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1  | INTRODUC TION

There is now a long history, and abundant literature, on the es‐
timation of avian survival from ringed birds (see, e.g., Williams, 
Nichols, & Conroy, 2002). In Europe and North America, bird 

ringing activities started at the beginning of the 20th century. 
Data were then registered on paper, and many national schemes 
hold archives of such records, with extensive digital capture of 
data only beginning in the last two decades. The way in which 
such archival data were collected and stored means that the total 
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Abstract
Bird ring‐recovery data have been widely used to estimate demographic parameters 
such as survival probabilities since the mid‐20th century. However, while the total 
number of birds ringed each year is usually known, historical information on age at 
ringing is often not available. A standard ring‐recovery model, for which information 
on age at ringing is required, cannot be used when historical data are incomplete. We 
develop a new model to estimate age‐dependent survival probabilities from such 
historical data when age at ringing is not recorded; we call this the historical data 
model. This new model provides an extension to the model of Robinson, 2010, Ibis, 
152, 651–795 by estimating the proportion of the ringed birds marked as juveniles as 
an additional parameter. We conduct a simulation study to examine the performance 
of the historical data model and compare it with other models including the standard 
and conditional ring‐recovery models. Simulation studies show that the approach of 
Robinson, 2010, Ibis, 152, 651–795 can cause bias in parameter estimates. In con‐
trast, the historical data model yields similar parameter estimates to the standard 
model. Parameter redundancy results show that the newly developed historical data 
model is comparable to the standard ring‐recovery model, in terms of which param‐
eters can be estimated, and has fewer identifiability issues than the conditional 
model. We illustrate the new proposed model using Blackbird and Sandwich Tern 
data. The new historical data model allows us to make full use of historical data and 
estimate the same parameters as the standard model with incomplete data, and in 
doing so, detect potential changes in demographic parameters further back in time.
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number of fledged birds ringed in different age categories is diffi‐
cult or often impossible to obtain, due to the sheer size and het‐
erogeneity of the records, compromising our ability to understand 
historical variation in survival probabilities. This paper examines 
suitable methods for exploring such data.

While the mean annual survival probabilities of adult birds 
are generally assumed to stabilize beyond a certain age, those of 
younger birds are generally lower (Martin, 1995; Péron et al., 2016). 
The probability of a bird being recovered after death may also be 
age‐dependent, as behavior and habitat use vary with age. A rigor‐
ous model for birds of different ages must take such variation into 
account. This is not a problem when the numbers of birds ringed 
annually in the various age‐classes are known. If these age‐spe‐
cific annual totals are known, then standard models such as those 
proposed by Brownie, Anderson, Burnham, and Robson (1985) and 
Freeman and Morgan (1992) can be used. If annual total numbers are 
unknown, it is possible to use a model that is conditional on the num‐
ber of birds recovered. The most commonly used model assumes a 
constant probability of reporting after death for all members of the 
cohort (Seber, 1971), but this can result in biased parameter esti‐
mates (McCrea, Morgan, Brown, & Robinson, 2012).

Rather than a conditional model that ignores annual numbers 
ringed, Robinson (2010) describes a model for when the annual 
numbers of pulli (chicks) and of fledged birds are separately known, 
but the latter includes both fully mature, breeding birds and juvenile 
birds of the year, which will have very different survival prospects. 
Robinson (2010) proposes that such data may indeed be used to esti‐
mate survival, by assuming that a fixed proportion of the birds ringed 
as fledged birds were actually juveniles.

In this paper, we present a model where this proportion is an 
unknown parameter. We use general theory on parameter redun‐
dancy to show that this parameter can be estimated. Subsequently, 
we perform a simulation study to show that this model gives simi‐
lar parameter estimates to the standard model that requires that all 
the ringing totals are known, and provide an analysis on Blackbirds 
Turdus merula and Sandwich Terns Thalasseus sandvicensis to show 
the relevance of the proposed model for different types of data.

2  | MATERIAL S AND METHODS

2.1 | Data

The British Trust for Ornithology (BTO) has collected an extensive 
historical data set of the total number of birds ringed in Britain and 
Ireland since 1909. However, until 2000 the data were submitted 
by ringers in paper form. From 2010, there are digitized data dis‐
tinguishing three age‐groups at ringing: pulli, juveniles, and adults. 
Before then, digitized data only contained two age categories for 
ringing totals: pulli, which are first‐year birds, and fledged birds, the 
latter meaning free‐flying birds of unknown age including juveniles 
(also first‐year birds) and adults. Therefore, we consider here that 
the first‐year birds can be ringed as either pulli or juveniles. Fully 
computerizing historical data or finding ringing totals manually for 

a particular species of interest is possible, but it is time‐consuming. 
This has been stated for several species.

To illustrate the methods described in this paper, we use sim‐
ulated data and two example BTO data sets. The first data set is 
on Blackbirds for the years 1964–1983. These data are taken from 
Robinson, Baillie, and King (2012), can be found in Supporting 
Information Appendix S1 (Tables S1 and S2), and consist of birds 
ringed as adults, juveniles, and/or pulli birds during the breeding 
season (April–September). For this data set, the total numbers of 
birds ringed for each of the three age categories, pulli, juveniles, and 
adults, are separately known. This data set and the simulated data 
sets therefore allow comparison between existing methods that re‐
quire known age‐specific totals at time of ringing and the methods 
developed in this paper for historical data. The second data set is on 
Sandwich Terns for the years 1970–1990. Sandwich Terns are sum‐
mer visitors to Europe; thus, birds can only be ringed in the breeding 
season (June to August). For this data set, we only have information 
on the total number of birds ringed as pulli and fledged birds. The 
Sandwich Tern recovery data for adults and juveniles, presented in 
Supporting Information Appendix S2 (Tables S3–S5), are very sparse.

2.2 | Models

In this section, we describe the models that can be fitted to differ‐
ent mark–recovery data sets. In all of the models, we suppose there 
are n1 years of ringing and n2 years of recovery of dead birds. The 
total number of birds ringed in age category c, in year i, is Tc,i, and 
the number of birds ringed in age category c, in year i that were re‐
covered dead in year t, is Nc,i,t, for i = 1, …, n1, and t = i, …, n2. The 
age category c represents the age at which birds were ringed, which 
could be pulli, denoted by p, juveniles ( j), first‐year birds (1), fledged 
birds (f), or adults (a). As mentioned in the data section, first‐year 
birds may be either pulli or juveniles, and fledged birds may be either 
juveniles or adults.

The models depend on the following parameters:

•	 ϕ1,t is the annual survival probability for a first‐year bird alive at 
the start of year t;

•	 ϕa,t is the annual survival probability for an adult bird alive at the 
start of year t;

•	 λ1,t is the annual probability of recovering a first‐year dead bird in 
year t;

•	 λa,t is the annual probability of recovering a dead adult bird in year 
t.

Note that we give the general form of each parameter above, but 
time dependence could be dropped in appropriate circumstances.

The challenge facing the analyst arises when the numbers of ju‐
veniles and of adults ringed are not known separately; instead, they 
are combined into one single total number. Yet the survival prob‐
ability of the juvenile birds will be not only lower than their older 
counterparts, but (at least potentially) more akin to those of birds 
ringed prior to fledging.
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2.3 | Standard model

The standard model refers to the ring‐recovery model that estimates 
the survival and reporting probability of birds that were ringed early 
in their first year of life. Basic forms were proposed by Brownie et al. 
(1985) and Freeman and Morgan (1992) and have been used and ex‐
tended in many studies since, see, for example, Thomson, Baillie, and 
Peach (1999), Gauthier and Lebreton (2008) and McCrea, Morgan, 
and Cole (2013).

The probability that a bird ringed in its first year of life in year i is 
recovered dead in year t is denoted by P1,i,t with

for i = 1, …, n1, t = i, …, n2.
Parameters can be estimated using maximum likelihood, and the 

likelihood function for the standard model for birds ringed in their 
first year of life is

Gauthier and Lebreton (2008) demonstrate how a ring‐recovery 
model can be written as a multi‐state model so that the program 
M‐Surge (Choquet, Reboulet, Pradel, Gimenez, & Lebreton, 2004) 
could be used to fit this model.

The model of Equation 1 can be used either for birds ringed as 
pulli or for birds ringed as pulli and juveniles; that is, birds ringed in 
their first year of life for which we know the ringing totals. While in 
practice it is not uncommon for data to be available for pulli alone, 
and thus modeled using Equation 1, they are unlikely to ever be 
available for fledged juveniles alone. The latter data will almost al‐
ways be analyzed in conjunction with those of other age‐classes, as 
outlined in the following section.

2.4 | Standard combined model

As stated by Robinson (2010), it is possible to fit a ring‐recovery 
model to the fledged birds’ data, with age‐specific ringing totals, 
when the total numbers of birds ringed as juveniles and as adults are 
known. The standard combined model can be used when there are 
separate data available on the total numbers of birds ringed in two 
different age classes. These two age classes are as follows: (a) birds 
in their first year of life (juveniles and/or pulli) and (b) adult birds. 
We use the word combined, as two different data sets are pooled 
together, and the likelihood function is obtained, under the assump‐
tion of independence, by multiplying two likelihood functions: the 
one for birds being ringed in their first year of life and the other for 
birds ringed as adults.

The probability that a bird ringed in the adult age class in year i is 
recovered dead in year t is denoted by Pa,i,t with

for i = 1, …, n1, t = i, …, n2.
If the fledged bird data are fully computerized, we have infor‐

mation on the number of birds ringed as juveniles, T1,i and as adults, 
Ta,i. Then, the likelihood function for the standard combined model 
is a straightforward product of that in Equation 1 and that for birds 
ringed as adults, that is,

See for example Brownie et al. (1985), and Freeman and Morgan 
(1992). We use the age category (1) for the Tj,i = T1,i birds ringed as 
known juveniles that are by definition in their first year of life. If addi‐
tional data on ringed pulli were available, this model can be used to fit 
these two data sets. If we were to add the pulli data, the age category 
(1) would include now birds ringed as juveniles ( j), and as pulli (p). This 
is always assuming that the total number of birds ringed in each age 
category is known, and also that the same `first‐year’ survival proba‐
bility applies to birds ringed as pulli or slightly older fledged juveniles. 
For a model separately estimating survival probabilities for the period 
immediately following fledging, see Thomson et al. (1999).

2.5 | Historical data model

For records that are not computerized, only the total numbers of 
fledged birds ringed are known rather than the separate total num‐
bers for juveniles and adults. The models used here for the histori‐
cal fledged bird data are similar to the standard combined model for 
ring‐recovery data, but with the addition of a parameter that repre‐
sents the unknown yearly proportion of birds ringed as juveniles. In 
these models, the proportion of juveniles ringed can be estimated as 
a constant parameter for all the years of study, or as a time‐depend‐
ent parameter allowing for variation between years. Robinson (2010) 
fixes this proportion to the mean observed in recent years, when the 
age at ringing data are recorded, and then tests sensitivity to this 
assumption. Here, we consider estimating this proportion. As this 
model is used to analyze historical data, in this paper it is termed the 
historical data model.

In the historical data model, the total numbers of birds ringed as 
juveniles, Tj,i, and as adults, Ta,i, are unknown. We only know the sum 
of both, Tf,i = Tj,i + Ta,i, where Tf,i is the total number of fledged birds 
ringed in each year i, for i = 1, …, n1.

The historical data model has an additional parameter to be 
estimated.

•	 πt is the proportion of fledged birds ringed as juveniles in year t, 
and (1 − πt) is the proportion of fledged birds ringed as adults.
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The probability that a bird ringed in year i was a juvenile and was 
found dead in year t is

for i = 1, …, n1, t = i, …, n2. The probability that a bird ringed in year i 
was an adult and was recovered dead in year t is

for i = 1, …, n1, t = i, …, n2. The likelihood function for the historical 
data model for fledged birds is

There has been extensive work on mixture models dealing with 
unknown ages for capture–recapture data (see, e.g., Pledger, Efford, 
Pollock, Collazo, & Lyons, 2009; Pradel, 2009). Pledger and Schwarz 
(2002) developed mixture models in band‐recovery models (which is 
a reparameterization of the ring‐recovery model), and McCrea et al. 
(2013) examine age‐dependent mixture ring‐recovery models. Both 
mixture models assume that the group an individual belongs to, in 
this case juveniles and adults, is unknown for all individuals. In this 
paper however, we know which group some individuals belong to (the 
birds that were marked and recovered dead), but this information is 
unknown for the birds that were never recovered. Alternatively, this 
model could be written in a multi‐event format (Pradel, 2005), as we 
demonstrate in Supporting Information Appendix S3.

2.6 | Historical combined data model

If there are separate data for birds ringed as pulli, the numbers of 
these will generally be known and, as in Robinson (2010), it is pos‐
sible to use a standard model for the pulli data and a historical data 
model for the fledged birds of unknown age, in one combined analy‐
sis. This model will be referred to as the historical combined data 
model. Let Np,i,t denote the number of pulli ringed in year i that were 
recovered dead in year t, and let Tp,i denote the total number of pulli 

ringed in year i. The probability that a pullus ringed in year i is recov‐
ered in year t is Pp,i,t = P1,i,t. The likelihood function for the historical 
combined data model is then

2.7 | Conditional model

In the case of unknown ringing totals, the conditional model, which 
conditions on the numbers of recovered individuals only, can be con‐
sidered as an alternative to the historical data model. The conditional 
probabilities for birds ringed in year i that are recovered in year t in 
both age classes are

(McCrea et al., 2012). The likelihood function for the conditional 
model for the fledged birds is

The conditional model is known to be parameter redundant, except 
when λ is constant, see Cole, Morgan, Catchpole, and Hubbard (2012).

2.8 | Conditional combined model

As with the historical combined data model, separate data on pulli 
can be combined with the data on fledged birds. The standard model 
can be used for the pulli, and the conditional model can be used for 
fledged birds. This model, which we refer to as the conditional com‐
bined model, has likelihood
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Model name Likelihood Data on birds ringed as Totals known?

Standard (1) First year of life Yes

Standard combined (2) Fledged (juveniles and adults) Yes

Standard combined (2) Pulli and fledged Yes

Historical (3) Fledged No

Historical combined (4) All age categories: Pulli and 
fledged

Pulli only

Conditional (5) Fledged No

Conditional combined (6) All age categories: Pulli and 
fledged

Pulli only

TA B L E  1   Description of the models 
defined above and used throughout the 
paper. The models in bold are the models 
developed in this paper and have an extra 
parameter π, the yearly proportion of 
birds ringed as fledged birds that are 
juveniles. Likelihood refers to the 
equation number of the likelihood 
function given in the paper. The last 
column specifies whether the total 
numbers of birds ringed per year per age 
category is known
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2.9 | Model fitting

R code for fitting the historical data model is provided in 
Supporting Information Appendix S7. The historical data model 
could alternatively be fitted in the program E‐Surge (Choquet, 
Rouan, & Pradel, 2009), as explained in Supporting Information 
Appendix S3.

The models examined in this paper are summarized in Table 1. 
This can be interpreted as follows: The standard model with likelihood 
Equation 1 is implemented when the ringing total numbers available are 
for birds in their first year of life. The standard combined model, with 
likelihood Equation 2, is presented in two lines as this model can be 
used when we have two known separate ringing totals for juveniles and 
adults, or three known separate ringing totals for pulli, juveniles, and 
adults. The historical data model, with likelihood Equation 3, is imple‐
mented when the ringing totals available are for fledged birds; thus, we 
do not know the ringing totals for each age class separately. That is, we 
do not know how many birds were ringed as juveniles and how many 
birds were ringed as adults; instead, we know the sum of both numbers. 
The historical combined data model, with likelihood Equation 4, results 
as the combination of the standard and the historical data model. We 
use this model when the total number of birds ringed as pulli is known, 
but the total numbers of birds ringed as juveniles and as adults are un‐
known separately, and instead, we only have information on the sum of 
both numbers. The conditional and the conditional combined models 
with likelihood Equations 5 and 6 are the alternative models to the his‐
torical and historical combined data models.

2.10 | Simulation study

To compare how the historical data model performs in practice, we 
provide two different simulation studies, which represent data on 
fledged birds. For all the simulations, all the parameters are kept 
constant over time. The first simulation study is for a population in 
which the adult survival is set to be homogeneous amongst the in‐
dividuals. For the second simulation study, we consider a population 
with heterogeneous adult survival. We simulate two types of heter‐
ogeneous populations: an heterogeneous population in which adult 
survival ϕa,i varies individually, where i denotes a logit‐normal indi‐
vidual random effect; and an heterogeneous population formed by 

two subpopulations with two different adult survival probabilities: 
ϕa,A and ϕa,B. The simulation studies for the heterogeneous popula‐
tions allow us to test how the proposed models perform in practice 
when there is individual variation in survival caused by factors other 
than age.

For the homogeneous population, in each simulation 100 data 
sets are simulated from the standard combined model with 1,000 
birds ringed with a constant proportion π of the birds ringed in 
their first year of life, and (1 − π) of the birds ringed as adults. In this 
model, there are separate constant survival probabilities for first‐
year and adult birds, ϕ1 and ϕa, respectively, and a constant report‐
ing probability, λ. Specific details for the simulation studies for the 
heterogeneous populations can be found in Supporting Information 
Appendix S5.

Both the standard combined model and the historical data model 
described above are then fitted to each simulated data set. In the 
standard combined model, the total numbers of birds ringed in each 
of the two age classes are known, whereas in the historical model, 
only the total number of birds ringed is used. Otherwise, the forms 
of the two models are identical and match the form used in generat‐
ing the data. We also fit the historical data model with π fixed either 
to the true value or to an arbitrary wrong value.

The simulation results for 10 years of study for an homogeneous 
population are given in Table 2, and further results for five and 
20 years of study can be found in Supporting Information Appendix 
S4 (Tables S7 and S8). The heterogeneous population results for 
five, 10, and 20 years of study are given in Supporting Information 
Appendix S5 (Tables S9–S23). By simulating data for different study 
lengths, we show how the magnitude of parameter bias is affected 
by the length of the study. We compare model performance by look‐
ing at the bias, the standard deviation, and the mean squared error 
of the parameters across 100 simulations.

The simulation studies show that for an homogeneous popula‐
tion, the historical data model gives almost identical parameter es‐
timates for survival and recovery to the standard combined model. 
The same is true for the heterogeneous populations. Both homoge‐
neous and heterogeneous populations result in unbiased estimates 
of the proportion of birds ringed in their first year of life, π. This 
demonstrates that the historical data model can be used to esti‐
mate the additional parameter π as well as the survival and recovery 

TA B L E  2  Simulation study for 10 years of ring‐recovery data. The first column specifies the type of model, with Stand. Comb. short for 
standard combined and Hist. short for historical. In this first column, the last two rows contain information for the models in which the 
proportion parameter was fixed and the values used. The remaining columns contain the average parameter estimate (par est) and the 
average standard error, given in parentheses, along with the mean squared error (MSE)

ϕ1 ϕa λ π

par est MSE par est MSE par est MSE par est MSE

True value 0.50 – 0.60 – 0.05 – 0.40 –

Stand. Comb. 0.50 (0.04) 0.0014 0.60 (0.02) 0.0005 0.05 (0.002) 0.0000 – –

Hist. 0.50 (0.04) 0.0014 0.60 (0.02) 0.0005 0.05 (0.002) 0.0000 0.40 (0.02) 0.0006

Hist. π = 0.40 0.50 (0.04) 0.0014 0.60 (0.02) 0.0005 0.05 (0.002) 0.0000 – –

Hist. π = 0.20 0.46 (0.04) 0.0024 0.63 (0.03) 0.0010 0.05 (0.001) 0.0000 – –
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parameters as accurately as the standard ring‐recovery model, which 
requires additional information.

If π is fixed at the true value, then the historical data model 
with a fixed π also performs just as well, as would be expected. 
However, if π is not fixed at the true value then there is bias in 
the estimation of the survival parameters, the mean squared error 
is bigger, and the standard error is higher than in other models. 
For example, when π is fixed at a lower value than the true value, 
fewer birds are estimated to survive their first year, and to retain 
a match to the subsequent numbers recovered adult survival is in‐
creased in compensation. For constant π, the bias decreases as the 
number of years of ringing and recovery increases. It is therefore 
recommended that the historical data model is used rather than 
fixing π.

Further simulation studies for different parameter estimates 
show very similar results and the recommendation from these sim‐
ulation studies, and Table 3 is that if total ringing numbers in each 
category are unavailable, it is preferable to use the historical data 
model and estimate the proportion in each age class.

2.11 | Parameter redundancy

In ring‐recovery models, it is common to have two or more param‐
eters in a model that only appear in the likelihood as a product or 
in a similar function of the parameters, and which hence cannot be 
estimated independently (see, e.g., Chapter 10, McCrea & Morgan, 
2015). This phenomenon is known as parameter redundancy or the 

model can be described as nonidentifiable. A parameter redundant 
model can be reparameterized into one with a smaller number of 
parameters, and it is not possible to estimate all the parameters in 
the full model, without first reparameterizing, or imposing some con‐
straint on the model.

We used parameter identifiability theory to determine which pa‐
rameters in the historical and combined models can be estimated, 
and these are compared to the parameters that can be estimated 
in the standard ring‐recovery model, which are given by Cole et al. 
(2012). The theory underlying parameter identifiability is now exten‐
sive and complex; we shall provide only a brief background here and 
refer the reader to published material (Cole, Morgan, & Titterington, 
2010). Such theory has been used to determine the utility of a range 
of models in ecology (Allen, Satterthwaite, Hankin, Cole, & Mohr, 
2017; Cole, 2012; Cole & Morgan, 2010; Cole et al., 2012; Hubbard, 
Cole, & Morgan, 2014). Ecological models that have been examined 
include ring‐recovery models (Catchpole & Morgan, 1997; Cole et al., 
2010, 2012), capture–recapture models (Catchpole & Morgan, 1997; 
Catchpole, Morgan, & Freeman, 1998; Cole et al., 2010; Gimenez, 
Viallefont, Catchpole, Choquet, & Morgan, 2004; Hubbard et al., 
2014), capture–recapture–recovery models (Hubbard et al., 2014), 
multi‐state (Cole, 2012; Gimenez, Choquet, & Lebreton, 2003) and 
state‐space models (Cole & McCrea, 2016). In short, symbolic algebra 
is used to determine the rank of a matrix derived from the model. This 
rank is the number of parameters that can be estimated in the model. 
If all the parameters in a model can be estimated, then this rank will be 
the same as the number of parameters. Otherwise, when the rank is 

Model Stand. Historical Combined Cond. Cond. Comb.

Data set(s) Pulli Fl Pulli + Fl Fl Pulli + Fl

Proportion – π πt π or πt – –

ϕ1, ϕa, λ 0 0 0 0 0 0

ϕ1, ϕa, λt 0 0 0 0 2 0

ϕ1, ϕa, λ1, λa 1 1 0 0 2 1

ϕ1, ϕa, λ1,t, λa,t 1 1 0 0 3 1

ϕ1, ϕa,t, λ 0 0 0 0 0 0

ϕ1, ϕa,t, λt 0 0 0 0 3 0

ϕ1, ϕa,t, λ1, λa 1 1 0 0 2 1

ϕ1, ϕa,t, λ1,t, 
λa,t

2 2 3 1 n + 2 3

ϕ1,t, ϕa, λ 0 0 0 0 0 0

ϕ1,t, ϕa, λt 0 0 0 0 2 0

ϕ1,t, ϕa, λ1, λa 0 0 0 0 2 0

ϕ1,t, ϕa, λ1,t, 
λa,t

2 2 3 1 n + 1 3

ϕ1,t, ϕa,t, λ 0 0 0 0 1 0

ϕ1,t, ϕa,t, λt 2 1 2n + 1 1 n + 1 2

ϕ1,t, ϕa,t, λ1, λa 0 0 0 0 3 0

ϕ1,t, ϕa,t, λ1,t, 
λa,t

n + 1 3 n + 2 2 2n n + 2

TA B L E  3   Parameter redundancy 
results. The main body of the table gives 
the deficiency. The first row specifies the 
type of model, with Stand. short for 
standard, Cond. short for conditional, and 
Cond. Comb. short for conditional 
combined. The combined column is 
applicable for both the combined 
historical data model and the combined 
standard model. The second row specifies 
which types of data the model is suitable 
for, either pulli, fledged (Fl), or both 
combined (Pulli + Fl). The third row 
specifies the proportion parameter, which 
is either constant (π) or time‐dependent 
(πt), or not included in that type of model 
(–). The first column specifies the 
parameters in the model. Results here are 
for the same number of years of ringing as 
recovery, n = n1 = n2. The results for the 
standard model, that can be used for the 
pulli data alone, come from Cole et al. 
(2012)
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less than the number of parameters a model is described as parameter 
redundant, and not all of the parameters can be estimated. Here, we 
present the deficiency of the model, which is the difference between 
the number of parameters and the rank. A deficiency of zero indicates 
the model is not parameter redundant, and in theory, all the param‐
eters can be estimated. A deficiency of more than zero indicates the 
model is parameter redundant and cannot be fitted in that form. In a 
parameter redundant model, it may still be possible to estimate some 
of the parameters, which can be found using further matrix algebra, 
along with a reparameterization of the model that can be estimated 
(Catchpole et al., 1998; Cole et al., 2010). This method is most practi‐
cally executed in a matrix algebra software such as Maple (Catchpole, 
Morgan, & Viallefont, 2002; Cole et al., 2010). Alternatively, a hy‐
brid symbolic–numeric method can be used (Choquet & Cole, 2012), 
where the rank is found numerically.

Parameter redundancy can also be caused by the data. In ring‐
recovery models, this can occur when there are several N*,i,t equal 
to zero. Cole et al. (2012) show that one N*,i,t for t = i, …, n2 can be 
zero for each t, and parameter redundancy results will always re‐
main unchanged. Other patterns of zeroes can, but do not always, 
result in parameter redundancy, as demonstrated in Cole et al. 
(2012). Cole et al. (2012) used the symbolic method to check pa‐
rameter redundancy cause by the data, but it could also be checked 
using the hybrid symbolic–numeric method (Choquet & Cole, 2012), 
which is available in E‐Surge (Choquet et al., 2009). Therefore, if the 
multi‐event format of Supporting Information Appendix S3 is used 
it is possible to check for parameter redundancy caused by the data 
automatically.

Models can also behave as if they were parameter redundant for 
certain data sets. This is known as near‐redundancy and normally 
occurs if there is a nested parameter redundant model, and the 
maximum likelihood parameter estimates are close to those of the 
nested model (Catchpole, Kgosi, & Morgan, 2001). Catchpole et al. 
(2001) show how near‐redundancy can be detected by examining 
the smallest eigenvalue of the Hessian matrix. A value that is close to 
zero indicates near‐redundancy. The sparse Sandwich Tern data set 
is used to explore the potential effects of near‐redundancy on the 
models presented here.

3  | RESULTS

3.1 | Parameter redundancy

All of the models that have a parameter deficiency of zero for the 
standard model also have a deficiency of zero for the historical data 
model (Table 3). When the pulli data are combined with the fledged 
birds, a combined model results in more models having a deficiency 
of zero. The combined historical data model is shown to have identi‐
cal deficiency to the standard combined model, so in terms of pa‐
rameter redundancy, it does not matter whether or not the data have 
been fully computerized.

The alternative to the historical data model is the conditional 
model. However, for ring‐recovery data most conditional models are 

parameter redundant. When the pulli data are combined with the 
fledged bird data, the conditional combined model does not do any 
better than the pulli data alone, in terms of parameter redundancy. 
There is only a deficiency of zero if the pulli model also has a defi‐
ciency of zero. Therefore, in terms of parameter redundancy there 
is no gain from using the conditional model. In terms of parameter 
redundancy, the best model to use for historical data is the historical 
data model.

Being able to show theoretically that a model is identifiable, 
however, is no guarantee that for some specific data the model 
would not be parameter or near parameter redundant. We also 
consider parameter redundancy in practice by using simulation and 
considering data on two different ring‐recovery data sets. Below, 
we run a simulation study to show that the historical data model 
gives almost identical parameter estimates as the standard model. 
We explore the Blackbird data set, where we know the total num‐
ber of birds ringed by age‐class, and compare the performance of 
the historical data model with the standard model. Then, similar to 
Robinson (2010) we use a subset of Sandwich Tern data, where we 
do not know these totals.

3.2 | Blackbird case study

Using the Blackbird data set for comparison purposes, we have run 
two different analyses. In the first analysis, we sum together the 
total of birds ringed in the fledged category (and we assume that the 
numbers of juveniles and adults ringed each year were unknown, and 
only the sum of both was available), then we fit historical data models 
to this data set. In the second analysis, we use all the available data 
(using either two or three, known ringing totals, i.e., juveniles and 
adults, or pulli, juveniles, and adults), and we fit standard combined 
models. The parameter estimates for survival and reporting prob‐
abilities for the historical and historical combined data model, and 
their standard errors, are almost identical to those for the standard 
combined models (Table 4). However, the first‐year survival prob‐
ability, ϕ1, is slightly smaller for the models that analyze pulli data. 
Birds ringed as pulli are younger than those fledged juveniles; thus, 
their survival is likely to be lower. Therefore, adding the pulli data to 
the first‐year age class brings the survival probability ϕ1 down.

Tables 5 and 6 compare the best models in terms of the Akaike 
information criterion (AIC; Akaike, 1974) for the standard combined 
and the historical data models. To compare the model selection for 
the historical and the standard combined models, we check if the 
dependencies for the survival and recovery parameters for the best 
models agree. For example, the standard model with parameters 
(ϕ1, ϕa, λt) would be equivalent, demographically, to the historical 
data models with parameters (ϕ1, ϕa, λt, π), and (ϕ1, ϕa, λt, πt). Table 5 
shows that the best models for the historical and the standard com‐
bined agree; the same parameterization is chosen for the two differ‐
ent models. Moreover, Table 6 shows that although the same best 
(demographic) models are chosen for the historical combined and 
the standard combined models, the order of preference differs. The 
best model for the historical combined data model has parameters 
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(ϕ1, ϕa, λ1,t, λa,t, π), followed very closely by the models with param‐
eters the (ϕ1,t, ϕa, λt, π) and (ϕ1, ϕa, λt, πt); for the standard combined 
model, the best model has parameters (ϕ1, ϕa, λt), followed, some 
distance behind, by the model with parameters (ϕ1, ϕa, λ1,t, λa,t). 
Nonetheless, the difference in AIC between the top historical data 
models is very small and seems to show that the age dependency 
in the recovery probability does not contribute significantly to the 
model when the proportion of juvenile birds ringed is not known, 

but estimated. Finally, Figure 1 shows that the total number of juve‐
nile Blackbirds estimated from the fledged bird data set for the best 
historical combined data model with parameters (ϕ1, ϕa, λt, πt) is very 
similar to the real number of ringed juvenile Blackbirds.

3.3 | Sandwich tern case study

For longer‐lived species, juvenile survival may be substantially lower, 
so we analyze Sandwich Tern data for which the separate ringing 
totals are unknown for juveniles and adults. This is a longer‐lived 
species than the Blackbird, but it is rarer and the data are conse‐
quently sparser (Supporting Information Appendix S2). When fitted, 
most of the historical data models prove to be parameter redundant 
or near‐redundant. In fact, the only model that did not present any 
identifiability issues was that in which all the parameters were kept 
constant. However, when looking at the parameter estimates, the 
first‐year survival probability was estimated much higher than the 
adult survival probability, which does not appear realistic. Moreover, 
for most of the models we were unable to maximize the likelihood 
function.

The results described above are a clear example of parameter 
redundancy caused by the data. The issue of parameter redundancy 
improved when adding the pulli data to the historical data model by 
fitting the historical combined data model. As a result, many more 
models could be fitted; however, there were only three models that 
did not present any sign of parameter redundancy. The parameter es‐
timates for these models can be found in Table 7 and in Supporting 
Information Appendix S6 (Figures S1 and S2). Furthermore, when 
adding the pulli data, the constant model presented more reliable re‐
sults, with a higher survival probability for adults than for first years, 
and with parameters estimates closer to those expected based on the 
results obtained when fitting the standard model to pulli data alone.

Sandwich Terns are bigger than Blackbirds, and most do not 
begin to breed until their third year of life; thus, a more com‐
plex age structure may well be more realistic, although these 
extra parameters may hinder further parameter identifiability. 
Robinson (2010) explores a model with three age classes, where 
he estimates survival and reporting probabilities for first‐year 
birds, birds in their second or third year, and older birds. We do 
not have data on ringing totals for birds ringed in their second 

Model Stand. Comb. Historical Stand. Comb. Hist. Comb.

Data set(s) Juv, Ad Fl Pulli, Juv +  Ad Pulli, Fl

ϕ1 0.5925 (0.0085) 0.5933 (0.0085) 0.5451 (0.0067) 0.5454 (0.0067)

ϕa 0.6965 (0.0050) 0.6958 (0.0049) 0.6915 (0.0045) 0.6909 (0.0044)

λ 0.0375 (0.0005) 0.0375 (0.0005) 0.0361 (0.0004) 0.0361 (0.0004)

π 0.5760 (0.0066) 0.5741 (0.0066)

TA B L E  4   Estimates of survival and 
reporting probabilities for Blackbird data 
using the standard combined, historical, 
and historical combined data model. The 
parameter estimates are given alongside 
standard errors in parentheses. The first 
row specifies the type of model, with 
Stand. Comb. and Hist. Comb. short for 
standard and historical combined. The 
second row specifies the data used for the 
analysis, with Juv, Ad, and Fl short for 
ringing totals for juvenile, adult, and 
fledged birds

TA B L E  5   Comparison between the historical ring‐recovery and 
standard combined model selection for Blackbirds. The first and 
the third columns show the models fitted and the parameterization 
used

Historical

Δ AIC

Standard combined

Δ AICFl Juveniles + adults

ϕ1, ϕa, λt, πt 0.00 ϕ1, ϕa, λt 0.00

ϕ1, ϕa,t, λt, πt 3.68 ϕ1, ϕa,t, λt 11.89

ϕ1, ϕa, λt, π 6.65

ϕ1, ϕa,t, λt, π 18.30

ϕ1,t, ϕa, λt, π 20.30 ϕ1,t, ϕa, λt 23.87

ϕ1,t, ϕa, λt, πt 22.59

ϕ1, ϕa, λ, π 148.56 ϕ1, ϕa, λ 140.58

TA B L E  6   Comparison between historical combined and 
standard combined ring‐recovery model selection for Blackbirds. 
The first and the third columns show the models fitted and the data 
used, with Juv, Ad, and Fl short for ringing totals for juvenile, adult, 
and fledged birds

Historical Combined 
Pulli + Fl Δ AIC

Standard combined 
Pulli + Juv + Ad Δ AIC

ϕ1, ϕa, λ1,t, λa,t, π 0.00 ϕ1, ϕa, λ1,t, λa,t 26.48

ϕ1,t, ϕa, λt, π 2.30 ϕ1,t, ϕa, λt 38.38

ϕ1, ϕa, λt, πt 2.60 ϕ1, ϕa, λt 0.00

ϕ1, ϕa, λ1,t, λa,t, πt 5.10

ϕ1, ϕa, λt, π 5.80

ϕ1, ϕa,t, λt, πt 17.70 ϕ1, ϕa,t, λt 30.40

ϕ1, ϕa, λ, π 146.10 ϕ1, ϕa, λ 148.33
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or third year of life, though these are possibly few as the young 
birds relocate to West Africa before returning to breed. As for 
most species, we also do not know the age of the adult Sandwich 
Terns at ringing. If this information was known, for this or a sim‐
ilarly long‐lived species, a better alternative would be to model 
this age structure with the approach presented in this paper in 
combination with the age‐dependent mixture model proposed by 
McCrea et al. (2013).

4  | DISCUSSION

We have presented a model that estimates age‐dependent survival 
probabilities from ring‐recovery data where the number of individu‐
als ringed in each age class is unknown. Using identifiability theory, 
we have shown that it is possible to estimate the proportion of indi‐
viduals in each age class. Using simulation and a data set where the 
ringing numbers are known by age category, we have demonstrated 
that the historical data model gives almost identical parameter es‐
timates as the standard ring‐recovery model. Therefore, we have 
shown that it is possible to fit useful age‐dependent survival models 
to historical ringing data even though the data may not have been 
fully computerized.

This new model provides an extension to the analysis of UK ring‐
ing data of Robinson (2010), where the proportion in each age cate‐
gory was fixed. The new historical data model has the advantage that, 
by estimating rather than assuming age‐specific ratios at ringing, es‐
timates of precision and hypothesis tests are more reliable—if a con‐
straint is imposed unnecessarily, there is bias in estimating survival 
and the resulting standard errors may overestimate the uncertainty in 
selecting this value, as demonstrated in the simulation study.

Although these results were motivated by an analysis of UK ring‐
ing data (Robinson, 2010), many national ringing schemes, in Europe 
and North America (Tautin, 2008), face a similar challenge. For 
European schemes, details of birds ringed and subsequently recov‐
ered have been routinely collated and are accessible for analysis. The 
Euring Data Bank (EDB) currently holds in excess of 10 million such 
records (du Feu, Clark, Schaub, Fiedler, & Baillie, 2016). Moreover, al‐
though here we just look at estimating probabilities for two age cat‐
egories, first‐year and adult birds, the historical data model can be 
extended with the addition of an age‐mixture model (McCrea et al., 
2013) to incorporate other age dependencies that accommodate for 
differences in breeding age between species.

These results indicate that it is possible to incorporate age‐spe‐
cific variation in models of survival, further unlocking the potential 
of a valuable historical data archive compiled over several decades to 

F I G U R E  1  Comparison between the total number of juvenile Blackbirds ringed per year, indicated by the continuous line, and the 
estimated total number of juveniles, indicated by the dashed line, obtained from the time‐dependent proportion of juveniles (πt), for the 
historical combined data model with parameters (ϕ1, ϕa, λt, πt). The dotted lines represent the 95% confidence interval
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ϕ1, ϕa, λt, π 0.00 0.74 (0.016) 0.87 (0.010) – 0.32 (0.076)

ϕ1, ϕa, λ, π 27.67 0.73 (0.015) 0.87 (0.010) 0.02 (0.001) 0.32 (0.076)

ϕ1,t, ϕa, λ, π 34.01 – 0.86 (0.010) 0.02 (0.001) 0.32 (0.076)

TA B L E  7   Historical combined 
ring‐recovery model selection and 
parameter estimates for Sandwich Terns 
for 1970–1990. The standard errors are 
given in parentheses. The parameter 
estimates for the time‐dependent 
parameters can be found in Supporting 
Information Appendix S6
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better characterize temporal dynamics in the population processes 
of many species. Such data are, of course, often the only source of 
demographic data ever likely to be available as a benchmark against 
which to compare estimates from more recent years and different 
climatic and agricultural contexts.
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