

copy of hmp, would then be used to generate a NO-tolerant/NO-producing strain which 

could potentially be used as an alternative to conventional antibiotics to combat UTIs. 

Despite the unsuccessful attempts to generate a NO-tolerant strain, engineering of an E. 

coli NO-producing strain was carried out by cloning of bNOS into a plasmid expression 

vector. 

 

3.3.3.1. Cloning of bNOS 

 bNOS was amplified from the genomic DNA of S. aureus MRSA USA300, a 

Gram-positive bacteria known to possess a chromosomal copy of bNOS (Van Sorge et 

al., 2013). The gene was amplified by PCR, cloned onto pSU2718 downstream of the  

IPTG-inducible Plac promoter (Figure 3.9A) and introduced into chemically competent E. 

coli BW25113 via transformation. Transformants were screened by colony PCR 

(expected molecular size for plasmid containing bNOS: 1197 bp) (Figure 3.9B), and E. 

coli BW25113 cells containing the pSU2718-hmp plasmid were used as a positive control 

for the PCR reaction (expected size: 1415 bp) (Figure 3.9B). Further confirmation of 

recombinant colonies (Figure 3.9B; Colony 5) was obtained by extraction of the plasmid 

and preparation of single (BamHI) and double (BamHI and FspI) restriction reactions, 

and subsequent DNA sequencing. 

 

3.3.3.2 Detection of NO production in bNOS-expressing E. coli cells 

After confirming the correct pSU2718-bNOS construct had been constructed, this 

plasmid was introduced into E. coli RKP2176 Φhmp-lacZ (MS486), an identical strain to 

RKP2178 described in Membrillo-Hernández et al., (1996). This strain was also 

transformed with the empty pSU2718 vector as a control. Since it is well-known that the 

hmp promotor repression by NsrR is alleviated in response to NO (Filenko et al., 2007; 

Tucker et al., 2008), this hmp-lacZ fusion strain would allow for detection of NO by 

measuring beta-galactosidase activity. Beta-galactosidase assays were conducted in M9 

minimal media under aerobic conditions. Cells were grown to early exponential phase, at 

which point IPTG was added to induce bNOS expression, followed by addition of L-

arginine to ensure substrate availability (for the bNOS enzyme). Beta-galactosidase 

activity was measured every 30 min for a total of 2.5 h. After addition of IPTG and L-

arginine (time 0h), beta-galactosidase activity exhibits a rapid 2.6-fold increase over the  
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Figure 3.9 – Cloning of bNOS. A) Genetic map of the plasmid containing cloned bNOS gene 

from S. aureus USA300. B) Colony PCR of eight transformants (‘Colony 1-8’ lanes) was 

performed using the primers pSU2718nssR_seqF and pSU2718nssR_seqR to identify colonies 

with the correct recombinant plasmid (i.e. Colony 5; expected molecular size: 1197 bp). For the 

‘Negative control’, DNA template was omitted from the PCR reaction. For the ‘Positive control’, 

E. coli BW25113 harbouring pSU2718-hmp plasmid was used for DNA template (expected 

molecular size: 1415 bp). 
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control (pSU2718) (Figure 3.10). Furthermore, beta-galactosidase activity remained 

higher than that observed for the control throughout the course of the assay (Figure 3.10), 

which is consistent with the production of NO by a functional bNOS enzyme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 – Assessment of NO production by bNOS. A beta-galactosidase assay was used to 

determine NO production by monitoring the expression of hmp in an E. coli Φhmp-lacZ strain 

harbouring pSU2718-bNOS or the empty pSU2718 vector (control). Assay was performed in M9 

minimal medium under aerobic conditions. Each data point reflects the mean of three different 

replicates from three independent cultures. Error bars represent standard deviation. 
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3.4. Discussion 
 

3.4.1. Flavohaemoglobin Hmp, cytochrome bd-I, and flavorubredoxin NorVW 

confer tolerance to nitric oxide in a multidrug resistant E. coli strain 

Nitric oxide tolerance mechanisms have been identified and studied in E. coli K-

12 strains. However, studies of the importance of these systems in pathogenic E. coli are 

limited. To determine the importance of these systems in the multidrug resistant E. coli 

EC958 strain, a well diffusion assay was developed and found to be a more useful tool to 

measure GSNO sensitivity compared to disc diffusion assays. In the well-diffusion 

assays, two halos were often observed (Figure 3.5): one closer to the well in which no 

bacterial growth was observed, and a second in which bacterial growth is observed but 

slightly distinct from the growth observed in the rest of the plate. It was hypothesized this 

second halo could be due to lower GSNO concentrations further from the well causing 

intermediate bacteriostatic effects. Hence, for this reason only the inner zones of 

inhibition were evaluated where possible. The well-diffusion data confirmed that the 

flavohaemoglobin Hmp and cytochrome bd-I respiratory oxidase as the two main systems 

that confer protection against GSNO under both aerobic and microaerobic conditions 

(Figure 3.3). This was confirmed with complementation studies by expressing hmp or 

cydABX from a plasmid in the presence and absence of NOC-12 (Figure 3.4) or GSNO 

(Figure 3.5). Interestingly, the final cell density achieved by the complemented cydAB+ 

was lower than that achieved by the wild-type or complemented hmp+ strains in the 

absence of NOC-12. It is important to note that complementation of cydAB relied solely 

on the basal expression provided by leaky Plac promoter, as it was observed that induction 

with IPTG concentrations as low as 0.1 mM caused severe growth impairment in both 

absence and presence of NOC-12. Aerobic bacterial respiration generates ROS (Kohanski 

et al., 2007; Dwyer et al., 2014; Lobritz et al., 2015) thus a tight regulation of respiratory 

oxidases is necessary to maintain bacterial viability. Hence, we suggest that even basal 

expression of cydABX from pSU2718-G-cydABX is enough for an increase in endogenous 

ROS production to levels that can still be slightly toxic to cells, and in the presence of the 

NO-donor NOC-12 this effect is more pronounced due to formation of toxic radicals such 

as peroxynitrite. This growth impairment also made it impossible to accurately measure 

the zones of inhibition of cydAB- when the well-diffusion assay was performed, hence 

only a qualitative approach was carried out using this assay to determine if the 

complementation was successful (Figure 3.5).  
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The loss of cydDC causes a significant increase in GSNO susceptibility under 

aerobic conditions compared to wild-type. This glutathione/L-cysteine ABC exporter is 

necessary for the assembly of cytochrome bd-I (Georgiou et al., 1987; Poole et al., 1994; 

Goldman et al., 1996), a role which explains the phenotype observed. However, contrary 

to expected, no significant susceptibility to GSNO was observed for the cydDC mutant 

under microaerobic conditions, conditions in which cytochrome bd-I expression is known 

to be maximal (Fu et al., 1991). Flavorubredoxin NorV and its partner reductase, NorW, 

were shown to have a prominent protective role against GSNO in the absence of oxygen. 

Because the main aim was to engineer a NO-tolerant/NO-producing strain that could be 

used to combat infections in the urinary tract, which is a microaerobic environment 

(Hagan et al., 2010), a complementation experiment was not attempted for this system. 

Moreover, the growth impairment exhibited by cydAB+, along with the well-documented 

NO-detoxifying capability of Hmp, are the reasons why overexpression of hmp was 

chosen as a strategy to engineer a NO-tolerant strain. 

 

3.4.2. Constitutive expression of Hmp does not confer additional protection to NO 

Substitution of the native Phmp promoter for the constitutive Pbla promoter was 

unsuccessful in E. coli 83972 but successful in an E. coli MG1655 background. Under 

low aeration/microaerobic conditions, the MG1655 Pbla-hmp strain exhibited a longer lag 

phase than its isogenic counterpart. While Anjum et al. (1998) and Wu et al. (2004) have 

previously shown that overexpression of Hmp under aerobic conditions exacerbates 

intracellular oxidative stress through the generation of superoxide radicals, it was 

hypothesised that lowering the oxygen would diminish this effect and permit the 

generation of an NO tolerant strain without a severe growth phenotype. However, the 

Pbla-hmp strain exhibited a longer lag phase compared to the wild type, and also displayed 

higher sensitivity to GSNO. This could be explained by the levels of oxygen still being 

too high, and the resultant superoxide generated by Hmp reacting with NO released by 

GSNO to form highly toxic peroxynitrite. In McLean et al. (2010), anaerobic growth of 

a nsrR mutant strain of Salmonella Typhimurium, which overexpresses Hmp due to loss 

of its negative regulator, exhibited higher tolerance to peroxynitrite than when grown 

under aerobic conditions. Due to the unwanted toxicity problems, even under low aeration 

conditions, the sensitivity to GSNO of the Pbla-hmp strain was tested in the absence of 

oxygen. Interestingly, in the presence of 5 mM GSNO, anaerobic growth of the Hmp-

overexpressing strain was severely impaired. Constitutive expression of Hmp will result 

in very high levels of this flavohaemoglobin regardless of oxygen concentration, whereas 
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under anaerobic conditions the Salmonella nsrR mutant did not overexpress Hmp, 

presumably due to activity of FNR. One might postulate that these very high levels of 

Hmp might place additional demands upon the cell that could render the cell sensitive to 

GSNO, although it is premature to speculate what the underpinning mechanism may be.   

 

3.4.3. NO-production by bNOS in E. coli 

Despite the unsuccessful attempt at engineering a NO-tolerant E. coli 83972 

strain, the cloning of bNOS was carried out. S. aureus bNOS was cloned into pSU2718 

vector, and assessment of bNOS functionality was undertaken by measuring beta-

galactosidase activity in a Φhmp-lacZ strain (Figure 3.10). A higher beta-galactosidase 

activity, i.e. higher hmp expression, was observed for the strain harbouring pSU2718-

bNOS, thus suggesting that the bNOS construct is producing active bNOS. Quantification 

of both nitrate and nitrite, products of NO oxidation, from supernatants of bacterial cells 

expressing bNOS was attempted with a modified Griess assay. This proved to be an 

unreliable approach to study NO production in these engineered strains, perhaps due to 

slow NO production by bNOS resulting from poor cofactor insertion or availability of 

arginine in the cytoplas or resulting from a rapid turnover of nitrate and nitrite by E. coli 

cells. Alternatively, since the bNOS enzyme only comprises the haem-containing oxidase 

domain and therefore requires a redox partner (or endogenous reductants such as GSH) 

to supply reducing power for the reaction to take place, perhaps the availability of 

reductants is the limiting factor for the modest NO production observed herein.  

 

3.4.4. NO-producing/NO-tolerant E. coli as an alternative therapy: is it possible? 

Due to the involvement of NO in critical biological functions, its use in the 

treatment of diseases is not a new concept. In fact, inhalation of nitric oxide is used to 

treat neonatal pulmonary hypertension (Wessel et al., 1997; Hunt et al., 2016). Due to its 

antimicrobial properties, a strategy was devised to engineer a NO-producing/NO-tolerant 

strain that could potentially be used to fight multidrug resistant UTIs. 

In this project a NO-producing E. coli strain was engineered by expressing bNOS 

(from S. aureus) from a plasmid. However, NO production was only achieved using an 

indirect method, i.e. a beta-galactosidase assay that quantified hmp promoter activity, and 

thus NO levels cannot be accurately inferred in this instance. Ideally, a more direct 

method of NO quantification, such as using a NO electrode, should have been used. The 

levels of NO being produced by bNOS are not the only limitation arising in this project. 

The very reactive nature of NO, combined with the cytoplasmic localization of bNOS in 
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our engineered E. coli strain, will limit the diffusion of NO to the point of very little to 

no NO diffusing to the outside of the cell and reach the intended target. Targeting bNOS 

to the periplasmic space could potentially circumvent this issue: NO would have less 

cellular targets to react with (compared to cytoplasm) which would result in a better 

diffusion and, potentially, higher levels of NO reaching the invading pathogen. 

Furthermore, the main NO detoxification mechanism of E. coli in the presence of oxygen 

(i.e. flavohaemoglobin Hmp) is localized in the cytoplasm, thus the periplasmic location 

of bNOS, and hence periplasmic production of NO, reduces the chance of 

flavohaemoglobin Hmp to completely interfere with NO levels. 

Despite the absence of bacteria in urine in healthy individuals, it is becoming 

increasingly accepted that the bladder itself is not a sterile environment and, in fact, 

possesses a microbiome with a protective role (Brubaker and Wolfe, 2016; Thomas-

White et al., 2016). In view of this information, one must consider the effects that NO 

will have on the natural microbiome; affecting the microbiome of the bladder in any way 

may, in fact, be more harmful to the host. 

To engineer a NO-tolerant strain of E. coli, the wild-type hmp promoter was 

replaced by the constitutive Pbla promoter, and NO susceptibility was determined. Whilst 

increased sensitivity to GSNO in the presence of oxygen (Figure 3.8, panel A and B) 

could be explained by formation of superoxide (Membrillo-Hernández et al., 1996; Mills 

et al., 2001; Wu et al., 2004), the sensitivity exhibited under anaerobic conditions was 

surprising. It is possible that this sensitivity could be due to toxicity caused by high levels 

of flavohaemoglobin protein expression. However, this hypothesis would have to be 

tested by assessing the levels of flavohaemoglobin Hmp with a western blot, using the 

wild-type strain as a control. 
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4.1. Summary 

 

The emergence of antibiotic resistance has become a cause for concern as it is 

leading to an increase in mortality and morbidity associated with bacterial infections. 

Hence, not only is it necessary to find alternative therapies to combat resistant and multi-

drug-resistant bacteria but to also monitor the appearance and dissemination of antibiotic 

resistance and antibiotic-resistant clones to better understand the problem and also to 

administer the most suitable treatment to patients and prevent patient relapse. 

In this chapter, 50 bacteraemia E. coli isolates (i.e. collected from the blood of 

patients), were characterized phenotypically and genotypically for clonal lineage, 

antibiotic resistance, virulence, and presence of plasmids. Whilst most of the collection 

remained sensitive to all antibiotics experimentally tested, resistance to commonly used 

antibiotics such as amoxicillin and trimethoprim was highly prevalent. 14% of the clinical 

isolates showed a multidrug-resistant phenotype, with this number increasing to 30% 

when antibiotic resistance was detected by mining the genome sequences of the isolates 

for acquired resistance genes. However, in silico detection of antibiotic resistance resulted 

in many false negatives, mainly for ciprofloxacin resistance. In addition, in silico 

detection produced false positives for antibiotic resistance, mainly for chloramphenicol. 

Thus, whilst a convenient tool to detect antibiotic resistance, caution needs to be taken 

when interpreting in silico results and the data should always be complemented with a 

phenotypic assay.  

Despite observing that ST73 isolates were, on average, more virulent and less 

resistant, and ST131 isolates were, on average, less virulent and more resistant, no 

correlation between both variables was detected in the isolate collection as a whole. 

However, an association between resistance and specific virulence factors cannot be 

discounted. 

 Evidence of an association between CTX-M-15 and aac(3)-IIa, aac(6')Ib-cr, and 

blaOXA-1 is shown, and could explain why ESBL-producing isolates often exhibit a 

multidrug-resistant phenotype. Moreover, an association between certain virulence genes 

and phylogenetic group B2, which comprises sequence-types known to be associated with 

UTIs, was also found. 
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4.2. Introduction 
 

E. coli is usually a commensal bacterium and part of the normal human intestinal 

flora, where it promotes normal intestinal function and rarely causes disease. Some strains 

of E. coli, however, acquired certain genes (e.g. virulence genes) and took on a more 

pathogenic nature towards the host, and are thus capable of causing a broad spectrum of 

diseases. Pathogenic E. coli can be further subdivided according to their site of infection: 

enteropathogenic E. coli (EPEC) are responsible for many intestinal infections, 

particularly in infants, and extraintestinal pathogenic E. coli (ExPEC) are responsible for 

extraintestinal infections such as neonatal meningitis and UTIs. ExPEC are the most 

common cause of infection in humans and E. coli is the etiological agent responsible for 

80% of UTIs (Totsika et al., 2012; Bien et al., 2012).  

The ability of pathogenic E. coli to adapt and colonize new niches, combined with 

the emergence of antibiotic resistance, has led to a serious worldwide threat. One 

particular clonal type of E. coli, ST131, is the predominant lineage among ExPEC 

isolates. ST131-type strains, often associated with UTIs, are widespread and commonly 

reported to have an ESBL phenotype and exhibit fluoroquinolone resistance. 

Furthermore, it has been suggested that ST131 are responsible, at least in part, for the 

current increase of antibiotic-resistant E. coli, particularly ESBL-producing and 

fluoroquinolone-resistant E. coli (Johnson et al., 2010). This clonal group also contains a 

large virulence repertoire, and it was proposed that the combination of high antibiotic 

resistance levels and virulence genes confers an advantage to ST131 over other E. coli 

clonal groups, facilitating its dissemination (Johnson et al., 2010; Peirano et al., 2013). 

This combination contradicts the belief that increased levels of antibiotic resistance has a 

negative impact on fitness, thus resulting in less pathogenic strains (Johnson, Gajewski, 

et al., 2003; Houdouin et al., 2006; Moreno et al., 2006; Johnson et al., 2010).  

The emergence of E. coli ST131 highlights the need to better understand the molecular 

mechanisms behind pathogenicity and how this might affect antibiotic resistance. 

Furthermore, a deeper understanding of the magnitude of the problem is also of the utmost 

importance. Whole genome sequencing is a powerful tool which could be used for these 

purposes. It would allow collection of important information, such as antibiotic resistance 

and virulence genes, in one single step, as well as the identification of novel targets for 

antibiotics or vaccines. In fact, whole genome sequencing  was successfully used to screen 

the genome of serogroup B meningococcus and identify several conserved, surface-

exposed antigens, which were then experimentally tested and used to develop a vaccine 
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against Neisseria meningitidis (Pizza et al., 2000; Savino et al., 2006). The use of whole 

genome sequencing for molecular diagnostics is not currently well established in clinical 

settings, but its application is predicted to assist with epidemiological typing, support 

clinicians during outbreaks, and improve patient treatment (Ellington et al., 2012; Köser 

et al., 2012; Fricke and Rasko, 2014). 
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4.3. Results 
 

4.3.1. General genome features 

In this work, the 50 E. coli bacteraemia isolates, collected from East Kent Hospitals 

University NHS Foundation, that comprise the designated Kent collection, were 

phenotypically and genotypically characterized. For the latter, whole genome sequencing 

was performed by preparing a library containing the genomic DNA of the clinical isolates 

using the Nextera® XT DNA Library Prep Kit, which is optimized for small genomes. 

This kit uses a transposome complex to simultaneously fragment genomic DNA and 

insert adapter sequences. The following PCR step uses the adapter to amplify the DNA 

fragments and add specific index sequences to each genomic DNA sample, thus allowing 

sequencing of pooled libraries. Following library preparation, samples were sequenced 

using an Illumina MiSeq benchtop sequencer. Key advantages of this sequencer include 

a fast run time and low-cost per run and per base pair, making it the ideal sequencer for 

small sequencing projects such as the one carried out in this work. The resulting short 

paired-end reads were assessed for quality with FastQC before and after trimming of the 

reads using Trimmomatic (Bolger et al., 2014), which removes the adapter sequences 

inserted during genomic DNA library preparation, as well as low quality bases and reads 

from the data. The trimmed reads were used as input in SPAdes Genome Assembler 

(Bankevich et al., 2012) for a de novo assembly of the bacterial genome. The resulting 

contigs were subsequently re-ordered using the genome of E. coli MG1655 as reference 

(NC_000913.3) with Mauve (Darling et al., 2004) and annotated with Prokka (Seemann, 

2014). 

The general features of all 50 E. coli genomes following assembly and annotation 

are shown in table 4.1. The smallest genome belonged to KC20 (4.66 Mb) and the largest 

to KC27 (5.52 Mb), and there is a clear linear relationship between the size of a genome 

and the number of CDS present (Figure 4.1) despite a relatively constant CDS density 

(0.93 ± 0.01 genes per kb) in all isolates of the collection.  

 

Table 4.1 – General features of the assembled genomes 

 

MS 

number 

KC 

number 

Genome size 

(Mb) 
No. contigs No. CDS 

CDS density (CDS 

per kb) 

188 KC1 5.18 134 4812 0.93 

189 KC2 5.18 120 4861 0.94 

190 KC3 4.85 90 4476 0.92 
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191 KC4 5.13 117 4716 0.92 

192 KC5 5.08 109 4691 0.92 

193 KC6 5.01 137 4697 0.94 

194 KC7 5.14 134 4780 0.93 

195 KC8 5.33 166 4959 0.93 

196 KC9 5.27 195 4953 0.94 

197 KC10 5.00 127 4687 0.94 

198 KC11 5.21 229 4945 0.95 

199 KC12 4.73 83 4402 0.93 

200 KC13 5.41 187 5124 0.95 

201 KC14 4.88 408 4611 0.94 

202 KC15 5.18 106 4813 0.93 

203 KC16 5.16 149 4767 0.92 

204 KC17 4.79 104 4440 0.93 

205 KC18 5.31 181 5059 0.95 

206 KC19 4.96 135 4588 0.92 

207 KC20 4.66 183 4278 0.92 

208* KC21 5.27 81 4965 0.94 

209 KC22 4.91 118 4577 0.93 

210 KC23 5.30 218 4922 0.93 

211 KC24 4.90 403 4553 0.93 

212 KC25 4.94 351 4554 0.92 

213 KC26 4.78 1016 4434 0.93 

214* KC27 5.52 385 5145 0.93 

215 KC28 4.88 408 4613 0.94 

216 KC29 5.21 184 4826 0.93 

217 KC30 5.26 154 4857 0.92 

218 KC31 5.22 851 4997 0.96 

219 KC32 5.04 233 4692 0.93 

220 KC33 5.33 270 5052 0.95 

221 KC51 5.10 216 4703 0.92 

222 KC35 5.03 250 4677 0.93 

223 KC36 4.66 721 4380 0.94 

224 KC37 4.95 339 4556 0.92 

225 KC38 4.93 56 4584 0.93 

226 KC39 5.23 236 4871 0.93 

227 KC40 5.23 265 4842 0.93 

228 KC41 5.10 146 4802 0.94 

229 KC42 5.28 148 4956 0.94 

230 KC43 5.10 73 4765 0.94 

231 KC44 5.08 144 4674 0.92 

232 KC45 5.31 188 4899 0.92 

233 KC46 5.28 246 4929 0.93 

234 KC47 5.34 162 4979 0.93 

235 KC48 5.22 207 4818 0.92 
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236 KC49 5.03 174 4676 0.93 

237 KC50 5.13 135 4762 0.93 
* Sequencing of these isolates was initially unsuccessful. As such, whole genome sequencing of these 

isolates was performed by MicrobesNG (Birmingham). 

 

 

4.3.2. Clonal and phylogenetic analyses 

4.3.2.1. Multi-locus sequence typing  

Multi-locus sequence typing (MLST) was performed according to the Achtman 

typing scheme (Wirth et al., 2006), which uses the internal sequence of seven 

housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) to assign each E. coli 

strain to a specific sequence type (ST). Each sequence is searched against a database and 

assigned an allelic profile number, and each ST is determined based on the combination 

of the seven alleles. 

In total, 23 different STs were identified in the collection. The most prevalent STs 

in the Kent collection was ST73 (n=9; 18%), followed by ST69 (n=7; 14%) and ST131 

(n=6; 12%). Sixteen isolates (32%) represented their own ST, with four of the isolates in 

the collection not assigned to any known ST, and thus represent four novel STs. A 

minimum spanning tree (Figure 4.2) was constructed based on the MLST profile 

(Appendix A-1) to illustrate the clonal relationship based solely on the allelic profile of 

the seven housekeeping genes. Two of the four novel STs (?2 – KC33; ?3 – KC51) differ 

from ST131 and ST73, respectively, by one single allele, and singletons ST685, ST421, 

ST1618 also share six identical alleles (out of seven) with ST10, ST95, and ST73, 

respectively. All other STs identified differ from other STs by three or more alleles. 

Figure 4.1 – Relationship between genome size and number of genes in the KC collection. 
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4.3.2.2. Whole genome alignment 

A whole genome sequence comparison circular map was generated using the 

BLAST atlas setting of the GView server (https://server.gview.ca/) (Figure 4.3). While 

there is some degree of genetic variation between STs, within the isolates of a particular 

ST very little variation is observed. The backbone of ST404 and ST640 genomes exhibit 

less variability among themselves, in comparison with the higher variability observed in 

isolates within ST73, ST131, ST69, ST10, and ST95. In ST69, most of the genetic 

variability appears to originate from KC28 (represented by the fourth lane, from the 

inside, of the ST69 set in figure 4.3). 

 

4.3.2.3. Pan- and core-genome 

Described for the first time by Medini et al. (2005), the term pan-genome refers 

to the complete collection of genes present in a bacterial species (Figure 4.4) and 

Figure 4.2 – Minimum spanning tree of E. coli STs from the Kent collection. Partitions 

indicate the proportion of isolates in the collection belonging to the indicated ST. Strains within 

the same ST possess seven identical alleles; a single locus variant possesses one different allele 

to the other ST; a triple locus variant differs by three alleles; and a more than triple locus variant 

differs by more than three alleles. The four unassigned STs are identified as ‘?1’ (KC17), ‘?2’ 

(KC33), ‘?3’ (KC51), and ‘?4’ (KC38). 

https://server.gview.ca/
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comprises the core genome (i.e. the set of genes shared by all strains of a bacterial species 

and involved in fundamental physiological functions and phenotypic traits of the bacterial 

species), the dispensable genome (i.e. the set of genes present in only a small subset of 

strains), and unique genome (i.e. a set of genes present in only one strain) (Figure 4.4). 

Both the ‘dispensable’ and ‘unique’ genome encode proteins not essential for bacterial 

growth and instead possess genes that confer a selective advantage (e.g. antimicrobial 

resistance genes or virulence genes) (Medini et al., 2005). 

The tool Roary (Page et al., 2015) was used to determine the distribution of core 

and dispensable genes in the Kent collection and in E. coli MG1655. Briefly, the general 

feature format (GFF) file of each genome generated by Prokka (Seemann, 2014) was used 

in Roary as input, which converted complete CDS nucleotide sequences to protein 

sequences, followed by a protein BLAST comparison of all sets of protein sequences (one  

Figure 4.3 – Whole genome comparison of E. coli MG1655 with the 50 clinical isolates of 

the Kent collection. The inner black ring corresponds to E. coli MG1655 and with each lane 

thereafter corresponding to a genome. Isolates were coloured according to their ST (colour-key 

legend is on the right). The four outermost lanes correspond to the isolates of unknown ST. Blank 

spaces indicate that the gene at that position in the reference genome is not found in the genome 

of that lane. 
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per genome). The pan-genome of the Kent collection, including E. coli MG1655, is made 

up of 13,172 genes in total (Figure 4.5A). Only approximately 19.6% of the genes 

(n=2,580) are a part of the core genome (i.e. present in all isolates), while accessory genes 

make up the remaining 80.4% (n=10,592) of the entire pan-genome (Figure 4.5A). The 

pan-genome of E. coli is an open pan-genome (Figure 4.5B) meaning the number of total 

genes increases with every new genome added. 

The multi-FASTA alignment file of the core genes created by Roary was used as 

input in FastTree (Price et al., 2009; Price et al., 2010) to deduce the approximately-

maximum-likelihood phylogenetic relationship of the isolates of the Kent collection 

based on single nucleotide polymorphisms (SNPs) present in the core genome (Figure 

4.6), and in silico PCR was used to determine the phylogenetic group of each E. coli 

isolate according to the Clermont quadruplex method (Clermont et al., 2013). 

Phylogenetic group B2 forms the basal group, with all other phylogenetic groups 

diverging later, and phylogenetic group A diverging last (Figure 4.6). Interestingly, 

KC20, also assigned to phylogenetic group B2, is shown to diverge much later than the 

remaining members of phylogenetic group B2, and is more closely related to members of  

phylogenetic group A. Over half of the entire collection (n=33; 65%) was assigned to 

phylogenetic group B2, including the isolates of sequence-type ST131, ST73, ST95, 

ST404, and three of the four isolates with novel STs.  Interestingly, KC28, also belonging 

to ST69, was assigned to phylogenetic group A, along with KC14 and KC36 (both ST10),  

Figure 4.4 – Venn diagram of the pan-genome. The pan-genome is described as the pool of 

genes of a bacterial species (core genome + dispensable genome + unique genome). 
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and commensal E. coli MG1655. Apart from KC28 (ST69) and KC10 (ST131) that are 

assigned to phylogenetic group A and unknown phylogenetic group, respectively, STs 

with more than one isolate were assigned to the same phylogenetic group (Figure 4.6). 

Isolates from the same ST often cluster together, sharing a recent common ancestor. 

 

4.3.3. Antibiotic resistance analysis  

The phenotypic antibiotic resistance profile of the Kent collection was determined  

Figure 4.5 – The pan-genome of the Kent collection. A) The pan-genome of the Kent collection, 

including E. coli MG1655, comprises a total of 13,172 genes, with only 19% of these genes 

forming the core genome. B) The Kent collection exhibits an open pan-genome, with the number 

of genes increasing as more genomes are analysed. 
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using disc diffusion assays (see Appendix B-1 and Appendix C-1 for full characterization 

of the Kent collection). Resistance to nine antibiotics was experimentally tested: 

penicillins (amoxicillin – AMX), cephalosporins (cefotaxime – CTX), phenicols 

(chloramphenicol – CAP), fluoroquinolones (ciprofloxacin – CIP), aminoglycosides 

(gentamicin – GEN), carbapenems (meropenem – MEM), nitrofurans (nitrofurantoin – 

NIT), trimethoprim (TMP), and polypeptides (polymyxin E/colistin – PME). More than 

half of the collection – 56% (n=28) of the isolates remained sensitive to all antibiotics 

tested, while the remaining isolates (n=22) exhibited resistance to at least one of the 

antibiotics tested, with seven of these isolates (14%) exhibiting a multidrug-resistant 

phenotype (i.e. resistant to three or more antibiotic classes) (Magiorakos et al., 2012) 

(Figure 4.7A). Three of the isolates (6%) exhibited resistance to cefotaxime (Figure 

Figure 4.6 – Dendrogram for the genetic relationships of E. coli isolates in the Kent 

collection. Phylogenetic relationship of the E. coli isolates of the Kent collection was inferred 

based on SNPs present in the core genome. For all isolates, the ST is indicated besides their KC 

number. Apart from KC10 (highlighted in white), all isolates were assigned to a phylogenetic 

group: phylogenetic group A in yellow; phylogenetic group B1 in orange; phylogenetic group B2 

in blue; phylogenetic group D in green; and phylogenetic group F in red. 
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4.7A), and further analysis of their genome revealed the presence of the highly 

disseminated ESBL CTX-M-15 (Nicolas-Chanoine et al., 2008; Lau et al., 2008). The 

highest level of resistance was observed for amoxicillin (n=21; 42%), followed by 

trimethoprim (n=14: 28%) and ciprofloxacin (n=9; 18%) (Figure 4.7B). No isolate in the 

collection exhibited resistance to either meropenem or colistin (Figure 4.7B). 

 

 

The experimental phenotypic data obtained for antibiotic susceptibility was 

compared with the in silico data obtained by mining the genome sequences of all isolates 

for antibiotic resistance genes (Figure 4.8). For this purpose, the tool ABRicate was used 

to search the ResFinder 2.1 database (Zankari et al., 2012) and detect known acquired 

Figure 4.7 – Antibiotic susceptibility of the Kent collection. A) 14% of the isolates in the 

collection (n=7) exhibited a multidrug-resistant (MDR) phenotype, with 6% (n=3) displaying 

resistance to cephalosporins (cefotaxime) and shown to possess the ESBL CTX-M-15. B) The 

highest level of resistance is observed for amoxicillin (AMX), with 42% of the isolates (n=21) 

exhibiting resistance; no resistance was observed towards meropenem (MEM) and colistin 

(PME). Antibiotics tested are as follows: amoxicillin (AMX), cefotaxime (CTX), 

chloramphenicol (CAP), ciprofloxacin (CIP), gentamicin (GEN), meropenem (MEM), 

nitrofurantoin (NIT), trimethoprim (TMP), and colistin (PME). 
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resistance genes displaying ≥ 98% sequence identity over a minimum of 90% coverage 

of the gene. In silico detection of antibiotic resistance genes allowed for the detection of 

resistance to three extra classes of antibiotics that were not experimentally tested: 

macrolide-lincosamide-streptograminB (MLS), sulphonamides (SUL), and tetracycline 

(TET) (Figure 4.8). This revealed a total of 15 isolates (30%) with multidrug resistance, 

approximately twice as many as the ones revealed with the phenotypic assay. 

Analysis of both in silico and experimental data revealed that ST131 strains 

exhibit higher levels of antibiotic resistance than the other sequence-types, and ST73 

strain exhibit lower levels of antibiotic resistance. In silico analysis also confirmed a 

higher prevalence of resistance to amoxicillin (beta-lactams) and trimethoprim 

(sulphonamides) in the collection. However, it is important to note that the distribution of 

antibiotic resistance is not in complete agreement between both sets of data (in silico vs. 

experimental data).  

 Fisher’s exact test (two-tailed) was used to test the significance of the association 

between resistance/sensitivity and phylogenetic group (B2 vs. non-B2), although no 

significant relationship was found between both variables (p-value > 0.05). 

 

 

4.3.4. Virulence repertoire 

Virulence factors (VFs) were detected by mining the genome of each isolate with 

ABRicate. A total of 151 different genes encoding known VFs were detected among all 

the 50 isolates and used to predict the virulence potential of each isolate. Isolates with the 

Figure 4.8 – Antibiotic resistance prevalence for the most common sequence types of the 

Kent collection. In silico analysis of genomic sequences identified resistance to two more classes 

of antibiotics (MLS and TET). In both data sets, ST131 isolates exhibit higher levels of antibiotic 

resistance, while ST73 exhibit the lowest levels of resistance. 
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highest number of virulence genes theoretically possess a higher potential for virulence. 

The virulence potential (i.e. the % of the 151 VFs identified in a given isolate) of the 

collection ranged from a minimum of 21.9% (n=33) for KC20 (ST685), to a maximum 

of 69.5% (n=105) for KC16 (ST73), and an average of 49.1% observed for the entire 

collection. On average, ST73 strains exhibited a higher virulence potential (62%) than the 

other two main sequence-types identified in this study, ST69 (50%) and ST131 (43.9%) 

(Figure 4.9). Virulence genes entA, fepA, fyuA, fimH, and ompA show a high prevalence 

(> 80%) in all sequence-types (Figure 4.9). 

 

 

The statistical significance of the association of virulence genes and phylogenetic 

groups (B2 vs. non-B2) was tested with Fisher’s exact test (two-tailed) (Table 4.2). The 

genes set1A, set1B, hlyA, pic, papB, papE, chuA, and kpsM were significantly more 

prevalent (p-value < 0.05) in phylogenetic group B2 (Table 4.2), with an overall higher 

prevalence in ST73 isolates (Figure 4.9). Furthermore, no significant correlation was 

found between antibiotic resistance and virulence potential (Pearson r = - 0.0097, p-value 

= 0.95) (Appendix D-1). 

 

4.3.5. Plasmid typing 

The use of whole genome sequencing allows for the capture of sequencing data 

derived from both the bacterial chromosome and from any plasmids that might be present. 

While the assembly of plasmids from WGS short-read sequencing data is extremely 

difficult, some bioinformatic predictive tools have been developed to allow for plasmid 

Figure 4.9 – Prevalence of selected virulence genes in predominant STs. The prevalence of a 

small selection of virulence genes in the three main STs identified in the collection was assessed. 

ST73 exhibits a higher virulence potential than other the STs identified in the collection. 
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Table 4.2 – Presence of virulence genes in each phylogenetic group 

 

  No. of isolates (%) 

Trait Gene1 Total 
Phylogenetic group   

A (n = 3) B1 (n = 4) B2 (n = 33) D (n = 7) F (n = 2) Unknown (n = 1) p-value2 

Adherence afaA 6 (12) 0 (0) 0 (0) 6 (18.2) 0 (0) 0 (0) 0 (0) - 
 

draD 4 (8) 0 (0) 0 (0) 4 (12.1) 0 (0) 0 (0) 0 (0) - 
 

draP 6 (12) 0 (0) 0 (0) 6 (18.2) 0 (0) 0 (0) 0 (0) - 
 

fimH 49 (98) 3 (100) 4 (100) 32 (97.0) 7 (100) 2 (100) 1 (100) - 
 

focA 7 (14) 0 (0) 0 (0) 7 (21.2) 0 (0) 0 (0) 0 (0) - 
 papA 1 (2) 0 (0) 0 (0) 1 (3.0) 0 (0) 0 (0) 0 (0) - 
 papB 31 (62) 0 (0) 0 (0) 24 (72.7) 5 (71.4) 1 (50) 1 (100) 0.0254 
 papC 20 (40) 0 (0) 0 (0) 16 (48.5) 4 (57.1) 0 (0) 0 (0) - 
 papD 21 (42) 0 (0) 0 (0) 16 (48.5) 4 (57.1) 1 (50) 0 (0) - 
 papE 9 (18) 0 (0) 0 (0) 9 (27.3) 0 (0) 0 (0) 0 (0) 0.0198 
 papF 21 (42) 0 (0) 0 (0) 16 (48.5) 4 (57.1) 1 (50) 0 (0) - 
 papG 20 (40) 0 (0) 0 (0) 15 (45.5) 4 (57.1) 1 (50) 0 (0) - 
 sfaS 3 (6) 0 (0) 0 (0) 3 (9.1) 0 (0) 0 (0) 0 (0) - 

Iron uptake chuA 33 (66) 0 (0) 0 (0) 32 (97.0) 0 (0) 1 (50) 0 (0) < 0.0001 

 entA  48 (96) 2 (66.7) 4 (100) 32 (97.0) 7 (100) 2 (100) 1 (100) - 

 fepA 50 (100) 3 (100) 4 (100) 33 (100) 7 (100) 2 (100) 1 (100) - 

 fyuA 45 (90) 3 (100) 2 (50) 31 (93.9) 6 (85.7) 2 (100) 1 (100) - 

 iroN 19 (38) 1 (33.3) 2 (50) 16 (48.5) 0 (0) 0 (0) 0 (0) - 

 iutA 12 (24) 2 (66.7) 0 (0) 5 (15.2) 4 (57.1) 1 (50) 0 (0) - 

Invasion ompA 49 (98) 3 (100) 4 (100) 32 (97.0) 7 (100) 2 (100) 1 (100) - 
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 ibeA 6 (12) 0 (0) 0 (0) 6 (18.2) 0 (0) 0 (0) 0 (0) - 

 kpsM 38 (76) 0 (0) 0 (0) 31 (93.9) 5 (71.4) 2 (100) 0 (0) < 0.0001 

 kpsT 9 (18) 0 (0) 0 (0) 8 (24.2) 0 (0) 1 (50) 0 (0) - 

Toxin astA 4 (8) 0 (0) 0 (0) 3 (9.1) 1 (14.3) 0 (0) 0 (0) - 

 cnf1 6 (12.5) 0 (0) 0 (0) 6 (18.2) 0 (0) 0 (0) 0 (0) - 

 gtrA 2 (4) 0 (0) 0 (0) 2 (6.1) 0 (0) 0 (0) 0 (0) - 

 hlyA 11 (22) 0 (0) 0 (0) 11 (33.3) 0 (0) 0 (0) 0 (0) 0.0091 

 pic 9 (18) 0 (0) 0 (0) 9 (27.3) 0 (0) 0 (0) 0 (0) 0.0198 

 sat 28 (56) 2 (66.7) 0 (0) 19 (57.6) 5 (71.4) 1 (50) 1 (100) - 

 senB 16 (32) 0 (0) 0 (0) 13 (39.4) 3 (42.9) 0 (0) 0 (0) - 

 set1A 11 (22) 0 (0) 0 (0) 11 (33.3) 0 (0) 0 (0) 0 (0) 0.0091 

  set1B 11 (22) 0 (0) 0 (0) 11 (33.3) 0 (0) 0 (0) 0 (0) 0.0091 

          
1) Not all VF detected are present in this table 

      

2) p-values (B2 vs. non-B2), by Fisher’s exact test (2-tailed), are shown where p < 0.05. 
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prediction and typing from WGS data sets. In this work, the ABRicate tool was used to 

mine the assembled and re-ordered genome of the isolates of the Kent collection against 

the PlasmidFinder database (Carattoli et al., 2014), to identify replicon sequences (i.e. 

plasmid origins of replication). Each replicon is assigned to an incompatibility group, 

with the premise that plasmids within the same incompatibility group cannot co-exist 

within the same bacterial cell.  

IncFIB replicons were highly prevalent in the collection (74%), followed by 

Col(156) (66%), and IncFII (54%) replicons. In contrast, IncI2, IncN, IncX1, IncX4, 

IncY, and p0111 replicons were the least prevalent (2%). Except for five isolates (KC5, 

KC17, KC25, KC26, and KC44), at least one replicon was identified in all remaining 

isolates of the collection, including in isolates which exhibited a pan-susceptible 

phenotype (Table 4.3). Interestingly, the four main IncF incompatibility groups identified 

in the collection (IncFIA, IncFIB, Inc FIC, and IncFII) are all present in the three isolates 

(KC18, KC33, and KC45) that exhibit multidrug resistance, ciprofloxacin resistance 

arising from the presence of aac(6')Ib-cr, and identified as CTX-M-15 ESBL (Table 4.3). 

 

Table 4.3 – Distribution of replicons in the Kent collection 

 

MS 

number 

KC 

number 
Replicons Notes 

MS188 KC1 Col(156); IncFII Pan-susceptible 

MS189 KC2 Col(MG828); Col(RNAI) Pan-susceptible 

MS190 KC3 IncFIB; IncFIC; IncFII; IncQ1 MDR; Ciprofloxacin resistance 

MS191 KC4 
Col(MG828); Col(RNAI); 

IncFIA; IncFIB; IncFII 
 

MS192 KC5 - Pan-susceptible 

MS193 KC6 
Col(156); Col(pVC); IncFIB; 

IncFII; IncI2 
 

MS194 KC7 IncFIB; IncFII; IncI1; IncN Ciprofloxacin resistant 

MS195 KC8 

Col(MG828); Col(156); 

IncB/O/K/Z; IncFIB; IncFIC; 

IncFII 

 

MS196 KC9 
Col(156); Col(8282); IncFIB; 

IncFII; IncQ1 
 

MS197 KC10 

Col(156); Col(8282); 

Col(RNAI); IncFIA; IncFII; 

IncX4 

Ciprofloxacin resistant 

MS198 KC11 

Col(BS512); Col(MP18); 

Col(156); Col(RNAI); 

IncB/O/K/Z 

Pan-susceptible 

MS199 KC12 Col(RNAI) Pan-susceptible 

MS200 KC13 
IncB/O/K/Z; IncFIB; IncFII; 

IncY 
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MS201 KC14 

Col(MG828); Col(MP18); 

Col(156); Col(RNAI); IncFIB; 

IncFIC; IncFII 

Pan-susceptible 

MS202 KC15 
Col(156); IncFIB; IncFIC; 

IncFII 
 

MS203 KC16 IncFIB; IncFIC; IncFII Pan-susceptible 

MS204 KC17 - Pan-susceptible 

MS205 KC18 IncFIA; IncFIB; IncFIC; IncFII 
MDR; Posesses CTX-M-15; 

Ciprofloxacin resistant 

MS206 KC19 IncFIA; IncFIB; IncFII MDR; Ciprofloxacin resistant 

MS207 KC20 Col(RNAI) Pan-susceptible 

MS208 KC21 
Col(BS512); Col(MG828); 

IncB/O/K/Z; IncFIB; IncFII 
Pan-susceptible 

MS209 KC22 Col(RNAI); IncI1 Pan-susceptible 

MS210 KC23 

Col(MG828); Col(156); 

Col(8282); IncFIB; IncFIC; 

IncFII 

Pan-susceptible 

MS211 KC24 
Col(MG828); Col1(56); 

Col(8282); IncFIB; IncFII 
Pan-susceptible 

MS212 KC25 - Pan-susceptible 

MS213 KC26 - Pan-susceptible 

MS214 KC27 Col(156); IncFIB; IncFII Pan-susceptible 

MS215 KC28 

Col(MG828); Col(MP18); 

Col(156); Col(RNAI); IncFIB; 

IncFIC; IncFII 

 

MS216 KC29 
Col(156); IncFIB; IncFIC; 

IncFII 
 

MS217 KC30 
Col(MG828); IncFIA; IncFIB; 

IncFII; IncQ1 
 

MS218 KC31 
Col(MG828); Col(156); IncFIB; 

IncFII 
Pan-susceptible 

MS219 KC32 
Col(RNAI); IncFIB; IncFIC; 

IncFII 
Pan-susceptible 

MS220 KC33 IncFIA; IncFIB; IncFIC; IncFII 
MDR; Posesses CTX-M-15; 

Ciprofloxacin resistant 

MS221 KC51 
Col(MG828); Col(156); 

Col(RNAI); IncFIB; IncFII 
Pan-susceptible 

MS222 KC35 
Col(RNAI); IncFIB; IncFIC; 

IncFII 
Pan-susceptible 

MS223 KC36 
Col(MG828); Col(pVC); 

Col(RNAI); IncFIB; IncFII 
Pan-susceptible 

MS224 KC37 
Col(MG828); IncFIB; IncFIC; 

IncFII 
Pan-susceptible 

MS225 KC38 

Col(MG828); Col(8282); 

Col(RNAI); IncFIB; IncFIC; 

IncFII 

Pan-susceptible 

MS226 KC39 
Col(156); IncFIB; IncFIC; 

IncFII 
 

MS227 KC40 Col(156); IncFIB; IncFII Pan-susceptible 

MS228 KC41 
Col(MG828); Col(156); 

Col(RNAI); IncFIB; IncFII 
Pan-susceptible 



101 

 

MS229 KC42 
Col(156); Col(RNAI); IncFIB; 

IncFII 
Pan-susceptible 

MS230 KC43 
Col(156); Col(RNAI); IncFIB; 

IncFII 
Pan-susceptible 

MS231 KC44 - Pan-susceptible 

MS232 KC45 
Col(156); IncFIA; IncFIB; 

IncFIC; IncFII; p0111 

MDR; Posesses CTX-M-15; 

Ciprofloxacin resistant 

MS233 KC46 Col(156); IncFIB; IncFII; IncI1  

MS234 KC47 
Col(156); Col(8282); IncFIB; 

IncFII; IncQ1 
MDR; Ciprofloxacin resistant 

MS235 KC48 IncB/O/K/Z  

MS236 KC49 
Col(156); IncFIA; IncFIB; 

IncX1 
MDR; Ciprofloxacin resistant 

MS237 KC50 

Col(156); Col(8282); 

Col(RNAI); IncFIB; IncFII; 

IncQ1 
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4.4. Discussion 
 

4.4.1. The E. coli genome 

Following genome assembly and annotation, general genome information for each 

isolate was gathered, including total genome size and number of genes in each genome. 

Unsurprisingly, comparison of genome size and number of genes showed a linear 

relationship between the two (Figure 4.1). Acquisition of mobile genetic elements, such 

as plasmids and pathogenicity islands, contribute to the genetic variability of E. coli. In 

fact, out of 13,172 unique genes present in the Kent collection, only 19% belong to the 

core genome, while the remaining 91% of genes vary among isolates, a testament to the 

variability encountered among E. coli clinical isolates.  

Interestingly, isolates belonging to phylogenetic groups F, D and B2 had, on 

average, larger genomes (5.26, 5.19, and 5.13 Mb respectively) than isolates belonging 

to phylogenetic groups A and B1 (4.81 and 4.84 Mb respectively). Assigning a 

phylogenetic group to an isolate can provide further information on the nature of the 

isolate, including phenotypic and genotypic traits, ecological niche, and pathogenicity 

(Clermont et al., 2013). Commensal strains of E. coli are routinely assigned to 

phylogenetic group A, while pathogenic strains are assigned to the remaining 

phylogenetic groups (Johnson and Stell, 2000). As such, phylogenetic group A, as well 

as phylogenetic group B1, a sister group of A (Gordon et al., 2008), contain isolates of 

low pathogenic potential. In contrast, phylogenetic groups B2, D, and F, with the latter 

comprising strains that are closely related to strains of group B2 (Clermont et al., 2011), 

contain more pathogenic strains. The results obtained above suggest the presence of extra 

genes that confer a greater ability to cause disease in strains belonging to phylogenetic 

groups B2, D, and F.  

 

4.4.2. E. coli isolates from the Kent collection are an epidemiologically 

heterogeneous population 

The Kent collection consisted of 23 different STs, including four novel ones. ST73 

was the most prevalent ST in the collection (Figure 4.2), contrasting with previous reports 

by Croxall et al. (2011) and Johnson et al. (2010) that reported a higher prevalence of 

ST131 in the UK and USA, respectively. However, the presence of E. coli ST131 in the 

collection further emphasises the widespread dissemination of this clonal group (Nicolas-

Chanoine et al., 2008). 
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Predictably, whole genome sequence alignment (Figure 4.3) revealed greater 

similarity between genomes of the same ST than between genomes of different STs. In 

ST69 isolates, the KC28 genome seems to differ greatly from the other six ST69 genomes. 

Further analysis revealed that KC28 was assigned to phylogenetic group A, while all other 

isolates belonging to ST69 were assigned to phylogenetic group D (Figure 4.6), and 

revealed a closer phylogenetic relationship with both ST10 in the collection (KC14 and 

KC36) and E. coli MG1655, all of which were assigned to phylogenetic group A. A 

similar scenario was observed for KC20 (ST685): while assigned to phylogenetic group 

B2, this strain exhibited a closer phylogentic relationship with isolates belonging to 

phylogroup A than the remaining members of phylogenetic group B2 (Figure 4.6). 

Overall, E. coli isolates cluster together according to phylogenetic group and also by ST, 

with phylogenetic group B2, which is associated with ExPEC virulence, forming the 

ancestral group from which all others diverged until the most recent phylogenetic group 

A, which comprises commensal strains. This is in accord with a study conducted by Le 

Gall and colleagues (Le Gall et al., 2007) which suggests that the E. coli ancestor was 

likely to be a facultative or opportunistic pathogen. Furthermore, the virulence potential 

observed between phylogenetic groups of the Kent collection was, on average, highest 

for phylogenetic group B2 (52.4%), of which ST73 isolates had the highest virulence 

potential, followed closely by phylogenetic groups D and F (52.1% and 47.7%, 

respectively), and finally sister phylogenetic groups B1 and A (36.4% and 28.9% 

respectively). Also, phylogenetic group B2 is known to comprise many asymptomatic 

strains of E. coli (Nicolas-Chanoine et al., 2014), of which E. coli 83972 is the archetypal 

strain. It was previously suggested that the ability of E. coli 83972 to colonize the urinary 

tract for long periods of time without evoking a host response is not due to the absence of 

virulence genes in its genome, but rather due to its ability to down-regulate the expression 

of the virulence genes that will activate host responses (Wullt et al., 2000; Roos et al., 

2006). These observations lead us to speculate on the advantage of virulence genes for 

the maintenance and dissemination of E. coli and propose that instead of acquisition of 

virulence genes, the opposite could have occurred during the evolutionary process of E. 

coli, giving rise to well-adapted commensal strains with smaller genomes and fewer 

genes, and thus avoiding the evolutionary pitfalls often found by pathogens that cause 

host death or easily trigger the host immune system. 
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4.4.3. Relationships between CTX-M-15 and aac(3)-IIa, aac(6')Ib-cr, and blaOXA-1 

Despite over 50% of the Kent collection remaining sensitive to all nine antibiotics 

experimentally tested, a very high level of resistance was still observed, especially for 

amoxicillin, trimethoprim, and ciprofloxacin. This was unsurprising as these are three of 

the most commonly used antibiotics, hence there is a significant selective pressure driving 

the emergence of resistance to these antibiotics. Overall, 14% of the isolates exhibited 

multidrug resistance to antibiotics experimentally tested (Figure 4.7A). This number 

increased to 30% when analysing in silico data. It is important to note that the tool used 

to detect resistance genes in the genomic data of each isolate detected resistance genes 

belonging to three classes of antibiotics not tested experimentally, and it is very likely 

that the discrepancy between experimental and in silico datasets arises due to this 

phenomenon. Furthermore, in silico data obtained from ABRicate only contains known 

acquired resistance genes, while resistance to some antibiotics such as ciprofloxacin 

arises from mutations in the cellular target (e.g. DNA gyrase). As such, while three of the 

isolates carried the aac(6')Ib-cr (Appendix C-1) resistance gene which confers resistance 

to some aminoglycosides but also resistance to low-levels of ciprofloxacin, the remaining 

isolates exhibiting a ciprofloxacin-resistant phenotype were not detected with ABRicate. 

Hence, a multiple sequence alignment of gyrase subunit A (GyrA) was performed 

(Appendix E-1), which is the main target for ciprofloxacin in E. coli. This was carried out 

to identify mutations known to confer ciprofloxacin resistance (Weigel et al., 1998), and 

enabled in silico confirmation for all experimentally-tested ciprofloxacin-resistant 

isolates. The inability of ABRicate (and the ResFinder v2.1 database) to identify 

resistance arising from mutations in the target protein could also explain why the 

nitrofurantoin resistance experimentally detected in KC3 was not identified in silico. 

Thus, while genome sequencing is a good tool to detect antibiotic resistance genes in 

genome sequences, phenotypic assays to detect resistance are preferable as they can detect 

resistance arising from both acquision of resistance genes and mutation on the antibiotic 

target, as well as detecting resistance which arises from currently unknown mechanisms. 

Interestingly, the three isolates carrying the aac(6')Ib-cr resistance gene also 

possessed codon changes that would result in amino acid substitutions in the GyrA protein 

(Appendix E-1). Analysis of the acquired resistance genes identified in silico (Appendix 

C-1) further showed that these three isolates (KC18, KC33, and KC45) were also the only 

isolates carrying ESBL CTX-M-15, aac(6')Ib-cr, aac(3)-IIa, and blaOXA-1, all of which 

confer resistance to antibiotics of different classes (Alekshun and Levy, 2007). CTX-M-

15 with blaOXA-1 and aac(6')Ib-cr are known to be located on IncF-type plasmids 
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(Carattoli, 2009), and four IncF-type replicon sequences were identified in the three 

isolates (Table 4.3). However, it was observed that the presence of an IncF-type plasmid, 

or the presence of any putative plasmid or number of plasmids, does not necessarily 

coincide with antibiotic resistance. In fact, many replicon sequences were identified in  

isolates that exhibited a pan-susceptible phenotype to all antibiotics tested (Table 4.3). 

Furthermore, carriage of CTX-M-15  and both of aac(3)-IIa and aac(6’)Ib-cr has been 

previously observed in K. pneumoniae isolates (Peerayeh et al., 2014). An association 

between these different resistance genes could explain the high levels of multidrug 

resistance often observed in CTX-M-15 ESBL-producing isolates (Nicolas-Chanoine et 

al., 2008; Hoban et al., 2010). 

 

4.4.4. No evidence for a correlation between antibiotic resistance and virulence 

For a long time, it was thought that antibiotic resistance and virulence were 

mutually exclusive in E. coli, with the former having a negative impact on fitness which 

would result in less pathogenic strains. However, the emergence and dissemination of 

ST131 isolates exhibiting significantly higher levels of antibiotic resistance and virulence 

(Johnson et al., 2010; Peirano et al., 2013) is not consistent with this model. Furthermore, 

it has been suggested that this correlation is the reason for the success of ST131 isolates 

(Nicolas-Chanoine et al., 2008; Johnson et al., 2010; Peirano et al., 2013). In this study, 

however, while ST131 was more resistant, on average, than the other two most prevalent 

STs (ST69 and ST73), ST131 did not exhibit higher levels of virulence. In fact, ST73 

isolates, which exhibit the lowest antibiotic resistance levels, exhibited, on average, the 

highest virulence potential. To determine whether a correlation exists between levels of 

antibiotic resistance (reflected by the number of antibiotics to which phenotypic 

resistance was detected) and virulence potential, the Pearson correlation coefficient was 

calculated (Appendix D-1) but no significant correlation was found between the two 

variables. 

A high prevalence of iron uptake genes (entA, fepA, and fyuA) was found in the 

collection. While colonizing the host, pathogenic strains encounter environments with 

low concentrations of free iron. Since iron is essential for bacterial growth and is 

sequestered in the body by the process of nutritional immunity, it is unsurprising that 

many pathogenic strains encode siderophores such as enterobactin (entA), 

ferrienterobactin (fepA), and yersiniabactin (fyuA). The high prevalence of fimH (type I 

fimbriae adhesin) and ompA (outer membrane protein A) was also found in a high number 

of both pathogenic and commensal E. coli strains (Salmon et al., 2003; Dhakal et al., 
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2008; Hagan et al., 2010). Overall, these results suggest that these genes might be broadly 

conserved among different sequence-types. 

Virulence genes set1A, set1B, hlyA, pic, papB, papE, chuA, and kpsM were 

significantly more prevalent in phylogenetic group B2, potentially  a reflection of the high 

prevalence of UPEC strains (e.g. ST131, ST73, and ST95) in this phylogenetic group, 

where  the virulence genes above are frequently encountered (Mobley et al., 1990; Wullt 

et al., 2000; Hagan and Mobley, 2007; Wiles et al., 2008; Bien et al., 2012; Nicolas-

Chanoine et al., 2014; Karami et al., 2016).  
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Chapter 5 
 

 

 

Nitric oxide may abrogate the toxic effects 

of antibiotics 
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5.1. Summary 

 

Nitric oxide is a small molecule with important biological roles. In mammals, NO 

is produced by a specialized family of enzymes (mNOS family) and is involved in 

vasoregulation, platelet aggregation, and neurotransmission (Snyder and Bredt, 1992; 

Vallance, 2003). One member of the NOS family of enzymes (iNOS) is expressed in cells 

of the immune system, such as macrophages, and is involved in the response against 

invading pathogens during infection. In bacteria, the role of NO is not fully understood 

beyond its toxic effects, however it is known to be important for the life cycle of bacterial 

biofilms (Barraud et al., 2006; Barraud et al., 2015). Some Gram-positive bacteria possess 

mNOS homologues (bNOS), which provide an endogenous source of NO that has been 

shown to have an important role in the protection of these bacteria against oxidative stress 

associated with exposure to antimicrobials (Gusarov and Nudler, 2005; Shatalin et al., 

2008; Gusarov et al., 2009).  

The antimicrobial capabilities of NO and its natural occurrence in mammals, have 

made it a good candidate to be used as an alternative to antibiotics or co-administered 

with antibiotics to increase their efficacy (Reffuveille et al., 2015). However, several 

studies have demonstrated that ROS generation by the aerobic respiratory chain is 

inextricably linked to the lethality of various classes of antibiotics. Hence, herein we 

hypothesised inhibition of aerobic respiration by nitric oxide might abrogate the toxic 

effects of antibiotics. As such, experiments were designed to test the effects of nitric oxide 

on the lethality of gentamicin, a bactericidal antibiotic, against a well-characterized 

multidrug-resistant UPEC strain. Bacterial survival to gentamicin in the presence or 

absence of exogenously administered NO-donors (NOC-12 or GSNO) was determined 

for both planktonic cells and biofilms of E. coli EC958 wild-type, with both showing an 

increase in bacterial tolerance to gentamicin when NO is present. Furthermore, the effects 

of macrophage-derived NO combined with gentamicin treatment on bacterial intra-

macrophage survival was assessed, and although no significant differences in survival 

was observed for gentamicin, we cannot discard an effect for other bactericidal 

antibiotics.  

Recent work showed that exposure to bactericidal antibiotics increases bacterial 

respiration and leads to the accumulation of toxic ROS (Kohanski et al., 2007; Dwyer et 

al., 2014; Lobritz et al., 2015). Aerobic bacterial respiration is carried out by cytochrome 

oxidases, one of the main bacterial targets of NO. As such, we tested the susceptibility of 

E. coli EC958 strains lacking cytochrome bo’ (cyoA-) and cytochrome bd-I (cydAB-) to 
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gentamicin in the presence and absence of a NO-donor. The presence of GSNO increased 

bacterial survival in all the three strains tested. However, higher gentamicin tolerance was 

achieved in the strain of E. coli EC958 lacking cytochrome bd-I (cydAB-), suggesting that 

this respiratory oxidase is involved in antibiotic-mediated ROS generation, even in the 

presence of NO. This work has important implications for our understanding of antibiotic 

susceptibility during infection (i.e. where NO is produced by the innate immune system). 
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5.2. Introduction 

 

5.2.1. Overview of bacterial energy generation 

 E. coli is a facultative anaerobic bacterium which can obtain energy in two ways: 

i) via substrate-level phosphorylation (e.g. glycolysis), or ii) via oxidative 

phosphorylation, where an electron transport chain is responsible for generating a proton 

motive force (PMF) that is then used to drive ATP synthesis by the ATP synthase. 

Alternative routes for ATP production in E. coli confer a certain degree of metabolic 

flexibility that can respond to environmental changes and energetic needs. For example, 

under anoxic conditions, E. coli can either perform substrate-level phosphorylation if a 

fermentable carbon source is present (e.g. glucose) or perform oxidative phosphorylation 

in the presence of alternative electron acceptors (e.g. nitrate). There is, however, a 

hierarchy, with aerobic respiration, i.e. oxygen as the final electron acceptor, taking 

precedence over anaerobic respiration, which in turn takes precedence over fermentation. 

Fermentation is an anaerobic process that does not result in the formation of a PMF to 

drive the ATP synthase, and thus exhibits the lowest energy yield out of the three 

processes. Aerobic and anaerobic respiration both generate a PMF, which is an efficient 

route for the conservation of energy that is used in the generation of ATP. 

 Inhibition of the electron transport chain can severely impair antibiotic lethality 

by decreasing metabolism, thus reducing toxic by-products generated by the bacterial cell 

during antibiotic exposure (Dwyer et al., 2014), or due to decreased expression of the 

antibiotic cellular target expression; or by disruption of PMF, in which case antibiotics 

whose uptake is PMF-dependent are unable to reach their cellular target (e.g. 

aminoglycosides) (Hancock, 1981; Allison et al., 2011). 

The main E. coli pathogen used in the current work is the urosepsis-causing 

EC958 strain (Totsika et al., 2011; Forde et al., 2014), and during infection of the urinary 

tract E. coli encounters a predominantly microaerobic environment (Hagan et al., 2010). 

Hence, the aerobic respiratory chain of E. coli will be discussed in detail below. 

 

5.2.2. Aerobic respiration in E. coli 

E. coli possesses a branched aerobic respiratory chain and can express different 

respiratory complexes depending upon the environmental conditions. The aerobic 

respiratory chain in E. coli is comprised of two main classes of respiratory complexes: 

NADH dehydrogenases (NDH-1 or NDH-2) and cytochromes oxidases (cytochrome bo’ 

or cytochrome bd-I). E. coli also contains a third respiratory oxidase, Cytochrome bd-II, 
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that is expressed under phosphate and carbon limitation (Atlung and Brondsted, 1994; 

Vitaliy B. Borisov et al., 2011; Vitality B. Borisov et al., 2011): this complex is not a 

major focus of the current study. Both NADH dehydrogenases feed electrons into the 

system by transferring them from NADH onto the quinone pool on the cytoplasmic 

membrane (Figure 5.1). However, while NDH-1 has a stoichiometry of four protons 

translocated for every NADH oxidised (i.e. two electrons), NDH-2 does not translocate 

protons to the periplasmic space (Matsushita et al., 1987) and, as such, does not contribute 

to generation of the PMF. The cytochrome oxidases perform the terminal step in the 

electron transport chain, the reduction of oxygen to water, a reaction linked to the re-

oxidation of the quinone pool and re-setting of the system (Figure 5.1). 

 

 

5.2.2.1. Cytochrome bo’ 

Cytochrome bo’ is a transmembrane enzyme that catalyses the reduction of 

oxygen to water, during which it also functions as a proton pump and translocates protons 

from the cytoplasm into the periplasmic space, contributing to the generation of a PMF 

(Puustinen et al., 1989) (Figure 5.1). The reduction of molecular oxygen occurs in the 

binuclear haem-copper site, making it a member of the haem-copper superfamily of 

terminal oxidases (Abramson et al., 2000; Stenberg et al., 2007). 

Figure 5.1 – Aerobic respiratory chain of E. coli. NADH dehydrogenase I catalyses the 

oxidation of NADH and transfers two electrons (e-) into the quinone pool. In a well-aerated 

environment, cytochrome bo’ oxidase is expressed and catalyses the reduction of oxygen to water, 

coupled with the translocation 4 protons (H+) per 2e- via both scalar and vectorial proton 

translocation. In a microaerobic environment, E. coli maximally expresses cytochrome bd-I. This 

cytochrome oxidase reduces oxygen to water and has a ratio of 1H+ per e- that is supported solely 

by vectorial proton translocation. Unlike NDH-1, NDH-2 does not translocate protons. 



112 

 

In E. coli, cytochrome bo’ is encoded by the cyoABCDE operon, with cyoABCD 

encoding subunits II, I, III and IV of the cytochrome respectively, and cyoE encoding a 

proto-haem farnesyltransferase (haem o synthase) (Chepuri et al., 1990; Saiki et al., 

1993). Tseng and colleagues used a cyo-lacZ fusion to show that expression of 

cytochrome bo’ is maximal in highly aerated conditions (air saturation above 15%) 

(Tseng et al., 1996), with expression of cyoA-lacZ decreasing by 140-fold in 

anaerobically cultured cells (Cotter et al., 1990). Moreover, under low oxygen 

concentration, the expression of cytochrome bo’ was found to be higher in a fnr or arcA 

mutant, when compared to the wild-type isogenic strain, suggesting both FNR and ArcA 

act as transcriptional repressors of the cyo operon.  

 

5.2.2.2. Cytochrome bd-type oxidases 

Despite the functional equivalence of cytochrome bo’ and cytochrome bd-I in E. 

coli,  cytochrome bo’ is maximally expressed under aerobic conditions while cytochrome 

bd-I exhibits maximal expression under microaerobic conditions (Fu et al., 1991; Tseng 

et al., 1996). This differential expression of cytochrome oxidases confers a distinct 

advantage: cytochrome bd-I has higher affinity for oxygen (Km of 3-8 nM (D’mello et al., 

1996)) than cytochrome bo’ (Km of 0.016-0.085 µM (D’Mello et al., 1995)), and it is able 

to perform aerobic cellular respiration under microaerobic conditions. Moreover, 

cytochrome bd-I is less susceptible to NO-mediated inhibition compared to cytochrome 

bo’ (Mason et al., 2009), an advantage for pathogenic E. coli during infection (Shepherd 

et al., 2016). However, unlike cytochrome bo’, cytochrome bd-I does not directly 

translocate protons onto the periplasm (Figure 5.1) (D’Mello et al., 1995), and instead 

liberates protons into the periplasm via the oxidation of ubiquinol (Miller and Gennis, 

1985), also known as vectorial proton translocation. 

A third cytochrome oxidase, cytochrome bd-II, was identified by Dassa et al. 

(1991): the proteins encoded by appC and appB show 60% and 57% homology with 

subunit I and subunit II of E. coli cytochrome bd-I, respectively. The enhanced sensitivity 

to oxygen of the mutant lacking all respiratory oxidases (cyo- cyd- appB-) compared to the 

cyo- cyd- double mutant (Dassa et al., 1991), and in vitro quinol oxidase activity of AppCB 

(Jünemann, 1997) confirmed Dassa’s initial observations. While initially considered non-

electrogenic, i.e. no contribution to the PMF (Bekker et al., 2009), it was later shown that 

cytochrome bd-II generates a PMF in a manner identical to that of cytochrome bd-I 

(Vitality B. Borisov et al., 2011). In E. coli, expression of cytochrome bd-II is induced in 

response to phosphate starvation, entry into stationary phase, and microaerobic and 
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anaerobic conditions  (Atlung and Brondsted, 1994), and controlled by transcriptional 

activators AppY and ArcA, the latter also controlling expression of cytochrome bd-I and 

cytochrome bo’ as a transcriptional activator and transcriptional repressor, respectively. 

In contrast to both cydABX and cyoABCDE operons, induction of appCB is independent 

of FNR (Vitaliy B. Borisov et al., 2011). 

 

5.2.3. Cellular respiration and antibiotic efficacy 

Despite the wide array of targets, antibiotics are generally classified as 

bactericidal, i.e. cause bacterial cell death, or bacteriostatic, i.e. inhibit bacterial cell 

growth. Until recently, the lethal effects of bactericidal antibiotics were largely attributed 

to their primary mode of action. However, independent studies have led to the model that 

bactericidal antibiotics cause a metabolic shift which leads to the generation of toxic ROS 

that contributes to lethality (Kohanski et al., 2007; Wang and Zhao, 2009; Dwyer et al., 

2014) (Figure 5.2). Kohanski et al. (2007) observed that three different bactericidal 

antibiotics - ampicillin, norfloxacin, and kanamycin – belonging to three separate classes 

– beta-lactams, quinolones, and aminoglycosides, respectively -, thus different primary 

targets, all induced hydroxyl radical formation, while formation of this radical was not 

detected in E. coli cells treated with different bacteriostatic antibiotics.  Furthermore, 

addition of an iron chelator or thiourea, a hydroxyl radical scavenger, to drug-treated E. 

coli resulted in an increase in bacterial survival, further implicating the formation of 

hydroxyl radicals in bactericidal antibiotic lethality, and suggesting a critical role for the 

Fenton reaction (Kohanski et al., 2007; Wang and Zhao, 2009). This hypothesis was 

further supporter by Wang and Zhao (2009). In their work, a mutant strain lacking 

superoxide dismutase exhibited increased survival to different bactericidal antibiotics 

when compared to the wild-type strain. This phenotype was attributed to decreased 

hydroxyl radical production via the Fenton reaction due to low levels of its substrate, 

hydrogen peroxide, which is produced by superoxide dismutase (Wang and Zhao, 2009). 

Furthermore, testing bactericidal antibiotic efficacy in tonB, a protein required for iron 

transport, and iscS, involved in [Fe-S] cluster synthesis, single mutants revealed that 

intracellular iron originating from [Fe-S] clusters is the main driver for Fenton-mediated 

hydroxyl radical formation during exposure to bactericidal antibiotics (Kohanski et al., 

2007). Hence, the involvement of the bacterial respiratory chain in bactericidal antibiotic 

lethality was proposed due to the established fact that destruction of [Fe-S] clusters occurs 

mainly via superoxide, which in turn is generated mainly through the respiratory electron 

transport chain (Kohanski et al., 2007). This is supported by observations of upregulation 
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of NADH dehydrogenase I in cells treated with different bactericidal antibiotics, an 

increase in NADH consumption (Kohanski et al., 2007), and an increase in oxygen 

consumption rates of E. coli or S. aureus cultures treated with bactericidal antibiotics, 

which is the opposite of what was observed in cultures treated with bacteriostatic 

antibiotics (Lobritz et al., 2015). Furthermore, a triple respiratory E. coli mutant (cyoA- 

cydB- appB-) has been shown to exhibit significant resistance to bactericidal antibiotics 

in comparison to wild-type (Lobritz et al., 2015). Together, these results suggest that 

presence of bactericidal antibiotics leads to superoxide generation via the bacterial 

respiratory chain and, consequently, the production of other ROS (Figure 5.2). 

 

 

 

Figure 5.2 – ROS-mediated antibiotic killing. Bactericidal antibiotics have different but well-

established primary targets, but they all appear to have a common ROS-mediated killing pathway. 

The current model involves both the tricarboxylic acid (TCA) cycle and the electron transport 

chain. The presence of bactericidal antibiotics leads to hyperactivation of the electron transport 

chain and thus rapid depletion of NADH, whose regeneration is dependent upon the TCA cycle. 

Hyperactivation of the respiratory chain leads to formation of superoxide which damages 

intracellular iron-sulphur clusters, releasing ferrous iron, which in turn exacerbates the Fenton 

reaction, leading to formation of the hydroxyl radical and damage of important cellular 

components. 
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5.2.3.1. The ROS-antibiotic controversy 

Despite the growing evidence suggesting a role for ROS in antibiotic lethality, 

there is still some debate over this subject.  

Part of the criticism against ROS involvement in bactericidal antibiotic-mediated 

killing lies with the use of hydroxyphenyl fluorescein (HPF) to detect ROS. This non-

fluorescent probe reacts with hydroxyl radicals with high specificity, giving rise to the 

fluorescent product fluorescein. However, data has shown that E.coli cells treated with 

bactericidal antibiotics exhibit an increase in autofluorescence, possibly due to 

filamentation and, as such, the increase in fluorescence observed in cells treated with both 

antibiotic and HPF, attributed to an increase in the level of ROS, could be an artefact (Van 

Acker and Coenye, 2017). Another main point of discussion is the difficulty to separate 

the effects caused by the metabolic shift and the generation of ROS, since both are 

intrinsically connected: generation of ROS occurs due to hyperactivation of cellular 

metabolism. Hence, it is possible that the shift in metabolism observed after exposure to 

bactericidal antibiotics is itself the contributor to antibiotic lethality and ROS may play 

only a minor role, if at all (Van Acker and Coenye, 2017; Yang, Bhargava, et al., 2017). 

Previous studies have also shown that lethality of several bactericidal antibiotics is not 

affected under anaerobic conditions compared to aerobic conditions (Liu and Imlay, 

2013), thus showing that the presence of oxygen, a requisite for ROS formation, is not 

required for antibiotic lethality. However, it is important to note that the data obtained by 

Liu and Imlay (2013) was not obtained under strict anaerobic conditions, i.e. exposure to 

antibiotics was performed in an anoxic chamber, but all subsequent experimental work 

(dilutions, plating, and incubation) was carried out under aerobic conditions. In contrast, 

experiments performed by Dwyer et al. (2014) under strict anaerobic conditions have 

shown that antibiotic lethality is significantly diminished in the absence of oxygen, but 

restored when nitrate, an alternative electron acceptor in bacterial respiration, is added, 

thus supporting the notion that bacterial cellular respiration plays a role in antibiotic 

lethality, but not necessarily involvement of ROS since no oxygen was present under the 

experimental conditions employed by Dwyer and colleagues (Dwyer et al., 2014). 

In light of these studies, it is still premature to assume that ROS are involved in 

antibiotic lethality. However, the involvement of bacterial respiration in antibiotic 

lethality is well-established. 
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5.2.3.2. Implications for the treatment of bacterial infections 

 For many years, the lethality of antibiotics was attributed to its interaction with 

the bacterial target. However it has now become clear that downstream effects contribute 

to antibiotic lethality, and these effects are sensitive to environmental cues (Yang, Bening, 

et al., 2017). Reduced metabolic activity is linked to lower antibiotic efficacy (Rowan et 

al., 2016; Yang, Bening, et al., 2017), a state that is often observed in bacterial biofilms 

(Mah and O’Toole, 2001) or when in a nutrient-limited environment. In support of this is 

the work of  Lobritz et al. (2015), in which they observed that treatment of E. coli cultures 

with a bacteriostatic antibiotic, which decreases bacterial metabolism usually by targeting 

protein synthesis, prior to or after exposure to a bactericidal antibiotic, which accelerates 

bacterial respiration and metabolism (Kohanski et al., 2007; Wang and Zhao, 2009; 

Dwyer et al., 2014), inhibited the bactericidal activity of the latter (Lobritz et al., 2015).  

As presented in section 5.2.3., the lethality of bactericidal antibiotics is linked to 

a downstream cascade of events that result in hyperactivity of the bacterial respiratory 

chain which can lead to over-production of ROS. Bacteria possess a plethora of defence 

mechanisms against ROS (e.g. catalase and superoxide dismutase), enzymes that repair 

ROS-induced damage, and systems that help to maintain the redox poise of the cell. It is 

therefore possible that activation of ROS-defence mechanisms could attenuate the 

lethality of bactericidal antibiotics. This is supported by observation that loss of 

superoxide dismutase function results in elevated resistance to the bactericidal antibiotics 

norfloxacin, ampicillin, and kanamycin (Wang and Zhao, 2009). Additionally, expression 

of the transcriptional regulator OxyR, one of the main regulators of the oxidative stress 

response, was up-regulated in Burkholderia cenocepacia after exposure to a bactericidal 

antibiotic (Van Acker and Coenye, 2017). 

 Further studies on the lethality of antibiotics are crucial in other to maximise the 

potential of the few drugs currently available. Combinatorial antibiotic treatments are 

often used to treat bacterial infections, but as shown by the work of Lobritz et al. (2015) 

this may not always be the best approach as bacteriostatic antibiotics can decrease the 

efficacy of bactericidal antibiotics. The discovery that bactericidal antibiotics increase 

ROS production may potentially lead to new treatments: inhibition of specific 

components of the bacterial oxidative stress response may increase the efficacy of 

bactericidal antibiotics. In support of this is the increased susceptibility to quinolones 

observed for a catalase E. coli mutant (Wang and Zhao, 2009). 
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5.3. Results 
 

5.3.1. Antibiotic resistance and nitric oxide susceptibility 

The antimicrobial effects of NO are well-known, targeting many bacterial 

components such as haem cofactors, thiols, and [Fe-S] clusters (Fang, 1997; Keszler et 

al., 2010), as well as being effective in the dispersal of E. coli and P. aeruginosa biofilms 

(de la Fuente-Núñez, Reffuveille, Fairfull-Smith, et al., 2013). NO exposure has long 

been considered as a potential alternative to antibiotics or for use in combination with 

antibiotics as a way of potentiating their effect, which has been shown to be effective 

against bacterial biofilms (Reffuveille et al., 2015). Thus, it is important to understand 

the relationship between NO tolerance and antibiotic resistance. To investigate this, a 

subset of isolates from the Kent collection (KC3, KC4, KC6, KC13, KC30; KC33; KC45, 

KC46, and KC47) exhibiting different degrees of antibiotic resistance and of different 

sequence-types (Figure 5.3A) was tested for GSNO susceptibility using the well-diffusion 

assay. Pan-susceptible E. coli MG1655, multidrug-resistant ST131 E. coli strain EC958 

(Totsika et al., 2011; Forde et al., 2014), pan-susceptible and highly invasive 

pyelonephritis-causing ST73 E. coli strain CFT073 (Kao et al., 1997), and pan-

susceptible ABU E. coli strain 83972 (Klemm et al., 2006; Roos and Klemm, 2006) were 

also tested due to their clinical relevance and as control samples. Apart from isolate 

KC45, no significant difference was found in GSNO susceptibility for the remaining 

isolates compared to the controls (Student’s unpaired t-test p-value > 0.05) (Figure 5.3B). 

Isolate KC45 exhibited significantly higher susceptibility to GSNO (Student’s unpaired 

t-test p-value < 0.05) under both aerobic and microaerobic conditions (Figure 5.3B). 

Further investigation of this isolate using the alternative NO-donor NOC-12 revealed no 

sensitivity of KC45 to this compound (Appendix F-1). It is possible that the higher 

sensitivity observed to GSNO is due to the much broader nitrosative nature of GSNO or 

one of its breakdown products (possibly glutathione), rather than NO itself. As such, when 

assessing the correlation between antibiotic resistance and GSNO susceptibility for the 

different oxygen conditions, KC45 was omitted from the analysis (Figure 5.3C). Analysis 

of the data obtained for the remaining 12 strains revealed no correlation between 

antibiotic resistance and GSNO susceptibility (Pearson r = 0.08, 0.04 and 0.19 for aerobic, 

microaerobic, and anaerobic conditions respectively; p-values of 0.79, 0.91, and 0.56 

were obtained for aerobic, microaerobic, and anaerobic conditions, respectively) (Figure 

5.3C). 
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Figure 5.3 – Antibiotic resistance does not correlate with increase/decrease in GSNO 

susceptibility. (A) Antibiotic resistance profiles of the subset of strains used to determine the 

relationship between antibiotic resistance and GSNO susceptibility. (B) GSNO susceptibility of 

the isolates in the presence (aerobic and microaerobic) and absence (anaerobic) of oxygen. Values 

represent the mean ± SD from 6 replicates of two independent cultures. (*: Student’s unpaired t-

test; p-value < 0.05). (C) Linear regression (R2 values of 0.007, 0.001, and 0.035 for aerobic, 

microaerobic, and anaerobic conditions, respectively) and correlation (Pearson r=0.08, 0.04 and 

0.19 for aerobic, microaerobic, and anaerobic conditions respectively. p-values=0.79, 0.91, and 

0.56 for aerobic, microaerobic, and anaerobic conditions, respectively) between GSNO 

susceptibility and antibiotic resistance (reflected by the number of antibiotics to which each 

isolate was experimentally resistant to) was calculated with all strains in panels A and B except 

KC45. Abbreviations: AMX, Amoxicillin; CTX, Cefotaxime; CAP, Chloramphenicol; CIP, 

Ciprofloxacin; MEM, Meropenem; NIT, Nitrofurantoin; TMP, Trimethoprim; PME, Polymyxin 

E/Colistin; (-), Sensitive; (+), Resistant. N/A – Not Applicable. 
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5.3.2. Nitric oxide affects gentamicin lethality 

In light of recent evidence showing that deletion of respiratory oxidases increases 

bacterial tolerance to bactericidal antibiotics (Lobritz et al., 2015), an experiment was 

devised to determine the effects the respiratory inhibitor NO upon the lethality of a 

bactericidal antibiotic. Due to the clinical implications of such a study, a well-known 

multidrug-resistant E. coli strain (EC958) was chosen for the assay.  

For this assay, an early exponential culture of E. coli EC958 grown in M9 minimal 

medium was exposed to 1 mM of NOC-12 for 30 min, prior to exposure to different 

concentrations of gentamicin. Serial dilutions and colony counts were carried out to 

determine CFU/mL and calculate % survival. In the absence of NOC-12 pre-treatment 

(i.e. 30 min exposure to sodium phosphate buffer, used to prepare the NOC-12 solution), 

the IC50 of gentamicin was measured as 12.3 µg/mL (Figure 5.4). In contrast, pre-

exposure to 1 mM NOC-12 significantly diminished (Student’s unpaired t-test p-value < 

0.05) gentamicin-mediated cell killing, resulting in a 14-fold increase of the IC50 (Figure 

5-4). 

 

 

5.3.3. Endogenous NO production does not diminish gentamicin lethality 

To complement the observations above with exogenously added NO, a NO-

producing strain of E. coli EC958 (see chapter 3) was used to investigate the effects of 

endogenously-produced NO upon the sensitivity gentamicin. In Gram-positive bacteria, 

the endogenous production of NO by bNOS has been shown to provide protection against 

Figure 5.4 – NO decreases gentamicin lethality. A) Cell survival was determined for multidrug 

resistant E. coli EC958 following 90-min treatment with different concentrations of gentamicin. 

Pre-treatment with 1 mM NOC-12 was carried out for 30 min. B) IC50 of gentamicin in the absence 

or presence of NOC-12 pre-treatment. Each data point reflects the mean of three replicates from 

three independent cultures. Error bars represent standard deviation. (*: Student’s unpaired t-test 

p-value < 0.05). 
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bactericidal antibiotics (Gusarov et al., 2009; Van Sorge et al., 2013), and thus we 

hypothesized that endogenous NO-production through expression of a functional bNOS 

in E. coli would yield a similar result. Since the bNOS gene was cloned into the pSU2718 

vector, which requires selection with chloramphenicol, the empty pSU2718 vector 

backbone was also transformed into E. coli EC958 to be used as a ‘no nitric oxide’ control 

(E. coli EC958 pSU2718), with the added advantage of accounting for the effects of 

chloramphenicol on gentamicin lethality. Early exponential cultures of E. coli EC958 

pSU2718 and E. coli EC958 pSU2718-bNOS (henceforward designated by E. coli EC958 

bNOS) grown in M9 minimal media supplemented with chloramphenicol were exposed 

to IPTG and L-Arginine for 30 min, to ensure expression of bNOS and synthesis of NO. 

The cultures were then subjected to a 90-min exposure to different concentrations of 

gentamicin. Serial dilutions and colony counts were carried out to determine CFU/mL. 

Surprisingly, no significant change was observed in the survival of E. coli EC958 bNOS 

compared to the control strain (Figure 5.5A). In fact, the IC50 of gentamicin for the NO-

producing strain (9.5 µg/mL) is lower, albeit not statistically significant (Student’s 

unpaired t-test p-value > 0.05), than the IC50 observed for the empty vector control (14.3 

µg/mL) (Figure 5.5B). 

 

 

5.3.4. Macrophage-derived NO does not affect gentamicin lethality 

Nitric oxide is produced by phagocytic cells, such as macrophages, of the 

mammalian immune system in response to infection. Following our observation that 

exogenous NO disrupts gentamicin lethality, we hypothesized that macrophage-derived 

Figure 5.5 – Endogenously-produced NO does not affect gentamicin lethality. A) Bacterial 

survival to gentamicin is not affected by the endogenous production of NO (bNOS) compared to 

control (pSU2718). B) The IC50 of gentamicin does not significantly change in response to the 

endogenous production of NO (Student’s unpaired t-test p-value > 0.05). 
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NO could affect the lethality of gentamicin in vivo (Figure 5.6). To test this hypothesis, 

the RAW-Blue™ macrophage cell line, derived from the RAW 264.7 cell line, was used 

 

 

for intra-macrophage bacterial infection assays, along with the iNOS inhibitor L-NAME, 

an arginine analogue that inhibits production of NO. 

In the first instance, macrophage activation conditions were assessed. To ensure 

expression of iNOS, and thus synthesis of NO, macrophages were activated with both 

LPS from E. coli and IFN-γ. Furthermore, a 2 mM concentration of L-NAME was chosen 

to inhibit iNOS-derived NO production. Production of NO by the macrophages under 

these conditions was evaluated using the Griess assay, a colourimetric assay that detects 

nitrite, a product of the oxidation of NO. The medium used to propagate the macrophages 

was shown to contain low levels of nitrite (2.14 µM) (Figure 5.7), and a similar amount 

of nitrite (2.64 µM) was detected in the medium containing non-activated macrophages 

Figure 5.6 – Macrophage-derived NO could abrogate bactericidal antibiotic lethality. On 

their own, both macrophage-derived NO and bactericidal antibiotics are toxic to invading bacteria 

(in orange). However, NO and bactericidal antibiotics have antagonistic effects on bacterial 

respiration. We hypothesize that in the presence of a bactericidal antibiotic (gentamicin), 

macrophage-derived NO (produced by iNOS upon macrophage activation) will promote intra-

macrophage bacterial survival. To test this hypothesis, NO-production with the iNOS inhibitor 

L-NAME is used to control NO production. 
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(i.e. no addition of LPS or IFN-γ) (Figure 5.7). In contrast, after an 18 h exposure of 

macrophages to LPS and IFN-γ, a statistically significant increase (Student’s unpaired t-

test p-value < 0.05) in the concentration of nitrite was measured in the growth medium 

(14.89 µM of nitrite) (Figure 5.7). Moreover, an 18 h exposure of macrophages to LPS, 

IFN-γ, and L-NAME resulted in low levels of nitrite present which exhibited a statistical 

significant difference to the levels observed for activated macrophage (Student’s unpaired 

t-test p-value < 0.05), but not to the other two conditions tested (Figure 5.7), showing that 

a 2 mM concentration of L-NAME is sufficient to inhibit NO synthesis by activated 

macrophages. 

 

 

For the intra-macrophage bacterial survival assay, activated and L-NAME-treated 

activated macrophages were exposed to E. coli EC958 with a multiplicity of infection 

(MOI) of 10. After sufficient time for bacterial uptake (20 min), extracellular bacteria 

were removed with a combination of washes and incubation with a high concentration of 

gentamicin for 20 min. Following this step, the different concentrations of gentamicin 

were applied to each well. After a 90 min exposure to gentamicin, infected macrophage 

cells were lysed and CFU/mL was determined. No significant difference was observed 

Figure 5.7 – Griess assay reveals NO production in activated macrophages. Activated 

macrophages exhibit high levels of nitrite. In the presence of 2 mM L-NAME, the levels of nitrite 

detected decreased, indicating that the inhibition of NO-production is successful under these 

conditions. Each data point reflects the mean of three replicates from three independent cultures. 

Error bars represent standard deviation. (*: Student’s unpaired t-test p-value < 0.05). 
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for the bacterial load in the presence or absence of L-NAME at either 20 or 200 µg/mL 

of gentamicin (Figure 5.8). Interestingly, bacterial load increased after 90 min, with the 

‘20 µg/mL without L-NAME’ condition exhibiting the highest increase in CFU/mL 

(4.4x104 CFU/mL) compared to the bacterial load immediately following uptake (t = 0) 

(2.3x104 CFU/mL). 

 

 

5.3.5. Cytochrome bd-I augments sensitivity to gentamicin 

The cytochrome oxidases of the bacterial respiratory chain are well-known to be 

inhibited by the respiratory inhibitor NO. In light of recent observations that the 

respiratory chain plays an important role in the lethality of bactericidal antibiotics 

(Kohanski et al., 2007; Lobritz et al., 2015), we hypothesized that inhibition of bacterial 

respiration by NO could be, at least in part, responsible for the disruption of gentamicin 

lethality observed when bacterial cells were pre-exposed to NOC-12 (Figure 5.4). The 

sensitivity of respiratory mutants of E. coli to gentamicin was measured in the presence 

and absence of a NO donor. For this assay the compound NOC-12 was replaced by 

GSNO, an alternative NO-donor with similar effect on gentamicin lethality. Wild-type 

EC958 cells that were pre-treated with 15 mM of GSNO for 30 min exhibited an 11-fold 

increase in IC50 for gentamicin (Figure 5.9A). The cydAB (lacks cytochrome bd-I) and 

cyoA (lacks cytochrome boˈ) (Appendix G.1) deletion mutants of E. coli EC958 were also 

tested. In the absence of GSNO, both cydAB (Figure 5.9B) and cyoA (Figure 5.9C) exhibit 

Figure 5.8 – Combination of macrophage-derived NO and gentamicin does not affect 

bacterial survival. After a 90-min exposure to 20 µg/mL or 200 µg/mL of gentamicin, in the 

presence or absence of iNOS inhibitor L-NAME, no significant difference was observed in 

bacterial survival. Each data point reflects the mean of three replicates from two independent 

cultures. Error bars represent standard deviation. 
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a similar survival pattern to the wild-type strain under the same conditions, with no 

significant difference to the IC50 of gentamycin (Student’s unpaired t-test p-value > 0.05). 

When pre-exposed to GSNO, all strains exhibit an increase in the resistance to gentamicin 

(Figure 5.9A-C), with an 11-, 15-, and 2-fold increase in the IC50 for gentamicin for wild-

type, cydAB mutant, and cyoA mutant strains, respectively (Figure 5.9). Interestingly, in 

the presence of pre-exposure to GSNO, no significant difference exists between the IC50 

of the wild-type strain and the IC50 of the cyoA mutant. However, the IC50 of gentamicin 

for the cydAB mutant after pre-exposure to GSNO is higher and statistically different than 

the IC50 observed for the wild-type isogenic strain (Student’s unpaired t-test p-value < 

0.05) (Figure 5.9D). 

 

 

5.3.6. Nitric oxide inhibits the effect of gentamicin of E. coli biofilms 

Bacterial biofilms are complex abiotic-associated structures that allow bacterial 

communities to withstand environmental stresses (Laverty et al., 2014), such as antibiotic 

Figure 5.9 – Nitric oxide effect on gentamicin lethality is linked to bacterial respiration. Cell 

survival was measured in function of gentamicin concentration, in the presence or absence of pre-

exposure to NO-donor GSNO, for A) wild-type EC958; B) EC958 cydAB mutant; and C) EC958 

cyoA mutant. D) IC50 of gentamicin in the absence or presence of GSNO, for each of the strains 

tested. Each data point reflects the mean of three replicates from at least two independent cultures. 

Error bars represent standard deviation. (*: Student’s unpaired t-test p-value < 0.05). 



125 

 

therapy, and are often responsible for many persistent and chronic infections (de la 

Fuente-Núñez, Reffuveille, Fernández, et al., 2013). Biofilms are heterogeneous cellular 

structures containing bacterial cells in different growth and metabolic states (de la Fuente-

Núñez, Reffuveille, Fernández, et al., 2013). Nitric oxide has been shown to have an 

important role in the dispersal of biofilms of several bacterial species, including P. 

aeruginosa and E. coli (Miranda et al., 2011; Barraud et al., 2015; Reffuveille et al., 

2015) and act synergistically with ciprofloxacin to eradicate biofilms (Reffuveille et al., 

2015). Given the dramatic effects of NO upon gentamicin sensitivity in planktonic cells, 

it was also of interest to investigate the effects of combinatorial treatments of GSNO and 

gentamicin upon E. coli biofilms. 

In the first instance, the biofilm-forming capability of E. coli EC958 wild-type 

strain in comparison to an E. coli K-12 strain, a well-known and pan-susceptible UPEC 

strain (E. coli CFT073), and a pan-susceptible ABU UTI strain (E. coli 83972) was 

determined. Biofilm formation was assessed by growing statically for 24 h in M9 

medium, followed by staining of the adherent bacteria with a solution of crystal violet. 

Under these experimental conditions, E. coli EC958 exhibited the lowest biofilm-forming 

capability of all four strains tested, with significant differences observed when compared 

to E. coli MG1655 and E. coli CFT073 (Student’s unpaired t-test p-value < 0.05) but not 

to E. coli 83972 (Student’s unpaired t-test p-value > 0.05) (Figure 5.10). These 

observations can be attributed to an insertion in the fimB gene of E. coli EC958 (Totsika 

et al., 2011) and a non-functional fim operon in E. coli 83972 (Klemm et al., 2006). 

Interestingly, biofilm formation of the ABU E. coli strain 83972 is significantly lower 

than E. coli CFT073, contrasting results previously observed in human urine (Hancock et 

al., 2007). 

 

Figure 5.10 – Biofilm formation ability E. coli strains. E. coli EC958 exhibited the lowest 

biofilm-forming capability of all four strains tested. (*; Student’s unpaired t-test p-value < 0.05). 
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GSNO has been previously shown to cause dispersal of P. aeruginosa biofilms 

(Barraud et al., 2006), and a combinatorial treatment of the nitroxide Carboxy-TEMPO 

and ciprofloxacin led to an almost complete eradication of E. coli mature biofilm 

(Reffuveille et al., 2015). Thus, we assayed the effects of 15 mM GSNO on the biomass 

of the bacterial biofilm of E. coli EC958, in the presence of different concentration of 

gentamicin with the crystal violet assay (Figure 5.11). No significant decrease in biofilm 

biomass was observed at different gentamicin concentrations compared to the “no 

gentamicin” control in the absence of GSNO. In the presence of GSNO, biofilm biomass 

decreased but not in a statistically significant manner (Student’s unpaired t-test p-value > 

0.05), with an average decrease of 20%, and no correlation was found between the 

decrease in biofilm biomass and gentamicin concentration (Pearson r = 0.1907, p-value 

> 0.05).  

 

 

To determine the effects of GSNO upon gentamicin lethality against E. coli 

EC958 wild-type biofilms, biofilms were allowed to form in M9 medium for 24 h. 

Medium was replaced by fresh M9 medium containing different concentrations of 

gentamicin with or without 15 mM of GSNO. After a 90 min incubation, biofilms were 

disrupted by vortex and vigorous pipetting for CFU enumeration. Unsurprisingly, the IC50 

of gentamicin observed for E. coli EC958 wild-type biofilms (18.8 µg/mL) is higher than 

the one observed for planktonic cells (3.7 µg/mL). Similar to the results obtained for 

planktonic cells, the presence of GSNO also diminishes the susceptibility of bacterial 

Figure 5.11 – GSNO does not significantly affect biofilm biomass. Biofilms of E. coli EC958 

wild-type were allowed to form in M9 medium for 24 h prior to a 90 min exposure to different 

concentrations of gentamicin with or without 15 mM of GSNO. Exposure to GSNO did not 

significantly decrease biofilm biomass (Students’s unpaired t-test p-value > 0.05). 
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biofilms to gentamicin (Figure 5.12A), resulting in a significant 2.6-fold increase in the 

IC50 for this antibiotic (Student’s unpaired t-test p-value < 0.05) (Figure 5.12B).  

 

 

5.3.7. Cytochrome bd-I protein sequences 

In this work, it is shown that loss of NO-tolerant cytochrome bd-I leads to higher 

tolerance to gentamicin (see section 5.3.5). Given the prolonged use of antibiotics and the 

role of aerobic respiration in their mechanism of lethality, one might anticipate that loss-

of-function mutations in cytochrome bd-I may have arisen to de-sensitise clinical isolates 

to antibiotics. Hence, the degree of conservation of this protein complex was analysed in 

the Kent collection. In the first instance, protein sequences of the subunits of cytochrome 

bd-I (CydA, CydB, and CydX) of E. coli EC958, CFT073, and ABU 83972 were aligned 

using T-Coffee (Notredame et al., 2000; Di Tommaso et al., 2011), and pairwise 

alignments were performed with BioEdit v7.2.5 (Hall, 1999). CydA, CydB, and CydX of 

E. coli EC958 exhibited 100% sequence identity with CydA, CydB, and CydX of the 

three reference strains, suggesting a high degree of conservation. The CydA, CydB, and 

CydX protein sequences for each isolate of the Kent collection were extracted and aligned 

to the respective proteins in E. coli MG1655. Only four isolates possessed mutations in 

at least one subunit (Table 5.1). A total of five mutations were identified in the entire 

collection: three in CydA, and the remaining two in CydB. No mutations were found in 

the CydX subunit. Only one of the mutations identified resulted in a non-conservative 

mutation (Table 5.1), i.e. resulted in a change in the property of the amino acid. In this 

case, it resulted in a change from a non-polar amino acid (alanine) at position 521 of 

CydA, to a polar amino acid (threonine). 

Figure 5.12 – GSNO diminishes susceptibility of bacterial biofilms to gentamicin. A) In the 

presence of NO-donor GSNO E. coli EC958 wild-type biofilms exhibit higher tolerance for the 

bactericidal antibiotic gentamicin. B) The IC50 of gentamicin for bacterial biofilms increases in 

the presence of GSNO. (*: Student’s unpaired t-test p-value < 0.05). 
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Figure 5.13 – Structural modelling of E. coli cytochrome bd-I. A) Cytochrome bd-I comprises 

three subunits: CydA (gold), CydB (blue), and CydX (red). The structure of E. coli CydABX was 

modelled upon the crystal structure of CydABX from Geobacillus thermodenitrificans (PDB ID: 

5DOQ) using RaptorX (Källberg et al., 2012). The cofactors haem b558, haem b595, and haem d, 

and their binding sites (M393, H186, W441, E445, H19 and E99) as well as the positions where 

amino acids substitutions were identified for the CydABX protein sequences of the Kent 

collection isolates (Table 5.1) were mapped onto the structure. B) Detailed zoom shows that none 

of the amino acid substitutions are located near the cofactors.   
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A structural model of E. coli cytochrome bd-I was generated using the RaptorX 

server (Källberg et al., 2012). Protein sequences of the three subunits of E. coli MG1655 

cytochrome bd-I (CydA, CydB, and CydX) were submitted to RaptorX (Källberg et al., 

2012) for structural prediction based on the recently characterized structure of the bd 

complex of Geobacillus thermodenitrificans (Safarian et al., 2016). To generate a model 

with haem cofactor, the E. coli modelled subunits were superposed onto the G. 

thermodenitrificans structure using CCP4MG software (McNicholas et al., 2011). The 

mutations identified by protein sequence alignment were mapped onto the structure and 

are displayed in figure 5.13. None of the amino acid substitutions identified in CydA 

(A521T, V461G, and T516S) are located near the haem cofactors in CydA. In the E. coli 

model, the haem b558, can be ligated by H186 and M393, the haem b595 can be ligated by 

H19 and E99, and the d–type haem is adjacent to a glutamic acid (E445) and tryptophan 

(W441) that are thought to be involved in proton and electron delivery, respectively 

(Safarian et al., 2016). 

 

Table 5.1 – Amino acid substitutions present cytochrome bd-I subunits 

 

Protein KC Mutation Classification 

CydA 

KC11 A521T Non-conservative 

KC31 V461G Conservative 

KC37 T516S Conservative 

CydB 
KC11 V206L Conservative 

KC20 T113N Conservative 
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5.4. Discussion 
 

5.4.1. Exogenously administered NO affects gentamicin lethality 

The antimicrobial properties of NO and its use by the mammalian immune system 

in response to infection are well-known. With the emergence of antibiotic resistance, the 

use of exogenously supplied NO as an alternative treatment to antibiotics, or co-

administered with antibiotics, has been the focus of recent studies (Bang et al., 2014; 

Reffuveille et al., 2015). However, the recent observation that the effects of bactericidal 

antibiotics are not solely due to its primary interaction with the bacterial target, and have 

complex downstream metabolic effects partially involving the aerobic respiratory chain 

(Kohanski et al., 2007; Dwyer et al., 2014; Lobritz et al., 2015), leading us to question 

the strategy of combinatorial treatments of nitric oxide (a potent respiratory inhibitor) 

with bactericidal antibiotics.  

After ascertaining that the degree of antibiotic resistance does not correlate with 

a change in nitric oxide sensitivity (Figure 5.3), the effect of nitric oxide in antibiotic 

efficacy was tested on E. coli EC958, a well-characterized multidrug-resistant UPEC 

strain (Totsika et al., 2011; Forde et al., 2014). The multidrug-resistant phenotype of this 

strain posed an initial difficulty when choosing the bactericidal antibiotic to be tested, as 

this strain is only sensitive to a few of the antibiotics tested, not all of them bactericidal. 

Fortunately, E. coli EC958 exhibits sensitivity to gentamicin, a bactericidal antibiotic 

used in the treatment of several types of infection, including UTIs.  

To better mimic infection, planktonic cells were exposed to the NO-donor NOC-

12 prior to exposure to the antibiotic gentamicin. Pre-exposure to NOC-12 resulted in a 

14-fold increase of the IC50 for gentamicin (Figure 5.4), thus showing potent inhibition 

of gentamicin lethality by NO. In contrast, and contrary to what was observed in Gram-

positive bacteria, this was not observed for E. coli EC958 bNOS (Figure 5.5), a strain 

capable of producing NO endogenously. One possible explanation for these contrasting 

results is the rapid breakdown of NO in the bacterial cytoplasm by NO-detoxifying 

mechanisms, such as flavohaemoglobin Hmp. An effective NO-detoxification response 

would lead to low concentrations of NO, perhaps insufficient to elicit an effect. A way to 

test this hypothesis would be to transform pSU2718-bNOS into E. coli EC958 mutant for 

NO-detoxifying mechanisms, starting with flavohaemoglobin Hmp as it is an important 

NO detoxification mechanism under aerobic conditions, as determined in section 3.3.1. 
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5.4.2. Macrophage-derived NO does not abrogate gentamicin efficacy 

Due to the synthesis of NO by cells of the mammalian immune system, it was of 

interest to measure the effects of macrophage-derived NO upon antibiotic sensitivity. 

Hence, infection of murine macrophage by E. coli EC958 was carried out. Activation of 

macrophages with LPS and IFN-γ is known to increase the expression of iNOS and thus 

synthesis of NO, and elevated nitrite levels under these conditions are consistent with this 

(Figure 5.7). Activation of macrophages in the presence of the iNOS inhibitor L-NAME 

was also shown to dramatically diminish nitrite accumulation (Figure 5.7), consistent 

with lower iNOS activity. For the infection assay, two different concentrations of 

gentamicin were chosen: 20 µg/mL gentamicin, equivalent to five times the minimum 

inhibitory concentration (MIC) for Enterobacteriaceae according to BSAC testing v13.0 

and an approximate concentration to the peak concentration in human serum (Cmax = 18 

µg/mL); and 200 µg/mL, to maximise the likelihood of antibiotic entry to the 

macrophage. The permeability of macrophage to this drug is low but intra-macrophage 

accumulation has been observed for high extracellular concentrations of gentamicin 

(Barcia-Macay et al., 2006). After infection with E. coli EC958, no significant difference 

was observed in the bacterial load in the presence of L-NAME compared to its absence. 

The intracellular environment of macrophages is complex and bacterial clearance during 

infection is achieved by the collective action of ROS, RNS, and lysosomal enzymes 

(Figure 5.14), and it is perhaps possible that this complex environment can interfere with 

the function of gentamicin. In fact, gentamicin is known to concentrate in lysosomes, 

which have a naturally acidic environment that interferes with gentamicin activity 

(Barcia-Macay et al., 2006). Despite the results observed for gentamicin, it remains 

possible that macrophage-derived NO may impact upon the lethality of other bactericidal 

antibiotics. 

 

5.4.3. Cytochrome bd-I confers sensitivity to gentamicin  

In the recent work of Lobritz et al. (2015), a link between bacterial respiration and 

lethality of bactericidal antibiotics was shown, with treatment of bacterial cells with 

bactericidal antibiotics resulting in a significant increase in cellular respiration. Nitric 

oxide targets many bacterial proteins, including the haem-containing cytochrome 

oxidases involved in bacterial aerobic respiration (Wink et al., 2011).  

The role of two cytochrome oxidases, cytochrome bo’ and the NO-tolerant 

cytochrome bd-I, was determined by assessing bacterial survival to gentamicin of E. coli 

EC958 cyoA and E. coli EC958 cydAB null single mutants in the presence and absence of 
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the NO-releaser GSNO. While no significant differences were observed in the absence of 

GSNO, pre-exposure of both mutant and wild-type strains with GSNO resulted in an 

increase in gentamicin tolerance for all strains. However, the increase in the IC50 of 

gentamicin in the presence of GSNO was more pronounced for cydAB, with the IC50 of 

gentamicin increasing by 15-fold in the presence of GSNO compared to the 11-fold 

increase observed for the wild-type isogenic strain (Figure 5.9). In the cyoA null mutant, 

bacterial cells are still expressing the NO-tolerant cytochrome bd-I (Mason et al., 2009) 

allowing bacterial respiration to continue in the presence of nitric oxide and, possibly, the 

generation of ROS arising from the accelerated metabolism response that occurs in the 

presence of gentamicin. In contrast, in the cydAB mutant bacterial respiration is easily 

inhibited by NO due to the presence of NO-sensitive cytochrome bo’ (Mason et al., 2009), 

hence it is possible that gentamicin-mediated ROS production is abolished resulting in a 

higher tolerance for gentamicin. Alternatively, the abolishment of bacterial respiration is 

likely to result in a disruption of the PMF, which is necessary for the uptake of 

aminoglycosides such as gentamicin (Hancock, 1981; Allison et al., 2011). However, to 

determine whether ROS or decreased uptake of gentamicin are responsible for the 

decreased sensitivity to gentamicin, further investigation would be required. Despite this, 

Figure 5.14 – Bacterial clearance by macrophages. Invading bacteria are phagocytised by 

macrophages, forming a phagosome which then fuses with a lysosome, a vacuole containing 

enzymes that hydrolyse a plethora of bacterial constituents. In the resulting phagolysosome, the 

hydrolytic enzymes, along with ROS and RNS kill and digest the invading bacteria. 
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based on the results presented here, we propose that cytochrome bd-I in the presence of 

NO increases bacterial sensitivity to bactericidal antibiotics and hypothesized that in the 

presence of NO bacterial species lacking the cytochrome bd-I complex, such as 

Campylobacter jejuni (Jackson et al., 2007), may be more tolerant to antibiotics. 

Given the sensitization of bacterial cells expressing cytochrome bd-I to 

gentamicin, loss-of-function mutations in cytochrome bd-I complex was hypothesised. 

However, sequence analysis of cytochrome bd-I subunits in the pathogenic E. coli isolates 

of the Kent collection shows a high level of conservation, which is consistent with the 

lack of NO-susceptibility observed in the Kent Collection (Figure 5.3B). These results 

suggest that maintaining respiration in the presence of NO (by cytochrome bd-I) is a 

stronger evolutionary driver than reducing sensitivity to antibiotics in the presence of NO 

(through loss of cytochrome bd-I activity). E. coli frequently encounters NO in the 

absence of antibiotics, in which case cytochrome bd-I will facilitate growth and survival 

by allowing continued aerobic respiration. Furthermore, it has also been shown in 

previous studies that cytochrome bd-I is important for bacterial survival during infection 

of the mammalian host (Shepherd et al., 2016). Hence, it is perhaps not surprising that 

mutations in cytochrome bd-I are rare. 

 

5.4.4. Exposure of biofilms to GSNO increases tolerance to gentamicin 

Bacterial biofilms are often formed in response to environmental stresses, and the 

sessile cells found in bacterial biofilms are both phenotypically and physiologically 

different from planktonic cells. Furthermore, nitric oxide has been implicated in the 

dispersal events of P. aeruginosa and E. coli biofilms (Barraud et al., 2006; Barraud et 

al., 2015; Reffuveille et al., 2015). This led us to question whether exogenous nitric oxide 

would affect resistance to gentamicin in biofilms. Out of the four strains tested for 

biofilm-forming capabilities, E. coli EC958 and E. coli 83972 formed the lowest biofilm 

biomass (Figure 5.10), which can be explained by an insertion in the fimB gene of E. coli 

EC958 (Totsika et al., 2011), a gene which encodes a recombinase that switches on the 

expression of type I fimbriae. Also, there is no functional fim operon in E. coli 83972 

(Klemm et al., 2006). In both cases, expression of type I fimbriae, important in the initial 

stages of biofilm development, is not possible. We also observed a difference between 

biofilm biomass of E. coli CFT073 and E. coli 83972, with the former forming 

significantly more biofilm. However, this contrasts with what was observed by Hancock 

et al. (2007) in human urine, where E. coli 83972 formed significantly more biofilm.  
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E. coli EC958 24 h biofilms showed a 4-fold increase in the IC50 for gentamicin 

(Figure 5.12) compared to planktonic cells (Figure 5.9). This result was expected as 

increased resistance to antibiotics is a well-known phenotype of bacterial biofilms (Mah 

and O’Toole, 2001). In the presence of GSNO, the resistance of biofilms to gentamicin 

further increases by 2.6-fold (Figure 5.12). Assessment of GSNO-induced biofilm 

dispersal (Figure 5.11) showed that GSNO does not elicit a significant change in biofilm 

biomass, so the increase in IC50 of gentamicin in the presence of GSNO cannot be 

explained by NO-induced alterations in biofilm dispersal. Biofilms are heterogenous 

structures, formed by cells in different metabolic states. For example, P. aeruginosa 

biofilms possess areas with low metabolic activity and areas with high metabolic activity 

(Pamp et al., 2008). Thus, one possible explanation is that this same heterogeneity is 

present in biofilms of E. coli EC958 and GSNO interference with its many targets, 

including respiratory cytochrome oxidases, slows down the metabolism of previously 

active cells and increases tolerance to gentamicin. However, further studies are required 

to test this hypothesis. 
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Chapter 6 
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6.1. Background  
 

The emergence of antibiotic-resistant bacteria is an increasing concern worldwide. 

Of particular importance is the emergence of bacteria exhibiting a multidrug-resistant 

phenotype, i.e. resistant to three or more classes of antibiotics. This makes the treatment 

of bacterial infections more difficult, in some cases even impossible, with negative 

impacts upon morbidity, mortality and the cost of healthcare. As such, surveillance of 

antibiotic resistance among bacterial pathogens and the development of alternative 

therapies are of the utmost importance to help tackle this problem. 

Nitric oxide is a small molecule which can be toxic to both mammals and bacteria 

Nevertheless, NO is produced in mammals where it carries out important physiological 

roles, such as smooth muscle relaxation. Furthermore, NO is known for its antimicrobial 

properties and its produced by cells of the mammalian immune system as part of its 

response to invading pathogens. As such, the use of NO as a potential alternative therapy 

against resistant and multidrug resistant bacteria has been an appealing prospect for some 

time. Indeed, NO has been shown to be effective against bacterial biofilms (Barraud et 

al., 2006; de la Fuente-Núñez, Reffuveille, Fairfull-Smith, et al., 2013). However, 

bacteria often possess a plethora of mechanisms that allow detoxification of NO and other 

toxic RNS, as well as tolerance, thus allowing bacteria to survive and grow even in the 

presence of this toxic molecule. Herein, the antibiotic resistance of E. coli bacteraemia 

isolates was assessed with both phenotypic and genomic tools. Furthermore, the potential 

use of nitric oxide as a therapeutic was assessed on its own, but also in combination with 

conventional antibiotics, in both planktonic and biofilm structures of a multidrug-resistant 

pathogenic E. coli strain. 
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6.2. Conclusions 
 

6.2.1. Insights into antibiotic resistance in E. coli 

E. coli bacteria are a normal part of the human gut flora where its commensal 

nature promotes normal intestinal function. However, E. coli can take on a more 

pathogenic nature and cause diseases such as UTI, intestinal infections, and neonatal 

meningitis. The rise of antibiotic resistance, particularly amongst E. coli clinical isolates, 

is thus a global concern, and it is vital to track the patterns and rise of antibiotic resistance 

in order to implement the best treatment. As part of this work, a collection of 50 E. coli 

bacteraemia clinical isolates from Kent (UK) was characterised using phenotypic and 

genomic tools.  

A resistant phenotype was observed in 44% of the isolates, with 14% exhibiting a 

multidrug resistant phenotype, with the highest level of resistance observed for 

amoxicillin, trimethroprim, and ciprofloxacin. This result was unsurprising and can easily 

be explained by the wide use of these antibiotics in the treatment of bacterial infections 

and in agricultural settings, which results in a higher selective pressure that drives the 

development of antibiotic resistance. Furthermore, these results are in agreement with the 

surveillance report carried out by the ECDC which shows high levels of resistance to 

fluoroquinolones (e.g. ciprofloxacin) and penicillins (e.g. amoxicillin) in E. coli in several 

European countries, including in the UK (ECDC, 2017). In silico detection of antibiotic 

resistance was also carried out in this work by performing whole genome sequencing of 

the 50 E. coli clinical isolates. This allowed not only the detection of acquired resistance 

genes, but also for a more comprehensive characterization of the entire collection (e.g. 

presence of virulence genes and phylogenetic analysis). In silico analysis identified 30% 

of the isolates as being multidrug-resistant (i.e. resistant to three or more classes of 

antibiotics (Magiorakos et al., 2012)), nearly twice as more isolates as those identified 

using the disc diffusion assay. However, this discrepancy can easily be explained by the 

identification of resistance to two extra classes of antibiotics using in silico analysis. 

Whilst in silico approaches can rapidly identify patterns of antibiotic resistance, these 

techniques require up-to-date and well curated databases with all known genes and/or 

mutations known to confer resistance to antibiotics (Ellington et al., 2012; Fricke and 

Rasko, 2014). Additionally, discrepancies between predicted resistance and 

experimentally verified resistance can occur: herein we encountered isolates that encode 

chloramphenicol resistance genes, but the phenotype was not observed during the disc 

diffusion assays.  As such, it remains necessary to verify resistance phenotypes 
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experimentally, particularly as it would allow detection of antibiotic resistance arising 

through novel and unidentified mechanisms (Ellington et al., 2012). Furthermore, no 

isolate in the collection exhibited resistance to meropenem nor colistin. The existence of 

beta-lactamases capable of hydrolysing carbapenems (e.g. meropenem) have been known 

quite some time (reviewed in Poole, 2004) and their spread among bacterial pathogens 

are of particular concern due to their ability to inactivate virtually all beta-lactam 

antibiotics, and their association with other antibiotic resistance determinants, thus 

leading to a multidrug-resistant phenotype (Yong et al., 2009; Walsh et al., 2011). In 

agreement with the data presented here, the ECDC surveillance report (ECDC, 2017) 

reveals that levels of resistance to carbapenems among E. coli remain low (0.1%) amongst 

European countries. The absence of colistin-resistance in the Kent collection can be 

explained by the very recent emergence of plasmid-borne colistin resistance in China (Liu 

et al., 2016), thus it is likely that dissemination of the plasmid-associated mcr-1 gene, 

which confers resistance to colistin, is still in its early stages. However, the absence of 

meropenem and colistin resistance in the Kent collection highlights the importance of 

implementing strict rules and control for the usage of these antibiotics in order to diminish 

the dissemination of resistance towards these antibiotics. 

The antibiotic resistance problem is aggravated with the development of 

multidrug resistance. E. coli ST131 is currently the most worrying clonal group of E. coli. 

E. coli ST131, an UPEC strain, is prevalent in most parts of the world and is frequently 

associated with fluoroquinolone resistance and the expression of CTX-M-15, an ESBL 

capable of inactivating penicillins (e.g. amoxicillin) and cephalosporins (e.g. cefotaxime) 

(Nicolas-Chanoine et al., 2014), and it has been hypothesized that the worldwide 

dissemination of E. coli ST131, success attributed to a combination of antibiotic 

resistance and high virulence (Johnson et al., 2010; Peirano et al., 2013; Nicolas-

Chanoine et al., 2014), has contributed to the increase in antibiotic resistance observed in 

E. coli (Johnson and Stell, 2000; Peirano et al., 2013). Contrary to previous 

epidemiological studies reporting E. coli ST131 as the most prevalent clonal lineage in 

the UK and USA (Johnson et al., 2010; Croxall et al., 2011), E. coli ST131 represented 

12% of the Kent collection, surpassed by both ST73 (18%) and ST69 (14%). Furthermore, 

despite exhibiting high levels of resistance, the ST131 isolates in this collection did not 

exhibit high virulence, contrasting the previous findings by Johnson et al., 2010 and 

Peirano et al., 2013, and further supporting the long standing hypothesis that high levels 

of virulence cannot co-exist with high levels of antibiotic resistance in E. coli, as the latter  

 



139 

 

would affect fitness thus leading to decreased virulence (Johnson, Kuskowski, et al., 

2003). 

 

6.2.2. Flavohaemoglobin Hmp, cytochrome bd-I and flavorubredoxin NorVW are 

the main nitric oxide tolerance mechanisms in E. coli 

The emergence of multidrug resistance in poses a threat to public health. As such, 

alternative strategies to combat antibiotic resistance is urgently needed. Nitric oxide, a 

small radical molecule naturally produced by the mammalian immune system in response 

to infection, can potentially be used as an alternative antimicrobial. In fact, inhalation of 

nitric oxide is currently used to treat pulmonary hypertension (Wessel et al., 1997; Hunt 

et al., 2016), and studies have shown a potential use for nitric oxide in the eradication of 

bacterial biofilms (Barraud et al., 2006; Reffuveille et al., 2015; Ren et al., 2016). 

However, no strategies currently exist for the sustained delivery of NO at the site of 

infection. As such, one of the main aims of this project was to engineer a NO-

producing/NO-tolerant strain of asymptomatic strain of E. coli that could potentially be 

used to help treat UTIs caused by multidrug-resistant E. coli. The strategy employed in 

this work involved the overexpression of the chromosomal copy of flavohaemoglobin 

Hmp combined with expression of bNOS.  

 Due to the toxicity of nitric oxide, it comes as no surprise that E. coli possesses 

several mechanisms that help the cell cope with the toxic effects of NO (see section 1.2.3). 

To engineer NO-tolerance in a strain of E. coli, it was important to determine the 

importance of these mechanisms under different oxygen conditions in order to choose the 

appropriate mechanism for overexpression. A well diffusion assay showed that in the 

presence of oxygen flavohaemoglobin Hmp and NO-tolerant cytochrome bd-I respiratory 

oxidase played an important role in protecting E. coli EC958 from GSNO, whilst 

flavorubredoxin/flavorubredoxin reductase NorVW is important under anaerobic 

conditions. Congruent with the data present here is the work of Gardner and colleagues 

(Gardner et al., 1998; Gardner and Gardner, 2002) in a non-pathogenic E. coli, showing 

that the protection afforded by flavohaemoglobin Hmp was much greater when oxygen 

was present. Furthermore, NO-metabolizing NorVW activity was shown to be higher 

under anaerobic conditions (Gardner et al., 2002). Cytochrome bd-I has been previously 

shown to be a NO-tolerant respiratory oxidase (Mason et al., 2009) and crucial for the 

survival of E. coli during infection (Shepherd et al., 2016). The presence of a functional 

cytochrome bd-I during nitrosative stress and in the presence of oxygen allows for 

bacteria to carry out aerobic respiration (Mason et al., 2009), the most effective form of 
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ATP generation, a characteristic that explains the sensitivity of the E. coli EC958 cydAB 

mutant observed in this work. 

 Based on the microaerobic conditions of the bladder (Hagan et al., 2010), and the 

sensitivity of the cytochrome bd-I complementation strain (see section 3.3.2), possibly 

due to the generation of high levels of toxic ROS (Kohanski et al., 2007; Dwyer et al., 

2014; Lobritz et al., 2015) due to high expression levels of cytochrome bd-I, 

overexpression of flavohaemoglobin Hmp was chosen instead in an attempt to create a 

strain of E. coli highly tolerant to NO. Following the successful substitution of the native 

Hmp promoter with a constitutive promoter, GSNO susceptibility was assessed. Whilst 

the increased sensitivity of the Hmp-overexpressing strain in the presence of oxygen can 

be explained with formation of toxic superoxide (Membrillo-Hernández et al., 1996; 

Anjum et al., 1998; Wu et al., 2004) and, consequently, peroxynitrite in the presence of 

NO, the sensitivity to GSNO observed under anaerobic conditions is much more 

surprising. This could be due to 1) formation of superoxide from the remaining oxygen 

present in the media since the bacterial growth assay was not carried out under strict 

anaerobiosis or 2) the Hmp protein levels resulting from constitutive expression lead to 

toxicity.  

 NO-production was attempted with cloning of bNOS onto a plasmid. Induction of 

hmp promoter, whose activity increases in the presence of NO or nitrosative stress (Poole 

et al., 1996), in the strain of E. coli harbouring pSU2718-bNOS was observed. However, 

a more direct measurement of NO needs to be carried out to determine the levels of NO 

being produced with certainty (e.g. using a NO electrode for NO quantification). 

 

6.2.3. Nitric oxide diminishes lethality of gentamicin 

For many decades, the lethality of bactericidal antibiotics was thought to result 

directly from the primary mode of action of the antibiotic. However, studies have recently 

suggested that bacterial metabolic activity has an effect on the efficacy of the bactericidal 

antibiotic  (Rowan et al., 2016; Yang, Bening, et al., 2017). Recent work by Lobritz and 

colleagues (Lobritz et al., 2015) show that deletion of the three main respiratory oxidases, 

cytochrome bd-I, cytochrome bd-II, and cytochrome bo’, in a non-pathogenic E. coli 

strain resulted in a higher tolerance for a wide array of bactericidal antibiotics and led us 

to hypothesize that a potent respiratory inhibitor such as NO could lead to a reduction in 

antibiotic efficacy (Figure 6.1).  

In this work, the impact of the respiratory inhibitor NO upon the lethality of the 

bactericidal antibiotic gentamicin was investigated in a multidrug-resistant E. coli EC958  
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strain in planktonic cultures and biofilms. Pre-exposure to either NOC-12 or GSNO 

greatly increased the IC50 for gentamicin, suggesting that NO offers significant protection 

against the effects of gentamicin, for both bacterial planktonic cells and biofilms, 

presumably due to inhibition of aerobic bacterial respiration. Bacterial aerobic respiration 

is carried out by cytochrome oxidases bo’ and cytochrome bd-I, both well-known NO 

targets. However, whilst cytochrome bo’ is rapidly inhibited by NO, cytochrome bd-I is 

a NO-tolerant respiratory oxidase (Mason et al., 2006). The work carried herein shows 

that the IC50 of gentamicin is significantly higher for the cydAB knockout mutant of E. 

coli EC958, compared to the cyoA knockout or wild-type isogenic strains, both of which 

share similar IC50, in the presence of GSNO. This suggests that the presence of 

cytochrome bd-I increases bacterial sensitivity to gentamicin when GSNO is present. The 

NO-tolerant nature of cytochrome bd-I (Mason et al., 2006) allows aerobic bacterial 

respiration to continue. As previously mentioned, it has been suggested that the lethality 

of bactericidal antibiotics is due, in part, to the synthesis of ROS (Kohanski et al., 2007; 

Wang and Zhao, 2009; Dwyer et al., 2014) generated by the bacterial respiratory chain. 

Thus, it is possible that the susceptibility to gentamicin observed in the presence of GSNO 

Figure 6.1 – Model for the roles of NO during bacterial exposure to antibiotics. Bactericidal 

antibiotics cause downstream effects on bacterial metabolism that lead to the accumulation of 

ROS (red). Nitric oxide exposure (blue) can have deleterious and protective effects where 

nitrosylation of multiple cellular targets is toxic and respiratory inhibition can diminish the 

generation of ROS that results from antibiotic treatment. Abbreviations: Resp DHase, 

Respiratory Dehydrogenase; Resp Oxidases, Respiratory Oxidases. 
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in both the wild-type and cyoA knockout strain of E. coli EC958 is due to the 

hyperactivation of cytochrome bd-I, thus production of lethal ROS, which, in contrast, is 

completely abolished in the cydAB knockout mutant. However, it is also a well-

established fact that uptake of aminoglycosides, such as gentamicin, into the bacterial cell 

requires a PMF threshold (Hancock, 1981; Humbert and Altendorf, 1989), which 

maintained by the bacterial respiratory chain. Hence, it is also possible that the sensitivity 

to gentamicin herein observed in the presence of GSNO occurs because cytochrome bd-I 

is capable of maintaining the PMF threshold required for gentamicin uptake through 

vectorial translocation of protons (Miller and Gennis, 1985). Further studies are required 

to determine the underpinning mechanism.  

Despite increasing sensitivity of bacteria to antibiotics, the primary sequences of 

of cytochrome bd-I (CydA, CydB, and CydX) were found to be highly conserved in E. 

coli. Cytochrome bd-I has been shown to play an important role in bacterial survival 

during infection (Shepherd et al., 2016), and it is plausible that bacteria such as E. coli 

encounter NO in the absence of antibiotics more frequently than in the presence of 

antibiotics. Thus, it is possible that the importance of cytochrome bd-I in niches where 

antibiotics are not present potentially outweighs the evolutionary driver for antibiotic 

tolerance.  
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6.3. Further work 
 

In chapter 3, attempts at quantifying nitrate and nitrite as a measure of NO 

production by the bNOS gene were unsuccessful during this work. It was proposed that 

the fast consumption of nitrite and nitrate by E. coli wild-type cells could be partially 

responsible for the negative result. The assay could be repeated following transformation 

of pSU2718-bNOS into a strain of E. coli lacking nitrite reductases and/or nitrate 

reductases, thus increasing the amount of nitrite and nitrate for detection by the Griess 

assay. Alternatively, and preferably, NO levels could be measured directly with a NO 

electrode.  

Further in chapter 3, it was proposed that GSNO susceptibility exhibited by the 

Hmp-overexpressing strain under anaerobic conditions was a result of protein 

accumulation and consequent toxicity. Hence, Hmp protein levels need to be assessed 

with a western blot.  

In chapter 4, phylogenetic analysis showed that commensal strains of E. coli have 

diverged more recently, and it was hypothesised that the evolutionary process of E. coli 

has resulted in loss of virulence genes, aiming for a commensal relationship with the host 

that allows long-term colonization and survival. However, it is possible that the rapid 

emergence of antibiotic resistance could disrupt this pattern and a more detailed 

comprehensive analysis, perhaps even including a larger number of genome sequences 

belonging to E. coli (or even other bacterial species) is necessary to determine how 

antibiotic resistance may influence the evolution of virulent strains. 

 In chapter 5, one of the isolates of the Kent collection (KC45) exhibited a 

significantly higher susceptibility to GSNO in the presence of oxygen. Further work could 

focus on investigating the cause of this phenotype (e.g. glutathione susceptibility), as this 

isolate did not show increased sensitivity to NOC-12, a more specific NO-donor than 

GSNO. Also in chapter 5, the effects of NO upon the efficacy of gentamicin, a bactericidal 

antibiotic, were tested. It was shown that the presence cytochrome bd-I results in elevated 

susceptibility to gentamicin during NO exposure. For a more complete analysis, a mutant 

of cytochrome bd-II could be engineered and tested for susceptibility to gentamicin, and 

other bactericidal antibiotics, in the absence and presence of pre-exposure to NO. Given 

the similarity between bd-II and bd-I, one might predict that the bd-II terminal oxidase 

could also support ROS generation in the presence of NO, especially if the cells were 

grown under conditions where bd-II is maximally expressed. Additionally, to avoid the 

problems associated with bacterial uptake and elimination of extracellular bacteria, 
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neutrophils could provide an extracellular nitrosative burst to the bacteria as previously 

described (Shepherd et al., 2016). Finally, to confirm the general model for NO protecting 

bacteria against antibiotic-mediated ROS generation during NO exposure, similar 

experiments with a range of other bactericidal antibiotics and other bacterial species 

would be useful. These experiments could provide important insights into how different 

bacteria respond to different antibiotics during infection and pave the way for future 

interventions that are required to combat the spread of multidrug-resistant strains. 
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Appendix A-1. MLST details of all isolates of the Kent collection. 

Multilocus sequence typing (MLST) was performed in all isolates of the collection using the Achtman typing scheme (Maiden et al., 1998). 

  

Strain Number KC Number ST ST Complex Adk fumC gyrB icd mdh purA recA 

188 KC1 ST69 ST69cplx 21 35 27 6 5 5 4 

189 KC2 ST404 ST14cplx 14 14 10 14 17 7 74 

190 KC3 ST162 ST469 9 65 5 1 9 13 6 

191 KC4 ST1406 None 46 156 2 25 5 16 19 

192 KC5 ST69 ST69cplx 21 35 27 6 5 5 4 

193 KC6 ST58 ST155cplx 6 4 4 16 24 8 14 

194 KC7 ST131 None 53 40 47 13 36 28 29 

195 KC8 ST73 ST73cplx 36 24 9 13 17 11 25 

196 KC9 ST69 ST69cplx 21 35 27 6 5 5 4 

197 KC10 ST131 None 53 40 47 13 36 28 29 

198 KC11 ST59 ST59cplx 27 32 24 29 26 19 22 

199 KC12 ST1148 None 6 95 3 18 11 7 14 

200 KC13 ST95 ST95cplx 37 38 19 37 17 11 26 

201 KC14 ST10 ST10cplx 10 11 4 8 8 8 2 

202 KC15 ST73 ST73cplx 36 24 9 13 17 11 25 

203 KC16 ST73 ST73cplx 36 24 9 13 17 11 25 

204 KC17 unknown None 9 260 15 26 11 26 6 

205 KC18 ST131 None 53 40 47 13 36 28 29 

206 KC19 ST131 None 53 40 47 13 36 28 29 

207 KC20 ST685 None 8 11 4 8 8 8 2 

208 KC21 ST95 ST95cplx 37 38 19 37 17 11 26 

209 KC22 ST357 None 13 40 13 13 23 25 66 
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210 KC23 ST1618 None 36 24 9 13 17 11 159 

211 KC24 ST73 ST73cplx 36 24 9 13 17 11 25 

212 KC25 ST131 None 53 40 47 13 36 28 29 

213 KC26 ST421 ST95cplx 37 38 19 37 17 8 26 

214 KC27 ST404 ST14cplx 14 14 10 14 17 7 74 

215 KC28 ST69 ST69cplx 21 35 27 6 5 5 4 

216 KC29 ST73 ST73cplx 36 24 9 13 17 11 25 

217 KC30 ST73 ST73cplx 36 24 9 13 17 11 25 

218 KC31 ST404 ST14cplx 14 14 10 14 17 7 74 

219 KC32 ST640 None 13 147 93 13 17 28 30 

220 KC33 unknown None 53 40 47 13 36 28 25 

221 KC51 unknown None 36 24 9 13 17 11 30 

222 KC35 ST640 None 13 147 93 13 17 28 30 

223 KC36 ST10 ST10cplx 10 11 4 8 8 8 2 

224 KC37 ST141 None 13 52 10 14 17 25 17 

225 KC38 unknown None 13 167 19 13 36 28 30 

226 KC39 ST73 ST73cplx 36 24 9 13 17 11 25 

227 KC40 ST69 ST69cplx 21 35 27 6 5 5 4 

228 KC41 ST95 ST95cplx 37 38 19 37 17 11 26 

229 KC42 ST404 ST14cplx 14 14 10 14 17 7 74 

230 KC43 ST95 ST95cplx 37 38 19 37 17 11 26 

231 KC44 ST73 ST73cplx 36 24 9 13 17 11 25 

232 KC45 ST405 ST405cplx 35 37 29 25 4 5 73 

233 KC46 ST127 None 13 14 19 36 23 11 10 

234 KC47 ST69 ST69cplx 21 35 27 6 5 5 4 

235 KC48 ST73 ST73cplx 36 24 9 13 17 11 25 
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236 KC49 ST131 None 53 40 47 13 36 28 29 

237 KC50 ST69 ST69cplx 21 35 27 6 5 5 4 
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Appendix B-1. Characterisation of the isolates of the Kent collection. 

  Each isolate was characterized for sequence-type (ST), phylogenetic group, and antibiotic resistance profile based on the phenotype 

observed during the disc diffusion assay.  
 

        Antibiotics1 

Strain KC number ST 

Phylogenetic 

group 
AMX CTX CAP CIP GEN MEM NIT TMP PME 

MS188 KC1 ST69 D S S S S S S S S S 

MS189 KC2 ST404 B2 S S S S S S S S S 

MS190 KC3 ST162 B1 R S R R S S R R S 

MS191 KC4 ST1406 D R S S S S S S S S 

MS192 KC5 ST69 D S S S S S S S S S 

MS193 KC6 ST58 B1 R S S S S S S R S 

MS194 KC7 ST131 B2 R S S I S S S S S 

MS195 KC8 ST73 B2 R S S S S S S R S 

MS196 KC9 ST69 D R S S S S S S R S 

MS197 KC10 ST131 Unknown R S S R S S S S S 

MS198 KC11 ST59 F S S S S S S S S S 

MS199 KC12 ST1148 B1 S S S S S S S S S 

MS200 KC13 ST95 B2 S S S S S S S R S 

MS201 KC14 ST10 A S S S S S S S S S 

MS202 KC15 ST73 B2 R S S S S S S S S 

MS203 KC16 ST73 B2 S S S S S S S S S 

MS204 KC17 Unknown B1 S S S S S S S S S 

MS205 KC18 ST131 B2 R R S R R S S R S 

MS206 KC19 ST131 B2 R S S R R S S R S 

MS207 KC20 ST685 B2 S S S S S S S S S 
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MS208 KC21 ST95 B2 S S S S S S S S S 

MS209 KC22 ST357 B2 S S S S S S S S S 

MS210 KC23 ST1618 B2 S S S S S S S S S 

MS211 KC24 ST73 B2 S S S S S S S S S 

MS212 KC25 ST131 B2 S S S S S S S S S 

MS213 KC26 ST421 B2 S S S S S S S S S 

MS214 KC27 ST404 B2 S S S S S S S S S 

MS215 KC28 ST69 A R S S S S S S S S 

MS216 KC29 ST73 B2 R S S S S S S S S 

MS217 KC30 ST73 B2 R S S S S S S R S 

MS218 KC31 ST404 B2 S S S S S S S S S 

MS219 KC32 ST640 B2 S S S S S S S S S 

MS220 KC33 Unknown B2 R R S R R S S R S 

MS221 KC51 Unknown B2 S S S S S S S S S 

MS222 KC35 ST640 B2 S S S S S S S S S 

MS223 KC36 ST10 A S S S S S S S S S 

MS224 KC37 ST141 B2 S S S S S S S S S 

MS225 KC38 Unknown B2 S S S S S S S S S 

MS226 KC39 ST73 B2 R S S S S S S S S 

MS227 KC40 ST69 D S S S S S S S S S 

MS228 KC41 ST95 B2 S S S S S S S S S 

MS229 KC42 ST404 B2 S S S S S S S S S 

MS230 KC43 ST95 B2 S S S S S S S S S 

MS231 KC44 ST73 B2 S S S S S S S S S 

MS232 KC45 ST405 F R R S R R S S R S 

MS233 KC46 ST127 B2 R S S S S S S S S 
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MS234 KC47 ST69 D R S S R S S S R S 

MS235 KC48 ST73 B2 R S S S S S S R S 

MS236 KC49 ST131 B2 R S S R R S S R S 

MS237 KC50 ST69 D R S S S S S S R S 

   

  1) AMX – amoxicillin; CTX – cefotaxime; CAP – chloramphenicol; CIP – ciprofloxacin; GEN – Gentamicin; MEM – meropenem; NIT – 

nitrofurantoin; TMP – Trimethoprim; PME – colistin; S – sensitive; R – resistant; I - intermediate 
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Appendix C-1. Acquired resistance genes. 

Acquired resistance genes identified for each isolate, using the ResFinder database. 

  

 

MS 

number 

 

KC 

number 

Antibiotic classes 

Aminoglycoside Beta-Lactam Fluoroquinolone1 MLS Phenicol  Sulfanilamide Tetracycline Trimethoprim 

MS188 KC1         

MS189 KC2         

MS190 KC3 aadA5; strA; strB blaTEM-1B   catA1 sul2 tet(B) dfrA17 

MS191 KC4         

MS192 KC5         

MS193 KC6 strA; strB blaTEM-1B    sul2  dfrA5 

MS194 KC7  blaTEM-1B    sul2   

MS195 KC8 strB; aadA1 
blaTEM-1B; 

blaSHV-1 
   sul2; sul1 tet(D) dfrA14 

MS196 KC9 strB; strA; aadA5 blaTEM-1B  mph(A)  sul1; sul2 tet(B) dfrA17 

MS197 KC10  blaTEM-1B       

MS198 KC11         

MS199 KC12         

MS200 KC13        dfrA5 

MS201 KC14         

MS202 KC15 aadA1 blaTEM-1B    sul1   

MS203 KC16 aadA1     sul1   

MS204 KC17         

MS205 KC18 
aac(3)-IIa; 

aac(6')lb-cr; aadA5 

blaOXA-1; 

blaCTX_M-15 
aac(6')Ib-cr mph(A)  sul1  dfrA17 
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MS206 KC19 aac(3)-IId; aadA5 blaTEM-1B    sul1  dfrA17 

MS207 KC20         

MS208 KC21         

MS209 KC22         

MS210 KC23      sul2 tet(A)  

MS211 KC24         

MS212 KC25         

MS213 KC26         

MS214 KC27         

MS215 KC28         

MS216 KC29  blaSHV-1       

MS217 KC30 strB; strA blaTEM-1B    sul1; sul2 tet(B) dfrA1 

MS218 KC31         

MS219 KC32         

MS220 KC33 

aac(3)-IIa; 

aac(6')Ib-cr; 

aadA5 

blaCTX-M-15; 

blaOXA-1 
aac(6')Ib-cr mph(A)  sul1 tet(A) dfrA17 

MS221 KC51         

MS222 KC35         

MS223 KC36         

MS224 KC37         

MS225 KC38         

MS226 KC39 aadA1 blaSHV-1    sul1   

MS227 KC40         

MS228 KC41         

MS229 KC42         
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MS230 KC43         

MS231 KC44         

MS232 KC45 
aadA5; aac(3)-IIa; 

aac(6')lp-cr 

blaCTX-M-15; 

blaOXA-1 
aac(6')Ib-cr mph(A)  sul1 tet(B) dfrA17 

MS233 KC46  blaTEM-1B       

MS234 KC47 aadA5 blaTEM-1B   catA1 sul1; sul2 tet(B) dfrA17 

MS235 KC48 strB blaTEM-1B    sul2  dfrA14 

MS236 KC49 
strB; strA; aadA5; 

aac(3)-Iid 
blaTEM-1B  mph(A)  sul2; sul1 tet(A) dfrA17 

MS237 KC50 strA; strB blaTEM-1B       sul1; sul2   dfrA7 

 

1) aac(6’)Ib-cr confers resistance to both aminoglycosides and low levels of ciprofloxacin (a fuoroquinolone) 
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Appendix D-1. Linear regression and correlation between antibiotic resistance and 

virulence.  

Correlation between the virulence potential and the degree of antibiotic resistance 

(reflected by the number of different antibiotics to which each isolate was experimentally 

resistant to) was analysed with the Pearson Correlation Coefficient (Pearson r = -0.0097; 

p-value = 0.95). Virulence potential was calculated as the percentage of the 151 virulence 

genes identified that are carried in a given isolate. The linear relation between the two 

variables was also assessed using linear regression (r2 = 9.4x10-5). 
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Appendix E-1. Alignment of Gyrase subunit A. 

Alignment of the protein sequences of gyrase subunit A of all isolates of the Kent 

collection identifies isolates KC3, KC7, KC10, KC18, KC19, KC33, KC45, KC47, and 

KC49 as being ciprofloxacin resistant due to mutations at amino acid position 83 (Serine 

to Leucine) and/or amino acid position 87 (Aspartate to Asparagine) (Weigel et al., 1998). 
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Appendix F-1. Susceptibility of KC45 to NO-donor NOC-12. 

Susceptibility of bacterial strains to NO was tested by growth in M9 minimal medium in 

the presence of different concentrations of the NO-donor NOC-12. Growth of MG1655 

(A), EC958 (B), and KC45 (C) was followed for 8 h. Error bars represent standard 

deviation. Each data point is the mean of three biological repeats, each one comprising 

three technical repeats. The doubling time (D) was calculated based on the readings that 

were taken during 1.5h of growth following the addition of NOC-12. Error bars represent 

standard deviation. (*: Student’s unpaired t-test; p-value < 0.05). 

  

 

 

 

 

 

 

 

 

 

 

 

 



180 

 

Appendix G.1 – Engineering of cyoA E. coli EC958 knockout mutant using λ-red 

mutagenesis. 

A) cyoA gene of E. coli EC958. The chloramphenicol resistance cassette from plasmid 

pKD3, amplified by PCR using the primers cyoA_Cm_fw and cyoA_Cm_rev2, was 

electroporated onto E. coli EC958 harbouring pKOBEG. B) Recombinant colonies 

(colonies 1-5) were screened by colony PCR with primers cyoA_Sc_fw and 

cyoA_Sc_rev2 (Expected molecular size: 1390 bp). A positive control (‘Positive’) 

containing E. coli EC958 wild-type harbouring pKOBEG was also prepared (Expected 

molecular size: 1300 bp). Recombinant colonies were then grown in LB at 43°C for 

curing of the pKOBEG plasmid. Only colonies with a chloramphenicol resistant and 

gentamicin sensitive phenotype were stocked and used for the survival assays. 

 

 

 

 

 

 

 

 

 


