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    Abstract 

The aggressive expansion of anthropogenic activities is placing increasing 

pressure on biodiversity, particularly in tropical regions. Here, conservation efforts are 

hindered by poor understanding of species ecology and the failure of policy 

instruments to account for multiple stressors of land-use change. While protected areas 

are central to conservation strategies, there is a general consensus that the future of 

tropical biodiversity will be determined by how well modified landscapes are 

managed. In this thesis I advance our understanding of biodiversity persistence in 

modified tropical landscapes to inform emerging incentive-based policy mechanisms 

and supply-chain initiatives. Capitalising on recent advances in remote-sensing and 

hierarchical occupancy modelling, I provide a spatial appraisal of biodiversity in a 

modified landscape in Sabah, Malaysian Borneo. Fieldwork was conducted at the 

Stability of Altered Forest Ecosystems (SAFE) project, a large-scale landscape 

modification experiment, comprising a degradation gradient of old growth forest, 

selectively logged forest, remnant forest patches and oil palm plantations. The 

assessment focused on camera-trapping of tropical mammals, as they are sensitive to 

anthropogenic stressors, occupy key trophic positions, and prioritised in conservation. 

In Chapter 2 I link mammal occupancy data to airborne multispectral remote-sensing 

information to show how the conservation value of modified landscapes is dictated by 

the intensity of the underlying land-use. Logged forests retained appreciable levels of 

mammal diversity, and oil palm areas were largely devoid of forest specialists and 

threatened taxa. Moreover, many mammal species disproportionately occupied 

forested areas that retained old growth structural characteristics. The most influential 

structural measures accounted for vertical and horizontal components in 

environmental space, which cannot currently be derived from conventional satellite 
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data. Using a novel application of ecological threshold analysis, I demonstrate how 

multispectral data and multi-scale occupancy models can help identify conservation 

and restoration areas in degraded forests.  In Chapter 3 I assess the potential for 

carbon-orientated policy mechanisms (High Carbon Stock, HCS, Approach and 

REDD+) to prioritise high carbon areas with corresponding biodiversity value in 

highly modified landscapes. The areas of highest carbon value prioritised via HCS 

supported comparable species diversity to old growth forest. However, the strength, 

nature and extent of the biodiversity co-benefit was dependent on how carbon was 

characterised, the spatial resolution of carbon data, and the species considered. In 

Chapter 4 I further scrutinised HCS protocols to evaluate how well they delineated 

high priority forest patches that safeguard species most vulnerable to land-use change 

(i.e. IUCN threatened species). The minimum core area required to define a high 

priority patch (100 ha) supported only 35% of the mammal community. In fact the 

core area criterion would need to increase to 3,199 ha in order to sustain intact 

mammal assemblages, and an order of magnitude higher if hunting pressure was 

considered. These findings underline the importance of integrating secondary 

disturbance impacts into spatial conservation planning. Provided landscape 

interventions are directed to where they will have the greatest impact, they can be 

financially sustaining and garner local support for conservation. To this end I provide 

recommendations to guide policy implementation in modified tropical landscapes to 

support holistic conservation strategies.           

 

Keywords: Camera-trapping, hierarchical modelling, human-modified landscapes, 

land-use change, mammals, oil palm, selective logging, Southeast Asia.  
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 Introduction 

Tropical forest ecosystems: value, status and an uncertain future 

Tropical forests are distributed across four biogeographic realms (Neo-: 

South/Central America; Afro-: continental Africa, Madagascar; Asian-: 

continental/insular Asia; Australasian-tropics: Australia, Papua New Guinea, insular 

Pacific; Achard et al., 2002) and account for less than 12% of the world’s terrestrial 

surface area (Bonan, 2008), yet, are amongst the most significant ecosystems on the 

planet. Globally, tropical forests are reservoirs of biological diversity (Barlow et al., 

2018), regulate biogeochemical and hydrological cycles (Lewis et al., 2015, MEA, 

2005), and store ~30% (200-300 Pg C) of the carbon held in the terrestrial biosphere 

(Mitchard, 2018, Pan et al., 2011). Locally, they provide economic goods, ecosystem 

services and climatic stability to 1.5 billion people living in extreme poverty (World 

Bank, 2004, Vira et al., 2015). Given the scale of influence that tropical forests exert 

on ecological processes and rural livelihoods, it is widely recognised that biodiversity 

conservation, climate change and human well-being are all tethered to the fate of these 

ecosystems (Díaz et al., 2006, Gardner et al., 2010).  

Since the 1980s, the tropical forest extent has declined from 1.7 to 1.1 billion 

ha, equating to a range contraction of 35% (Wright, 2010). In recent decades, tropical 

deforestation has continued at a consistent rate of 5 million ha year -1, though the 

geographic focus of forest loss has shifted during this period from Brazil to other 

countries of South America and insular Southeast Asia (Curtis et al., 2018). The 

remaining forest estate has been substantially altered, with recent estimates suggesting 

up to 82% of the area has already been degraded by some form of human use (Watson 
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et al., 2018). Current levels of deforestation and unsustainable exploitation release 2.9 

Pg C year-1 into the atmosphere, contributing to 30% of anthropogenic greenhouse gas 

emissions (Pan et al., 2011). Moreover, the continued loss of tropical forests greatly 

diminishes the environmental and societal benefits they provide. Despite this, global 

efforts to temper land-use change have proved largely ineffective (Butchart et al., 

2010).       

Tropical deforestation and environmental degradation are driven by a complex 

interplay of local and global stressors embedded within changing socio-economic 

contexts (Barlow et al., 2018), which renders mitigation efforts challenging. Forest 

loss is mediated by human population growth, increasing per capita consumption and 

globalisation, which dictate demand for forest resources to address the needs of a 

burgeoning population (d’Annunzio et al., 2015, Geist and Lambin, 2002). These 

global stressors orchestrate the extent to which proximate mechanisms, such as 

agricultural conversion, resource extraction, infrastructure development and 

urbanisation, contribute to land-use change (Curtis et al., 2018, Potapov et al., 2017). 

Global socio-economic changes indicate an uncertain future for tropical forests. By 

2050, projected population growth (United Nations, 2013) and substantial increases in 

the gross domestic product of rapidly industrialising nations (Lewis et al., 2015) is 

expected to lead to a further 710 million ha of agricultural land being needed (Tilman 

et al., 2017), and escalate international and domestic demand for forest resources to 

unprecedented levels. These demands are likely to be met in the tropics, where the 

majority of population growth is expected to occur (United Nations, 2013), and 

favourable climatic conditions, coupled with competitive land prices, provide 

environmental and economic incentives for forest conversion (Laurance et al., 2014). 
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To ensure that future resource acquisition does not follow the current template of 

unsustainable exploitation, more effective environmental governance is required.  

 

The global biodiversity crisis 

The global proliferation of human activities at the expense of natural habitat 

has resulted in precipitous biodiversity declines (Dirzo et al., 2014). Current extinction 

rates are several orders of magnitude higher than the background rate (Ceballos et al., 

2015) and comparable to the five previous mass extinction events (Barnosky et al., 

2011). This equates to 338 documented vertebrate losses since 1500 (Young et al., 

2016), with a further 11,981 species threatened with extinction (Hoffmann et al., 

2010). Human impacts have accelerated in recent decades, resulting in a 52% decline 

in remaining vertebrate populations (McLellan et al., 2014). Biodiversity losses are 

most pronounced in tropical forests (Hoffmann et al., 2010), which sustain half of the 

world’s described taxa (Dirzo and Raven, 2003, Scheffers et al., 2012), including 

exceptional concentrations of endemic species (Myers et al., 2000), but are subjected 

to some of the highest rates of habitat loss globally (Hansen et al., 2013). Biodiversity 

underpins ecosystem functioning, stability and resilience (Cardinale et al., 2006, 

Seddon et al., 2016), thus impoverished faunal communities can compromise the 

myriad ecosystem services provided by tropical forests and jeopardise their capacity 

to resist state-shifts following environmental perturbations (Hooper et al., 2005, 

Thompson et al., 2009). This implies that biodiversity loss in tropical forests will result 

in negative feedback loops for human well-being and climate change (Díaz et al., 

2006). Given the high proportion of data deficient species in the tropics and the 
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likelihood of extinction debts owing to a legacy of forest exploitation, the true extent 

of the biodiversity crisis in tropical ecosystems is likely underestimated.  

In recognition of the role of tropical deforestation in the global biodiversity 

crisis, ambitious multi-lateral government agreements have emerged to curtail current 

rates of land-use change. The New York Declaration on Forests (United Nations, 

2014) and the UN Sustainable Development Goals (United Nations, 2015) both seek 

to fully halt deforestation by 2020 and 2030 respectively. Moreover, the New York 

Declaration on Forests further aims to restore up to 350 million hectares of degraded 

forest before 2030. To maximise the impact of these progressive agreements, and 

ensure ambitious proposals translate into effective conservation action, governmental 

commitments must be underwritten by policy instruments developed from a robust 

scientific evidence-base (Sutherland et al., 2004).       

 

Human-modified tropical landscapes 

The expanding sphere of anthropogenic influence across the tropics raises the 

question, how will biodiversity persist in an increasingly human-dominated world? 

Biologically rich primary, or old growth, forests are considered fundamental to 

biodiversity preservation (Gibson et al., 2011), yet they account for only a small 

fraction of the remaining tropical forest estate (Potapov et al., 2017, Watson et al., 

2018). Therefore, policies focussing solely on primary forest retention will be of 

limited value. There is therefore increasing recognition amongst conservation 

practitioners that human-modified landscapes can play a significant role in 

safeguarding biodiversity in tropical regions (Chazdon et al., 2009, Gardner et al., 
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2009, Kremen and Merenlender, 2018, Melo et al., 2013). Human-modified 

landscapes typically comprise remnant primary- and secondary vegetation embedded 

within human-dominated land-uses such as farmland and logged forests (Malhi et al., 

2014). These systems cover large areas of the tropical biome and could potentially 

form integral links between isolated primary forests and protected areas (Gardner et 

al., 2009, Struebig et al., 2015). Moreover, in regions devoid of intact primary forest 

cover, human-modified landscapes provide critical refugia for biodiversity (Chazdon 

et al., 2009). The conservation value of these landscapes is principally determined by 

the nature and intensity of the underlying land-use (Burivalova et al., 2014, Edwards 

et al., 2011, Edwards et al., 2014) and the spatial characteristics of the remaining 

vegetation (Ewers and Didham, 2006). Therefore, the capacity for human-modified 

landscapes to support biodiversity is contingent on active management practices that 

reconcile production goals and conservation objectives (Gardner et al., 2010, Koh and 

Gardner, 2010). If human-modified landscapes are to be integrated within a new 

holistic conservation paradigm, baseline information on biodiversity persistence is 

essential to inform land-use regulations in modified systems. 

 

Biodiversity responses to landscape-modification 

To gauge the potential for human-modified systems to contribute to the 

conservation agenda, it is necessary to understand biodiversity responses to land-use 

change and secondary disturbance impacts. Given that prominent drivers of land-use 

change also represent dominant land-use designations in human-modified landscapes, 

this information provides a valuable insight into prospects for biodiversity in 

anthropogenically-altered systems. It is important to note that these threats operate 
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over different temporal and spatial scales, can impact forest ecosystems 

independently, concurrently or interactively, and are exacerbated by natural driving 

forces such as climate change (Gardner et al., 2009). It is well-recognised that 

biodiversity declines along a gradient of structural and floristic complexity (Gibson et 

al., 2011), though the severity of impacts are moderated by traits that confer sensitivity 

to land-use change (Newbold et al., 2014). 

 

Oil palm agricultural expansion 

In recent decades, the expansion of commodity agriculture has emerged as the 

most pervasive threat to tropical forests and biodiversity (Kehoe et al., 2017, Tilman 

et al., 2017). Since 1980, 83% of the agricultural land established came at the expense 

of tropical forests (Gibbs et al., 2010). Of these commodities, oil palm (Elaeis 

guineensis) is at the forefront of agriculturally-orientated conservation concerns. 

Driven by biofuel markets and demand for palm oil derivatives, oil palm currently 

occupies 18.7 million ha of land (Meijaard et al., 2018), predominantly replacing 

lowland tropical forest (Gaveau et al., 2017, Gibbs et al., 2010). Much of the 

biologically suitable land to meet future demand for oil palm corresponds with highly 

biodiverse tropical forest ecosystems (Pirker et al., 2016). An understanding of oil 

palm impacts on biodiversity is, therefore, paramount to determine the ecological 

consequences of future expansion.  

Recent estimates suggest that agricultural activities have a negative effect on 

half of the world’s threatened species (Tanentzap et al., 2015). Global increases in 

agricultural land mass have resulted in dramatic species declines, the magnitude of 
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which is modulated by patterns of bilateral trade and per capita consumption 

(Chaudhary and Kastner, 2016, Lenzen et al., 2012). Oil palm expansion has a 

profound influence on biodiversity, negatively impacting up to 85% of species 

(Danielsen et al., 2009, Fitzherbert et al., 2008). The displacement of tropical forests 

by oil palm monocultures causes taxonomically consistent reductions in species 

richness, disproportionately affecting forest specialists and species of conservation 

concern (mammals: Wearn et al., 2016, Yue et al., 2015, birds: Edwards et al., 2010b, 

Edwards et al., 2014, invertebrates: Ewers et al., 2015, Fayle et al., 2010, plants: 

Danielsen et al., 2009, Drescher et al., 2016). These changes are the result of biotic 

homogenisation and altered microclimate conditions (Foster et al., 2011). Given the 

ecological footprint of commodity production, mitigation measures that reconcile 

biodiversity conservation and oil palm development are essential in vulnerable tropical 

regions. However, oil palm is a highly efficient, profitable crop, providing substantial 

social and economic benefits which complicates environmental decision making 

(Meijaard et al., 2018). Thus, effective policies in production landscapes must 

consider the socio-economic trade-offs associated with interventions.  

 

Selective logging 

Selective logging refers to the discriminatory harvest of timber. Selective 

logging is a significant driver of forest degradation due to economic globalization and 

the demand for high-value timber (Lambin and Meyfroidt, 2011, Laurance, 2007). 

Between 2000 and 2005, over 400 million ha of tropical forest was allocated to the 

permanent timber estate and subject to some degree of logging (Asner et al., 2009, 

Blaser et al., 2011). During this period, tropical timber exports generated an annual 
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revenue of US$2.1 billion (Malhi et al., 2014), highlighting the economic motives 

underpinning wood extraction. It is important to note that, when practiced sustainably, 

logging does not result in forest degradation (Bryan et al., 2013). However, short-term 

profits incentivize unsustainable harvest intensities that compromise forest integrity 

(Putz et al., 2012). Unsustainable logging is characterised by the disproportionate 

removal of large trees and substantial collateral damage to residual vegetation (Pinard 

and Putz, 1996). This results in structural simplification of the remaining forest, 

characterised by a lower, less variable canopy height profile, fewer vegetation strata 

(Kumar and Shahabuddin, 2005, Okuda et al., 2003) and a spatially dispersed canopy 

(Hardwick et al., 2015). The immediate environmental consequences of logging are 

accompanied by insidious secondary impacts. Logging provides the economic impetus 

for road construction (364,489 km built in Malaysian Borneo alone; Bryan et al., 

2013), which subjects the remaining stand to a suite of environmental pressures, 

including illegal colonisation, increased incidence of wild fire, and hunting (Bicknell 

et al., 2015, Laurance and Arrea, 2017).  

Logged forests are central to global conservation planning due to their well-

documented biological value. Selectively logged forests have been found to retain 

between 70 and 90% of the species found in primary forest (Berry et al., 2010, 

Edwards et al., 2011, Edwards et al., 2014, Struebig et al., 2013, Wearn et al., 2017). 

Though reported compositional shifts in faunal communities suggest that forest 

specialist species may be sensitive to the structural alterations associated with timber 

extraction (Edwards et al., 2014). Nuanced assessments of the biodiversity value of 

logged forest have provided a more conservative appraisal of their capacity to retain 

species. Biodiversity has shown to be sensitive to harvest intensity (Burivalova et al., 
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2014), extraction method (Bicknell et al., 2014) and frequency of temporal rotation 

(Edwards et al., 2011). Taken as a whole, these findings suggests that logged forests 

can make a significant contribution to biodiversity conservation provided they are 

managed responsibly and sustainably. Moving forward, it is imperative to safeguard 

logged forests from conversion to agricultural land of lower biodiversity value 

(Barlow et al., 2007, Edwards et al., 2010a), which has become a common land-use 

trajectory in tropical regions. Given limited conservation funding (McCarthy et al., 

2012) and the vast extent of the timber estate, a deeper understanding of the specific 

structural features of logged forest that promote biodiversity retention to inform 

conservation prioritisation would be desirable.    

 

Habitat fragmentation 

Fragmentation refers to the process by which habitat loss fractures continuous 

tracts of habitat into a spatial subset of ecological islands that are nested within a 

human-modified matrix (Ewers and Didham, 2006). Globally, proximate mechanisms 

of land-use change have greatly accelerated the extent and magnitude of habitat 

fragmentation (Wilson et al., 2016). The remaining forest estate comprises 130 million 

fragments across the world, averaging 29 ha in size (Brinck et al., 2017, Taubert et al., 

2018). Consequently, a growing proportion of biodiversity resides within fragmented 

landscapes across the tropics (Gibson et al., 2011), which requires an understanding 

of fragmentation impacts on biodiversity persistence.  

Habitat fragmentation processes operate at both patch- and landscape scales to 

influence the distribution of biodiversity (Fahrig, 2003). At the patch scale, Island 
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Biogeography Theory (MacArthur and Wilson, 2001) predicts that smaller, isolated 

patches support impoverished faunal communities due to extinction-colonisation 

dynamics. Habitat size places constraints on the number of species a patch can sustain. 

Smaller fragments support fewer species, occurring at lower densities, which are more 

vulnerable to local extinction due to stochastic events (Ewers and Didham, 2006). 

Patch isolation determines the rate of colonisation, isolated patches receive fewer 

immigrants to buffer resident populations against local extinction (Brown and Kodric-

Brown, 1977). However, the degree to which a fragment is isolated is dictated by 

fragment shape, the structural connectivity of the landscape and the dispersal capacity 

of the species (Cote et al., 2017). A global synthesis of fragmentation impacts on 

biodiversity confirmed these theoretical underpinnings, documenting consistent 

population declines and reduced local species richness for a number of species in 

smaller, more isolated fragments (Haddad et al., 2015).  

At the patch-scale, edge effects are key determinants of biodiversity. Edge 

effects refer to the proportion of habitat influenced by environmental externalities, and 

become more pronounced with decreasing fragment size (Laurance, 2008). Edge 

habitat is characterised by distinct abiotic conditions and altered biotic interactions 

that obligate forest species cannot tolerate (Laurance et al., 2011). Population declines 

for 652 species have been documented in edge-effected habitat (Pfeifer et al., 2017). 

Moreover, edge effects were found to permeate up to 400 m into the forest, though 

other estimates suggest these effects can extend up to 4 km from the forest edge 

(Brodie et al., 2015a). Edge effects alter microclimatic conditions and biotic 

interactions, resulting in elevated tree mortality, proliferation of invasive species and 

dominance of ecotone-tolerant generalists (Laurance, 2008). Collectively, these 
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modifications disrupt ecological processes and place pressure on sensitive obligate 

forest species (Ewers and Didham, 2006, Pfeifer et al., 2017). It is estimated that 70% 

of the world’s forests are situated within 1 km of a forest edge (Haddad et al., 2015), 

indicating the scale of edge influences on biodiversity.          

Patch-scale dynamics are mediated by the landscape context, specifically the 

proportion of habitat remaining in the landscape and matrix attributes (Fahrig, 2017). 

The habitat amount hypothesis suggests that patch-scale influences on biodiversity are 

redundant until the total available habitat within a landscape drops below a threshold 

of 30% (Banks-Leite et al., 2014). This hypothesis was corroborated in an oil palm-

dominated landscape, though at a higher forest habitat threshold of 25-55% (Pardo et 

al., 2018). This suggests that the threshold value may be contingent on matrix 

attributes. Commonly neglected in theoretical frameworks of fragmentation, matrix 

qualities have been shown to supersede patch-level influences on species occupancy 

and community composition (Garmendia et al., 2013). It has been suggested that 

species can persist in sub-optimal habitat patches and overcome dispersal limitations 

provided they can exploit supplementary resources in the matrix (Antongiovanni and 

Metzger, 2005, Ricketts, 2001, Sodhi et al., 2005). Taken as a whole, the distribution 

and persistence of biodiversity in fragmented landscapes is determined by processes 

operating across multiple spatial-scales, which must be uncoupled to ascertain and 

mitigate the distinct drivers of species loss. 

The retention of forest fragments within human-modified landscapes has long 

been recognised as a valuable management tool to secure biodiversity retention. 

Understanding the dynamics of biodiversity persistence in fragmented landscapes is, 

therefore, central to developing effective management strategies and policies 
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(Meijaard and Sheil, 2007). However, quantifying the optimal characteristics of 

remnant vegetation that promote biodiversity retention has proved challenging 

(Fahrig, 2003). This information is fundamental to guide policies that seek to establish 

ecologically functional forest networks in human-modified environments. 

 

Hunting 

The ‘empty forest syndrome’ is a pervasive phenomenon describing the 

widespread defaunation of forests as a result of hunting (Redford, 1992, Harrison, 

2011). Across the tropics, intact vertebrate assemblages are estimated to occur in only 

1-35% of the remaining forest extent (Morrison et al., 2007). Wildlife are generally 

hunted for food, medicine, ornamentation or illegal trade (Corlett, 2007). Subsistence 

hunting is considered sustainable at a population density of 1 person per km2 

(Robinson and Bennett, 2004), however current population densities in human-

modified areas across the tropics range between 46 and 522 people per km2 (Bennett, 

2002). Bushmeat harvest rates reflect this discrepancy, with between 150 and 4,900 

tonnes harvested across tropical regions annually (Fa et al., 2002). Though these 

figures likely underestimate current levels of offtake. Moreover, infrastructure 

development and growing affluence stimulate remote demand for wildlife derivatives 

(Harrison et al., 2016). Yet, despite substantial impacts, hunting continues to represent 

a source of uncertainty in studies investigating biodiversity persistence in human-

modified landscapes.  

Hunting can have profound impacts on the abundance, diversity and 

composition of wildlife communities (Peres, 2001). In a pantropical meta-analysis, 
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Benítez-López et al. (2017) documented an 83% reduction in mammal populations 

due to hunting with accessibility being the most influential determinant of biotic 

declines. Hunting pressure is therefore exacerbated by proximate mechanisms of land-

use change that develop infrastructure to facilitate access to remote forest frontiers. 

Humans are typically central place foragers, thus hunting intensity is a function of 

distance from human settlements and generally decays beyond a threshold of 20 km 

(Peres, 2000). Technological advances in weaponry and the accessibility of 

international markets for the exportation of animal products have intensified offtake 

in affected regions (Harrison et al., 2016). Hunting pressure is a delicate balance 

between hunter preference and species sensitivity. Human hunting practices can be 

examined in relation to optimal foraging theory, whereby maximum returns are sought 

per unit effort (Cowlishaw and Dunbar, 2000). Accordingly, large game offer the best 

return on effort, while abundant species, or those displaying behavioural traits that 

facilitate identification and location (i.e. group living, vocal, predictable behaviour 

patterns), are desirable harvest options due to ease of capture (Stafford et al., 2017, 

Wright, 2003). Vulnerability to hunting is also dependent on the biological 

characteristics of the target organism, with long-lived species, persisting at low 

densities with long generation times being sensitive to exploitation (Ripple et al., 

2016). Furthermore, the selective removal of preferential species alters biotic 

interactions across multiple trophic levels, with cascading effects on biodiversity and 

ecosystem services (Brodie, 2018, Rosin, 2014, Wright, 2003). For example, the 

persecution of large frugivorous mammals and birds disrupts the process of seed 

dispersal, influencing the spatial and genetic signatures of plants and trees, and thus 

the services provided by the forest (Harrison, 2011). Thus, hunting has far-reaching 
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consequences beyond numerical and distributional restrictions on forest-dwelling 

taxa. 

Hunting is a cryptic phenomenon that is notoriously difficult to quantify, 

restricting our capacity to manage unsustainable exploitation in human-modified 

landscapes (Benitez-Lopez et al., 2017, Peres, 2001). Current understanding of 

hunting impacts is predominantly derived from coarse comparisons of hunted versus 

non-hunted sites (Cullen Jr et al., 2000, Galetti et al., 2009) or direct/indirect 

encounters with human hunters (Brodie et al., 2015b, Sampaio et al., 2010). Both 

approaches are problematic to execute. Statistics would suggest that no area of the 

tropics is truly free of hunting pressure, while it is simplistic to infer absence of 

evidence based on evidence of absence given potential for imperfect detection. 

Qualitative methods, particularly specialised interview techniques (Nuno and St. John, 

2015), offer promising tools to investigate hunting, while mitigating non-response 

(Groves, 2006) and social desirability bias (Fisher, 1993) commonly associated with 

investigations regarding illegal behaviour. However, these techniques require large 

sample sizes, impose limitations on survey design and introduce a methodological 

complexity that may prove challenging for people with a limited educational 

background (Nuno and St. John, 2015). Alternatively, proxies for anthropogenic 

pressure based on proximity to infrastructure are commonly employed (Benitez-Lopez 

et al., 2017, Michalski and Peres, 2007). While hunting has been consistently linked 

to distance to access points (Symes et al., 2016), basic Euclidean distance measures 

fail to capture the complexity of accessibility. Collectively, this implies a need for a 

spatially explicit hunting index that captures the nuance of contemporary hunting 

practices. 
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Policy options for biodiversity conservation in human-modified 

landscapes 

Halting the modification and conversion of forests is perhaps the most 

effective strategy to ensure species persistence in tropical landscapes. Protected areas 

are known to be an effective tool to safeguard biodiversity in the tropics (Beaudrot et 

al., 2016a, Laurance et al., 2012) and attenuate forest loss (Gaveau et al., 2007, 

Geldmann et al., 2013, Linkie et al., 2008). However, they are spatially 

underrepresented and under-resourced (Butchart et al., 2015). It is widely 

acknowledged that key biodiversity areas are not captured by the current protected 

area configuration (Watson et al., 2014), which accounts for only 9.8% of the tropical 

biome (Schmitt et al., 2009). Moreover, there is lingering uncertainty as to how static 

protected areas will capture dynamic shifts in species distributions due to climate 

change (Guisan et al., 2013). It is estimated that less than 10% of the current protected 

area network is expected to represent present climatic condtions in the next century 

(Loarie et al., 2009). Although international commitments to expand the global extent 

of the protected area network will afford some security to tropical forests and 

biodiversity (Aichi Target 11; Convention on Biological Diversity, 2010), previous 

expansions have been predominantly opportunistic, resulting in unrepresentative, 

biased spatial coverage (Butchart et al., 2012, Joppa and Pfaff, 2009). Only 6% of 

protected areas reported sufficient resources for effective management (Convention 

on Biological Diversity, 2003), with cascading influences on boundary delineation, 

enforcement, resource management and the provision of infrastructure (Bruner et al., 

2001). The economic sustainability of protected areas has also been questioned. Less 
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than 10% of maintenance costs are met by tropical nations, suggesting an over-reliance 

on external support to meet management costs (Balmford et al., 2003). Collectively, 

these limitations encourage poor governance and reduce protected area effectiveness, 

which, in turn, compromises biodiversity conservation objectives. While protected 

areas remain a fundamental element of global conservation strategies, their capacity 

to safeguard biodiversity is contingent on informed expansion and financial 

reinforcement (Pouzols et al., 2014).    

There is increasing recognition that the efficacy of protectionist approaches to 

conservation is inextricably linked to the socio-economic factors that underpin land-

use change (Symes et al., 2016). Thus the potential for the reserve network to 

contribute to biodiversity objectives is determined by the extent to which 

anthropogenic pressures are managed in adjacent human-modified landscapes 

(Chazdon et al., 2009). Two dominant paradigms have emerged to reconcile the socio-

economic dimensions of land-use change and biodiversity persistence in modified 

systems: conservation payment mechanisms and supply-chain initiatives. These 

instruments are voluntary, market-based and predominantly incentive-driven, but vary 

in their degree of state involvement (Lambin et al., 2018, Lambin et al., 2014). 

Common to both is explicit consideration of the landscape-level impacts of human 

actors (Perfecto and Vandermeer, 2008) and an understanding of the coupled socio-

ecological dynamics inherent in human-modified landscapes (Liu et al., 2007). 
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Market-based payment mechanisms 

Market-based payment mechanisms describe a range of policy instruments that 

assign economic value to natural capital to provide financial encouragement for 

conservation (Miles and Kapos, 2008, Wunder, 2007). They are founded on the tenet 

that benefits derived from nature must be perceived before conservation can be 

justified (Barlow et al., 2018). Commoditising ecosystem services derived from 

tropical forests provides the economic impetus for their protection, which improves 

prospects for biodiversity in vulnerable landscapes while garnering local support for 

conservation (Tilman et al., 2017). Payment mechanisms are inherently performance-

based and characterised by conditional voluntary agreements (Wunder et al., 2008). 

Financial incentives can be structured to compensate avoided action or reward pro-

active environmental management (Wunder, 2005). Adjacent policies are 

underwritten by the dual concepts of dependency and willingness to pay (Redford and 

Adams, 2009). Willingness to pay by consumers must exceed the inclination of the 

provider to accept payment, thus, to guarantee successful implementation, perceived 

benefits must offset incurred opportunity costs (Lambin et al., 2014). Moreover, 

payment mechanisms are dependent on institutional frameworks to facilitate financial 

transactions and secure compliance from service providers (Muradian et al., 2010, Van 

Noordwijk et al., 2012). 

A suite of problems relate to the commoditization of natural capital provided 

by forests. Some ecosystem services are not amenable to economic valuation (Abson 

and Termansen, 2011), and, while effective markets exist for provisioning services, 

they are lacking for cultural, supporting and regulating services, necessitating 

charitable support (Adams, 2014). Even when effective markets exist, the value of the 
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ecosystem service is dictated by market forces, supply and demand, all of which may 

fluctuate to remove economic value from the ecosystem and thus financial motivations 

for conservation (Vira and Adams, 2009). If the quantity or value of the final 

ecosystem service is of overarching importance, there are concerns that delivery can 

be met in impoverished environments, or, novel, synthetic ecosystems that maximise 

ecosystem service delivery yet retain little native biodiversity (Redford et al., 2014). 

Finally, the social success of ecosystem service orientated policy is contingent on the 

equitable distribution of benefits; a failure to incorporate local communities into 

benefit-sharing can lead to conflict, leakage and institutional failure (Birch et al., 

2014).     

The United Nations Reducing Emissions from Deforestation and forest 

Degradation (REDD+) policy is perhaps the most prominent conservation payment 

mechanism. REDD+ provides a financial alternative to the proximate mechanisms of 

land-use change. Within the REDD+ framework developing nations are compensated 

for actions that maintain, enhance or restore the carbon stored in tropical forests (Miles 

and Kapos, 2008). Qualifying actions comprise a range of management strategies, 

including avoided deforestation, sustainable forest management and afforestation 

(Venter and Koh, 2012). From a biodiversity conservation perspective, REDD+ is an 

attractive prospect due to its potential to deliver biodiversity co-benefits (Gardner et 

al., 2012). These “win-win” outcomes allude to regions where carbon value is 

intrinsically linked to high biodiversity, thus management actions that maintain carbon 

simultaneously protect biodiversity at no additional cost. To date there is little 

consensus on the capacity for REDD+ to deliver co-benefits (Anderson et al., 2009, 

Ferreira et al., 2018, Naidoo et al., 2008, Turner et al., 2007), indicating they are likely 
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scale-dependent and context-specific.  Understanding the conditions necessary for co-

benefits is essential to target REDD+ applications to where they will be most effective. 

 

Supply chain initiatives 

Supply chain initiatives describe a broad suite of environmental commitments 

proposed by private actors to demonstrate sustainability within their operations 

(Lambin et al., 2018). They reflect a corporate response to growing consumer unease 

concerning the links between commodity production and environmental degradation. 

Supply chain initiatives have been aligned with the New York Declaration on Forests, 

under which, corporate actors pledged to eliminate deforestation associated with 

commodities before 2020 (United Nations, 2014). These developments indicate 

increasing traction for environmentally-conscious production.  

Supply chain initiatives encompass two complimentary paradigms: sectoral 

standards and corporate pledges. Sectoral standards refer to principles and criteria 

adopted by coalitions of companies that define sustainable standards of practice 

(Lambin et al., 2018). These standards are conventionally formalised within the 

context of eco-certification schemes which require compliance from affiliated 

companies, often at significant opportunity costs (Auld et al., 2008). In recompense, 

companies receive price premiums on certified products and preferential access to 

lucrative, environmentally-vigilant Western markets (Lambin et al., 2014). In recent 

decades, nearly 400 certification standards have incorporated environmental 

safeguards on a range of goods and services, including the tropical soy, beef, forestry 

and oil palm sectors (Carlson et al., 2018). Timber and oil palm certification are 
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governed by the Forest Stewardship Council (FSC) and Roundtable on Sustainable 

Palm Oil (RSPO), respectively. Critics have argued that certification schemes are 

compromised by weak standards (Laurance et al., 2010), ambiguous guidelines 

(Dennis et al., 2008), limited enforcement (Ruysschaert and Salles, 2014) and a failure 

to reprimand non-compliance (Meijer, 2015). Moreover, limited uptake constrains the 

environmental scope of certification. For example, certified oil palm accounts for only 

20% of the global trade (Garrett et al., 2016). The shortcomings of certification 

schemes to safeguard biodiversity is evidenced by a 500,000 ha loss of Sumatran 

orang-utan (Pongo abelii) habitat during the operational tenure of the RSPO 

(Ruysschaert and Salles, 2014). Conversely, since 2000, certified Indonesian oil palm 

concessions were associated with a 33% reduction in deforestation compared to non-

certified plantations (Carlson et al., 2018), indicating that continual revisions of 

sustainability criteria may be overcoming some of the these limitations.   

Corporate pledges are publicly stated, non-governmental commitments to 

source and produce commodities independently of deleterious social and 

environmental impacts. Recent “zero-deforestation” pledges to eliminate forest loss 

from commodity supply-chains demonstrate corporate commitment to sustainability. 

Sustainability pledges arose from the perceived inadequacy of sectoral standards 

(Khor, 2011). While corporate pledges do not yield financial benefits equivalent to 

certification, they reduce the reputational risk associated with commodity production 

and create a favourable brand image (Lambin et al., 2018), which can be used to 

leverage an increased market share and maximise profits (Alves, 2009, Elder et al., 

2014). However, tracking compliance with zero-deforestation commitments has 

proved challenging due to land tenure disputes (Gaveau et al., 2016a). Moreover, in 
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the context of corporate pledges, deforestation can refer to net- or gross-deforestation, 

which have contrasting implications that can translate to perverse practical outcomes 

for conservation (Brown and Zarin, 2013). There are also concerns that zero-

deforestation could limit socio-economic growth in nations with a high proportion of 

primary forest cover (Senior et al., 2015). If corporate commitments are to safeguard 

tropical forests and their biodiversity, there needs to be greater standardisation in the 

formulation, adoption and implementation of sustainability pledges. 

Effective methodologies to identify and prioritise forest habitat in human-

modified landscapes are essential to translate corporate commitments into 

environmentally sustainable operations. Presently, High Conservation Value (HCV) 

criteria guide the implementation of many supply-chain initiatives in the forestry, 

agriculture and mining sectors. The HCV concept seeks to identify areas with 

exceptional ecological, social or cultural importance, and ensure that they are managed 

in a manner that maintains or enhances their inherent value (Brown et al., 2013). A 

key criticism of the HCV tool is that the criteria are too spatially restrictive to provide 

sufficient security to the vast expanses of forest vulnerable to conversion (Edwards et 

al., 2012). HCV criterion 3 focuses on endangered, rare or endemic species and 

ecosystems, which are intrinsically range restricted, thus limiting the geographical 

scope of the concept (Edwards et al., 2012). Moreover, HCV criteria afford no explicit 

security to degraded forests that comprise the majority of the remaining forest estate 

and retain considerable ecological value (Barlow et al., 2007, Berry et al., 2010, 

Struebig et al., 2013). Though, it is worth noting that social or cultural HCV criteria 

(4-6) may afford species protection where explicit recognition is absent. However, 

HCV implementation is further hindered by a weak logistical framework (Yaap et al., 
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2010) and implementation guidelines that are open to interpretation and malpractice 

(Koh et al., 2009). The success of supply-chain initiatives is dependent on consumer 

and corporate belief in the integrity of the product, which could be jeopardised by the 

misapplication of tools that strive to deliver environmental sustainability. Evidently, 

there is a need to develop and evaluate alternative instruments that can objectively and 

transparently identify areas of conservation value within production landscapes. 

 

Status of the world’s mammals 

The taxonomic class Mammalia, colloquially termed mammals, is a diverse 

grouping of 5,487 species distributed across 1,229 genera, 153 families and 28 orders 

(Bininda-Emonds et al., 2007, Schipper et al., 2008). Mammals are an exceptionally 

adaptive group inhabiting most of the world’s terrestrial and marine biomes. Mammals 

occupy key ecological roles in tropical forest ecosystems, including trophic regulation 

(predation: Estes et al., 2011, Terborgh et al., 2001, herbivory: Jia et al., 2018, Smith 

et al., 2016), seed dispersal (Corlett, 2017, Granados et al., 2018), seed predation 

(Asquith et al., 1997) and biogeochemical cycling (Berzaghi et al., 2018, Sobral et al., 

2017). It is estimated that 90% of tropical tree species depend on interactions with 

wildlife to complete their life cycles (Malhi et al., 2014). Consequently, mammal 

extirpation can have cascading effects on ecosystem functioning and stability (Kurten, 

2013). For example, Brodie (2018) linked the loss of tropical mammals to large-scale 

compositional shifts in tropical tree communities and concomitant declines in carbon 

sequestered by tropical forests. Moreover, no other taxonomic group has captivated 

humanity more than mammals. They are frequently cited as high profile species with 

demonstrated public appeal (Macdonald et al., 2015). Mammals are thus highly 
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effective conservation ambassadors to raise public awareness of critical ecological 

issues and garner financial support for interventions through international marketing 

campaigns (Macdonald et al., 2017).      

Despite their inherent value, conservation efforts to safeguard mammals have 

often proved ineffective. Twenty-five percent of mammals, equating to 1139 species, 

are considered threatened with extinction, most of which are concentrated in the 

tropics (Hoffmann et al., 2010, Schipper et al., 2008). Land-use change is a principal 

driver of threat status (Crees et al., 2016, Tilman et al., 2017), with estimates 

suggesting affected species have lost an average of 50% of their historical range 

(Ceballos and Ehrlich, 2002). Dwindling habitat availability coupled with wide-

ranging habits suggests that conservation strategies focussing solely on the 

preservation of primary forest will be of little value. New approaches to compliment 

protectionist strategies are therefore essential to safeguard vulnerable mammal 

populations. 

Effective conservation requires accurate information on the distribution, 

occurrence and abundance of threatened species. In the tropics, mammal conservation 

is hindered by an alarming paucity of information on the ecology of threatened species 

(Sodhi, 2008). This is reflected in the fact that 15% of described species are considered 

data-deficient on the IUCN Red List (Schipper et al., 2008). Acquiring the necessary 

information to inform mammal conservation is complicated by their ecology. 

Mammals are inherently cryptic, persist at low densities and range over wide areas 

which makes them logistically challenging to study (Brodie et al., 2015b). Developing 

evidence-based solutions to the threats facing mammals requires methodologies that 

can overcome these limitations.            
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Technological and statistical mitigation measures 

Modern advances in remote technologies and statistical methods present 

opportunities to overcome the obstacles associated with sampling tropical mammals. 

Remotely operated digital cameras, or camera-traps, have emerged as an effective tool 

to gather ecological information on cryptic, data-deficient species. Camera-traps are 

continuous time detectors that employ motion- and passive infra-red sensors, triggered 

by a combination of movement and anomalous heat signatures. The use of camera-

traps as a Eulerian approach to biodiversity monitoring has increased markedly in 

recent decades as units have become more affordable and efficient (Rowcliffe and 

Carbone, 2008). Camera-traps are now widely-recognised as the principal sampling 

strategy for a range of applications, including abundance estimations, taxonomic 

inventories, conservation assessments and behavioural evaluations (Burton et al., 

2015). The main advantages of camera-traps are that they provide a non-invasive, 

labour-efficient means to collect robust information on wildlife populations largely 

free of observer bias (Kays et al., 2009). When compared to alternative sampling 

methods such as line transects and track counts, camera-traps were found to be the 

optimal sampling method for medium-large mammals (Silveira et al., 2003). 

Despite these benefits, biodiversity monitoring using camera-trap methods is 

confounded by imperfect detection, where a species is present but not detected within 

a sampling unit (Guillera-Arroita, 2017, MacKenzie et al., 2017). Failure to account 

for imperfect detection results in an underestimation of the biological response of the 

target species, introducing inferential bias that can propagate into management 

recommendations (Benoit et al., 2018). Moreover, rare species, that are often most 
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vulnerable to land-use change, often yield insufficient data for reliable inference, 

regardless of survey effort (Sollmann et al., 2013, Zipkin et al., 2010). Recent 

innovations in hierarchical modelling have provided a framework to mitigate the 

consequences of imperfect detection and rare species occurrence (Dorazio and Royle, 

2005). Hierarchical models comprise conditionally-dependent, sub-components 

describing the ecological and sampling processes underpinning the data (Gelman and 

Hill, 2006). Thus the state process of interest can be corrected through explicit 

recognition of detectability (Zipkin et al., 2009). In the case of rare species, multi-

species modelling approaches introduce an additional hierarchical component that 

draws species-specific inferences from collective community data. This has been 

shown to improve parameter precision for species infrequently detected during 

sampling (Broms et al., 2016, Pacifici et al., 2014). From a conservation management 

perspective, multi-species models provide an efficient procedure to optimise camera-

trap by-catch and determine the impact of interventions across a range of species, 

rather than merely those targeted by conservation/research initiatives (Benoit et al., 

2018, Zipkin et al., 2010).                

Conservation assessments typically require species locality data be coupled 

with covariates describing the biotic and abiotic conditions of a site. These species-

habitat associations underpin our understanding of how a species will respond to 

environmental perturbations. Given the vast area requirements of larger mammals, it 

is logistically unfeasible to collect environmental covariates at ecologically 

meaningful scales in situ. Moreover, species-habitat associations are multi-factorial 

processes, operating across a range of spatial and temporal scales (Chalfoun and 

Martin, 2007). To capture this complexity, biotic and abiotic conditions need to be 
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quantified over a range of spatial extents that are rarely known a priori (Mayor et al., 

2009).  

Advances in remote-sensing have provided ecologists with a toolkit to couple 

in situ biodiversity data with global environmental datasets to develop informed 

mitigation actions for land-use change (Turner, 2014). Remote-sensing products 

provide extensive spatio-temporal coverage of the tropical biome, facilitating the 

characterisation of biodiversity patterns across remote, under-sampled regions 

(Anderson, 2018, Pettorelli et al., 2014, Turner et al., 2015). However, tropical forest 

applications are hindered by technological constraints and environmental challenges. 

Optical remote-sensing techniques cannot reliably detect forest disturbance (Bryan et 

al., 2013). For example, satellite-imagery has been shown to underestimate forest 

degradation by up to 50% (Asner et al., 2005). Moreover, cloud cover, atmospheric 

disturbances and topographic shadow effects restrict the quality and availability of 

valid observations (Miettinen et al., 2014). Yet, even when data of sufficient quality 

are accessible, the temporal window to quantify forest disturbance is limited due to 

rapid regrowth of secondary vegetation (Peres et al., 2006). The scope of remote-

sensing is also restricted to appraisals of upper canopy elements due to the inability of 

sensing apparatus to sufficiently penetrate the uppermost layer of vegetation (Gibbs et 

al., 2007, Morel et al., 2011). High-resolution airborne Light Detection and Ranging 

(LiDAR) has emerged as a possible panacea to these challenges and has become a 

popular tool to characterise fine-scale habitat influences on biodiversity (Lefsky et al., 

2002). However, to date, LiDAR applications to support the conservation of terrestrial 

mammals in tropical regions are largely lacking (Davies and Asner, 2014). 
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Southeast Asia: a region in crisis 

Southeast Asia’s forests are considered the most intensively used across the 

tropical biome (Laurance, 2007). Southeast Asia is defined by member states of the 

Association of Southeast Asian Nations: Cambodia, Lao PDR, Myanmar, Thailand, 

Viet Nam (continental); Brunei, Indonesia, Malaysia, Papua New Guinea, Timor Leste 

(insular); Miettinen et al. (2014). The region has lost 32 million ha of forest cover 

since 1990 and has been subjected to some of the highest deforestation rates in the 

world (Sodhi et al., 2010, Stibig et al., 2013). The dominant drivers of deforestation 

include the proliferation of commodity agriculture and industrial-scale selective 

logging, which represent 77- and 13% of forest loss respectively (Curtis et al., 2018). 

Southeast Asia exports in excess of 62 million tonnes of oil palm annually, which 

equates to 85% of the global supply (Meijaard et al., 2018). It is estimated that 55% 

of the region’s current oil palm extent came at the expense of primary forest (Koh and 

Wilcove, 2008). Moreover, the region contributes 67% of the total volume of 

harvested tropical timber (Sodhi, 2008). The commercial value of Southeast Asia’s 

dominant dipterocarp trees has resulted in the highest timber extraction rates across 

the tropics, exceeding 100 m3 ha-1, which is an order of magnitude greater than those 

experienced in South America or Africa (Fisher et al., 2011a, Sodhi et al., 2004). The 

remaining forest across the region is highly fragmented and susceptible to secondary 

disturbance impacts (Brinck et al., 2017). The initial intrusion caused by 

anthropogenic habitat modification increases accessibility to remote forest frontiers 

and extends the reach of human hunters (Harrison et al., 2016). It is estimated that 

only 1% of the remaining forest cover is free of some level of hunting pressure 

(Morrison et al., 2007). With the Southeast Asian population scheduled to increase to 
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2.6 billion before 2050 (Laurance, 2007), these pressures are likely to intensify over 

time. 

Pervasive forest modification threatens Southeast Asia’s exceptional 

biological diversity. The region overlaps with four global biodiversity hotspots, 

characterised by rarity and endemism (Myers et al., 2000). For example, the Sundaland 

hotspot accommodates 3% of the planet’s endemic vertebrates (Myers et al., 2000). 

However, if patterns of land-use change continue upon their present trajectory, it is 

estimated that 79% of the region’s vertebrates will be consigned to extinction by 2100, 

48% of which are mammals (Brook et al., 2008). Mammals have lost 70% of their 

original habitat across the region (Myers et al., 2000), though the development of 

effective conservation measures has proved challenging due to a weak ancilliary 

evidence-base. Basic ecological knowledge is lacking for most Southeast Asian 

vertebrate species, 32% of which are considered data-deficient (Li et al., 2016). The 

case study of Singapore provides a stark reminder as to the ecological consequences 

of unabated land-use change, with a 95% reduction in forest cover precipitating the 

loss of 87% of the faunal community (Brook et al., 2003). Given the scale of regional 

forest modification, evidence-based conservation interventions that recognise the role 

of human-modified landscapes are essential to safeguard Southeast Asia’s imperilled, 

but poorly understood, mammal diversity. 

 

Thesis structure 

This thesis aims to ascertain the biological value of human-modified 

landscapes for tropical mammals that are acutely threatened by land-use change but 
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poorly known to science. To this end, I aim to fill critical knowledge gaps in tropical 

mammal ecology, while assessing how well they are represented within policy options 

that seek to enhance the conservation potential of human-modified landscapes and 

address the distal drivers of land-use change. Capitalising on contemporary advances 

in remote technologies and statistical modelling, I aim to understand the value of 

coupled applications to overcome impediments associated with sampling rare, cryptic 

and wide-ranging species. Throughout, I focus on Southeast Asia, a region 

characterised by unsustainable levels of land-use change and wildlife exploitation. 

Evaluating policy options in this geographic context provides a much needed 

evidence-base for a vulnerable tropical region while strengthening the conservation 

toolkit to prevent environmentally analogous outcomes elsewhere in the tropics. To 

achieve these principal aims, this thesis comprises three data chapters, each of which 

constitutes a stand-alone research paper. Due to the collaborative nature of these 

chapters I adopt a shift in passive voice, replacing singular- with plural pronouns.   

Chapter 2 provides a nuanced appraisal of the biodiversity value of logged 

forests. Using high-resolution remote-sensing data and novel processing techniques, 

we describe forest architectural properties across a gradient of disturbance at 

unprecedented levels of detail. We characterise mammal-habitat associations using 

bespoke multi-species, multi-scale occupancy models to capture the hierarchical 

nature of habitat selection relative to the structural environment. Using a high 

conservation value species as a case study, we demonstrate how model outputs can be 

practically applied to inform the prioritisation of conservation and restoration areas to 

support ambitious policy targets for degraded land rehabilitation. 
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Chapter 3 explores the potential for carbon-orientated policy mechanisms to 

safeguard forest remnants of biodiversity value in production landscapes. Specifically, 

we investigate spatial concordance between carbon and biodiversity to understand the 

potential for aligned climate change mitigation and conservation outcomes in human-

modified landscapes. We develop robust estimates of mammal occupancy and species 

richness to provide the first scientific appraisal of the biodiversity credentials of phase 

one High Carbon Stock protocols, which we critically compare to a REDD+ 

application. Our assessment builds on the shortcomings of previous research by using 

primary biodiversity data and adopting spatial scales appropriate to decision makers. 

Chapter 4 builds on the work of Chapter 3 by assessing the value of phase 

two HCS protocols to design ecologically functional forest mosaics in human-

modified landscapes, which we use to ascertain the value of tools aligned to zero-

deforestation commitments. Specifically, we characterise mammal abundance in 

forest fragments to understand the patch- and landscape-level properties that promote 

biodiversity persistence. Moreover, we incorporate a bespoke spatially-explicit 

hunting pressure variable to quantify secondary disturbance impacts on mammal 

populations. We use these outputs to understand whether current HCS 

recommendations safeguard vulnerable mammals in fragmented landscapes.         
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Abstract 

Logged forests are considered integral to global conservation planning, yet our 

understanding of the specific structural properties that facilitate species persistence in 

degraded habitats is lacking. Moreover, forests are inherently three-dimensional 

environments yet this is rarely incorporated into assessments of species-habitat 

associations to inform conservation action. Focussing in Sabah, Malaysian Borneo, a 

region characterised by high levels of forest degradation, we couple airborne 

multispectral remote-sensing methods (LiDAR) and camera-trapping to capture the 

three-dimensional properties of forest architecture and quantify the terrestrial mammal 

community across a gradient of disturbance. Here we reveal how habitat structural 

properties mediate biodiversity declines relative to logging-induced structural 

degradation. Mammals were most responsive to covariates that explicitly captured 

vertical structure and heterogeneity and actively selected habitats retaining old growth 

structural characteristics, including tall canopies, increased plant area density 

throughout the vertical column and the availability of a greater diversity of 

environmental niches. We find mammals to be more responsive at the scale of third-

order habitat selection, indicating that resources are tracked at successively lower 

hierarchical levels to overcome limitations in impoverished environments. Our results 

demonstrate the sensitivity of mammals to logging-induced changes in forest 

structure, providing empirical support for sustainable forestry practices that maintain 

architectural diversity. To support policies aimed at prioritising degraded land for 

conservation, we introduce a framework to integrate biodiversity considerations into 

environmental decision-making. Focussing on a high conservation priority species, we 

demonstrate how ecological thresholds, delineating abrupt changes in the occurrence 
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state relative to aspects of the structural environment, can be practically applied to 

prioritise conservation and restoration areas in degraded systems.  

Keywords: Camera-trapping, ecological thresholds, forest structure, LiDAR, 

occupancy, prioritisation, selective logging, Southeast Asia, Sunda clouded leoprard. 
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Introduction 

Habitat degradation is globally pervasive in forest ecosystems, affecting ~4 

billion hectares (82%) of the remaining forest extent (Watson et al., 2018). Forest 

degradation can have profound impacts on habitat suitability for terrestrial vertebrates, 

particularly in tropical regions where biodiversity is most concentrated (Barlow et al., 

2018). This has led to degradation concerns being integrated into policy, most notably 

by the Bonn Challenge which seeks to restore 350 million hectares of degraded land 

before 2030 (http://www.bonnchallenge.org/). However, frameworks to integrate 

biodiversity considerations into the prioritisation of vulnerable degraded forests for 

conservation are currently lacking, though remain essential in tropical regions with 

limited institutional or regulatory capacity. 

Logging in the tropics, albeit selective, can be destructive (Asner et al., 2005), 

resulting in structural simplification of forests due to the disproportionate removal of 

high biomass trees and collateral damage to residual vegetation (Pinard and Putz, 

1996). Degraded forests now rival intact primary forests as the dominant form of forest 

cover within the tropical biome and have become central to global conservation 

planning. While the value of logged forest for biodiversity conservation is well 

established for a range of taxonomic groups (Edwards et al., 2014, Putz et al., 2012, 

Wearn et al., 2016), this perspective is primarily derived from coarse comparisons of 

logged and primary forest. By coercing habitat into uniform classifications, studies 

overlook spatial heterogeneity within and between logging concessions, which can be 

substantial (Berry et al., 2008). When defined along a continuum, the conservation 

value of logged forest is known to decline with increasing logging intensity 

(Burivalova et al., 2014), extraction technique (Bicknell et al., 2014) and temporal 

http://www.bonnchallenge.org/
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frequency of rotation (Edwards et al., 2011). While these findings allude to the 

ecological consequences of biomass extraction, we still have a limited understanding 

of the specific structural attributes associated with biodiversity retention in degraded 

forest ecosystems. This information is fundamental to capitalise on conservation 

opportunities within the vast tropical timber estate and direct interventions to where 

they will have the greatest impact. 

Forest structure is synonymous with habitat quality which has long established 

consequences for wildlife. Structurally complex environments provide a greater 

breadth of environmental niches (MacArthur, 1984) and accommodate higher species 

diversity by facilitating co-existence through mechanisms such as resource 

partitioning and niche diversification (Hearn et al., 2018b). In forests, structure can be 

partitioned into horizontal and vertical components, which determine the distribution 

(Palminteri et al., 2012), diversity (Gouveia et al., 2014), abundance (Martins et al., 

2017) and behaviour (Loarie et al., 2013, Lone et al., 2014) of animals. Despite the 

multidimensionality of tropical forest ecosystems (Oliveira and Scheffers, 2018), 

considerations of the three-dimensional environment are rarely incorporated into 

conservation planning. Given that up to 75% of forest-dwelling vertebrates access 

canopy resources (Kays and Allison, 2001), a broader perspective is desirable. 

For forest management to align with biodiversity conservation objectives, an 

understanding of the structural features of the forest environment that species actively 

utilise (Moreira-Arce et al., 2016) and how these are associated with ecological 

processes (Lone et al., 2014) is required. Positive associations with species diversity 

have been identified in 77% of studies exploring the influence of forest structure 

(Simonson et al., 2014), indicating active selection for structurally complex 
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environments. Active habitat selection is an adaptive process seeking to balance 

reward (resource acquisition, mating opportunities) relative to risk (energy 

expenditure and predation) (Mayor et al., 2009). Therefore, it is generally assumed 

that preferential habitat use corresponds to areas that convey ecological benefits 

(Mosser et al., 2009). Given the limited funding available for conservation (McCarthy 

et al., 2012), knowledge of preferential habitat for vulnerable species is paramount to 

inform conservation investment. This is particularly pertinent in degraded forests 

which retain appreciable levels of biodiversity but are susceptible to conversion to 

agricultural lands of limited biological value (Edwards et al., 2014).  

Efforts to characterise habitat selection and inform conservation are hindered 

by simplifying assumptions that overlook the inherent complexity underpinning 

species-habitat associations. Habitat selection is a nested hierarchical process 

describing home range establishment and episodic use of home range elements to meet 

ecological demands; termed second- and third-order habitat selection respectively 

(Johnson, 1980). Despite the sensitivity of ecological analyses to scale, habitat 

selection models predominantly adopt a single-scale focus (McGarigal et al., 2016), 

which obscure scale-dependent associations and hierarchically-specific environmental 

interactions (Mayor et al., 2009). Forest architecture is expected to influence patterns 

of biodiversity at a range of spatial scales (Tews et al., 2004), yet there are few 

quantitative assessments of habitat structure and biodiversity across multiple scales 

concurrently (but see Mateo-Sánchez et al., 2016).  

The advent of multi-scale occupancy models (Mordecai et al., 2011, Nichols 

et al., 2008) provides an analytical platform to account for the hierarchically 

structured, scale-dependent nature of habitat selection while correcting for sampling 
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bias. However, to date, applications have been largely limited to single-species 

approaches (Aing et al., 2011, Crosby and Porter, 2018, Lipsey et al., 2017, Mordecai 

et al., 2011). Tropical forest mammals are inherently rare and cryptic, complicating 

quantitative assessment (Brodie et al., 2015b). Multi-species occupancy models 

circumvent this issue to provide robust parameter estimates for species infrequently 

encountered during biodiversity surveys (Dorazio and Royle, 2005). Thus, the formal 

integration of multi-species methods within a multi-scale framework would provide a 

powerful statistical tool to capture the complexity of habitat selection for vulnerable 

species to support conservation interventions in degraded forest ecosystems.  

Here, we assess degradation impacts on habitat structure and biodiversity 

across a gradient of disturbance to provide a nuanced perspective on the conservation 

value of logged tropical forests. Our detailed appraisal focuses on the Malaysian state 

of Sabah, in a region characterised by high levels of forest degradation (Gaveau et al., 

2016b, Hansen et al., 2013). Of the remaining forest area, 46% is considered degraded, 

a figure which could likely rise to 88% if current land-use designations are honoured 

(Gaveau et al., 2014). Combining high resolution airborne LiDAR with sophisticated 

processing protocols (MacArthur and Horn, 1969, Stark et al., 2012), we develop 

forest structural metrics based explicitly on three-dimensional plant area distributions 

and chart their deterioration across a degradation gradient. Drawing on an extensive 

camera-trap dataset, we identify the specific structural attributes of degraded forest 

ecosystems that facilitate habitat use. Adopting a novel extension to multi-scale 

occupancy models we explicitly account for the scale-dependent, hierarchical nature 

of habitat selection within a multi-species framework. Given the current policy focus 

of identifying degraded lands for conservation, we demonstrate how species-structure 
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habitat associations can be practically applied to delineate priority restoration and 

conservation areas in logged forests and guide reactive environmental management 

plans.  

 

Methods 

Study site and sampling design 

Fieldwork was undertaken at the Stability of Altered Forest Ecosystems 

Project (SAFE; www.SAFEproject.net) and neighbouring oil palm estates in Sabah, 

Malaysian Borneo (Ewers et al., 2011). The SAFE Project experimental area is nested 

within the Kalabakan Forest Reserve (KFR; 4°33’N, 117°16’E), comprising lowland 

and hill dipterocarp forest. A legacy of selective logging has resulted in a 

heterogeneous landscape encompassing a degradation gradient (Fig. 2.1). Between 

1978 and 2008, KFR was subjected to multiple logging rotations extracting a total of 

179 m3 ha-1, leaving the remaining stand in a heavily-degraded state (Struebig et al., 

2013). Similarly, the adjacent Ulu Segama Forest Reserve underwent two rounds of 

timber extraction at a reduced cumulative rate of 150 m3 ha-1, and with more stringent 

size quotas. In contrast, the adjoining Brantian-Tantulit Virgin Jungle Reserve (VJR) 

retains near-pristine, old growth forest, though the signature of illegal encroachment 

is apparent on the western and southern borders. The disturbance gradient is broadly 

representative of the transitional degradation states typical of landscapes in Borneo 

and elsewhere in much of tropical Southeast Asia. 

We established 74 sampling locations to characterise forest structural 

properties and the mammal community across the study landscape (Fig. 2.1). 



39 

 

 

Locations were selected to capture the degradation gradient relative to logging 

intensity using the Putz and Redford (2010) classification scheme: Old Growth Forest 

(VJR; N=10), Managed Forest (Ulu Segama Forest Reserve; N=15) and Heavily-

degraded forest (KFR; N=28). We also sampled remnant forest embedded within an 

oil palm matrix (N=21), differentiated from degraded forest due to isolation and 

increased exposure to anthropogenic stressors.    

 

 

Figure 2.1: Map of the study site and sampling design. Map details the broader geographic context of 

the study site in Malaysia (inset), the classification of forest across the disturbance gradient within the 

Stability of Altered Forest Ecosystems (SAFE) project area, LiDAR flight path (black outline) and 

camera-trap locations (N=74).    
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LiDAR methods and structural variable development  

To characterise the structural properties of the landscape, discrete-return 

airborne Light Detection and Ranging (LiDAR) surveys were conducted in November 

2014 by NERC’s Airborne Research Facility (Fig. 1b). LiDAR is an active remote 

sensor that emits a laser pulse of light from a light aircraft towards a target object and 

quantifies distance based on the time elapsed between emission and reflection (Lefsky 

et al., 2002). Surveys employed a Leica ALS50-II sensor attached to a Dornier 228-

201 light aircraft, flown at an elevation of 1400-2400 m.a.s.l. and a velocity of 120-

240 knots. The sensor emitted pulses at a frequency of 120 kHz, encompassing a scan 

angle of 12° and a footprint of 40 cm, resulting in a point-cloud density of 25-50 points 

m-2. Concurrent ground surveys using a Leica base station facilitated accurate 

georeferencing of the point-cloud. 

To quantify structural metrics, point-cloud data were subjected to two 

processing procedures. Initially, ground and non-ground returns were partitioned from 

the point-cloud, using the former to generate a 1 m resolution digital elevation model 

(DEM). We constructed a canopy height model (CHM) of similar resolution by 

normalising non-ground returns and subtracting ground observations derived from the 

DEM. To complement this approach, and develop a nuanced insight into canopy 

structure, plant area density (PAD) distributions were generated from point-cloud data 

using a variant of the MacArthur-Horn (1969) method, modified for use with discrete-

return LiDAR (Stark et al., 2012). The MacArthur-Horn method corrects PAD for 

shadow effects caused by canopy elements closer to the sensor, and thus higher in the 

vertical column. This approach has distinct advantages over other methodologies. For 

example, PAD distributions are based strictly on vegetation properties, rather than the 
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underlying point-cloud, thus providing a three-dimensional perspective of the vertical 

column that cannot be achieved by CHMs. Moreover, independent verification has 

found strong correspondence between PAD distributions and vegetation samples 

harvested directly from the vertical column (Stark et al., 2012).  

From the CHM and PAD distributions we extracted metrics to capture three 

distinct axes of the structural environment (Table 2.1; Davies and Asner, 2014): 

horizontal structure, the arrangement of vegetation in the x and y dimensions; vertical 

structure, the arrangement of vegetation in the z dimension, and; vertical structural 

heterogeneity, the variability of canopy properties. We complimented these metrics 

with structural landscape context variables derived from the CHM to broadly capture 

the availability and quality of forest habitat (Table 2.1).    

As a preliminary assessment of the structural signature of forest degradation, 

we employed Bayesian linear models to determine differences in forest canopy 

properties across a degradation gradient. Structural covariates were extracted as mean 

values across buffer radii corresponding to optimal scales of third-order habitat 

selection (detailed in Table S2.1). Linear models were implemented in the statistical 

software JAGS (Just Another Gibbs Sampler) version 4.3.0 (Plummer, 2017), called 

through R using the package “jagsUI” (Kellner, 2016).  
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Table 2.1: Structural covariates quantified from LiDAR-derived point cloud data. Covariates capture 

three distinct axes of forest structure (horizontal structure, vertical structure, vertical heterogeneity) and 

were derived from either canopy height models (CHM) or plant area density (PAD) distributions 

developed using the MacArthur-Horn Method and adjusted for use with discrete-return LiDAR.  

Structural Axis Metric Processing 

Method 

Description 

Horizontal 

Structure 

Gap fraction CHM Proportion of focal patch 

containing vegetation below 5 m in 

height, indicative of forest gaps. 

 Number of layers PAD Number of contiguous canopy 

layers within the vertical column, 

indicative of connectivity 

Vertical 

Structure 

Canopy height CHM Average canopy height as derived 

from the CHM surface 

 Plant Area Density PAD Plant area density, inclusive of 

vegetation, stems and branches.  

Vertical 

Heterogeneity 

Shannon Index PAD The diversity of environmental 

niches within the canopy profile 

 Shape PAD Morphological measurement of the 

relative distribution of vegetation 

within the canopy. Ratio of the 

height in the canopy with the 

highest vegetation density and the 

height of the 99th percentile of the 

distribution 
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Landscape 

Context 

Forest Cover CHM Proportion of forest cover. Forest 

defined as trees >10 m in height. 

Indicative of habitat availability. 

 Canopy height 

variability 

CHM Standard deviation of canopy 

height. Indicative of forest quality. 

 

Mammal surveys 

To characterise the mammal community, we collected detection/non-detection 

data using camera-traps between June 2015 and August 2017. Remotely-operated 

digital cameras (Reconyx HC500, Wisconsin, USA) were deployed across the 75 

sampling locations, randomly stratified across the degradation gradient (Fig. 1b) and 

separated by a mean distance of 1.6 km. Within each location, we established two 

camera-trap stations positioned up to 250 m apart depending on the terrain and 

availability of forest cover (mean=185 m), resulting in a total of 148 stations. 

Accounting for theft, vandalism, malfunction and animal damage, data were obtained 

from 125 units distributed across 74 sampling locations. 

Camera-traps were deployed for a minimum of 42 consecutive nights per 

camera station, yielding a total survey effort of 5,472 camera-trap nights. Cameras 

were positioned at a standardised height of 30cm and positioned on flat surfaces 

targeting low resistance travel routes and randomised locations simultaneously to 

maximise detections and capture intra- and inter-specific difference is species’ use of 

habitat features (Cusack et al., 2015, Wearn et al., 2013).  
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Modelling framework 

We developed a multi-species extension to multi-scale occupancy models to 

explore second- and third-order habitat selection by medium-large terrestrial 

mammals relative to LiDAR-derived structural variables. Within a traditional single-

season, single-species framework, occupancy is estimated at defined locations using 

spatially or temporally replicated samples to account for imperfect detection and thus 

differentiate between true absence and non-detection (MacKenzie et al., 2017). We 

extend this framework to incorporate spatial and temporal replication and multi-

species inference. 

Our model formulation employed single-species models as analytical building 

blocks (Guillera-Arroita, 2017) and comprised three conditionally-dependent sub-

components describing the partially observed processes of occupancy (z), habitat use 

(ɑ) (state process model) and detection (observation model). These sub-models 

corresponded to the hierarchical nature of our sampling design, equivalent to site, 

camera station (spatial replicate) and survey (temporal replicate) respectively. We 

modelled occurrence, z, of species i at site j as the realisation of Bernoulli trial: 

zi,j ~ Bernoulli(ψi,j) 

where zi,j  is a binary variable indicating species presence/absence and ψi,j 

expresses the probability of species occurrence at a given site. Habitat use, α, of 

species i within site j at camera station l, is defined as the outcome of a second 

Bernoulli process conditional on species presence, zi,j :  

ɑi,j,l|zi,j  ~ Bernoulli(zi,j · ϑi,j,l)  
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where ɑi,j,l is a binary variable indicating presence/absence at the camera station 

and ϑ expresses the probability of habitat use. To account for imperfect detection in 

habitat use, we specified a third Bernoulli process: 

yi,j,l,k|ɑi,j,l ~ Bernoulli(ɑi,j,l,k · pi,j,l,k) 

where yi,j,l,k represents a 4-dimensional array containing the observed 

detection/non-detection data, k is the temporal replicate and pi,j,l,k is the detection 

probability conditional on species presence. Under this formulation we interpret model 

parameters as: (1) the probability that a site is occupied relative to coarse covariates 

influencing home range establishment (second-order habitat selection); (2) episodic 

occupation within the home range given that the site is occupied to meet ecological 

demands relative to fine-scale covariates (third-order habitat selection), and, (3) the 

probability of detecting a mammal species during a survey replicate given that the site 

was being utilised. 

Single-species models were linked by an additional hierarchical component 

that modelled species-specific parameters as realisations from a community-level 

distribution. This approach assumes species respond similarly, but not identically, to 

environmental conditions. Species-specific parameter estimates thus reflect a 

compromise between individual response and the average response of the community, 

modulated by detection history. This process induces shrinkage (the borrowing of 

statistical strength by individual species across the community), which has been shown 

to improve estimation precision for data-poor species infrequently detected during 

sampling (Pacifici et al., 2014).  
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Detection/non-detection data for each camera station were binned into 

independent sampling occasions of six-days in length (2-7 replicates per site). We 

excluded three species with fewer than five detections throughout sampling (banded 

linsang, Prionodon linsang; banteng, Bos javanicus; smooth-coated otter, Lutrogale 

perspicillata), as models are unable to discern changes in occupancy from those in 

detection when observations are very sparse (Brodie et al., 2015b). Moreover, we 

acknowledge that strictly arboreal species (i.e. gibbons, Hylobates sp., langurs, 

Presbytis sp., small-toothed palm civets, Arctogalidia trivirgata) cannot be reliably 

monitored using our sampling design and restrict inference to terrestrial species.  

Multi-scale occupancy models assume independence between spatial 

replicates (Mordecai et al., 2011), however, spatially clustered designs may result in 

Markovian dependence as a result of animal ranging behaviour (Hines et al., 2010). 

To test this assumption, we employed a Jaccard Index (J), to determine the degree of 

similarity in detection histories between camera stations nested within sites for all 

study species (Dorazio et al., 2011). We found little evidence of similarity, with the 

exception of the bearded pig (J=0.51; P=0.008), Bornean yellow muntjac (J=0.33; 

0.015), red muntjac (J=0.27; P=0.048) and pig-tailed macaque (J=0.31; 0.008), for 

which correspondence was attributed to high levels of abundance. 

To assess mammalian responses to habitat configuration and forest 

architectural properties, we developed occupancy, habitat use and detection models of 

the form: 

logit(ψi,j) = α0i + α1iForest Coverj + α2iForest Qualityj + ε(Yearj)i 

logit(ϑi,j,l) = β0i + β1iStructurej,l + β2iStructure2
j,l + ε(Yearj,l)i 
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logit(pi,j,l,k) = δ0i + δ1iTrap_Effortj,l + δ2iPAD_Herbj,l + δ3iNlayj,l  

Occupancy, habitat use and detection probabilities were modelled on the logit 

scale with random slopes and intercepts relative to species. We modelled second-order 

habitat selection (ψi,j) as a function of habitat availability (Forest Cover) and quality 

(Canopy Height Variability), at coarse spatial-scales relevant to home range 

establishment. We assessed third-order habitat selection (ϑi,j,l) relative to variables 

associated with our three structural axes, and incorporated second-order polynomial 

terms to account for non-linear responses. Due to analytically prohibitive levels of 

multicollinearity (|r|> 0.7; GVIF >5) independent models were constructed for each 

structural predictor (N=6). Scale optimisation methods were applied to second-order- 

(circular buffers of radii: 1, 1.5, 2 km) and third-order habitat selection (radii: 10, 25, 

50, 100, 150, 250, 500 m) sub-models to characterise optimal scales of selection for 

environmental predictors and determine sensitivity to spatial extent. We implemented 

temporal random effects (ε) for both the occurrence and habitat use models to address 

unmeasured inter-annual variation due to multi-year sampling. We modelled detection 

as a function of structural and sampling covariates presumed to influence the 

observation process, including: sampling intensity (“Trap_Effort”), obstructing 

vegetation features in the camera-trap detection zone (“PAD_HERB”) and alternative 

pathways in the vertical column (“Nlay”). Detection covariates were extracted across 

a fixed buffer of 25 m, corresponding to the detection zone of our camera-trap models. 

Prior to analysis, all continuous covariates were centred and standardised to place them 

on a comparable scale and improve model convergence.  

Hierarchical multi-species occupancy models were implemented using a 

Bayesian framework (for details of model code see supplement S2.1), specified with 
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uninformative priors for intercept and slope parameters. We modelled variance 

parameters associated with temporal random effects hierarchically using a half-

Cauchy distribution to mitigate potential overestimation due to few factor levels 

(Gelman, 2006). We specified three Markov chains per parameter, each comprising 

150,000 iterations with a thin rate of 100 and a burn-in period of 50,000. Convergence 

was assessed visually, to determine adequate mixing of chains, and statistically, using 

the Gelman-Rubin statistic, with values <1.1 indicating convergence (Gelman et al., 

1996). Model fit was assessed using a predictive posterior check, which compares the 

observed data against a simulated, idealised dataset (Gelman et al., 1996). We 

extracted Bayesian P values as a numerical summary of the posterior predictive 

distribution, with values of 0.5 indicating adequate model fit. We assessed model fit 

using a Pearson χ2 discrepancy measure for binomial data and a “lack of fit” statistic 

(Kéry and Schaub, 2011).  

To compare competing models between structural covariates (N=6) and scales 

(N=7), we ranked models using Watanabe Akaike-Information-Criterion (Watanabe, 

2010), a within-sample model selection criteria analogous to AIC and robust to latent 

parameters (Broms et al., 2016). Unless stated otherwise, we present results as the 

posterior distribution means with 95% Bayesian Credible Intervals (BCI: 2.5th and 

97.5th percentiles of the posterior distribution). Parameters are considered influential 

if their BCI does not overlap zero. We report findings for occurrence and detection 

parameters corresponding to the overall best fitting model, we present findings for 

habitat use parameters according to the highest ranked spatial-scale associated with 

that structural covariate. 
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Delineating restoration and conservation priority areas     

Focussing on a high conservation priority species, the Sunda clouded leopard 

(Neofelis diardi), we implemented change point analysis to link abrupt shifts in the 

occurrence state to specific forest architectural properties. We restrict change point 

analysis to structural properties, relative to which, the species demonstrated a 

significant response. We define an ecological threshold as a zone of transition between 

two stable states, characterised by a rapid rate of change (Huggett, 2005). Using the 

“bcp” package in R (Erdman and Emerson, 2007), we employed a Bayesian algorithm 

(10,000 iterations, 2,000 burn-in) to identify points in the predicted sigmoidal 

occupancy response of the clouded leopard that exhibited the highest rate of change. 

Threshold values were used to partition the predicted response into three occupancy 

states: (1) zone of stress – low occupancy, low rate of change; (2) zone of transition – 

high rate of change, and (3) zone of tolerance – high occupancy, low rate of change. 

From a prioritisation perspective, zones of tolerance were considered to represent 

conservation priority areas, as they were characterised by high, stable occurrence. 

Moreover, zones of transition were viewed as optimal restoration areas as they would 

provide the highest rate of change in occupancy.  

To develop a spatially explicit surface of conservation and restoration priority 

areas, we quantified corresponding structural values from thresholds to define 

covariate-specific environmental bounds related to our occupancy states.  These 

environmental values were subsequently employed to reclassify gridded raster 

surfaces of structural covariates. Based on our four significant predictors, we 

developed a consensus map of conservation designations to visualise the extent of 

these areas and the level of agreement between covariates.  
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Results 

The structural signature of forest degradation 

We compared structural forest properties across a degradation gradient and 

identified consistent patterns of structural simplification relative to logging intensity 

(Fig. 2.2). Typically, logging-induced degradation resulted in: a higher proportion of 

canopy gaps (Old Growth: mean: 0.24, BCI: 0.15-0.34; Managed: 0.09, 0.0-0.18; 

Heavily-degraded: 0.39, 0.33-0.44; Remnant: 0.61, 0.54-0.67); lower connectivity 

throughout the canopy (Old Growth: 2.83, 2.66-2.99; Managed Forest: 2.96, 2.79-

3.12; Heavily-degraded: 2.47, 2.38-2.56; Remnant: 2.07, 1.95-2.19); lower height 

profiles (Old Growth: 24.22 m, 21.82-26.79; Managed Forest: 23.37 m, 20.92-25.85; 

Heavily-degraded: 13.95 m, 12.56-15.31; Remnant: 9.93 m, 8.14-11.75), reduced 

vegetation density throughout the vertical column (Old Growth: 5.24, 4.61-5.89; 

Managed Forest: 6.71, 6.07-7.36; Heavily-degraded: 3.96, 3.58-4.33; Remnant: 2.08, 

3.58-4.33) and fewer environmental niches, as determined by Shannon Index values 

of the plant area distribution (Old Growth: 2.76, 2.57-2.94; Managed Forest: 2.69, 

2.50-2.86; Heavily-degraded: 1.63, 1.53-1.73; Remnant: 1.35, 1.22-1.48).  
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Figure 2.2: Probability of habitat use (third-order habitat selection) by tropical forest mammals in 

response to structural degradation of forest architecture. Structural changes in horizontal structure (panel 

a), vertical structure (panel b) and vertical heterogeneity (panel c). Top rows represent structural 

modification across a tropical disturbance gradient. Violin plots depict the kernel density distribution 

of the data (coloured shapes), wider sections indicate greater probability that structural characteristics 

within a disturbance class will take a given value. Boxplots contained therein describe the median 

(central vertical line), interquartile range (outer vertical lines of the box) and 95% Bayesian Credible 

Interval (thin horizontal lines). Middle rows demonstrate the occupancy response of the mammal 

community to structural alterations. Community trends are presented as predicted responses derived 

from posterior means and 95% Bayesian Credible Intervals (BCI). Bottom rows denote effect sizes for 

species-specific responses to structural modification. We present effect sizes for species parameters (c) 

as posterior means (points) and BCI (horizontal lines). Grey points and horizontal lines represent non-

responsive species, blue suggests influential unimodal effects and red indicates influential non-linear 

associations described by second-order polynomial terms. Effects for species-specific associations are 

considered substantial if the BCI does not overlap zero (vertical dashed black line).  

  

Pairwise comparisons between disturbance classes found consistently 

significant declines in structural attributes between Managed and Heavily-degraded 

Forest and Heavily-degraded and Remnant Forest (see Table S2.1). Contrary to these 

trends Old Growth and Managed Forest were structurally similar. However, our results 

indicated a greater proportion of gaps and lower vegetation density throughout the 

canopy in Old Growth Forest. 

 

Mammalian responses to forest structural properties 

At both scales of habitat selection, models containing covariates extracted 

across larger spatial extents were consistently identified as providing the best fit to the 
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data. We found occurrence relative to second-order habitat selection was best 

modelled with covariates extracted across buffers with a radius of 2 km 

(1979.98≤WAIC≤2167.38), while structural covariates associated with third-order 

habitat selection demonstrated the greatest response relative to 250 m (Gap Fraction, 

Number of Layers, Canopy Height) and 500 m (Plant Area Density, Shannon Index, 

Shape) buffer radii (see supplementary Table S2.2 for details). 

 

Factors affecting second-order habitat selection 

At the community-level, we found no consistent response relative to Forest 

Cover (mean effect size: -0.11, BCI: -0.56-0.40) or Canopy Height Variability, likely 

driven by marked differences between species. At the scale of second-order habitat 

selection, multi-scale, multi-species occupancy models revealed Forest Cover and 

Canopy Height Variability to be influential predictors for several species (Fig. 2.3). 

For example, the Bornean yellow muntjac (Muntiacus atherodes; 1.14, 0.36-2.26) and 

banded civet (Hemigalus derbyanus; 0.83, 0.01-2.02) demonstrated positive 

associations with Forest Cover. Conversely, the leopard cat (Prionailurus bengalensis: 

-1.27, -2.49 to -0.38), greater mouse-deer (Tragulus napu: -0.99, -1.78 to -0.28) and 

long-tailed macaque (Macaca fascicularis: -0.82, -1.65 to -0.03) responded negatively 

to the availability of forest habitat, and consequently were more prevalent in heavily 

degraded forests with open canopy. Forest quality was identified as an important 

determinant of second-order habitat selection for the Bornean yellow muntjac (1.53, 

0.62-2.56), lesser mouse-deer (Tragulus kanchil: 0.89, 0.16-1.79), marbled cat 

(Pardofelis marmorata: 0.93, 0.06-2.09), red muntjac (Muntiacus muntjak: 1.38, 0.17-

2.54) and thick-spined porcupine (Hystrix crassispinis: 0.82, 0.01-1.73). Conversely, 



56 

 

 

the leopard cat (-2.00, -3.58 to -0.45) demonstrated a preference for lower quality 

habitat characterised by a less variable canopy. 

  

 

Figure 2.3: Landscape context factors influencing Bornean mammal occupancy (second-order habitat 

selection). Covariates delineate the extent (forest cover) and quality (canopy height variability) of forest 

habitat. Effect sizes for species parameters are presented as posterior means (points) and 95% BCI 

(horizontal lines). Grey points and horizontal lines represent non-responsive species, while blue 

suggests influential relationships. Effects are considered substantial if the 95% BCI does not overlap 

zero (vertical dashed black line).  
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Factors affecting third-order habitat selection 

At finer spatial scales, the hierarchical models identified active habitat 

selection for structurally complex environments to be evident at both the community- 

and species-levels (Fig. 2.2). Mammal assemblages demonstrated non-linear, second-

order polynomial responses to Gap Fraction and Plant Area Density, suggesting a 

complexity that could not be captured by linear methods. We found evidence of weak 

positive relationships (identified using 90% BCI) with the Number of Canopy Layers 

(0.28, 0.04-0.54), Shannon Index (0.38, 0.06-0.77), Canopy Height (0.35, 0.07-0.69) 

and Shape (0.44, 0.11-0.85), implying the importance of mature, connected forest 

habitat, containing a breadth of environmental niches for community persistence. 

Using WAIC scores to rank models, structural variables associated with vertical 

heterogeneity (Plant Area Density: WAIC=1979.98; Canopy Height: WAIC=2039.60) 

and vertical complexity (Shannon Index: WAIC=2016.74; Shape: WAIC=2030.87) 

were found to be stronger predictors of mammalian habitat use than horizontal 

heterogeneity (Gap Fraction: WAIC=2059.08; Number of Layers = 2072.13), 

emphasizing the importance of the vertical axes of forest structure in influencing 

habitat use.   

Forest structure was identified as a key determinant of third-order habitat 

selection for 16 of the 28 Bornean mammals sampled (Fig. 2.2). Species of 

conservation concern demonstrated strong positive associations with measures of 

vertical heterogeneity and complexity, including the Sunda clouded leopard (Canopy 

Height = 1.76, 0.33-3.42; Plant Area Density: 1.66, 0.43-3.25; Shannon Index: 1.75, 

0.29-3.73), binturong (Arctictic binturong: Canopy Height = 1.17, 0.28-2.42; Shannon 

Index: 1.32, 0.12-3.15), tufted ground squirrel (Rheithrosciurus macrotis: Canopy 
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Height = 1.25, 0.17-2.26; Shannon Index: 1.84, 0.34-3.73) and marbled cat (Plant Area 

Density: 1.33, 0.03-2.67). Vertical heterogeneity and complexity were similarly 

important in governing habitat selection by the Bornean yellow muntjac, long-tailed 

porcupine (Trichys fasciculata) and banded civet (all detailed in Fig. 2.2). The 

horizontal arrangement of vegetation was also found to be an influential predictor; 

aversion to canopy gaps was  found for the Sunda clouded leopard (-1.11, -2.59 to -

0.05), banded civet (-0.84, -1.52 to 2.46), long-tailed porcupine (-0.65, -1.37 to -0.02) 

and red muntjac (-0.59, -1.14 to -0.07), while the sambar deer (Rusa unicolor: 0.57, 

0.18-1.12) and banded civet (0.73, 0.20-1.53) demonstrated positive associations with 

the number of contiguous layers within the canopy.  

Not all species selected structurally complex environments. The leopard cat (-

1.35, -2.69 to -0.32) and Malay porcupine (Hystrix brachyura:-0.61, -1.08 to -0.20) 

demonstrated negative associations with Plant Area Density, while the long-tailed 

macaque was found to have a negative response to measures of vertical complexity 

(Shannon Index: -1.25, -2.37 to -0.30; Shape: -1.04, -2.16 to -0.06). Furthermore, 

polynomial trends were identified for a number of species relative to Plant Area 

Density (pig-tailed macaque. Macaca nemestrina: -0.35, -0.75 to –0.09; Sunda stink 

badger, Mydaus javanensis: -0.33, -0.77 to -0.03; thick-spined porcupine: -0.35, -0.87 

to -0.08) and Gap Fraction (Malay porcupine: -0.38, -0.77 to -0.06; pig-tailed 

macaque: -0.34, -0.74 to -0.01) indicating tolerance to moderate levels of structural 

degradation. Species-specific outputs for all top-ranking models are available in 

supplementary figures S2.1-S2.12. 
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Delineating restoration and conservation priority areas 

Bayesian change point analysis identified zones of transition, characterised by 

high rates of change in Sunda clouded leopard occupancy, for Canopy Height (lower 

bound = 10.68; upper bound = 21.11 m; Fig. 2.4b), Gap Fraction (0.32 – 0.68; Fig. 

2.4c), Plant Area Density (2.11 – 5.05; Fig. 2.4d) and Shannon Index (1.68 – 2.74; 

Fig. 2.4e). Areas within these zones were considered priority restoration areas, while 

areas exceeding the upper bound were viewed as priority conservation areas. Based 

explicitly on clouded leopard habitat use, 12,290 ha (40.7%) of the total forest area 

would be identified as priority conservation zones, and 12,640 ha (41.9%) of the 

landscape for potential restoration (Fig. 2.4a). Relative to extent, the largest 

concentrations of conservation priority areas were identified in Old Growth (1,555 ha, 

12.7%) and Managed Forest (8,200 ha, 66.7%). Furthermore, these forest classes 

demonstrated the highest levels of consensus between all four structural metrics (65.0 

and 67.8% of total designated area respectively). Restoration opportunities were 

predominantly identified in Managed (3.340 ha/26.4) and Heavily-degraded Forests 

(6,705 ha/53.1%) but agreement between metrics was less convincing. Low priority 

conservation areas were typically situated in Heavily-degraded (3,120 ha/60.0%) and 

Remnant Forest (1,845 ha/35.2%) and were consistently demonstrated for three to four 

of the structural metrics (38.9 and 75.3% of total designated area).    
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Figure 2.4: A spatial delineation of conservation and restoration priority areas for the Sunda clouded 

leopard (Neofelis diardi). Priority conservation and restoration areas (Panel a) as predicted by Bayesian 

change point analysis on predicted occupancy trends (blue lines) relative to informative structural 
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characteristics (b-e). Vertical dashed black lines (b-e) represent the lower and upper bounds of the zone 

of transition, characterised in red line graphs by the highest posterior probability of change.  

 

Discussion 

Logged forests are integral to global conservation planning, yet our 

understanding of the specific structural properties that facilitate species persistence in 

degraded habitats is lacking. Among the many studies exploring the conservation 

value of logged tropical forest for biodiversity (Burivalova et al., 2014, Edwards et al., 

2011, Edwards et al., 2014, Putz et al., 2012) ours is the first to consider 

multidimensionality to identify the architectural elements that underpin the ecological 

significance of degraded ecosystems. We demonstrate concomitant biodiversity 

declines relative to structural degradation across a gradient of logging intensity. 

Moreover, we illustrate how species-habitat associations can be aligned with 

conservation planning to integrate biodiversity considerations into the designation of 

priority conservation areas. 

When evaluating forest structural properties across a degradation gradient, we 

found consistent evidence of structural simplification relative to logging intensity 

between the Managed, Heavily-degraded and Remnant Forest classes. The observed 

simplification was characterised by a lower height profile with reduced vegetation 

density, resulting in fewer environmental niches, less connected canopy pathways and 

a spatially dispersed canopy. Unsustainable selective logging, distinguished by high 

biomass removal and a short rotational length, has been implicated as the primary 

driver of forest degradation across Southeast Asia (Miettinen et al., 2014). 

Unsustainable practices facilitate structural simplification by causing soil compaction 
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and reductions in the seed bank (Pinard et al., 2000), which restrict the successional 

capacity of forest habitats (Bischoff et al., 2005). Furthermore, fragmented forests, 

analogous to our remnant forest class, are susceptible to wind damage and altered 

microclimatic conditions which precipitate additional mortality of large trees 

(Laurance et al., 2000). Our findings echo previous structural assessments of degraded 

forests (Hardwick et al., 2015, Kent et al., 2015, Kumar and Shahabuddin, 2005, 

Okuda et al., 2003), while empirically demonstrating progressive architectural 

deterioration associated with repeated logging and fragmentation. 

Structural properties were found to be comparable between the Old Growth 

and Managed Forest classes. This anomaly could reflect the rapid recovery of our 

Managed Forest which has been unencumbered from logging pressure for the last 

decade (Reynolds et al., 2011). Elsewhere in Southeast Asia, restoration of structural 

canopy elements has been shown to take up to 55 years post-logging (Brearley et al., 

2004), though only negligible differences in canopy height have been documented 

following 23 years of recovery (Okuda et al., 2003). While the prescribed interval 

between logging rotations is 15-30 years, the realised relaxation period across 

Southeast Asia averages 16 years (Fisher et al., 2011a). These figures indicate that 

current practices are insufficient to facilitate natural recovery following logging-

induced structural degradation.        

The ecological neighbourhood concept describes the spatial extent at which a 

species becomes receptive to environmental variation (Addicott et al., 1987, 

McGarigal et al., 2016). Defining these neighbourhoods is fundamental to 

understanding the complexity of habitat selection in degraded ecosystems. Our 

analyses consistently identified the mammal community as most responsive to 



63 

 

 

covariates aggregated across the largest spatial extents. Ecologically, this implies that 

larger areas are required to accrue ecological benefits from available habitat features 

in impoverished environments. From a conservation perspective, this reinforces the 

widely-recognised notion that large areas of suitable habitat are essential to facilitate 

ecological processes and safeguard tropical mammals.  

Previous studies of tropical mammals have found optimal spatial extents to 

range between 50 m (Niedballa et al., 2015) and 7.7 km (Hearn et al., 2018b), though 

these extents are likely to be species- and habitat-specific. Identifying optimal spatial 

scales is fundamental to ensure that ecological associations can be identified and 

practically applied to inform policy. While there is a general consensus that spatial 

extent should be tailored to the ranging behaviour of the study system (Mayor et al., 

2009), detailed information on the spatial ecology of cryptic tropical species is rarely 

available.  To this end, our study demonstrates the value of iterative scale optimisation 

methods to identify optimal ecological neighbourhoods when movement data are 

unavailable. 

Our multi-scale appraisal reveals novel insights into habitat selection by 

tropical mammals. This information is paramount in degraded systems where species 

persistence is dependent upon identifying the specific factors that underpin habitat 

suitability. We found that forest availability and quality, as indicated by forest cover 

and canopy height variability respectively, were important drivers of second-order 

habitat selection. Forest cover describes the geographic bounds of suitable habitat, 

while canopy height variability illustrates the coarse complexity of the forest (Bergen 

et al., 2009) and defines the continuum across which resources are distributed 

throughout the suitable space. Habitat availability has been shown to be an important 
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factor defining species occurrence (Hearn et al., 2018b, Michalski and Peres, 2005). 

However, our results indicate contrasting responses, predominantly driven by species 

that have adapted to take advantage of resources in degraded or non-forest habitats 

(greater mouse-deer: Heydon and Bulloh, 1997, leopard cat: Mohamed et al., 2013).   

We found greater support for the positive influences of forest quality on 

second-order habitat selection (i.e. home range establishment). This finding likely 

reflects increased resources in structurally complex habitats, such as fruit and browse 

availability for ungulates (Brodie and Giordano, 2013), and the abundance of small 

canopy mammals for arboreal predators such as the marbled cat (Moreira-Arce et al., 

2016). The contrasting influences of forest availability and quality may be indicative 

of the level of degradation across our study landscape. Home range establishment was 

not based on forest cover because degraded forest is not preferential to the same degree 

as old growth forest, which accounts for only 8.3% of our landscape. In response, 

species appear to be actively selecting home range areas that retain adequate structural 

quality to meet their ecological requirements. Our findings support those of Barlow et 

al. (2016) in emphasizing the importance of maintaining forest quality as well as 

extent.  

At the scale of habitat use, we elucidate the structural properties that constitute 

quality habitat and how they facilitate ecological processes. Plant area density 

throughout the vertical column was the strongest predictor of third-order habitat 

selection, emphasizing the importance of variables that capture the 

multidimensionality of forest ecosystems. For arboreal ambush predators, such as the 

Sunda clouded leopard and marbled cat, vegetation density provides cover that 

increases hunting efficiency through visual or locomotive obstruction, as has been 
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demonstrated for lions (Davies et al., 2016). Conversely, vegetation density and 

distribution may provide refugia for prey species such as ungulates, particularly when 

engaged in vulnerable behaviours such as resting or rumination (Brodie and 

Brockelman, 2009).  

Mammals actively selected for forest areas with taller canopies and a greater 

breadth of environmental niches, which are characteristic properties of late-

successional stands (Peña‐Claros, 2003). Mature, diverse forests demonstrate higher 

primary productivity (Apps et al., 2004) and afford greater resources to primary 

consumers such as the Bornean yellow muntjac. Moreover, tall trees are fruiting oases 

for frugivorous species such as binturong (Felton et al., 2003) and have shown to be 

preferential habitat features for species with similar dietary preferences (Davies et al., 

2017), suggesting supplementary ecological benefits of mature stands. Forests with 

late-successional characteristics accumulate leaf litter at a faster rate (Scherer‐

Lorenzen et al., 2007), attracting a diverse, abundant invertebrate community that 

could benefit insectivorous species like the banded civet.  

Generally, our results indicate that mammals actively selected structurally 

complex environments at fine-scales suggesting sensitivity to disturbance that 

simplifies canopy elements. This emphasises the importance of maintaining and 

restoring structurally intact forests for biodiversity conservation. Taken as a whole, 

our results confirm the hypothesis that species will track resources at successively 

lower hierarchical levels of habitat selection to overcome limitations at the preceding 

level (Mayor et al., 2009). Our mammal community was more responsive at the scale 

of habitat use, presumably because resources were not sufficiently available at coarser 

designations of habitat selection. Moreover, these findings allude to the potential for 
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negative feedback loops in degraded systems. Mammals occupy key ecological roles 

in forest ecosystems, including trophic regulation (Estes et al., 2011), seed dispersal 

(Brodie and Brockelman, 2009) and seedling recruitment (Granados et al., 2018). 

Active avoidance of heavily-degraded areas could potentially affect the resilience of 

these systems, preventing natural post-disturbance recovery and leaving ecosystems 

in a state of arrested succession (Ghazoul et al., 2015), and ultimately, defaunation 

(Dirzo et al., 2014).  

The capacity to identify and prioritise degraded forests for conservation is 

imperative to inform biodiversity management in tropical countries with limited 

regulatory and institutional frameworks. This is particularly important since logged 

forests play a pivotal role in safeguarding biodiversity against the impacts of 

environmental change (Struebig et al., 2015). Capitalising on occupancy response 

curves to prioritise land revealed 12,290 ha of potential conservation areas based on 

records of active habitat selection by a high conservation priority species, the Sunda 

clouded leopard. These areas were predominantly distributed within Old Growth and 

Managed Forests and rarely Heavily-degraded Forests. Collectively, these findings 

provide further evidence of declining conservation value with increasing logging 

intensity (Burivalova et al., 2014). We delineate a further 12,640 ha of forest 

qualifying for restoration. Based on figures provided in Budiharta et al. (2014a) 

combined restoration and opportunity costs for the study site would be financially 

prohibitive (>US$5 million), and potentially ineffective given the lack of consensus 

among structural variables. An optimal strategy may be to concentrate restoration 

within Old Growth and Managed Forest sites, to promote connectivity in forests 

retaining a higher proportion of conservation priority areas. Natural regeneration may 
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be a more viable strategy for low priority areas in Heavily-degraded Forest. 

Implementation is encouraged by evidence that degraded forests can recover 

significant biodiversity within 10-years following the cessation of harvesting (Brodie 

et al., 2015b).  

The analytical framework presented in this chapter could have practical 

applications for Southeast Asian conservation policy. Recent proposals by the Sabah 

government to increase protected area coverage by 5%, coupled with the state-wide 

availability of LiDAR data (Asner et al., 2018), provides an unparalleled opportunity 

to mobilise a collaborative network of camera-trap data and fully integrate biodiversity 

considerations into conservation planning. Capitalising on these developments could 

greatly augment policy instruments that seek to mobilise the conservation potential of 

degraded logged forests. 

 

Synthesis and application 

Ambitious policy targets proposed by the Bonn Challenge provide the roadmap 

to attenuate forest degradation (Chazdon et al., 2016). Logged forests will no doubt be 

central to restoration efforts and conservation planning in tropical countries. Our 

findings provide a nuanced perspective on the conservation value of degraded logged 

forests. The ecological significance of these modified habitats is primarily governed 

by fine-scale structural characteristics, which are an artefact of the legacy of logging 

across the landscape. To date there has been little consensus on the impacts of logging 

on tropical mammals, suggesting that uniform classifications of logged forest do not 

sufficiently capture the inherent heterogeneity of degraded systems. Tropical forests 
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are multidimensional environments, which must be recognised by evidence-based 

frameworks to guide policy implementation in degraded habitats. Here, we identify 

consistent active selection by biodiversity for structurally complex environments, and 

advocate reduced-impact logging as a preventative measure to maintain forest 

architectural integrity and reconcile production and conservation (Bicknell et al., 

2014).  

For the substantial areas of forest already subjected to unsustainable practices, 

we provide further evidence of the value of LiDAR to demarcate degraded forests. 

However, the associated cost of surveys may prove financially prohibitive over spatial 

extents adequate enough to facilitate up-scaling for developing nations. To ensure 

biodiversity considerations are integrated into degradation assessment, we provide an 

analytical framework to map conservation priority areas in degraded systems. 

Moreover, we caution against an over-reliance on traditional degradation measures, 

such as biomass, and advocate the use of metrics that capture ecologically meaningful 

components of the structural environment from the perspective of biodiversity.  
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Supplementary information 

Table S2.1: Response of forest architectural properties to structural degradation. Using outputs from a 

mean parameterisation of a Bayesian linear model, we detail average structural covariate value across 

each degradation class (Old Growth, Managed Forest, Heavily-degraded Forest, Remnant Forest) and 

structural differences between classes. Parameter estimates are presented as the mean, standard 

deviation, 2.5th and 97.5th percentile values of posterior distributions. Differences in structural covariates 

between degradation classes were considered significant if Bayesian credible intervals (2.5th percentile 

and 97.5th percentile) did not overlap zero (highlighted in bold).        

Structural 

Variable 

Parameter Mean SD 2.5th 

Percentile 

97.5th 

Percentile 

Canopy height Old Growth 24.22 1.27 21.82 26.79 

 Managed Forest 23.37 1.24 20.92 25.85 

 Heavily-degraded 

Forest 

13.95 0.71 12.56 15.31 

 Remnant Forest 9.93 0.90 8.14 11.75 

 Old Growth vs. 

Managed 

-0.84 1.75 -4.24 2.61 

 Old Growth vs. 

Heavily-degraded 

-

10.27 

1.44 -13.15 -7.54 

 Old Growth vs. 

Remnant 

-

14.29 

1.55 -17.32 -11.28 

 Managed vs. Heavily-

degraded 

-9.43 1.44 -12.21 -6.56 

 Managed vs. 

Remnant 

-

13.44 

1.52 -16.46 -10.46 

 Heavily-degraded vs. 

Remnant 

-4.01 1.15 -6.26 -1.73 

Gap fraction Old Growth 0.24 0.05 0.15 0.34 

 Managed Forest 0.09 0.05 0.00 0.18 

 Heavily-degraded 

Forest 

0.39 0.03 0.33 0.44 

 Remnant Forest 0.61 0.03 0.54 0.67 

 Old Growth vs. 

Managed 

-0.15 0.07 -0.28 -0.03 

 Old Growth vs. 

Heavily-degraded 

0.14 0.05 0.04 0.25 

 Old Growth vs. 

Remnant 

0.36 0.06 0.25 0.47 

 Managed vs. Heavily-

degraded 

0.29 0.05 0.19 0.40 
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 Managed vs. 

Remnant 

0.51 0.06 0.40 0.63 

 Heavily-degraded vs. 

Remnant 

0.22 0.04 0.13 0.31 

Number of 

layers 

Old Growth 2.83 0.08 2.66 2.99 

 Managed Forest 2.96 0.08 2.79 3.12 

 Heavily-degraded 

Forest 

2.47 0.05 2.38 2.56 

 Remnant Forest 2.07 0.06 1.95 2.19 

 Old Growth vs. 

Managed 

0.13 0.12 -0.10 0.36 

 Old Growth vs. 

Heavily-degraded 

-0.36 0.10 -0.55 -0.16 

 Old Growth vs. 

Remnant 

-0.75 0.11 -0.96 -0.55 

 Managed vs. Heavily-

degraded 

-0.49 0.10 -0.67 -0.30 

 Managed vs. 

Remnant 

-0.88 0.10 -1.08 -0.68 

 Heavily-degraded vs. 

Remnant 

-0.39 0.08 -0.55 -0.24 

Plant area 

density 

Old Growth 5.24 0.33 4.61 5.89 

 Managed Forest 6.71 0.33 6.07 7.36 

 Heavily-degraded 

Forest 

3.96 0.19 3.58 4.33 

 Remnant Forest 2.08 0.24 1.60 2.56 

 Old Growth vs. 

Managed 

1.47 0.46 0.54 2.35 

 Old Growth vs. 

Heavily-degraded 

-1.28 0.38 -2.04 -0.54 

 Old Growth vs. 

Remnant 

-3.16 0.41 -3.98 -2.38 

 Managed vs. Heavily-

degraded 

-2.75 0.38 -3.50 -1.99 

 Managed vs. 

Remnant 

-4.63 0.41 -5.43 -3.82 

 Heavily-degraded vs. 

Remnant 

-1.89 0.31 -2.48 -1.27 

Shannon 

Index 

Old Growth 2.76 0.09 2.57 2.94 

 Managed Forest 2.69 0.09 2.50 2.86 

 Heavily-degraded 

Forest 

1.63 0.05 1.53 1.73 
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 Remnant Forest 1.35 0.07 1.22 1.48 

 Old Growth vs. 

Managed 

-0.07 0.13 -0.32 0.18 

 Old Growth vs. 

Heavily-degraded 

-1.12 0.11 -1.34 -0.91 

 Old Growth vs. 

Remnant 

-1.40 0.11 -1.63 -1.18 

 Managed vs. Heavily-

degraded 

-1.06 0.11 -1.26 -0.85 

 Managed vs. 

Remnant 

-1.33 0.11 -1.55 -1.11 

 Heavily-degraded vs. 

Remnant 

-0.28 0.08 -0.44 -0.11 

Shape Old Growth 0.21 0.03 0.16 0.27 

 Managed Forest 0.20 0.03 0.15 0.25 

 Heavily-degraded 

Forest 

0.20 0.02 0.17 0.23 

 Remnant Forest 0.22 0.02 0.18 0.25 

 Old Growth vs. 

Managed 

-0.01 0.04 -0.09 0.06 

 Old Growth vs. 

Heavily-degraded 

-0.01 0.03 -0.08 0.05 

 Old Growth vs. 

Remnant 

0.00 0.03 -0.06 0.07 

 Managed vs. Heavily-

degraded 

0.00 0.03 -0.06 0.06 

 Managed vs. Remnant 0.01 0.03 -0.05 0.08 

 Heavily-degraded vs. 

Remnant 

0.02 0.03 -0.03 0.07 
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Table S2.2: Model selection, scale optimisation and model fit summary statistics. Model selection and 

scale optimisation were based on comparison of Watanabe AIC values, with the lowest scoring WAIC 

values indicating the overall best model (presented in bold and italics) and the most responsive scales 

for each structural covariate (presented in bold). Model fit was judged using Bayesian P values (BPV) 

and the “lack-of-fit” statistic (Chat). BPV values between 0.05 and 0.95 and Chat scores ~1 indicate 

adequate model fit.  

Model Coarse-

scale 

(m) 

Fine-

scale 

(m) 

BPV Chat WAIC 

Forest cover + Forest quality +  1000 10 0.45 1.01 2150.68 

Canopy height 1000 25 0.43 1.02 2112.06 

 1000 50 0.39 1.02 2177.02 

 1000 100 0.49 1.02 2152.13 

 1000 150 0.45 1.01 2115.11 

 1000 250 0.52 1.00 2144.21 

 1000 500 0.57 1.00 2112.66 

Forest cover + Forest quality +  1000 10 0.41 1.03 2140.72 

Gap fraction 1000 25 0.41 1.02 2143.88 

 1000 50 0.44 1.02 2085.62 

 1000 100 0.43 1.02 2118.44 

 1000 150 0.38 1.02 2108.36 

 1000 250 0.50 1.01 2151.82 

 1000 500 0.50 1.01 2059.08 

Forest cover + Forest quality +  1000 10 0.44 1.01 2161.04 

Number of layers 1000 25 0.41 1.02 2220.23 

 1000 50 0.39 1.03 2144.92 

 1000 100 0.41 1.02 2152.17 

 1000 150 0.37 1.03 2178.11 

 1000 250 0.46 1.01 2197.16 

 1000 500 0.51 1.01 2098.42 

Forest cover + Forest quality +  1000 10 0.35 1.03 2110.17 

Plant area density 1000 25 0.49 1.01 2094.70 

 1000 50 0.39 1.02 2113.79 

 1000 100 0.37 1.03 2122.11 

 1000 150 0.51 1.01 2133.49 

 1000 250 0.45 1.01 2117.06 

 1000 500 0.45 1.01 2101.87 

Forest cover + Forest quality +  1000 10 0.44 1.01 2132.22 

Shannon Index 1000 25 0.49 1.01 2077.82 

 1000 50 0.49 1.01 2083.64 

 1000 100 0.45 1.02 2129.03 

 1000 150 0.41 1.03 2112.02 

 1000 250 0.39 1.03 2117.09 

 1000 500 0.40 1.03 2159.95 
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Forest cover + Forest quality +  1000 10 0.46 1.01 2202.90 

Shape 1000 25 0.43 1.02 2096.46 

 1000 50 0.44 1.03 2079.89 

 1000 100 0.41 1.02 2136.63 

 1000 150 0.41 1.02 2128.74 

 1000 250 0.41 1.02 2091.47 

 1000 500 0.43 1.02 2085.71 

Forest cover + Forest quality +  1500 10 0.43 1.02 2113.98 

Canopy height 1500 25 0.46 1.01 2169.51 

 1500 50 0.43 1.02 2217.24 

 1500 100 0.43 1.01 2100.56 

 1500 150 0.51 1.01 2166.22 

 1500 250 0.43 1.02 2095.71 

 1500 500 0.46 1.02 2089.22 

Forest cover + Forest quality +  1500 10 0.44 1.02 2067.09 

Gap fraction 1500 25 0.38 1.03 2179.06 

 1500 50 0.49 1.01 2108.49 

 1500 100 0.34 1.03 2136.28 

 1500 150 0.49 1.01 2071.86 

 1500 250 0.41 1.03 2138.21 

 1500 500 0.44 1.02 2071.38 

Forest cover + Forest quality +  1500 10 0.40 1.03 2203.62 

Number of layers 1500 25 0.43 1.02 2134.85 

 1500 50 0.40 1.03 2115.06 

 1500 100 0.40 1.03 2143.96 

 1500 150 0.43 1.03 2111.04 

 1500 250 0.41 1.03 2088.62 

 1500 500 0.40 1.03 2111.11 

Forest cover + Forest quality +  1500 10 0.46 1.01 2085.83 

Plant area density 1500 25 0.45 1.02 2107.45 

 1500 50 0.56 1.01 2128.49 

 1500 100 0.41 1.02 2027.27 

 1500 150 0.45 1.02 2147.01 

 1500 250 0.48 1.01 2125.74 

 1500 500 0.44 1.01 2156.04 

Forest cover + Forest quality +  1500 10 0.37 1.02 2044.55 

Shannon Index 1500 25 0.37 1.04 2119.33 

 1500 50 0.52 1.01 2090.21 

 1500 100 0.45 1.02 2143.25 

 1500 150 0.41 1.01 2135.54 

 1500 250 0.41 1.02 2123.93 

 1500 500 0.40 1.02 2071.30 

Forest cover + Forest quality +  1500 10 0.43 1.02 2084.54 

Shape 1500 25 0.37 1.03 2054.64 

 1500 50 0.37 1.02 2108.23 

 1500 100 0.31 1.03 2096.33 

 1500 150 0.41 1.02 2079.46 

 1500 250 0.49 1.02 2174.09 
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 1500 500 0.43 1.03 2075.23 

Forest cover + Forest quality +  2000 10 0.43 1.03 2043.00 

Canopy height 2000 25 0.36 1.03 2082.02 

 2000 50 0.35 1.03 2073.89 

 2000 100 0.40 1.02 2109.40 

 2000 150 0.43 1.02 2074.70 

 2000 250 0.41 1.03 2039.60 

 2000 500 0.49 1.02 2041.85 

Forest cover + Forest quality +  2000 10 0.47 1.02 2075.88 

Gap fraction 2000 25 0.47 1.01 2133.52 

 2000 50 0.45 1.02 2111.67 

 2000 100 0.38 1.02 2142.91 

 2000 150 0.35 1.04 2061.01 

 2000 250 0.47 1.02 2057.30 

 2000 500 0.33 1.03 2060.42 

Forest cover + Forest quality +  2000 10 0.47 1.02 2126.80 

Number of layers 2000 25 0.38 1.03 2162.80 

 2000 50 0.49 1.01 2167.38 

 2000 100 0.44 1.01 2121.95 

 2000 150 0.43 1.03 2112.24 

 2000 250 0.41 1.02 2072.13 

 2000 500 0.38 1.02 2096.35 

Forest cover + Forest quality +  2000 10 0.50 1.01 2076.72 

Plant area density 2000 25 0.45 1.02 1996.37 

 2000 50 0.38 1.02 2049.63 

 2000 100 0.37 1.04 2089.81 

 2000 150 0.43 1.02 2079.39 

 2000 250 0.39 1.02 2061.02 

 2000 500 0.46 1.01 1979.98 

Forest cover + Forest quality +  2000 10 0.39 1.03 2074.32 

Shannon Index 2000 25 0.49 1.01 2027.01 

 2000 50 0.41 1.02 2032.58 

 2000 100 0.46 1.02 2123.47 

 2000 150 0.45 1.01 2054.50 

 2000 250 0.48 1.02 2070.89 

 2000 500 0.45 1.02 2016.74 

Forest cover + Forest quality +  2000 10 0.43 1.02 2062.02 

Shape 2000 25 0.45 1.02 2084.87 

 2000 50 0.42 1.02 2046.02 

 2000 100 0.45 1.02 2047.44 

 2000 150 0.43 1.02 2066.08 

 2000 250 0.44 1.02 2044.24 

 2000 500 0.40 1.03 2020.87 
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Figure S2.1: Occupancy (second-order habitat selection) relative to forest cover (m). Outputs are 

presented for the 28 medium-large terrestrial mammals encountered during our sampling. Predicted 

posterior mean distribution values are presented in dark blue, while uncertainty, as indicated using 95% 

Bayesian credible intervals is visualised in light blue. 
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Figure S2.2: Occupancy (second order habitat selection) relative to forest quality. Forest quality was 

defined using canopy height variability (m), with greater variability indicating better quality forest 

habitat. Outputs are presented for the 28 medium-large terrestrial mammals encountered during our 

sampling. Predicted posterior mean distribution values are presented in dark blue, while uncertainty, as 

indicated using 95% Bayesian credible intervals is visualised in light blue. 

 

 

 



79 

 

 

 

 

  



80 

 

 

Figure S2.3: Probability of habitat use (third-order habitat selection) relative to canopy height (m). 

Outputs are presented for the 28 medium-large terrestrial mammals encountered during our sampling. 

Predicted posterior mean distribution values are presented in dark blue, while uncertainty, as indicated 

using 95% Bayesian credible intervals is visualised in light blue. 
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Figure S2.4: Probability of habitat use (third-order habitat selection) relative to gap fraction. We 

quantify gap fraction as the proportion of canopy gaps (< 5 m in height) within a 250 m radius of the 

camera trap. Outputs are presented for the 28 medium-large terrestrial mammals encountered during 

our sampling. Predicted posterior mean distribution values are presented in dark blue, while uncertainty, 

as indicated using 95% Bayesian credible intervals is visualised in light blue. 
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Figure S2.5: Probability of habitat use (third-order habitat selection) relative to the number of 

contiguous layers of vegetation within the canopy. Outputs are presented for the 28 medium-large 

terrestrial mammals encountered during our sampling. Predicted posterior mean distribution values are 

presented in dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals is 

visualised in light blue. 
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Figure S2.6: Probability of habitat use (third-order habitat selection) relative to plant area density. 

Outputs are presented for the 28 medium-large terrestrial mammals encountered during our sampling. 

Predicted posterior mean distribution values are presented in dark blue, while uncertainty, as indicated 

using 95% Bayesian credible intervals is visualised in light blue. 
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Figure S2.7: Probability of habitat use (third-order habitat selection) relative to niche availability. We 

quantify niche availability as the Shannon Index of the plant area distribution. Outputs are presented for 

the 28 medium-large terrestrial mammals encountered during our sampling. Predicted posterior mean 

distribution values are presented in dark blue, while uncertainty, as indicated using 95% Bayesian 

credible intervals is visualised in light blue. 
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Figure S2.8: Probability of habitat use (third-order habitat selection) relative to shape. We define shape 

as the distribution of vegetation throughout the vertical column. Outputs are presented for the 28 

medium-large terrestrial mammals encountered during our sampling. Predicted posterior mean 

distribution values are presented in dark blue, while uncertainty, as indicated using 95% Bayesian 

credible intervals is visualised in light blue. 
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Figure S2.9: Environmental and sampling covariates influencing detection probability. Outputs are 

presented for the 28 medium-large terrestrial mammals encountered during our sampling. Effect sizes 

are presented as posterior means (points) and 95% Bayesian credible intervals (BCI). Effects were 

considered substantial if the 95% BCI did not overlap zero (vertical dashed line). Responsive species 

are presented in blue. 
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Figure S2.10: Detection probability relative to plant area density in the herbaceous layer (2-5 m). 

Outputs are presented for the 28 medium-large terrestrial mammals encountered during our sampling. 

Predicted posterior mean distribution values are presented in dark blue, while uncertainty, as indicated 

using 95% Bayesian credible intervals is visualised in light blue. 
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Figure S2.11: Detection probability relative to the number of contiguous layers of vegetation in the 

canopy. Outputs are presented for the 28 medium-large terrestrial mammals encountered during our 

sampling. Predicted posterior mean distribution values are presented in dark blue, while uncertainty, as 

indicated using 95% Bayesian credible intervals is visualised in light blue. 
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Figure S2.12: Detection probability relative to sampling effort.  We define sampling effort based on 

the number of nights each camera-trap unit was operational. Outputs are presented for the 28 medium-

large terrestrial mammals encountered during our sampling. Predicted posterior mean distribution 

values are presented in dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals 

is visualised in light blue. 
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S2.1: Model code  

We provide model code for the hierarchical Bayesian multi-species, multi-

scale occupancy model, written in the BUGS language and implemented in JAGS 

called through R. 

 

model { 

    # Hyper-priors for occupancy, habitat use and detection intercepts 

    #============================================== 

    mu.alpha.psi ~ dnorm(0, 0.01) 

    sigma.alpha.psi ~ dunif(0, 10) 

    tau.alpha.psi <- pow(sigma.alpha.psi, -2) 

 

    mu.alpha.theta ~ dnorm(0, 0.01) 

    sigma.alpha.theta ~ dunif(0, 10) 

    tau.alpha.theta <- pow(sigma.alpha.theta, -2) 

 

    mu.alpha.p ~ dnorm(0, 0.01) 

    sigma.alpha.p ~ dunif(0, 10) 

    tau.alpha.p <- pow(sigma.alpha.p, -2) 

   

    # Hyper-priors for occupancy, habitat use and detection covariate coefficients 

    #======================================================= 

    mu.beta1.psi ~ dnorm(0, 0.01) 

    sigma.beta1.psi ~ dunif(0, 10) 

    tau.beta1.psi <- pow(sigma.beta1.psi, -2) 

 

    mu.beta2.psi ~ dnorm(0, 0.01) 

    sigma.beta2.psi ~ dunif(0, 10) 

    tau.beta2.psi <- pow(sigma.beta2.psi, -2) 

 

    mu.beta1.theta ~ dnorm(0, 0.01) 

    sigma.beta1.theta ~ dunif(0, 10) 

    tau.beta1.theta <- pow(sigma.beta1.theta, -2) 

 

    mu.beta2.theta ~ dnorm(0, 0.01) 

    sigma.beta2.theta ~ dunif(0, 10) 

    tau.beta2.theta <- pow(sigma.beta2.theta, -2) 

 

    mu.beta1.p ~ dnorm(0, 0.01) 

    sigma.beta1.p ~ dunif(0, 10) 

    tau.beta1.p <- pow(sigma.beta1.p, -2) 

 

    mu.beta2.p ~ dnorm(0, 0.01) 

    sigma.beta2.p ~ dunif(0, 10) 



100 

 

 

    tau.beta2.p <- pow(sigma.beta2.p, -2) 

 

    mu.beta3.p ~ dnorm(0, 0.01) 

    sigma.beta3.p ~ dunif(0, 10) 

    tau.beta3.p <- pow(sigma.beta3.p, -2) 

 

    # Hyperprior for half-Cauchy scale parameter for occupancy and habitat use 

models 

    

#=========================================================== 

    xi.sd.psi ~ dunif(0, 10) 

    xi.tau.psi <- pow(xi.sd.psi, -2) 

    xi.sd.theta ~ dunif(0, 10) 

    xi.tau.theta <- pow(xi.sd.theta, -2) 

 

    # Species-specific parameters drawn as realisations from the community 

distributions 

    

#===========================================================

= 

    for(i in 1:n.sp){ 

        alpha.psi[i] ~ dnorm(mu.alpha.psi, tau.alpha.psi) 

        alpha.theta[i] ~ dnorm(mu.alpha.theta, tau.alpha.theta) 

        alpha.p[i] ~ dnorm(mu.alpha.p, tau.alpha.p) 

 

        beta1.psi[i] ~ dnorm(mu.beta1.psi, tau.beta1.psi) 

        beta2.psi[i] ~ dnorm(mu.beta2.psi, tau.beta2.psi) 

        beta1.theta[i] ~ dnorm(mu.beta1.theta, tau.beta1.theta) 

        beta2.theta[i] ~ dnorm(mu.beta2.theta, tau.beta2.theta) 

        beta1.p[i] ~ dnorm(mu.beta1.p, tau.beta1.p) 

        beta2.p[i] ~ dnorm(mu.beta2.p, tau.beta2.p) 

        beta3.p[i] ~ dnorm(mu.beta3.p, tau.beta3.p) 

        } 

 

    # Hyperpriors/priors for temporal random effect 

    #==================================   

    for(i in 1:n.sp){ 

        # Random year effects for psi component 

        for(year in 1:n.year){ 

            eps.psi[year, i] ~ dnorm(0, eps.tau.psi[i]) 

            eps.theta[year, i] ~ dnorm(0, eps.tau.theta[i])  

            } 

 

        eps.tau.psi[i] ~ dgamma(0.5, 0.5) 

        xi.psi[i] ~ dnorm(0, xi.tau.psi) 

        sigma.cauchy.psi[i] <- abs(xi.psi[i]) / sqrt(eps.tau.psi[i]) 

 

        eps.tau.theta[i] ~ dgamma(0.5, 0.5) 

        xi.theta[i] ~ dnorm(0, xi.tau.theta) 
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        sigma.cauchy.theta[i] <- abs(xi.theta[i]) / sqrt(eps.tau.theta[i]) 

        } 

 

    # Ecological model for occurrence of species i in site j 

    #=========================================== 

    for(i in 1:n.sp){ 

        for(j in 1:n.sites){ 

            logit(psi[j,i]) <- alpha.psi[i] + beta1.psi[i]*ForCov[j] + 

beta2.psi[i]*CH_SD.psi[j] + 

                                       xi.psi[i]*eps.psi[year.counter.psi[j],i] 

            z[j,i] ~ dbern(psi[j,i]) 

 

    # Sub-unit model, occurence of species i within spatial replicate l 

            for(l in 1:n.spatial[j]){ 

                logit(theta[j,l,i]) <- alpha.theta[i] + beta1.theta[i]*Structure1[j,l] + 

                                       beta2.theta[i]*Structure2[j,l] + 

xi.theta[i]*eps.theta[year.counter.theta[j,l],i] 

                mu.a[j,l,i] <- z[j,i] * theta[j,l,i] 

                a[j,l,i] ~ dbern(mu.a[j,l,i]) 

 

    # Detection model for replicated detection/non-detection observations 

                for(k in 1:n.temporal[j,l]){ 

                    logit(p[j,l,k,i]) <- alpha.p[i] + beta1.p[i]*PAI_Herb.p[j,l] + 

beta2.p[i]*Nlay.p[j,l] + 

                                                  beta3.p[i]*TrapEffort[j,l] 

                    mu.p[j,l,k,i] <- a[j,l,i] * p[j,l,k,i] 

                    y[j,l,k,i] ~ dbern(mu.p[j,l,k,i]) 

 

    # Calculate Pearson's Chi-squared residuals to assess goodness of fit 

    # Based on Kery and Royle: Applied hierarchical modelling in ecology, pp. 235 

    # Calculate the observed and expected residuals 

    # Add small value to prevent division by zero 

    #================================ 

                    y.sim[j,l,k,i] ~ dbern(mu.p[j,l,k,i])                                                     

                    chi2.obs[j,l,k,i] <- pow(y[j,l,k,i] - mu.p[j,l,k,i], 2)/ (mu.p[j,l,k,i] + 

0.0001) 

                    chi2.sim[j,l,k,i] <- pow(y.sim[j,l,k,i] - mu.p[j,l,k,i], 2)/ (mu.p[j,l,k,i] + 

0.0001)                    

                } 

                chi2.obs.sum[j,l,i] <- sum(chi2.obs[j,l,1:n.temporal[j,l],i]) 

                chi2.sim.sum[j,l,i] <- sum(chi2.sim[j,l,1:n.temporal[j,l],i]) 

            } 

            chi2.obs.sum2[j,i] <- sum(chi2.obs.sum[j,1:n.spatial[j],i])             

            chi2.sim.sum2[j,i] <- sum(chi2.sim.sum[j,1:n.spatial[j],i]) 

        } 

     

    # Calculate chi-squared discrepency for each species 

    #===================================== 

        fit.sp.obs[i] <- sum(chi2.obs.sum2[,i])                     



102 

 

 

        fit.sp.sim[i] <- sum(chi2.sim.sum2[,i])                     

        c.hat.sp[i] <- fit.sp.obs[i]/fit.sp.sim[i]                    

        bpv.sp[i] <- step(fit.sp.sim[i] - fit.sp.obs[i])            

    } 

 

    # Calculate model discrepency measure and fit statistics 

    #======================================= 

    fit.obs <- sum(chi2.obs.sum2[1:n.sites, 1:n.sp]) 

    fit.sim <- sum(chi2.sim.sum2[1:n.sites, 1:n.sp]) 

    c.hat <- fit.obs/fit.sim 

    bpv <- step(fit.sim - fit.obs) 

 

    # Derived quantities 

    # Number of occupied sites 

    #=================== 

    for(i in 1:n.sp) { 

        Nocc.fs[i] <- sum(z[,i]) 

        } 

     

    # Number of species occurring at each site 

    #============================== 

    for(j in 1:n.sites) { 

        Nsite[j] <- sum(z[j,]) 

        } 

} 
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Abstract 

1. Carbon-based policies provide powerful opportunities to unite tropical forest 

conservation with climate change mitigation. However, their effectiveness in 

delivering biodiversity co-benefits is dependent on high levels of biodiversity being 

found in high carbon areas. Previous studies have focussed solely on the co-benefits 

associated with Reducing Emissions from Deforestation and forest Degradation 

(REDD+) over large spatial scales, with few empirically testing carbon-biodiversity 

correlations at management unit scales appropriate to decision-makers. Yet, in 

development frontiers, where most biodiversity and carbon loss occurs, carbon-based 

policies are increasingly driven by commodity certification schemes, which are 

applied at the concession-level.  

2. Working in a typical human-modified landscape in Southeast Asia, we 

examined the biodiversity value of land prioritised via application of REDD+ or the 

High Carbon Stock (HCS) Approach, the emerging land-use planning tool for oil palm 

certification. Carbon stocks were estimated via low- and high-resolution datasets 

derived from global or local-level biomass. Mammalian species richness was 

predicted using hierarchical Bayesian multi-species occupancy models of camera-trap 

data from forest and oil palm habitats.  

3. At the community level, HCS forest supported comparable mammal diversity 

to control sites in continuous forest, while lower carbon HCS strata exhibited reduced 

species occupancy.   

4. No association was found between species richness and carbon when the latter 

was estimated using coarse-resolution data. However, when using high-resolution, 
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locally-validated biomass data, diversity demonstrated positive relationships with 

carbon for threatened and disturbance-sensitive species, suggesting sensitivity of co-

benefits to carbon data sources and the species considered.  

5. Policy implications. Our work confirms the potential for environmental 

certification and Reducing Emissions from Deforestation and forest Degradation 

(REDD+) to work in tandem with conservation to mitigate agricultural impacts on 

tropical forest carbon stocks and biodiversity. Successful implementation of both 

approaches could be used to direct development to low carbon, low biodiversity areas 

in topical countries. 

Keywords: Agriculture, Borneo, camera-trapping, certification, High Carbon Stock; 

land-use planning, mammals, occupancy modelling, oil palm, REDD+, tropical forest. 
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Introduction 

Agricultural expansion has emerged as a pervasive threat to tropical forests 

and biodiversity (Wilcove et al., 2013), and has been implicated in the loss of ~150 

million ha of tropical forest over the last three decades (Gibbs et al., 2010, Hansen et 

al., 2013). A key driver of recent deforestation has been rising demand for cheap 

vegetable oil such as that from oil palm (Elaeis guineensis), which now covers 16 

million ha across 43 countries, often at the expense of tropical forest (Pirker et al., 

2016).  

The potential economic and social benefits associated with oil palm (Potter, 

2015) contrast with severe and well-documented ecological impacts. Conversion of 

forest to oil palm plantation results in major biodiversity decline, which 

disproportionately affects forest specialists and species of conservation concern, 

resulting in assemblages dominated by disturbance-tolerant generalists (Fitzherbert et 

al., 2008, Yaap et al., 2010). With around 19% of land suitable for oil palm coinciding 

with areas of high biodiversity (Pirker et al., 2016), across forested Asia, Africa and 

South America, the full ecological impact of this commodity crop is yet to be fully 

realised. Mitigation measures that reconcile environmental sustainability, biodiversity 

conservation and production of crops such as oil palm are therefore essential in tropical 

regions. 

Retaining native habitat in oil palm estates is known to enhance the biological 

value of plantation landscapes by providing ecological refugia and improved 

connectivity (Gillies and St Clair, 2010, Struebig et al., 2011). However, in practice, 

the designation of conservation set-asides can be hindered by agricultural profitability, 

with income exceeding US$11,240 ha-1 over a 25 year growing cycle (Fisher et al., 
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2011a). Thus, conservation efforts seeking to preserve forest within plantations may 

be more successful when economic incentives are provided to offset the opportunity 

costs associated with foregoing development. Amongst several mitigation tools 

available, two incentive-driven policies based on carbon stocks have gained traction 

in tropical regions: (1) REDD+ (United Nations Reducing Emissions from 

Deforestation and forest Degradation) and related carbon credit schemes, and (2) 

improved land-use planning via commodity certification (Yaap et al., 2010). 

REDD+, a payment for ecosystem services tool to mitigate climate change, 

aims to compensate stakeholders in developing nations for conservation initiatives and 

sustainable management practices that protect and restore the carbon sequestered by 

forests (Venter and Koh, 2012). If REDD+ were to achieve its economic potential, 

payments generated could make forest conservation financially competitive compared 

to oil palm cultivation (Butler et al., 2009). REDD+ is also attractive to conservation 

because it may deliver co-benefits, whereby safeguarding high carbon areas also 

protects biodiversity at no additional cost (Gardner et al., 2012). However, this 

assumes spatial congruence between areas of high carbon and biodiversity. In reality 

it is difficult to generalise on the nature, strength and extent of these co-benefits 

because outcomes vary both within and between spatial scales (e.g. global: Naidoo et 

al., 2008, Strassburg et al., 2010,  national: Egoh et al., 2009, Murray et al., 2015,  

local: Ruiz‐Jaen and Potvin, 2010, Kessler et al., 2012). The extent to which carbon-

biodiversity co-benefit assumptions hold at management unit scales appropriate to 

decision-makers remains an open question. 

REDD+ is largely implemented at sub-national levels. While an increasing 

number of studies are recognising the importance of fine-scale assessments (e.g. 
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Beaudrot et al., 2016b, Magnago et al., 2015, Sollmann et al., 2017), most information 

on biodiversity co-benefits is derived from global- and national-scale studies that 

demonstrate overreliance on coarse-grained, secondary data sources. Carbon data are 

typically derived from global maps (e.g. Avitabile et al., 2016, Baccini et al., 2012), 

which have limited application at local-scales pertinent to management (Mitchard et 

al., 2014). Furthermore, field-based species data are widely underrepresented in the 

co-benefits literature due to the costs associated with biodiversity surveys in the 

tropics (Gardner et al., 2008). Researchers predominantly rely on coarse species range 

delineations, which are fraught with uncertainty (Rodríguez-Castañeda et al., 2012) 

and may not account for localised extirpation due to anthropogenic pressure (Harrison 

et al., 2016). Despite statistical advances that account for imperfect detection in 

biodiversity indices (Royle and Dorazio, 2008), these methods have received 

relatively limited application in a co-benefits context (but see Gilroy et al., 2014, 

Sollmann et al., 2017), resulting in possible underestimates of species assemblages. 

Consequently, biodiversity co-benefits assessments at local-scales, using primary, 

fine-grained data would provide valuable policy insights.  

While the potential importance of REDD+ cannot be overstated, agricultural 

certification schemes show promise to ensure sustainable practices as companies 

benefit from greater access to environmentally conscious markets and increased price 

premiums of certified products (Yaap et al., 2010). The Roundtable on Sustainable 

Palm Oil (RSPO) is often seen as an exemplar scheme within the agricultural sector, 

currently certifying 21% of the global palm oil market across 2.48 million ha of land 

(RSPO, 2015). RSPO certification prohibits the conversion of high conservation value 

habitat in oil palm estates. However, associated assessment procedures have attracted 
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criticism, raising concerns that current methodologies do not afford adequate 

biodiversity protection (Edwards et al., 2012, Yaap et al., 2010).  

The High Carbon Stock (HCS) Approach has emerged as a land-use planning 

tool to demarcate conservation priority areas based on carbon value, and is being 

explored within the RSPO architecture and that of other certification schemes. The 

HCS methodology seeks to conserve biodiverse and ecologically functional forest 

networks within agricultural concessions by directing conversion towards heavily 

degraded land of low carbon value (Rosoman, 2017). This is achieved by stratifying 

land into discrete classes according to vegetation density and structure, which are then 

adopted as proxies for above-ground carbon stocks and assumed to support varying 

levels of biodiversity. These strata are subsequently validated using field-derived 

above-ground carbon estimates, before land parcels are prioritised for conversion 

based on area and connectivity (Rosoman, 2017).  

The HCS Approach has attracted widespread interest amongst agricultural 

industries with 10 million ha of land being evaluated across five oil palm producing 

countries (Rosoman, unpublished data). As a model scheme, the successful integration 

of the HCS Approach within the RSPO framework may encourage uptake across other 

certifiable agricultural commodities, such as rubber and soya. Nevertheless, the extent 

to which HCS strata correspond to areas of high biodiversity value is dependent on the 

accurate partitioning of vegetation classes according to their carbon value, as well as 

the underlying association between carbon and biodiversity. Before the HCS 

Approach is formally adopted within certification standards, these assumptions should 

be tested to understand the conservation merit of the tool.   
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Here, we determine the effectiveness of incentive-driven carbon-based 

mechanisms to safeguard biodiversity, and provide the first validation of both the 

carbon and biodiversity credentials of the HCS land-use planning tool. Our appraisal 

focuses on a landscape undergoing conversion from forest to oil palm in Borneo, a 

region characterised by high deforestation and forest degradation (Gaveau et al., 2014, 

Struebig et al., 2015) that is typical of most HCS applications. First, we validate the 

accuracy of the HCS classification procedure and quantify the biodiversity value of 

the vegetation strata. We then assess the potential for REDD+ to deliver biodiversity 

co-benefits using primary and high-resolution data sources. To assess the influence of 

spatial grain on the nature of co-benefit relationships, we compare global- and local-

scale measures of carbon. Throughout, we employ biodiversity indices that explicitly 

account for imperfect detection to provide a more accurate representation of species 

assemblages than simple species counts. Our work evaluates the extent to which policy 

options that attach greater economic significance to conservation protect vulnerable 

tropical forests and safeguard biodiversity. 

 

Materials and methods 

Study system 

The study was conducted over a 13,153 ha development area comprising the 

Stability of Altered Forest Ecosystems project (SAFE; www.safeproject.net) and 

surrounding plantations in Kalabakan Forest Reserve, Sabah, Malaysian Borneo (4⁰ 

46’N, 116⁰ 57’ E; Fig. 3.1). SAFE is a landscape-scale forest modification experiment 

(Ewers et al., 2011) comprising highly disturbed lowland and hill dipterocarp forest 
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that was logged multiple times between 1978 and 2008. The wider landscape includes 

near-pristine forest in Brantian-Tatulit Virgin Jungle Reserve, twice-logged forest in 

Ulu Segama Forest Reserve, and plantations (primarily oil palm). 

  

Figure 3.1: Study site, HCS stratification and camera-trap design. HCS classification of the study 

landscape in Sabah, Borneo. Forest cover was delineated into four strata on the basis of vegetation 

density (Dense Forest, Young Regenerating Forest, Scrub, Open Land) and supplemented with two 

reference classes (Continuous Logged Forest, Oil Palm) to act as forest and agricultural controls. Points 

indicate camera-trap locations (N=115). 

 

HCS classification and validation 

The HCS Approach uses high-resolution remotely-sensed images to stratify 

concessions into six vegetation classes, each with unique structural characteristics (in 

descending order of carbon value): (1) ‘High Density Forest’; (2) ‘Medium Density 

Forest’; (3) ‘Low Density Forest’; (4) ‘Young Regenerating Forest’; (5) ‘Scrub’; and, 
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(6) ‘Open Land’ (see supplement S3.1). In practice, the High, Medium and Low 

Density Forest strata are aggregated as ‘Dense Forest’ and earmarked for conservation. 

Young Regenerating Forest can also comprise valuable carbon stocks and is also 

spared from development. The threshold for allocating land for production rests on 

distinguishing these strata from heavily-degraded Scrub and Open Land. Therefore, 

we mapped Dense Forest, Young Regenerating Forest, Scrub and Open Land as 

separate classes.  

All spatial data processing was implemented in ArcGIS 10.2.1 (ESRI). We 

used Landsat 8 and SPOT5 satellite imagery (15 m and 2.5 m resolution respectively; 

temporal range: 2012-2014) to stratify forest habitat using HCS assessment protocols 

(see supplement S3.1). Multiple data sources were chosen to minimise classification 

difficulties associated with cloud cover and haze. We undertook a supervised 

classification of satellite images, supplemented with visual interpretation techniques 

to correct for the potentially confounding effects of topographic shadow (Wulder et 

al., 2004). The resulting classes were then calibrated using above-ground carbon 

values derived from forest inventory data (N=139), collected as part of the core SAFE 

monitoring programme. These data conform to standardised forest inventory protocols 

(http://www.rainfor.org), calculating carbon as a function of above-ground biomass 

(trees >10 cm DBH) using an established pantropical algorithm (Chave et al., 2014). 

Resulting HCS classes were validated using independently derived carbon estimates 

(Pfeifer et al., 2016; see supplement 3.7.2). 
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Camera-trap sampling of medium-large mammals 

We delineated terrestrial mammal diversity as these taxa are consistently 

prioritised in policy, land-use planning and certification schemes. Remotely-operated 

digital cameras (HC500 Hyperfire, Reconyx, Wisconsin, U.S.A.) were deployed at 

130 locations across the landscape between May and September 2015 (Fig. 3.1). These 

locations were separated by a mean distance of 1.4 km and distributed across an 

elevational gradient (mean=376 m.a.s.l.; range=64-735 m.a.s.l.). Accounting for theft, 

vandalism and malfunction, data were retrieved from 121 locations. We stratified our 

sampling according to HCS strata, while capturing the broader heterogeneity of the 

landscape using reference classes (protected ‘Continuous Logged Forest’ and well-

established ‘Oil Palm Plantation’) for comparative purposes. As the extent of Scrub 

and Open Land was relatively low compared to the other classes, these strata were 

pooled into a single class, ‘Developed Land’, for biodiversity analyses: Continuous 

Logged Forest, N=27; Dense Forest, N=23; Young Regenerating Forest, N=16; 

Developed Land, N=26; and, Oil Palm Plantation, N=23.  

Due to the number of cameras available, data collection was completed over 

two rotations, each comprising 65 locations. Single units were deployed for 42 

consecutive nights per location, yielding a total survey effort of 4,669 camera nights. 

Cameras were positioned at a standardised height of 30 cm, on low resistance travel 

routes (e.g. riparian areas, logging roads, skid trails) and off-trail to account for inter- 

and intra-specific differences in habitat use.  

Prior to analyses, all images that could not be identified to species level were 

discarded (blurred images and photos of non-target species, equating to 17.6% of 

142,294 images). Species encounters were considered independent events if they 
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contained different individuals or were separated by a period of >60 minutes. A 

detection matrix was developed for each species, whereby 42-day sampling periods 

were divided into six, seven-day temporal replicates. Any camera site active for fewer 

than seven days was excluded from analysis, leaving 115 analytical units each with 2-

6 replicates.  

 

Modelling framework 

We employed hierarchical Bayesian multi-species occupancy modelling 

(Dorazio and Royle, 2005) to estimate species diversity from camera data. 

Hierarchical models permit the separation of ecological and sampling processes that 

may influence the data (Gelman and Hill, 2007). In the context of occupancy, this 

means that true absences can be differentiated from non-detection by explicitly 

defining models for occurrence and detection.  

Multi-species occupancy models take single-species occupancy detection 

models as building units (Guillera-Arroita, 2017). Following Zipkin et al. (2010), we 

denote the occurrence of species i at site j by the binary variable zi,j (1=species 

presence; 0=species not detected). The occurrence state is described as the outcome of 

a Bernoulli process, zi,j ~ Bern(ψi,j), where ψi,j denotes the occurrence probability. The 

true occurrence state is imperfectly observed, so the model includes a second Bernoulli 

process, xi,j,k ~ Bern(pi,j,k*zi,j), where xi,j,k is the observed detection/non-detection data, 

k is the survey replicate and pi,j,k represents the corresponding detection probability 

conditional to species presence. The product pi,j,k*zi,j reflects that detection at sites 

where the species is present (zi,j=1) happens with detection probability pi,j,k, and that 
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detection is not possible at sites where the species is absent (zi,j=0). We assume that 

variation in the abundance of a species across sampling sites does not affect species 

detection probabilities pi,j,k (Royle and Dorazio, 2008). 

Occurrence and detection models for individual species were linked via a 

hierarchical component that modelled regression coefficients as realisations from a 

common community-level distribution with hyperparameters. Under this approach, 

species are assumed to respond to environmental conditions in a similar, but not 

identical, manner. Derived species estimates are, therefore, a compromise between 

individual response and the average response of the community. This results in 

shrinkage (the borrowing of information by individuals across the community), which 

has been shown to improve estimation precision, particularly for rare or elusive species 

that are infrequently detected during surveys (Pacifici et al., 2014). We report 

hyperparameters to provide an indication of community-level responses to covariates. 

 

Spatial concordance between HCS classes, carbon and biodiversity 

To assess how mammal community representation could vary according to 

policy relevant carbon variables, we described occupancy and detectability using three 

models: 

Model 1: logit(ψi,j) ═ µ(i)HCS Class(j) 

logit(pi,j,k) ═ υ(i)HCS Class(j) 

Model 2: logit(ψi,j) ═ µi+ α1iCC1000j + α2iCC10002
j  

logit(pi,j,k) ═ υ(i)HCS Class(j) 

Model 3: logit(ψi,j) ═ µi+ α1iCC25j + α2iCC252
j 



116 

 

 

logit(pi,j,k) ═ υ(i)HCS Class(j) 

 

Occupancy and detection probabilities were modelled with intercepts on the 

logit scale, specific for each species and HCS class (Model 1). Continuous measures 

of carbon, including quadratic terms, were incorporated into occurrence models 

alongside species-specific intercepts to determine the potential for REDD+ to deliver 

biodiversity co-benefits (Models 2 and 3). These carbon data were from two sources: 

coarse-grained 1 km resolution global maps ('CC1000'; Avitabile et al., 2016), and 25 

m resolution maps derived from biomass estimates from the study site linked to 

RapideyeTM satellite imagery ('CC25'; Pfeifer et al., 2016; for a subset of sites not 

obscured by cloud cover, N=66). HCS-specific intercepts were retained in the 

detection components of Models 2 and 3 as they broadly describe the influence of 

habitat type. We chose to model HCS, CC1000 and CC25 separately due to strong 

evidence of collinearity between these variables (|r|≥0.7). Continuous carbon and HCS 

covariates were calculated as average values extracted from a 100 m buffer (ca. 3.1 ha 

area) around each camera location. Covariates were centred and standardised prior to 

analysis. We found no evidence of spatial autocorrelation in the detection dataset 

(Moran’s I=0.08≤P≤0.92), indicating that assumptions of independence in occupancy 

modelling were met (Royle and Dorazio, 2008). 

The models were fitted to include inference about the number of potential 

species not observed during sampling (Dorazio and Royle, 2005). To achieve this, 

detection data were augmented with 50 hypothetical species, with all-zero encounter 

histories, following Royle et al. (2007). Predicted species richness was calculated for 

each camera location allowing for post-hoc comparison between HCS classes. 
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We compared mammal richness between HCS classes using a Bayesian linear 

model. We follow a two-stage analytical approach described by Kéry & Royle (2015), 

whereby estimation uncertainty associated with predicted species richness is 

propagated by the inclusion of an additional residual component into the model 

(standard deviation of richness estimates from the hierarchical Bayesian multi-species 

occupancy models). In principle, parameter estimates could be derived directly from 

a single model, but this resulted in lower precision. Since land-use change 

disproportionately affects species of conservation concern and disturbance-sensitive 

forest specialists, we report our findings for: (1) all species; (2) threatened species 

(IUCN red-listed as vulnerable, endangered or critically endangered); (3) non-

threatened species (IUCN least concern or near-threatened); (4) disturbance-sensitive 

species (listed as medium-high sensitivity according to Wilson et al., 2010), and; (5) 

disturbance- tolerant species (low sensitivity; see Table S3.1 for species-specific 

group assignment). 

 

Biodiversity co-benefits of REDD+ 

To assess the potential biodiversity co-benefits of REDD+, we extracted 

predicted species richness values from the hierarchical occurrence model and explored 

their association with carbon. To determine if these relationships were grain-

dependent, we derived carbon data from coarse- (CC1000, 1 km) and fine-grained 

(CC25, 25m) satellite-derived datasets. Associations between levels of mammal 

species richness and carbon at the two different spatial resolutions, and for a priori 

groupings, were assessed via Bayesian two-stage linear models incorporating 

quadratic terms.  
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All analyses were conducted in WinBUGS version 1.4.3 through R version 

3.3.0 using the package “R2WinBUGS” (Sturtz et al., 2005); see supplement S3.3 for 

further information on model specification and predictive performance checks.  

 

Results 

Camera-trapping yielded 3,237 independent capture events of 28 species, 

comprising 24 genera distributed across 16 families.  In contrast, our models predicted 

30.6 species across the landscape (95% Bayesian Credible Interval, BCI=28.0-37.0), 

suggesting that few mammal species were missed by our sampling. The effect of 

imperfect detection was more pronounced at the camera-trap level, where predicted 

richness was consistently greater than observed richness (mean=4.35, range=0.02-

12.26).  

 

Spatial concordance between biodiversity and HCS classes 

Hierarchical Bayesian multi-species models indicated reduced mammalian 

occupancy in the low carbon strata (Fig 3.2). Community hyperparameters revealed 

comparable estimates of mean occupancy between Continuous Logged Forest 

(mean=0.49, BCI=0.32-0.63), Dense Forest (0.36, 0.17-0.60) and Developed Land 

(0.32, 0.12-0.56). However, community occupancy was low in Young Regenerating 

Forest (0.23, 0.11-0.45) and Oil Palm plantation (0.05, 0.01-0.31).  

Our models demonstrated species-specific associations with HCS classes (Fig. 

3.2). For example, occupancy estimates indicate that bearded pig (Sus barbatus) and 
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southern pig-tailed macaque (Macaca nemestrina) were common in Continuous 

Logged Forest (bearded pig: 0.71, 0.53-0.85; pig-tailed macaque: 0.71, 0.53-0.86) and 

Dense Forest (bearded pig: 0.74, 0.53-0.90; pig-tailed macaque: 0.74, 0.52-0.92), with 

occupancy of the pig-tailed macaque also high in Developed Land (0.71, 0.51-0.87). 

Conversely, species such as the lesser mouse-deer (Tragulus kanchil) (0.20, 0.08-0.40) 

and sun bear (Helarctos malayanus) (0.21, 0.08-0.44) were rare in Dense Forest. In 

the Oil Palm plantation five species demonstrated low occupancy, four of which were 

threatened taxa (Fig. 3.2e). Species-specific detection summaries for the HCS model 

are available in supplementary figures S3.1-3.4. 
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Figure 3.2: Species-specific outputs from the Bayesian hierarchical model. Caterpillar plots of outputs 

from the hierarchical Bayesian multi-species occupancy model. Graphs show species-specific baseline 

occupancy estimates (including 95% Bayesian Credible Interval) relative to habitat class (a-e). Mean 

community hyperparameter occupancy values and their associated credible intervals are represented in 

the shaded (orange) background to each plot. Species exhibiting deviations from a baseline occupancy 

of 0.5 are shown with shaded (blue) bars. 

 

Extremes in predicted species richness were identified between the reference 

habitat classes (Fig. 3.3); Continuous Logged Forest was found to have the highest 

richness (14.12, 13.20-15.07), while Oil Palm plantation supported the most 

depauperate community (4.54, 3.58-5.52). Estimates of total richness were similar 

between Dense Forest (11.38, 10.30-12.51) and Developed Land (10.63, 9.52-11.02), 

while the number of species found in Young Regenerating Forest was significantly 

lower (8.15, 7.13-9.27). These patterns were consistent across groupings. 

 

 



122 

 

 

Figure 3.3: Species richness relative to HCS-delineated forest strata. Boxplots demonstrating species 

richness in relation to habitat class for: (1) all species; (2) threatened species (IUCN red-listed as 

vulnerable, endangered or critically endangered); (3) disturbance sensitive species. Boxes delineate 

median and interquartile range of species richness values, vertical dashed lines outline the 2.5th and 

97.5th percentiles of the data and transparent circles represent outlying data points.  Letters indicate 

significant differences between habitat classes within broader species groupings (different letters 

suggest significance while identical letters indicate non-significance). 

 

Biodiversity co-benefits of REDD+ 

The global- versus local-scale carbon values at camera locations were 

inconsistent. The 1 km resolution global data tended to produce much higher carbon 

estimates compared to those derived from higher resolution imagery (global 

mean=152.23 t C ha-1, range=50.39-236.53; local mean=22.95t C ha-1, range= 0.31-

94.98). Carbon values from the global- and local-scale maps corresponded broadly 

with biomass values derived from field inventories (N=164; rs=0.55 global; rs=0.51; 

local-scale). However, local-scale carbon estimates were found to be more precise 

(RMSE: local=29.05 t C ha-1; global=130.94 t C ha-1). We found no influence of 

continuous measures of carbon on mammalian occupancy using either global- or local-

scale carbon data (see supplementary figures S3.1-3.4). Species-specific detection 

summaries for the continuous carbon models are available in supplementary figures 

S3.1-3.4.   

Grain-dependency between the association of carbon and mammal richness 

was evident. Using global carbon data no relationship between the two variables was 

apparent, regardless of the species grouping (Figs. 3.4a,c,e). However, at the local-

scale, positive associations with carbon were identified for threatened and disturbance-
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sensitive species (Figs. 3.4d,f). This trend was not consistent across groupings with all 

species, non-threatened and disturbance-tolerant taxa demonstrating no relationship 

with carbon (Fig. 3.4b). 

 

 

Figure 3.4: Species richness relative to continuous metrics of carbon. Bayesian linear model outputs 

demonstrating significant positive relationships between predicted species richness and carbon stock 

estimates derived from a 25 m resolution local dataset (d: threatened species; f: disturbance-sensitive 

species). All other associations presented were found to be non-significant. Solid (blue) lines indicate 

predicted mean posterior distribution values, dashed lines refer to predicted 95% Bayesian Credible 
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Intervals and vertical grey lines highlight the error associated with each estimated species richness 

value. 

 

Discussion  

The extent to which biodiversity and carbon spatially align is fundamental to 

our understanding of whether carbon-based policies can deliver positive results for 

conservation in human-modified landscapes. Among the few studies that assess 

biodiversity and carbon covariance using primary and/or high-resolution data 

(Magnago et al., 2015, Sollmann et al., 2017), ours is the first to verify an association 

within a tropical landscape mosaic undergoing certification. We show that the 

strength, nature and extent of biodiversity co-benefits are dependent on how carbon 

stocks are characterised (i.e. categorical or continuous), the spatial resolution of the 

carbon data employed, and the species considered.  

 

Contribution of the HCS approach to biodiversity conservation 

When evaluating community-level responses to HCS classes, we found 

comparable levels of mammalian occupancy between Continuous Logged Forest, 

Developed Land and Dense Forest, while occupancy was reduced in Young 

Regenerating Forest and Oil Palm. Occupancy can be a viable surrogate for abundance 

under certain conditions (Efford and Dawson, 2012). Our results could therefore 

suggest the persistence of certain mammal species at lower densities within carbon-

poor classes, which confirms previous reports of reduced mammalian abundance in 

impoverished forest habitats (Bicknell et al., 2014).  
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Occupancy and species richness estimates for the total mammal community 

highlight comparable levels of biodiversity between the Dense Forest and Developed 

Land classes, supporting previous studies that demonstrate the conservation value of 

heavily degraded forest for a range of taxonomic groups (Edwards et al., 2014, 

Struebig et al., 2013, Wearn et al., 2016). However, we advise caution when 

interpreting the biodiversity value of Developed Land, which may not be fully realised 

for long-lived mammal species until extinction debts, owed to a legacy of disturbance, 

are repaid (Rosa et al., 2016). The biodiversity value of Developed Land that we found 

is also crucially dependent on the low levels of hunting at our study site. Hunting has 

been shown to have substantial impacts on mammal communities elsewhere in the 

region (Harrison et al., 2016). Our study adds to the growing body of evidence that 

shows oil palm plantations to have depauperate mammalian communities, comprised 

of few generalist species occurring at low densities (Wearn et al., 2016, Yue et al., 

2015). While our data generally conform to the pattern of declining biodiversity 

relative to structural complexity, Young Regenerating Forest demonstrated 

comparably lower biodiversity value regardless of the metric examined. Given the 

difficulties in differentiating between the Young Regenerating Forest and Scrub strata 

(see supplement S3.2), we believe this finding reflects ambiguities in the HCS 

classification process. 

While our analyses demonstrate differences in conservation value between the 

HCS strata, the ability of land parcels to support biodiversity will also be limited by 

habitat fragmentation effects. This process is pervasive in human-modified 

landscapes, and has contributed to species richness declines of up to 75% (Haddad et 

al., 2015). While efforts to account for habitat fragmentation in the HCS prioritisation 
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process are underway, a definitive toolkit is still in development. Therefore, while we 

have not explicitly accounted for the independent and interactive effects of 

fragmentation metrics (e.g. patch size, isolation and connectivity) on biodiversity in 

our analyses, it warrants further consideration as the HCS Approach gains traction 

across the agricultural sector. 

 

Contribution of REDD+ to biodiversity conservation 

Our results indicate that spatial concordance between biodiversity and carbon 

can be overlooked if the latter is calculated via low-resolution data. Using carbon 

information from a commonly utilised global dataset, no association with mammal 

diversity was identified, suggesting that REDD+ initiatives would not provide 

biodiversity co-benefits in heavily degraded landscapes. However, when high-

resolution carbon maps were employed, a positive relationship with species richness 

was found for threatened and disturbance-sensitive taxa, demonstrating the value of 

REDD+ to those species most vulnerable to land-use change. When all species were 

considered these relationships were obscured by non-threatened, generalist species 

that are resilient to disturbance. Our findings provide further support for biodiversity 

co-benefits in agricultural land-use mosaics, as previously demonstrated for a range 

of taxonomic groups (birds and dung beetles: Gilroy et al., 2014; amphibians: Basham 

et al., 2016), while highlighting important nuances in the carbon-biodiversity 

relationship. We advocate the use of fine-grained, field-validated carbon data when 

determining the extent and nature of biodiversity co-benefits and suggest an emphasis 

on species of conservation concern.  
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Our detailed landscape appraisal is the first to identify biodiversity co-benefits 

for mammals, a taxonomic group that occupies key trophic positions in tropical forest 

ecosystems and is frequently prioritised by conservation. Previous studies have proved 

less convincing. Across a pantropical network of sites, Beaudrot et al. (2016b) found 

no association between forest carbon and three measures of mammalian diversity. 

However, by aggregating fine-scale biomass data at the site level, the authors 

compromised the resolution of their data, potentially obscuring intra-site relationships 

that would be more representative of a REDD+ management unit. Similarly, Sollmann 

et al. (2017) found little correspondence between above-ground biomass and mammal 

occupancy in a certified forest reserve in Malaysian Borneo, despite adopting a 

comparable methodology to the present study. Contrasting findings may be attributed 

to spatial variability in hunting pressure. 

 

Implications for HCS implementation 

Given that RSPO members have little obligation to protect highly disturbed 

forest of uncertain conservation value, the HCS Approach is a useful tool to designate 

high carbon, high biodiversity land in areas that would otherwise be converted to 

plantation. High Carbon Stock areas can also contribute to national and regional spatial 

planning initiatives that mitigate the effects of environmental change on tropical 

biodiversity by promoting connectivity in human-modified landscapes (Struebig et al., 

2015). 

Under current HCS guidelines, 62% (8,150 ha) of the remaining forest in the 

study system would qualify for protection from agricultural conversion, equating to a 
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net gain of 15.72 t C ha-1 (see Appendix S2) at an annual opportunity cost of US$3.7 

million (based on Fisher et al., 2011a). The success of certification depends on 

financial returns from sustainable production offsetting the economic losses associated 

with sustainable practices. While the zero deforestation principle of the HCS 

Approach reduces reputational risk by aligning with consumer goods forum calls to 

eliminate deforestation from global commodity supply-chains, it has been considered 

economically restrictive for nations with extensive pristine forests (Senior et al., 

2015), indicating that current guidelines may be too stringent. Strata such as Young 

Regenerating Forest might, therefore, end up being earmarked for conversion rather 

than conservation in some circumstances. However, with the conservation value of 

this stratum likely to increase as forests regenerate, the impact of such a policy change 

needs to be fully evaluated. Carbon neutral conversion represents an alternative to the 

current emphasis on zero deforestation. While the specific carbon threshold for 

delineating forest has proved contentious, Pirker et al. (2016) demonstrated that 

protecting areas exceeding 100 t C ha-1 would safeguard 73% of the climatically 

suitable area for oil palm expansion. Ultimately, compromise begets progression, and 

while the industry should still strive for zero deforestation, carbon neutral conversion 

may be more viable in specific countries and circumstances, if agricultural expansion, 

economic development and forest conservation are to be reconciled. 

 

Implications for REDD+ implementation 

The considerable enthusiasm for biodiversity co-benefits often obscures the 

fact that REDD+ is fundamentally a carbon-orientated mechanism with limited scope 

for increasing biodiversity conservation (Venter and Koh, 2012). While we provide 
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further evidence to verify biodiversity co-benefits in human-modified landscapes, it is 

unlikely that REDD+ will be economically viable in carbon-poor environments. Given 

current economic pressures and weak carbon markets, REDD+ projects currently 

prioritise carbon gains at low operating costs.  Acting optimally for carbon will 

therefore place increasing agricultural pressure on secondary or degraded forests that 

are comparatively low in carbon value but retain appreciable levels of biodiversity 

(Edwards et al., 2014). Conservationists must ensure that safeguards are in place to 

support vulnerable species in disturbed habitats that fall beyond the remit of carbon-

financing mechanisms. 

The viability of REDD+ in human-modified landscapes is further hindered by 

the profitability of oil palm. Under current voluntary markets, avoided deforestation 

through REDD+ was found to have an opportunity cost of $3221–8636 ha-1 over a 30 

year period when compared to potential profits generated from oil palm (Butler et al., 

2009). For REDD+ to be an economically competitive alternative to oil palm 

cultivation, climate change policies must legitimise REDD+ carbon credits to facilitate 

their trade on financially lucrative compliance markets (Butler et al., 2009).  

 

Conclusions  

Our work highlights the potential for environmental certification and REDD+ 

financing mechanisms to work in tandem with conservation to mitigate the effects of 

agricultural expansion on tropical forest carbon stocks and biodiversity. REDD+ is 

well placed if it prioritises large tracts of contiguous forest, especially if commitments 

to carbon stock enhancement safeguard degraded forest of biological value. 
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Certification schemes, coupled with land-use planning tools such as HCS, can help 

secure sizeable forest patches of high conservation value in agricultural estates, and 

offer a further safeguard to minimise encroachment. Conservationists should capitalise 

on both types of carbon-based policy to maximise the potential for developed lands to 

provide ecological stepping stones for threatened wildlife between a network of high-

carbon, high-biodiversity areas. 
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Supplementary information 

S3.1: Definitions of strata delineated by the High Carbon Stock (HCS) Approach 

 

 

 

The High Carbon Stock (HCS) methodology seeks to conserve biodiverse and 

ecologically functional forest networks within agricultural concessions by directing 

conversion towards heavily degraded land of low carbon value (Rosoman, 2017). This 

is achieved by using high resolution satellite imagery to stratify the landscape into 

discrete strata according to vegetation density and structure, which are then adopted 

as proxies for above-ground carbon stocks and assumed to support varying levels of 

biodiversity. The HCS Approach recognises six distinct vegetation classes (detailed 

below), each with unique structural characteristics.  
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Habitat Classes Analytical 

Classification  

 

Continuous Logged Forest contains 

similar structural properties to Dense 

Forest. This class is not considered for 

development due to its protected status.  

This class was incorporated as a control 

against which carbon and biodiversity of 

other strata could be compared. 

Continuous 

Logged 

Forest  

 

Dense Forest comprises three classes, 

high/medium/low density forest, and 

refers to closed-canopy natural forest 

characterised by: 

 >50% canopy cover; 

 Significant proportion of trees >30cm 

dbh; 

 Dominated by climax community 

tree species. 

Development status: Conserved 

Dense Forest 

 

Young Regenerating Forest is highly 

disturbed remnant forest characterised 

by: 

 30-40% canopy cover; 

 Significant proportion of trees 

between 10 and 30cm dbh; 

 Dominated by pioneer tree species. 

Development Status: Conserved 

Young 

Regenerating 

Forest 



133 

 

 

 

Scrub refers to land that has previously 

been cleared but experienced some 

regeneration. It is characterised by: 

 <25% canopy cover; 

 Dominated by tall grasses and ferns 

but containing some pioneer species. 

 

Development status: Converted 

Developed 

Land 

 

Open Land represents a post-clearance 

habitat dominated by grass or crops with 

few woody plants.  

 

Development status: Converted 

 

Oil palm (Elaeis guineensis) represents 

the final phase of land-use change in the 

study system when natural forest habitat 

has been displaced by commodity 

agriculture. 

 

This class was incorporated as a control 

against which carbon and biodiversity of 

other strata could be compared. 

Oil Palm 

Plantation 
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S3.2: Validating the carbon credentials of the High Carbon Stock (HCS) Approach 

 

Rationale 

The High Carbon Stock (HCS) land-use planning tool is gaining traction in oil 

palm certification as companies seek to honour their commitments to sustainable 

production. However, there is a paucity of information in the scientific literature to 

validate the accuracy of the HCS stratification process to delineate high carbon 

conservation priority areas. Here, we provide an assessment of the carbon credentials 

of the HCS toolkit. 

 

Methods and Materials 

HCS classes were delineated across the Stability of Altered Forest Ecosystems 

(SAFE) Project study site using standardised protocols (Rosoman, 2017). These strata 

were validated using independent high-resolution satellite data of above-ground 

biomass (RapidEye, 5 m resolution; temporal coverage 2012-2013; Pfeifer et al., 

2016), across cloud-free areas of the study landscape. Carbon stocks were calculated 

using a conversion factor of 0.47 (Martin and Thomas, 2011), and values were 

extracted from 200 random points per HCS class (N=800) separated by a minimum 

distance of 50 m. A Bayesian linear model was employed to determine the distribution 

of carbon values across classes, thus testing the accuracy of the classification process. 
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Results 

Following our land-cover stratification, 62 % of the remaining forest in the 

study landscape, comprising 6,031 ha of High Carbon Stock forest and 2,120 ha of 

Young Regenerating Forest, would qualify for conservation under current HCS 

guidelines (Fig. 1). The classes appropriately reflected modelled carbon content, 

which was greatest for Dense Forest (45.86 t C ha-1, 95% BCI=42.32-49.44) and 

significantly lower in the other classes (Young Regenerating Forest: 31.30t C ha-1, 

27.85-34.80; Scrub: 29.62 t C ha-1, 26.19-33.05; Open Land: 16.09t C ha-1, 12.59-

19.62). Pairwise comparisons of carbon content revealed significant differences 

between all habitat classes with the exception of Young Regenerating Forest and 

Scrub. On average, land earmarked for conservation contained 41% more carbon than 

that designated for development (i.e. Scrub and Open Land strata combined) under the 

HCS Approach, equating to a net value of 15.72 t C ha-1 across the landscape. 

 

Discussion 

There is a general consensus in the scientific literature that field-derived 

carbon estimates are laborious, costly and time consuming to implement over large 

spatial scales (Gibbs et al., 2010, Petrokofsky et al., 2012). Consequently, there is a 

need for cost-effective, efficient protocols that can be followed to delineate high 

carbon stock areas. Our results provide empirical support for the prioritisation of high 

carbon stock areas for conservation in the humid tropics via the HCS Approach. High 

Carbon Stock Forest (Dense Forest and Young Regenerating Forest combined) was 

estimated to store 45.86 t C ha-1, which falls within the range of estimates for highly 
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degraded forest habitat in Borneo (40-100 t C ha-1; Lucey et al. Lucey et al., 2014), 

but is considerably lower than pristine lowland tropical forest (477 t C ha-1; Budiharta 

et al., 2014b).   

Our analyses demonstrate that carbon stocks are similar between land 

classified as Young Regenerating Forest and Scrub, suggesting that the HCS toolkit 

cannot reliably distinguish between these strata. This has direct implications for 

conservation, as Young Regenerating Forest should be retained within the landscape, 

yet Scrub can be developed. This reflects the concerns of Annisa (2014), who stressed 

the difficulties associated with partitioning heterogeneous vegetation into categorical 

carbon classes, as habitat transitions are gradual and not discrete. While the initial 

version of the HCS toolkit offered a clear carbon threshold value (35 t C ha-1) with 

which to differentiate between strata suitable for development and conservation, it has 

been omitted in subsequent revisions, introducing subjectivity and misinterpretation 

into the classification process. We recommend the adoption of explicit carbon 

threshold values defining each HCS stratum, to improve calibration and thus 

classification accuracy. Threshold values would make the HCS methodology more 

transparent, objective and comparable across concessions. In practice, the thresholds 

should be regionally-specific, accounting for the recognised geographic variation in 

standing carbon stock across tropical forests globally (Avitabile et al., 2016, Banin et 

al., 2014). 
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Table S3.1: Species assignment to grouping categories 

Species Threat Status Disturbance Response 

Asian elephant Threatened Sensitive 

Banded civet Threatened Sensitive 

Bearded pig Threatened Tolerant 

Binturong Threatened Sensitive 

Clouded leopard Threatened Sensitive 

Common palm civet Non-threatened Tolerant 

Greater mousedeer Non-threatened Sensitive 

Leopard cat Non-threatened Tolerant 

Lesser mousedeer Non-threatened Sensitive 

Long-tailed macaque Non-threatened Tolerant 

Long-tailed porcupine Non-threatened Tolerant 

Malay civet Non-threatened Tolerant 

Malay porcupine Non-threatened Tolerant 

Marbled cat Threatened Sensitive 

Masked palm civet Non-threatened Tolerant 

Moonrat Non-threatened Sensitive 

Orangutan Threatened Sensitive 

Pig-tailed macaque Threatened Tolerant 

Red muntjac Non-threatened Tolerant 

Sambar deer Threatened Sensitive 

Short-tailed mongoose Non-threatened Tolerant 

Stink badger Non-threatened Tolerant 

Sun bear Threatened Sensitive 

Sunda pangolin Threatened Tolerant 

Thick-spined porcupine Non-threatened Tolerant 

Tufted ground squirrel Threatened Sensitive 

Yellow muntjac Non-threatened Sensitive 

Yellow-throated marten Non-threatened Tolerant 
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S3.3: Model Specification and predictive performance checks 

 

All analyses were conducted in WinBUGS version 1.4.3 called through R version 

3.3.0 using the package “R2WinBUGS” (Sturtz et al., 2005). All statistical models 

were constructed using uninformative priors. Unless stated otherwise, parameter 

estimates are presented as means alongside 95% Bayesian Credible Intervals (BCIs) 

and considered statistically significant if their 95% BCIs did not overlap zero. For the 

hierarchical Bayesian multi-species occupancy model, three parallel chains were run 

for 75,000 iterations, 25,000 of which were discarded during the burn-in; posterior 

chains were thinned by 10. For all Bayesian two-stage linear models, three parallel 

chains were run for 12,000 iterations, following a burn-in of 2,000; posterior chains 

were thinned by 5. Convergence was assessed using visual inspection of trace plots 

and the Gelman-Rubin statistic, values ≥1.1 indicate failure to converge (Gelman and 

Hill, 2007). Model fit was assessed statistically using a posterior predictive check, 

which compares model fit for the actual data against a simulated, idealised dataset 

(Gelman et al., 1996). Bayesian p-values were extracted as a numerical summary of 

the posterior predictive distribution, with quantities close to 0.5 indicating adequate 

model fit. We identified quantitative and visual support for convergence in all models 

presented, while obtained Bayesian p-values did not provide evidence of lack of fit 

(0.43≤ p≤0.52). 
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WinBUGS code for hierarchical Bayesian community occupancy model used to assess 

spatial concordance between biodiversity and HCS classes. 

 

 model{ 

     

    #Define prior distributions for community-level model parameters 

    #================================================== 

    omega ~ dunif(0,1) 

    sigma.vCLF <- 1/sqrt(tau.vCLF) 

    sigma.vHCS <- 1/sqrt(tau.vHCS) 

    sigma.vYRF <- 1/sqrt(tau.vYRF) 

    sigma.vDEV <- 1/sqrt(tau.vDEV) 

    sigma.vOP <- 1/sqrt(tau.vOP) 

 

    for (i in 1:(n+nzeroes)) { 

    # Create priors for species i from the community hyperparameters 

    #================================================= 

         w[i] ~ dbern(omega) 

     

         u[i] ~ dnorm(a, tau1) 

         alpha1[i] ~ dnorm(mu.alpha1, tau.alpha1) 

         alpha2[i] ~ dnorm(mu.alpha2, tau.alpha2) 

 

         v.CLF[i] ~ dnorm(mu.vCLF, tau.vCLF)  

         v.HCS[i] ~ dnorm(mu.vHCS, tau.vHCS) 

         v.YRF[i] ~ dnorm(mu.vYRF, tau.vYRF)  

         v.DEV[i] ~ dnorm(mu.vDEV, tau.vDEV) 

         v.OP[i] ~ dnorm(mu.vOP, tau.vOP) 

     

    #Create a loop to estimate the Z matrix (true occurrence for species i  

    #at point j 

    #===================================================       

         for (j in 1:J) { 

              logit(psi[j,i]) <- u[i] + alpha1[i]*carbon1[j] + alpha2[i]*carbon2[j] 

              mu.psi[j,i] <- psi[j,i]*w[i] 

              Z[j,i] ~ dbern(mu.psi[j,i]) 

     

    #Create a loop to estimate detection for species i at point j during  

    #sampling period k 

    #=================================================      

                   for (k in 1:K[j]) {   

                         logit(p[j,k,i]) <- v.CLF[i]*Ind1[j] + v.HCS[i]*Ind2[j] +                     

                                                   v.YRF[i]*Ind3[j] +  v.DEV[i]*Ind4[j] +  

                                                   v.OP[i]*Ind5[j] 

     

                       mu.p[j,k,i] <- p[j,k,i]*Z[j,i] 
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                       X[j,k,i] ~ dbern(mu.p[j,k,i]) 

                       Xnew[j,k,i] ~ dbern(mu.p[j,k,i]) 

 

    # Create simulated dataset to calculate Bayesian p value 

    #========================================= 

              d[j,k,i]<-  abs(X[j,k,i] - mu.p[j,k,i])  

              dnew[j,k,i]<- abs(Xnew[j,k,i] - mu.p[j,k,i])  

              d2[j,k,i]<- pow(d[j,k,i],2)   

              dnew2[j,k,i]<- pow(dnew[j,k,i],2)  

              }    

     

         dsum[j,i]<- sum(d2[j,1:K[j],i])  

         dnewsum[j,i]<- sum(dnew2[j,1:K[j],i]) 

         } 

     } 

     

    # Calculate discrepency measure 

    #========================= 

         p.fit<-sum(dsum[1:J,1:n])  

         p.fitnew<-sum(dnewsum[1:J,1:n]) 

    } 

     

    # Sum all species observed (n) and unobserved species (n0) to find the  

    # total estimated richness 

    #===================================================== 

    n0 <- sum(w[(n+1):(n+nzeroes)]) 

    N <- n + n0 

     

    # Create a loop to determine point level richness estimates for the  

    # whole community and for threatened, non-threatened, disturbance-tolerant 

    # and disturbance-sensitive species 

    #========================================================= 

    for(j in 1:J){ 

         Nsite[j]<- inprod(Z[j,1:(n+nzeroes)],w[1:(n+nzeroes)]) 

         Nleast[j]<- inprod(Z[j,1:n],least.concern[1:n]) 

         Nthreat[j]<- inprod(Z[j,1:n],threatened[1:n]) 

         Ntolerant[j]<- inprod(Z[j,1:n],tolerant[1:n]) 

         Nsensitive[j]<- inprod(Z[j,1:n],sensitive[1:n]) 

         } 

    } 
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Figure S3.1: Mammal occupancy relative to HCS-delineated forest strata. Species-specific posterior 

summaries for occupancy as a function of HCS class (Continuous Logged Forest: CLF; Dense Forest: 

DF; Young Regenerating Forest: YRF; Developed Land: DEV; Oil Palm: OP). We visualise mean 

predicted posterior distribution values (horizontal lines), accompanied by 95% Bayesian Credible 

Intervals (vertical lines). 
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Figure S3.2: Mammal detection probability relative to HCS-delineated forest strata. Species-specific 

posterior summaries of detection probability as a function of HCS class (Continuous Logged Forest: 

CLF; Dense Forest: DF; Young Regenerating Forest: YRF; Developed Land: DEV; Oil Palm: OP). We 

visualise mean predicted posterior distribution values (horizontal lines), accompanied by 95% Bayesian 

Credible Intervals (vertical lines). 
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Figure S3.3: Mammal occupancy relative to continuous carbon (coarse-scale). Species-specific 

posterior summaries of occupancy as a function of continuous carbon derived from a 1 km resolution 

dataset (Avitabile et al. 2016). We present predicted mean posterior distribution values (blue line) and 

95% Bayesian credible intervals (blue shaded region). 
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Figure S3.4: Mammal occupancy relative to continuous carbon (fine-scale). Species-specific posterior 

summaries of occupancy as a function of continuous carbon derived from a 25 m resolution dataset 

(Pfeifer et al. 2016). We present predicted mean posterior distribution values (blue line) and 95% 

Bayesian credible intervals (blue shaded region). 
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Abstract 

Zero-deforestation commitments have emerged as a way for production 

companies to disassociate agricultural expansion from forest loss in the tropics. 

However, the success of these policies is dependent on effective methodologies that 

translate corporate commitment into actual implementation on the ground. The High 

Carbon Stock (HCS) Approach is the dominant tool used to implement zero-

deforestation commitments, yet the efficacy of the methodology to design ecologically 

functional forest networks in production landscapes has not been assessed. In a highly-

fragmented tropical forest landscape dominated by oil palm, we test the capacity for 

HCS designations of conservation-priority to sustain mammal diversity in forest 

remnants. Our results found that forest patches afforded the highest conservation 

priority by HCS protocols were indeed important refugia for IUCN-threatened species 

and megafauna.  Moreover, large, less isolated fragments were found to support larger 

mammal populations, though the conservation value of a remnant was moderated by 

forest quality and hunting pressure. Disturbance synergies are rarely accounted for in 

fragmentation assessments, but we identify greater empirical support for models that 

included habitat quality and hunting measures together. We find that current HCS core 

area criteria conserve only a fraction of the mammal community and estimate that an 

area of 3,199 ha would be required to sustain the full complement of mammal species. 

This figure increased by an order of magnitude when hunting effects were accounted 

for. Maintaining strategically configured large forest remnants should be the primary 

objective for medium-large mammal conservation. Where this is not feasible a greater 

emphasis on landscape-connectivity is essential. To this end, we advocate greater 
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recognition of the importance of low-medium conservation priority patches and 

encourage their integration into restoration objectives.   

Keywords: Habitat fragmentation; High Carbon Stock Approach; hunting; land-use 

planning; tropical mammals; N-mixture modelling; Southeast Asia; zero-

deforestation.  
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Introduction 

Tropical forests support a large proportion of global biodiversity, but are 

compromised by anthropogenic activities (Barlow et al., 2018). Indeed, 227 million 

ha of tropical forest area has been lost since 1950 (Rosa et al., 2016). The remaining 

forest exists as 130 million fragments (Taubert et al., 2018), 70% of which is edge 

habitat (Haddad et al., 2015). Cumulatively, the processes of tropical forest loss and 

fragmentation erode biodiversity by reducing effective habitat area and quality, as well 

as increasing exposure to anthropogenic disturbance (Barlow et al., 2016). If 

biodiversity collapse is to be averted in tropical regions, deforestation must be curbed. 

Agricultural conversion accounts for up to 78% of tropical deforestation 

(Curtis et al., 2018), and is widely recognised as the primary threat to terrestrial 

vertebrates (Tilman et al., 2017, Curtis et al., 2018). The pantropical expansion of oil 

palm (Elaeis guineensis) is at the forefront of conservation concerns. Driven by high 

productivity and accelerating demand for palm oil derivatives, oil palm currently 

occupies 18.7 million hectares of land (Meijaard et al., 2018). Conversion of tropical 

forests to oil palm is associated with precipitous biodiversity declines and biotic 

homogenization (Fitzherbert et al., 2008, Wearn et al., 2016). Since 1970, global palm 

oil production has doubled every decade, a trend which is forecast to continue (Austin 

et al., 2017). Much of the ecologically suitable land identified to meet future 

agricultural expansion currently comprises highly biodiverse ecosystems (Pirker et al., 

2016). We therefore need to capitalise on all opportunities to reconcile production and 

conservation, if we are to safeguard biodiversity against the proliferation of 

commodity agriculture. 
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Growing public awareness of the environmental impacts of oil palm, and 

associated demand for more sustainable production, has prompted the emergence of 

voluntary standards that aim to eliminate deforestation from commodity supply-

chains. These “zero-deforestation” pledges feed into corporate social responsibility 

strategies that align societal expectations with company development (Lyon and 

Maxwell, 2008). Such strategies reduce reputational risk, generate a favourable brand 

image, maintain consumer loyalty and circumvent import restrictions to 

environmentally conscious markets (Lambin et al., 2018). In the oil palm industry, 

80% of producers with dominant market shares and land allocations have committed 

to zero-deforestation (Lyons-White and Knight, 2018, Meijaard et al., 2018). Zero-

deforestation initiatives have the potential to uncouple oil palm expansion and 

deforestation, though their success is dependent on effective methodologies that 

translate corporate commitment into environmentally sustainable expansion. 

The High Carbon Stock (HCS) Approach has emerged as the dominant 

mechanism to realise zero-deforestation commitments in the oil palm sector. For 

example, signatories of the Sustainable Palm Oil Manifesto, representing five of the 

largest palm oil producers, have committed to implementing HCS protocols (Padfield 

et al., 2016). HCS directs agricultural conversion towards degraded land of low carbon 

and biodiversity value, where production would be independent of deforestation 

(Rosoman, 2017). HCS comprises two components. Phase one protocols identify 

biodiverse forest areas for conservation based on tree density and structure (Deere et 

al., 2018). However, the long-term fate of biodiversity in remnant forest depends on 

the spatial configuration of remnant habitat. Phase two HCS protocols, therefore, aim 

to ensure that the remaining forest extent is ecologically functional, based on criteria 
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such as specific patch sizes, level of connectivity and an assessment of quality 

(Rosoman, 2017). The role these criteria may (or may not) play in protecting 

biodiversity are yet to be fully evaluated, despite this being fundamental to confirming 

whether meeting zero deforestation commitments is compatible with conservation 

objectives.  

Synergies between the impacts of anthropogenic disturbance and 

fragmentation on biodiversity are rarely addressed, potentially introducing significant 

systematic bias into conservation recommendations if multiple drivers of biodiversity 

loss cannot be decoupled. Hunting by humans is ubiquitous within tropical forest 

ecosystems, resulting in widespread defaunation (Harrison, 2011). Despite recognition 

that forest fragmentation increases its accessibility to hunters, few studies integrate 

hunting indices into fragmentation assessments (but see Michalski and Peres, 2007, 

Peres, 2001), due to difficulties detecting and quantifying the spatial signature of 

human pressure. Additionally, geographic and taxonomic bias in fragmentation 

research limits the scope of generalisations, due to divergent species responses within 

and between biogeographic realms (Deikumah et al., 2014, Keinath et al., 2017).  

Here we quantify forest fragmentation impacts on biodiversity to inform the 

HCS methodology underpinning zero-deforestation commitments. Our study area in 

Sabah, Malaysian Borneo, has been subject to some of the highest deforestation rates 

in the tropics (Hansen et al., 2013), and remaining forest is distributed across 7.6 

million fragments (Brinck et al., 2017). Malaysia is at the forefront of oil palm 

cultivation, contributing to 34% of global palm-oil production at the expense of 2.1 

million hectares of forest in Malaysian Borneo alone (Gaveau et al., 2016a). Despite 

experiencing vast and rapid land-use change, Southeast Asia has been 
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underrepresented in global fragmentation assessments (Deikumah et al., 2014), 

hindering the development of conservation measures for the region’s vulnerable 

biodiversity. We develop a modelling framework to understand the impacts of HCS-

relevant fragmentation metrics on biodiversity, while accounting for potential 

disturbance synergies. Our appraisal focuses on tropical forest mammals because they 

are sensitive to habitat fragmentation (Crooks et al., 2017), regionally threatened, and 

consistently prioritised by conservation policies (Schipper et al., 2008).  

 

Materials and methods 

Study System 

We conducted fieldwork within the Stability of Altered Forest Ecosystems 

(SAFE) project and surrounding oil palm estates in Sabah, Malaysian Borneo. The 

study area is nested within Kalabakan Forest Reserve (KFR; 4°33’N, 117°16’E) 

comprising lowland and hill dipterocarp forest. KFR is a highly heterogeneous mosaic 

of near pristine old-growth forest, secondary forest at varying stages of recovery and 

oil palm plantations. Within the SAFE experimental area, isolated replicate forest 

fragments of standardised sizes (1, 10 and 100 ha) have been retained within an 

agricultural matrix to better understand the long-term ecological consequences of 

fragmentation (Ewers et al., 2011). 

We established 128 sampling locations across the study landscape, partitioned 

into continuous forest controls (N=60) and fragmented forest sites (N=68; Fig. 4.1). 

Sampled fragments ranged in size between 1 and 590 ha, thus broadly capturing the 
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dominant size classes of Southeast Asian forest remnants (average fragment size = 52 

ha, 13-213 ha depending on forest cover data source; Brinck et al., 2017). 

 

 

Figure 4.1: Map of study site, HCS patch prioritisation and camera-trap design. Map of study area (inset 

shows broader geographic context), highlighting camera-trap sampling locations partitioned across 

continuous- and fragmented forest sites. Sampled forest fragments are colour coded to reflect their HCS 

conservation priority designation. 

 

Mammal sampling 

To characterise the mammal community, we obtained detection/non-detection 

data from remotely operated digital camera-traps (Reconyx HC500, Wisonsin, USA) 

between June 2015 and December 2017. Camera-traps were deployed at 128 locations 

(Fig. 1, mean distance between sites, 1.4 km; elevation range, 89 –708 m). We adopted 

a paired design to capture a greater breadth of environmental conditions and maximise 

survey effort in topographically challenging terrain. Paired camera-trap units were 
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positioned up to 250 m apart (mean distance=207.3 m; range=23.3–231.7 m). After 

malfunction and theft, we retrieved data from 214 units across all 128 sampling 

locations, equating to 83.6% of the 256 deployed camera-traps. Units were deployed 

for a minimum of 42 consecutive nights and were continuously active, providing a 

total sampling effort of 10,097 camera-trap nights. 

 

Determinants of mammal persistence in fragmented landscapes 

We compiled spatially-explicit fragmentation metrics at the patch-scale to 

capture key criteria from the HCS prioritisation decision tree (Rosoman, 2017): core 

area, shape and isolation. These forest metrics were quantified for all patches with a 

threshold carbon value of 35 t C ha-1, using LiDAR-derived above-ground carbon 

maps (Asner et al., 2018), as per HCS protocols.  We also derived measures of forest 

quality and hunting pressure. Forest quality was quantified using two metrics, biomass 

(t ha-1; derived from Asner et al., 2018) and a HCS-specific patch-scale measure of the 

proportion of dense forest (>75 t C ha-1). We developed a bespoke hunting variable 

based on modified population pressure surfaces conceived by Platts et al. (2012). We 

derived hunting pressure using travel-time cost surface models, which integrate 

proximity to infrastructure (roads and villages), landcover, topography and human 

population density (see supplementary section S4.1 for further methodological details 

of covariate processing). We retained commonly adopted hunting proxies (proximity 

to infrastructure and population density) to gauge the value of our metric compared to 

the disaggregated component variables. We deemed collinearity amongst predictors 

confounding if Pearson’s correlation coefficients were |r|>0.7 and variance inflation 
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factors were VIF>3. Prior to analysis, continuous covariates were centred on their 

mean values and standardised to one-unit standard deviation.         

 

Modelling framework 

Data from paired camera-traps were combined into single analytical units prior 

to analysis to mitigate issues of Markovian dependence (Hines et al., 2010). Species-

specific detection histories for each analytical unit were pooled into six-day sampling 

occasions (3-7 temporal replicates site-1), which we summarised for each species 

across sites. We excluded two species with fewer than five detections from the 

modelling process (banded linsang, Prionodon linsang; smooth-coated otter, 

Lutrogale perspicillata) as it is difficult to uncouple ecological and observation 

processes when detection data are sparse (Brodie et al., 2015b).   

We employed hierarchical multi-species Bernoulli/Poisson N-mixture models 

to estimate mammal abundance from detection/non-detection data (Royle and Nichols, 

2003, Yamaura et al., 2011). Throughout, we interpret abundance as a relative measure 

and restrict inference to spatial comparisons (Wearn et al., 2017). Our hierarchical 

models consisted of two components, describing the ecological and observation 

processes underpinning the data (see supplementary sections S4.2 and S4.3 for further 

information on model formulation). Using temporally-replicated samples of 

detection/non-detection data, our models explicitly accounted for imperfect detection, 

allowing differentiation between true absence and non-detection (MacKenzie et al., 

2017).  
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To determine the influence of HCS-relevant fragmentation metrics and 

secondary disturbance impacts on patterns of mammal abundance, we specified 

models of the form. 

log(𝜆𝑖𝑗) =  𝛼0𝑖 +  𝛼1𝑖𝐹𝑜𝑟𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑗 +  𝛼2𝑖𝐹𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑗 +

                                     𝛼3𝑖 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑗 +  𝛼4𝑖 𝐻𝑢𝑛𝑡𝑖𝑛𝑔𝑗 +  𝜀(𝑌𝑒𝑎𝑟𝑗)
𝑖
     

 logit(𝑟𝑖𝑗) =  𝛽0𝑖𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑗 +  𝛽1𝑖𝑆𝑢𝑟𝑣𝑒𝑦 𝐸𝑓𝑓𝑜𝑟𝑡𝑗  

Abundance (𝜆𝑖𝑗) and detection (𝑟𝑖𝑗) were modelled using log and logit link 

functions respectively, incorporating species-specific slopes and intercepts. Species-

specific random effects were drawn from a common distribution with estimable hyper-

parameters (Guillera-Arroita, 2017). This formulation permits community-level 

inference and provides robust parameter estimates for cryptic species rarely detected 

during sampling (Zipkin et al., 2009).  

Eleven models were constructed to explore the independent and additive 

effects of fragmentation, forest quality and hunting metrics on mammal abundance 

(Table 1). To decouple fragmentation effects from habitat loss (Fahrig, 2017), we 

incorporated a forest cover covariate across all models to quantify habitat availability 

in the vicinity of the sampling location. Scale optimisation methods were used to 

ascertain the optimal spatial extents for covariates (buffers of radii: 50, 100, 250, 500, 

1000, 2500 and 5000 m). Covariates were aggregated across their best-fitting buffers 

and calculated as weighted averages between paired units, based on the proportion of 

survey effort each pair contributed to the sampling location. We incorporated temporal 

random effects (ε) in the abundance component of the model to account for inter-

annual variation due to multi-year sampling, assuming population and demographic 
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closure over a 12-month period. We modelled detection probability as a function of 

categorical habitat-specific intercepts and survey effort (number of camera-trap 

nights). We define three distinct habitat classes for the detection model, which were 

objectively defined using HCS stratification protocols (dense forest; >75 t C ha-1; 

young regenerating forest: 35-75 t C ha-1; non-forest habitat: 0-15 t C ha-1; Rosoman, 

2017).  

To inform scale-optimisation methods and rank competing models, we 

calculated Watanabe-Akaike Information Criterion (WAIC), a within-sample model 

selection tool analogous to AIC (Broms et al., 2016, Watanabe, 2010). We consider 

substantial support for models with ΔWAIC<2 (Burnham and Anderson, 2003), and 

calculate evidence ratios to compare the explanatory power of competing models 

(Burnham et al., 2011). We only present findings for models deemed to have 

substantial support, containing covariates derived from optimal scales (see 

supplementary tables S4.1 and S4.2). 

To investigate trait-mediated responses to HCS patch prioritisation protocols, 

we assigned conservation designations to forest remnants in accordance with HCS 

core area criteria (High Priority Patch: >100 ha; Medium Priority Patch: 10-100 ha; 

Low Priority Patch: <10 ha; Fig. 1) and compared their capacity to support mammal 

populations. We partitioned species (supplementary Table S4.3) according to their 

IUCN conservation status (Non-threatened: least concern, near-threatened; 

Threatened: vulnerable, endangered, critically endangered), ecological specialism 

(generalist, specialist; Wilson et al., 2010), body size (medium: <5 kg; large: 5-25 kg; 

mega: >25 kg; derived from the PanTHERIA database, Jones et al., 2009) and trophic 
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guild (carnivore, herbivore, frugivore, insectivore, omnivore; derived from the 

PanTHERIA database, Jones et al., 2009).  

To determine quantitative recommendations for HCS core area criteria, we 

derived predicted species richness estimates from model outputs, accounting for 

imperfect detection. Predicted species richness was calculated as the sum of 

occupancy (Ψ), which is a deterministic function of abundance: 𝛹𝑖𝑗 = 1 − 𝑒𝑥𝑝(−𝜆𝑖𝑗). 

To quantify the potential impact of disturbance synergies on core area criteria, we 

calculate predicted species richness under three scenarios: 1) core area only; 2) core 

area and hunting; and 3) core area, hunting and forest quality. 

 

Results 

Biodiversity value of HCS priority forest remnants 

Pairwise comparison identified an 18.5% (95% Bayesian Credible Interval, 

BCI: 14-20%) increase in mean local mammal abundance in forest remnants compared 

to continuous forest when all species were considered (Fig. 4.2). This trend was 

predominantly driven by substantial increases in generalist (53.7% increase, 49.9-

64.2%) and omnivorous species (82.5% increase, 66.0-118.0%). When partitioning 

the results according to HCS designations, High Priority Patches of forest consistently 

harboured greater levels of abundance than Medium and Low Priority Patches. 

Specifically, high priority patches were important for threatened (Medium Priority 

Patches: 37.2% increase, 33.3-37.7%; Low Priority Patches: 45.1% increase, 37.3-

47.7%) and mega-bodied species (Medium Priority Patches: 40% increase, 37.4-

44.9%; Low Priority Patches: 46.7% increase, 39.9-49.9%). Medium- and Low 
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Priority Patches supported comparable mammal abundance across all trait groups and 

guilds. 

 

 

Figure 4.2: Local abundance of tropical forest mammals relative to habitat type and HCS patch priority 

designation. Abundance is calculated as a relative measure representing the estimated average number 

of individuals whose home range overlaps with camera-traps deployed in broad habitat classifications. 

We quantify mammal abundance across continuous (Cont) and fragmented forest (Frag), and HCS 

designated conservation priority forest patches (HPP: High Priority Patch; MPP: Medium Priority 



159 

 

 

Patch; LPP: Low Priority Patch). We present findings for all species and partitioned according to body 

size. 

 

Model performance 

We found comparable statistical support for models incorporating 

fragmentation and quality measures and those supplemented with our hunting pressure 

metric (Table 4.1). Evidence ratios suggested that these models performed 7.5 and 3.9 

times better, respectively, than those limited to fragmentation metrics alone. When 

considered independently, models containing fragmentation metrics had greater 

support than those containing hunting or forest quality metrics in isolation (Table 4.1). 

The hunting pressure model had greater explanatory power than that containing 

disaggregated hunting proxies (Table 4.1), performing more than 100 times better.      

 

Table 4.1: Performance of Bernoulli/Poisson N-mixture models. Performance of models assessing the 

impact of alternative configurations of fragmentation, hunting and forest quality on mean local mammal 

abundance. Models are presented in descending order of performance based on Watanabe Akiake 

Information criterion (WAIC), a measure of the relative quality of statistical models given the data. Δ 

WAIC indicates variation in WAIC relative to the top-ranking model; WAIC w denotes Akaike weights 

and further quantifies strength of evidence between competing models.Models were considered to have 

comparable statistical support if they were within two ΔWAIC (presented in bold). Though not 

presented, every model contained a forest cover covariate to decouple the effects of forest fragmentation 

from habitat loss. 

Model and covariates WAIC ΔWAIC WAI

Cw 

Fragmentation + Quality: Core + Shape + 

Isolation + Biomass + Prop_HCS 
4196.14 0.00 0.58 
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Fragmentation + Hunting + Quality: Core + 

Shape + Isolation + Hunt_Press + Biomass + 

Prop_HCS 

4197.45 1.31 0.30 

Fragmentation: Core + Shape + Isolation 4200.18 4.04 0.08 

Fragmentation + Hunting: Core + Shape + 

Isolation + Hunt_Press 

4202.26 6.12 0.03 

Fragmentation + Hunting + Quality: Core + 

Shape + Isolation + Pop_Density + 

Dist_Roads + Dist_Village + Biomass + 

Prop_HCS 

4206.00 9.86 0.00 

Hunting + Quality: Hunt_Press + Biomass + 

Prop_HCS 

4208.25 12.11 0.00 

Quality: Biomass + Prop_HCS 4208.69 12.55 0.00 

Fragmentation + Hunting: Core + Shape + 

Isolation + Pop_Density + Dist_Roads + 

Dist_Village 

4209.63 13.50 0.00 

Hunting: Hunt_Press 4210.13 13.99 0.00 

Hunting + Quality: Pop_Density + 

Dist_Roads + Dist_Village + Biomass + 

Prop_HCS 

4216.10 19.96 0.00 

Hunting: Pop_Density + Dist_Roads + 

Dist_Village 

4222.68 26.54 0.00 

Core: core area of a forest patch (i.e. area within patch after subtracting a 100m internal buffer; 

ha); Shape: ratio of patch perimeter and perimeter of an optimally compact patch of comparable 

area; Isolation: distance to nearest continuous forest (defined as patch >10,000 ha; km); 

Hunt_Press: bespoke hunting pressure metric combining population counts, accessibility, distance 

from roads and distance to population centres; Pop_Density: population density (people km2 -1); 

Dist_Roads: distance to the nearest road (km); Dist_Villages: distance to the nearest village (km); 

Biomass: aboveground live biomass (t ha-1); Prop_HCS: proportion of High Carbon Stock Forest 

(>35 t C ha-1).  

 

An evidence-base for zero-deforestation support tools 

The influence of fragmentation, hunting and habitat quality in shaping 

mammal abundance was evident at the community-level (Fig. 4.3). We found strong 

positive associations between mean local abundance and patch core area (posterior 

mean: 0.11, BCI: 0.05-0.21) and the proportion of HCS forest within remnant forest 

patches (0.09, 0.02-0.23). Conversely, we found weak evidence of mammal 

population declines relative to our alternative measure of forest quality, biomass (-



161 

 

 

0.09, 90% BCI: -0.18 to -0.01). Moreover, isolation demonstrated a strong negative 

association with mean abundance (-0.12, -0.24 to -0.01), suggesting that local mammal 

abundance diminishes in more isolated fragments. There was also weak support for 

hunting impacts (-0.16, -0.31 to -0.02), highlighting the sensitivity of mammal 

communities to anthropogenic pressure. 

 

 

Figure 4.3: Mammal community responses to fragmentation metrics, forest quality and hunting 

pressure. Response of the medium-large terrestrial mammal community to anthropogenic pressure 

(hunting), forest quality (biomass and proportion HCS) and fragmentation metrics (core area, shape and 

isolation). Predicted mean posterior distribution values are presented in red, while the 95% Bayesian 

credible interval is shaded in grey. 

  

Only modest gains in mammalian species richness were achieved across 

fragment sizes varying in core area from zero to 500 ha (Fig. 4.4). At the threshold 

core area of 10 ha, which differentiates Low and Medium Priority Patches, only 13 
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species (10.7-14.9) of the 38 species sampled, equating to 33% (28.2-39.2%), were 

estimated to be present. At a core area of 100 ha, the initial criterion for designating 

patches high priority, predicted richness was 13 species (11.2-15.9). Thus, for a 10-

fold increase in core area, no additional species were preserved. Based on 

extrapolation, a core area of 3,199 ha (2131-5182) would be required to conserve the 

38 mammal species constituting our community.             

Using the additive influence of habitat area, quality and anthropogenic 

pressure, we developed quantitative recommendations of patch core area required to 

support viable mammal assemblages from species richness predictions (Fig. 4.4). 

Under a range of patch size configurations, variation in hunting pressure limited the 

conservation gains that can be achieved by increasing patch core area (Fig. 4.4). We 

predict that in remnant forest patches subjected to hunting pressure, a minimum core 

area of 27,498 ha would be required to achieve the full complement of mammal 

species. However, the deleterious impacts of hunting can be offset considerably by 

habitat quality, reducing the area required to conserve intact communities to 4,531 ha.    
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Figure 4.4: Estimated species richness demonstrating secondary disturbance impacts on HCS core area 

criteria. Total estimated species richness (top row) predicted using core area alone (left), core area and 

hunting pressure (middle) and core area, hunting pressure and habitat quality (right). Interaction plots 

(bottom row) demonstrate how hunting pressure (left) and forest quality (middle) modulate the 

conservation value of forest patches and interface (right).  

 

Discussion 

Robust scientific evidence is central to informed environmental decision 

making (Lucey et al., 2017, Sutherland et al., 2004). Our work identifies challenges 

and opportunities for HCS implementation in tropical deforestation frontiers. We use 

empirical evidence of fragmentation impacts on biodiversity to identify HCS-relevant 

patch and landscape attributes that make forest remnants more hospitable to 

biodiversity. Moreover, we emphasise the importance of incorporating synergistic 

disturbance impacts into fragmentation assessments to prevent systematic bias in 

quantitative recommendations.   
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The biodiversity value of HCS-delineated forest remnants 

At present, HCS is the only available methodology to support oil palm 

companies meeting their zero-deforestation commitments. Therefore, the extent to 

which zero-deforestation pledges contribute to biodiversity conservation is dependent 

on the capacity of the forest remnants prioritised by HCS to sustain wildlife. We 

identified marked increases in the abundance of generalist and omnivorous species in 

fragmented forest sites. This homogenisation process whereby specialist species are 

displaced by a few abundant generalists, is well-documented in forest fragments (Beca 

et al., 2017, Canale et al., 2012, Magioli et al., 2016). Generalists are able to maintain 

populations in forest fragments due to their ecological plasticity, which facilitates the 

exploitation of a greater breadth of resources (Garmendia et al., 2013, Michalski and 

Peres, 2007). Release from competition and predation in forest fragments can also 

result in increases in abundance by fragmentation-tolerant species (Laurance, 2008).  

When we partitioned forest fragments according to HCS patch criteria, High 

Priority Patches contained significantly larger concentrations of mega-bodied and 

threatened species when compared to Low and Medium Priority Patches. Megafauna 

and threatened species demonstrate traits associated with sensitivity to fragmentation, 

including large area requirements, slow reproductive rates, rarity and range restriction 

(Keinath et al., 2017). Therefore, forest remnants designated as the highest priority by 

HCS protocols have the potential to act as refugia for those species most vulnerable to 

fragmentation. 
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Low and medium priority fragments supported comparably modest mammal 

abundance across all species and guilds. This is an important observation because Low 

and Medium Priority Patches become viable for conversion within the HCS 

framework if they are shown to be negligible for biodiversity. Given that Low and 

Medium Priority Patches were the dominant size class within our study (91.2%), a 

trend which is representative across the tropics, we advocate greater recognition of the 

importance of these patches in land-use planning. They play pivotal conservation roles 

caching genetic diversity, maintaining equilibria in predator-prey systems, sustaining 

the regional species pool, and protecting relict habitat for local endemics (Huffaker, 

1958, Ovaskainen, 2002, Resasco et al., 2017, Saura et al., 2014, Struebig et al., 2011). 

Consequently, incorporating Low and Medium Priority Patches into long-term 

restoration strategies could prove a cost-effective conservation strategy in fragmented 

agricultural landscapes.  

 

A blueprint for ecologically functional forest mosaics 

Our multi-modelling framework revealed patch-scale fragmentation metrics to 

be the strongest determinants of mammalian abundance. These findings explain the 

underlying mechanisms dictating mammal abundance in HCS-delineated priority 

patches. At the community-level, mammals were found to be substantially more 

abundant in forest remnants comprising a large core area and in close proximity to 

continuous logged forest. Larger fragments have increased carrying capacity to sustain 

larger animal populations. Moreover, fragments with a greater core area are more 

robust to edge effects, which can alter the structure and microclimatic conditions of 

fragments (Laurance, 2008). In a pan-tropical assessment, mammal abundance 
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declined by 57% towards forest edges (Pfeifer et al., 2017). Less isolated fragments 

experience higher colonisation rates, with immigration providing a demographic 

safeguard from local extinction (Brown and Kodric-Brown, 1977). Our results echo 

those from studies elsewhere in Borneo, which identified declines in mammal 

populations with increasing distance from forest source populations (Yue et al., 2015). 

We therefore stress the importance of maintaining connectivity in agricultural 

landscapes for dispersal-limited taxa, particularly specialised species with limited 

tolerance for matrix conditions. 

We demonstrate the potential for anthropogenic stressors to amplify the effects 

of fragmentation on tropical mammals. We found that models incorporating measures 

of forest quality and hunting had considerably more support than those containing 

fragmentation metrics alone, suggesting that mammal abundance is best explained 

when accounting additively for disturbance effects. We found that mammal 

communities decreased in abundance in areas predicted to experience high levels of 

hunting pressure, though variation at the community level obscured pronounced 

impacts on ungulates and large rodents, which exhibited precipitous declines (see 

supplementary figures S4.2 and S4.3). Our species-specific results reflect previous 

research showing that these taxonomic groups are the preferred quarry of hunters 

(Brodie et al., 2015b, Fa and Brown, 2009). In the few studies that have explored 

hunting within the context of fragmentation, hunting has demonstrated substantial 

negative impacts on mammal abundance (Cardinale et al., 2006, Cullen Jr et al., 2000, 

Kosydar et al., 2014, Peres, 2001, Sampaio et al., 2010). Our study adds to this body 

of evidence and further emphasises the importance of developing mitigation measures 

that safeguard vulnerable mammal populations from overexploitation in fragmented 
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landscapes. Moreover, we introduce a valuable spatially explicit hunting metric that 

can be developed from freely available remote-sensing data to quantify human 

pressure at scales appropriate to conservation management  

 We found that forest quality, measured as the proportion of HCS-delineated 

forest within the patch, demonstrated a positive association with mammal abundance. 

This provides further evidence of the biodiversity value of forest prioritised for 

conservation by the HCS approach (Deere et al., 2018). An increasing proportion of 

HCS forest within remnant patches likely corresponds to increasing structural 

complexity, resulting in a diverse niche space which can accommodate greater 

mammal abundance (Chapter 3). Maintaining and restoring patch quality should 

therefore be central to forest management in production landscapes. 

 

Management recommendations              

A key obstacle to effective conservation policy in production landscapes is a 

poor understanding of the optimal patch sizes needed to sustain biodiversity (Lucey et 

al., 2017). Core area is the principal determinant of conservation designation within 

the HCS prioritisation process, and current protocols specify a threshold of 100 ha to 

delineate High Priority Patches of conservation value. We demonstrate that these 

patches would support only a fraction of the estimated species richness in the mammal 

community (35%). Mammals occupy key positions in tropical forest ecosystems, 

exerting top-down control on primary production and consumers which influences the 

distribution, composition and structure of vegetation (Terborgh et al., 2001). The 

absence of large mammals can have cascading effects on ecosystem functioning 
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leading to arrested succession (Ripple and Beschta, 2006). Previous meta-analysis has 

suggested that a core area of 200 ha is required to maintain natural forest regeneration 

(Lucey et al., 2017), but this would be insufficient to maintain mammal-mediated 

ecological processes. Given that the average fragment size across Southeast Asia is 52 

ha (Brinck et al., 2017), our results suggest the potential for negative feedback loops 

in forest fragments owing to depauparate mammal communities.  

Though an evidence-base for optimal patch size for medium-large mammals 

is lacking, Magioli et al. (2015) found that functional diversity of mammal populations 

was maximised in patches exceeding 2,050 ha (total area). Based on the trajectory of 

our trendline, a core area of 3,198 ha would be necessary to conserve the full 

complement of mammal species within a forest fragment, although we advise caution 

when interpreting this figure due to the inherent dangers of extrapolating beyond the 

bounds of the data. Given the opportunity costs of forgoing development, it is unlikely 

that these area requirements can be met at the concession-level, therefore enhancing 

and restoring landscape-level connectivity through a network of small forest patches 

and riparian margins should be a priority for mammal conservation in production 

landscapes (Zimbres et al., 2017). 

The extent to which multiple disturbance impacts influence the optimal patch 

size has rarely been explored in the scientific literature. Our results suggest that core 

area associated gains in species richness are supressed by hunting pressure, increasing 

the area required to retain an intact mammal community by an order of magnitude. 

This concurs with Peres (2001), who demonstrated that hunting greatly increases the 

spatial requirements necessary to sustain viable mammal populations. Thus, without 

explicit consideration of hunting, the optimal fragment size required to retain 
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appreciable levels of biodiversity can be underestimated by 24,300 ha according to 

our data. We demonstrate that hunting pressure can be alleviated by the maintenance 

and restoration of forest quality within forest fragments, which reduces the area 

required to support intact mammal commiunities to 4,531 ha. Nevertheless, if HCS-

designated forest fragments are to avoid functioning as population sinks, preventative 

measures that effectively prohibit illegal timber extraction and hunting are essential in 

production landscapes.  

 

Conservation implications   

Agricultural land currently occupies 1.53 billion hectares globally, with a 

projected 18% increase predicted before 2050 (Tilman et al., 2017). Zero-

deforestation pledges provide a mechanism to ensure this expansion will not be met at 

the expense of tropical forests. In Malaysia alone sustainability pledges would 

safeguard 21.14 million hectares of primary and selectively logged forest (Padfield et 

al., 2016). Our work highlights the potential for zero-deforestation policies to facilitate 

environmentally-conscious agricultural expansion across the tropics that aligns with 

biodiversity conservation objectives. HCS-delineated high conservation priority 

patches were identified as important refugia for species most at risk from forest 

fragmentation, but the current core area threshold criterion of 100 ha does not 

adequately safeguard mammal diversity. Maintaining the largest forest remnants 

should be the primary objective for medium-large mammal conservation but, given 

their spatial requirements, a greater emphasis on landscape-connectivity is essential to 

provide conduits of movement between large tracts of continuous habitat. To this end, 

patch configuration is paramount and we advocate strategic positioning of fragments 
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within the vicinity of continuous tracts of forest, linked by a network of low priority 

patches and riparian zones. We present evidence that anthropogenic pressure can 

moderate the biodiversity value of forest remnants and believe this warrants greater 

consideration within the HCS framework. Specifically, we strongly recommend the 

integration of standardised hunting and habitat quality measures into future 

fragmentation assessments. Conservation practitioners must work closely with 

plantation managers to develop control measures that limit human influences on 

residual natural vegetation in production landscapes. While zero-deforestation pledges 

demonstrate an encouraging trend, failure to mitigate barriers to implementation will 

ensure that deforestation and agricultural expansion continue in tandem.   
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Supplementary information 

 

Developing fragmentation, quality and hunting metrics  

Patch size, isolation and shape have demonstrated profound impacts on 

fragment suitability for biodiversity (Haddad et al., 2015) and are central to the HCS 

patch prioritisation process. To calculate patch core area, defined as habitat within the 

remnant impervious to external conditions (Ewers and Didham, 2006), we applied a 

negative buffer of 100 m to the forest cover layer. This criteria is based on scientific 

evidence suggesting that 75% of edge effects occur within 100 m the forest boundary 

(Laurance et al., 2002). We determined isolation as the shortest Euclidean distance 

between the forest patch and tracts of continuous forest (>50,000 ha; Potapov et al., 

2008). In the context of our study site, this corresponded to Ulu Segama Forest 

Reserve, which forms a part of the 1 million ha Yayasan Sabah forest Management 

Area (Reynolds et al., 2011), the largest contiguous block of forest remaining in Sabah. 

Shape is traditionally calculated using the perimeter-area ratio. However, this metric 

is confounded as it does not reliably decouple shape from area effects (Ewers and 

Didham, 2006). We therefore employed a shape index to compare patch perimeter (m) 

to that of an optimally compact Euclidean shape (i.e. a square):  

Shape Index =  
𝑃𝑖

𝑃𝑚𝑖𝑛𝑖
 

𝑃𝑚𝑖𝑛𝑖 = 4√𝑎𝑟𝑒𝑎𝑖 

where Pi is the perimeter of patch i, Pmini is the perimeter of the corresponding 

optimally compact patch and areai is the area of patch i.  
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Forest quality is rarely accounted for in fragmentation assessments, but 

receives explicit consideration within HCS phase two protocols. Forest quality 

measures provide an indication as to the structural integrity of forest fragments, which 

dictates the distribution and concentration of forest resources (Simonson et al., 2014). 

Moreover, quality measures quantify the extent to which exposure to anthropogenic 

stressors (i.e. illegal timber harvesting) and edge effects erode habitat suitability for 

mammals.  We adopt two forest quality measures, forest biomass (t ha-1; derived from 

Asner et al., 2018) and the proportion of classified dense forest contained within the 

patch. We calculated biomass from carbon, based on the assumption that carbon 

constitutes 47% of standing biomass (Martin and Thomas, 2011). The proportion of 

dense forest refers to the area of the forest containing high quality forest habitat, 

defined under HCS guidelines as that exceeding 75 t C ha-1 (Rosoman, 2017).         

Hunting is a pervasive threat to tropical biodiversity (Harrison, 2011), yet 

spatially-explicit measures of hunting pressure are lacking. Previous attempts to 

quantify hunting have involved coarse comparisons of biodiversity in hunted and non-

hunted sites (Cullen Jr et al., 2000, Galetti et al., 2009, Kosydar et al., 2014) or 

direct/indirect hunter encounters (Brodie et al., 2015b, Sampaio et al., 2010). They 

therefore overlook spatial variability in pressure and are confounded by imperfect 

detection. Another approach is to use proxies, with proximity to infrastructure adopted 

as a surrogate for anthropogenic pressure (Benitez-Lopez et al., 2017, Michalski and 

Peres, 2007) and it is based on these criteria that HCS patch prioritisation protcols 

delineate risk of illegal incursion. However, proximity measures are typically based 

on Euclidean distance which greatly simplifies human movement across a landscape. 

In Southeast Asia, the pressure hunters exert across a landscape represents the 
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cumulative effect of accessibility and population density (Brodie et al., 2015b, 

Harrison et al., 2016). Simple proximity measures alone are thus unlikely to capture 

the complexity of interacting variables. To overcome these limitations, we developed 

a bespoke hunting pressure variable based on spatially-explicit population pressure 

surfaces developed by Platts et al. (2012). It assumes that population pressure on 

location i increases with the human population (pop) of remote population centre j, 

weighted by a distance decay function w: 

𝐻𝑢𝑛𝑡𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑖 =  ∑ 𝑝𝑜𝑝𝑗 ∙  𝑤𝑖𝑗 
𝑁
𝑗=1   

where N represents the number of locations across which pressure 

accumulates.  

We modify the weighted distance decay function to impose accessibility 

constraints on the spread of human pressure. Accessibility was calculated using a 

travel time cost surface model (TTCSM; Frakes, 2015), implemented in ArcGIS 

version 10.3. TTCSMs calculate duration of travel from user-defined points to 

localities while accounting for landscape features (e.g. landcover, elevation, slope) or 

infrastructure that facilitate or impede human movement. In collaboration with oil 

palm plantation managers, we identified 26 population centres within the surrounding 

production estates, for which we retrieved corresponding demographic data. Given the 

isolated nature of our study site and security gates restricting the influx of hunters from 

beyond plantation borders, we assumed that these population centres represented the 

most likely sources of hunting pressure. We specified a default travel speed of 5 kmph, 

based on the average walking speed of a human (Browning et al., 2006). We specified 

a non-linear decrease in walking speed with increasing slope, using Tobler’s Hiking 

Function (Tobler, 1993): 
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𝑇𝑜𝑏𝑙𝑒𝑟′𝑠 𝐻𝑖𝑘𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 6 ∗ 𝑒𝑥𝑝 (−3.5 ∙ 𝑎𝑏𝑠 (𝑡𝑎𝑛 (
𝑠𝑙𝑜𝑝𝑒

57.29578
) + 0.05))    

where slope was derived from 30 m resolution Shuttle Radar Topography 

Mission (SRTM) elevation data (U.S. Geological Survey, 2015). Gradients exceeding 

31 degrees were specified as absolute barriers to movement (Kinsella-Shaw et al., 

1992). We recognised the potential for landcover to impede speed of travel. Using an 

extensive transect dataset (22 transects of 2 km, walked four times each), we calculated 

movement speed for all major habitat types present at our study system, and landcover 

resistance was parameterised based on proportional differences between average 

walking speed and landcover specific values.  

Our model assumes that an individual will optimise the mode and rate of travel, 

so roads will take precedence over walking when available. Employing Copernicus 

high-resolution satellite imagery, we digitised 6,201 km of roads across our study 

landscape. These were recorded as primary and secondary roads and allocated speed 

limits of 60 (based on the designated speed limit) and 30 (accounting for speed 

limitations on secondary roads within oil palm plantations) kmph respectively.  

TTCSMs were created for each of the 26 population centres. To convert 

TTCSMs into weighted distance decay functions (w), we inverted each surface to scale 

travel time high to low with increasing distance from settlement. Substituting each 

inverted TTCSM for w in our equation, hunting pressure was calculated by 

multiplying each TTCSM by the corresponding population count of that village and 

summing the resulting surfaces (Fig. S4.1). Given that hunting is predominantly 

opportunistic across Southeast Asia (Harrison et al., 2016), we expect hunting pressure 

to be equal across all mammals. For comparative purposes, we retained traditional 
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proxies for anthropogenic pressure (distance to roads, distance to villages, human 

population density; Gaughan et al., 2013) to determine the value of our bespoke 

hunting metric compared to risk measures adopted by HCS patch prioritisation 

protocols. 

 

 

Figure S4.1: Input surfaces for the travel time cost surface model and the final hunting pressure layer. 

Covariates used to develop the travel time cost surface model (a: human population counts at oil palm 
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estate villages; b: the road network; c: land cover; d: elevation (m); e: slope (degrees) and the resulting 

spatially-explicit hunting pressure layer (f). 
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Modelling framework 

We modelled the local abundance of species i at sampling location j (ɑij) as a 

Poisson-distributed random variable, described by rate parameter λij: 

ɑ𝑖𝑗~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗)  

where λij denotes the number of individuals of species i using the habitat 

surrounding sampling location j. Detection probability (pij) was assumed to be 

functionally dependent on local abundance (ɑij): 

𝑝𝑖𝑗 =  1 − (1 −  𝑟𝑖𝑗)
ɑ𝑖𝑗

 

where rij represents the detection probability of an individual of species i at 

sampling location j. The coupling of abundance and per capita detection provides a 

modelling framework that is robust to spatial heterogeneity in detection probability 

(Tobler et al., 2015). However, this assumption may be unfounded for rare or territorial 

species that persist at low densities with negligible heterogeneity in detection 

probability between sampling locations (Denes et al., 2015). Summarised detection 

histories (yij) were described as realisations from a binomial distribution: 

𝑦𝑖𝑗~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖𝑗 , 𝑘𝑗)  

where kj indicates the number of temporal replicates at sampling location j.  

We recognise two important assumptions of our modelling framework. The 

first is independence of detection between sampling occasions, and the second is 

independence in the observation of individuals within a sampling occasion. While the 

pooling of paired camera-trap units and summation of detection histories mitigates 

between occasion non-independence, we acknowledge that the within occasion 
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independence assumption may be violated by gregarious species. We therefore advise 

caution when interpreting findings for group living species. 
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Model code for hierarchical multi-species Bernoulli/Poisson N-mixture model, written 

in the BUGS language for JAGS. 

 

Multi-species N-mixture models were implemented in a Bayesian framework, 

specified in the BUGS language and implemented in the statistical software JAGS 

(Plummer, 2003). We employ uninformative priors throughout, using flat normal and 

wide uniform priors for slope and intercept/variance parameters respectively. Variance 

parameters associated with the temporal random effect were specified using a half-

Cauchy distribution to account for potential variance overestimation due to few factor 

levels (Gelman and Hill, 2006). We ran three Markov chains of 150,000 iterations 

discarding an initial burn-in of 50,000 and thinned by a rate of 100. Convergence was 

assessed through visual inspection of trace plots and the Gelman-Rubin statistic, with 

values <1.1 indicating model convergence (Gelman and Rubin, 1992). Model fit was 

assessed using a Pearson χ2 discrepancy measure (Pr (χ2
𝑜𝑏𝑠

>  χ2
𝑠𝑖𝑚

)) and “lack of 

fit” statistic (χ2
𝑜𝑏𝑠

/χ2
𝑠𝑖𝑚

), where values 0.05 to 0.95 and equal to one indicate 

adequate model fit (Kéry and Schaub, 2011) (Table S4.1) 

 

 

    model { 

    # Hyper-priors for abundance and detection intercepts 

    #============================================= 

    mu.alpha1.psi ~ dnorm(0, 0.01) 

    sigma.alpha1.psi ~ dunif(0, 10) 

    tau.alpha1.psi <- pow(sigma.alpha1.psi, -2) 

     

    mu.alpha2.psi ~ dnorm(0, 0.01) 

    sigma.alpha2.psi ~ dunif(0, 10) 

    tau.alpha2.psi <- pow(sigma.alpha2.psi, -2) 

     

    for(h in 1:4){ 

        mu.alpha.p[h] ~ dnorm(0, 0.01) 
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        sigma.alpha.p[h] ~ dunif(0, 10) 

        tau.alpha.p[h] <- pow(sigma.alpha.p[h], -2) 

        } 

     

    # Hyper-priors for occupancy and detection covariate coefficients 

    #====================================================== 

    mu.beta1.psi ~ dnorm(0, 0.01) 

    sigma.beta1.psi ~ dunif(0, 10) 

    tau.beta1.psi <- pow(sigma.beta1.psi, -2) 

     

    mu.beta2.psi ~ dnorm(0, 0.01) 

    sigma.beta2.psi ~ dunif(0, 10) 

    tau.beta2.psi <- pow(sigma.beta2.psi, -2) 

     

    mu.beta3.psi ~ dnorm(0, 0.01) 

    sigma.beta3.psi ~ dunif(0, 10) 

    tau.beta3.psi <- pow(sigma.beta3.psi, -2) 

     

    mu.beta4.psi ~ dnorm(0, 0.01) 

    sigma.beta4.psi ~ dunif(0, 10) 

    tau.beta4.psi <- pow(sigma.beta4.psi, -2) 

     

    mu.beta5.psi ~ dnorm(0, 0.01) 

    sigma.beta5.psi ~ dunif(0, 10) 

    tau.beta5.psi <- pow(sigma.beta5.psi, -2) 

     

    mu.beta6.psi ~ dnorm(0, 0.01) 

    sigma.beta6.psi ~ dunif(0, 10) 

    tau.beta6.psi <- pow(sigma.beta6.psi, -2) 

     

    mu.beta1.p ~ dnorm(0, 0.01) 

    sigma.beta1.p ~ dunif(0, 10) 

    tau.beta1.p <- pow(sigma.beta1.p, -2) 

     

    # Hyper prior for half-Cauchy scale parameter 

    xi.tau <- pow(xi.sd, -2) 

    xi.sd ~ dunif(0, 10) 

     

# Species-specific parameters drawn as realisations from the community distributions 

#===========================================================

= 

    for(i in 1:n.sp){ 

        alpha1.psi[i] ~ dnorm(mu.alpha1.psi, tau.alpha1.psi) 

        alpha2.psi[i] ~ dnorm(mu.alpha2.psi, tau.alpha2.psi) 

     

        for(h in 1:4){ 

            alpha.p[h,i] ~ dnorm(mu.alpha.p[h], tau.alpha.p[h]) 

            } 

     



181 

 

 

        beta1.psi[i] ~ dnorm(mu.beta1.psi, tau.beta1.psi) 

        beta2.psi[i] ~ dnorm(mu.beta2.psi, tau.beta2.psi) 

        beta3.psi[i] ~ dnorm(mu.beta3.psi, tau.beta3.psi) 

        beta4.psi[i] ~ dnorm(mu.beta4.psi, tau.beta4.psi) 

        beta5.psi[i] ~ dnorm(mu.beta5.psi, tau.beta5.psi) 

        beta6.psi[i] ~ dnorm(mu.beta6.psi, tau.beta6.psi) 

        beta1.p[i] ~ dnorm(mu.beta1.p, tau.beta1.p) 

        } 

     

    # Hyperpriors/priors for temporal random effects 

    #================================== 

    for(i in 1:n.sp) {  

    # Random year effects 

        for(year in 1:n.year){ 

            eps[year, i] ~ dnorm(0, eps.tau[i]) 

            } 

        eps.tau[i] ~ dgamma(0.5, 0.5) 

        xi[i] ~ dnorm(0, xi.tau) 

        sigma.cauchy[i] <- abs(xi[i]) / sqrt(eps.tau[i]) 

        } 

     

    # Ecological process model for abundance of species i in site j 

    # Continuous forest sites only 

    #=========================================== 

    for(i in 1:n.sp){ 

        for(j in 1:CLF.sites){ 

            log(lambda[j,i]) <- alpha1.psi[i] + beta1.psi[i]*cov1.psi[j] +                 

                                           beta2.psi[i]*cov2.psi[j] + xi[i]*eps[year.counter[j],i] 

            N[j,i] ~ dpois(lambda[j,i]) 

            psi[j,i] <- step(N[j,i]-1) 

     

            logit(r[j,i]) <- alpha.p[cov1.p[j],i] + beta1.p[i]*cov2.p[j] 

            p[j,i] <- 1 - pow(1-r[j,i], N[j,i]) 

            y[j,i] ~ dbin(p[j,i], n.reps[j]) 

            } 

        } 

     

    # Fragmented forest sites only 

    #=====================    

    for(i in 1:n.sp){ 

        for(j in (CLF.sites+1):(n.sites)){ 

            log(lambda[j,i]) <- alpha2.psi[i] + beta1.psi[i]*cov1.psi[j] +  

                                           beta2.psi[i]*cov2.psi[j] + beta3.psi[i]*cov3.psi[j] +                    

                                           beta4.psi[i]*cov4.psi[j] + beta5.psi[i]*cov5.psi[j] +                   

                                           beta6.psi[i]*cov6.psi[j] + xi[i]*eps[year.counter[j],i] 

            N[j,i] ~ dpois(lambda[j,i]) 

            psi[j,i] <- step(N[j,i]-1) 

     

            logit(r[j,i]) <- alpha.p[cov1.p[j],i] + beta1.p[i]*cov2.p[j] 
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            p[j,i] <- 1 - pow(1-r[j,i], N[j,i]) 

            y[j,i] ~ dbin(p[j,i], n.reps[j]) 

            } 

        } 

     

    # Calculate Pearson's chi-squared residuals to assess goodness of fit 

    # Calculate the observed (chi2.obs) and expected (chi2.exp) residuals 

    # Add small value to prevent division by zero 

    #================================================= 

    for(i in 1:n.sp){ 

        for(j in 1:n.sites){ 

            y.exp[j,i] ~ dbin(p[j,i], n.reps[j])        

            chi.obs[j,i] <- (y[j,i] - p[j,i] * n.reps[j]) / sqrt((p[j,i] + 0.0001) * n.reps[j] *  

                                    abs(1- p[j,i] - 0.0001))         

            chi.exp[j,i] <- (y.exp[j,i] - p[j,i] * n.reps[j]) / sqrt((p[j,i] + 0.0001) * n.reps[j]  

                                    * abs(1- p[j,i] - 0.0001)) 

            chi2.obs[j,i] <- pow(chi.obs[j,i], 2) 

            chi2.exp[j,i] <- pow(chi.exp[j,i], 2) 

            } 

     

    # Calculate chi-squared discrepency for each species 

    #===================================== 

        fit.sp.obs[i] <- sum(chi2.obs[,i])                                   

        fit.sp.exp[i] <- sum(chi2.exp[,i])                                     

        c.hat.sp[i] <- fit.sp.obs[i]/fit.sp.exp[i] 

        bpv.sp[i] <- step(fit.sp.exp[i] - fit.sp.obs[i]) 

        } 

         

    # Calculate overall chi-squared discrepency measure 

    #===================================== 

    fit.obs <- sum(chi2.obs[1:n.sites, 1:n.sp]) 

    fit.exp <- sum(chi2.exp[1:n.sites, 1:n.sp]) 

    c.hat <- fit.obs/fit.exp 

    bpv <- step(fit.exp - fit.obs) 

    } 
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Table S4.1: Model fit statistics for individual species and the overall model. We present two test 

statistics, the “lack of fit” statistic and Bayesian P value, values around 1 indicate good model fit for 

the lack of fit statistic. Values of 0.5 indicate optimal model fit for the Bayesian P value while statistics 

less than 0.05 or greater than 0.95 indicate under- and over-fitting models respectively.   

      

Category Model Fit Statistic Species Value 

Species-specific fit Lack of fit statistic Asian Elephant 1.00 

  Banded Civet 1.12 

  Banteng 1.39 

  Bearded Pig 1.03 

  Binturong 0.95 

  Bornean Yellow Muntjac 1.23 

  Common Palm Civet 1.05 

  Greater Mouse-deer 1.36 

  Leopard Cat 1.07 

  Lesser Mouse-deer 1.64 

  Long-tailed Macaque 1.39 

  Long-tailed Porcupine 1.50 

  Malay Civet 1.18 

  Malay Porcupine 1.22 

  Marbled Cat 1.15 

  Masked Palm Civet 0.83 

  Moon Rat 1.21 

  Orangutan 0.99 

  Pig-tailed Macaque 1.19 

  Red Muntjac 1.22 

  Sambar Deer 1.11 

  Short-tailed Mongoose 1.21 

  Sun Bear 1.26 

  Sunda Clouded Leopard 0.91 

  Sunda Pangolin 1.16 

  Sunda Stink Badger 1.61 

  Thick-spined Porcupine 1.59 

  Tufted Ground Squirrel 1.04 

  Yellow-throated Marten 1.01 

 Bayesian P value Asian Elephant 0.65 

  Banded Civet 0.36 

  Banteng 0.15 

  Bearded Pig 0.50 

  Binturong 0.66 

  Bornean Yellow Muntjac 0.22 

  Common Palm Civet 0.70 

  Greater Mouse-deer 0.12 

  Leopard Cat 0.49 

  Lesser Mouse-deer 0.08 
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  Long-tailed Macaque 0.25 

  Long-tailed Porcupine 0.13 

  Malay Civet 0.31 

  Malay Porcupine 0.18 

  Marbled Cat 0.50 

  Masked Palm Civet 0.76 

  Moon Rat 0.50 

  Orangutan 0.58 

  Pig-tailed Macaque 0.18 

  Red Muntjac 0.15 

  Sambar Deer 0.33 

  Short-tailed Mongoose 0.43 

  Sun Bear 0.15 

  Sunda Clouded Leopard 0.69 

  Sunda Pangolin 0.59 

  Sunda Stink Badger 0.20 

  Thick-spined Porcupine 0.10 

  Tufted Ground Squirrel 0.59 

  Yellow-throated Marten 0.56 

Overall model fit Lack of fit statistic  1.11 

 Bayesian P value  0.38 
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Table S4.2: Scale optimisation outputs for fragmentation, quality and hunting covariates. We determine 

optimal spatial-sclaes based on the lowest WAIC value, presented here in bold. 

Model Scale DIC lppd pD WAIC 

Biomass 50 7067.66 3623.15 92.60 3808.35 

 100 6908.52 3620.78 90.98 3802.75 

 250 6882.77 3607.24 89.40 3786.03 

 500 6880.43 3610.47 90.89 3792.25 

 1000 6883.94 3621.96 90.74 3803.44 

 1500 6952.12 3625.55 91.78 3809.12 

 2500 6990.17 3622.11 93.56 3809.24 

 5000 6969.65 3640.17 93.49 3827.14 

Distance to continuous 

logged forest 

50 3660.60 1643.59 113.09 1869.78 

100 3582.63 1654.20 101.99 1858.18 

 250 3607.47 1654.91 102.36 1859.64 

 500 3613.70 1653.69 100.59 1854.86 

 1000 3623.14 1654.41 101.73 1857.86 

 1500 3597.17 1655.49 101.02 1857.53 

 2500 3540.06 1655.75 101.12 1857.99 

 5000 3624.63 1660.39 99.87 1860.14 

Distance to roads 50 7062.42 3627.42 94.51 3816.45 

 100 7089.48 3628.23 95.13 3818.50 

 250 6936.20 3627.38 95.11 3817.60 

 500 6920.55 3627.94 94.44 3816.82 

 1000 6897.28 3624.28 93.84 3811.97 

 1500 6981.96 3627.37 93.33 3814.03 

 2500 6948.43 3618.01 95.64 3809.28 

 5000 6837.97 3630.24 95.13 3820.50 

Distance to villages 50 7092.55 3643.14 95.34 3833.81 

 100 7078.73 3642.11 94.16 3830.43 

 250 7053.11 3643.12 95.92 3834.95 

 500 7017.13 3644.02 94.19 3832.40 

 1000 6938.98 3641.90 96.07 3834.03 

 1500 7019.17 3643.07 95.64 3834.35 

 2500 6939.23 3640.92 96.92 3834.77 

 5000 6875.88 3636.82 95.53 3827.87 

Forest cover 50 6934.52 3623.97 95.11 3814.19 

 100 7099.05 3602.22 97.87 3797.96 

 250 6965.47 3591.65 95.93 3783.51 

 500 6901.33 3599.94 91.85 3783.64 

 1000 6976.34 3594.76 92.24 3779.25 

 1500 6863.68 3588.16 94.27 3776.70 

 2500 6958.89 3607.13 94.17 3795.47 

 5000 6920.69 3638.43 93.11 3824.65 

HCS class 50 6958.209 3611.972 99.28788 3810.547 

 100 6856.968 3626.993 96.04671 3819.086 

 250 7091.005 3618.916 98.69391 3816.304 

 500 6885.917 3628.756 93.99001 3816.736 

 1000 6947.921 3646.376 90.25862 3826.894 
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 1500 6921.314 3642.42 83.32021 3809.06 

 2500 6928.466 3714.251 76.27908 3866.81 

 5000 7318.008 3767.166 73.58192 3914.33 

Hunting Pressure 50 6826.40 3618.54 94.46 3807.46 

 100 6918.47 3619.62 94.84 3809.30 

 250 6952.19 3614.49 94.08 3802.66 

 500 6922.27 3622.08 92.42 3806.91 

 1000 7039.11 3619.76 95.35 3810.46 

 1500 6867.57 3618.84 94.08 3807.01 

 2500 6950.36 3627.85 93.85 3815.55 

 5000 6953.00 3636.60 94.17 3824.95 

Population density 50 7064.62 3645.59 90.22 3826.02 

 100 6979.68 3651.67 90.55 3832.78 

 250 6867.11 3646.11 90.65 3827.41 

 500 6923.30 3637.30 93.19 3823.68 

 1000 6976.54 3626.67 93.56 3813.79 

 1500 6902.97 3629.71 92.56 3814.84 

 2500 6910.16 3631.10 91.47 3814.03 

 5000 6988.24 3636.51 91.60 3819.72 
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Table S4.3: Mammal life-history characteristics and group assignment. Details of group assignment for 

modelling guild responses to fragmentation, forest quality and hunting pressure. We classify a species 

as threatened if it has an IUCN red-list status of vulnerable (VU), endangered (EN) or Critically 

Endangered (CR). Species were considered non-threatened if they were associated with a least concern 

(LC) or Neat-threatened (NT) status. Ecological specialism was determined by information provided in 

(Wilson et al., 2010). We define three body classes based on body mass information derived from the 

PanTHERIA database (Jones et al., 2009): medium- (<5 kg), large- (5-25 kg) and mega-bodied (>25 

kg). 

Common Name IUCN 

Status 

Conservation 

Status 

Ecological 

Specialism 

Body Size Trophic 

Guild 

Asian elephant 

Elephas maximus 

EN Threatened Specialist Large Herbivore 

Banded civet 

Hemigalus derbyanus 

VU Threatened Specialist Small Insectivore 

Banteng 

Bos javanicus 

EN Threatened Specialist Large Herbivore 

Bearded pig 

Sus barbatus 

VU Threatened Generalist Large Omnivore 

Binturong 

Arctictis binturong 

VU Threatened Specialist Medium Frugivore 

Bornean yellow muntjac 

Muntiacus atherodes 

LC Non-threatened Specialist Medium Herbivore 

Common palm civet 
Paradoxurus 

hermaphroditus 

LC Non-threatened Generalist Small Frugivore 

Greater mouse-deer 

Tragulus napu 

LC Non-threatened Specialist Small Frugivore 

Leopard cat 

Prionailurus bengalensis 

LC Non-threatened Generalist Small Carnivore 

Lesser mouse-deer 

Tragulus kanchil 

LC Non-threatened Specialist Small Frugivore 

Long-tailed macaque 

Macaca fascicularis 

LC Non-threatened Generalist Small Frugivore 

Long-tailed porcupine 
Trichys fasciculata 

LC Non-threatened Generalist Small Frugivore 

Malay civet 

Viverra tangalunga 

LC Non-threatened Generalist Medium Carnivore 

Malay porcupine 

Hystrix brachyura 

LC Non-threatened Generalist Medium Frugivore 

Marbled cat 

Pardofelis marmorata 

VU Threatened Specialist Small Carnivore 

Masked palm civet 

Paguma larvata 

LC Non-threatened Generalist Small Frugivore 

Moon rat 

Echinosorex gymnura 

LC Non-threatened Specialist Small Insectivore 

Orangutan 
Pongo pygmaeus 

EN Threatened Specialist Large Frugivore 

Pig-tailed macaque 

Macaca nemestrina 

VU Threatened Generalist Medium Frugivore 

Red muntjac LC Non-threatened Generalist Medium Herbivore 
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Muntiacus muntjak 

Sambar deer 

Rusa unicolor 

VU Threatened Specialist Large Herbivore 

Short-tailed mongoose 

Herpestes brachyurus 

LC Non-threatened Generalist Small Carnivore 

Sun bear 

Helarctos malayanus 

VU Threatened Specialist Large Omnivore 

Sunda clouded leopard 

Neofelis nebulosa 

VU Threatened Specialist Medium Carnivore 

Sunda pangolin 

Manis javanica 

CR Threatened Generalist Small Insectivore 

Sunda stink badger 

Mydaus javanensis 

LC Non-threatened Generalist Small Insectivore 

Thick-spined porcupine 

Hystrix crassispinis 

LC Non-threatened Generalist Small Frugivore 

Tufted ground squirrel 

Rheithrosciurus 

macrotis 

VU Threatened Specialist Small Frugivore 

Yellow-throated marten 
Martes flavigula 

LC Non-threatened Generalist Small Carnivore 
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Figure S4.2: Species-specific effects of fragmentation, quality and hunting metrics on mammal 

abundance. This plots provide species-specific compliments to the community-level trends presented in 

Fig 4.3. Effect sizes are presented as posterior means (points) and 95% Bayesian credible intervals 

(BCI). Effects were considered substantial if the 95% BCI did not overlap zero (vertical black dashed 

line). Responsive species are presented in blue. 
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Figure S4.3: Numerical response of mammals to hunting pressure.  We present outputs for the 29 

species of mammal encountered during sampling. Predicted mean posterior distribution values are 

presented in dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals, is 

visualised in light blue. 
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Figure S4.4: Numerical response of mammals to biomass (t ha-1). We present outputs for the 29 species 

of mammal encountered during sampling.  Predicted mean posterior distribution values are presented 

in dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals, is visualised in light 

blue. 
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Figure S4.5: Numerical response of mammals to patch-scale forest quality. We define patch scale forest 

quality according to HCS methods as the proportion of HCS-delineated forest within a forest fragment. 

We present outputs for the 29 species of mammal encountered during sampling Predicted mean 

posterior distribution values are presented in dark blue, while uncertainty, as indicated using 95% 

Bayesian credible intervals, is visualised in light blue. 
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Figure S4.6: Numerical response of mammals to fragment core are (ha). We present outputs for the 29 

species of mammal encountered during sampling.  Predicted mean posterior distribution values are 

presented in dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals, is 

visualised in light blue. 
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Figure S4.7: Numerical response of mammals to patch shape. We present outputs for the 29 species of 

mammal encountered during sampling.  Predicted mean posterior distribution values are presented in 

dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals, is visualised in light 

blue. 
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Figure S4.8: Numerical response of mammals to isolation (km). We define isolation as distance in 

kilometres, from continuous (>50,000 ha). We present outputs for the 29 species of mammal 

encountered during sampling.   Predicted mean posterior distribution values are presented in dark blue, 

while uncertainty, as indicated using 95% Bayesian credible intervals, is visualised in light blue. 
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Figure S4.9: Numerical response of mammals to the proportion of forest cover. We present outputs for 

the 29 species of mammal encountered during sampling.  Predicted mean posterior distribution values 

are presented in dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals, is 

visualised in light blue. 
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Figure S4.10: Influence of habitat type on mammal detectability. We define habitat type as a function 

of carbon using HCS phase one protocols (dense forest; >75 t C ha-1; young regenerating forest: 35-75 

t C ha-1; non-forest habitat: 0-15 t C ha-1; Rosoman, 2017). We present outputs for the 29 species of 

mammal encountered during sampling.Predicted mean posterior distribution values are presented as 

points, while uncertainty, as indicated using 95% Bayesian credible intervals, is visualised using vertical 

lines. 
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Figure S4.11: Influence of survey effort on detection. We define survey effort as the number of camera-

trap nights units were operational. We present outputs for the 29 mammal species encountered during 

sampling Predicted mean posterior distribution values are presented in dark blue, while uncertainty, as 

indicated using 95% Bayesian credible intervals, is visualised in light blue. 
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 Discussion 

This thesis explored the ecological consequences of land-use change on 

medium-large terrestrial mammals in Southeast Asia, a region characterised by 

unsustainable levels of anthropogenic habitat modification. While providing a 

valuable evidence-base on the determinants of occurrence, abundance and species 

richness of little-known tropical mammals, this research demonstrates the efficacy of 

remote technologies and contemporary statistical innovations to monitor and assess 

threatened and cryptic species, which would otherwise prove intractable. Collectively, 

this evidence can be practically applied to inform environmental policies and local 

management strategies that recognise the value of human-modified landscapes in 

biodiversity conservation efforts in the tropics. 

 

Mammal ecology in human-modified landscapes 

Effective environmental governance in the tropics is frequently compromised 

by a paucity of biodiversity data due to financial restrictions and logistical constraints 

(Balmford et al., 2005, Gardner et al., 2008, Lawton et al., 1998). These data 

deficiencies often necessitate broad geographic extrapolations of biodiversity 

information based on geographically restricted subsets of focal taxa, which runs the 

risk of purporting false ecological narratives and misleading conservation paradigms 

(Gardner et al., 2009). Consequently, primary, locally-specific biodiversity data are 

essential to develop an understanding of the capacity for modified systems to support 

viable populations of species and guide management actions that promote biodiversity 

persistence (Balmford et al., 2005). This is fundamental for many tropical mammal 
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species, which are often poorly represented in protected area networks (Crooks et al., 

2017), and have inherent ecological characteristics that make them vulnerable to 

anthropogenic habitat modification (Hughes, 2017, Keinath et al., 2017, Newbold et 

al., 2014). This thesis addressed these shortcomings by developing an evidence-base, 

derived from primary data, of mammalian diversity in a highly threatened tropical 

region. The results of Chapters 2-4 indicate that mammal persistence in human-

modified landscapes follows an established trajectory of declining occurrence, 

abundance and species richness when habitat structural complexity is eroded (Barlow 

et al., 2007, Edwards et al., 2014, Gibson et al., 2011). Mammal diversity declines 

along a gradient of land-use intensity (Burivalova et al., 2014, Wearn et al., 2017), 

which could in part be ameliorated by retaining and maintaining natural features that 

facilitate ecological processes and resource acquisition (Ewers and Didham, 2006).  

At the species-level, I identify winners and losers of anthropogenic land-use 

change, confirming the tendency towards biotic homogenization in human-modified 

landscapes (Tabarelli et al., 2012). Ecological generalists with broad dietary niches, 

particularly bearded pigs (Sus barbatus) and pig-tailed macaques (Macaca 

nemestrina) (Plumptre and Johns, 2001, Wong et al., 2005), dominated structurally 

impoverished, disturbed environments (supporting earlier work by Brodie and 

Giordano, 2013, Brodie et al., 2015a, Granados et al., 2016), often displacing obligate 

forest species, which were infrequently detected as land-use intensity increased. This 

response may be mediated by trophic release, which refers to an increase in prey 

abundance following the extirpation of predators (Terborgh et al., 2001). The apex 

predator in the system, the Sunda clouded leopard (Neofelis diardi), was restricted to 

infrequent, sporadic encounters in structurally impoverished habitats, indicating a 
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negative correlation with bearded pig and pig-tailed macaque occurrence. Formal 

testing of co-occurrence patterns to substantiate this claim was beyond the scope of 

my modelling framework, thus my explanation is merely speculative and in contrast 

to previous findings (Brodie and Giordano, 2013). 

My findings provide novel ecological insights into Southeast Asian mammals 

that can be used to inform targeted conservation campaigns. For example, much of the 

limited ecological information on the Sunda clouded leopard has been derived from 

anecdotal evidence (Rabinowitz et al., 1987), captive specimens, and chance 

encounters (Hearn et al., 2013, Matsuda et al., 2008). While intensive monitoring 

efforts are contributing to conservation assessments of this species (Hearn et al., 2016, 

Hearn et al., 2013, Macdonald et al., 2018, Sollmann et al., 2014, Wilting et al., 2012), 

documented habitat associations are limited to elevational preferences and a tendency 

towards areas of high forest cover (Hearn et al., 2018a, Hearn et al., 2018b). My work 

in Chapter 2 has extended this body of evidence considerably by identifying the 

specific structural features of forest cover associated with Sunda clouded leopard 

occurrence. These insights represent a refined appreciation of habitat preference that 

can directly inform the designation of conservation priority areas for a wide-ranging, 

conservation priority species. Moreover, Chapter 2 provided the first documented 

habitat associations for the cryptic tufted ground squirrel (Rheithrosciurus macrotis) 

and uncovered valuable ecological associations for a number of cryptic taxa, including 

the binturong (Arctictis binturong) and marbled cat (Pardofelis marmorata).  

My findings also demonstrate potential complications arising from 

aggregating indistinguishable ungulate species into a single analytical unit. I document 

diverging habitat associations for mouse-deer- (Tragulus sp.) and, to a lesser extent, 
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muntjac species (Muntiacus sp.), which are frequently lumped into genera-level 

designations as they have been difficult to distinguish in camera images (Brodie and 

Giordano, 2013, Brodie et al., 2015a, Brodie et al., 2015b). This aggregation masks 

important differences in habitat selection for the various species, which, without 

recognition, could result in unintended recommendations for conservation 

management. Consequently, I advocate stringent taxonomic identification and caution 

against indiscriminate aggregation. 

The extent to which my findings can inform biodiversity provisions in human-

modified landscapes at regional, national and pan-tropical scales remains open to 

question. The sensitivity of biodiversity to habitat modification has been shown to be 

scale-dependent, idiosyncratic and contextual (de Andrade et al., 2014, Gardner et al., 

2009, Lindenmayer and Likens, 2011). Consequently, cross taxonomic congruence 

represents the exception rather than the rule (de Andrade et al., 2014, Gardner et al., 

2008, Yong et al., 2016). For mammals in particular, wide-ranging behaviour and long 

generation times may give a false impression as to the conservation value of human-

modified landscapes due to spill-over effects or extinction debts (Koh, 2008, Wearn 

et al., 2012). Moreover, considerable structural and taxonomic differences in 

vegetation within and between tropical biogeographic realms limits the spatial 

transferability of findings (Deikumah et al., 2014, Lewis et al., 2015, Slik et al., 2018). 

While this thesis makes a valid contribution to the understanding of mammal ecology 

across the human-modified landscapes of Southeast Asia, understanding the broader 

ecological significance of these systems must be built on coordinated regional research 

to inform global strategies while accounting for biogeographic nuances. 



213 

 

 

Despite the substantial scientific advances made by this thesis, there remains 

some uncertainty in our understanding as to how arboreal mammals respond to 

landscape change. Tropical forests are inherently three-dimensional environments that 

accommodate greater species diversity through vertical partitioning of niche space 

(Corlett and Primack, 2011, Oliveira and Scheffers, 2018). Arboreality is an 

evolutionary adaptation to structural complexity facilitating access to canopy 

resources and microclimatic conditions (Scheffers et al., 2013, Scheffers et al., 2017). 

It is estimated that 75% of forest-dwelling vertebrates demonstrate some degree of 

arboreality (Kays and Allison, 2001), yet multidimensionality is rarely accounted for 

in conservation assessments of tropical ecosystems due to methodological constraints 

associated with sampling canopy elements (Whitworth et al., 2016). Throughout this 

thesis, I excluded exclusively arboreal species from assessment as they cannot be 

reliably monitored using terrestrial methods. Arboreal camera-trapping has emerged 

as a reliable method to quantify the arboreal community (Bowler et al., 2017, Malhi 

et al., 2014, Whitworth et al., 2016), though applications to assess the impact of human 

modification on vertically-stratified mammal communities are lacking. Given that 

arboreality is an adaptation to the structural environment and anthropogenic habitat 

modification directly disrupts canopy elements, arboreal mammals are likely to be 

disproportionately affected by human disturbance. Assessments that embrace 

methodological advances to determine prospects for arboreal mammals in human-

modified landscapes are a clear research priority in tropical forests. 
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Technological considerations for biodiversity monitoring 

Monitoring of threatened species and ecosystems is still hindered by 

technological and logistical challenges, resulting in a disparity between the required 

scale of conservation effort and the accessibility of ecological data (Fraser et al., 

2013). This thesis demonstrates how remote technologies can be applied to circumvent 

sampling issues associated with rare or cryptic species and develop unprecedented 

insights into biodiversity patterns and processes at scales appropriate to conservation 

management. This is particularly evident in Chapter 2 which combined camera-traps 

and airborne multispectral remote-sensing (LiDAR) to quantify the three-dimensional 

properties of tropical forests across multiple spatial scales to inform the conservation 

management of a high conservation priority species. The analytical framework 

presented in this chapter could have practical applications for Southeast Asian 

conservation policy. Recent proposals by the Sabah government to increase protected 

area coverage by 5%, coupled with the state-wide availability of LiDAR data (Asner 

et al., 2018), provides an unparalleled opportunity to mobilise a collaborative network 

of camera-trap data and fully integrate biodiversity considerations into the 

conservation agenda. Moreover, the launch of NASAs Global Ecosystem Dynamics 

Investigation (GEDI; https://gedi.umd.edu/), promises to increase the scope of LiDAR 

coverage to global scales. Capitalising on these developments could greatly enhance 

the limited ecological understanding of mammals across a pantropical gradient of 

forest modification. At a broader scale, achieving ambitious global conservation 

objectives through practical application of remote technologies is dependent upon 

explicit recognition of current limitations. 
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The use of camera-trap methods to monitor wildlife has grown exponentially 

over the last decade, with applications doubling across three year intervals (Burton et 

al., 2015). Conservative estimates suggest that up to 20,000 localities are currently 

being sampled using camera-traps (Burton et al., 2015, Steenweg et al., 2017), 

providing the scope and scale necessary to address global conservation challenges. 

However, such aspirations are hindered by poorly coordinated research effort and a 

reluctance to collaborate, which results in fragmented data developed from contrasting 

methodologies that can be challenging to incorporate into a cohesive analytical 

framework to inform broader management objectives (Meek et al., 2014). To match 

the extent of data available through remote-sensing, biodiversity monitoring requires 

a paradigm shift from disparate, localised assessment to up-scaled, integrated global 

monitoring (Steenweg et al., 2017). The Tropical Ecology and Assessment Monitoring 

Network (TEAM; Jansen et al., 2014) demonstrates the value of concerted camera-

trap efforts to address a range of environmental concerns at scales that can support 

regional and global conservation targets (Ahumada et al., 2011, Beaudrot et al., 2016b, 

Rovero and Ahumada, 2017, Rovero et al., 2014). Consequently, camera-trap 

biodiversity monitoring should strive for globally standardised protocols to facilitate 

collaborative research between regional and international actors (Steenweg et al., 

2017).         

The proliferation of remote-sensing has afforded ecologists and conservation 

practitioners a mechanism to expand their spatio-temporal scope of inference, 

unveiling patterns and processes that had previously proved elusive (Marvin et al., 

2016). However, the expense, and accessibility of remotely-sensed data products 

limits their widespread application in ecology and management. For example, while 
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this thesis has demonstrated the value of LiDAR, the associated financial costs may 

prove financially prohibitive, particularly for conservation initiatives that typically 

operate under budgetary restrictions (Hummel et al., 2011, McCarthy et al., 2012). 

Associated costs extend much further than data acquisition, logistical requirements for 

data analysis also represent a significant financial outlay (Pettorelli et al., 2014, Turner 

et al., 2015). Moreover, data accessibility, referring to the capacity to retrieve and 

manipulate ecologically-relevant metrics from remote-sensing data, is hindered by 

limitations in distribution strategy, software availability and the technological 

proficiency of end users (Turner, 2014). For developing tropical nations with limited 

capacity, partnerships with existing operators and academic institutions may represent 

the only feasible option to mobilise remotely-sensed data products, thus sacrificing a 

degree of autonomy over environmental decision making. To this end, I advocate the 

availability of free/low-cost, pre-processed data on user-friendly online platforms to 

prevent the proliferation of technological colonialism creeping into the conservation 

agenda.  

 

Statistical considerations for evidence-based mammal conservation 

 Previously, evidence-based conservation has proved challenging for rare and 

cryptic species due to insufficient records for reliable statistical inference. This thesis 

demonstrates that hierarchical modelling provides an analytical compliment to remote 

technologies to increase statistical precision for species most vulnerable to land-use 

change. However, interpretation of my outputs should be informed by an explicit 

understanding of the principal caveat of my underlying modelling framework. The 

aggregation of data at the community-level, shifts species-specific parameter estimates 



217 

 

 

towards the community mean, thus environmental impacts may be understated for 

species with few detections (Broms et al., 2016). Pacifici et al. (2014) highlighted that 

species-specific parameter estimates were strongly influenced by how species were 

grouped within the community-level component of the model; while community 

aggregation provided the most precise estimates, alternative classifications, based on 

dietary specialisation or body size, offered unique insights into species responses to 

ecological covariates. While the precision of parameter estimates was of overarching 

importance in this thesis, I acknowledge that some species-specific effects may have 

been overlooked as a result of the grouping criteria adopted.  

From a broader perspective, this thesis highlights the value of Bayesian 

statistical methods for applied ecological assessment, environmental decision making 

and conservation management. The hierarchical modelling procedures I adopted are 

analytically intractable within a classical framework (Dorazio et al., 2011), thus 

Bayesian methods provide an important statistical tool to overcome sampling 

constraints associated with monitoring tropical mammals. Moreover, Bayesian 

methods provide an intuitive expression of confidence in derived quantities, allowing 

conservation practitioners and policy-makers to account for uncertainty in 

management actions and environmental decisions (Ellison, 2004). Bayesian 

frameworks also follow the principles of adaptive management by seeking to integrate 

uncertainty and current knowledge of a system into an iterative process in order to 

continuously inform, modify and strengthen interventions (Ellison, 1996). In the 

context of long-term ecological monitoring, the outputs presented throughout this 

thesis can be incorporated as prior information into future assessments of biodiversity 
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trends in human-modified landscape to reduce uncertainty and develop robust 

management and policy recommendations. 

 

Policy options for biodiversity in human-modified landscapes 

Protected areas are considered integral to global conservation strategies 

(Gaston et al., 2008, Laurance et al., 2012). However, 90% of the world’s terrestrial 

surface area falls beyond the bounds of formal protected status, with the distributions 

of 20% of all threatened species demonstrating little spatial overlap with the reserve 

network (Rodrigues et al., 2004). Throughout Chapters 2-4 I have demonstrated the 

sensitivity of tropical mammals to anthropogenic land-use designations, thus 

persistence will ultimately be determined by the effectiveness of environmental 

policies in making human-modified landscapes more hospitable to biodiversity. 

Reflecting on conclusions drawn from this thesis, I elaborate on potential applications 

of interventions and discuss barriers to implementation. 

 

Capitalising on the conservation value of logged forests 

Logged forests comprise a significant proportion of the remaining forest estate, 

thus mobilising their inherent conservation potential is fundamental to securing 

biodiversity persistence in the tropics. However, identifying which logged forests to 

prioritise for conservation is challenging given limited conservation budgets. To 

optimise conservation spending, interventions must be targeted to where they will 

have the greatest impact. The results presented in Chapter 2 emphasize that logged 

forests that retain structural characteristics of old growth forests could be optimal areas 
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for conservation interventions as they represent preferential habitat for high 

conservation value species. Across my study site these areas corresponded to lightly 

logged forests where timber extraction has been less severe, though, at a broader scale, 

these could encompass sustainably managed forests. It has been proposed that high 

conservation value forests in logged areas provide a cost-effective option to expand 

and connect the existing protected area network or delineate new reserves (Fisher et 

al., 2011b, Giam et al., 2011, Struebig et al., 2015). Complementing the reserve 

network with a mosaic of protected logged forests increases the capacity of landscapes 

to support viable populations of mobile, wide-ranging mammal populations (Meijaard 

and Sheil, 2008, Struebig et al., 2015). Studies suggest that logged forests retain 76% 

of their carbon stocks and sequester carbon at five times the rate of undisturbed forest 

(Berry et al., 2010, Putz et al., 2012), indicating that this strategy will also feed into 

climate change mitigation. Moreover, integrating logged forests within a protectionist 

strategy is financially self-sustaining, generating income and job opportunities, which 

would offset some of the economic drivers of land-use change and garner local support 

for conservation (Gaveau et al., 2013). Given that the conservation value of logged 

forests is likely to increase as they recover, integrating logged forests into the 

conservation agenda can be viewed as a long-term investment to maintain populations 

of obligate forest species (Fisher et al., 2011b, Meijaard and Sheil, 2008).  

Averting the agricultural conversion of heavily degraded forests is paramount 

to enhancing species representation at landscape- and regional scales. Heavily 

degraded forests retain up to 75% of their biodiversity (Edwards et al., 2011, Struebig 

et al., 2013), yet reductions in the standing value of timber mean they can be procured 

at a modest cost (US$2,010 ha-1; Fisher et al., 2011b). In heavily degraded forests 
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subjected to sustained extraction and secondary disturbance impacts, ecological 

restoration may be required to reinstate biodiversity values, prevent a permanent state 

shift, and improve human well-being in adjacent lands (Chazdon and Guariguata, 

2016, Wilson et al., 2011). It is estimated that 130 million ha of forest may be 

amenable to rehabilitation in Southeast Asia alone, indicating considerable scope for 

restoration efforts (Kettle, 2010). Consequently, there is an urgent need to direct 

restoration to regions with the highest likelihood of success (Chazdon and Guariguata, 

2016, Budiharta et al., 2014a). Within Chapter 2 of this thesis, I delineate priority 

restoration areas as those with compromised structural integrity exhibiting the highest 

rate of change in species occurence, indicating that management actions that enhance 

the structural environment will optimise biodiversity outcomes. Enrichment planting, 

is considered a cost-effective approach to landscape-level forest restoration that can 

be achieved at 30% of the price of restoring fully degraded land while providing 

employment for local people (Chazdon, 2008, Kettle, 2010, Lamb, 1998). However, 

regional restoration efforts have been hindered by limited technical capacity to 

propagate dipterocarp trees and impediments posed by their challenging reproductive 

ecology (Kettle, 2010). Moreover, even low-cost restoration projects may require 

long-term financial and political support to achieve desired outcomes (Kettle, 2010). 

Consequently, long-term financial commitments with no guarantee of success may 

limit the application of forest restoration to enhance biodiversity values in heavily 

degraded landscapes. 
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Challenges and opportunities of a coupled carbon and biodiversity approach: 

implications for REDD+ 

Carbon sequestration in tropical forest ecosystems is inextricably linked to 

biodiversity (Poorter et al., 2015), thus effective mitigation must acknowledge their 

inherent interdependencies. Consequently, policy options that couple climate change 

mitigation and species conservation have gained traction in recent decades. In 

Chapter 3, I demonstrate a positive relationship between aboveground carbon and the 

diversity of IUCN threatened species, however, lack of consensus in the scientific 

literature indicates that these patterns may be influenced by underlying drivers. 

Tropical forests are subjected to a suite of anthropogenic pressures (Barlow et al., 

2016) that, if unmeasured could potentially confound the carbon-biodiversity 

relationship. For example, mammals are acutely sensitive to hunting (Benitez-Lopez 

et al., 2017, Ripple et al., 2016), thus distribution patterns in heavily exploited regions 

may reflect the spatial signature of anthropogenic pressure rather than associations 

with forest properties. In Chapter 4, I identified that forest quality was a stronger 

determinant of species persistence than hunting pressure, suggesting that win-win 

conservation outcomes may be possible in areas where habitat factors rather than 

anthropogenic pressure drives biodiversity patterns. As governments demonstrate 

greater commitment to climate change mitigation, an understanding of confounding 

factors in the carbon-biodiversity relationship is essential to advance coupled policy 

options. 

In light of ongoing uncertainty in the scientific literature, conservation 

practitioners and policy makers must acknowledge that acting optimally for carbon 

within a REDD+ framework may induce ecological trade-offs with biodiversity 
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(Barlow et al., 2018). Acknowledging such trade-offs requires a decision to 

compromise carbon in favour of biodiversity or vice-versa. While forest carbon is 

amenable to trade-offs due to its spatial transferability, there are inherent practical and 

ethical complications concerning ecological compromises to facilitate net gains in 

biodiversity (Phelps et al., 2011). “Biodiversity blind” implementation of REDD+ has 

the potential to cause unintentional species loss, by redirecting land-use change 

towards unprotected, low carbon but highly biodiverse areas (Paoli et al., 2010, Phelps 

et al., 2012). Moreover, biodiversity is central to ecosystem functioning (Cardinale et 

al., 2006), thus trade-offs in heterogeneous landscapes have the potential to disrupt 

community structure and ecological processes with unanticipated consequences for 

long-term carbon storage capacity (Brodie, 2018). Ferreria et al. (2018) found that 

minimal compromises in carbon equated to significant biodiversity gains, indicating 

that biodiversity outcomes could be optimised with little impact on protected carbon. 

In tropical regions, where the most biodiverse areas do not necessarily correspond with 

high carbon forests, I advocate explicit recognition of biodiversity values to direct 

REDD+ applications.  

Developing tropical countries typically prioritise economic growth over 

conservation (Giam, 2017), thus, interventions that incorporate financial incentives 

are more likely to result in successful outcomes. Previous work has indicated that 

REDD+ does not provide sufficient recompense to offset foregone revenues from 

logging or oil palm (Butler et al., 2009, Fisher et al., 2011a). Consequently, averting 

land-use change and forest modification may not represent a financially optimal 

implementation strategy. Alternatively, REDD+ will financially reward a number of 

forest interventions that restore and enhance carbon stocks while simultaneously 
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promoting species conservation, though these are often overlooked (Miles and 

Dickson, 2010). Thus, biodiversity actors must reconsider their priorities to capitalise 

on carbon-based mechanisms. Elsewhere in Southeast Asia, 90% of REDD+ projects 

mobilise financial support to strengthen protected area networks, reforest degraded 

lands and promote reduced-impact logging (Graham et al., 2016), demonstrating an 

implicit recognition that avoided deforestation does not represent a profitable 

application. To ensure that REDD+ has maximum impact on biodiversity conservation 

and rural livelihoods, greater emphasis needs to be placed on the range of 

implementation models available to stakeholders. 

 

Supply chain initiatives 

The emergence of supply-chain initiatives is an encouraging policy 

development to integrate sustainability criteria into forestry and agricultural 

production. However, the long-term success of sectoral standards and corporate 

pledges is dependent on effective methodologies to identify and protect ecologically 

valuable tropical forests from conversion and modification. Throughout Chapters 3 

and 4, I provide the first scientific appraisal of the High Carbon Stock (HCS) 

Approach, the principal tool to realise zero-deforestation commitments, which has 

now been formally adopted by the RSPO. In Chapter 3, I find that the HCS Approach 

is an effective tool to delineate tropical forests of high biodiversity value using freely 

available remote-sensing data. However, I identify some shortcomings in the patch 

prioritisation algorithm in Chapter 4. While HCS-delineated priority patches 

provided refugia for mammal species that are most vulnerable to land-use change, 

current core area criteria only sustain 35% of the mammal community, with potentially 



224 

 

 

deleterious ecological consequences. Given the spatial requirements of medium-large 

mammals it can be argued that conserving patches of sufficient size to support 

sustainable populations is not economically viable. In recognition of this, I advocate a 

shift in emphasis towards patch configuration and landscape-level connectivity to 

ensure that production landscapes maintain a network of forest cover to facilitate the 

movement of wide-ranging vertebrates between contiguous blocks of forest. This 

connectivity will be essential to safeguard vulnerable mammals against projected 

environmental change (Struebig et al., 2015). To this end, riparian reserves, defined 

as protected forest margins around river habitats (Luke et al., 2018), have an 

instrumental role to play at the landscape scale, though their capacity to contribute to 

landscape connectivity is dependent upon corridor width (Yaap et al., 2016) and the 

maintenance of forest quality (Zimbres et al., 2017, Zimbres et al., 2018). While the 

value of riparian reserves is recognised in the HCS Approach, I support calls for the 

adoption of minimum width criteria (Luke et al., 2018).         

Recent evaluations of the HCS Approach have been less encouraging. Austin 

et al. (2017) found that HCS-delineated forest coincided with less than 50% of rare 

species distributions identified using High Conservation Value (HCV) criteria in 

Gabon. Recognising such limitations is important to ensure that applications do not 

result in perverse outcomes. Conservation practitioners should regard HCS and HCV 

as complimentary tools. Combined applications provide safeguards for vulnerable 

species that overcome the limitations associated with applying each tool in isolation. 

This is explicitly acknowledged within the HCS toolkit and integrated within the patch 

prioritisation decision tree to ensure that rare species are adequately considered during 

the design of forest mosaics (Rosoman et al., 2012). Moreover the HCS Approach has 
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been criticised as being economically restrictive for developing nations that have 

retained a high proportion of their primary forest cover, such as Papua New Guinea or 

Gabon (Senior et al., 2015). However, assessment of a highly-forested nation found 

that national oil palm targets could be addressed without compromising HCS- or 

HCV-delineated forests, indicating that compliance with zero-deforestation 

commitments could be achieved alongside development goals (Austin et al., 2017). 

Taken as a whole, the HCS Approach is still in its infancy and likely to be refined 

following scientific appraisal, I recommend that the HCS Approach should be viewed 

as one of a suite of tools available to land-use planners to realise sustainability 

commitments.       

In the policy arena, supply-chain initiatives face significant implementation 

barriers due to competing stakeholder values. Low adoption rates and compliance 

costs restrict the extent to which aspirational goals result in sustainable production 

(Lambin et al., 2018). While zero-deforestation commitments have received 

considerable uptake, only 25% of associated companies have developed time-bound 

action plans to realise sustainability pledges (Bregman et al., 2016). Moreover, RSPO-

certified palm oil accounts for only 19% of global production (RSPO, 2015). 

Ultimately, adoption is dependent on the degree of economic benefit derived from 

involvement (Giam et al., 2016). Compliance with sustainability standards and 

avoided deforestation comes at a significant cost to producers, yet commensurate price 

premiums are rarely realised (Edwards and Laurance, 2012, Lambin et al., 2018). 

Incentives are further undermined by Indian and Chinese markets which represent two 

of the top three global palm oil importers (Meijaard et al., 2018), but place greater 

emphasis on competitive pricing than environmental sustainability (Lyons-White and 
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Knight, 2018). Smallholders account for 40% of global oil palm production (Azhar et 

al., 2017) and typically adopt environmentally damaging agricultural practices due to 

weak economies of scale (Padfield et al., 2016). However, smallholders are 

particularly disadvantaged by supply-chain initiatives and commonly excluded from 

market access due to complex enrolment protocols and financially prohibitive 

compliance procedures (Brandi et al., 2015, Garrett et al., 2013, Glasbergen, 2018).  

While voluntary sustainability standards are considered integral to 

environmental policy in developing nations lacking the governmental capacity to 

effectively regulate commodity production (Tayleur et al., 2017), there is growing 

scepticism that supply-chain initiatives can achieve their stated objectives (Curtis et 

al., 2018, Lyons-White and Knight, 2018). There is a growing body of evidence to 

suggest that ancillary public governance is an effective mechanism to overcome 

current shortcomings in private-sector sustainability standards (Lambin et al., 2014, 

Larsen et al., 2018). Jurisdictional regulations, such as Sabah’s commitment to 100% 

certified oil palm before 2025 demonstrates how state involvement could expand the 

scope of supply-chain initiatives and should provide a template for the evolution of 

hybrid governance structures in agricultural commodity chains. 

 

Mitigating secondary disturbance impacts 

The effectiveness of the policy instruments discussed throughout this thesis is 

contingent on the suppression of secondary disturbance impacts in human-modified 

landscapes. Illegal encroachment affects biodiversity directly through unsustainable 

exploitation and indirectly by compromising habitat suitability via illegal timber 
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extraction (Peres et al., 2006). In Chapter 4, I found that secondary disturbance 

impacts are important determinants of mammal abundance, though they are often 

neglected in conservation policy. Consequently, interventions should be augmented 

with management actions and state regulations that safeguard forest integrity as well 

as cover (Barlow et al., 2016). Evidence suggests logging and oil palm concessions 

provide important refugia for biodiversity when management strategies explicitly 

consider hunting (Berry et al., 2010, Clark et al., 2009, Laurance et al., 2008). 

Important management actions at the concession level include site-based enforcement 

(Harrison, 2011), the implementation of security gates, the destruction of redundant 

transportation infrastructure and the provision of supplementary protein to workers 

(Rosin, 2014). Management actions can be strengthened by an explicit recognition of 

illegal encroachment mitigation measures within sustainability standards. Moreover, 

actions at the concession-level need to be underwritten by a stronger regulatory 

framework. Legislation to control the sale and possession of hunting implements and 

severe judicial penalties are central strategies to deter secondary disturbance impacts 

in human-modified landscapes (Harrison et al., 2016). 

 

Conclusions: the biological value of human-modified landscapes 

Across the world’s remaining tropical forests, 76% are considered fragmented 

or otherwise degraded (Lewis et al., 2015). Such are the threats that face global 

biodiversity, these modified systems cannot be disregarded from the conservation 

agenda. This paradigm shift has been opposed by some factions of the scientific 

community, who suggest that aggressive pursuit of the biological value of human-

modified landscapes narrative undermines and destabilizes current conservation 
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efforts (Didham, 2011). There are also concerns that allocating limited financial 

resources to degraded habitats compromises the preservation of intact primary forests 

(Betts et al., 2017). Safeguarding primary forests should be regarded as the top priority 

for conservation practitioners, yet this must also be coupled with explicit recognition 

that the fate of biodiversity in these ecosystems is inextricably linked to the 

management of adjacent human-modified lands. In this context, dichotomising the 

conservation agenda is unlikely to be a worthwhile strategy; rather actors should seek 

new partnerships with industry, governments and local communities to capitalise on 

progressive environmental policies. 

The work presented in this thesis demonstrates that the biological value of 

human-modified landscapes is dictated by the intensity of the underlying land-use. 

Logged forests generally provide favourable habitat for biodiversity, while oil palm 

plantations are often accompanied by severe ecological costs. Policy and management 

are essential tools to encourage and enhance the biological values of modified systems. 

Provided interventions are directed to where they will have the greatest impact, they 

can be financially self-sustaining and engage local communities to mitigate the social 

and economic dimensions of land-use change. Based on the findings of this thesis, I 

provide recommendations for policy implementation across the dominant land-use 

change trajectories of the tropics. Given the inability of REDD+ to financially compete 

with selective logging and oil palm, associated revenues will be best placed if they 

support the expansion of the protected area network to address Aichi Target 11 

(increase protected area coverage to 17% of terrestrial and freshwater areas before 

2020). Moreover, REDD+ finances can be used to procure logged forest from the 

permanent timber estate when standing timber stocks make associated costs more 
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agreeable. In the most heavily degraded areas, REDD+ can be used to support 

ecological restoration efforts. Supply-chain initiatives provide a safety net to the 

system to ensure that future agricultural expansion is independent of deforestation.  

Throughout this discussion I have provided recommendations to strengthen the 

scope and implementation of these policies to ensure they can have maximum impact. 

Specifically, I advocate targeted REDD+ projects that embrace applications beyond 

avoided deforestation, the coupling of privately-led supply-chain initiatives with state 

regulations and stronger recognition of secondary disturbance impacts in sustainability 

criteria, underwritten by severe judicial penalties. While the geographic focus of this 

thesis was on Southeast Asia, the policy insights generated from it are equally as 

relevant to other parts of the tropics, particularly in regions where commodity 

production is placing pressure on forest ecosystems and their resident biodiversity.    
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Appendix:   Co-authored publications 

Peer-reviewed journal articles supplementary to the research manuscripts presented 

within the main thesis, to which I contributed throughout my PhD programme. Each 

publication is broadly relevant to the main themes presented within this thesis. Here I 

present the abstracts for reference in reverse chronological order, full text copies are 

available online. 
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Research article: Larger gains delivered by improved management over sparing-

sharing for tropical forests 

 

Nature Sustainability (in press) 

 

Rebecca K. Runting, Ruslandi, Bronson Griscom, Matthew J. Struebig, Musnanda 

Satar, Erik Meijaard, Zuzana Burivalova, Susan M. Cheyne, Nicolas J. Deere, Edward 

T. Game, F.E. Putz, Jessia A. Wells, Andreas Wilting, Marc Ancrenaz, Peter Ellis, 

Faisal A.A. Khan, Sara M. Leavitt, Andrew J. Marshall, Hugh P. Possingham, James 

E.M. Watson, Oscar Venter. 

 

Abstract: Tropical forests are globally significant for both biodiversity conservation 

and the production of economically valuable wood products. Two contrasting 

approaches have been suggested to simultaneously produce timber and conserve 

biodiversity; one partitions forests to deliver these objectives separately (sparing), the 

other integrates both objectives in the same location (sharing). To date, the ‘sparing or 

sharing’ debate has focused on agricultural landscapes, with scant attention paid to 

forest management. Here we explored the sparing-to-sharing continuum through 

spatial optimisations with set economic returns for the forests of East Kalimantan, 

Indonesia – a global biodiversity hotspot. We found that neither sparing nor sharing 

extremes are optimal, although the greatest conservation value was attained towards 

the sparing end of the continuum. Critically, improved management strategies, such 

as reduced-impact logging, accounted for larger conservation gains than altering the 

balance between sparing and sharing, particularly for endangered species. Ultimately, 

debating sparing versus sharing has limited value while large gains remain from 

improving forest management.  
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Research article: Addressing human-tiger conflict using socio-ecological 

information on tolerance and risk 

 

Nature Communications: August 2018 

Volume: 9; Article Number: 3455; DOI: 10.1038/s41467-018-05983-y 

 

Matthew J. Struebig, Matthew Linkie, Nicolas J. Deere, Deborah J. Martyr, Betty 

Millyanawati, Sally C. Faulkner, Steven C. Le Comber, Fachruddin M. Mangunjaya, 

Nigel Leader-Williams, Jeanne E. McKay, Freya A.V. St John. 

 

Abstract: Tigers are critically endangered due to deforestation and persecution. Yet 

in places, Sumatran tigers (Panthera tigris sumatrae) continue to coexist with people, 

offering insights for managing wildlife elsewhere. Here, we couple spatial models of 

encounter risk with information on tolerance from 2386 Sumatrans to reveal drivers 

of human-tiger conflict. Risk of encountering tigers was greater around populated 

villages that neighboured forest or rivers connecting tiger habitat; geographic profiles 

refined these predictions to three core areas. People's tolerance for tigers was related 

to underlying attitudes, emotions, norms and spiritual beliefs. Combining this 

information into socio-ecological models yielded predictions of tolerance that were 32 

times better than models based on social predictors alone. Preemptive intervention 

based on these socio-ecological predictions could have averted up to 51% of attacks 

on livestock and people, saving 15 tigers. Our work provides further evidence of the 

benefits of interdisciplinary research on conservation conflicts. 
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Borneo’s structurally complex tropical forests using airborne laser scanning 
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Tommaso Jucker, Gregory P. Asner, Michele Dalphonte, Philip G. Broderick, 

Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn The, Craig Brelsford, David 

F.R.P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, 

Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver L. Phillips, Lan 

Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin 

Svatek, Edgar C. Turner, David A. Coomes. 

 

Abstract: Borneo contains some of the world's most biodiverse and carbon-dense 

tropical forest, but this 750 000 km2 island has lost 62% of its old-growth forests 

within the last 40 years. Efforts to protect and restore the remaining forests of Borneo 

hinge on recognizing the ecosystem services they provide, including their ability to 

store and sequester carbon. Airborne laser scanning (ALS) is a remote-sensing 

technology that allows forest structural properties to be captured in great detail across 

vast geographic areas. In recent years ALS has been integrated into statewide 

assessments of forest carbon in Neotropical and African regions, but not yet in Asia. 

For this to happen new regional models need to be developed for estimating carbon 

stocks from ALS in tropical Asia, as the forests of this region are structurally and 

composition-ally distinct from those found elsewhere in the tropics. By combining 

ALS imagery with data from 173 permanent forest plots spanning the lowland 

rainforests of Sabah on the island of Borneo, we develop a simple yet general model 

for estimating forest carbon stocks using ALS-derived canopy height and canopy 

cover as input metrics. An advanced feature of this new model is the propagation of 

uncertainty in both ALS- and ground-based data, allowing uncertainty in hectare-scale 

estimates of carbon stocks to be quantified robustly. We show that the model 

effectively captures variation in aboveground carbon stocks across extreme 

disturbance gradients spanning tall dipterocarp forests and heavily logged regions and 

clearly outperforms existing ALS-based models calibrated for the tropics, as well as 

currently available satellite-derived products. Our model provides a simple, 

generalised and effective approach for mapping forest carbon stocks in Borneo and 

underpins ongoing efforts to safeguard and facilitate the restoration of its unique 

tropical forests. 
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Lemdahl, Lindsey Gillson, Esther Githumbi, Tabitha Kabora, Rebecca Kariuki, Rahab 

Kinyanjui, Elizabeth Kyazike, Carol Lang, Julius Lejju, Kathleen D. Morrison, 

Veronica Muiruri, Cassian Mumbi, Rebecca Muthoni, Alfred Muzuka, Emmanuel 

Ndiema, Chantal K. Nzabandora, Isaya Onjala, Annemiek Pas Schrijver, Stephen 

Rucina, Anna Shoemaker, Senne Thornton-Barnett, Geert van der Plas, Elizabeth E. 

Watson, David Williamson, David Wright. 

 

Abstract: East African landscapes today are the result of the cumulative effects of 

climate and land-use change over millennial timescales. In this review, we compile 

archaeological and palaeoenvironmental data from East Africa to document land-

cover change, and environmental, subsistence and land-use transitions, over the past 

6000 years. Throughout East Africa there have been a series of relatively rapid and 

high-magnitude environmental shifts characterised by changing hydrological budgets 

during the mid- to late Holocene. For example, pronounced environmental shifts that 

manifested as a marked change in the rainfall amount or seasonality and subsequent 

hydrological budget throughout East Africa occurred around 4000, 800 and 300 

radiocarbon years before present (yr BP). The past 6000 years have also seen 

numerous shifts in human interactions with East African ecologies. From the mid-

Holocene, land use has both diversified and increased exponentially, this has been 

associated with the arrival of new subsistence systems, crops, migrants and 

technologies, all giving rise to a sequence of significant phases of land-cover change. 

The first large-scale human influences began to occur around 4000 yr BP, associated 

with the introduction of domesticated livestock and the expansion of pastoral 

communities. The first widespread and intensive forest clearances were associated 

with the arrival of iron-using early farming communities around 2500 yr BP, 

particularly in productive and easily-cleared mid-altitudinal areas. Extensive and 

pervasive land-cover change has been associated with population growth, immigration 

and movement of people. The expansion of trading routes between the interior and the 

coast, starting around 1300 years ago and intensifying in the eighteenth and nineteenth 

centuries CE, was one such process. These caravan routes possibly acted as conduits 

for spreading New World crops such as maize (Zea mays), tobacco (Nicotiana spp.) 

and tomatoes (Solanum lycopersicum), although the processes and timings of their 

introductions remains poorly documented. The introduction of southeast Asian 
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domesticates, especially banana (Musa spp.), rice (Oryza spp.), taro (Colocasia 

esculenta), and chicken (Gallus gallus), via transoceanic biological transfers around 

and across the Indian Ocean, from at least around 1300 yr BP, and potentially 

significantly earlier, also had profound social and ecological consequences across the 

region. 

 

Through an interdisciplinary synthesis of information and metadatasets, we explore 

the different drivers and directions of changes in land-cover, and the associated 

environmental histories and interactions with various cultures, technologies, and 

subsistence strategies through time and across space in East Africa. This review 

suggests topics for targeted future research that focus on areas and/or time periods 

where our understanding of the interactions between people, the environment and 

land-cover change are most contentious and/or poorly resolved. The review also offers 

a perspective on how knowledge of regional land-use change can be used to inform 

and provide perspectives on contemporary issues such as climate and ecosystem 

change models, conservation strategies, and the achievement of nature-based solutions 

for development purposes. 
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Background: Canopy structure, defined by leaf area index (LAI), fractional 

vegetation cover (FCover) and fraction of absorbed photosynthetically active radiation 

(faPAR), regulates a wide range of forest functions and ecosystem services. Spatially 

consistent field-measurements of canopy structure are however lacking, particularly 

for the tropics. 

 

Methods: Here, we introduce the Global LAI database: a global dataset of field-based 

canopy structure measurements spanning tropical forests in four continents (Africa, 

Asia, Australia and the Americas). We use these measurements to testfor climate 

dependencies within and across continents, and to test for the potential of 

anthropogenic disturbance and forest protection to modulate those dependencies. 

 

Results: Using data collected from 887 tropical forest plots, we show that maximum 

water defecit, defined across the most arid months of the year, is an important predictor 

of canopy structure, with all three canopy attributes declining significantly with 

increasing water defecit. Canopy attributes also increase with minimum temperature, 

and with the protection of forests according to both active (within protected areas) and 

passive measures (through topography). Once protectionand continent effects are 

accounted for, other anthropogenic measures (e.g. human population) do not improve 

the model. 

 

Conclusions: We conclude that canopy structure in the tropics is primarily a 

consequence of forest adaptation to the maximum water defecits historically 

experienced within a given region. Climate change, and in particular changes in 

drought regimes may thus affect forest structure and function, but forest protection 

may offer some resilience against this effect. 
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Article: A new species in the tree genus Polyceratocarpus (Annonaceae) from the 

Udzungwa Mountains of Tanzania 
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Volume: 63; Pages: 63-76; DOI: 10.3897/phytokeys.63.6262 
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W.R. Quentin Luke, Henry J. Ndangalasi, Sue Sparrow, David M. Johnson 

 

Abstract: Polyceratocarpus askhambryan-iringae, an endemic tree species 

of Annonaceae from the Udzungwa Mountains of Tanzania, is described and 

illustrated. The new species is identified as a member of the 

genus Polyceratocarpus by the combination of staminate and bisexual flowers, 

axillary inflorescences, subequal outer and inner petals, and multi-seeded monocarps 

with pitted seeds. From Polyceratocarpus scheffleri, with which it has previously been 

confused, it differs in the longer pedicels, smaller and thinner petals, shorter bracts, 

and by generally smaller, less curved monocarps that have a clear stipe and usually 

have fewer seeds. Because Polyceratocarpus askhambryan-iringae has a restricted 

extent of occurrence, area of occupancy, and ongoing degradation of its forest habitat, 

we recommend classification of it as Endangered (EN) on the IUCN Red List. 

 

 


