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Abstract 15 
 16 
The interaction between human papillomaviruses (HPV) and the apolipoprotein-B mRNA 17 

editing catalytic polypeptide-like (APOBEC)3 (A3) genes has garnered increasing attention in 18 

recent years, with considerable efforts focused on understanding their apparent roles in both 19 

viral editing and in HPV-driven carcinogenesis. Here we review these developments and 20 

highlight several outstanding questions in the field. We consider whether editing of the virus 21 

and mutagenesis of the host are linked, or whether both are essentially separate events, 22 

coincidentally mediated by a common, or distinct A3 enzymes. We discuss the viral 23 

mechanisms and cellular signalling pathways implicated in A3 induction in virally-infected 24 

cells, examine which of the A3 enzymes might play the major role in HPV-associated 25 

carcinogenesis and in the development of therapeutic resistance. We consider the parallels 26 

between A3 induction in HPV-infected cells and what might be causing aberrant A3 activity 27 

in HPV-independent cancers such as those arising in the bladder, lung and breast. Finally, we 28 

discuss the implications of ongoing A3 activity in tumours under treatment and the therapeutic 29 

opportunities that this may present. 30 

 31 

 32 

Introduction 33 

A link between sexual contact and cervical cancer was first reported in 1842, by the Italian 34 

physician, Rigoni-Stern (Rigoni-Stern 1842), yet the role of human papillomaviruses (HPVs) 35 

as the incriminating infectious agent was not substantiated until the 1970s; at which time, 36 

intranuclear papillomavirus particles were found within koilocytic epithelial cells of cervical 37 



 2 

condylomatosis (Torre et al. 1978; Hills & Laverty 1979).  By 1983, the DNA of HPV-16 and 38 

HPV-18 had been successfully isolated from cervical cancer biopsies (Dürst et al. 1983; 39 

Boshart et al. 1984) but the many molecular mechanisms by which these viruses cause cancer 40 

continue to be elucidated.  41 

 42 
HPVs are small, non-enveloped DNA viruses, consisting of an 8kb circular genome (Figure 43 

1A) encased in a viral capsid.  There are over 200 different genotypes with tropisms for stem 44 

cells in the basal layer of either cutaneous or mucosal epithelia, in which the viral life cycle is 45 

tightly linked to and dependent upon keratinocyte differentiation (Figure 1B). The HPV 46 

genome consists of six early genes responsible for viral genome maintenance and amplification 47 

and two late genes (L1 and L2) which encode the viral capsid proteins and are expressed in 48 

terminally differentiated keratinocytes immediately prior to host cell death and release of 49 

virions (for detailed reviews see Doorbar et al., 2015; McBride, 2017).  Infection is typically 50 

either asymptomatic, or associated with benign warts. At least 14 HPV types however 51 

(including HPV-16 and HPV-18), are carcinogenic, and these ‘high-risk’ (HR-HPV) types 52 

cause human cancers in the mucosal epithelia of several sites, including the cervix, vulva, 53 

vagina, penis, anus, and oropharynx (tonsils and tongue base). The vast majority of HR-HPV 54 

infections are cleared naturally within 12-18 months by the host immune system (Richardson 55 

et al. 2003; Bodily & Laimins 2011), yet globally, HPV infection accounts for over 600,000 56 

cancers (90% of which are cervical cancers) and 250,000 deaths per year (de Martel et al. 57 

2017). The complex biology underlying HPV-associated carcinogenesis is the subject of many 58 

detailed reviews (e.g. Bodily & Laimins 2011; Doorbar et al. 2015; Lechner & Fenton 2016). 59 

Here we will focus on the emerging role that one or more of the apolipoprotein-B mRNA 60 

editing catalytic polypeptide-like-3 (APOBEC3 or A3) family of innate immune response 61 

genes appear to play in this process, including the generation of somatic alterations to the host 62 

genome that in addition to viral oncoprotein expression, are required for HPV-associated 63 

carcinogenesis. 64 

 65 

 66 

Current model of HPV-induced carcinogenesis 67 

 68 
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Papillomaviruses rely on host DNA polymerases and the DNA damage response for replication 69 

and amplification of their genomes, and must therefore induce cell cycle entry upon infection; 70 

a process which is driven by two viral early genes, E6 and E7 (reviewed in Doorbar et al., 71 

2015; McBride, 2017). E6 and E7 from high-risk HPV types (HR-E6/HR-E7, also known as 72 

the HPV oncogenes) harbour several activities not shared by their low-risk homologues, which 73 

appear to be important for carcinogenesis and may serve to trigger the mutagenic activity of 74 

APOBEC3 (A3) proteins seen in HPV-associated cancers. In particular, the induction of 75 

replication stress, host DNA repair responses and downregulation of the pRB and p53 tumour 76 

suppressors  (Munger & Jones 2015) are key activities of HR-E6 and E7 that will be discussed 77 

in this context. During productive infection, the expression of E6 and E7 is restricted to the 78 

basal and parabasal layers of the epithelium and at later stages is repressed by the viral E2 79 

protein but in a small fraction of HR-HPV infections the virus persists and cells with increased 80 

E6/E7 expression gain a selective growth advantage, populating the upper epithelial layers. 81 

Differentiation of these cells is blocked, resulting in loss of additional viral gene expression 82 

and exit from the productive life cycle. In the cervix this can be observed in the transition from 83 

early cervical intraepithelial neoplasia (CIN1), to precancerous CIN2/3 lesions that forms the 84 

basis of cervical cancer screening. In CIN3 lesions and invasive carcinoma, integration of the 85 

virus into the host genome and loss of viral episomes is commonly observed, with a selection 86 

in vivo for clones in which integration has disrupted the E2 gene, permitting further increases 87 

in E6/E7 expression (Bodily & Laimins 2011; Doorbar et al. 2015).  88 

 89 

The A3 genes and somatic mutagenesis in cancer  90 

 91 

The rate at which somatic mutations accumulate in cells is governed both by the rate at which 92 

DNA damage occurs and by the fidelity with which it is repaired or damaged cells are 93 

eliminated by apoptosis. Loss of p53 could explain persistence of cells carrying DNA damage 94 

but which mutational processes generate the mutations in HPV infected cells and does HPV 95 

increase the rate at which DNA damage occurs? The wealth of somatic mutation data generated 96 

by large-scale cancer genomics efforts such as The Cancer Genome Atlas (TCGA) project and 97 

the International Cancer Genome Consortium (ICGC) has recently enabled identification of 98 

mutational signatures - distinctive patterns that can reveal the mutational processes operational 99 
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in different tumours (Nik-Zainal et al., 2012; Alexandrov et al., 2013a; Alexandrov et al., 100 

2013b). As might be expected, skin cancer genomes are dominated by CC>TT mutations 101 

consistent with those caused by ultraviolet light in experimental systems, while cancers 102 

associated with tobacco smoking display a mutational signature (G>T and GG>TT mutations) 103 

implicating tobacco carcinogens such as benzo(a)pyrene. In both cases, the mutation signatures 104 

display a transcriptional strand bias that is consistent with the known role for transcription-105 

coupled nucleotide excision repair in resolving such lesions (Alexandrov et al., 2013). Other 106 

mutational signatures arise from specific defects in the pathways responsible for repairing 107 

DNA damage; at least four signatures have been linked to defects in mismatch repair for 108 

instance, while defects in double strand break repair by homologous recombination give rise 109 

to a signature observed in tumours harbouring BRCA1 or BRCA2 mutations 110 

(https://cancer.sanger.ac.uk/cosmic/signatures, Forbes et al., 2017). The mutational signatures 111 

observed in tumour samples (or indeed in healthy tissue) are therefore shaped both by the 112 

processes that have caused damage to the DNA during the lifetime of the individual and by the 113 

pathways (or defects therein) responsible for repairing that damage.   114 

 115 

Strikingly, cancers in several tissues, including breast, lung, bladder, cervix and head and neck 116 

frequently display two closely-related signatures characterized by C>T transitions and C>G 117 

transversions at TpC dinucleotides that have been attributed to the deoxycytidine deamination 118 

activity of one or more APOBEC enzymes (Burns et al., 2013a; Burns et al, 2013b; Alexandrov 119 

et al., 2013a; Roberts et al., 2013; Taylor et al., 2013). Humans possess 11 APOBEC genes, 120 

with physiological roles including antibody diversification (Activation-Induced Cytidine 121 

Deaminase, AICDA), cellular mRNA editing (APOBEC1) and inhibition of exogenous virus 122 

and endogenous retroelement replication, which are mediated by members of the 7-gene 123 

APOBEC3 (A3) family, (Figure 2), reviewed in (Holmes et al. 2007; Conticello 2008; Harris 124 

& Dudley 2015). Soon after the cloning of APOBEC1, it was shown that liver-specific 125 

overexpression in transgenic mice or rabbits caused hepatocellular carcinoma (Yamanaka et 126 

al. 1995).  The subsequent demonstration that APOBEC1, several A3 enzymes and AICDA 127 

(AID) could deaminate single-stranded (ss)DNA in addition to RNA (Harris et al. 2002; 128 

Petersen-Mahrt et al. 2002), together with the finding that transgenic AICDA mice were also 129 

cancer-prone (Okazaki et al. 2003) suggested a potential role for mutagenic APOBEC/AID 130 
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activity in the development of human cancers; a hypothesis that awaited large-scale testing 131 

until the advent of next-generation sequencing (NGS) and the detection of the aforementioned 132 

mutational signatures in tumour exomes. APOBEC1 and several of the closely-related A3 133 

enzymes (A3A, B, C, D, F and H) display a preference for deamination of TpC sites in ssDNA 134 

in vitro that is consistent with the TpC mutational signatures observed in cancer genomes, with 135 

gene expression analysis and loss-of-function experiments in breast cancer cell lines suggesting 136 

a prominent role for A3B (Burns et al., 2013a). Distinct A3G and AID mutational signatures 137 

have also been detected across a wide range of cancer types (Rogozin et al. 2019) but for the 138 

purposes of this review we focus on the TpC signatures, henceforth referred to as APOBEC-139 

associated.  Analyses of cancer genome sequencing data and studies in cells overexpressing 140 

A3A or A3B suggest the major exposure of ssDNA substrate for A3 activity in tumour cells 141 

arises on the lagging strand during DNA replication, presumably as a result of replication fork 142 

stalling due to replication stress (Green et al. 2016; Haradhvala et al. 2016; Hoopes et al. 2016; 143 

Morganella et al. 2016; Seplyarskiy et al. 2016). Unlike other mutational signatures, A3-144 

mediated mutations are frequently enriched in early-replicating regions of the genome, 145 

although interestingly this effect is more pronounced in lung and bladder cancer exomes from 146 

TCGA than in cervix and is not apparent in head and neck squamous cell carcinoma (HNSCC) 147 

(Kazanov et al. 2015).  148 

 149 

The strong enrichment of the APOBEC signature in cervical cancer exomes (Burns, Temiz and 150 

Harris, 2013; Alexandrov et al., 2013; Roberts et al., 2013), together with previous evidence 151 

for A3 editing of human papillomavirus (HPV) genomes in plantar warts and precancerous 152 

cervical lesions (Vartanian et al. 2008) suggested that the presence of HPV in cells might 153 

somehow induce or potentiate A3 activity, damaging the host genome and resulting in the 154 

observed enrichment of these mutational signatures in HPV-associated cancers (Kuong & Loeb 155 

2013). Having identified A3B among a list of genes that are consistently upregulated in HPV-156 

associated malignancies irrespective of anatomic site, we tested for such an association in 157 

HNSCC, observing increased APOBEC3B expression and enrichment of the APOBEC 158 

mutational signature in the ~15% of HPV-associated cases in the CGA HNSCC cohort, the 159 

majority of which are oropharyngeal tumours. We also noted a distinctive pattern of APOBEC 160 

signature mutations in exon 9 of the PIK3CA proto-oncogene in HPV+ HNSCC and in other 161 
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cancer types displaying the APOBEC mutational signature, thus directly implicating APOBEC 162 

activity in the generation of oncogenic driver events (Henderson et al. 2014; Chakravarthy et 163 

al. 2016). These findings were subsequently confirmed by TCGA (The Cancer Genome Atlas 164 

Network 2015) and by recent analyses of expanded (Gillison et al. 2019) and independent (Qin 165 

et al. 2018)  HPV+ HNSCC cohorts .  In a separate study published the same year, Vieira and 166 

colleagues also reported the enrichment of APOBEC signature mutations in HPV+ CGA 167 

HNSCCs and showed induction of A3B mRNA expression and deaminase activity in 168 

keratinocytes by E6 from the two major high-risk HPV types, HPV16 and HPV18 (Vieira et 169 

al. 2014). Consistent with these observations, APOBEC signature mutations are also enriched 170 

in HPV+ penile carcinoma exomes, with those tumours harbouring higher viral loads 171 

displaying greater enrichment (Feber et al. 2016). In further work, Pyeon and colleagues noted 172 

upregulation of both A3A and A3B expression in precancerous cervical lesions and 173 

demonstrated their induction by E7 in keratinocytes (Warren et al. 2015a). The same group 174 

have since shown that E7 from HR-HPV types can stabilize A3A protein by blocking its 175 

polyubiquitination by cullin-RING-based E3 ubiquitin ligase complexes (Figure 3), thus HPVs 176 

appear to modulate A3 expression at multiple levels (Westrich et al. 2018). Also of note are 177 

roles that A3 enzymes may play in HPV-associated cancer that are independent of their 178 

mutagenic activity against the host genome. Intriguingly, Periyasamy and colleagues have 179 

shown that A3B associates with the oestrogen receptor (ER) in breast cancer cell lines and co-180 

activates ER target genes (Periyasamy et al. 2015a). The proposed mechanism involves 181 

deamination of promoter sites by A3B, leading to recruitment of DNA repair proteins and local 182 

chromatin remodelling. The cervical epithelium is also an oestrogen-responsive tissue; indeed 183 

HPV E6/E7-driven cervical cancer development in transgenic mice can be promoted by 184 

oestradiol infusion over several months (Brake & Lambert 2005). It is possible then, that A3B 185 

could also fuel cervical carcinogenesis via this non-mutagenic but nonetheless deaminase-186 

dependent transcriptional activity. 187 

 188 

A3 genes and viral restriction 189 

Numerous studies indicate an important role for A3 genes in innate immunity and it is 190 

presumably an aberrant triggering and/or regulation of this response that results in the somatic 191 
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mutagenesis observed in cancer. Coincident with the cloning of the human A3 genes (Jarmuz 192 

et al. 2002) and the discovery that they can deaminate ssDNA (Harris et al. 2002), a series of 193 

seminal papers demonstrated a role for A3G (originally termed CEM-15) in HIV-1 restriction 194 

(Sheehy et al. 2002) and revealed a deaminase-dependent mechanism involving extensive 195 

editing of the first strand cDNA and resulting in G-to-A mutations on the positive strand (Harris 196 

et al. 2003; Mangeat et al. 2003; Zhang et al. 2003), although APOBEC3G also exerts 197 

deaminase-independent antiviral activity against HIV-1 (Newman et al. 2005). Other A3 198 

enzymes, notably A3F and A3DE, also appear to function in HIV-1 restriction in lymphocytes, 199 

while A3A is required in monocytes – a cell type in which it is highly expressed. Unlike A3G 200 

however, it is not incorporated into HIV virions and may act together with A3G in this capacity 201 

(reviewed in (Chiu & Greene 2008).  202 

 203 

One major obstacle to the study of A3 function in vivo is the greatly increased complexity of 204 

the A3 locus in primates compared with model organisms. Rodents possess only one A3 gene: 205 

a double-domain enzyme most closely related to A3G (Conticello et al. 2005), thus dissecting 206 

the roles of individual A3 genes in an organismal context remains a challenge. Use of murine 207 

A3 (mA3) knockout mice (which are viable and fertile) has clearly demonstrated that it 208 

functions as a cell-autonomous restriction factor for exogenous murine retroviruses including 209 

mouse mammary tumour Virus (MMTV), Friend murine leukaemia virus (MLV) and to a 210 

lesser extent, Moloney murine leukaemia virus (MoMLV), with recent work suggesting a 211 

primarily deaminase-independent mechanism (Okeoma et al. 2007, 2009; Stavrou et al. 2018).  212 

 213 

Several A3s including A3A also inhibit Long Interspersed Element-1 (LINE-1) 214 

retrotransposition, through a mechanism that appears to involve deamination of single-stranded 215 

cDNA exposed by the action of RNase-H upon RNA/DNA hybrids (Richardson et al. 2014). 216 

Indeed, it appears likely that the activity against endogenous retroviruses drove the expansion 217 

of the A3 family seen in primates and other mammals, since it predates the appearance of 218 

lentiviruses (Conticello et al. 2005; Chiu & Greene 2008). It was recently proposed that this 219 

activity against retroelements could ameliorate the loss of LINE1 silencing caused by E7 220 

inhibition of RB1, thus providing a potential explanation for why HPV causes A3 upregulation 221 

(Wallace & Münger 2018). 222 

 223 
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An activity against DNA viruses was first shown for A3A, in studies demonstrating inhibition 224 

of adeno-associated virus replication through a deaminase-independent mechanism (Chen et 225 

al. 2006; Narvaiza et al. 2009). These in vitro experiments were supported by a study in which 226 

a human A3A transgene (but not A3G) expressed in the mA3 knockout background reduced 227 

infectivity of a murine parvovirus without evidence of viral genome editing, while neither A3A 228 

nor A3G inhibited herpesvirus infection in this in vivo model (Nakaya et al. 2016).  HPV 229 

pseudovirions produced in 293T cells overexpressing A3A or A3C displayed decreased 230 

infectivity, while A3A knockdown increased infectivity, suggesting these A3s may act as HPV 231 

restriction factors in vivo (Ahasan et al. 2015; Warren et al. 2015a) but the mechanism by 232 

which A3A inhibits HPV awaits full elucidation. Although the deaminase activity appears to 233 

be required, evidence of editing was not detected in HPV pseudovirion genomes from cells 234 

over expressing A3A, leading to the suggestion that its recently described RNA-editing activity 235 

may be responsible (Sharma et al. 2015; Warren et al. 2017). On the other hand, HPVs are 236 

subject to A3 editing in vivo, as first reported by Vartanian and colleagues (Vartanian et al. 237 

2008), see below for detailed discussion. It appears that A3A and A3C may act on HPV at 238 

different levels, as cells expressing A3A contained reduced levels of encapsidated 239 

pseudovirions, while A3C was found to physically interact with the L1 viral capsid protein, 240 

potentially inhibiting infectivity by interfering with viral entry into target cells (Ahasan et al. 241 

2015). Of note, several groups have reported cell cycle arrest upon transfection of APOBEC3A 242 

and have linked this to DNA damage caused by its deaminase activity against genomic DNA 243 

(Landry et al. 2011; Land et al. 2013; Mussil et al. 2013). Since HPV replication is dependent 244 

upon host cell transit through S-phase, it will be interesting to determine whether the restriction 245 

activity observed in vitro is due to a direct effect on the virus, or whether it is an indirect 246 

consequence of an A3A-mediated cell cycle arrest.  247 

 248 

A3s as HPV editors? 249 

As discussed above, transient transfection experiments using HPV pseudovirions in 293FT 250 

cells suggested possible roles for A3A and A3C in HPV restriction but did not implicate viral 251 

genome editing in this process. In W12, an HPV-16+ cell line originally derived from a low-252 

grade CIN lesion (Stanley et al. 1989), over-expression A3A or A3G did not reduce virus copy 253 

number but did result in editing of the E2 gene, as detected by the highly-sensitive 3D-PCR 254 

method originally used to demonstrate editing of the HPV-1a and HPV-16 LCRs in warts and 255 
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precancerous cervical lesions respectively (Vartanian et al. 2008; Wang et al. 2014). Editing 256 

was likewise detected upon treatment of W12 cells with IFN- β, which induced expression of 257 

A3A, A3F and A3G (Wang et al. 2014). Editing of the HPV-16 E2 gene in precancerous 258 

cervical lesions has also been demonstrated using 3D-PCR (Kukimoto et al. 2015) and these 259 

observations have since been supported by NGS of the entire HPV-16 genome, revealing the 260 

expected strand-coordinated C:G>G:A transitions overrepresented at TpC sites throughout the 261 

early genes but enrichment within the LCR (Wakae et al. 2015). The authors speculate that 262 

enrichment for A3 editing in the LCR could result from increased exposure of single-stranded 263 

DNA at the origin of replication and/or transcription from the p97 promoter both located in 264 

this region (Figure 1). This study also reported A3A and A3C to be the most abundant A3 265 

transcripts in the one HPV-infected cervix examined, while A3B was expressed at much lower 266 

levels. It should be noted that the frequency of HPV editing detected in all these studies was 267 

significantly lower than that detected for other viruses known to be edited by A3s, such as 268 

HIV-1 or HBV (Wakae et al. 2015). Indeed, in the W12 cell system it was necessary to block 269 

repair of deaminated cytosines with an inhibitor of uracil-DNA glycosylase to reveal editing, 270 

even when using highly sensitive techniques such as 3D-PCR or NGS for detection (Wang et 271 

al. 2014).  272 

 273 

Taken together, these studies suggest that if A3s are playing a role in HPV restriction in vivo, 274 

it is likely to be either much less effective than the response against viruses such as HIV-1, or 275 

that is proceeds via an editing-independent mechanism, as suggested by the pseudovirion 276 

studies (Ahasan et al. 2015; Warren et al. 2015a). Nevertheless, low-level HPV editing by A3s 277 

could still contribute to HPV pathology, by generating variation that could facilitate evasion of 278 

host adaptive immune responses, analogous to the role that sublethal A3-mediated editing 279 

appears to play in HIV-1 immune escape (reviewed in Venkatesan et al., 2018).  280 

 281 

Papillomaviruses hijack the host DNA repair machinery for the amplification stage of their 282 

replication cycle, specifically homologous recombination (recombination-dependent 283 

replication (RDR)), which allows very high fidelity viral replication consistent with the very 284 

slow rate of papillomavirus evolution; approximately 2x10-8 nucleotide substitutions per site 285 

per year in the coding region (Rector et al. 2007; Sakakibara et al. 2013). Thus unlike RNA 286 

viruses, in which low-fidelity replication generates considerable variation, editing, even at a 287 

low frequency likely represents an important source of papillomavirus variation.  RDR occurs 288 

independently of host DNA replication, in an extended G2-like cell cycle phase that the virus 289 
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maintains in differentiating keratinocytes and although this results in very high fidelity 290 

replication, depending on the precise mechanism it may also involve the generation of long 291 

stretches of single-stranded DNA (Sakakibara et al. 2013), thus potentially exposing the viral 292 

genome to A3 activity. Intriguingly, a recent analysis of cancer gene expression data  has shown 293 

that A3B is co-expressed with multiple DNA damage response and G2/M-phase cell cycle 294 

genes, suggesting it might be induced in precisely this context (Ng et al. 2019). Indeed, a recent 295 

study in which HPV was sequenced from 124 CIN lesions and 27 invasive cervical carcinomas 296 

supports a role for A3s in generating within-host sequence diversity as assessed by looking for 297 

minor variants (allele frequency of greater than 0.5%) in NGS data, with the greatest proportion 298 

of A3 signature mutations observed in CIN1 lesions, suggesting this process is primarily acting 299 

during productive infection, when HPV is actively replicating (Hirose et al. 2018). As the 300 

authors of this study point out, editing of HPV at this point may be favoured by exposure of 301 

ssDNA during viral replication but would also be consistent with a role for within-host editing 302 

in generating variation prior to viral release and subsequent inter-host transmission, and 303 

therefore contributing to viral evolution. In this regard, A3 activity has been invoked as the 304 

cause of TpC dinucleotide depletion in the mucosal alpha-papillomaviruses, of which the HR-305 

HPVs are examples (Warren et al. 2015b). This TpC depletion has primarily occurred at the 306 

third codon position in viral open reading frames, as might be expected given the preservation 307 

of amino acid sequence permitted, meaning the A3 editing activity observed in current HPV 308 

genomes frequently affects the first or second codon positions, resulting in non-synonymous 309 

mutations (Hirose et al. 2018). Although such mutations would frequently be deleterious, those 310 

that do not compromise fitness could aid evasion of host adaptive immune responses by altering 311 

viral antigens and therefore undergo positive selection, at least within-host. In tumours, the 312 

HPV sequence observed reflects not only the editing that has occurred but also the effect of 313 

selection against loss of (and possibly for enhancement of) host cell fitness. This purifying 314 

effect (along with the loss of episomal HPV DNA frequently observed upon progression) likely 315 

explains the reduced intra-sample sequence diversity observed in CIN3 and invasive lesions in 316 

this study. This observation is also consistent with the findings from a much larger-scale study 317 

in which HPV-16 genomes from 5,570 samples representing productive (largely cervical), 318 

precancerous and invasive lesions were sequenced, revealing a remarkable degree of inter-host 319 

variation that was again highest in productive lesions. In this study, the authors observed that 320 

approximately 80% of individuals harboured unique (differing by at least two nucleotides from 321 

other samples) HPV-16 genomes, with the sequence context in which these variants occurred 322 

again implicating A3 activity in HPV evolution (Mirabello et al. 2017). Taken together then, 323 
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A3 editing of HPV occurs at a frequency much lower than that observed for retroviruses such 324 

as HIV-1, rendering a role for deamination in HPV restriction highly unlikely. Rather,  the low 325 

level of editing detected in these sequencing studies suggests an ongoing role for A3 activity 326 

in shaping HPV evolution by introducing variation otherwise lacking in a virus that is 327 

replicated with such high fidelity.  328 

 329 

Modulation of A3 gene expression by HPV 330 

Tight regulation of A3 expression and activity and  is presumably essential for limiting their 331 

potential mutagenic activity  but as we have discussed, in addition to a possible restriction 332 

activity against HPV, there may be an evolutionary advantage to the virus from inducing at 333 

least a certain level of A3 expression (see Figure 3 for a summary of pathways currently 334 

implicated in A3A and A3B transcriptional regulation and their modulation by HR-E6 and E7 335 

proteins). Whether induction of A3 expression by HR-HPV types is a trait that the viruses have 336 

evolved to promote adaptation and immune evasion, a host response mechanism that has 337 

evolved to inhibit viral replication or a combination of the two, it may be an important cause 338 

of A3-mediated host genome mutagenesis and therefore of viral carcinogenesis.  One likely 339 

candidate for host genome mutagenesis, the nuclear-localised A3B, is expressed at low basal 340 

levels in normal adult tissues but it is often highly expressed in cancer biopsies, at least at the 341 

mRNA level (Jarmuz et al., 2002; Burns et al., 2013a) suggesting it may be playing an 342 

important ongoing role in mutagenesis at the time of diagnosis and potentially therefore, in 343 

driving therapeutic resistance. Indeed, high A3B mRNA levels in biopsy specimens are 344 

associated with poor prognosis in oestrogen receptor (ER)+ breast cancer (Sieuwerts et al. 345 

2014; Periyasamy et al. 2015b; Law et al. 2016). Unlike in breast and ovarian cancer, A3B 346 

mRNA levels are not correlated with A3 signature mutation burden in HPV-associated cancers 347 

(Roberts et al. 2013; Henderson et al. 2014; Ojesina et al. 2014) but A3B expression is 348 

consistently elevated in HPV-associated cancers in comparison to both normal tissue and to 349 

HPV-independent cancers arising at equivalent anatomic sites (Chakravarthy et al. 2016).  350 

These observations, together with the aforementioned studies demonstrating A3B upregulation 351 

by HR-HPV types (Vieira et al. 2014; Warren et al. 2015a), suggest an important role for A3B 352 

in HPV-associated cancer but also possibly in the viral life cycle.  Here we review several 353 

recent studies that have detailed various mechanisms by which HPV modulates expression of 354 

A3B and other A3 genes.  355 
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 356 

Mori and colleagues identified two E6-responsive regions in the A3B promoter: basal promoter 357 

activity in human keratinocytes can be activated by E6 at a distal region (-200 to -51), while a 358 

proximal region (+1 to +45) exerts inhibition of gene expression which can be relieved by E6, 359 

acting through the zinc finger protein ZNF384 through an as-yet unknown mechanism (Mori 360 

et al. 2015). Consistent with previous findings from the Harris lab (Burns et al., 2013a), 361 

Periyasamy et al. recently demonstrated an inverse relationship between TP53 status and A3B 362 

expression levels in both primary breast tumours and breast cancer cell lines (Periyasamy et al. 363 

2017). As mentioned earlier, HR-HPVs have evolved a strategy by which to overcome p53-364 

mediated cell cycle control. The E6 oncoprotein binds to a short LxxLL consensus sequence 365 

within the cellular ubiquitin ligase, E6AP, forming a heterodimer (Huibregtse et al. 1991; 366 

Martinez-Zapien et al. 2016). A trimeric complex is subsequently formed by the recruitment 367 

of p53, leading to ubiquitin-dependent p53 proteasomal degradation (Scheffner et al. 1993). 368 

Using a combination of RNA interference and pharmacological induction of p53 protein with 369 

Nutlin-3 in breast cancer cell lines, they elucidated a mechanism whereby p53 represses A3B 370 

expression via the action of its target gene, p21WAF1/CIP1 (CDKN1A) in stabilizing the 371 

E2F4/DP1/p107/p130-containing DREAM (DP1, RB-like, E2F4, and MuvB) transcriptional 372 

repressor complex (Fischer et al. 2014) at cell cycle genes homology region (CHR) elements 373 

in the A3B promoter. They also demonstrated that both the E6 and E7 proteins from HPV16 374 

can act independently to increase A3B expression in immortalized keratinocytes through this 375 

pathway; E6 via p53 degradation, with E7 likely acting through its effects on the p107 and 376 

p130 pRb family pocket proteins in the DREAM complex (Periyasamy et al. 2017), thus also 377 

offering a mechanistic basis for the E7-mediated A3B upregulation previously observed by 378 

Warren and colleagues (Warren et al. 2015a). 379 

 380 

The A3B promoter also harbours target elements for the TEAD family of transcription factors 381 

(TEAD1-4 in mammals) (Mori et al. 2017). These evolutionarily conserved transcription 382 

factors, that recognise the consensus DNA sequence (AGGAATG) mediate expression of 383 

multiple genes involved in cell proliferation, epithelial–mesenchymal transition and apoptosis 384 

evasion, acting in complexes with TAZ (transcriptional co-activator with PDZ binding motif) 385 

or YAP (Yes-associated protein), both of which are phosphorylated and inhibited by the Hippo 386 

tumour suppressor pathway (Jacquemin et al. 1996; Zhao et al. 2008; Zhang et al. 2009; Zhu 387 

et al. 2015). E6 induces TEAD1 and TEAD4 expression in keratinocytes and increases YAP 388 

protein levels by preventing it’s degradation, although the TEAD-dependent induction of A3B 389 



 13 

appears to be YAP/TAZ-independent and may instead involve alternative coactivators (He et 390 

al. 2015; Mori et al. 2017). 391 
 392 
E6 mediated p53 degradation therefore not only de-represses A3B transcription via the 393 

DREAM complex but also results in increased levels of TEAD expression, further activating 394 

the A3B promoter. Finally, it has been reported that replication stress induced by oncogenic 395 

pathway activation or by chemotherapy agents such as hydroxyurea or gemcitabine also causes 396 

ATR/CHK1-dependent upregulation of A3B, at least in breast cancer cell lines (Kanu et al. 397 

2016). High E6 / E7 levels might similarly drive A3B upregulation via this as-yet undefined 398 

replication stress mechanism, thus together with the ZNF384-mediated effects and the 399 

additional activity of E7 in potentiating A3B expression, it appears that HPV could upregulate 400 

A3B via multiple mechanisms. Importantly, some of these mechanisms may act during the 401 

productive life cycle, while others may be restricted to precancerous/cancerous cells in which 402 

HPV has integrated into the host genome, the life cycle has been aborted and only high-level 403 

E6/E7 expression remains. It is also worth noting that in cells with wild-type TP53, A3B over-404 

expression induces ATR/CHK1-dependent cell cycle arrest and apoptosis (Nikkilä et al. 2017). 405 

By removing p53 then, HPV not only activates A3B transcription but possibly also allows the 406 

A3B protein to accumulate to levels that would not otherwise be tolerated in normal cells.  407 

 408 

Although the regulation of A3B by HPV has been the focus of much attention, it is important 409 

to consider the roles that other A3 genes may play, both in the response to HPV infection and 410 

potentially, in HPV-associated cancer. In their key paper reporting the first evidence for 411 

APOBEC editing of HPV in human cells, Vartanian and colleagues noted that HPV1a DNA 412 

co-transfected with A3A, A3C and A3H but not A3B displayed evidence of cytosine 413 

deamination (Vartanian et al. 2008), and while low risk HPV genomes isolated from warts 414 

display evidence of A3 editing, several tested low risk E6 variants did not upregulate A3B in 415 

cultured keratinocytes (Vieira et al. 2014).  416 

 417 

Taken together with the findings of Warren and colleagues, that A3A but not A3B inhibits 418 

HPV infectivity, we should at least consider the possibility that the A3 response to HPV 419 

infection is entirely separate from any role in host mutagenesis during cancer development, 420 

with the former mediated by A3A and/or A3C, A3H and the latter mediated by A3B. An 421 

alternative hypothesis is that although A3B is induced by HPV, it is not responsible for the 422 

mutations seen in either viral or host genomes. Consistent with this possibility is work from 423 
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the Gordenin lab showing that, at least when expressed in yeast A3A and A3B generate subtly 424 

different mutation signatures, in which A3A preferentially targets YTCA sites (i.e. a 425 

pyrimidine at the -2 position) while A3B targets RTCA (i.e. a purine at the -2 position). Upon 426 

analysis of tumour exome data, they found much greater enrichment of the YTCA (A3A) 427 

signature across multiple tumour types including cervical cancer (Chan et al. 2015). The 428 

apparent preference of A3A for pyrimidine at -2 is also supported by in vitro studies using 429 

purified enzyme (Shi et al. 2017; Silvas et al. 2018).  These observations suggest A3A, rather 430 

than A3B, may be the major source of somatic mutations to the host genome in HPV-associated 431 

cancer, although further functional investigation (e.g. analysis of A3 signature mutation 432 

accumulation in A3A or A3B knockout cells expressing HPV oncogenes) will be required to 433 

help solve this question.  434 

   435 

Additional cellular signalling pathways linked to A3 regulation 436 

The appearance of the A3 mutational signature in genomes of cancers with (presumably) no 437 

viral aetiology clearly implicates alternative mechanisms for A3 induction. In addition to the 438 

p53-dependent repression and ATR/CHK1-dependent induction of A3B discussed above, 439 

several additional cellular pathways have been shown to induce A3 expression and it is worth 440 

considering how they may contribute to A3 activity against viral or host genomes in HPV 441 

infected cells.  442 

 443 

Protein kinase C (PKC) signalling. The twelve PKC isoforms regulate a plethora of biological 444 

processes and are characterised as conventional/classical (cPKC), novel (nPKC), or atypical 445 

(aPKC). Receptor-mediated activation of phospholipase-C gamma (PLC) causes hydrolysis of 446 

the plasma membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), into diacylglycerol 447 

(DAG) and inositol trisphosphate (IP3), with the latter stimulating release of intracellular Ca2+. 448 

Both DAG and Ca2+ are required for cPKC activation, while nPKC activation is DAG-449 

dependent but Ca2+-independent (reviewed in Mellor and Parker, 1998; Newton, 2003). By 450 

mimicking DAG, the phorbol ester, phorbol 12-myristate 13-acetate (PMA, a tumour promoter 451 

in animal models) potently activates both the cPKCs and nPKCs. Depending on the cell type 452 

examined, both A3A and A3B induction has been reported upon activation of PKC signalling: 453 

A3A was originally identified as Phorbolin-1, a protein enriched in psoriatic keratinocytes that 454 

could be induced by treatment of normal keratinocytes with PMA (Rasmussen & Celis 1993; 455 
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Madsen et al. 1999), while A3B but not A3A, is induced following PMA treatment of the 456 

mammary epithelial cell line, MCF10A (Leonard et al. 2015). Conversely, while a recent study 457 

conducted in normal oral keratinocytes (Siriwardena et al. 2018) and our own observations 458 

using NIKS in which we have epitope-tagged the endogenous A3A and A3B genes (Smith and 459 

Fenton, unpublished) confirm a strong, protein kinase C (PKC)-dependent increase in A3A 460 

protein expression upon PMA treatment, A3B mRNA is induced to a far lesser extent in 461 

keratinocytes, with minimal or no detectable increase in A3B protein.  462 

 463 

PKC isoforms perform important functions in keratinocyte proliferation and differentiation  464 

(Dlugosz & Yuspa 1993; Denning et al. 1995; Papp et al. 2003; Yang et al. 2003; Seo et al. 465 

2004) and in the context of HPV infection, PKC-α and PKC-δ are required for high risk HPV-466 

31 genome amplification during the intermediate phase of viral replication, while expression 467 

of E5 from HPV-16 in mouse fibroblasts causes PKC activation through activation of PLC γ 468 

(Crusius et al. 1999; Bodily et al. 2006). Interestingly, both A3A and A3B were recently shown 469 

to be upregulated during Ca2+-stimulated differentiation of W12 cells (Wakae et al. 2018) and 470 

although the intracellular pathway mediating Ca2+-induced A3A/B upregulation was not 471 

investigated in this study, it is well-established that increases in extracellular Ca2+ trigger 472 

activation of PKCs via PLC in keratinocytes (Jaken & Yuspa 1988). Activation of PKC 473 

signalling during differentiation of HPV-infected keratinocytes is therefore a likely means by 474 

which at least A3A and possibly also A3B could become upregulated during productive HPV 475 

infections, potentially triggering viral genome editing alongside amplification. 476 

 477 

Viral nucleic acid sensing / interferon signalling. Antiviral responses can be triggered through 478 

the sensing of foreign DNA in endosomes by a subset of Toll-like receptors (TLRs), or in the 479 

cytoplasm by the cyclic GMP-AMP synthase (cGAS) / stimulator of interferon gene (STING) 480 

pathway (Lebre et al. 2007; Suspène et al. 2017). Both pathways result in the induction of type-481 

1 interferons (IFNs), which in turn induce a host of interferon-stimulated genes (ISGs, 482 

including several A3s) with a broad range of antiviral activities, and both are inhibited by HPV, 483 

suggesting a role in sensing the virus (Hasan et al. 2007; Albertini et al. 2018). Human 484 

keratinocytes express several TLRs, among which TLR9 is activated by DNA containing 485 

unmethylated CpG motifs including a region from the HPV16 E6 gene (Hasan et al. 2007, 486 

2013; Lebre et al. 2007). In addition to type 1 interferons it induces tumour necrosis factor 487 

(TNFα), which has recently been shown to upregulate A3A in keratinocytes (Amcheslavsky et 488 
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al. 2004; Siriwardena et al. 2018). The suppression of TLR9 by E7 provides further evidence 489 

of its importance in the innate immune responses to HPV  (Hasan et al. 2007, 2013).  490 

 491 

Both cGAS and the retinoic acid-inducible gene I (RIG-I, a sensor of viral RNA) have been 492 

implicated in keratinocyte responses to HPV infection and RIG-I is required for induction of 493 

A3A expression by cytoplasmic DNA in the monocytic leukaemia cell line, THP-1 (Suspène 494 

et al. 2017; Albertini et al. 2018; Chiang et al. 2018).  Until recently it was thought that sensing 495 

of viral DNA was limited to the cytoplasm or endosome, however, sensors of nuclear viral 496 

DNA (IFI16, recently reported to restrict HPV18 replication (Lo Cigno et al. 2015) and IFIX) 497 

have been described that also act together with cGAS to induce IFN responses (reviewed in 498 

Diner, Lum and Cristea, 2015), thus providing another mechanism by which A3 activity could 499 

be induced in HPV-infected cells. Finally, HPV16 genome integration triggers a type I IFN 500 

response in keratinocytes, leading to episome clearance, loss of E2 expression and therefore 501 

upregulation of E6/E7 expression from the integrated virus (Pett et al. 2006). Whether viral 502 

integration is accompanied by IFN induction in vivo remains unknown but if so it could 503 

generate a burst of A3 expression in neoplastic cells consistent with the proposed pulsatile 504 

nature of the APOBEC mutational process (Helleday et al. 2014).  505 

 506 

Downstream of viral nucleic acid sensing and PKC pathways lie NFkB transcriptional 507 

complexes known to participate in regulating A3B expression (Leonard et al. 2015; Maruyama 508 

et al. 2016). NFkB complexes are  also directly activated by HR-E6; they become progressively 509 

activated during cervical cancer development (Nees et al. 2001; James et al. 2006; Da Costa et 510 

al. 2016; Tilborghs et al. 2017) and therefore likely contribute to the high A3B expression 511 

levels seen in these and other HPV-associated tumours. Finally, while little is yet known about 512 

how the A3 proteins are regulated, A3A and A3C have both been reported to bind the 513 

pseudokinase, TRIB3. TRIB3 is localised to the nucleus and appears to target nuclear A3A for 514 

degradation, thus inhibiting deamination of genomic DNA upon transfection of A3A into Hela 515 

cells (Aynaud et al. 2012). Knockdown of TRIB3 expression  also increased A3A levels in 516 

NIKS but without an apparent stabilization of the protein (Westrich et al. 2018), while in a 517 

third study, Land and colleagues saw no effect of TRIB3 on A3A-GFP levels in HEK293T 518 

cells but did not report whether the A3A-TRIB3 interaction (initially observed in a yeast-2-519 

hybrid screen) still occurred (Land et al. 2013). The fusion of GFP to A3A could possibly 520 
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explain the absence of TRIB3 regulation in the latter study but further work is required to 521 

determine the significance of the A3A-TRIB3 interaction. 522 

 523 

Current questions 524 

 525 

We have seen that multiple A3s can be induced in HPV-infected cells, and that circumstantial 526 

evidence supports a role for either or both A3A and A3B in generating mutations in host and 527 

viral genomes. Other A3s (A3C, A3G and A3H) all remain potential candidates, at least for 528 

viral genome editing. One outstanding question is whether viral and host genome editing are 529 

linked events, mediated by the same A3 at the same time. In this model, HPV induces A3 530 

activity as discussed, possibly to generate variation in viral progeny, suppress retroelement 531 

replication-induced interferon responses or to mediate transcriptional functions allowing 532 

suppression of TLR9 expression or induction of DNA replication. Due to other activities of the 533 

virus however, such as the induction of replication stress, A3 activity against the host genome 534 

can also occur and in rare circumstances, this results in mutations in cancer-causing genes such 535 

as PIK3CA. Cells in which these mutations occur will gain a selective survival advantage but 536 

may remain held in-check by the host immune system for many years and / or lack additional 537 

genetic or epigenetic changes required to form an invasive carcinoma. In this scenario, A3 538 

activity may contribute to tumour development even from the earliest stages of an HPV 539 

infection. This scenario is represented in Figure 4 as ‘Early, transient’ or Early, sustained’ 540 

temporal models of A3 activity, depending on whether tumour subclones in which A3 541 

mutagenesis has occurred early sustain high A3 activity, or whether this is subsequently 542 

selected against due to increased chance of deleterious mutations and/or generation of 543 

neoantigens and therefore immune-mediated elimination (‘cancer immuoediting’ (Schreiber et 544 

al. 2011)). It is noteworthy that HPV genomes are physically tethered to fragile sites in the host 545 

genome via the chromatin modifier, BRD4 (Jang et al. 2014), thus their replication (and likely 546 

A3 editing) occurs in very close proximity to host DNA, potentially increasing the danger of 547 

off-target A3 activity, particularly during the stable maintenance phase of viral replication 548 

which unlike amplification occurs concurrently with cellular genome replication in S-phase 549 

(Sakakibara et al. 2013; Reinson et al. 2015). Alternatively, the initial A3 response to viral 550 

infection may result in editing of HPV but not host DNA, with aberrant activity against the 551 

host genome coming much later, for example induced by IFN signalling associated with 552 

episome clearance or subsequent upregulation of E6/E7 from integrants due to loss of E2 553 

expression. Either way, the genomic instability caused by high level E7 expression, together 554 
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with removal of p53 by E6 and chronic activation of NF-κB could all fuel A3 mutagenesis 555 

throughout tumour development, not necessarily mediated by the same A3(s) responsible for 556 

the viral editing seen in benign lesions. This scenario is represented in Figure 4 as ‘Late, 557 

transient’ or ‘Late sustained’ A3 activity, again depending on whether A3 mutagenesis is 558 

ongoing at the time of diagnosis and subsequently during treatment (see below). Given the 559 

mutational and gene expression data currently available it is difficult to say which of these 560 

models is the more likely, not least because almost all these data come from resected primary 561 

tumour samples (Figure 4). At least in the case of cervical cancer it is possible to study 562 

precancerous lesions, affording a rare opportunity to address some of these questions; a 563 

targeted NGS study in which a panel of 48 cancer-associated genes including PIK3CA were 564 

sequenced in 35 cervical cancers and 23 CIN2/3 lesions found only the PIK3CA exon 9 (A3-565 

mediated) mutations were detectable in the CIN2/3 lesions, with the rest exclusive to invasive 566 

carcinoma. PIK3CA exon 9 was then Sanger-sequenced in a further 35 cervical carcinomas, 567 

209 CIN3, 144 CIN2, 154 CIN1 and 105 normal samples, with mutations detected in 37% of 568 

carcinomas but only 2.4% of CIN3 lesions and none in earlier lesions or normal cervix, leading 569 

the authors to conclude this is a late event in cervical carcinogenesis (Verlaat et al. 2015). It is 570 

important to note however, that Sanger sequencing would not have permitted the detection of 571 

PIK3CA mutations in minor sub-clones that could be present from a much earlier stage in 572 

carcinogenesis, thus ultra-deep sequencing of CIN lesions will be required to fully address this 573 

question.  574 

 575 

Analysis of allele frequency (a measure of the clonality, or proportion of tumour cells in which 576 

a mutation is found and therefore a proxy for the time at which it occurred) for cancer driver 577 

mutations seen in TCGA WES data suggests that A3 signature mutations become increasingly 578 

enriched in later stages of tumour development in several tumour types. A3 mutations in lung 579 

adenocarcinoma are largely subclonal (i.e. those occurring later), often ‘taking over’ from the 580 

tobacco-associated signature, which generates clonal driver mutations (i.e. initiating or early 581 

events) in smokers, consistent with its role in lung carcinogenesis (de Bruin et al. 2014; 582 

McGranahan et al. 2015). In bladder cancer, A3 signature mutations appear in pre-invasive 583 

tumours but continue to accumulate through progression, becoming increasingly enriched in 584 

muscle-invasive disease, as confirmed by sequencing of matched metachronous samples 585 

(Nordentoft et al. 2014; Lamy et al. 2016). Interestingly in bladder cancer it appears that one 586 

of the two A3 mutation signatures defined by Alexandrov and colleagues (signature 13) is 587 

enriched early, while the other (signature 2) becomes enriched in subclones (Alexandrov et al., 588 
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2013a; McGranahan et al., 2015). The reason for this is unclear but may reflect differences in 589 

DNA replication across deaminated sites in early versus late tumours. In breast cancer, there is 590 

evidence that A3 signature mutations begin to accumulate prior to copy number changes and 591 

that A3-generated mutation clusters (‘kataegis’) appear at several distinct stages during the 592 

development of a single tumour, again implying pulses of A3 activity from an early point, 593 

represented in Figure 4 as a ‘Pulsatile’ model for A3 mutagenesis (Nik-Zainal et al., 2012a; 594 

Nik-Zainal, et al., 2012b; Helleday, Eshtad and Nik-Zainal, 2014). 595 

 596 

Maybe more important than the question of when A3 activity against the host genome first 597 

appears, is whether it is ongoing at the time of diagnosis (as represented by the ‘Early, 598 

sustained’, ‘Late, sustained’ and ‘Pulsatile’ models for A3 mutagenesis set out in Figure 4). 599 

Experiments in cultured cells suggest that acquired resistance to cancer therapy can occur both 600 

by selection of rare, pre-existing drug-resistant subclones and de novo mutations in ‘drug-601 

tolerant’ cells (Hata et al. 2016; Ramirez et al. 2016), and evidence that A3 activity continues 602 

to generate mutations during treatment is accumulating, both from sequencing of metastatic 603 

bladder cancer, post-gemcitabine/cisplatin-based chemotherapy (Faltas et al. 2016) and from 604 

experimental models, in which chemotherapy drugs including gemcitabine have been shown 605 

to induce A3B expression and deaminase activity via ATR/CHK1 signalling (Kanu et al. 606 

2016). These observations suggest A3 activity could contribute to the evolution of therapeutic 607 

resistance, a possibility that is supported by a recent study in which suppression of A3B 608 

expression by inducible RNA interference delayed the acquisition of tamoxifen resistance in a 609 

xenografted breast cancer cell line (Law et al. 2016). Increased A3B expression is also 610 

associated with shorter overall survival and progression-free survival in patients receiving 611 

Tamoxifen treatment in ER+ breast cancer (Sieuwerts et al. 2014; Law et al. 2016). It appears 612 

then, that there could be therapeutic benefit to be gained through inhibiting A3B and/or other 613 

A3 enzymes as an adjuvant to chemotherapy; a notion underlying A3 drug discovery efforts 614 

currently underway in academia and industry (Olson et al. 2018; Venkatesan et al. 2018). In 615 

addition to suppressing de novo mutagenesis and therefore the emergence of drug-resistant 616 

subclones, an inhibitor of A3B could also have anti-cancer effects by interfering with its 617 

activity as an ER transcriptional co-activator in breast but possibly also in other eostrogen-618 

responsive tissues including the cervix as discussed earlier and ovarian cancer, another 619 

malignancy in which A3B activity has been implicated (Leonard et al. 2013).  620 

 621 
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One important consideration for developing A3 inhibitors as cancer therapies is whether a 622 

selective inhibitor would be preferable to a pan-A3 inhibitor and if so, which would be the best 623 

A3 to target. A rationale for selectively targeting A3B comes from the fact that it is a non-624 

essential gene in humans, as evidenced by the existence of a deletion polymorphism (A3A_B) 625 

in which the A3A 3’ untranslated region (UTR) and entire A3B open reading frame (ORF) are 626 

absent and the A3A ORF is fused to the A3B 3’ UTR (Figure 2). This polymorphism displays 627 

a remarkable stratification across the global population, with a prevalence of 1% in Africa 628 

rising to approximately 40% in South East Asia and South America and approaching fixation 629 

in Oceania (Kidd et al. 2007). Somewhat surprisingly given the demonstrated mutagenic and 630 

pro-growth functions of A3B in breast cancer cell lines, this deletion allele is associated with 631 

an approximately 2-fold increased breast and ovarian cancer risk in Asian populations and in 632 

certain European cohorts (Long et al. 2013; Xuan et al. 2013; Qi et al. 2014; Middlebrooks et 633 

al. 2016; Wen et al. 2016). A recent Scandinavian study meanwhile, found an increased lung 634 

cancer risk in A3A_B carriers aged under 50 and a similar age-related trend for prostate cancer 635 

risk but no association with breast cancer risk, a result consistent with a further study conducted 636 

in Sweden (Göhler et al. 2016; Gansmo et al. 2017). The reason for the increased cancer risk 637 

associated with A3A_B remains unclear but it was shown that breast cancers from women 638 

carrying at least one copy of the deletion allele harbour an increased burden of A3-related 639 

mutations, suggesting another A3 enzyme is hyper-activated in these tumours (Nik-Zainal et 640 

al. 2014). A hybrid A3A transcript encoded by a recombinant cDNA based on the A3A_B 641 

allele accumulates to levels approximately 2-fold higher than those of A3A bearing its own 642 

3’UTR in transient transfection experiments and in a Taiwanese oral squamous cell carcinoma 643 

(OSCC) cohort, A3A was upregulated at both mRNA and protein levels and the A3 mutation 644 

signature was enriched in the 50% of patients carrying the A3A_B allele (Caval et al. 2014; 645 

Chen et al. 2017). Another study however proposed that mutations in A3A_B tumours are 646 

generated by a specific variant of the polymorphic A3H gene. This variant (A3H haplotype I) 647 

encodes a less stable but nuclear-localised protein that does not display linkage disequilibrium 648 

with A3A_B but those A3A_B homozygous breast tumours with the highest A3 signature 649 

mutation loads in TCGA cohort were found to be hetero- or homozygous for A3H-I (Starrett 650 

et al. 2016). An A3B-selective inhibitor would therefore not be expected to display on-target 651 

toxicity, although it would clearly be ineffective in A3A_B patients. In the Taiwanese OSCC 652 

study, A3A expression was associated with longer disease-specific, disease-free and overall 653 

survival specifically in those patients hetero- or homozygous for A3A_B, again supporting a 654 

key role for A3A in these tumours (Chen et al. 2017). The authors of this study found that A3A 655 
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expression was reduced in tumours of higher stage but A3A expression was nevertheless 656 

significantly associated with both overall and disease-specific survival in a multivariate 657 

analysis including clinicopathological variables such as age, tumour stage, grade, evidence 658 

perineural or bone invasion, in A3A_B carriers. The magnitude of this effect was marked, with 659 

a disease-specific survival hazard ratio of 0.444 for ‘A3A-high’ tumours versus ‘A3A-low’ 660 

tumours. It is possible that the improved survival in this group could be linked to increased 661 

neoantigen loads and therefore an enhanced adaptive immune response, as recently posited for 662 

lung cancer, in which tumours with higher A3B levels displayed greater immune infiltration 663 

and more durable responses to immune checkpoint blockade (Wang et al. 2018) and for bladder 664 

cancer, in which a higher A3 signature mutation load was associated with improved prognosis 665 

(Middlebrooks et al. 2016). It is also possible that the A3A expression detected in the 666 

Taiwanese OSCC cohort emanated from infiltrating leukocytes rather than the tumour cells, 667 

thus serving as a marker of immune infiltration. In this regard, it is interesting that the A3A_B 668 

allele has previously been linked to increased immune infiltration in breast cancer (Cescon et 669 

al. 2015; Wen et al. 2016). More studies on the expression and activity of the A3 enzymes in 670 

A3A_B cells and tumours will be required to resolve these questions and more epidemiological 671 

studies are needed to investigate potential associations between A3A_B and risk of other 672 

cancers, including HPV-associated cancer. Given that A3A and A3B are induced by HR-HPV, 673 

that HPV-associated cancers display such strong enrichment for the A3 mutational signature 674 

and that A3 activity appears to generate within-host sequence variation in the viral genome, we 675 

might expect A3A_B to confer an altered risk, either of persistent HPV infection and / or 676 

carcinogenesis, and possibly even prognosis.  677 

 678 

Conclusions 679 

 680 

One or more of the A3 genes play important roles in the development of HPV-associated 681 

cancers, by generating somatic mutations in the host genome but potentially also via their 682 

activity against the virus. Our current understanding of A3-mediated mutagenesis in tumour 683 

cells stems in large part from analysis of cancer sequencing data, supported by studies in which 684 

A3 enzymes have been expressed either in human or yeast cells. The prospects of utilising A3s 685 

as predictive biomarkers for cancer immunotherapy or targets for cancer treatment are 686 

tantalising but much remains to be learned regarding which A3s are the most important players 687 

in different cancers and how they become deregulated. To address such questions, we will need 688 

to develop and utilise models in which we can study individual A3 genes in relevant models of 689 
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HPV infection and carcinogenesis. The relative ease of conducting loss-of-function studies 690 

enabled by CRISPR-Cas9 technology (Shalem et al. 2015) should facilitate progress in this 691 

regard, as will the chemical probes that we hope will soon emerge from A3 inhibitor 692 

programmes (Olson et al. 2018). Studying A3 function in animal models remains a challenge 693 

but approaches such as the expression of A3 transgenes in a mA3-null background provide 694 

useful proof-of-concept and good mouse models of E6/E7-driven carcinogenesis are available 695 

(Riley et al. 2003; Strati et al. 2006; Stavrou et al. 2014).  In conclusion, the exploration of A3 696 

involvement in cancer is still a new field, much remains unknown and we anticipate many 697 

exciting developments in the coming years. 698 
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 714 

Figure Legends 715 

 716 

Figure 1: HPV16 genome organisation and replication cycle. (A) The HPV16 genome is 717 

shown, with the E6 and E7 oncogenes represented in red, the remaining early genes in orange 718 

and the genes encoding the major (L1) and minor (L2) capsid proteins shown in green. The 719 

origin of replication in the long control region (yellow star) appears to be most heavily edited 720 

by one or more human A3 enzymes. (B) The productive HPV replication cycle in stratified 721 

epithelia: (1) Virus entry (purple dots) to the basal layer at the site of an abrasion (for example 722 

in the stratified epithelium of the ectocervix) is shown; (2) infection of basal cells is followed 723 
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by expression of E6 and E7 (red), leading to host cell cycle entry and initial replication of the 724 

HPV genome during S-phase; (3) cells in the mid-layer enter differentiation and are held in an 725 

extended G2 phase during which HPV genomes are amplified  by the host cell homology-726 

directed repair machinery (orange colour represents expression of HPV early genes E1, E2, 727 

E4, E5); (4) virus assembly occurs in the upper layers, in which early gene expression is 728 

replaced by L1 and L2 (green) during terminal differentiation and enucleation of host 729 

keratinocytes; (5) viral particles (purple dots) are released from the epithelium (adapted from 730 

Doorbar et al. 2012; Lechner & Fenton 2016).  731 

 732 

Figure 2: Schematic representation of the APOBEC3 locus in humans and mice. 733 

Approximate relative lengths of the open-reading frames (ORFs) and 3’ untranslated regions 734 

(UTRs) of each gene are shown and homologous domains are represented in common colours. 735 

The A3A_B deletion polymorphism is also represented, showing the fusion gene in which the 736 

A3A ORF is fused to the A3B 3’UTR (relative 3’ UTR sizes from UCSC Genome Browser 737 

(https://genome.ucsc.edu/). 738 

 739 

Figure 3: Regulation of APOBEC3A and APOBEC3B gene expression by several cellular 740 

pathways impacted by HPV E6 or E7. Pathways implicated in regulation of A3A and A3B 741 

transcription are shown, grey arrows indicate proposed regulation via unknown intermediates, 742 

dashed lines represent transcriptional regulation of the gene encoding the target protein, see 743 

main text for details. 744 

 745 

Figure 4: A clonal selection model for HPV-associated tumour development and 746 

progression, with alternative models for temporal involvement of A3 activity. Top panel: 747 

following persistent HPV infection, somatic alterations begin to accumulate in the host cell 748 

genome, resulting in clonal expansion and the appearance of multiple subclones (increased 749 

genetic variation, y-axis). Typically, cells in which viral integration occurs at particular site(s) 750 

in the host cell genome will outgrow surrounding neoplastic clones, resulting in an invasive 751 

carcinoma that is diagnosed and removed. The vast majority of information regarding somatic 752 

mutations, mutational signatures and A3 gene expression currently comes from samples taken 753 

at this point, thus it is not clear when A3 mutagenesis occurs during tumour development, 754 

whether it is ongoing at the time of diagnosis and treatment and how it contributes to adaptation 755 

to continual selection pressures or selective sweeps such as those shown in black dashed lines 756 

(immunoediting or radiotherapy / chemotherapy respectively). Bottom panel: alternative 757 



 24 

models for the temporal pattern of A3 activity (y-axis) against the host genome during HPV-758 

associated tumour development and progression (see main text for details). Note that the y-axis 759 

represents ‘mutagenic A3 activity’ and not the expression of any one A3 enzyme. It is possible 760 

that different A3s could be active at different stages of tumour development. 761 
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