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Abstract

The ODE/IM correspondence is a connection between the properties of particu-
lar differential equations (ODEs) and certain quantum integrable models in two
dimensions (IMs). In its original form, the ODE/IM correspondence originally
connected the spectral determinants of a set of second-order ODEs and the ground-
state eigenvalues of Q-operators defined in a conformal field theory. The spectral
determinants for these ODEs and the Q-operator eigenvalues were found to satisfy
the same functional relations.

In this thesis, we are concerned with two generalisations of this correspondence.
The first of these is the extension of the correspondence to encompass the excited
states of the conformal field theory. The corresponding ODEs are defined by a
set of parameters z; which are constrained by a set of algebraic locus equations.
Studying the space of solutions of these equations, we find an apparent discrepancy
between the number of solutions of the locus equations and the number of states in
a particular level subspace of the conformal field theory, which is not explained by
the occurrence of singular vectors in the conformal field theory. This discrepancy
is resolved by considering a more general set of locus equations defined using a
result due to Duistermaat on the single-valuedness of solutions of second-order
ODEs of the correct form.

The second generalisation of the correspondence of interest is the connection
between linear systems of differential equations constructed as Lax pairs from the

affine Toda field theory equation of motion (for a given affine Lie algebra g), and



the ground-state eigenvalues of Q-operators associated with a massive integrable
model with symmetry generated by the Lie algebra g. We consider the cases
where g is a simply-laced Lie algebra, deriving asymptotics of the solutions of the
associated linear systems, and from these we construct ()-functions, which encode
various properties of the massive IM in the functional relations they satisfy and
their asymptotic expansions. In the case of Aﬁ”, we also derive T-functions that

satisfy additional sets of functional relations which arise in the IMs.
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Chapter 1

Introduction

The ODE/IM correspondence [23], 37, 1] is an intriguing connection between two
seemingly disparate areas of mathematical physics: the study of the spectral prop-
erties of particular differential equations (ODEs), and certain quantum integrable
models in two dimensions (IMs). This connection first manifested in the form of
identical functional relations occurring in the study of particular ODEs and [Ms.
We will now introduce these two halves of the ODE/IM correspondence, before

elaborating on the precise connection between them.

1.1 ODEs and eigenvalue problems

1.1.1 Beginnings: the anharmonic oscillator

The story of the ODE/IM correspondence begins with the study of the spec-

tral properties of the anharmonic oscillator, with dynamics determined by the



Schrodinger equation with potential 22M:

+ 2Py () = Ey(x), (1.1.1)

d*y(x)

dz?
where M > 1 is a positive integer or half-integer. When (|1.1.1)) is considered on the
real line, a set of normalisable solutions {1 (x)}%2 exists with associated discrete
eigenvalues Fj. These eigenvalues E can be encoded into a spectral determinant
D(E), an entire function in the parameter £ with the zeroes D(Ey) = 0. The
spectral determinant D(E) admits an infinite product expansion

D(E) = DO ] (1 - E%) | (1.1.2)

which, due to the invariance of (1.1.1]) under the parity symmetry x — —z, further
factorises into a product of two spectral determinants D(E) = D, (E)D_(E),

where

D*(E)=D"0) ] (1—E£k>, D~ (E)=D(0) [] (1-%). (1.1.3)

k even k odd

As a consequence of the parity symmetry, the solutions v (z) with k£ even (odd
respectively) are even (odd) functions. The spectral determinants D™ (E), D~ (E)

satisfy a particular functional relation [55] 50]:

707D DF (3091 ) D™ (e M1 E) — e2040 D+ (e i1 E) D™ (e E) = 2,  (1.1.4)

The first manifestation of the ODE/IM correspondence was the observation by
Dorey and Tateo in [25] that the functional relation ([1.1.4)) matched a functional
relation satisfied by the rescaled eigenvalues of Q-operators which arise in the
study of a particular class of IMs [7], conformal field theories. (We will discuss

these models further in section . These IMs are defined for M > 0, and



this fact along with numerical investigations and the study of the solvable cases
M = 1/2,1 (the Airy equation and the harmonic oscillator respectively) led the
authors of [25] to conjecture the extension of the ODE/IM correspondence to

eigenvalue problems of the form (|1.1.1)) with arbitrary M > 0.

1.1.2 Anharmonic oscillator with angular momentum term

Bazhanov, Lukyanov and Zamolodchikov [9] then extended the correspondence
by adding an angular momentum term to the anharmonic oscillator (1.1.1))
d*(z (1+1
O + (a:?M - (—2>) Y(x) = By(x). (1.1.5)
x

dx?

The equation is considered on the positive real axis, and is subject to
boundary conditions at x = 0; the solution ¢ (x) is constrained to satisfy ¢(x) ~
2%t or ¢(z) ~ z7! in the neighbourhood of z = 0. The corresponding IM is a
natural generalisation of the IM related to the anharmonic oscillator . The
equation is the prototype of all the other differential equations we will
consider in this thesis, so we now take the time to consider this equation more
carefully, defining its spectral determinants and functional relations satisfied by
them. In the rest of this section we follow closely the notation in section 5 of the

review paper [23], which itself is derived from the original papers [26] 9].

To define eigenvalue problems associated with we stipulate boundary
conditions that solutions must satisfy at the regular singular point x = 0 and
at the irregular singular point at © = oo. We will require solutions of to
decay as z — oo along the positive real axis. Using the WKB approximation
[13] to analyse equation in the large-z limit, we define a solution y(x, F, 1)
of which decays as x — oo along the positive real axis, with asymptotic



expansion in that limit given by

M2 LM+
y(z, E)l) ~ Ner exp (_M——i-l) as T — 0. (1.1.6)
i

The choice of normalisation in (|1.1.6)) simplifies the form of the spectral determi-

nants we will construct in this section.

In the neighbourhood of the regular singular point at = 0, the behaviour of
any solution of (1.1.5]) is a linear combination of '+ and x~!. Following [26], we

choose a solution " (x, F,[) to satisfy the x — 0 asymptotic
Yz, B 1) ~ 2" asa — 0. (1.1.7)

Due to the remaining linearly independent asymptotic solution =, ¥+ (x, E, ) is
only uniquely defined for [ > —1/2. We extend the definition of ¢ (z, E,1) to all
[ by exploiting the symmetry of ([1.1.5) under the mapping [ — —1—1[, and define

Vv (2, B\1) =y (2, E, -1 —1) ~27", asx — 0. (1.1.8)

The solutions 1*(x, E, 1) then form a basis of solutions of (1.1.5)) in the small-x
limit for generic [. The basis also respects the symmetry [ — —1 — [ of (1.1.5]).

The two solutions *(z, E,l) define two separate eigenvalue problems; we

consider solutions 1 (z, F, 1) of (I.1.5) with associated eigenvalues E; which satisfy

Y(x, BE 1) ~F (2, Bf 1) as o — 0, (1.1.9)

V(x, BE ) ~y(x, EF,1) asx — +oo0. (1.1.10)



To define spectral determinants D (FE,[) associated with these eigenvalue prob-

lems, we first define the Wronskian of two functions of x

WIf. gl = f(x)g (z) — f'(z)g(=), (1.1.11)

which allows us to define a notion of linear independence for solutions of .
Specifically, two solutions f(z) and g(z) of are linearly independent if and
only if their Wronskian is non-zero. If their Wronskian is zero, f(z) and g(z) are
effectively the same solution of , up to an overall normalisation constant.
The Wronskians

D+(E,l) = Wy, v*|(E, 1), (1.1.12)

are therefore zero at the values of E where y(x, E,[) and ¢*(x, E,l) are propor-
tional to one another. At these values of E, there exists a global solution with the

required asymptotic behaviours, which is precisely the requirement of the eigen-

value problems (1.1.9)-(1.1.10). The functions D4 (FE,[) are therefore spectral
determinants. We also note the identification D, (E, -l — 1) = D_(FE,1) follows

from the definitions of the asymptotics (1.1.7)-(1.1.8]).

1.1.3 Functional relations

In order to construct functional relations that the spectral determinants D (E)

satisfy, we first note the invariance of equation (|1.1.5)) under the transformation

271

r—w e, E—-w®E, ke, w=eim, (1.1.13)



Given a solution y(z, E,1) of (1.1.5), we define a set of rotated functions

xe(z, B 1) = *?x(w*z,w?* E, 1), (1.1.14)

which due to the invariance of (|1.1.5)) under the transformation (1.1.13)), are all
solutions of (|1.1.5)). It is also convenient to define Stokes sectors Sy in the complex

x-plane

27k s
S = — < 1.1.15
e = |arg(x) M2l S ( )
and the rotations of the large-x asymptotic solution y(z, E,[) by
ye(z, B, 1) = W ?y(wFz, w*E 1), (1.1.16)

where k € Z. The solutions yi(z, E,[) are the most rapidly decaying solutions of
(1.1.5) as |x| — oo on the Stokes sector ;. We also introduce rotations of the

small-z asymptotic solutions ¢*(x, E) by
VE(x, B, 1) = WPyt (w ke, 0 B D). (1.1.17)
We then compute the Wronskians

Wt ] = — (20 + w2, (1.1.18)

W ot =W, v, ] =0, kpeZ,

and see that for generic [ > —1/2, the solutions {¢;", v, } are linearly independent
solutions and thus form a basis for the solution space of . (The papers
[23, 26] briefly discusses the isolated values of | where this assumption breaks
down; from here on we assume we choose a value of [ where this does not happen.)

The linear independence of ¢, 1, implies that we may write a solution yy(z, F, l)



as a linear combination of ¢ and

ye(x, E\1) = B_(E, )¢5 (z, E,1) + Bo(E, 1) ¢ (z, E, 1), (1.1.19)

where B_(FE,l) and B, (F,l) are independent of x. By taking Wronskians of

(1.1.19) with respect to ;" and 1, respectively and using (1.1.16)), (1.1.17) and

([[.1.12) we find

Di(WQkE, l)

(1.1.20)
Using ([1.1.18) and the definitions of the spectral determinants D4 (F, 1), we find
(20 + (e, 1) = D_ (@B, )y (2, F,1) — D,y (0 E, gt (e, B,1). (1.1.21)

To find a functional relation involving only D4 (F, 1), we consider (1.1.21)) at k =

—1 and k£ = 0 and compute Wy_1, 3] to find:

(20 + 1)*Wly—1,50] = —D-(w *E, ) Do (E, )W [y, 4 ] (1.1.22)

- D+<w_2E? Z)D—(E7 Z)W[wi_la %_]

From the large-r asymptotic expressions for yo (1.1.6) and y_; (computed by
acting on ([1.1.6)) with the transformation (1.1.13))), we find Wy_q,yo] = 1. Sub-

stituting this result into ([1.1.22)), shifting £ — wFE and simplifying using (|1.1.18)),

we are left with the functional relation

w DD (W E ) D_(wE, 1) — w"*Y2D (WE,)D_(w'E, 1) = 21 + 1.
(1.1.23)

When [ = 0, this functional reproduces (|1.1.4]) associated with the equation (|1.1.1])

studied by Dorey and Tateo, up to the disparity between the constants on the



right-hand sides of (1.1.4]) and (1.1.23]). This difference arises from the choice of
normalisation in the large-x asymptotics (1.1.6). The functional relation ([1.1.23)
also occurs in the related IM, and is called the quantum Wronskian in the IM

literature [7].

Other sets of functional relations occur in the associated IM, and these may
also be constructed using solutions of the differential equation . A partic-
ularly important specimen of functional relations are the so-called TQ-relations,
constructed in [26]. The construction begins with the expansion of the rotated

solution y_1(z, E,1) in the basis {yo, 1 }:
y_1(z, B, 1) = C(E, Dyo(x, B, 1) + C(E, Dy (z, B, 1). (1.1.24)

(Any pair of rotated solutions {y,_1,y,} form a basis of solutions of (|1.1.5) as
Wlyn-1,yn] = 1.) Taking Wronskians of (1.1.24]) with respect to yo and y; we find

C(E,Dyo(x, E,1) =y_1(z, E, 1) + y1(z, E, D). (1.1.25)

We follow [23] and take Wronskians of (1.1.25) with respect to . We use the
result (5.12) in [23]

Wlye, ) = VWY, 0 *] (WP E, 1) = 0 TVIR DLW EL D), (1.1.26)
to find the so-called T'Q-relations
C(E,)D+(E,l) = wTHY2D D_(w2E, 1) + w2 D (WP E, D). (1.1.27)

The functions C(F,[) and D(E, 1) correspond to the ground-state eigenvalues of
T- and Q-operators respectively in a conformal field theory, which is the origin

of the name T'Q-relation. The precise nature of this correspondence will be given



in section (1.2, where we discuss the related conformal field theory and the origin

of the T- and Q-operators.

The last class of functional relations we will encounter in this thesis are fusion

relations. For the differential equation ([1.1.5)) these are constructed by expanding

y_1 in the basis {y,_1,yn}:
y-i(z, B,1) = CS (B, D)y (z, B,1) + CS (B, Dyn(z, B,1) (1.1.28)
The authors of [23] define
C(E, ) = C (W' E, ) (1.1.29)
and show that they satisfy the fusion relations
Cr V(W E) C Y (WE) =1+ CM(E)CH(E). (1.1.30)

Besides the functional relations we have exhibited here, analogues of other objects
from conformal field theory may also be constructed from the spectral determi-
nants Dy (F); in the following chapters we will encounter Bethe ansatz equations
satisfied by the zeroes of generalisations of the spectral determinants D, (E).
These Bethe ansatz equations, along with the asymptotic behaviour of the spec-
tral determinants, also determine non-linear integral equations which encode ther-
modynamic properties of the associated integrable models. In the next section,
we will elucidate these links more precisely, giving the precise correspondence
between the spectral determinants discussed in this section and the eigenvalues
of the T- and Q-operators associated with a particular family of conformal field

theories.



1.2 Integrable models (IMs)

We now introduce the other half of the ODE/IM correspondence, which is com-
posed of various integrable quantum field theories. What does it mean for a
quantum field theory to be integrable? One of the characteristics of an integrable
field theory is the existence of infinitely many commuting local integrals of motion
in the theory. This is a direct generalisation of the notion of integrability in a
classical mechanical system. Such a system with n degrees of freedom is inte-
grable if there exists n integrals of motion; that is, n functions of the positions
and velocities of particles in the system that are constants throughout the motion
of the system. These n functions must also pairwise commute with respect to the
Poisson bracket. In the context of field theory, however, the number of degrees of
freedom is infinite, and so the process of ensuring that all such integrals of motion
are accounted for is somewhat more involved. Nevertheless, this general notion of
integrability will be the definition we will adhere to in this thesis. Other possible

definitions of quantum integrability are discussed in [14].

1.2.1 Baxter’s 7" and () functions in conformal field theory

A prolific source of integrable field theories as defined above is the family of two-
dimensional conformal field theories [I7]. These are two-dimensional field theories
in Euclidean spacetime, parametrised by independent light-cone coordinates z, z,
that are invariant under holomorphic/anti-holomorphic transformations of the
coordinates z — w(z), Z — w(Z). In two dimensions, this symmetry group is
infinite-dimensional, generated by the family of transformations z — 2P, z — 2¢
for p,q € Z. This large symmetry group constrains the class of possible field
theories with this symmetry enormously, and allows for the complete construction

of the possible states and operators in the theory.

10



Conformal field theories arise in the physical description of integrable lattice
models at critical points, where the physical system undergoes a phase transition.
The prototypical example of such a lattice model is the two-dimensional Ising
model, described at its critical point by one of a particular family of conformal
field theories called minimal models [12]. A slight generalisation of this model, the
six-vertex ice-type model, defined on an N-by-N’ lattice (see [23] and [4] for more
details) is most relevant to our current discussion. The partition function of this
model can be written [44, 52] in terms of a transfer matrix T, with the eigenvalues
of this transfer matrix determining the thermodynamic properties of the system at
the critical point. The eigenvalues are calculated using the Bethe ansatz technique;
a possible candidate for an eigenvector of T dependent on some parameters v;
is constructed, with the result that it is an eigenvector of T if and only if the
parameters v; satisfy Bethe ansatz equations. Once the eigenvalues of the transfer
matrix are found (usually in the limit N, N’ — oo), physical information about

the model can be extracted from them, and the model is considered solved.

In his treatment of the six-vertex model, Baxter introduced an additional
matrix Q and found it, along with the transfer matrix T satisfied a matrix equa-
tion that is the integrable lattice model analogue to the T'Q-relation. Bazhanov,
Lukaynov and Zamolodchikov [6, [7, 8] subsequently demonstrated how to gener-
alise these T and Q matrices to operators in a conformal field theory, with central

charge

c=1-6(B—-p"1 0<p<l, (1.2.1)

and with an additional free ‘vacuum parameter’ p. The space of states of the

conformal field theory is inhabited by representations Va of the Virasoro algebra,

11



generated by a highest weight state |A), where the highest weight A is given by

(P 2 -1
A_<5> + 21 (1.2.2)

The states in V5 are generated by acting on |A) with operators L, with n < 0.

The operators L,, satisfy the commutation relations of the Virasoro algebra
c
[Lon, L] = (M — 1) Lypyy + Em(m2 — 1)dmino, (1.2.3)

where [L,,, L,] is the Lie bracket of the Virasoro algebra.

The authors of [6, [7, 8] define a transfer matrix operator T(s,p) : VA — Va,
and a pair of other operators Qi(s,p) : Va — Va, which were found to satisfy

the T'Q-relations

T(s,p)Qx+(s,p) = Qu(¢’s,p) + Qs (g >s,p), (1.2.4)

where ¢ = €™, The vacuum state |A) is an eigenstate of the T- and Q-operators,
and we define the corresponding ground state eigenvalues in the same way as the

review paper [23]:

T(s,p) = (A T(s,p) |A) . (1.2.5)

Qx(5,p) = (Al ™7 Qu(s,p) [A), (1.2.6)

where the operator P satisfies P |A) = p|A). Applying both sides of the operator
T'Q-relation to the vacuum state |A) we find the T'Q-relations as satisfied by the

ground state eigenvalues of T'(s,p) and Q+(s,p)

T(s,p)Q<(s,p) = eT*™QL(q %s,p) + " Q1 (¢*s, p). (1.2.7)
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This matches with the T'Q-relations ((1.1.27)) we found earlier satisfied by spectral
determinants of ([1.1.5)). Specifically, setting

(1.2.8)

and associating the functions T, Q)+ with C, D+ respectively identifies these two
TQ-relations derived in the context of ordinary differential equations and inte-
grable field theory. To make this identification exact, the analytical properties
of C, D must match those of 7" and @. In [26], it was shown that C'(F,[) and
D_(E,l) = D, (F,—1 —1) satisfy the following:

1. C(E,l) and D(E,1) are entire functions of F,

2. The zeroes of D_(FE,l) are all real and, if [ > —1/2, they are all positive,

3. The zeroes of C(E, 1) are all real, and, if —1 — M/2 <1 < M/2, they are all

negative,

4. If M > 1, the large-FE asymptotics of D(FE,[) are given by

D_(E,1) ~ exp (%(-E)W), as|E| = oo, |arg(—E)| <7, (1.2.9)

where

aoz—B(M+1 L M+1), WhereB(a,b):Mﬁ(b) (1.2.10)

oM 2T oM T(a+b)’
5.
I'(1+ 20+1 .
D_(0,1) = %(2]\4%)21&%*%, (1.2.11)
e
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6. DL(F,1) can be written as a well-defined product over its zeroes Ej;:

D.(E,1) = D4 (0,1) ﬁ (1 - E%) . (1.2.12)

k=1
The analogous properties satisfied by 7'(s, p) and Q4 (s, p) given in [7] where 0 <
%< 1/2 are

1. T(s,p) and Q4 (s,p) are entire functions of s,

2. The zeroes of Q. (s,p) are all real, and if 2p > (2, they are all strictly

positive,
3. The zeroes of T'(s,p) are all real, and if |p| < 1/4, they are all negative,
4. The large-s asymptotics of Q+(s,p) are given by

Qu(oup) ~exp (-2 - T, (1.2.13)
5‘ Q+(07p> = 17

6. Q+(s,p) can be written as a well-defined product over its zeroes s; :

Qu(s,p) = ﬁ (1 - ii) | (1.2.14)

s
k=1 k

With these properties satisfied by C, D_ and T, ()., the identification of the T

and @+ functions with the C' and D+ functions is precisely

D:F(§7 2_12; - %)

Qi(s.p) = — , (1.2.15)
D:F(07 % - %)
s 2 1

T(s,p) = C <;, 5—7; . 5) , (1.2.16)
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where M = 372 — 1, and

2M M -2
v=(2M +2) M+ T ( > . (1.2.17)

The spectral determinants D (F,[) exhibit other features that natively occur in
the study of integrable field theories. By setting £ = cuE,;t and F = uflE,:Ct in
(1.1.23)) and dividing the resulting expression, we see that the zeroes of E,:f of

D4 (E,l) satisty Bethe ansatz equations

+(20+1) Dy (WQEIi 1) _

=1 1.2.18
D wEn) (1.2.18)

which may be expanded using the product expansion ((1.2.12)) to yield an infinite
set of equations satisfied by the zeroes E,:Ct
o) + +
E; — w2Ej

+(20+1) R B 1.2.19

j=1

Bethe ansatz equations of this type, along with the properties satsfied by the zeroes
of D1 (F) and the asymptotics of D1 (FE), may be encoded into non-linear integral
equations [16]. The asymptotic expansion of Di(E) (|1.2.9) picks out a particular
solution of the BAEs, corresponding to the ground state |A) of the conformal field
theory. The non-linear integral equation can be solved numerically for log D1 (FE),
and hence the spectrum of the eigenvalue problems associated with may
be found numerically. Using the non-linear integral equation, log D4 (FE) may also
be expanded [24] as an asymptotic power series in F S and EM +1 and the
coefficients in this expansion are the ground-state eigenvalues of the integrals of

motion of the corresponding integrable field theory.

We have seen above how the authors of [9] and [26], building on [25], demon-

strated the ODE/IM correspondence between eigenvalue problems associated with
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the anharmonic oscillator with an angular momentum term and the ground-
state eigenvalues of Q-operators associated with conformal field theory. The scope
of the ODE/IM correspondence has since been expanded to encompass links be-
tween more eigenvalue problems and other integrable field theories. In the next
section, we briefly survey some of these generalisations, introducing the two major

generalisations that will concern us for the rest of this thesis.

1.3 Generalisations of the ODE/IM correspon-

dence

Since the early papers [25], [0, 42], there have been large generalisations to the
ODE/IM correspondence, matching ever larger classes of eigenvalue problems to
other quantum integrable models. The example of the ODE/IM correspondence
we have studied in sections|l.1|and |1.2]is related to the Lie algebra A; = su(2). It
is natural, then, to consider examples of the ODE/IM correspondence connected
with more elaborate Lie algebras. In [54, 22], the eigenvalue problem

M=1" where « is a

was considered with the 22" term replaced with 22 + ax
constant. Functional relations are constructed in a similar manner to the A; case
considered in sections [I.1] and [I.2] The algebra related to this class of examples

of the ODE/IM correspondence is the Lie superalgebra sl(2|1).

The ODE/IM correspondence has also been extended beyond second-order
ordinary differential equations; in [27] a third-order differential equation was found
to be related to an integrable field theory related to the affine Lie algebra A§2>.
This work was then extended to differential equations related to the Lie algebra
AWM in [53, 21]. The spectral determinants of these differential equations were
found to satisfy functional relations related to an integrable field theory associated

with the Lie algebra A,. Moreover, from these functional relations, the authors
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of [21] derived A, Bethe ansatz equations and a set of related non-linear integral

equations, which matched non-linear integral equations derived in [58].

A natural generalisation, after considering the ODE/IM correspondence re-
lated to the Lie algebra A, = su(r + 1), is to bring the other classical families
of simple Lie algebras B, = s0(2r + 1), C, = sp(2r) and D, = so(2r) into the
fold. In [I8, 19], Bethe ansatz equations for the classical Lie algebras were de-
rived from specially constructed pseudo-differential equations; these are equations
which incorporate an inverse derivative operator (%)71. Additionally, in [47, 48],
the ODE/IM correspondence was considered for arbitrary simple Lie algebras g
by studying a set of linear systems constructed from representations of Lie algebra
generators of the Langlands dual algebra g¥. The authors of [47, [48] demonstrate
the solutions of these linear systems satisfy the W-system, from which they de-
rive quantum Wronskians and Bethe ansatz equations associated with the simple
Lie algebra g. These results were written in the language of affine opers in [34],
and the quantum Wronskians were rederived in that paper as a consequence of
relations between elements of representations of subalgebras of quantum affine

algebras U,(g), which contain the previously mentioned Q-operators and their

generalisations to general simple Lie algebras.

There are two other generalisations of the ODE/IM correspondence that are
particularly relevant to this thesis. The prototypical example of the ODE/IM
correspondence we have encountered in sections and related the spectral
determinants constructed from a second-order differential operator to the ground
state eigenvalues of the Q-operators. For each vacuum state |A) there exists
an infinite family of excited states, constructed by acting on the vacuum state
with generators of the Virasoro algebra . Each of these excited states were
naturally expected to correspond to a particular member of a family of unique

second-order ODEs. This family of ODEs, first studied in [10], depend on a set
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of parameters {z;}, and are generalisations of the ODE ([I.1.5)):

d*1) (+1) oy & < 2M+2
—st ( o A 2@;1%(9; — ) |v=Ey.  (1.3.1)
In order for the spectral determinants associated with (1.3.1)) (with the same
boundary conditions as ([1.1.5))) to match the properties of the excited state eigen-
values of the Q-operators, the solutions of ([1.3.1)) must be single-valued at all
points of the complex z-plane except for x = 0 and & = co. This requirement [29]

leads to the algebraic locus equations [10, [33]:

1+ 2M)(3 4 M)zpzj + M(1+2M)z3)

(2 — 25)?

i#k

M
- 4(TZ§W) + A = 0, Zk diStiHCt, ]{I = 1, e ,L. (132)

The ODEs were denoted as ‘monstrous’ by the authors of [I0] because
of their apparent lack of utility in ODE theory. However, equations of the form
for M =1 were studied in [32], where the zeroes of Wronskians of Hermite
polynomials related to the equations were found to form patterns in the
complex-r plane corresponding to certain partitions of integers. In chapter
we will study the locus equations and show how the presence of singular
vectors in the conformal field theory are telegraphed by the loss of one or more
solutions of the algebraic locus equations . We also solve a puzzle that
occurs at certain values of M and [, namely the loss of solutions of but
without the presence of these singular vectors. This puzzle is resolved by a slight

generalisation of the assumptions used to derive the locus equations.

The second important generalisation was the more recent extension of the
ODE/IM correspondence to massive integrable field theory. All the examples of

the ODE/IM correspondence we have seen so far were associated with massless
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integrable field theory; namely, various conformal field theories. The first indi-
cation of an extension to massive integrable field theory was given in [I1], where
the authors suggested the study of certain partial differential equations in order
to extend the ODE/IM correspondence to massive integrable field theory. This
goal was first realised in [45], with the ODE side of the correspondence replaced
with a classical partial differential equation (in the case of Agl), the massive sinh-
Gordon equation) expressible in terms of a Lax pair of linear equations. It is these
linear equations and the properties of their spectral determinants that contain in-
formation on the corresponding massive integrable field theory. We will review
the Agl) case of the massive ODE/IM correspondence in chapter [3| following the
calculations in [45]. We will begin with the massive sinh-Gordon equation, define
the related Q-functions, and the functional relations and Bethe ansatz equations
that they satisfy. We will also see the Re§ — +00 asymptotics of @) will also con-
tain the ground state eigenvalues of the integrals of motion of the related massive

integrable field theory.

The remainder of the thesis will consist of generalising the procedure given in
chapter |3| to systems of classical PDEs with more involved Lie algebra structure.
This was partly performed in [2| 37, B8], where the authors determined Bethe
ansatz equations satisfied by @-functions in the conformal limit. The relevant
non-linear integral equations for the A" case were also given in [41]. We will
generalise the analysis in these papers, following [45] to derive integrals of motion

for the integrable field theories associated with the simply-laced Lie algebras.

We begin with a brief overview of the relevant theory of Lie algebras in chap-
ter 4, which will serve to fix the notation we will use throughout the thesis. This
chapter will also demonstrate methods of converting systems of differential equa-

tions to pseudo-differential equations present in the literature [I8, 19, 1], and will
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contain a generalisation of the WKB approxmiation [13] to systems of differen-
tial equations. Having established all the relevant prerequisites, chapter [5| will
extend the massive ODE/IM correspondence to the A case, building on results
in [2, 37, 38]. We consider the remaining simply-laced Lie algebras, namely the
family DV and the exceptional Lie algebras Eél), él) and Eél) in chapter |§|
Finally, in chapter [7] we close with some concluding remarks and an outlook for

future research.
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Chapter 2

Excited states of conformal field
theory and the Schrodinger

equation

2.1 Introduction

The prototypical example of the ODE/IM correspondence we considered
in the introduction was a connection between eigenvalue problems defined by a
second-order Schrodinger-type differential equation and the ground state eigen-
values of Q-operators associated with a particular class of integrable models, con-
formal field theories. Such theories are also inhabited by excited states, which are
themselves eigenstates of the Q-operators. A natural generalisation of the exam-
ple of the ODE/IM correspondence in the introduction would be to find ODEs

that correspond to these excited states.

A family of ODEs ([1.3.1]) which corresponded to the excited states were found

in [I0]. The authors of [10] constructed a set of differential equations dependent
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on a family of parameters {z;},, which are constrained by a set of algebraic
locus equations . Each solution of the locus equations was conjectured in
[10] to correspond to a particular state in the conformal field theory, although
the exact number of solutions of for all values of the parameters M and [
is not known definitively. Numerical investigations have so far corroborated the
conjecture of [10], and the case when M = 1 has been explored in detail in our

paper to appear that will also include work in this chapter.

In this chapter, we begin in section by introducing information about the
conformal field theories of interest and the spaces of states that define them. We
then introduce the relevant ODEs in section [2.3] whose potentials are constrained
by conditions on the asymptotics and the requirement of single-valuedness of the
solutions of the ODEs. These constraints imply a set of algebraic locus equations
that determine the possible ODEs. Lastly, in section we consider the solutions
of the locus equations more closely, solving an apparent discrepancy between the
number of states at certain levels in the conformal field theory and the corre-
sponding admissible ODEs. A more general form of the locus equations than that

given in [I0] will rectify this mismatch.

2.2 Conformal field theory

In this section we will briefly introduce the relevant concepts relating to conformal
field theory (CFT). For a more complete introduction to the subject we refer to
the standard text [I7]. For our purposes, a CFT is a two-dimensional quantum

field theory, with a Hilbert space of states

H=EVa. (2.2.1)
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(here we have omitted the anti-holomorphic space of states H, populated by sub-
spaces Vx; the full Hilbert space is then H ® H) where the subspaces Va are

representations of the Virasoro algebra

C

[Lim, Ly) = (m —n) Ly + Em(m2 — 1)6m+n.0, (2.2.2)

generated by a highest weight state |A). The constant parameter ¢ is the central
charge of the CFT. A representation (or Verma module [I7]) Va of the algebra
(2.2.2)) is generated by a highest weight state |A), defined by

Lo|A) = AJAY, L,|A)=0 forn> 1. (2.2.3)

The remaining states in Va are generated by the repeated action of the raising
operators L_,. Using the commutation relations (2.2.2)) a general state in Va

L gL gy...Ly, |A), (with ki, ke, ... Ky > 0) is also an eigenstate of Ly:
Lo(L_jyL_py.. . Ly, |A))=(A4+k+- - +kn)L_g L g,...Lg, |A). (2.2.4)
The representation Va then decomposes into a direct sum of subspaces V(AL),

Va=PVY, Loy =@+ L0l (2.2.5)

L=0
where L € Z>¢ is the level of the subspace V(AL). The subspaces V(AL) are spanned
by p(L) linearly independent states, where p(L) is the number of partitions of
the integer L. Labelling the states in V(AL) by {|1),2),...,|p(L))}, we define the

Kacs determinant

7777

det (1417} 1,000 ) (2.26)
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where, if [i) = L_;, ... L_; |A) and |j) = L_;, ... L_; |A), then

Using the Virasoro algebra and the properties of the highest weight state
, the Kacs determinant for each level subspace V(AL) may be found as a func-
tion of A and c. Zeroes of the Kacs determinant indicate the presence of singular
vectors |i), which are orthogonal to all other states in Va and satisfy (ii) = 0.
These singular vectors are the highest weight states of a sub-representation of
the Virasoro algebra, indicating the representation VA becomes reducible at these
points. The singular vectors should also arise naturally in the related set of differ-
ential equations, and the authors of [10] gave some evidence that this was indeed

the case.

The Q.-operators were constructed in [7, 8, [10] as a CFT analogue to Baxter’s
() matrices used in the description of the statistical mechanics of six and eight-

vertex ice-type models [4]. These Qi-operators respect the decomposition of the

representation Va
Q. VY = Vv, (2.2.8)
The highest weight state |A) is an eigenvector of the Q-operators
Qx(s)4) = QL"(s)|A) . (2:2.9)

where s is a complex parameter. It is the vacuum eigenvalues Q(iwc)(s) that cor-

respond to spectral determinants Dy (F) associated with two eigenvalue problems
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concerning the Schrodinger equation

_dsz(;c) . (xQM + M) G(z) = B(z), M>1,1>-1/2, (22.10)

12

on the positive real axis. The equation (2.2.10]) has two solutions in the |z| — 0

limit
Xi(z, Byl) ~ a2y (2, B ) ~ a7t |z =0, (2.2.11)

and a unique decaying solution on the positive real axis as |z| — oo:

/2 gy (2 2.2.12
y(x) ~x exp |\ =37 ) (2.2.12)

We define two eigenvalue problems by searching for eigenvalues £ = E; that

produce solutions ¢ (z, Ef, 1) satisfying

U(z, EE, 1) ~ xa(z) as|z| — 0, (2.2.13)

Y(x, BE 1) ~y(x) as|z| — oo. (2.2.14)
These eigenvalues E,:Ct then define the spectral determinants

D+(E)=D+(0) ] (1 — E%) : (2.2.15)

k=1

The key result of the example of the ODE/IM correspondence we considered in
the introduction was the relation between the spectral determinants D4 (E) and

the vacuum eigenvalues of the Q-operators in the following way [10]:

i21+1

QU(s) = (—s)**F' D+ (vs), (2.2.16)
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where the constant v is given by

(2.2.17)

The constants M and [ are related to the central charge ¢ (defined in (1.2.1])) and
the highest weight A ((1.2.2)) in the following way
6.M? (21 +1)% — 4M*

—1- A= . 2.2.18
¢ M+1 16(M + 1) (22.18)

The result of [I0] was to extend the correspondence between the vacuum eigenval-
ues of the Q-operators and the spectral determinants of the Schrodinger equation
(2.2.10)) to excited eigenvalues of the Q-operators, corresponding to eigenstates in

V(AL) with L > 0. The corresponding differential equations are of the form

——s V(z)p = Ey, (2.2.19)

where the so-called monstrous [10] potentials V' (z) are given by

I(l+1 d?

L
> log (2?2 — z), (2.2.20)
k=1

and the constants {z}r_, (with z; # z;) satisfy the algebraic locus equations

([T.3.2).

In the next section we will derive the monstrous potentials and the
locus equations constraining the parameters {zk}ﬁzl, from constraints on
the asymptotic and single-valuedness properties of the potentials. A similar cal-
culation is performed in sections 4.4-4.6 of [31]: in that paper the authors work

with sly-opers which are equivalent to second-order Schrédinger operators.
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2.3 Algebraic locus equations

We begin with the general Schrodinger equation
—7 + V(ZL’)’(/) = E¢, (2.3.1)

and we note [10] that eigenvalue problems of this form (with the boundary con-

ditions (2.2.13]) and ([2.2.14))) correspond to eigenvalues of the Q-operators if and
only if the potential V'(z) satisfies the following properties:

Viwz) =w™?V(z), wherew = ™HM+D

Y

(this symmetry ensures that if x(x, F,l) is a solution of (2.3.1)), rotated
functions of the form (|1.1.14)) are also solutions of (2.3.1))),

I(1+1)

T2

V() ~

as |z| — 0,

V(z) ~2*™  as|z] = oo,

4. For any value of E all solutions ¢ (z, E,1) of (2.3.1)) are single-valued except
at x = 0 and x = co. By this, we mean for any solution ¢ (z, F,l) and any
' € C\ {0}, ¢¥(z, E,l) has a convergent Laurent series in some sufficiently

small punctured neighbourhood of z’.

With these conditions, the spectral determinants associated with (2.3.1]) satisfy the

same analytic properties and functional relations as the corresponding eigenvalues
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of Q4 (s). To implement these conditions, we rewrite V(z) as

V(z) = + M (). (2.3.2)

Property 1 implies

v(x) = 22 F (2*M72), (2.3.3)

2M+2

where F' is a rational function of z . Properties 2 and 3 constrain the function

F' further, mandating that
F(0)=0, |F(0)| < 0. (2.3.4)

These constraints on F' along with Liouville’s theorem imply that there exist poles
at finite values of z. Following appendix B of [10], consider the Laurent expansion

of V(x) about a given pole = = xy,,

o0

V(z)= ) (z— 1) Vi, (2.3.5)

m=—00

where we will see the double index xj, is a convenient labelling for the poles
of V(z). The Laurent expansion is constrained by Property 4 above; to
ensure the single-valuedness of the solution ¢ (z, E,l) we invoke a result due to
Duistermaat and Griinbaum (Proposition 3.3 in [29]), which states ¥ (z, E, 1) is
single-valued about = x, if and only if the coefficients of the Laurent expansion

of V(x) satisfy the following conditions:

V., =0, where n < —2, (2.3.6)
Voo = v p(vgp + 1), where vy, € Z>o, (2.3.7)
Vor—1 =0, where k =0,1,..., . (2.3.8)
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For now, we consider the simplest non-trivial case considered in [10], where all
the poles have vy, = 1. We will see that there are particular values of L, [ and
M where this assumption breaks down, but for generic values of L, [ and M the
following computation of the locus equations will be valid. We will discuss

the cases where the locus equations break down in section [2.4]

The boundedness of F' in the limit |x| — oo implies that the potential V' (z)

may be written as a sum over Laurent expansions about its poles z = zy, ,:

V(r) = W+ +a?M (SE_;W (2.3.9)

T2

where the constraint V_; = 0 in (2.3.8)) implies the poles at x = zy, are double

poles. The symmetry constraint imposed by Property 1 also constrains the poles

to be (2M + 2)™ roots of some constants 2, so that
Ty = 2 CMIR2m/MA2) 0 1 OM 1. (2.3.10)

This pattern for the roots is only valid for rational M. The final locus equations

are valid for all M by continuity from rational M. The sum in (2.3.9) then takes

the form
(1+1) . L 2M+1 9
Viz) = 2.3.11
(2) ST+ ; Z TR ( )
= p_
which we rewrite as a sum of second derivatives of logarithms
l(l+1) ol d2 L 2M+1
Vi) = =—5—+a" -2 k§1 ; log(z — 1), (2.3.12)
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which simplifies using ([2.3.10))

_ 2M 9 4 2M+2
Vie) ==— de2 Zlog — ), (2.3.13)
which matches the form of the monstrous potential given in [10]. With this general
form of the potential, we now enforce the additional constraints on the Laurent
expansion of (2.3.13) at its poles, given by (2.3.8). Specifically, for the case v, = 1
we consider here, we require the component V; in the Laurent expansion (12.3.5))

about each of the poles of V' (z) to be zero.

Without loss of generality, let us consider the Laurent expansion of V'(z) about

2M+2 — 5 To aid in the calculation of the coefficient V4

a pole x = w, where w
of (x —w) in this Laurent expansion, we rewrite V' (z) in a more convenient form,

separating the contributions from the roots of z; from the other roots

I(0+1 2 2
V(z) = ( . ) 4 p2M 2@ Z log (SL’ — we2M+2> _ 2@ Zlog(:czM” . Zj)
=0 ik

The term proportional to (z — w) in the Laurent expansion of V' (z) is given by

l(l “I'_ ].) 2M—1 2M+1 3 2miq
— S Mt -2 Y log (:c - we2M+2) ) (2.3.15)
q=1 T=w
2M 42
_Qdeg log(x - 2) )
ik =w
We set (2.3.15]) equal to zero and evaluate the derivatives
2(1 + 1 4 2 1
2010+ 1) oMM — —
w3 w =1 (1 _ €2M+2)3
8(1+ M : M
_ & i ) 3 Al 2 3) —0, (2.3.16)
wh e (2~ )
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where a(z;, z;, M) is the polynomial

G(Zjuzk,M) = (2 + QM)Q,ZI:;’ — 3(1 + 2M)<1 + M)Zk(zk — Zj)

+ M(1+2M) 2z (21, — 2j)*. (2.3.17)

The sum of roots of unity in (2.3.16)) is given by [36]:

2%51 ! By (2.3.18)
o (l—emimp 8 a

After algebraic manipulation, (2.3.16|) then simplifies to the locus equations

_ LA=0.
(zx — 2j)3 414+ M)

i#k
(2.3.19)

The solutions (21, 29, . . ., z1,) of the locus equations up to permutations of zj
define monstrous potentials which themselves define eigenvalue problems
with their associated Schrodinger equations. For a given level L and for generic [
and M, there should then be p(L) solutions of the locus equations, corresponding
to the p(L) states in the subspace V(AL). For certain values of M and [, the Kacs
determinant will be zero, indicating the presence of a singular vector in
the space V(AL). As an example, we compute the Kacs determinant of V(A2) =

{L_5|A), L%, |A)} using the Virasoro commutation relations (2.2.2)):

(Al LsL 5 |A) (AlL2L 1A laate2 6a 2590,
(A| L%, [A) (A|L2L2, |A) 6A  4A(2A + 1) -

= 2A(16A% 4+ 2(4 + ¢)A + ¢ — 18).
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We set this Kacs determinant equal to zero and see that, for

6M2
2A(16A% + 2(4 A —18) =0 =1-—
(16A% +2(4 + )A+c—18) =0, c=1- 13—
1—2M 1+3M

W1+ M)y T g

(2.3.21)

— A =0, (2.3.22)

These roots match the expressions in [17] for the roots of the Kac determinant for

the level subspace V(AL),

1 (rM + (r —s))> — M?
A (L2 = >1. rs < L. 2.3.2
rs (M) T T 1) , rs>1,rs < (2.3.23)

We find

1 1 1—-2M 1 1+3M
A1,1 (M) - 0, A172 (M) = m, A271 (M) = 1 . (2324)

If A matches one of these roots, a singular vector arises in the associated CFT. At

these roots, one of the solutions (21, z2) of the associated locus equations ([2.3.19)
disappears as one or both of the z; goes to zero. The number of solutions of the

locus equations should then match the number of non-singular vectors in V£.

For L > 3, however, there exist points in the (I, M) parameter space where
the number of solutions of the locus equations reduces, and yet the Kacs
determinant is non-zero, indicating the absence of any singular vectors. Numerical
investigation of the locus equations uncovered this peculiar behaviour at the point
L=3,1=3/4, M =1. As [ — 3/4, one of the solutions (z1, 22, 23) converges on
the point (—15/16,—15/16, —15/16), with the solution disappearing entirely at
the point [ = 3/4. The locus equations cannot describe this solution, as they were
derived with the assumption that the constants z; were pairwise distinct, which
obviously fails to be true at this so called ‘triple point’. In the next section, we

will investigate the nature of these triple points and present a method of locating
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them.

2.4 Solutions of the locus equations

The algebraic locus equations in the form ((1.3.2)) cease to have validity at points in
the (I, M) parameter space where any of the solutions z; fail to be distinct. How
then do we handle solutions like the triple point at L = 3, [ = 3/4, M = 1?7 This
problem is resolved by considering the result - due to Duistermaat
and Griinbaum again; recall that we chose the integers 14, = 1, following the
authors of [I0]. We may, in principle, relax this condition, although implies
we must now ensure the cubic and other terms in the Laurent expansion must be
zero as well. For general vy, we then have a set of locus equations, which must
be simultaneously solved to locate the points where the solutions z; coalesce for

a given [ and M.

To demonstrate this, we consider the potential

d2
_ 2M 2M 42
V(z) = . + " — 6d;1:2 log(x —21). (2.4.1)

1/(2M+2) j2mip/(2M+2

This potential has poles at z = x1, = 2z ), and the Laurent

expansion of V'(x) at each of these poles has dominant behaviour

6
V(z) ~ [CErE +...as T — Ty, (2.4.2)
i.e. we have set vy, = 2 in (2.3.7). This choice of vy, means that about any

pole z = w, the terms proportional to both (z — w) and (x — w)® must be zero.

2M+2

We therefore expand V' (z) about an arbitrary pole z = w, with w = 21, and

consider the linear and cubic terms of the Laurent expansion.
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Setting the linear term of the Laurent expansion of V(x) equal to zero yields

2M+1
1

—20(1+1)+2Mz —12 )

1 (1 — 62M+2)

= 0. (2.4.3)

We recall the sum of roots of unity in (2.4.3) was evaluated in (2.3.18)), so that

1 —4M?
(14 1) + 2M 2 — 3(2—) 0, (2.4.4)

is the constraint on z;,{, M from the constraint V; = 0 in (2.3.§).

The cubic term set equal to zero yields

2M+1
1
—241(1 4 1) + 2M(2M — 1)(2M — 2)z; — 144 > ————— =0, (2.4.5)

2miq

=1 (1 —enrz)s

with the sum of roots of unity in this expression given by

2%? 1 _(2M — 3)(2M + 1)(4M? + 20M — 3) (2.46)
(1— exia)s 288 ' o

g=1

The cubic term then yields an additional constraint on [, M and z; which must

be satisfied to allow the presence of a triple point

—A8I(1+ 1) + 4M(2M — 1)(2M — 2)z

— (2M — 3)(2M + 1)(4M? +20M — 3) = 0. (2.4.7)

The presence of two constraints on (I, M, z) indicates that triple points will only
occur at certain values of [ and M. As a check on our calculation, we substitute

[ =3/4 and M = 1 into the equations (2.4.4) and (2.4.7). The second of these
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reduces to zero; the first of these yields a linear equation for z;

15
which proves the existence of a triple point at z; = —15/16 for | = 3/4 and

M = 1. We have therefore demonstrated that if the potential can be
rewritten in the form (2.4.1) (i.e. if z; = 2o = 23) the locus equations are
no longer sufficient to determine the values of the z;. In the case of these triple
points, the cubic term of the Laurent expansion potential V' (z) about z = w,

2M+2

with w = z; must be set equal to zero, satisfying Duistermaat’s condition for

single-valuedness (2.3.8)).

One may of course consider more general potentials of the form

2
ve (v + 1)d—2 log (2*M*% — ), (2.4.9)

dx

=
&
I
_.|_
Hl\')

=
|

-

where v is an integer > 1. For v, > 1, higher-order terms of odd power in the
Laurent expansion of the potential must be zero, as decreed by ([2.3.8)). Consider-
ing more general potentials of the form ([2.4.9) allows the general analysis of points

where the solutions of the original algebraic locus equations ((1.3.2)) coincide.

As a final note, we have yet to find an example of a ‘sextuple point’, or other
more complicated examples. In principle, points where v(v+1)/2 solutions (where
v=0,1,2,...) of the original locus equations coalesce are possible. How-
ever, we have already seen the presence of triple points constrains the allowed
values of [ and M by imposing an additional equation [, M and the z, must sat-
isfy. Higher order points such as the sextuple point can only occur at specific

values of [, M and z.
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We illustrate a sextuple point by considering the potential

I(l+1 d?
V(z) = ( ; ) a2 12— log (2?72 — 21) (2.4.10)
where vy, =3 for p=0,...,2M — 1. For solutions of the associated Schrodinger

w2M+2

eigenvalue problem to be single-valued about a pole z = w ( = z1), we

require the linear, cubic, and quintic terms of the Laurent expansion of ([2.4.10))

about x = w to vanish. This leads to three equations in [, M and z;:

OM(6M + ) —2(14+1) =3 =0, (2.4.11)
9+ 2411 + 1) + 8M(—6 4+ M(—13+2M(4 + M))) (2.4.12)
—4(M —1)M(2M — 1)z, = 0,
—135 — 144001 + 1) + 16 M (144 + 120M — 428 M?* — 27M? + 48M*  (2.4.13)

+8MP 4 (=2 4+ M)(=1 4+ M)(=3 +2M)(—1 +2M)z) = 0.

Exploring the solution space of these coupled polynomial equations, we have found

only two solutions that satisfy both [ > —1/2 and M > 0. They are

[ =0.214905263947..., M = 0.185911063538..., z; = 8.35728635815...  (2.4.14)

[ = 14.56857388290..., M = 3.263779478909..., z; = 50.3705538334...  (2.4.15)

(2.4.11)) and the reality of [ and M (due to the inequalities on [ and M) enforces
the reality of z;. Numerical investigation of the original locus equations (|1.3.2))

indicates as predicted the coalescence of the six points z; in one of the eleven

solutions of ([1.3.2)) near these points.

Points where v, = 4 (where 10 solutions of the locus equations coincide) would
require the coefficients of (x — w), (z —w)3, (z —w)® and (z —w)” in the Laurent

expansion of V(z) about = w. This will induce an overdetermined system of
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L + 3 equations in L + 2 parameters [, M and z, ..., 2;. Numerical investigation

of the locus equations associated with the potential

(141 d?
V(z) = ( ; ) + M — 20— log (2*M+? — 2), (2.4.16)

revealed no solutions [, M, z; which satisfied the four equations in the space

1>—1/2, M > 0.

2.5 Conclusions

In this section we have studied the algebraic locus equations given in [10]. We have
given a derivation of these equations, and solved an apparent mismatch between
the number of states in a given level L of the state space of a conformal field theory
at certain values of the central charge ¢ and highest weight A and the number of
solutions of the locus equations . This problem was resolved by considering
higher-order terms in the Laurent expansion of the potential V' (z), setting them
equal to zero as mandated by Duistermaat’s conditions . This generates a
set of generalised locus equations, and the solutions of the locus equations in this

more general setting then account for all the states in the conformal field theory.

In principle, the study of excited eigenstates of the Q-operators defined on
Agl) conformal field theories should extend to all the other field theories we
have considered in this thesis. Particularly, the excited eigenstates conformal
field theories with A" Lie algebra symmetry should be straightforward to match
with more exotic differential operators, perhaps depending on sets of parameters
z,g),z,(é), o z,i:), with 1 < k; < p(L;) and with {Lq,...,L,} being a set of r in-
tegers. To perform this generalisation, however, we first require a result similar

to Duistermaat and Griinbaum’s result in [29], guaranteeing single-valuedness of

37



solutions of differential operators of the form

dr—i—lw

dr—lw
Cdprt!

dIT_l

ot +an,2(x)% +V()(z) = Ey(x)  (25.1)

+ a1<$) dr

about poles in the coefficients a;(z),...,a,_2(x),V(x). With this result and a
suitable generalisation of the asymptotic and symmetry properties given in section
[10], it will be possible to derive a class of suitable monstrous (even more so)
potentials and to relate their spectral determinants to eigenvalues of the associated

Q;-operators in the A,(ﬂl) conformal field theory.
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Chapter 3

The massive ODE/IM

correspondence

3.1 Introduction

The examples of the ODE/IM correspondence we have seen thus far have related
the spectral determinants of second-order Schrédinger-type differential operators
to the eigenvalues of Q-operators that appear in certain conformal field theories.
We now consider another major generalisation of the ODE/IM correspondence,
first indicated in [I1] and applied by Lukyanov and Zamolodchikov in [45], which
extends the ODE/IM correspondence to massive integrable field theories. The
story starts with classical partial differential equations (PDEs), with a Lax pair
representation defining associated systems of differential equations. @-functions
are then defined for these systems, and it is these that contain information on the

ground state eigenvalues of the Q-operators in the massive integrable field theory.

In later chapters, we will explore this massive ODE/IM correspondence related

to classical PDEs related to the simply-laced Lie algebras. We first describe the
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smallest non-trivial simple Lie algebra Agl), as in [45], but introducing notation
that will generalise easily to the cases involving larger Lie algebras. In section
we define the relevant PDE, the modified sinh-Gordon equation, and its Lax pair
representation, a pair of systems of differential equations. The solutions of these
systems define @-functions, which are the objects of study in section [3.4 The
@-functions satisfy functional relations and Bethe ansatz equations related to the
integrable field theory, and from these, we define a non-linear integral equation
and use this equation in section [3.5]to derive expressions for the integrals of motion

of the associated massive integrable field theory.

The above procedure, which will provide the framework for our study of more
general Lie algebras, is summarised in Figure [I. We will not consider the T-
functions for the Agl) case in this chapter; this topic will be covered, along with
the T-functions for the A" case, in chapter . The U-system is also unnecessary
for the A(ll) case, as the quantum Wronskian is sufficient in this case to derive the

Agl) Bethe ansatz equations.

3.2 The modified sinh-Gordon equation

3.2.1 The Lax pair representation

Lukyanov and Zamolodchikov [45] began with the modified sinh-Gordon equation,

given by

B0,0:0 — m?e*P? + p(2)p(2)mPe ¢ = 0, (3.2.1)
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~ @@
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Figure 1: Diagram outlining the procedure that will be followed for the study of the
massive ODE/IM correspondence for the simply-laced Lie algebras.
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where ¢(z, z) is a scalar field in the independent complex coordinates z and z, 3

is a dimensionless coupling constant, m is a mass parameter, and

p(z) = 22M — 2M (3.2.2)

where M > 0, and s > 0. The constant 3 can be removed by rescaling ¢ — ¢/f,
but we will retain it to match notation which matches that found in [37] [38] which
generalises more readily to larger Lie algebras. We are also solely concerned with
real solutions to . We will therefore treat z and z as independent complex
variables, but we will only consider the solutions of on the subset of C?

where z = 2*.

The result of [45] was to connect the modified sinh-Gordon equation ((3.2.1])
to the quantum sine- and sinh-Gordon massive integrable field theories. They
began this process by recasting in the form of a Lax pair. Following
[45], we define the generators {H, E1} of the Lie algebra A; = su(2), and the

commutation relations that define that algebra

[H,Ey] = +2E,, [E.,E.]=H. (3.2.3)

We then define the Lax pair

(0. 4+ A)¥ =0, (3.2.4)
(0: + A)¥ =0, (3.2.5)
where A and A are given by
A= D00 H £ mee™ B, 4 mep(2)e E_. (3.2.6)
A= —g .o H +me e’ E_ +me p(z)e P E,. (3.2.7)
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The modified sinh-Gordon equation ([3.2.1)) may then be recovered from the com-

patibility condition
0,A—0:A+[A Al =0, (3.2.8)

using the commutation relations (3.2.3]).

In this chapter, we work with the fundamental representation of A;

, B, = , E_= . (3.2.9)

(In [45], H = 03, E4+ = 0+.) In the representation , the Lax pair (3.2.4)-
form two two-dimensional systems of differential equations. The solutions
U of these systems of equations in the |z|] — 0 and |z] — oo limits will allow
us to define @-functions which will encode information on the related massive

integrable field theory.

The presence of the exponential terms in the matrices A and A make a con-

sideration of the asymptotics of the Lax pair equations (3.2.4))-(3.2.5)) more com-
plicated, and make a connection to the eigenvalue problem ([1.1.5) discussed in

the Introduction more opaque. To remedy this, we define, for an arbitrary 2-by-2

matrix U(z, Z), a gauge transformation

A—UAU Y +UOU, (3.2.10)

A UAU Y+ UOU™Y, U —UU.

Using Q(UU) = UOU ' +0UU ! = 0, (where 0 = 9, or 0;) it is straightforward
to show that the Lax pair equations (3.2.4))-(3.2.5) and the compatibility condition
(3.2.8) are invariant under the gauge transformation (3.2.10). By an astute choice

of gauge it is then possible to remove the exponential terms from A or A, although
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this is not possible for both simultaneously.

We demonstrate the utility of this gauge transformation by setting U =
e PPH/2 where the exponential of an operator X is defined in the standard way
as a power series
b's

k=0

Gauge transforming A using this matrix U has the effect of removing the incon-

venient exponential terms from A:
A— A= 0.0 H+me’E, +me’p(z)E_ (3.2.12)
where the derivation of uses the identity
ABe = B4 [A B+ A A B+ A A B+ (3213
Under this gauge transformation, A becomes
Ao A=melePE_ 4 me ?p(2)e B, (3.2.14)

retaining the exponential terms. If we wish to consider the linear system (9; +

A)¥U = 0 with the exponential terms removed, we must perform another gauge
transformation on the original Lax pair — with U = e5¢H/2. We will
mostly work with the choice of gauge defined by U = e #¢H/2 removing the
exponential terms from the holomorphic equation (3.2.4). This choice of gauge
does not affect the final outcome of our calculations; it is merely helpful to consider
the asymptotics of a simpler form of one of the Lax pair equations and then undo

the gauge transformation to find the asymptotic solutions of the original equations.
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It is also useful to introduce the Symanzik rotation [37] Qy for k € Z:
) rik/M 5 5 —mik/M mik wik/M
Qn:z— ze , 7 — Ze ,G%H—W,s%se ) (3.2.15)

Under a Symanzik rotation, the matrices A and A are rotated in the complex

plane
A— e ™RMA Ay emR/M A (3.2.16)

The derivative operators 0, and J; have the same respective behaviours under a
Symanzik rotation and so the linear systems (3.2.4)-(3.2.5) are invariant under
Symanzik rotation. Any Symanzik rotation Qx[V] of the linear systems is also

a solution of the linear systems. We will often exploit this property, defining

solutions of the linear systems (3.2.4)-(3.2.5)) that respect the Symanzik rotation.

3.2.2 Solutions of the modified sinh-Gordon equation

The gauge-transformed linear system (0, + g)\i = 0, written out using the fun-

damental representation (3.2.9)), is given by

9. + p0.¢ me’ U1

=0 (3.2.17)
me’p(z) 0. — 0.0) \¥2

where ¥ = (QZI, JQ)T. To analyse the asymptotics of the solutions of the system of
equations ([3.2.17]) we must first define a particular solution ¢(z, z) of the modified
sinh-Gordon equation (3.2.1). Following [37] we choose a solution ¢(z, z) which

satisfies the following conditions:

e ¢(z,z) should be real and finite everywhere, except at |z| = 0.
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e Periodicity

P(ze™*M ZemmR/IMY — (2 Z), k€ Z, (3.2.18)

e Large-|z| asymptotics:

d(z,2) = %log(zz) +o(1) as|z| = oo, (3.2.19)

e Small-|z| asymptotics (where g € R):

¢(z,2) = glogzz+ O(1) as|z| = 0. (3.2.20)

The constant g is not entirely free; it is constrained by the requirement that g log 2z
is the dominant behaviour for ¢ in the small-|z| limit. To see this, substitute the

ansatz
6(z,2) = glogzz + f(z,2) (3.2.21)

into the modified sinh-Gordon equation (3.2.1). The result is an equation for
f(z,%)

2 2
220.0.f = 2i<2:§>1+26g€25f _ 2ﬂ<Z2M _ 2MY(52M _ 2My(,5\1-289,—28f

p p
(3.2.22)

f(z,%) is then expanded as a power series in powers of (zz)'*209, »2M  z2M.
o0

f(z.2) =Y Flag,ar,b,c)(zz) 200 Tor(14200) 200 z2eM (3.2.23)

ag,a1,b,c=0
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where F(ag,a,b,c) are constants fixed by the substitution of into the
modified sinh-Gordon equation . Our desired solution ¢ must satisfy
in the small-|z| limit, implying that f(z,2z) = O(1) in that limit and that all pow-
ers of z and Zz in (3.2.23) must be positive. This leads to the constraints on

9

1-28g>0, 1+28g>0 = |fg|<1/2. (3.2.24)

Setting Sg = [, this constraint matches the constraint |I| < 1/2 in [45].

With the solution of the modified sinh-Gordon equation (3.2.1)) fixed, we now
consider the asymptotic solutions of the Lax pair in the small-|z| and large-|z|
limits. These will allow us to define the Q)-functions which contain information

on the quantum sine-Gordon massive integrable field theory.

3.3 Asymptotics of the linear systems

We first consider the gauge-transformed linear system (0, + Z)\Tf = 0, as given by
equation (3.2.17)). Having chosen a solution ¢(z, Z) of the modified sinh-Gordon
equation, we now consider the linear system (3.2.17)) in the small-|z| and large-|z|

limits.

3.3.1 Small-|z| asymptotics of the linear systems

Substituting the small-|z| behaviour of ¢ into the linear system (3.2.17)), we find

0, + % me? 151

=0, (3.3.1)
me’p(z) 9. — %) \¢y
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a system of equations solely in z. We then take the |z| — 0 limit; in this limit,

the off-diagonal terms become irrelevant, and the system becomes

2 =o. (3.3.2)

This system is a decoupled pair of equations, and has the pair of solutions

2z~ Pg 0
Co y C1 3 (333)
0 ~Pg

where ¢y and ¢, are arbitrary constants. We then define two solutions =y and =;

of (8, + A)U = 0, defined by their asymptotics in the small-|z| limit

~ z=Bg ~ 0
Ep ~ Cp ., E1~a , as|z] = 0. (3.3.4)
0 By
To find the small-|z| solutions of the original linear system ([3.2.4]), we recall that

solutions to the original linear system can be recovered from gauge transformed

solutions by applying U~! = e#¢#/2 to the gauge transformed solutions ¥ = U -1y,

In the small-|z| limit,

(22)P9/? 0
0 (zz)P9/?

! — Blglogzz)H/2 _ , (3.3.5)

where we have used the definition of the matrix exponential (3.2.11]). The small-|z|
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solutions of the original linear system are then

_ = e~ iPge
Eo=U"Zy~ ¢ , as|z| =0, (3.3.6)
0
~ 0
E1=U"21~q ; , as|z| =0, (3.3.7)
189

where we use polar coordinates z = |z|e’”?. We are free to choose the arbitrary
constants ¢y and ¢;; we choose ¢y = €79 and ¢; = €9, This has the effect of
ensuring the solutions =; are invariant under Symanzik rotation (3.2.15)). The

small-|z| solutions to the linear system (0, + A)¥ = 0 are then given by

e~ (0+iv)Bg 0
=g ~ , i~ , as|z|—0. (3.3.8)
0 e(0+ip)Bg
The solutions Z,, =; form a basis of the solution space of the Lax pair —
in the neighbourhood of |z| = 0. In this way, any solution ¥ can be
expressed as a linear combination of these two solutions. The same solutions
would have been found if we began with the conjugate linear problem ((95—1-14):1} =
0, applied the gauge transformation (3.2.10) with U = e’?"/2 to remove the
exponential terms, analysed the small-|z| asymptotics, and then reverted the gauge

transformation in that limit. The gauge transformation was merely an aid to our

calculations.
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3.3.2 Large-|z| asymptotics of the linear systems

To consider the large-|z| behaviour of the linear system ([3.2.17)), we substitute the

large-|z| behaviour of ¢ defined in (3.2.19)), with the result

8.+ 45 me ¥

] =o. (3.3.9)
me’p(z) 0. —57) \¥»

We consider this system of equations in the large-|z| limit. The O(1/z) terms
become irrelevant in this limit, and the resulting system can be collected into a

single equation for @Zl

Solving this equation for @ZI in the large-|z| limit allows us to compute @ZQ and
hence a solution to the linear system in the large-|z| limit. To do this, we apply

the WKB approximation [13] to (3.3.10]), with the result

Dy~ byplz) Y exp <m69 / N0l dt) +bp(z) M exp (—mee / Ol dt> |

(3.3.11)

in the large-|z| limit, and here by are arbitrary functions of z. We require our
large-|z| solution U of the linear system to have the most rapid decay on
the positive real axis of all the possible solutions (we call this the subdominant
solution of the linear system). To achieve this, we set b, = 0 in , and we
find
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where, as we are working in the large-|z| limit, we approximate p(z) ~ 22 which

allows us to perform the integral over /p(t) in (3.3.11]).

The expression (3.3.12)), along with the linear system (3.2.17)) in the large-|z|

limit, defines a large-|z| solution for the gauge-transformed linear system (0, +

A =0,

> , as|z| = oo, (3.3.13)

which is then mapped into a large-|z| solution of the original linear system (3.2.4)

by applying the inverse U~! = e##H/2 of the gauge transformation matrix U

~ (zz)M/4 0 ~
U=U"'U~ v, (3.3.14)
0 (z7)~M/4
(ZZ)M/4 O Z_M/2 ZM+1
~b_ exp (—m69—> , (3.3.15)
0 (22)M/4 L M/2 M+1

(Z/g)—M/4 < , SM+1
exp [ —me

, as|z| = oo. (3.3.16)
(2/2)1/4 M 1>

The constant b_ is chosen by recalling that ¥ must also satisfy the conjugate linear
problem (3.2.5)) in the large-|z| limit. Repeating the above large-|z| analysis on
the conjugate linear problem we arrive at a similar expression for W

(z/g)—M/4 sM+1

U~ b " exp (—me_ej\i[ n 1) , as|z| — oo, (3.3.17)
z/Z

where b_ is an arbitrary function of z. The two expressions for ¥ are reconciled
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by choosing b_, b_ to be

) FMH - , ZMH
bo=e —me b_=e —me~ 3.3.18
Xp( M+1)’ Xp< M+1)’ (3.3.18)
so that in polar coordinates z = |z|e®?, z = |z|e™*, the large-|z| solution ¥ is
written

e~ iMp/2 9 M+1
T~ exp <_m

Moy M1 cosh(0 + i(M + 1)@)) , as |z| = o0, (3.3.19)
ei p/2

which matches the large-|z| solution for the A; linear system in [2].

3.3.3 Taking the conformal limit

We have calculated small-|z| and large-|z| asymptotics for the solution ¥ of the Lax
pair —. What remains unclear, however, is the connection between
these systems of differential equations and the eigenvalue problem that was
discussed in section [[.1.2} In this section we explain this connection, and thus
define the massive analogues of the spectral determinants Dy (F,l) we discussed

previously.

We begin with the gauge-transformed linear system (8, + A)¥ = 0,

0. + 0. ’ )
PO me v (3.3.20)
meep(z) az - 6az¢ ¢2
and rewrite it as a single equation in 1;1
(0. — 80.9)(0. + 50.0)d1 — m?e*p(z)iy = 0. (3.3.21)

We then send z — 0, (treating z and Z as independent complex coordinates) which
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allows us to replace ¢ with its small-|z| asymptotics (3.2.20)),
( ., — @) <8Z + @) Uy — m2eX (2PM — My = 0. (3.3.22)
z z

We then take the conformal limit z — 0, § — 400, with

xr = z(meg)ﬁ, E = 32M(m69)131¥1 (3.3.23)

held finite. With 8¢ = [, the differential equation becomes

~ I(l+1)\ ~ ~
— 0 + (a:QM NGy o )> Y1 = Ei, (3.3.24)
which is exactly the same differential equation as (1.1.5). We recall that the

subdominant large-|z| solution y(z, F,l) was written as a linear combination of

the two small-|z| solutions ¢*(x, E, )

D_(E.1)
20+ 1

D+<E7l)

(2, B, 1) — W (x, B, 1) (3.3.25)

The functions y and ¢* are simply the conformal limit counterparts to the first
components of the solutions \TJ, éo and = of the gauge-transformed linear sys-
tem (3.2.17). We then define the massive analogues of the spectral determinants
D.(FE,l) as functions Qy(0, g) and Q1(0, g)

U = Qo(0,9)=0 + Q1(0, 9)=1. (3.3.26)

The choice of gauge does not affect this definition of the @)-functions. Multiplying
both sides of (3.3.26) by U~! = e?¢#/2 we see that

53



The @Q-functions are written in terms of the solutions W, =, and =; by taking

particular determinants of ([3.3.27))
Qo(@, g) = det(\I/, El), QI(H, g) = det(Eg, \I/), (3328)

where we have used det(Zy,Z;) = 1, derived from the asymptotics of Z; in the
small-|z| limit. The process of writing )-functions in terms of determinants in the
massive case is equivalent to the process of taking Wronskians in the massless case

to define the spectral determinants Dy (E,l) (1.1.12)). To see this, we write the

general solution of the linear system (|3.3.20f) in terms of a solution % of (3.3.21)):
7, = v (3.3.29)

_(mee)il(az + 552@%

We then take the determinant of two such solutions \Tfl and \172

det@l, \52) = —(me®)? LI L (3.3.30)
(0: + BO:0) 1 (0 + BO.¢)2
= —(me") " Wiy, ], (3.3.31)

which demonstrates the equivalence, up to rescaling, of taking determinants in the
massive case and taking Wronskians in the massless case to define the relevant

spectral determinants.

From (3.3.28]) and the relationship with the massless spectral determinants

(1.1.12)) it is clear that the Q)-functions are indeed spectral determinants of the

linear systems (3.2.4))-(3.2.5)); points ), where Q;(6x, g) = 0 are precisely the points

where U and Z=; coincide and become the same solution up to normalisation. We
therefore consider the linear systems (13.2.4))-(3.2.5) as eigenvalue problems with

boundary conditions given by the asymptotic solutions ¥, =;. The properties of
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these @-functions are our main concern for the rest of this chapter.

3.4 (@Q-functions

We now demonstrate some useful properties of the Q-functions. We will see that
the Q-functions satisfy a quasiperiodicity property and a particular functional
relation known as the quantum Wronskian. We also give an expression for the

asymptotics for Qq(0, g) in the limits Ref — +o0, following [21], [45].

In the calculations that follow it will often be convenient to omit the g-

dependence of the @-functions, with @Q;(0, g) = Q.(9).

3.4.1 Quasiperiodicity

The Q-functions satisfy the following quasiperiodicity properties

@0+ D) =) (341)
Q@1 (9 + %) =e"™Q, (0), (3.4.2)

where v = — (g + 1/2). To prove this, we define the matrix

im/2 0

, e

G — gimH/2 _ ; ] (3.4.3)
6—7/71'
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and firstly prove the following identities

— ™ i iy —
Sy <90+M G—M—ZW) =e "= (¢ ), (3.4.4)
— s o PR
SEq (SO‘FM Q—M—W)—G TE1 (9] 0), (3.4.5)
sqf(w% 9—%—27):\1/(@ 0). (3.4.6)

Proof of (3.4.4)-(3.4.5)

Using the small-|z| asymptotics (3.3.8) and the definition of S,

' ez 0 1 o
52 (e o) IR GG
M M 0 67@71‘/2 0
~e ™ Zy (gl ), as|z|—0. (3.4.8)

This identity holds away from z = 0 as S is a constant matrix, unaffected by the

limit. (3.4.5)) follows similarly.

Proof of (3.4.6)

We evaluate the left-hand side of (3.4.6)) in the large-|z| limit

S (g@ + %‘ o — % - m) (3.4.9)
im/2 0 —im/2 ,—iMp/2 M+1
e e e 2
~ p <—m cosh (6 + i(M + 1)@))
0 e—in/? oi7/2 iMp/2 M+1
~ U (p| ), as|z|— o0. (3.4.10)

Similarly to the small-|z| identities, this asymptotics matching is enough for the

identity (3.4.6) to hold everywhere, as S is a constant matrix.
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Proof of the quasiperiodicity properties

We now use the identities (3.4.4))-(3.4.6)) to demonstrate the quasiperiodicity prop-

erties of Qg and );. We begin with the determinant definition of @)y,

Qo (0) = det (¥ (¢ |0) ,Z1 (¢ 1)) , (3.4.11)

and invoke the identities (3.4.5) and (3.4.6)),

Qo (0) = det (S‘If <¢+%‘ 9—%—2%) ,e ™M SE, (gp—{—%) 9—%—2#))

(3.4.12)

We extract S from the determinant in (3.4.12) by exploiting the linear algebra

identity
det(Swvy, ..., Sv,) = det Sdet(vy,...,v,), (3.4.13)

which is satisfied for any matrix S and collection of vectors {vy,...,v,} C R".

Using det S = 1, equation (3.4.12)) then reduces to

e un _m = (p+ 1 o
Qo(0)=e¢ det(lll(go—i-Mé’ i m),_l go—l—MG )

(3.4.14)

— ¢ ™Q, (9 - % - m) . (3.4.15)

where we have used the independence of the @-functions from ¢, which follows
from their definition (3.3.27)), which must hold at any values of z,z. Shifting
0 — 0+ M(MTH), we find the quasiperiodicity property (3.4.1). The analogous
identity (3.4.2) for @1 follows similarly.
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3.4.2 Asymptotics of Qy(f) as Ref) — +o0

For calculations later in this chapter, it will be useful to have available an asymp-
totic expression for Qg(#) in the limits Ref — 4oo, similar to the asymptotics
given in equation (3.12) of [45]. We begin by considering the asymptotics of Qo(6)

in the limit Ref — 400, and recall the definition of Qy(f#) as the determinant
Q0(6) = det (EJ El), (3.4.16)

with W being the subdominant solution of the gauge transformed linear system
(0, + ﬁ)\TJ = 0 in the large-|z| limit, and =, is one of the solutions of that linear
system in the small-|z| limit. To find the large-0 asymptotics of Qy(f), we consider
the general solution of (9,4 A)¥ = 0 in the large- limit. We recast (9,4 A)¥ = 0

into an equation for the top component @Zl of U

(0. — B0.0) (0. + BI.¢)iby — m*e*p(2) = 0. (3.4.17)

We use the WKB approximation [I3] to consider this equation in the § — +oo

limit; the general solution in that limit is

U1~ bop(z) Y exp (mee / ) Vp(t) dt) +b_p(z)" Y exp (—me" / ) Vo(t) dt) :

(3.4.18)
which induces the vector solution for the linear system v

~ p(z)~* o 7

U~ b exp [ —me / Vp(t)dt (3.4.19)
p(2)
p(z)~* o [

+ by exp (me / Vp(t) dt) , as Ref — +oo0.

—p(2)!/*
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We require this solution to be compatible with the required subdominant be-

haviour for ¥ in the large-|z| limit

_ »—M/2 meb 2 M+1
U~ exp| ———— |, as|z] = o0, 3.4.20
S M/2 P ( M+1 ) 12 ( )

and so set by = 0 and redefine b_ so that U becomes

" ~)—1/4 ) 0, M+1
U~ b pl exp <m69/ {(tZM—SZM)I/z—tM}dt— M),
p(2)"* : M1

as Ref — 4-o00.

(3.4.21)

In the small-|z| limit, ¥ must be a linear combination of ED and :jl, as these
solutions span the solution space in that limit. Furthermore, from the asymptotics
of 2y and Z,; in the small-|z| limit (3-3.4) imply that the constants co, ¢; in the

redefinition

—-1/4
P\Z ~ ~
b+ ( ) = Cp EO + El, (3422)

()
are independent of §. Therefore, in the small-|z| limit,

U ~ exp (me(’/ {(@M - §PMYL/2 M dt) (coZ0+ 1 Z1), asRef — oo,
0
(3.4.23)

which combined with the determinant definition of (Qy(#), gives an asymptotic

expression for Qo(f) in the limit Re f — 400,

Qo(0) ~ coexp (mee /Ooo {(M — M2 MY dt) : (3.4.24)
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M+1

It remains to evaluate the integral in (3.4.24)); firstly reparameterise s = 3(—1) 2

Y

so that s = —352M and then change variables ¢t = 5u. The integral becomes

/ {tQM 2 1/2 tM} dt:(_l)hgﬂ-q/-llsM-‘rI/ {(u2M+1>1/2_uM} du.
0

(3.4.25)
A more general form of the integral in (3.4.25)) was given in [21], 23]:
_ [Ty hm 1h _ M P(L+ )T (=5 — )
7(h, M) = {@W" + )" — M} du = - . (3.4.26)
0 ')
Qo(0) then has the asymptotic expression
Qo(0) ~ cyexp (SM“mee(—l)A;;rflT(Q M)) as Ref — +o0. (3.4.27)

We must ensure this asymptotic expression is compatible with the quasiperiodicity
relation (3.4.1)) satisfied by Qo(#). Following [45], define Hy to be the strips in

the complex #-plane satisfying

mM+1) H_: _mM+1) <Im# < 0. (3.4.28)

H, :0<Im0 <
+ m M M

Then, rescaling the constant ¢y, appropriately,

Qo(6) ~ coeT™ /% exp <3M+17”m993FW%l+1 7(2, M)) 0 € Hy. (3.4.29)

An exactly analogous argument to the above leads to the Q1(0) asymptotics in

the same limit

i (M+1)
2M

Q1(0) ~ c1eF™ /% exp (sMHmee? (2, M)) 6e Hy. (3.4.30)
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We will also require the asymptotics for Q(#) in the limit Re # — —oo. To recover
these, we begin with the gauge transformed conjugate linear system (85—1—2)\1/ =0
and recast this system of equations as a single equation in the second component

QZQ Of\AI;

(0= + BO:0)(0: — BO:d)bs — mPe™ P p(2)1hy = 0. (3.4.31)

The same procedure as for the Re § — +o0 limit is then followed; equation (3.4.31))
is considered in the limit Re § — —o0, and its solutions induce a particular solution
of (8Z+E)\Tl = 0 in that limit. The limit Z — 0 is then taken, and the determinant

definition of Qo (#) (3.4.16)) is used to determine the asymptotics of Q(6) as Re —

—0!

im(M41)

Qo(0) ~ coe™™/ 2 exp <5M+1me_0jE 2 7(2, M)) , e H,. (3.4.32)

3.4.3 The quantum Wronskian

The Q-functions Qy(#) and @Q1(f) also satisfy a particular functional relation,
known as a quantum Wronskian [7, 45]. This relation follows naturally from the

definition of the @-functions (3.3.26) and the Symanzik rotation €0, given by
(3.2.15)). Under a Symanzik rotation €2, (3.3.27]) becomes

N

QW] = Qo (9 - %) Eo+Qu (9 - %) =1, (3.4.33)

where we have used the invariance of the small-|z| solutions Z; under Symanzik

rotation. We then take the determinant of ¥ with €;[¥], and use det (éo, §1> =1
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and the antisymmetry of determinants to find

det(\lf 0 [0 ]) Qo (6) O (e— —) Qo (e— —> Q. (6).  (3.4.34)

As the Q-functions were defined as z, zZ-independent coefficients, we may take the
large-|z| limit of (3.4.34) without affecting the Q-functions. In that limit, the

rotated solutions (,[¥] are given by

~ 4 2~ M/2 ' 0, M+1
Q[W] ~ e~imk/2 exp (—e” —) , as|z| —»oo. (3.4.35)
eiﬂ'kZM/Z

Using standard properties of determinants, the large-|z| limit of the determinant

det (\Tl, Ql[\ff}) is then given by

L h
det<\p,91[\lf]) ~ e/ e 2. (3.4.36)
elﬂ'

Taking the large-|z| limit of (3.4.34)) and substituting (3.4.36)), we find the quan-

tum Wronskian

Qo (6) Q (9 - %) — Qo <9 - —) Q1 (6) = 2. (3.4.37)

This quantum Wronskian almost exactly matches the quantum Wronskian found
in [45]; the absence of the factor — cosnl is due to Lukyanov and Zamolodchikov’s
different choice for the normalisation and ordering of their small-|z| solutions W .
Our choice of normalisation will generalise more readily to the cases of the massive

ODE/IM correspondence for more elaborate Lie algebras.
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3.4.4 Bethe ansatz equations

A useful algebraic relation satisfied by Qo(6) follows immediately from the quan-

tum Wronskian (3.4.37)). Define the zeroes 6;, j € Z of Qy() satistying

Qo(0;) = 0. (3.4.38)

We then substitute 0 = 0; + % into the quantum Wronskian (3.4.37)), giving two

relations

Qo <9j - M) Q1 (0;) = 24, (3.4.39)
Qo ((Jj - %) Q1 (0;) = —2i. (3.4.40)

=1, (3.4.41)

which match the Bethe ansatz equations found in [45]. (In [45] the authors com-
bine )y and (), into a single Q-function and derive identical BAEs for that new
function. It is currently unclear how to generalise their method for the cases of
more elaborate Lie algebras; we will only require BAEs for the first ()-function,

Qo.) For later calculations it is useful to ‘twist’ these Bethe ansatz equations using

the quasiperiodicity relation ((3.4.1):

6—2i7r'y Q (9.7 — Z7T)

06T ~1. (3.4.42)

where we set Qo(0) = Q(0) as we will mainly be concerned with this single Q-
function for the remainder of the chapter. These new twisted BAEs more closely

resemble the BAEs found in [21], for the case of the Lie algebra A; = su(2). The
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resemblance is not exact, as the twists in the BAEs in that paper are powers of

im/(M+1

w=e ), rather than e=*". To pass between the two sets of BAEs, set

Qo) = A(l)(szMeiﬁel)efxﬁel, E = SQMei/IAigl, (3.4.43)
with the BAEs (3.4.42)) becoming
2y A(l)(szEj) 274 Maj

=—1, w=e2+z, Ej = 32M€M+1

matching the BAEs in [21], with n =2, v = ; and C}; = 2.

The BAEs in the original twisted form (3.4.42) will be the most useful out
of all these various forms of BAEs in the calculation of an equivalent non-linear
integral equation (NLIE). We will then derive an expression for log @, and the
asymptotic expansion of that expression will contain the ground-state eigenvalues

of the integrals of motion of the quantum sine-Gordon integrable field theory.

3.5 The non-linear integral equation and inte-

grals of motion

3.5.1 The non-linear integral equation

We begin our construction of the non-linear integral equation for the massive
integrable field theory related to su(2), following the construction given in [21] for
the case of the massless ODE/IM correspondence for the Lie algebras su(n). This

construction is the first step in deriving expressions for the integrals of motion of
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the integrable field theory. We begin by defining the function

—2imy Q(Q B lﬂ-)

0= Ty

(3.5.1)
which due to the BAEs (3.4.42), satisfy a(f;) = —1. We then expand Q(6)-
functions in (3.5.1)) using an infinite product expansion. A standard result for
defining an infinite product expansion for an entire function is the Hadamard
factorisation theorem [I5]. We recall the order of an entire function f(z) is defined
to be the infimum of the set of numbers a such that |f(z)| < exp(|z]*) for |z|
sufficiently large. The Hadamard factorisation theorem then states that if f has

finite order a, then f(z) can be written in the form

f(z) =" T (1 - Z—’i) , (3.5.2)

J

where g(z) is a polynomial. From the Ref — oo asymptotics (3.4.29)-(3.4.32)

of Q(#) and the Hadamard factorisation theorem, an infinite product expansion

of Q(0) over its zeroes 6, exists for M > 1, given by

Q(6) = Q(0)e™ T ﬁ (1= e0) (1= 00} - (353)

Jj=0

where the prefactor e~ 351 is inserted to ensure the infinite product expansion of
Q(0) = Qo(0) satisfies the quasiperiodicity relation (3.4.1). We then substitute
(3.5.3) into the definition of a(6) (3.5.1)

2M 2im M 2M 2im M
i~ (1 — em((’—@j)e—ﬁ> <1 — e~ (0=0-i-1), szﬂ)

2imy
a(f) = e wm+1 : v . 3.5.4
@) ]HO (1 _ R (0-6) 3 ) (1 - e—%<9—9+1>6—w> (854)
2M .
2imy oy 1 — g1 (0=0;—im)
= e M+l . 3.5.5
€ jli[m 1 — enrir(0—0;+im) ( )
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We then take the logarithm of (3.5.5),

—2im -
log a(f) = M+Z + 3 F(O-6)), (3.5.6)

j=—o0

where

2M .
1 — edr+1 (6—im)
FO) =log | — ), (3.5.7)

To progress, we now must consider the locations of the zeroes 6;. As in [21], where
the BAEs related to the ground state of a massless integrable field theory related
to the Lie algebra su(n) were considered, we work with the assumption that all
the zeroes are along the real axis of the complex #-plane. We then use Cauchy’s

integral theorem to rewrite the infinite sum over the zeroes ¢; as a contour integral

i F(O—0,) = /5 ;ZZF(Q—Q’)E)@/ log(1 + a(6')), (3.5.8)

where ¢ is a contour in the 6’-plane consisting of two parallel lines enclosing the
real axis, with the direction of integration along & chosen such that the real axis

remains on the left of the contour. The logarithm of a(6) is then given by

—2imy de’

log a(f) = Ml + /5%}7(0 — 0")0y log(1 + a(d")). (3.5.9)

We then integrate (3.5.9) by parts and consider the two contributions of the

contour 7 from above and below the real axis separately. We then rewrite log a(6)

_ —2imy
loga(f) = Ml
+ / R(6 — 6" +140) {log (1 + a(8’ +140)) — log (1 + a(f' —:0))}d¢’, (3.5.10)

66



where R(0) = (i/2m)0pF(0). We next use the identity a(6)* = a(0*)~!, which
follows from the product expansion of a(f) (3.5.5)) and the reality of the zeroes 6;,
to rewrite (3.5.10]) as

2wy
M A+1

+ /00 R(8 — 0" +10) {log (a(#" — i0)) — 2 Imlog (1 + a(f' —40))} do'.

log a (@)

(3.5.11)

The next step is to take a Fourier transform to both sides of (3.5.11)). In this

thesis, the Fourier transform is defined as

Flflk) = f(k) = / h e~k £(6) d, (3.5.12)

[e.e]

FUA0) = f(6) ! /OO e® f(k) dk. (3.5.13)

:% N

Applying a Fourier transform to both sides of (3.5.11f), we find

—4im?y

M+1

Flloga] = (k) + R(k){Flloga] — 2iF[Imlog(1 + a)]}, (3.5.14)

where we have used the definition of the Dirac delta function §(k) in integral form

/ e "0 40 = 216 (k). (3.5.15)

We collect the Flloga] terms in (3.5.14))

(1 — (k) Flloga] = 7

7 Y‘S(k’) — 2iR(k)F[Imlog(1 + a)], (3.5.16)
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and then divide both sides of (3.5.16) by (1 — R(k))

—dim?5(k 2p+1) F((20+1)0
Flloga] = TESE +p_zoob ] (3.5.17)
2iR(k)
VT

where the terms proportional to the arbitrary constants b*t1) arise from the
points k = #(2p + 1)i (where p € Z) where the inverse of (1 — R(k)) is not well

defined. The constants 6"+ will be chosen to match the asymptotics of log Q(6)

(3.4.29)-(3.4.32) in the limits Red — oo; this choice is best made when an

expression for log Q(#) is found. For now, we apply the inverse Fourier transform

(3.5.13) to (3.5.18)

log a(f) = lim 2y
k=0 (M +1)(1 — R(k))
- Z D) (2p Y 22’/ ©(0 — 0" +140) Imlog(1 + a(f' — i0)) d¢’,

p=—00

(3.5.19)

where p(f) = F![(1 — R(k))"'R(k)]. To simplify (3.5.19), we must calculate
R(k) = (i/2m) F[05F (0)] explicitly. We rewrite F(6) as given by (3.5.7) using the

identity
1 —eXY sinh %
which implies
ArM sinh (A& _ M
FO) = - L log | = (If;; Qﬁj) . (3.5.21)
M+1 s1nh(M—+1+M+1)
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The Fourier transform of R(6) = (i/27)0pF'(0) is then calculated using equations
(D.53) and (D.54) from [23]

, sinh(o6 + im7) 20 sin 27T
Oyl = 3.5.22
100708 sinh(cf —in7)  cosh206 — cos2w7’ ( )
/oo % ko 20 sin 27T _ Sinh('l — 2k7')72r—§' (3.5.23)

oo 2T cosh 2060 — cos 2T sinh 72
We then find
3 sinh W=Dk

R(k) = —A4—. 3.5.24
*) sinh —(M;A?”k ( )

We now use (|3.5.24)) to simplify the integral equation (3.5.19)), evaluating the limit

term

i T = —iny, (3.5.25)
k=0 (M +1)(1 — R(k))
so that the non-linear integral equation becomes
loga(f) = —imy + Z p(2p+1) o (2p+1)0
p=—00
- Qi/ ©(0 — 0 +i0) Imlog(1 + a(#’ — i0)) de’, (3.5.26)
where
1 0o inh (M—-1)mk
gp(&) = _/ k0 sin —k 2.M _ dk. (3.5.27)
21 J_ 2 cosh 7 sinh 37

In the next subsection, we will use the non-linear integral equation and
combine it with the definition of a(6) to produce an integral expression for
the logarithm of the @-function. This expression will then be expanded in the
limits Ref — +o00, with the coefficients of the resulting power series containing

the integrals of motion of the Agl) massive integrable field theory.
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im(M+1
3.5.2 Integral form of log () (9 + (2M ))

We begin by taking logarithms of (3.5.1])
log a(f) = —2imy +log Q (6 —im) —log @ (0 + i),

and invoke the logarithm of the quasiperiodicity relation (3.4.1])

(M + 1
log Q) (0 + %) = —imny +logQ(0), n€Z,
to rewrite (3.5.28)) as

loga(f) = —iny + log Q (9 + %) —log Q (0 +im) .
We then set the NLIE (3.5.26)) and (3.5.30)) equal to one another

log Q (Q—l— ZMW) —log @Q (0 + i)

(3.5.28)

(3.5.29)

(3.5.30)

(3.5.31)

= Z ) CrHl)o 2@'/ (0 — 0"+ 10) Imlog(1 + a(#" — i0))de'.

p=—00 e

The next step is to take Fourier transforms of (3.5.31f), simplifying that expression

using the Fourier transform identity
FLFO + )] = ™ FLf(0)].

The result is

2sinh —Wk(yM_ 1)}" {log@ (9 + —m(];/[]\; D)}

- i b HD FlePHD0) _ 9 Flo] (k) FlImlog(1 + a)] (k).

p=—00
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We then isolate the log Q term, with an extra constant term b appearing due

-1
to the pole of (2 sinh ”ké‘]@ U) at k = 0. We then take the inverse Fourier

transform, with the result

im(M + 1) p(2p+1) o(2p+1)0
log @ (9 - —) 0+ Z S (3.5.34)
2M J— 2Z Sln pQ—]M)
—m/ H(O — ¢ +i0) Tmlog(1 + a(¢/ — i0)) 6. (3.5.35)
where
1 e8] ezke

Hwyn—/ ——_dk. (3.5.36)

21 J_o 4 cosh 7 sinh 777

i ( M+1 >

The final integral expression for log () <9 + is then found by choosing the

constants b® to match the earlier derived asymptotics (3.4.29)-(3.4.32) for Q(0)

in the limits Ref — 4+00. We set

p(H) IR -
prein G — T2, Sy = ms (2, M), b ==

2M A7
(3.5.37)

with all other constants b®) set equal to zero. logQ (0 4 MH)) is then given
by

(M + 1
log Q (9 + %) = —? +2m7(2, M)sM ™ cosh 6 (3.5.38)

—m/ HO — @ +i0) Tmlog(1 + a(6' — i0)) ¢/,

3.5.3 Integrals of motion

Recasting the Bethe ansatz equations as a non-linear integral equation, we rewrote

the logarithm of the @-function in the integral form (3.5.38). The coefficients of

71



the expansion of this integral form in the limits Re — 400 are the integrals of
motion for the massive A" integrable field theory. The H (6 — 6 + i0) term in
(3.5.38]) is itself an integral as defined by . We evaluate this integral using
Cauchy’s residue theorem, resulting in an infinite series. Closing the integration
contour in the upper or lower half k-plane leads to two different expansions for

H(0). Closing in the upper half plane,

ikt
H) =1 Res Jk=02p—1) 3.5.39
pz_: 4 cosh ¢ ”k sinh & (2p—1) ] ( )
oik0
+ ) R 7k = 2 M ?
' Z * 4 cosh & smh ’Tk (.
P —(2p—-1)0 qM —2qM6
- Z ¢ Z S (3.5.40)
= 2msin (2p Lm por 21 cos qgM
and in the lower half plane,
o0 ikt
0) = —1 Res Jk=—02p—1) 3.5.41
) ZZ 4cosh”—ksinh% (2p )i ( )

zk@

7rk 7k’
4 cosh ZZ sinh T

—zZRes

q=0

_ZZ

k= —2qM@'] ,

Pe(2p 1)6 . 0 (_1)qM€2qM9

i2
@p—l)m 27 cos qMm
2M q=0

(3.5.42)

27 sin

We then write log ) (0 + W(MH)) as a pair of asymptotic series for M > 1 and

| Im 6| < * 1+M)
im(M +1) —imy M
1 = 2mr (2, M)s™ e’
0gQ(9+ Wi > 5 +2m7(2, M)s* e
+Y Ty, gDy Z G, e M as Ref — +oo, (3.5.43)
p=1 q=0
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M1 »
logQ(Q—i—m( + )>: Z27W—|—2m7'(2,M)sM+16_9

+ Z Jop_1@P70 4 Z S, e* ™0 as Ref — —o0, (3.5.44)

p=1 q=0
where

oo (_ 1)p6(2p71)(9/7i0)

Jop1 = 2m7(2, M)s™*16, 1 + / Imlog (1 + a(#' — i0)) d#’,

—0 Wsin%
(3.5.45)
00 (_1)qM€2qM(9’—i0) , ‘ ,
- Tmlog (1 + a(6’ — i0)) do 3.5.46
&= [ e nlog (1 (9 — i0) 49, (3.5.46)

and

oo (_1)p€—(2p—1)(9/—i0)

Jop 1 = 2m7(2, M)sM*15,, — / Imlog (1 + a(#" —i0)) d¢’,

—oo  msin —(21541)“
(3.5.47)
oo (_1)qM€—2qM(9'—’i0) , . ,
&, =— Im log (1 + a(6' — i0)) df 3.5.48
= [ o (L +a(¢ — i0)) a9 (3.5.48)

are the ground state eigenvalues of the local and non-local integrals of motion
for the massive integrable field theory, matching the integrals of motion found in
[45] (with the terms proportional to log & in [45] being absorbed into &y and &
here).

3.6 Conclusions

In this chapter, we reproduced the results of [45], beginning with the classical
modified sinh-Gordon equation and studying the asymptotic solutions of the as-
sociated Lax pair to recover information about the related massive integrable

field theory. In the remainder of the thesis, we will apply the procedure we have
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detailed here to the affine Toda field theory equations of motion; these are par-
tial differential equations associated with various Lie algebras that generalise the
modified sinh-Gordon equation we have considered in this chapter. With slight
alterations (the derivation of the Bethe ansatz equations requires additional in-
formation about the representation theory of the relevant Lie algebra encoded in
a W-system) this procedure, outlined in Figure , will be followed for all other

cases.
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Chapter 4

Lie algebras and systems of

differential equations

4.1 Introduction

In order to generalise the analysis of the ODE/IM correspondence for the Lie
algebra Agl) in chapter , we first require a brief overview of the basic concepts
in the theory of Lie algebras, and in doing so set up notation that will be used
throughout the remainder of the thesis. Many texts exist to provide a far more
thorough introduction to Lie algebras; the brief notes here are based largely on

17, 30, 35).

The systems of differential equations we will consider for the massive ODE /IM
correspondence for simply-laced Lie algebras are constructed from representations
of the Lie algebras we will consider in section [4.2] In section [4.3 we consider gen-
eral properties of such systems of differential equations, giving a general method of
rewriting them as pseudo-differential equations, and introduce a general method

for the study of their asymptotics.
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4.2 Notes on Lie algebras

A Lie algebra is a vector space g over a field F endowed with a Lie bracket

[, ]: 9 xg— g which satisfies the following:

Vz,yeg, [,y =—y,x], (antisymmetry) (4.2.1)
Va,y,z € g\, u € Fy [z, \y + pz] = Az, y| + plz, 2], (linearity) (4.2.2)

Va,y,z €9z y 2]+ [y, [z 2] + [z, [z,y]] = 0. (Jacobi identity)  (4.2.3)

For all Lie algebras we shall consider, the field F' = C. The dimension of the
algebra g is the dimension of g when considered as a vector space. A subspace
h < gissaid to be a subalgebra of g if V x,y € b, [x,y] € h. An ideal is a subalgebra
satisfying the stronger property [z,y] € h V = € h,y € g. The Lie algebras we will
be chiefly interested in have no non-trivial ideals; such algebras are simple Lie
algebras. A direct sum of simple Lie algebras is a semisimple Lie algebra. For the

remainder of this section g will be a simple Lie algebra of finite type.

A particularly important subalgebra of g is the Cartan subalgebra b, which is
the subspace of largest possible dimension spanned by generators H; (i = 1,...,7)

that satisfy

The number of generators r (the dimension of the subspace b) is the rank of the

Lie algebra.

A matriz representation of a Lie algebra is a homomorphism 7 : g — End(V)

(where End(V) is the endomorphism algebra defined on a vector space V') such
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that V g1, 92 € g,

(g1, 92]) = [7(91), 7(g2)], (4.2.5)

where [7(g1), 7(g92)] = 7(g1)7(g2) —7(g2)7(g1) is the standard matrix commutator.
The dimension of the representation is the dimension of the vector space V. A
representation is irreducible if there are no non-trivial proper subspaces W < V
such that 7(z)WW C W. In this thesis, the differential equations with which we
will be concerned are related to irreducible matrix representations of certain Lie

algebras.

The adjoint representation

An important representation for the study of the structure of Lie algebras is the
adjoint representation; this is the representation where we choose the vector space
V = g. The adjoint map ad : g — End(g) takes an element x € g and maps it to

a linear map on g with the action

ad(z)(y) = [z,y] Vyeg (4.2.6)

Using the Jacobi identity, it can be seen that this map is indeed a homomor-
phism from g to End(g), and so it is a representation. The adjoint representation
provides information about the nature of the remaining generators of g. Con-
sider H;, H; € h. From the definition of the adjoint map and its nature as a

homomorphism,

lad(H,), ad(H,)] = ad([H;, Hj]) = ad(0) = 0. (4.2.7)
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As all of the matrices ad(H;) are commuting, and are diagonalisable [30], a stan-
dard result in linear algebra (see Lemma 16.7 in [30]) implies that the matrices
ad(H;) may be simultaneously diagonalised. Hence we construct an eigenbasis of

the matrices ad(H;) composed of elements H;, E, € g, such that

ad(H;)(H,) = [H;, H;] = 0, (4.2.8)

ad(H;)(E,) = [H;, E,] = a'E,,. (4.2.9)

The eigenbasis { H;, E,} is the Cartan- Weyl basis. The eigenvalues o are compo-
nents of r-dimensional vectors o which are the roots of the Lie algebra. The set
of roots is denoted by A, and the classification of these sets of roots is equivalent
to the classification of simple Lie algebras. For now, it remains only to discuss
the remaining commutators in g, which are of the form [E,, Eg] where a, f € A.

Consider the commutator
[Hi7 [EOM Eﬁ“ - [ECH [Hi7 Eﬁ]] + HH”M ECVL Eﬁ] = (O‘i + ﬁi)[EOH EﬁL (421())

where the first equality is due to the Jacobi identity . It is clear that
[Ew, Eg] = N(o,B)Eyp for some structure constant N(«, ), where oo + €
A. If § = —a, then implies that [E,, E_,] must commute with all the
commuting generators H;. As the H; span the subspace of commuting elements
of g, [Fa, F_,] must then be a linear combination of H;, up to a free choice of

normalisation of E,. We will follow the convention in [17] to set [E,, E_,] =

2 - H/|a|?, where

a-H= ZT:o/Hi, laf? = zr:aiai. (4.2.11)
i=1

i=1
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Lastly, by (4.2.10), if a4+ 38 ¢ A, then [E,, Es] = 0. We now summarise the above

commutation relations:

[H;, H,;] =0, (4.2.12)
[H;,E,] = d'E,, (4.2.13)
N(a, B)Eats ifa+pe€eA

[Eo, Ep] = if 8= —a (4.2.14)

0 ifa+p5¢ A

Roots

We have described the structure of simple Lie algebras in terms of roots a in a
set of roots A. To discover more about the structure of simple Lie algebras, we
will need to learn more about the structure of these roots. To begin, we derive a
useful result that severely constrains the inner products of roots. We consider a
subalgebra of g generated by {E,, E_,, a-H/|a|*}. This subalgebra is isomorphic

to the Lie algebra su(2):

E,=J,, (4.2.15)
E_.=J_, (4.2.16)
a-Hlla|? = Js, (4.2.17)
where
[Js, Ji| = £Jy, [Jy, ]| =2J5. (4.2.18)

We then invoke a pair of results from the representation theory of su(2):
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e If a representation of su(2) is finite-dimensional, then the eigenvalues of J;

are integers or half-integers.

e Let the dimension of an irreducible representation of su(2) be given by 2j +
1, where j is an integer or a half-integer. Then the highest and lowest

eigenvalues of J; are 5 and —j.

Any finite-dimensional representation of g must induce a finite-dimensional rep-
resentation of the su(2) subalgebra {E,, F_,, a- H/|a|*}. Consider repeatedly
acting with the operator ad(F,) on Ejs. Then there exists a maximal integer p > 0
such that ad(E, )P Ejs is an eigenvector of J3, with eigenvalue j, and similarly, there
exists an maximal integer ¢ > 0 such that ad(E_,)?E}p is an eigenvector of J; with
eigenvalue —j. From and the definition of the adjoint map, S + pa and

[ — qa are roots which satisfy

=, — T (4.2.19)

= —(p—q) €L (4.2.20)

The result is one of the defining properties of a root system (defined fully
in Definition 11.1 of [30]), and it can be shown that there is a one-to-one corre-
spondence between root systems and semisimple Lie algebras. We only require a
notion of positivity of roots; a set of positive roots A, is a subset of roots A such
that exactly one of +a € Ay, and for a, 6 € Ay ,a+ € A,. Given a set of
positive roots, there exists a unique set of simple roots {«;}/_, with the following

properties:

o o; €A,
e «; form a basis for the vector space containing the roots.

e «; cannot be written as a sum of two positive roots.
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e Any positive root can be written as a sum of simple roots with non-negative

integer coefficients.

The simple roots and their inner products define the elements of the Cartan matrix

20éi o7

oy |2
It is clear from that the elements of the Cartan matrix are integers. As
a; —a; ¢ A (else o could be written as a sum of two positive roots), we set
g = 0 in the result to see a; - a;j < 0 for ¢ # j. This means that the
off-diagonal elements of C' are non-positive integers. The diagonal elements are
equal to 2 from the definition of C. Lastly, we gain more information about the

possible Cartan matrices using the Cauchy-Schwarz inequality:
(- ) < Jeil*|loy s (i # 5). (4.2.22)

From (4.2.22) we see that C;;C}j; < 4 for i # j. As the elements C;; are non-
positive, this implies Cj; = 0, —1, =2 or —3. This strongly constrains the possible
angles between simple roots. Let 6;; be the angle between «; and «;, so that
a;- o = |oyl|ay| cos 6;5. Substituting this into the Cartan matrix definition (4.2.21])

and applying «; - a; < 0 for ¢ # j we find

1
COS 91']' = —5 CZCﬂ (4223)

Along with the constraint that C;; must be integers, 6;; may only take a handful
of possible values: 6,; = 7/2,27/3,3n/4 or 57/6. Dividing entries of the Cartan
matrix also leads to a constraint on the ratios of the magnitudes of the roots. If

0;; = m/2, the lengths are unrestricted; if 6;; = 27/3, the lengths are the same;
if 0;; = 3m/4, the ratio of the lengths is v/2, and if ;; = 57/6, the ratio of the
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lengths is v/3. We are free to choose an overall normalisation for the roots, and
we will choose the longest root to have length v/2. If all the roots are the same

length, the Lie algebra is said to be simply-laced.

The above constraints on the simple roots allows a complete classification of
the allowed Cartan matrices, and hence a classification of the simple Lie algebras.
Another way of representing the data encoded in the Cartan matrices is through
Dynkin diagrams. A Dynkin diagram is a graph with a vertex associated to each
simple root a;. The vertices corresponding to o; and «; are connected by C;;Cj;
lines. Shorter roots (in the case of non simply-laced Lie algebras) are represented

by filled-in vertices.

Figure [2| shows the Dynkin diagrams for the simple Lie algebras. There are
four infinite families A,, B,., C}., D, and five exceptional Lie algebras Fjg, Fr, Eg, I
and G5. The A, D and FE algebras, having diagrams with no filled-in vertices, are

simply-laced and these will be our main algebras of interest.

Other useful definitions

The Cartan matrix (or equivalently, the associated Dynkin diagram) encodes the
inner products of the simple roots «;. The remaining roots of the Lie algebra g are
found in terms of the simple roots by the action of the Weyl group of the algebra.

The Weyl group has r generators s;, which act as reflections in the space of roots:
2av; -
() =p-2%F, vaea (4.2.24)

;- Oy
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The generators s; are constrained by the relations

1 if i =,
(sis;)™7 =1, where m;; = (4.2.25)
otherwise.

7r—0,-j

The roots A of the Lie algebra g are then the orbit of a simple root, say aq,
under the Weyl group. From the result , all elements of A are integer
sums of simple roots. A particularly important root is the highest root —ay =
niaq +ngais + - - -+ n,a,., where the coefficients n; are maximised. The coefficients

n; of the highest root are the Kac labels. Defining ng = 1, we have Y, n;a; = 0.
There is a notion of duality for roots. We define the co-root o" of a root a:

v 2«

« :W

(4.2.26)

The Cartan matrix elements can then be written C;; = «; - a]V. The dual Kac

labels n) satisty "' n/a) = 0. The Cozeter number h and its dual h" are given

by

h = zr:ni, hY = zr:n;/ (4.2.27)
i=0 i=0

As we have chosen a normalisation for the simple roots such that the longest root
satisfies |a;|* = 2, for simply-laced Lie algebras, co-roots are the same as roots.
To be consistent with the notation in the literature [37, [38] we will retain the
distinction between roots and co-roots, although for the simply-laced ADE Lie

algebras we will be primarily concerned with, this will be redundant.
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The Chevalley generators

It is occasionally useful to perform a relabelling of the generators H;, replacing

them with a different set of generators H; in the Cartan subalgebra b:

. 2a; - H
Hy — H, = 20 (4.2.28)
|ai?
with a; - H defined as in (4.2.11)):
a;-H =Y olHj (4.2.29)
j=1

where ag' is the 7™ component of the simple root o;.

With this redefinition of the generators of the Cartan subalgebra the commu-

tation relations of g related to the simple roots «; take the elegant form

[H;, H;] =0, (4.2.30)
[Hy, Eo] = CjiEa,, (4.2.31)
[Hy, E_o,) = —CjiE_,, (4.2.32)
(B E_a;] = 63, Hj, (4.2.33)

(where 0;; is the Kronecker delta) which along with the Serre relations

ad(E,,) " 9(E,,) = 0, (4.2.34)

7

ad(B_o, )" 9(B_,,) =0, i#j, (4.2.35)

generate the entire Lie algebra g. The use of Chevalley generators also ensures the
structure constants are all integers, which simplifies analysis of the representations

of g.

84



4.2.1 Representation theory of simple Lie algebras

We recall the definition of a matrix representation of a Lie algebra: a homomor-
phism 7 : g — End(V) that preserves the Lie algebra structure as defined in
(4.2.5). The adjoint representation is an example of a matrix representa-
tion of a simple Lie algebra g. This representation has the distinguishing feature
of its associated vector space V being the Lie algebra g itself. We now discuss

general finite-dimensional representations of g.

As the generators H; are commuting and are diagonalisable, a basis for V' {|\) }

exists that simultaneously diagonalises the H; [30]:
Hi [\) = X |\) (4.2.36)

where the vector A is a weight. We define the fundamental weights w; and the

co-fundamental weights w,’ to satisfy

Wi - Oé\/ = ) = 51']', (JJV C Q= 5” (4237)

7

Using this definition, we find a useful identity for the simple root «; in terms of

the fundamental weights w;. We write

Q; = ksws 4.2.38
> ks, (4.2.38)
s=1

and dot with a]V, simplifying using the definition of the fundamental weights w;:
o - af = Z ksws - of = k;. (4.2.39)
s=1

By definition of the Cartan matrix, k; = C};, and so the Cartan matrix can be
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thought of as a change of basis from the weight basis to the root basis:
Q; = Z Cl’jw]'. (4240)
j=1

It can be shown that any weight X in a finite-dimensional representation of g can be
written in the form A = Mw; + A\%wy + - - - + Aw, and that the coefficients \* are

all integers. It is also straightforward to show from the commutation relations

(4.2.30)-(4.2.33) that the E,, and E_,, act as raising and lowering operators

respectively:

HiEaj |)\> - (>\z + Cji)Eaj ‘>\> s (4241)

HiE_o, |\ = (A — C31) E_a, |A) . (4.2.42)

In order to construct a finite-dimensional representation it is necessary for there to
exist a highest weight vector |\), such that E,, |\) = 0fori=1,...,r. The integer
coefficients ¢ of the weight \ of this vector are freely chosen, and they serve to
label the representation. Other weight vectors in the representation (themselves
eigenvectors of the H;) are generated by acting on |\) with lowering operators

E_,, using the following algorithm:

e Start with the highest weight eigenvector |\). If the j™ component ); is
positive, add the states E_,; [)), Ezaj IA), ..., Eijaj |A) to the representa-

tion space. Do this for each j.
e Continue with the same procedure for each of the newly generated states.

e Repeat this process until all the newly generated states have negative (or

zero) weight components.

This algorithm produces a spanning set for the vector space V', however, it is not

a basis as many redundant vectors are generated. We may cull the redundant
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vectors using a Gram-Schmidt procedure with respect to an inner product 7 on

the states

E_

Qay Qag

. (E_ 0 I PVIN SR oI |/\>> (4.2.43)

= (N Bay, ++-Bay By oo By )| (4.2.44)

(where 1 < a,,b, < r) which is evaluated using the commutation relations, the
action of H; on the highest weight vector |A), and the normalisation (A|A) = 1.

We denote the representation with highest weight A by L(A).

The representations L(w;) are fundamental representations of g, denoted by
V® to match the convention in [38]. The sum of the (co-)fundamental weights
p (pY) is the (co-)Weyl vector. The Weyl vector p and the co-Weyl vector p" can
also be defined by

p:%Za :zr:wi, pv:%Zav :zr:wiv. (4.2.45)
i=1 i=1

OéEA+ a€A+

All the Lie algebras we will be concerned with are simply-laced, ensuring roots
and co-roots are the same, and pY = p. Using the Weyl vector, it is also possible
to determine the dimension of the representation generated by the highest weight
A without computing the representation explicitly. To do this, we invoke the Weyl

dimension formula:

dim(Z(V) = [ %. (4.2.46)

OZGA+

We will use this formula to compute the dimensions of the fundamental represen-
tations of the Lie algebras with which we will be concerned. All of the relevant

data for the Lie algebras will be given at the end of this chapter.
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Summing the weights of a Lie algebra representation

We will now justify a result which will be very useful in the following chapters.
Consider a semisimple Lie algebra g and its fundamental representations V(®. Let

the weights of the representation be given by )\ga),i =1,...,dim V@, such that
HO AO) = (), [A) (4.2.47)

where the vectors {|A\)} satisfy (A\)|A) = 1. We will often require that the

)

sum of the weight vectors A" is zero:

> AW =o. (4.2.48)

This result is a corollary of a more general result: the generators of a finite-
dimensional representation of a semisimple Lie algebra are traceless. We demon-
strate this using the Cartan-Weyl basis { H;, E,}. Recall that H; and E,, satisfy

the commutator
[H;,E,] = d'E,. (4.2.49)

Take the trace of both sides of (4.2.49). By the cyclic property of traces the left
hand side of (4.2.49)) is zero, which immediately implies tr(F,) = 0. It remains
to show that the traces of the generators H; of the Cartan subalgebra are zero.

Recall for a general root a € A the commutator of E, and E_, is given by

200 - H

EomE—a =
[ ] e

, (4.2.50)

and we once again take the trace of this commutator. As the trace is a linear

operator on matrices we find the following result which must hold for all roots
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o € A:

> ol tr(Hj) = 0. (4.2.51)
j=1
We now employ the basis of simple roots for our Lie algebra {ay,as, ..., a;}.

Substituting each of these into (4.2.51)) yields a system of linear equations

T

> () tr(Hj) = 0. (4.2.52)
j=1
As our simple roots form a basis, the matrix with elements (a;)’ has a kernel
containing only the zero vector. We then immediately find tr(H;) = 0. As a linear
combination of traceless matrices is itself traceless, we have that any element of a

finite-dimensional matrix representation of a semisimple Lie algebra g is traceless.

We now apply this to find our desired result (4.2.48)). We write the trace of a
(a) - : : (a)
generator H;" (where j =1,...,7) as a sum over the eigenbasis {|\;"’)} and our

result immediately follows:

dim V(@) dim V(@) dim V(@)

o (H7) = > AYHET D) = 3 00T = Y () =o.

=1 =1 =1

(4.2.53)

Products of representations

Many of the representations of g we will be concerned with are constructed from
particular products of smaller representations. The first such product of is a
tensor product of representations. Let V and W be representations of a simple
Lie algebra g. Then the tensor product of V' and W is denoted by V ® W and is
the vector space generated by the elements v @ w, for v € V and w € W, where ®

is a bilinear operation. We then establish a new representation of g on the vector
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space V ® W by defining the action of A € g on elements v @ w € V ® W in the

following way:
Av@w)=A0W)Qw+v® A(w) YveV,weW. (4.2.54)

Given a vector space V (over a field F' = C) and the tensor product operator ®,

we construct the tensor algebra T'(V') as a direct sum of tensor products of V:
TV)=CeVa(VaV)s(VeVeV)s... (4.2.55)

We then construct the exterior algebra A(V') of a vector space V' as the quotient
of the tensor algebra T (V') by the ideal I = {v ®@ v|v € V'}. The wedge product
A (or exterior product) is then the product on elements of A(V') induced by the
tensor product ® on T (V). The wedge product on V satisfies v A v = 0 for all
v € V, and inherits bilinearity from the tensor product ®. By setting v =x +y
for x,y € V and using bilinearity to expand (x + y) A (z + y), we find the wedge

product is antisymmetric: x Ay = —y Az for all xz,y € V.

Using the wedge product, we then construct new vector spaces A"V
/\V:{’Ul/\vg/\"'/\’(}a|Ul,...,’UGEV}, (4.2.56)

and then establish new representations of g on A"V by defining the action of

A € g on a-vectors vy Avg A-+- Ao, € AV

A(vy Avg A+ Avy) (4.2.57)

= A1) ANvg Ao Avg+03 AAWa) A - Avg + -+ v Avg A== A A(v,).

Many of the representations of interest in this thesis will be products of evaluation

representations Vj, which will be defined below. The evaluation representations
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are defined over the same vector space V and so the product representations

constructed in this section remain well-defined.

4.2.2 Affine Lie algebras and Lie algebra data

The differential equations and integrable models we will consider are related to
affine Lie algebras. We now briefly detail their construction from a given simple
Lie algebra, and note the particular representations of affine Lie algebras that we
will find useful in the following chapters. More complete details of the construction

of affine Lie algebras are found in chapter 14 of [17].

We let Clt, t7!] be the space of Laurent polynomials in the variable t. We then
define an affine Lie algebra g to be the vector space g ® C[t,t7!] @ Cc with the
Lie bracket
m
o
[c,8] =0, (a,b€g, mmneZ) (4.2.59)

[a@t™ b@t"] = |a,b] @ ™" + (a,b)dmno C (4.2.58)

where ¢ is the central element of the affine Lie algebra and x(a,b) is the Killing
form of the Lie algebra g. These affine Lie algebras retain the simple root structure
of the simple Lie algebras, with an additional simple root g equal to the lowest
root of g plus an imaginary root 0 [I7]. Its corresponding Chevalley generator is

then given by E,, ® t, which by an abuse of notation we shall denote E,,.

Certain finite-dimensional representations of g will be of interest to us. We
follow [47] and define the evaluation representation of g. Let V' be some finite-

dimensional representation of the simple Lie algebra g, and let ( € C\ {0}. Then
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the evaluation representation V' (¢) of g has the following action on v € V:
(a@t")v=_"av, (ac€g). (4.2.60)

As in [47] we denote V, = V(e**) to be the evaluation representation of g cor-
responding to the representation V of g and ¢ = €?™*. For our purposes, k will
be an integer or a half-integer. If k£ is an integer, these evaluation representations
are exactly equivalent to the original representation V. If k is a half-integer, the

representation of the Chevalley generator E,,® t € g becomes E,,®(—1) = —E,,.

In this thesis, the affine Lie algebras we will consider are denoted by AW = A,,
DM = D,, E\" = E, B\ = E; and E{Y = E.

Lie algebra data

As stated at the beginning of this chapter, the above sketch of the theory of Lie
algebras is by no means comprehensive. Further details and proofs may be found
in the texts [30], [35] and Chapter 13 of [17]. We conclude this chapter with a
collection of relevant data for the simply-laced Lie algebras A,, D,, Es, E; and
FEs. The Weyl vectors and dimensions of fundamental representations for Fg, -

and Fg were calculated using the LieART package for Mathematica.
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A,

e Cartan matrix

2 -1 0 0 0 0
-1 2 -1 0 0 0
0 -1 2 0 0 0
C =
0 0 0 2 -1 0
0 0 0 1 2 -1
0 0 0 0 -1 2

Coxeter number h =r +1

Highest root —ag = a; +as + -+ + a1 + @

Weyl vector p = p¥ =31 jwi =35> i(r—i+1)q

Kac labels: ng=ny=---=n,=1

e Dimensions of fundamental representations V(@ = L(w,): ("!) for 1 < a <

r—2 2" tfora=r—1,r.
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D,

e Cartan matrix

2 -1 0 0 0 0
1 2 -1 0 0 0
0 -1 2 0 0 0
C =
0 0 0 2 -1 -1
0 0 0 -1 2 0
0 0 0 -1 0 2

Coxeter number h = 2r — 2

Highest root —ag = a1 +2as + -+ - + 2049 + 1 +

Weyl vector p = p¥ =371 w; =35>0 i(2r —i—1)oy

Kac labels: no=n1=1,no=---=n, o=2,n,_1=n, =1

e Dimensions of fundamental representations V(®: (2;) forl <a<r-—2,

2 tfora=1r—1,r.
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Eg

e Cartan matrix

=} e} e} S
=)
|
—_
[\
|
—_
S

Coxeter number h = 12

Highest root —ay = a1 4+ 2as + 3a3 + 204 + a5 + 204

Weyl vector p = p¥ = Z?:l w; = 8aq + 15y + 21as + 15aus + 8as + 11

Kac labels: ng=ny =1, na=2,n3 =3, ng =2, n5=1, ng =2

e Dimensions of fundamental representations V(®):

(27, 351, 2925, 351, 27, 78).
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E;

e Cartan matrix

2 -1 0 0 0 0 0
-1 2 -1 0 0 0 O
-1 2 -1 0 0 -1

C= -1 2 -1 0

o o o o o
o o o o

e Coxeter number h = 18
e Highest root —ay = 2a; + 3as + 4az + 3ay + 205 + ag + 2ai7.

o Weyl VeCtOI" p = p\/ g Zz:l W; = 170[1 + 33052 + 480[3 + %OQI + 520[5 + 277046 +

e Kaclabels: ng=1,n=2,n=3,n3=4,n4=3,n5s =2, ng =1, ny =2

e Dimensions of fundamental representations V(®):

(133, 8645, 365750, 27664, 1539, 56, 912).
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Es

e Cartan matrix

2 -1 0 0 O 0 0 0
-1 2 -1 0 0O O 0 O
-1 2 -1 0 0 0 -1
-1 2 -1 0 O
C =
0o -1 2 -1 0

e Coxeter number h = 30
e Highest root —ag = 207 + 4ay + 63 + Say + 4as + 30 + 207 + 3as

e Weyl vector p = p¥ = 320 w; = 46a; + 91lay + 13503 + 1100y + 84as +
57056 + 29@7 + 680(8

e Kac labels: ng =1, n1 =2nys =4, n3 =6, n4y =5, ns =4, ng = 3, ny = 2,

n8:3

e Dimensions of fundamental representations V(®):

(3875, 6696000, 6899079264, 146325270, 2450240, 30380, 248, 147250).

4.3 Systems of differential equations

The differential equations that form one side of the ODE/IM correspondence are
often most elegantly written in the form of a system of coupled differential equa-

tions. In this section, we will study these systems of differential equations. In
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subsection we will describe two methods of converting such systems into
pseudo-differential equations, involving the inverse differential operator ;. We
apply both methods to a relevant example, demonstrating that they are in agree-
ment. Lastly, in subsection we consider the asymptotics of systems of differ-

ential equations directly, using a generalisation of the WKB approximation.

A similar procedure is performed in [28] to construct analogues of the Korteweg-
de Vries (KdV) equation from a pair of matrices known as a Lax pair, constructed
from a representation of a simple Lie algebra. In this section, although we con-
struct similar pseudo-differential operators, we do not consider them in the context
of Lax pairs and integrable equations. We will consider them merely as systems
of differential equations, manipulating them directly to find pseudo-differential

operators acting on a single function ¥ (z).

4.3.1 From systems of differential equations to

pseudo-differential equations

For the remainder of the chapter, we will consider systems of differential equations

of the form
(0, + A(2))¥(z) =0, (4.3.1)

where A(z) is an n-by-n matrix and ¥(2) = (11(2),...,%,(2))T is a column vector.

In component form this system of equations is given by
j=1

For a general matrix A(z), the system of equations (4.3.1)) does not have a closed-

form solution. In the special case [A(z1), A(z2)] = 0 for z; # 25, the solution can
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be written explicitly

B(2) = exp (— /0 T Q) dt) (0). (4.3.3)

However, if [A(z1), A(22)] # 0, the simple solution (4.3.3) no longer holds; the

solution may then only be written in terms of a Magnus series [46]:

U(z) = exp (- > Ak(z)> W(0), (4.3.4)
k=1
where the first few terms in (4.3.4)) are given by

Ai(z) :/OZA(Tl) dr, (4.3.5)
Az =5 [ [ 14 Al dr dn, (13.6)
As(2) = %/OZ /0“ /072 ([A(m), [A(72), A(73)]] + [A(73), [A(72), A(m)]]) d7s d7p dri.

(4.3.7)

The Magnus series is effectively a re-ordering of the terms in the more standard

path-ordered exponential, defined as

T{exp <— /0 T A(s) ds)} (4.3.8)
_ <I—/OZA(sl)dsl+/0Z/081 A(sl)A(SQ)dSstl—l—...).

Evaluated as full series, the Magnus series (4.3.4)) and the expansion of the path-
ordered exponential (4.3.8) are equivalent. The form of the Magnus series, eval-
uated up to its first term, is more useful for our purposes than the first-order

expansion of the path-ordered exponential.

When we consider systems of equations of the form (4.3.1) in the small-|z]|

limit, only the first term in this expansion will be relevant. Our matrices A(z)

99



will also be diagonal in the small-|z| limit, simplifying the form of the asymptotics

considerably.

In the context of the ODE/IM correspondence, the systems of differential
equations are more commonly presented in the form of pseudo-differential
equations [20] by combining all the component equations of into one equa-
tion in /. To discuss pseudo-differential equations and related pseudo-differential
operators, we briefly define the principal characteristic of such operators: the pres-

ence of an inverse differential operator 9!, with the properties defined in section

3 of [20]:
o7 (2") = ;,1;17 (4.3.9)
0710,(2") = 0.0 (2") = 2", (4.3.10)
0 (f(2)0:(9(2))) = f(2)g(2) = 0, (9:(f(2))g(2)) - (4.3.11)

A pseudo-differential operator can then be considered to be an element of an alge-
bra generated by analytic functions f(z) and differential operators 02 for a € Z.
We will now demonstrate two different methods of converting systems of differen-
tial equations into pseudo-differential equations, thus exhibiting an example of a

pseudo-differential operator.

Method of repeated differentiation

We will consider a system of ten coupled differential equations, related to the

second fundamental representation (the representation with highest weight ws) of
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the Lie algebra AS):

8¢1+¢2:Oa
Opy + b3 +1hy = 0,
O3 + b5 = 0,

Oy + s + b = 0,
s + 7 + hg = 0,

g + s = 0, (4.3.12)
07 +1hy = 0,
s + 1y + p(2)ihr = 0,
g + P10 + p(2)1h2 = 0,
Ihro + p(2)1hs = 0,

where we have used the truncated notation 0 = 0., and introduced the z-dependent
function p(z). The exact form of p(z) does not concern us in this section. (The
systems of differential equations we will consider in later chapters will contain
constants of the form me?, but these constants do not affect the calculation of

pseudo-differential equations.)

To construct a single equation in 1), we repeatedly differentiate the first equa-

tion in (4.3.12)), and find
OThy = —Bpihy + 50(piba) — 382 (pir ). (4.3.13)

To produce a pseudo-differential equation, we must rewrite 9 and 4 in terms

of 1. The 1), term is dealt with straightforwardly using the first equation in
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(4.3.12):
Yo = =0y, (4.3.14)

We rewrite the ¢4 term in (4.3.13)) by using the system of equations (4.3.12)) to

derive the following useful identities

1hy = =319 — 2pib, (4.3.15)

Oy = —51hy — 3piy. (4.3.16)

We then combine (4.3.15)) and (4.3.16f), removing the 1)y terms, to find an equation

for 14 in terms of y:

Bihy = 3024y — 0% (pin). (4.3.17)

The pseudo-differential equation that is equivalent to the system of equations

(4.3.12)) is then found by substituting (4.3.14]) and (4.3.17)) into (4.3.13)):

O™y + 30 (phy) + 50(p Oy) + 3p 9*hy — p > (pihy) = 0. (4.3.18)

This pseudo-differential equation matches the tenth-order ODE studied in section
3.4 of [1], after removing the inverse differential term by dividing (4.3.18)) through

by p and differentiating a further three times.

Method of loop-counting

We also present a diagrammatic method, given in section 2.3 of [50], of computing
the equivalent pseudo-differential equation from a system of differential equations.

For a given system of n equations (0 + A)¥ = 0 (again setting 0 = 0,), we
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construct a directed graph with n vertices, connecting two vertices ¢ and j with
an arrow from ¢ to j if A;; # 0. For the system of equations , the directed
graph constructed in this way is shown in Figure [3] We then construct a pseudo-
differential equation corresponding to the system of differential equations (4.3.12))

using its directed graph and the following procedure:

e Find all distinct loops (closed paths of the form ¢ — -+ - — 4) in the directed

graph.

e Each loop contributes a term in the pseudo-differential equation. For each
loop, start from the lowest numbered node in the loop, and for each arrow

i — j, write down (—071A;).

e Compute the distance of the lowest numbered node from node 1. Let this
distance be a positive integer d. Multiply the product of (—97'A4;;) terms
by 0~ on the left and by 9%);.

e Sum all such expressions from each of the loops. Set this sum equal to ;.

Simplify as necessary.

We apply this procedure to (4.3.12) by firstly counting all the distinct loops in
Figure [3] All the distinct loops have lowest numbered nodes 1, 2 or 4, and we

categorise them in that way. The loops with lowest node 1 are:

1-2—-3—->5—->8—1,
1-2—-54—-5—-8—=1, (4.3.19)
1-52—-4—-56—->8—1,

1-2—+3—->5—-7—-9—-10—>4—-6—>8—1.
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The loops with lowest node 2 are:

2—53—=>5—=>7—9—2,
2—=-3—=25—=-8—=>9—2
254255 7—9—2, (4.3.20)
2—-4—-5—-8—>9—2,

2—-4—-6—->8—=9— 2.

and the loops with lowest node 4 are

4 —-5—7—9—10—4,
4—-5—=-8—=9—=>10—4, (4.3.21)

4 —-6—8—9—10— 4.

We next convert these loops into terms in the pseudo-differential equation. As an

example, the loop 4 -+ 5 — 7 — 9 — 10 — 4 corresponds to the term

(07)(=07)(=0") (=0 ") (=07 ") (=0~ 'p)9"n
= —0 T (p0%y). (4.3.22)

Performing the same conversion to each of the loops, and then adding the results

and setting them equal to 1, we find

P = =307 (ppy) — 5075 (poihy) — 3077 (pd*¢y) + 0" (pO 3 (pyr)).  (4.3.23)
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We differentiate this expression seven times and rearrange terms to recover the

pseudo-differential equation (4.3.18])

O™y + 30*(pby) + 50(p Oy) + 3p 0*py — p > (paby) = 0. (4.3.24)

The system (4.3.12)) is a special case of the system of differential equations
related to the second fundamental representation of Afll). In general, the deriva-
tive operators 0, are replaced by more general differential operators of the form
D()\), where A is an r-component weight vector associated with the particular

representation of a simple Lie algebra. The system (4.3.12) becomes

DO + 4 = 0,
DO )y + 1 + 1y = 0,
DO s + 105 =0,
DO Ybs + 5 + 6 = 0,
DO )5 + 17 + s = 0,
DO + 5 = 0, (4.3.25)
DO )7 + 109 =0,
DO s + o + p(2)ths =0,
D)o + 10 + pl(2)h2 = 0,

D()‘g%))%o + p(2)¢s = 0.

where /\52) are the weight vectors associated with second fundamental representa-
tion of Afll) . The presence of the more general operators D(\) makes this system
of equations much more difficult to simplify into a single pseudo-differential equa-
tion. The equation will contain terms of the form D(Agf))_l + D(AP)!, which

cannot be simplified except in special cases of the weight vectors. In chapter [6] we
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will see the symmetry of the weight vectors /\51) in the first fundamental represen-
tation of D) allow for the construction of a compact pseudo-differential equation

in that case.

4.3.2 Asymptotics of systems of differential equations

In the following chapters, we will often be concerned with the small-|z| and large-
|z| behaviour of systems of differential equations of the form (0, + A(z))¥ = 0.
Particular solutions of these systems in the small-|z| and large-|z| regimes will
define Q)-functions which encode information about the related integrable quantum
field theory. In this section, we will briefly discuss methods of analysing the
asymptotics of systems of differential equation in these regimes, setting up these

methods for use in later chapters.

The small-|z| asymptotics of (0, + A)¥U = 0 are easily studied using the first
term of the Magnus series (4.3.4). For small-|z|, the solution is given by

U(2) = exp (— /0 ZA(Tl)dﬁ> | (4.3.26)

which is further simplified by taking the |z| — 0 limit. For the systems of dif-
ferential equations we are concerned with, the matrices A(z) will be diagonal in
this limit. The matrix exponential in (4.3.26]) is then a diagonal matrix, and the

small-|z| asymptotics are easily extracted.

The large-|z| asymptotics are more involved; to study these, we will employ a

slight generalisation of the WKB approximation (discussed in [13]) given in [49).
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The WKB approximation for systems of differential equations
We perform a slight change of notation, working with the equation
(€0, + A(2))¥ =0, (4.3.27)

and considering the ¢ — 0 limit. The following ‘abelianisation’ procedure, similar
to that found in section 3.8 of [3], will yield an asymptotic expansion for ¥(z),
which we will see through an example matches the large-|z| asymptotic expansion
of solutions of (0, + A)¥ = 0 when € = 1. We also must assume that the matrix
A(z) is a diagonalisable matrix in the large-|z| limit, so that a basis of eigenvectors
exists in the neighbourhood of z = co. All of the systems of differential equations

that we will consider satisfy this property.
We begin by performing a change of variables from ¥ to 0

A

U= (Py+eP +P+...)V, (4.3.28)

(where the P; are 2-dependent matrices to be determined) so that the linear system

(4.3.27) becomes

€0, (Py+eP,+&°Py+...)0) + A(Py+eP + 2Py +...)0
)0

:5(P0+€P1+52P2+-- ) z\i/+s(8ZP0+sazP1+...)\if

+ A(Py+ePy + 2Py +...)¥ = 0. (4.3.29)

We then multiply this expression on the left with the matrix (Py +¢eP; +...)™ "

~

€0, = —(Py+eP, + &Py + ... )Y (0. Py +€0.P, +...)¥

— (Py+eP +e*Py+ .. )V 'A(Py+eP + Py + .. ). (4.3.30)
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(Py will be a matrix of eigenvectors for the matrix A. P, is then invertible and for
sufficiently small € > 0, (Py+eP;+...) ! exists.) We then expand the right-hand
side of equation (4.3.30)) in powers of . We first note

(Po+ePi+e®P+...) ' =(I +ePy ' P+ P P+ .. ) Ry
=(I4+eQ1+e°Q+...) "By,

~ (I —eQr+*Q7 —Qy) +...)Pytase — 0, (4.3.31)

where for convenience we have set Q); = P, 'P,. We have also used the identity

(I+X) "= i(—l)ij, (4.3.32)

J=0

for X = eQ + €Qy + . ... This identity holds when || X| < 1, which is true for
X = eQ; +%Q, + ... for sufficiently small ¢ > 0. We substitute (4.3.31)) into
[@.3.30):

0,0 = —c(I —eQy +(Q* — Qo) + ... )Py (0.Py +€0.PL +...)¥  (4.3.33)

— (I —eQr+2(Q* = Qy) + .. )PP AR(I + eQy + 2Qo + ... )W,

and consider terms proportional to powers of € on the right-hand side of equation

([£3.33).

The only O(£°) term on the right-hand side of (4.3.33) is
Ao =Py lAPR,, (4.3.34)

and we choose Py such that Ag is diagonal. We can always do this given the

starting assumption that A was a diagonalisable matrix.

108



The O(e) term on the right-hand side of (4.3.33) is given by
Ay = —[Ao, Q1] — Py 10 Fo. (4.3.35)

We choose @1 so that Ay is a diagonal matrix. As Ag is diagonal, [Ag, Q1] has
zeroes along its diagonal. Choosing the elements of (); to cancel the off-diagonal

elements, we have
(A1)ii = —(Py ' 0.Po)ar- (4.3.36)
The linear system then becomes
0.0 = (Mg + €Ay +...), (4.3.37)
which decouples into n separate first-order ordinary differential equations

Eaz@@i = (Ao +eh +... )u@zz

— o = A;exp (é /Z(Ao(s) +eMi(s)+ .. )i ds) . (4.3.38)

To recover the asymptotic expansion to the original problem (in V) we act on ]

with the matrix (Py +¢eP, +...):

A

U= (Py+eP +...)¥ (4.3.39)

1 [~ R
~(Py+eP+...)exp (g/ Ao(s) +eAi(s) + ... ds) Uy ase — 0,

where ¥, is a constant vector.
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Example: the Airy equation

We illustrate the above method on a well-known system. The Airy equation

e20%) = 2 (4.3.40)

can be written as a system of equations

01
0.0 — w, (4.3.41)
z 0
where U = (11, 19)7. Let
0 -1
A= , (4.3.42)
-z 0

and choose the matrix Py so that P, ' AP, is diagonal:

_ 2 12 _2
1 1 0 22

Using (4.3.36)), we find

1 ({1 0

Alz—
4z \o 1

(4.3.44)

Substitute Py, Ay and A; into equation (4.3.39)) to find asymptotics for W:

1 [~ .
U ~ Pyexp (g/ Ao(s) + eAq(s) ds) Uy, ase — 0, (4.3.45)
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implies

2 12 _21/467%23/2 0 a
U~ , ) (4.3.46)
1 1 0 ez | \ b
Multiplying out these matrices,
—ar Ve + by Vies=?
U~ ase — 0, (4.3.47)

3/ 2 ,3/2

23 2
azt/te 3" 4 bt/ es

where we set the constant vector Wy = (a,b)T. These asymptotics match, up to
a rescaling, the first-order asymptotic expansions for two solutions to the Airy

equation Ai(z) and Bi(z) in the large-|z| limit:

Ai(z) ~ Z_1/4€_§Z3/2’
Bi(z) ~ 271/4(2%23/2,
(

_2,3/2
Z) ~ 21/46 37

Ai

Y

Bi'(z) ~ 2"/%3*"* as |z] = 0. (4.3.48)

4.4 Conclusions

In this chapter, we have provided a brief introduction to Lie algebra theory, con-
structing the representations of the Lie algebras that we will work with for the
remainder of the thesis. We have also introduced some techniques for studying
systems of differential equations. We discussed two methods of converting systems
of differential equations into single pseudo-differential equations, which is useful
for the discussion of eigenvalue problems. We have also introduced a generali-
sation of the WKB approximation to certain well-behaved systems of differential

equations, which will be invaluable for the study of the asymptotic solutions of the
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differential equations that constitute one side of the ODE/IM correspondence.

112



1 2 3 4
G, @—0O
1 2

Figure 2: Dynkin diagrams of the simple Lie algebras. The labels on the vertices
correspond to the fundamental roots and weights related to that vertex.
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Figure 3: Directed graph associated with the A-matrix of the second fundamental rep-

resentation of Ail) .
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Chapter 5

On the A,,(al) case of the massive

ODE/IM correspondence

5.1 Introduction

In this chapter, we will find features of an integrable quantum field theory asso-
ciated with the Lie algebra AWM arising from the differential equations associated
with a classical A" Toda field theory. This work will be a direct generalisation
of the A§” case of the massive ODE/IM correspondence studied in chapter 3| In
section 5.2 we follow the notation given in [37,138] and define the differential equa-
tions of interest in terms of the generators of the Lie algebra AW Tn section
we work in particular representations of A" and define the differential equations
of interest. We then use these differential equations to define @-functions, and
derive certain useful properties of these equations in [5.4, The solutions of the
differential equations and the representations of A are then as in [38, 47] used
to define W-systems, which imply functional relations on the @-functions known

as Bethe ansatz equations. In section these are then used to derive integrals
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of motion associated with a massive integrable theory with A symmetry. In
section the integrals of motion are used to exhibit the spectral equivalence
between Lastly, in section [5.8| the Q-functions are used to derive other functional

relations which arise in the study of integrable models.

5.2 Affine Toda field theory

5.2.1 Definitions

We begin with the affine Toda field theory Lagrangian associated with the affine
Lie algebra g [37]

2 '
L=0,00p0+ % an exp(Ba; - ), (5.2.1)
i=0

where we work in light-cone coordinates w, w. ¢ is an r-component vector field
and m and [ are constants. We also note the choice of signature to match [38 [45].

The associated equations of motion are
"y (Bs - ¢
0wOpd — — n;a; exp(fay - @) = 0. 5.2.2
3 Z:; (5.2.2)

The differential equations that we are interested in are the modified affine Toda
field equations, related to the equations of motion (5.2.2)) by a change of variables

w — z and a shift in the field ¢:

Y

w=/2®wﬁ,¢%¢—%mmmmm. (5.2.3)
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Applying this transformation to (5.2.2)), using properties of the co-Weyl vector

Y

pV:
p' ;i =1, p'-ap=1-h, (5.2.4)

we find the modified affine Toda field equations

m2

0,05 —
°= 5

Z n;a; exp(Ba; - @) + p(2)p(Z)noap exp(Bag - ¢)| = 0. (5.2.5)
i=1

We set p(z) = 2" — shM where M is real and positive and s is complex. We
recover the modified sinh-Gordon equation (3.2.1)) by setting » = 1 and substi-
tuting the roots of the Lie algebra Agl) in (5.2.5). The modified affine Toda field
equations (5.2.5)) can be written as the compatibility condition

0:A —0,A+[A Al =0, (5.2.6)

where A and A are elements of a representation of the Lie algebra g, given by [38]:

A= 00-H [Z VRIS, 4 pl2) e P, |
i=1

(5.2.7)

A= _g(w e [Z VPR E o 4 p(2)y/ng e P E g, |
i=1

(5.2.8)

where we have introduced the spectral parameter 6. Note the dual Kac labels

2
za[e 7z
ny = niledl®

) . The modified affine Toda field equations then have an associated
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Lax pair representation

(0. + A)W =0, (5.2.9)

(0; + A)W = 0. (5.2.10)

We will mainly consider only the first of these equations; henceforth we call this
the linear problem. We will be concerned with the asymptotics of the various

solutions of this set of differential equations and the relationships between them.

It will be useful to define polar co-ordinates z = |z|e?¥. The linear problem

(5.2.9) is then invariant under a Symanzik rotation

2 k s
S s st (5.2.11)

ok
LU BN

Q- —

for any integer k. The linear problem ([5.2.9)) is also invariant under a gauge

transformation. Set
A=UAU ' +UB.U™Y, T =UT, (5.2.12)

for an arbitrary matrix U. Then, using 0,(UU ') = U, U + 0, UU ! = 0, we
find

(0. + AT =U(0, + AW =0, (5.2.13)

hence the linear problem is unchanged. It is useful to set U = e ##9/2 where
the exponential of an operator X was defined in (3.2.11)). Gauge transforming A

using this matrix U has the effect of removing the inconvenient exponential terms
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from A:

A= A=po.¢- H+me’ | Y \/n)Ea +p(2)y/ng Ea, (5.2.14)

=1

where the derivation of (5.2.14)) uses the identity (3.2.13)). The conjugate linear

problem ([5.2.10)) is itself invariant under a similar gauge transformation, with

U = eﬁH'¢/2‘

5.2.2 Asymptotics of ¢

To define the solutions to the linear problem uniquely, we will need to
specify constraints on the solution ¢(|z|, ¢) of the modified affine Toda field equa-
tions . Our required solution for the modified affine Toda field equations
exists only on the subspace of (z,z) where z = z. Following [37] we impose the

following:

1. ¢(]#], ) should be real and finite everywhere except at |z| = 0.

2. Periodicity:

2m
— | = . 2.1
o (1o + 237 ) = ol 9) (5:2.15
3. Large-|z| asymptotics:
2MpY
o(|z|, ) = 3 log|z| +0(1) as|z| — oc. (5.2.16)
4. Small-|z| asymptotics:
o(|z], ¢) = 2¢glog|z| + O(1) as|z| — 0. (5.2.17)
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We find the asymptotics in the limit |z| — 0 of the solution to (5.2.5)) satisfying

the above constraints. We substitute the ansatz

o(z,2) = glog(2z) + f(z, 2) (5.2.18)

into the modified affine Toda field equations ([5.2.5). The result is an equation for
I

2 '
220:0:f = % D miai(zz)ferotteten (5.2.19)
=1
m2
+ _noao(ZhM . ShM)(ZhM o ShM)(Z5>ﬁao-g+1ega0.f.

p

To ensure that the leading order asymptotics ([5.2.18)) are preserved in the limit

|z] — 0, we require a constraint on g:
Boy,-g+1>0, p=0,...,m (5.2.20)

To aid further calculations, we define some more concise notation. Let

D = 220,0:, (5.2.21)
u, = (zz)Powott, (5.2.22)
B, = %Qnua#, (b=0,1,...,7) (5.2.23)
v ="M (5.2.24)
v =z" (5.2.25)
S ="M (5.2.26)
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so (5.2.19) becomes

Df = Z Biuge? + Byug(v — S) (v — S)e*o /. (5.2.27)
i=1
We then expand f as a power series in the variables ug, uq, ..., u,, v, v:
fuy,v,0) Z F(d;b, c)i®™’o (5.2.28)
ae Nyt
b=0, c:0
where we have defined the multi-index @ = (aog,ay,...,a,) where a; = 0,1,...

and the compact notation #% = u®u{" ... u%. Noting that D acts as a dilation

operator on powers of z and Z:
D(zPz7) = pgzPz, (5.2.29)
it is therefore straightforward to substitute ([5.2.28)) into (5.2.27)):

> (bhM + Z Bay, - g+ 1)a,)( chM+Z Bay, - g + Va,)F(a@; b, ¢)i’v°
pn=0

a,b,c pn=0

= ZBulexp Zﬂ% (@; b, c)iv’v°

a,b,c

+ Boug(v — S) (0 — S)exp | Y Bayg - F(d; b, ¢)i™v"v° (5.2.30)

a,b,c
Expanding this expression term by term in the powers @%1’?¢ yields a set of
recurrence relations for the constants F'(@, b, ¢). In this way, the asymptotics of ¢
can in principle be calculated to arbitrarily high orders. We will check that the

first-order terms match those in [37].

We notice that D(v¥) = D(v*) = 0 and there are no O(v*) or O(v*) terms
on the right-hand side of (5.2.30). This means that the values F(ﬁ;k,O) and

121



F (6, 0,k) for k£ > 0 are not defined by the recurrence relations for F'. They arise

from the field redefinition

\/

= ¢— Elog( p(2)p(2)), (5.2.31)

and we expand this as a function of v and v to find the constants F' (6, k,0) and
F(0:0,k):

%

- p

k € Zsg. (5.2.32)

This power series expansion of (5.2.31]) leaves behind stray constants which are
absorbed into F(0;0,0) = ¢(©.

All the other constants F'(@;b,c) are defined by recurrence relations found by
expanding ([5.2.30) term-by-term. We denote @ = apeg + a1€; + - - - + a,€, where

{e; };7:0 is the standard orthonormal basis. By considering the ug term in (5.2.30))

we find
BnS2 Bag-F(0;0,0) 2 2hM Bag-¢(©)
Fl(ep;0,0) = —22° Mok (5.2.33)
(Bag-g+1) B(Bag-g+1)
Similarly, considering the u; term for ¢ = 1,...,r we find

B, ePeiF(0:0,0) 2p,qeB00 @
Fle;;0,0) = < = IV it . (5.2.34)
(Bai-g+1)>  B(Bai-g+ 1)

Putting it all together, the first terms of the small-|z| expansion of our chosen
solution to ([5.2.5)) is

© _hkM | shkM
¢ ~ glog zz + ¢ —I— E G (5.2.35)
,Bh L ghkM

2 2hM Bag-¢(©) Bai-¢(®
m?s*"Mnoape m2n; e 3
Ll (zz)Poootl 4 E - (22)50‘19“—1—...

B(Bag - g+ 1)? < B(Bay - g +1
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This asymptotic expansion matches those found in [37, 45 2]. With the formalism
above, we can compute arbitrarily high orders of the asymptotic expansion by solv-
ing the recurrence relations given by . This rapidly becomes difficult, as
the exponentials of multinomial series in produce a plethora of terms. To
second-order, there are ten types of terms to calculate in the power series ;

2

those corresponding to the powers 3, uou;, ugv, uov, u;u;, u;v, u;v, v*, vo, v2. To

demonstrate the calculation, we calculate the ’cross term’ F'(ey + €;;0,0).

The O(ugu;) term of the left-hand side of is
(Bag - g+ 1)(Bay - g+ 1)F(ey +€;;0,0), (5.2.36)
and the O(ugu;) term of the right-hand side is
Bie® 9" Ba; - Fley; 0,0) 4+ ByS%e® %" Bayg - F(e;:0,0). (5.2.37)

We then set these expressions equal to one another, substitute in our expressions

for F(ep;0,0) and F(e;;0,0) (5.2.33) and (5.2.34), and then solve for F(ey +
ei;0,0):

4
m N
F(ey+€;;0,0) = — g?hM gBlaotai) ¢ NNy

8

) Ozi(Oéi . Oé()) ao(ao . ai)
((6040 g+ 13 (B - g+ 1) + (Bao - g+ 1)(Bay - g + 1)3) . (5.2.38)

A full asymptotic expansion of ¢ must contain many such cross terms.
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5.3 A?(a1> linear problems

5.3.1 Representations of Aq(al)

The results of the previous section are valid for the affine Toda field theory as-
sociated with any affine Lie algebra g. To make further progress, we consider
a particular case of the modified affine Toda field equations, corresponding to a
choice of Lie algebra and a representation of that algebra. For the rest of this
section, we will be concerned with certain representations of the affine Lie algebra
A, To construct these representations, we begin by explicitly constructing the
smallest non-trivial representation of A,, L(w;). This is the first of the fundamen-
tal representations of A,, with highest weight w;. We then define the associated
evaluation representations of Aq(nl), following section . The representations of
interest will then be wedge products of particular evaluation representations, as

defined in section [4.2.1]

The representation L(w;) is (r + 1)-dimensional, and with the conventions in

[37], the weights )\51) satisfy

AP = wy, (5.3.1)
AL =2~y (=1, (5.3.2)

We choose an orthonormal basis {e§1)}§:0 for the vector space associated with

L(w1). The generators of the Lie algebra act on this vector space in the following
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way:

Eoel) =56l (5.3.3)
E_aie(-l) = 61'_17]'8;-21, (534)
Hiel) = [Bo,, B_o)ef") = 6, e — el (5.3.5)
Eagel”) = 6y e, (5.3.6)
where i = 1,...,7. The weight spaces of L(w;) are one-dimensional, and for

each weight >‘§‘1+)1 (where j = 0,...,7) the weight space is spanned by the vector

eg-l), with the normalisations of these vectors fixed by the commutation relations

(5.3.3)-(5.3.0)).

The representation L(w;) naturally extends to an evaluation representation of
Al ), as detailed in section . As in that section, denote L(w;)x to be the eval-
uation representation with ¢ = e?™*. We will only be concerned with the cases
where k is an integer or a half-integer. In the integer case, the evaluation represen-
tation is equivalent to the original representation of A,; in the half-integer case,
the evaluation representation has the effect of changing the sign of the generator

Eoy — —Eq,.-

As described in , we can construct larger representations of AW by taking
the wedge product of several copies of L(w;), (for various values of k.) The r

representations with which we shall be concerned with are then given by

VO = A L(w);_ap. (5.3.7)
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For each of these representations we may write the gauge-transformed linear prob-

lem
(0. + A)W =0, (5.3.8)
in terms of the matrices H;, E,. We recall Alis given by

A=p0.0-H+me’ |y Eq +p(2)Ea, (5.3.9)

i=1

(We note for AW pY =n, = 1.) The linear problem (/5.3.8) may then be written

as a system of differential equations. To demonstrate this, we choose the represen-
tation V) = L(w;), and then set the vector U = @Zleél) + ﬁgegl) 4+ 4 @Erﬂeq(}).
We then write the equation (5.3.8)) in its components:

D)y + me’ihy = 0, (5.3.10)
DY) + mes = 0, (5.3.11)
(5.3.12)

DM, + me’ry1 =0, (5.3.13)
DO ) rgs + me’p(2)ihy =0, (5.3.14)

where the differential operator D is defined as

D) = 0. + B - 0.6. (5.3.15)

Following [21], 37], we combine the equations (5.3.10])-(5.3.14]) into a single differ-

ential equation for ¢);. We apply the operators D()\gl)), D()\gl)), Ce D(Agl) (in
that order) to both sides of ([5.3.10)), and use the other equations (5.3.11)-(5.3.14)
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to simplify the resulting expression. The result is
DOWHYDOAWM) ... D)y 4+ (=1)"(me®) ' p(2)dy = 0. (5.3.16)

This differential equation is the generalisation of (3.3.21]) to the affine Lie algebra
AWM. As in section we recover the massless analogue of (5.3.16)) by taking

the conformal limit, making the change of variables

xr = (mee)ﬁrlz, E = "™ (mef)art, (5.3.17)

T = (me_e)ﬁé, E=s

MM (me=?)ar (5.3.18)

(where h = r 4+ 1) and send z,z — 0, # — oo so that  and E remain finite. In

this limit, the operator D(\) becomes

D(\) = Dy(\) = (g) & (ax 48 Am' J ) , (5.3.19)
and becomes
(1) D(g) + plx, E)) =0, (5.3.20)
where
Dy(g) = D:(AY) - DY), pla, B) = 2" — B, (5.3.21)

The equation (5.3.20)) and the properties of its solutions are the main focus of [21].
We could proceed with the analysis of the massive analogue ([5.3.16|) of this equa-

tion, but it is easier to generalise the procedure to more general representations

V(@ by considering the associated linear systems (5.2.9)-(5.2.10) directly, using

the techniques we developed in chapter |4.3]
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5.3.2 VU linear problem asymptotics

We will be interested in solutions of the original linear problem (5.2.9)) with par-
ticular small-|z| and large-|z| asymptotics. To this end, we will now consider the
more straightforward gauge-transformed system of equations in the rep-
resentation V. We briefly classify the solutions of this system of equations in
the small-|z| and large-|z| limits, and then undo the gauge transform by

applying the matrix U~! to U, where U = ¢ #¢H/2,

Small-|z| asymptotics

In the representation V() the matrix A is given by

B 8.0 me’ 0 e 0 0
0 /BAgl) - 0,0 me’ e 0 0
Ia 0 0 BN 8,0 ... 0 0
0 0 0 o Y06 me?
me?p(z) 0 0 e 0 6)\521 0,0

(5.3.22)

In the limit |z| — 0, we recall from (5.2.35) the leading order behaviour of ¢ in
the small-|z| limit ¢ ~ glog zZ. We consider A in the small-|z| limit, substituting

the small-|z| behaviour of ¢. The terms proportional to me? become irrelevant in
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this limit and so the matrix A becomes diagonal:

(1)
w 0o ... 0 0
(1),
/8)\22 g 0 0
A~ : S : (5.3.23)
0 0 e
0 0 .- 0 P

The system of equations (0, + A)¥ = 0 then decouples in the small-|z| limit

and is easily solved component-by-component:

. AD L,
azwﬂr—ﬁ - 93 =0 (5.3.24)
— gy =N (5.3.25)

where ¢;,; are arbitrary constants. Choosing a standard orthonomal basis {egl) o
for the space V(1) we then have a basis of solutions {éi}gzo to the system of equa-

tions (9, + A)¥ = 0:

(1)
i~ el(-l)ci+1z_’3’\il+1'9 as |z| = 0. (5.3.26)

[1]2
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We now apply the matrix U~ = ef?H/2 to these solutions in the small-z limit.

= =U""%; (5.3.27)
— SEHRM A (5.3.28)
— PoND/26W ey AN (5.3.29)
~ (ZZ)B’\Z('&'g/zegl)ciﬂz_ﬂ)‘gl'g (5.3.30)
2\ BMYra/2
. )
N 6—(0+w)/3A5L'9e§1), as |z| — 0. (5.3.33)
where we use polar co-ordinates z = |z|e’¥ and choose the constants ¢;y; =

—0AM . . . _ . . .
e %19 This is to ensure the solutions Z; are invariant under Symanzik ro-

tation ([5.2.11)).

Large-|z| asymptotics

We now consider the linear problem ([5.3.8]) in the limit |z| — oco. We recall the
large-|z| behaviour of ¢, which we imposed in equation ({5.2.16)):

Vv

¢~ P log zz +o(1) as|z| = oo. (5.3.34)
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From this, it is easy to see 0,¢ ~ O(1/z) and is therefore dominated in the large-|z|

limit by the me’ and me’p(z). The matrix A then becomes

0 me? 0 0 0
0 0  mef 0 0
A~ ; ; A (5.3.35)
0 0 0 0 me?
mep(z) 0 o -~ 0 0

We then apply a generalisation of the WKB approximation [13] to systems of
differential equations, adapted from [49]. Full details are given in section {4.3.2}
here we will state the results of applying the generalised WKB approximation to
the system (9, + A)¥ = 0.

In the large-|z| limit, there are r + 1 = h linearly independent solutions of the

system (0, + fl)\if = 0, with asymptotic behaviour

0., M+1

(Z ijM(j—r/2)e§1)> exp (—w%) , (5.3.36)
j=0

where w™™! = 1. A particularly important member of this set of solutions is
the solution that decays to zero most rapidly on the positive real axis: this is
the solution (5.3.36) with w = 1. Denote this subdominant solution ¥®). We
then undo the effect of the gauge transformation by multiplying U@ by
U=t = f*H/2 Using the large-|z| behaviour of ¢ the matrix U~! in the

large-|z| limit is given by
U™t~ (22)MP7H/2, (5.3.37)

We work in an orthonormal basis {egl)}gzo of VM with Hi+1e§1) = (/\Z(i)l)ie(l).
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The effect of U~! on this basis is then

Utel) = (22)MP M%), (5.3.38)

i

To progress, we must compute the dot products of the co-Weyl vector p¥ with the

weights /\521' From the definition of the co-Weyl vector for A, given in section |4.2.2

and the definitions of the weights )‘EE1 of the representation V1 (5.3.1))-(5.3.2) it

is straightforward to compute
v )\(1) _r .
Pt =5 T (5.3.39)
The elements of the matrix U~! in the basis {egl)}gzo are then given by

Uzl ~ ((zz)MPV'H/2> = (22)¥G s, 0 j=0,...,m (5.3.40)

iJ ij

We now apply this matrix to the subdominant solution of the gauge-transformed

linear problem ¥U®:

-1 - N\ (2j—r)M/4 (1) _meonﬂ 5341
~ Z(z/z) e Jexp{—— 1) (5.3.41)

J=0

The large-|z| asymptotics of the conjugate linear problem (5.2.10) can also be
analysed in a similar manner to the above. To ensure compatibility with this
calculation (5.2.10) we premultiply U=20U® by a suitable z-dependent function

(at this stage treating z and Z as independent complex co-ordinates as discussed
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at the beginning of section |3.2)):

0
T = exp (—]\ZFL—LZMJrl) UgW,

2|Z|M+1

— W~ <Z eiM‘P(jr/Q)eg-l)> exp (— V1 m cosh (0 + ip(M + 1))) )
=0

(5.3.42)

where we have subsequently restricted ¥ to the subset of C> where Z = 2* by

choosing polar co-ordinates z = |z|e'?, z = |z]e™ "

5.3.3 V(@ linear problem asymptotics

We now construct the asymptotic solutions to the V(@ linear problem from the
asymptotic solutions to the V(! linear problem. We recall that the representation

V@ of A is constructed from wedge products of copies of the representation

V.

V(CL) — /\ ‘/;(_l)a%la a = ]_7 e, T (5343)
=1

The representations Vk(l) correspond to different evaluation representations of AS}),
These are related to Vo(l) by applying a Symanzik rotation Q. to the rele-
vant linear problem. The solutions of this new linear problem are then Symanzik
rotations of the original solutions. Once these are computed, finding the asymp-
totics of the solutions of the V(@ is then reduced to taking the wedge product of

the correct Symanzik rotated V) solutions.
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Small-|z| asymptotics
We recall the small-|z| solutions for the V(1) linear problem:
=0 e riRNaeD (=0, r). (5.3.44)

These solutions were normalised to be invariant under any Symanzik rotation.
The calculation of the small-|z| asymptotics of the V(®) linear problem is then

straightforward; we simply take the wedge product of a copies of ([5.3.44)):

:(a) _ :(1) :(1) :(1)
=S NS N NE (5.3.45)

—1112...0q

11 22

~ exp (—(9 i) B A ) g) e nel A nel!)

—exp (=(0 +ip)BA - g) ef”), (5.3.46)

where in the last line we represent the ordered subset {0 < iy < iy < -+ < i, <7}
of {0,1,...,7} by the integer I, where I = 0,1,. .., (Tzl) —1. This integer is chosen

using the standard lexicographic ordering of subsets:

{0,1,...,a—2,a—1} - I =0,

{0,1,...,a—2,a} = =1,

a

1
{r—a—l—l,...,r}%lz(r—k )—1. (5.3.47)
We also have chosen a basis for V(@ denoted with the same ordering:

eV Anel) A A eg) = el (5.3.48)
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The weights of the representation V(@ are also labelled the same way:
a 1 1 1
>‘§421 = Aglll + )\5211 +ee )\Eall- (5.3.49)

As with the small-|z| solutions to the V(1) linear problem, the small-|z| solutions

(5.3-45)) to the V(@ linear problem form a basis of the vector space V().

Large-|z| asymptotics

As with the small-|z| solutions, we begin by recalling the large-|z| solutions for

the V) linear problem:

2‘Z’M+1

g (Z eiMw(j—r/Q)e§1)> exp (_M——i—lm cosh (6 + ip(M + 1))) (5.3.50)
=0

It is easier, however, to work with the gauge-transformed solution

r 6 M+1
O — U ~ (Z ZM(jr/2)e(1)> exp (_%) ' (5.3.51)
J
= M+1

Working with this gauge-transformed solution does not affect any of the forthcom-

ing calculations as the matrix U in the large-|z| limit is invariant under Symanzik

rotation (5.2.11]):

v 2mik 2mik v
U~ (22)MP7 02 5 (zehM ze™ haa )Mo H/2 — (zz)Me"H/2 (5.3.52)

As U is diagonal in the representation V() U1

remains diagonal in the new
representations V(@ . At the end of our calculation, just as with the earlier defined
V() case, we then multiply our result by U~ to find the subdominant asymptotic

solution W@ to the V(@ linear problem in the large-|z| limit.
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The wedge product definition of the representations V(® implies the subdom-
inant solution U is the wedge product of certain Symanzik rotated solutions of

the V) linear problem:

v = A W, 1sa, (5.3.53)
=1

The asymptotics of U1 after a Symanzik rotation are given by

) 3 7 » A ik g M+1
\1[1(61) _ quj(l) -~ <Z€2 s kZM(J—r/Z)e§1)> exp (—%) . (5.3.54)

J=0

We substitute this expression into (5.3.53):

VD =i AVaa Ave- AW (5.3.55)
0, M+1 r
1-a a1 .MeE’ 2 l=a)i  M(ji—r/2) (1)
Nexp (—(a} 2 +...+w 2 )M—H). <Zw( 2 ).712 (-71 ej1>
Jj1=0
/\ (Z (,L)(32a)j22:M(j2_r/2)e§‘i)> /\ V. /\ (Z w(an)jazM(ja—T/Q)eéi)> ,
J2=0 Ja=0

where w = e?™/"_ The prefactor contains a geometric series which we simplify

w2 +i4+w 2 :w%(1+w+w2+...+w“_1),

= (5.3.56)

The large-|z| asymptotics of the gauge-transformed solution U@ are then given
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by

sinT M+1

iy Ta 0, M+1
~ S ——
T@ ~ exp <_ o me’z >
h

J1 Ja

| ( > w B g e M a—ar/2) g1 L e(-l)> . (5.3.57)
jl?j?v“wja:()

As discussed previously, we finally undo the gauge transformation by acting with

U~' on this solution. As with the V(! case we premultiply by a z-dependent

factor to ensure compatibility with the conjugate linear problem (|5.2.10)):

h

sin% M+1

sin 7% 2|z|M+1

U@ ~ exp (— m cosh (0 + ip(M + 1)))

J1

‘ ( N wE e g MUittemar /2600 A L /\e(-l)) (5.3.58)
Ja : o

J1,925--,Ja=0

As we have seen, the small-|z| solutions for V(®), Ef,a) (where we relabel the
solutions with a new lexicographical index .JJ which runs from 0 to dim V(® — 1)
form a basis of the solution space in the same way as for V(). The suitably defined
subdominant large-|z| solution ¥(® may then be written in this basis:

dim V(&) —1

v = S QP o). (5.3.59)
J=0

These @Q-functions will be the main objects of study for the rest of this chapter.
Information about the quantum integrable associated with the affine Toda field
theory associated with the Lie algebra A symmetry is encoded in the various

properties of these ()-functions.
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5.4 ()-functions

Just as for the Agl) case in section , we now demonstrate some useful properties
of the AWM Q-functions. The Q-functions satisfy a quasiperiodicity property and
particular determinants of @Q-functions are constant (the quantum Wronskian).
We also give an expression for the asymptotics for particular Q-functions, following

21, 45).

5.4.1 Quasiperiodicity

27i Vv

For a given representation V(®, we define the operator S = e ? ¥ which is a

diagonal operator with respect to a basis of weight vectors

2mi v oy (@)

27 V. . 2mi v oy(@)  2mi v y(a) A
S:eh"H:dlag(eh”Al cen P e ? dimv(”>). (5.4.1)
We will prove the following identities:

—(a 2m 2w 2mi 271 a) \ —(a
sz (w— 00— —) = exp (—<pV+@g>-ASll) =7 (¢ ).

hM hM h h
(5.4.2)
Sy <g0 + hQ—]\Z o % _ %) — W@ (] ). (5.4.3)
Proof of
We begin by recalling the invariance of Z(* under a Symanzik rotation:
=i (90+h2—]\7; 0—%-%) == (g 9—%). (5.4.4)
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Applying the matrix S to the right hand side of this expression and using the

asymptotic expansion of ESQ) (5.3.45)):

2 T \/ a 2 ‘
5= (SO|9 _ ﬂ) _ 62 H=( )( 0 — ﬂ)) (5.4.5)
A h
ARG (a0
N 62}7:1 (P +ﬁg) (Jalle (0+z<p)ﬂ)\J+1 ge((]) (547)
N e%([)\urﬁg) /\ﬁ)—l:(a (90|9) (548)

as required.

Proof of (5.4.3)

We apply S to the vector part of the twisted large-|z| solution ¥(® (5.3.58)), noting

that the exponential prefactor is invariant under S:

T 2
e P Hyle) (go + "1 (5.4.9)

.
1—a - —1. . . .
— Z (wT“J1+---+“TJaewM(J1+---+Jrar/2)
j17j27 1ja:0

o T Grbta—ar/2)4pV A ga> ef;l)

To proceed, we must evaluate expressions of the form p" - Al the dot products

]1 Ja ,
of the co-Weyl vector p" with the weights of the representation V(®. We recall
the weights of the representation V(@ are given by sums of a distinct weights of

Vv,

/\f]a—l)-l = )‘§1+1 + )‘(1+1 +ooet )\('1)“, 0<jp<r J=0,...,dimV@® —1).
(5.4.10)
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We also recall the result of taking the dot product of p¥ with the weights of V(1):
r . .
PN =5 (0<i<r). (5.4.11)

The dot product p¥ - A", is then

a ar . .
p A = S I (5.4.12)

which we substitute into (5.4.9)) to find the required result:

2T 271 2
hM hM h

suo (5 2y 2

r

_ Z (w1;aj1+...+a;ljaei@M(j1+...+ja—ar/2)) e AL AeM

J1 Ja ?

j17j27"‘7ja:0

= U@ (p|h). (5.4.13)

We will also require the main result of section |4.2.1) namely that the sum of the

weights )\f,a) of any finite-dimensional representation of a Lie algebra is zero:

dim V(@)
> =o. (5.4.14)
J=1

From the form of S this immediately implies det S = 1. We also invoke a deter-

minant identity for any set of n-dimensional vectors {v;}" ;:
det (Svy,...,Sv,) =det Sdet (vy,...,vy), (5.4.15)

where the notation det (vy, ..., v,) represents the determinant of the matrix with

columns v;.

We now apply all these various results to a proof of a quasiperiodicity property
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for the functions Qg-a)(ﬁ). Recall the definitions of the ()-functions:

dim V(@) —1

v = N QW)Y (5.4.16)
K=0

We isolate a Q-function Qf,a) (0) by taking determinants of ([5.4.16|):

det (Eéa)’ T ’Esazlﬁ \I!(a)a Ef]aJ)rla KR E((:lCiLI)nV(“)—1>
= Q'9(6) det (Eg‘”, . ,Ef;;)nwa)fl) — Q). (5.4.17)

where we use the definition of the small-|z| asymptotics 2@ and ([5.4.14) to find
et (20, =0 =1

» =dim V()1

We now use this determinant form of an) (0), the determinant identity (5.4.15))
and the identities ((5.4.2)-(5.4.3)) to derive our desired quasiperiodicity result:

QY (6) = det (Z(7(416), ... =5, (916), W (916), Z511 (416, Z v, (410))

dim V(e)—1
e R G 5=, (w * a0 Rr ?) |
Sy (¢+h2—]7\} 9—%—%),

fm(ﬁg+pv)-)\("l) o a—=(a) 2T 271 271
e’ dim v )S“dimv<a>—l 90+W G_W_T

211 a o 2w 2m
= exp (T(ﬁg +p7)- A§+)1> QY (9 — —) :

hM h
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where in the last line we have used ([5.4.14)). A shift in 6 gives the desired quasiperi-

odicity result for the @-functions

a 2wy 2w 27 a a

which matches the quasiperiodicity relation in [38]. The quasiperiodicity result

for ‘(Ja)(ﬁ) will be particularly important for the remainder of the chapter

@ 2wy 2w 271 a
Q) (9 + 7) = exp (—7%) Qi (), (5.4.19)
where
Ya=—(p" + Bg) - A" (5.4.20)

5.4.2 Asymptotics of Q(()a)(ﬁ) as Ref — +o00

We next require an asymptotic expansion for Qé“)(e) in the limits Ref — +oo.

We begin with the determinant definition of Qéa)(ﬁ) which follows from (|5.4.16)

and ((5.4.15))

QL(6) = det (q;(a), Z@ ’Egi?nv(’l)—1> . (5.4.21)

We consider the solution ¥(®@ to the gauge-transformed linear problem (5.3.8)) in
the limit Ref — oo. Using the WKB approximation discussed in chapter 4.3|

we choose a solution of the gauge-transformed linear problem in the Ref — 400
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T~ v (p(2)) (5.4.22)
2n TTQ z : Ta 0. M+1
SIMS" g AM _ hM\1/h _ M SN % me”2
: - ¢hM — M) 4t —
exp( Sin%m6 /oo{( ) J siny M +1 >’

where véa)(p(z)) is the eigenvector of A with eigenvalue me’p(z)/", with the
expansion in the basis {eﬁ) ARERWA egi)} of V(@

r

vil(p(2) = Y wEEE ()it /2A/hel) A el (5.4.23)

J15325++.3a=0

The large-0 solution is chosen to match the required subdominant behaviour for

(@ in the large-|2| limit

s Ta 0 M+1
. a sin 5* me’z
w@ v(() )(z"MY exp <— sin% Ml ) , as|z| — oo. (5.4.24)

In the small-|z| limit, ¥(® must be a linear combination of the small-|z| solutions

=@ of (5.3.8]). The solutions =@ have the as mptotic behaviour
J J Y
:(Ja) ~ ziﬁ)‘f’a)'ge‘(f) (5.4.25)

which is independent of 8. This implies that the coefficients ¢; of Véa) (p(z)) in the

small-| 2| basis of solutions 2\

dim V() -1 _
Vi)~ Y =Y, (5.4.26)
J=0

are independent of #. Combining ({5.4.26) with (5.4.21]) gives an asymptotic ex-
pression for Q{”(6) in the limit Re — 400

éa)(H) ~ céa) exp (mee/ {(@™ - shMLUR M dt) . (5.4.27)
0
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The integral in is evaluated using ,
/ [t — MR MY Gt = (—1) a7 sM (B, M), (5.4.28)
Qéa)(ﬁ) then has the asymptotic expression
QY (6) ~ ) exp ( ML ef(—1) 5 7(h, ]\/[)) , as Ref = +oco.  (5.4.29)
In order for this expression to be compatible with the quasiperiodicity relation

(5.4.19)), we first define the strips H4 in the complex plane

2m(M + 1) o 2m(M +1)

H;:0<Imf <

and rescale the constant ¢y appropriately

im(M4+1)

éa)(Q) ~ c(()a)e:”m“/h exp (SMHmeajF R M T(h,M)) , e Hy. (5.4.31)

The Re§ — —oo limit of an) (0) is recovered by considering the gauge-transformed
conjugate linear problem (0; + E)\IJ = 0 in the Ref — —oo limit. A solution in

that limit is constructed to match the required large-|z| behaviour

U@~ vi®(p(2)) (5.4.32)
: Ta z : Ta —0=zM-+1
SIS g WM _hMN\1/h M N5 me "2
. — t — t dt —
exp( sin%m6 /OO{( ) J siny  M+1 )’

where v\" (p(2)) is the eigenvector of A with eigenvalue me- ip(2)Vh. v (p(2))

is then expanded as a sum of small-|z| solutions, as in (5.4.26)), and then the
definition of Qéa)(Q) (5.4.21)) is used to determine the asymptotics of Q(a)( 0) in
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the limit Red — —o0:

70i17r(M+1)

(6 ~ W eFimalt oxp (SM“m mi 1 (h, M)) , e Hy. (54.33)

5.4.3 The quantum Wronskian

The Q-functions associated with the linear problem on the representation V()
satisfy a particular determinant relation, known as a quantum Wronskian. The
Q-functions for this linear problem are defined by the expansion of the large-|z|

solution W™ in the basis of small-|z| solutions =;:
=Y QM) (5.4.34)
=0

We apply a Symanzik rotation €2 to both sides of this expression, recalling that

=(1)

the solutions =, are invariant under €2:

2 ik
ZQ(” ik S )E (5.4.35)
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We then take the determinant of » + 1 = h copies of the expression (5.4.35)):

det (\if“), 0,00 ,Qrif(l)) (5.4.36)
- - omik
= ) det (um,uh,.--,E)HQ(” - ) (5.4.37)
J0sJ15+,Jr=0
4 27mk
= Z Ejogn-.dr HQ(l) ) (5.4.38)
70,J15--5Jr=0
Q(0) Q00— 35 - Q035
Wgy QWig— 2y ... Wy 2mir
_ Ql() 1 ( . hM) Ql ( . hM> ‘ (5‘4'39>
QVO) QYO -z .. QV(0 - )

As (5.4.39) does not depend on z, we may use the large-|z| asymptotics of the
solutions QUM to compute (5.4.36). From the large-|z| asymptotics ((5.3.36]) and
the definition of the Symanzik rotation ([5.2.11)) it is straightforward to show

L —TM/2
K, M(1-r/2)
QU ~ yhr/2 : exp (— k%) (5.4.40)
WFr—1) M (r/2-1)
T M2
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27

1. We then substitute ([5.4.40|) into (5.4.36)):

where w =e™n =e

det (\ir(U, 0,00 ,QT@(”) (5.4.41)
L—TM/2 5—TM/2 o L—TM/2 L= M/2
SM(=r/2) o MQ-r/2) =1, M(1-7/2) W eMA=r/2)
_ w—r2(r+1)/4 7
SM(r/2-1)  jr=1,M(r/2—1) W(r=D?  M(r/2=1) (r=1)r ,M(r/2—1)
ST M/2 W' aM/2 o W (r=1) ,rM/2 W'y M/2

where we have used the property of roots of unity
> W =0, (5.4.42)
=0

to remove the exponential factors. Using row operations to remove powers of z

we find this determinant is proportional to a Vandermonde matrix:

11 ... 1 1
1 w w’l”—l wr
det <i13(1>, QU QT®(1)> — D/
1 w1l . w(r—l)Q w(r—l)r
1w . W)
RS | (T Y
0<j<k<r

where in (5.4.43|) we have used the standard expression for the determinant of a

Vandermonde matrix. We now evaluate this product. Firstly, we expand:

w—r2(r+1)/4 H (wk _ wj) _ (_1)T’(T+1)/2w—%r(r+1)(r+2) H(l _ ws)r-&-l—s'
s=1

0<j<k<r

(5.4.44)
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Substitute the identity
s
1 —w® = —2iw*?sin —

h Y

into (5.4.44]) and collect powers of w and —1:

h—1
det (ﬁ/(l), O, Qr\i/(l)> D/2 81_[ (sin %)

1
sin 7T—
<5 h >

_ jhD 22

where in the last equality we have used the product identity [36]

We have therefore found the quantum Wronskian:

Q0) QVO-7F) - Q003
(1) (1) i (1) Tir
Ql ((9> Ql ( _}21_M> 1 (8 2hM) :ih(h_l)/th/Q.
QM) Qe — =iy ... QMg 2min

(5.4.45)

(5.4.46)

(5.4.47)

(5.4.48)

(5.4.49)

(5.4.50)

This is a generalisation of the quantum Wronskian given in [45] for r = 1 (h = 2).

5.5 VU-system and the Bethe ansatz equations

The @-functions discussed in the previous section satisfy certain useful algebraic

relations known as Bethe ansatz equations. We will derive these equations from

relations between large-|z| solutions of linear problems for the representations
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V(@ known as the W-system. These, in turn, arise from an embedding of a

representation into another representation.

5.5.1 Embedding of representations

We begin by defining the two main representations of interest. We recall the

definition of the representation V(@ of AW asa wedge product of a copies of V(1):

a
(a) _ (1)
v = A Vit (5.5.1)
i=1
We now define a generalisation of these representations: related evaluation repre-

sentations of A defined by a parameter k:

(a) _ (1)
Vi = /\Vlgaﬂ% (5.5.2)
=1

We are then concerned with the wedge product of two of these representations: the

(a)ydimVv(®—1
1

representation V_(‘i)/z/\Vl%) . For a more explicit construction, we let {e;"” } {1

be a basis for the vector space V_(‘I)/Q and Vl(/ag) The vector space V_(‘I)/Q A Vl(/aQ) is

then spanned by the set of bivectors

el ne0<I<J<dimV® -1}, (5.5.3)

We note that the vectors ega) are, in this context, not themselves wedge products.

We treat the spaces Vk(a) as vector spaces in their own right and define a wedge

product on copies of that space, rather than V1),

We order the basis {e{” 42V =1 6f V@ quch that el is the highest weight
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state, with
Hiel = (\D)iel” = (w,)el". (5.5.4)

Beginning with the highest weight w,, we apply the algorithm in section to

)

construct the remaining weights. We find that e§“ is associated with the weight

We — . The highest weight state of Vf‘i)/Q A \/1(72) is then given by e(()a) A el
associated with the weight 2w, — a,. We rewrite this weight in the weight basis

using the identity

a; = Z C’Z-jwj (555)
=1

= 2w, — g = Y (200 — Cap)wy (5.5.6)
b=1

= Buw (5.5.7)
b=1

= We_1 + Wart, (5.5.8)

where C' is the A, Cartan matrix and B = 21 — C' is the incidence matriz. The

representation V_(C{)/Q A Vl(/cg therefore has highest weight w, 1 + wqi1-

We recall the definition of a tensor product of representations, given in section

(

4.2.11 Let {e(ja_l) dimV “"~1}e a basis for V(1 with e(()a_l) as the highest weight

state with weight w,_;. Similarly, let {ega+1)}3i;nov(a+l)_l be a basis for V@D with
eé‘”l) as its highest weight state with weight w,.1. We then construct the tensor

product representation V@1 @ V(1) with basis
{e(ﬁ‘” ©e™0< I <dimVEe D 0< < dim VD) (5.5.9)

The highest weight of this representation is w, 1 + w11, Which is the same as

the representation Vf‘i)ﬂ A Vl(/aQ) There exists an embedding ¢ between these two
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representations [38] [47]
VD, AV = v g vttt (5.5.10)

which maps the highest weight in V(1 12 A\ Vl(/a2 to the highest weight in V(=) @
V(a+1):

. (eg@ Ae@) = elt ) g elrtD), (5.5.11)

We will now use the embedding ¢ to connect the solutions of the linear problem

(0, + A)¥ = 0 in different representations Vk(a)

5.5.2 From the V-system to the Bethe ansatz equations

The solutions \IIS:) to the linear problem associated with V;g(“) are equivalent to
Symanzik rotated solutions Q,¥(® of the linear problem associated with V(%)

The embedding then defines the W-system
(9, A w) = e @ we, (5.5.12)
The small-|z| expansion of the solutions \I/,(f) is given by
U (p10) = QF (0-1)EE (prld k) + Q7 (0= (prld )+ (5.5.13)

where we have set

24T 27p

Gp:9+h—M, Cp =

(5.5.14)
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for brevity. We now substitute (5.5.13)) into the W-system ([5.5.12]):

( \1156;2> — \I](afl) ® \I](a+1)
(( Q5 (01/2)=" + Q1" (61/2)] ) 4 (Qt()a)(Q—l/z)Eéa) + Q1" (0 1/2)5(a)>>
= QL V(L™ ()= g =i+, (5.5.15)

where we have used the Symanzik rotation invariance of the small-|z| solutions

E . We expand m

() (012)Q1 (0-112) = QF(0-12)Q1" (0112)) ¢ (2 A EL)

=Qy QS (0) =" o=, (5.5.16)
and then take the |z| — 0 limit, applying the asymptotic expansion

=@ o B0 9e (] =0,..., dim V@ — 1), (5.5.17)
The result is

(QF (012001 (0-1/2) = QF (0-12) Q1" (812) ) e AR ety (of) 1 ef))

= QY (O)QLTY (9)ePOTINwar e agli7Y) ) gt (5.5.18)

Substituting (5.5.11)) and simplifying leads to a relation between @-functions

a) 1T T (a) i
o (035 ) @ (0 5g) -~ (0= 75 ) & (04 5

SO (0). (5.5.19)
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We denote the zeroes of the Q)y-functions by 9;'1), so that Q(()a)(ﬁj(-a) ) = 0. Substi-
tuting 0 = Hj(a) +im/hM into (5.5.19) yields two equations:

@ (p@ | 2T\ A@ (p@) _ a1 (@ , T\ Aa+) [ p@) , T
@ (@ 27T\ () (yla) (@1 [ p@ T\ Sa+1) (g T

(5.5.20)

Eliminating an) from these equations yields the untwisted Bethe ansatz equations:

r (a) i
QU (61 + ;)

[I

w1 QU (01 — 2 C )

=-1, (a=1,...,r), (5.5.21)

where we now abbreviate the ()-functions Q(()a)(ﬁ) = Q@W(A), as these ‘leading

order’ (Q-functions will be our main concern for this section and the next.

5.5.3 Twisting the Bethe ansatz equations

The Bethe ansatz equations (BAEs) ([5.5.21)) we have derived are untwisted; BAEs
in the literature for the A" case [211, 137, 138], [45] contain twists in the form of extra
constant prefactors. To extract information about the integrals of motion of the

associated massive Toda field theory for A(rl), we must twist the BAEs.

We begin with the newly-derived BAEs ([5.5.21]) and then shift the Q-functions

and their zeroes
QUO) = OV(0+1), 60 =00 —y, QUED) =0, (5.5.22)

The shifts v, are defined (up to an overall constant) by the antisymmetric matrix
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im(M +1)

A 5.
LM ab (5 5) 23)

Vo — Vp =

where A is chosen to ensure C'— A is upper triangular and C'+ A is lower triangular.

C — A and C + A are then matrices with even entries. The BAEs become

r OO (0 4 im0 _in
Q (9] + hM (C A)ab hAab> _ 4 (5524)
%—Aab

2 j

=1 Q) <é]('a) + a7 (C + M)y —
We then apply the quasiperiodicity relation (5.4.19) to (5.5.24). The BAEs

(5.5.24)) become

remim(C=Num/h () (A@ (O Ay — T Aab>

IR | — 1, (5.5.25)
b1 O Namn/h Q) ( W L m(O 4 Ay — %Aab>

[[e om0~ . (5.5.26)
b1 QV(0;" + 5 Cuw)
We will be concerned with the shifted Q(“)—functions for the remainder of the
chapter. The original Q®-functions are recovered by undoing the shift (5.5.22),
where for consistency with ([5.5.23|) and the matrix A we set

Ve = —(a 1)%. (5.5.27)
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5.6 Non-linear integral equations and integrals

of motion

5.6.1 The non-linear integral equation

The integrals of motion for the AY massive Toda theory are the coefficients of the
higher-order terms of the asymptotic expansion of the logarithm of the )-functions
[45, [5]. The first step in deriving this asymptotic expansion is to construct a useful
non-linear integral equation (NLIE). The construction here will follow that given
in [21I] for the massless A, case, and is a direct generalisation of the derivation

given in section [3.5] We begin by defining the function

! 247 (t) 9 -z Cm
a™0) =] e_TCm”tQ ( L t). (5.6.1)
t=1 Q(t) (0 + Tcmt)

As a consequence of the BAEs (5.5.26)), a (0(m)) — —1. We expand the Q¥

functions in this expression using an infinite product expansion:

Q(t)(g) — 6 7@%9 <1 — 61@%1 (6~ éj('t))> (1 —e A}}Jfl(e 9(—t; 1)> . (562)

J=0

We then substitute this infinite product expansion into a(™ (6):

a™ ()

h M 5(t) imMCot h M 5(t) TMCy,
0 (1 . eMH(Oij )677Z M1 f) (1 — e*Mﬂ(O 0 ;- 1)63 M+1 7‘)

S I

A(t)y imMCp,y hM 5(t) imtMChp, )
=0 (1—6M+1(9 0; )eiM t) (1 e — 310025 1)6 ]\4+1t)

hM (p_5(t) _imCpy
ITI _h(JQMi‘:—l) C7rLt'Yt |OO| 1 — eM+1 (9 GJ h ) 5 6 3
= e hM (Qfé(t)«i»”rcmt) ( 0. )
t=1 ]:700 1 - 61M+1 J h
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We then take the logarithm of ([5.6.3]):

—uT
(m) § : } : }: t
log a (6 M T 1 Cmtf}/t —+ Fmt , (564)

t=1 j=—o0

where

(5.6.5)

hM i
1 — e 1(9_70””)
Fmtw):log( -

1— ej(;—ﬂfl(mr%cmt)

As in [2I], we use Cauchy’s integral theorem to rewrite the infinite sum over the
(t)

zeroes 67 as a contour integral:
i i Fo(0 —61) Z / 47 (0 — 0)09 log (1 +a(8)) (5.6.6)
== e ’

where ¢ is a contour enclosing the zeroes anticlockwise. As in [2I], we assume all
the zeroes are along the real axis. The contour ¢ is then chosen to be two parallel
lines enclosing the real axis, with the direction of integration along & chosen such
that the real axis remains on the left of the contour. For brevity of notation, we
now omit the components of the matrices C' and F' and the vectors a(f),~ from
this calculation. The logarithm of a(f) is then given by

loga(e):%C’y—i— / %F(@ 010y log (1 + a(0)) . (5.6.7)

where log (1 4 a(f)) represents the column vector

(log (1 4+ aM(9)) ,log (1+ a<2>(9)) ..., log (1+ a(’")(ﬁ)))T. (5.6.8)
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Integrating (5.6.7]) by parts and considering the two contributions from above and
below the real axis from « separately, we rewrite log a(6):

—ur

loga(0) = R

Cy

+ /OO R(0 — 6" {log (1 + a(#' +1i0)) —log (1 + a(6’ — :0))} d¢’
—m
S

+ / R(O — ¢ +i0) {log a(¢/ — i0) — 2i Tmlog (1 + a(6' — i0)}d¢,  (5.6.9)

where R(0) = (i/2m)0pF(0). We now apply a Fourier transform F to both sides
of (5.6.9)), where the Fourier transform is defined as

Flflk) = f(k) = / h e k0 £(9) do (5.6.10)

—0o0

and its inverse is given by

FUA(6) = f(6) ! /OO e® f(k) dk. (5.6.11)

:% N

Applying the Fourier transform ([5.6.10)) to both sides of (5.6.9)), we find

Flloga] = h(M—TnCV -218(k) + R(k) {Floga] — 2iF[Imlog(1 + a)]},

(5.6.12)

where we have used the definition of the Dirac delta function 6(k) in the form of

an integral

/ e k0 A9 = 276 (k). (5.6.13)

o0
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We collect the Flloga] terms in ((5.6.12))

~ — T

(I = R(k)Flloga] = 5y 5C - 270(F) - 2 R(k)Fllmlog(1 + a)], (5.6.14)

and then pre-multiply both sides of (5.6.14) by the operator (1 — R(k))™"

-2

Flloga] = m(

— R(k))™'Cy - 216 (k)

+ bV Fef] + 6P Fle™) — 2i(I — R(k)) "' R(k)F[Imlog(1 + a)]. (5.6.15)

where the terms proportional to the arbitrary constants b and b® arise from
the points k = i where the inverse of the operator (I — R(k)) is not well-defined.
F~YI — R(k)) can be thought of as a differential operator in 6, with e’ and e~?

in the kernel of this operator.

We then take the inverse Fourier transform (5.6.11)) of (5.6.15):

—2im ~
1 = " (]- -1
oga(h) nOT + 1)( R(0))""Cy
+bWef 4 p@e=f — 22’/ ©(0 — 0 +i0) Imlog(1 + a(6 — i0))de’,

(5.6.16)

where ¢(0) = F (I — R(k))"'R(k)]. The constant vectors b; and by will be

chosen to match the Q-asymptotics (5.4.31)-(5.4.33)) for Re — +oo. We now
simplify (5.6.16|) by computing R(k) explicitly. This is done using the following

relation

1—eXY sinh X2
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and equations (D.53) and (D.54) from [23]:

sinh o0 4 im7 20 sin 27T
10 1 = 5.6.18
19708 Gnho® —irr  cosh200 — cos2r7 ( )
00 : : wk
/ [ 20 sin 27T _ smh(.l - 2}:‘)%. (5.6.19)
oo 2T cosh 200 — cos 27T sinh 7%
We then see the elements of R(k) are given by
. sinh /& - sinh TM=Dk
Repis (k) = ——2 i (k) = ———1M___ (5.6.20)
L a(MADk - w(MADk’
sinh === sinh ===

where < mt > indicates the nodes m and ¢t on the Dynkin diagram of A, are
connected, and all other elements of R are zero. Taking the limit of these elements

as k — 0 it can be shown that
(I — R(0)™'C = (M + 1)1, (5.6.21)

so that the integral equation ([5.6.16)) becomes

log a™(0) = hmvm +bDef 4 pPe?

— 2 Z/ @me(0 — 0" +i0) Imlog (1 + a'(¢' —i0)) A&, (5.6.22)
t=1 "7~

where we have restored component notation.

5.6.2 Integral form of log Q™ <9 + L%‘ﬁ”)

As stated previously, the integrals of motion are coefficients in an asymptotic
expansion of the logarithm of the Q(m)—functions. The next step in deriving this
expansion is to find an expression for log Q(m), using the definition of the a-

function ([5.6.1)) and the newly derived non-linear integral equation (/5.6.22)).
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We begin by taking logarithms of (5.6.1)):

T _2 ) . R .
loga™ (0) = [ = Gy + 1og Q¥ (e - %%) ~log Q¥ (9 + %%)] ,
t=1

(5.6.23)

We then invoke the logarithm of the quasiperiodicity relation (5.4.19)) applied to
At
Qv (6):

A 2im(M +1 2 A
log QW <9 + Mn> = _ﬂn% +1log QW (6),

— ; (5.6.24)

where n € Z. Using quasiperiodicity to rewrite log a(™:

" [2im
log a(m)(G) = Z |:T(pmt — @mt — Cot) Ve

t=1

A ) 2om(M + 1
+log QW (9 — %Tcmt + %pmt) (5.6.25)

A s 2im(M +1
— log Q(t) <9 + %Cmt + %qmt)] )

we choose the matrices p and ¢ with integer entries to satisfy

Pmt — Gmt — Ot = — Ot (5.6.26)

We then set the NLIE ([5.6.22)) and (5.6.25]) equal to one another. The choice of p

and ¢ ensures that the constant terms proportional to v; are eliminated:

T

A ' 2ir(M + 1)
S [i0g @ (0— oo ZPOLED
- [OgQ ( 3 t T+ W Dmit

A i 2im(M + 1
— log Q" (9 + Ecmt + %th)}

=bef +bPe? — 2@'2/ @mi(0 — 0’ +i0) Imlog (1 + al (¢ — 0)) 6.
t=1 Y 7
(5.6.27)
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The next step is to take Fourier transforms of (5.6.27)), simplifying that expression

using the Fourier transform identity
FIf(0+ )] = ™ F[f(0)). (5.6.28)

The result is

; Gt (k) F {log QW (9 + %)}

= b 2ms(k + i) + b2 - 216 (k — i) — 2i Z Flome) (k) FlImlog (1 + a™)](k),

t=1
(5.6.29)
where G/(k) is the matrix with elements
= Tk = . k(M -1
G <mi>(k) = 2sinh L Gmm (k) = 2sinh % (5.6.30)

As with R, < mt > indicates the nodes m and t are connected on the Dynkin

diagram of A,. We rewrite ([5.6.29) in component-free notation:

G(k)F [log@ (0 + %)]
= 2mbWG(k 4 4) + 2mb P (k — i) — 2iF @] F[Imlog(1 + a)], (5.6.31)

and then premultiply both sides of (5.6.31) by G(k)~!, adding an extra term on
the right-hand side of this expression due to the pole of G~1 at k = 0:

im(M + 1)

F [log@ (9 S )] = 27G (k) bW (k + 1)

+ 270G (k)0 PS(k — i) — 2iH (k) F[Imlog(1 + a)] + 27b®s(k), (5.6.32)
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where b® is an arbitrary constant vector and
H(k) = G(k) ' Flg] = G(k)Y(I — R(k)) ' R(k). (5.6.33)
We now take inverse Fourier transforms of ([5.6.32)):

tog 0 (01 TOTEDY iy 140 4 Ga) 5@ 4 5
]
- 2@/ H(O — 0 +i0) Tmlog (1 + a(¢/ — i0)) 6.

(5.6.34)

Finally, we undo the shift in the Q-functions (5.5.22)) and choose b, b and »®)

to match the earlier derived Q-asymptotics (5.4.31))-(5.4.33))

G(=i)7'0W = " Mmr(h, M)w, G~ = s Mmr(h, M)w, b® = _%%
(5.6.35)
where w is a vector with components
Wy = I (5.6.36)
S1n n

The log Q™ functions are then given by

im(M + 1) i

log Q™ (9 + 5 ) = 2mr(h, M)w,, cosh § — 7, Ym

— 2 Z/ Hyi(0 — 0"+ i0) Imlog (1 4 a(0' — i0))d¢’.  (5.6.37)
t=1 Y~

5.6.3 Integrals of motion

The final step in the calculation of the integrals of motion of the A Toda theory

is the computation of the asymptotic expansion of the matrix H(6). H is given
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in terms of the inverse Fourier transform of H(k):

H(0) = % / H(k)e*0dE.

We then need to calculate H (k). We recall

and from the definitions of R (5.6.20) and G (5.6.30),

1 -
9 sinh TM+Dk

hM

R=

We use this relation between R and G to compute H!:

H'=R'(I-RG
_ . (M +1)k ~
= (251nh i 1 G) ,

which has components

-1 mk wk

<mt> = i hM h

Following [21], define the deformed Cartan matrix C-

1

7wk’
cosh a

Croe (k) = — Crom (k) = 2.

We then write H~! and hence H in terms of C:

5 k-
H ' = QSinh;—]\ZCOSh %C’

. 1 _
— H-= c!

: 7k 7k
2 sinh i cosh 0
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k -
—2sinh L, H ! = 4sinh — cosh —.

(5.6.38)

(5.6.39)

(5.6.40)

(5.6.41)

(5.6.42)

(5.6.43)

(5.6.44)



The inverse of the deformed Cartan matrix is given in [21]:

coth ”—h’“ sinh M sinh ’T—,ik

sinh 7k
. . sinh M sinh ”—}tf

2 sinh %k sinh If—ﬂk/[ sinh 7k

, m>t. (5.6.45)

m > t. (5.6.46)

With H calculated, we now substitute H into the integral term in ([5.6.37):

(—22' / H(0 — 6 +i0) Imlog (1 + a(f' — i0)) d@’) (5.6.47)
=20 / Hyu(0 — 0 +i0) Imlog (1 + a(¢)) d¢/ (5.6.48)
t=1 v~

7" o0 1 oo ) L
=2y / {— / Hpy (k)00 J”‘”dk} Imlog (1 4+ a®(¢')) d¢'. (5.6.49)
t=1 Y~ 27 J oo

To proceed, we evaluate the integral over k using Cauchy’s residue theorem. The
poles of H(k) are at k = pi and k = hgMi, with p, q € Z. Closing the integration

contour in the upper half plane, the integral over k is given by a sum of residues:

1 [~ . o
H,py ()R O-0+0)q (5.6.50)

2 ) o

= ZZ Res []:Imt(k)eik(e_(’/“o), k= pi] +1 Z Res []:Imt(k;)eik(a_el+i0), k = hqMi|.
p=1

q=1

The residues of Hyy(k)e®@=0+10) are given by

T) —p(0—0"+i0)

_ prm prt
Res [ﬁmt(k)eik(e—eurio)’ k— pz} _ (=1)? Sln( 7}: ) sm7(r . ’
27 sin (%) sin 2
(5.6.51)
~ . Iy —1)th /g
R [Hm k) O=0+0) . py M} _ ( e haM(O=0"+i0)
s | Hmi(ke L 27 sin(gM ) sin(thﬁ)g €
(5.6.52)
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where g,,; is a symmetric function of m and ¢:

sin(gt M) sin(q(h — m)Mm) m >t
sin(gmMm) sin(q(h —t)Mm) m < t.

Using these residues, the integral (5.6.48]) is then expressed as an infinite series in

powers of e?:

—2iy / Hyi(0 — 0 +40) Imlog (1 + a (¢’ — 0)) d¢' (5.6.54)
t=1 Y~
=D Ie )y Gt (5.6.55)
p=1 q=0

The asymptotic expansion of log Q™ (6 + ”(,JZVI—MH)) is then given by

log Q™ (9 + M)

hM

= 2mt(h, M)w,, cosh § — —%n Z ’J(m)e_pe + Z Gflm)e_the, (5.6.56)
p=1

q=0

where

r o (_1)Psin (B gip (2=t o
g(m) — Z/ (=) Su(l h _31812( h )ep(9 ~19 Im log (1+a(t)(0'—z'0)) de’,

—~ | o wsin (B)sin (&7)
(5.6.57)
- > thg t /. )
G(m m hqM (0 ZO)I 1 1 (®) 0/_ del
Z/OOT(SII’I (qM) sm(thyr)6 m og( +a'™( 20)) ,
(5.6.58)

are the integrals of motion for the massive A Toda field theory. The calculation
of the conjugate integrals of motion j;(,a), 65{1) is exactly analogous, and is done
by closing the contour integral (5.6.38]) in the lower-half complex k-plane and

evaluating the coefficients of the resulting expansion in powers of e’ and eM?.
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5.7 Spectral equivalence

In [22], the authors considered a pair of differential equations

(_dd—; b l(l%)) V(@) = Ey(a).

go=(1-60l)/4, =1 g =(7+6l)/4

(5.7.1)

(5.7.2)

(5.7.3)

These differential equations are the conformal limits of the equations involved

with the Agl) and Ag) cases of the massive ODE/IM correspondence, with certain

choices of the parameters M,g. In [22] it was shown that eigenvalue problems

associated with these equations have spectral determinants that satisfy the same

set of Bethe ansatz equations. This implies that their spectra should be equivalent,

up to a rescaling of eigenvalues. In this section, we consider the massive analogoues

of the equations (5.7.1)-(5.7.2)), demonstrating that the suitably defined spectral

determinants satisfy the same set of BAEs, and that the integrals of motion for

these two cases coincide.
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5.7.1 The equivalence of Aﬁ” and A?) Bethe ansatz equa-

tions

The equation ((5.7.1)) is the conformal limit of (5.3.16), withr =1 (h=7r+1=2)
and M = 3. We also set

1
BN g =10 BN g =l ==+ B A = —l- 5 (5T4)

The corresponding Agl) BAEs ([5.5.26|) are then

(1) ( ) _ m)
e+ 0 = 1. (5.7.5)
J

on (7 )

QMW(#) also satisfies a quasiperiodicity relation ((5.4.19)
dar ,
W (g —=) =emH20W(h). 5.7.6
Q ( + 3) e Q"(0) (5.7.6)

We now consider equation ([5.7.2)), which is the conformal limit of ([5.3.16|), with
r =2, h=3and M = 1. The constants gy, g1 and g, are related to the weights

)\El), in the following way [37]:
do=-8\" g g=1-8".g g=2-8".4 (5.7.7)

We also define the related constants 4, = —(p"+8g)-A ) in terms of the constants

gi

=g —1, J=go+g —2 (5.7.8)
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Defining R () and R®(f) as the spectral determinants associated with this

equation, the BAEs are

. RO <0§1) 2m) R® <0§1) 4 %r)

e~ 5 (P—2) =1, (5.7.9)
RO (eg.U + %) R® (eg.w . 3)
| RO (09 + ) R® (07 - 27)
RO (ej -g) R® (ej +g>

where R (0) and R®)(0) satisfy the quasiperiodicity relations
(a) Hm s p)
R 94—? =e 3R ((9), a=1,2. (5711)

We apply (5.7.11)) to the Aél) BAEs (5.7.9)-(5.7.10). The BAEs then become

R® (6](»1) — z'7r>

(im(21+1) =1, (5.7.12)
R® (9}” + m)
R (e<.2> — m)

(im(21+1) J - 1 (5.7.13)
RO <9§2) + m)

where we have applied the choice of constants (5.7.3) to match the Agl) BAEs
(5.7.12)-(5.7.13) with the A" BAE (5.7.5). The BAEs (5.7.12)-(5.7.13) become
two copies of the Aﬁ“ BAE (5.7.5) under the identification

RP(9) = iv/3RW(h), (5.7.14)
which follows from the definitions of R (#) and R (9)

RW(9) = det (m“%z@,z@”), R®() = det <\11<2>,E§2>,552>>, (5.7.15)
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where the vectors El(-a) and U@ are the small-|z| and large-|z| solutions of the
linear system (5.2.9) in the representation V() as defined in section [5.3] With

the choice of constants ([5.7.3]), these asymptotic solutions have the behaviour

=M el =W 0 T el)) as|z| — 0, (5.7.16)

=D el =P 0T el?, as|y — 0, (5.7.17)
0,2

T~ exp <—m€22 ) (z_leél) + egl) + zegl)> , as|z| = oo, (5.7.18)

2 me’22\ (@, @, @
T2 ~ iv3exp <— 5 ) (z* e, +e +ze, > , as|z| = oo, (5.7.19)

where {ega) ﬂi;nov(a)_l is an orthonormal basis for the vector space V(®. The

definitions of R () and R®(#) then imply the identification (5.7.14). The Aél)
BAEs then reduce to two copies of the Agl) BAE (5.7.5)).

5.7.2 Equivalence of the integrals of motion

We define the a-function (5.6.1) from the A" BAEs (5.7.5)

_ in(@4D) QW (0 — im)

alf) QW (0 + im)’

(5.7.20)

The R-functions, as they satisfy the same BAEs, also have the same associated
a-function. The procedure we followed in section [5.6|is now applied to derive the
Agl) and Agl) integrals of motion for the respective values of M we have considered

in this section.

The Agl) local integrals of motion J, for M = 3 are

© (_1)Psin X
jpz/ CVSING 00 i Jog (1 4 a(@f — i0)) 40, peN.  (5.7.21)

7 sin Z&

S 6
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and the Agl) non-local integrals of motion &, for M =1 are

% 6(—1)7si »
Gq:/ 6(=L)"SIN 39T 64(0/—i0) 1y 1og (1 + a(@ — i0)) 40/, g€ N. (5.7.22)

o T Sin 3¢ sin 6gm

The A( integrals of motion Jp G(m for M = 1 are found by setting a*) () =
a®(f) and M =1 in the expressions ) and (5.6.58). We find

~O Imlog (1 + a(# —i0)) d¢,

2 pm

(m) _ /OO (—1)P sin 22T (sin BF + sin 2@”) O
- 3

o 7 sin

(5.7.23)

~ > 3(—=1)4 (si in 2
Sim) — / 3(=1)? (sin g + sin 2qm) 210~ Tm Jog (1 + a(0’ — i0)) d¢’,

oo 7 sin 3qm

(5.7.24)

where 3 1 p, and ¢ € N. Comparing the Agl) and Agl) integrals of motion, we find
Joo oMy Fm) s ) 5 7 o5

J3er1 J3p-|-17 J3p+2 J3p+27 q 2q > ( s )

the Agl) M = 3 integrals of motion are completely contained in the set of Agl)

M =1 integrals of motion.

5.8 T-functions: fusion relations and 7'(Q)-relations

The @-functions discussed in the previous sections define T-functions, which sat-
isfy certain functional identities. In this section, we shall define these T-functions
and demonstrate that they satisfy two such identities- the fusion relations and the

TQ-relations.
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5.8.1 Definitions

The main building block of the functions defined in this section will be the Q-
functions for the linear problem in the first fundamental representation, le)(é).
It will be convenient to rescale the spectral parameter 6 in the arguments of these
Q-functions. The effect on the Q-functions is given by:

Q'Y (9 + %) = QW (u+a). (5.8.1)

It will also be useful to have a notation for a column vector of ()-functions:

Q) = (@ (), Q). (w) (582)

We define a particular determinant constructed from these vectors of Q-functions

using notation given in [5:

1 r r )
T(uo,,ul ,,,,, ) (U) - Z_O Z Eigin...ir H fok)(u + 2(:uk + T/Q - k))
§0senyir=0 k=0

—

= Zldet (Cj(u + 20 +r),@(u +2u1 +r—2),...,Q(u+2u, — r)) . (5.8.3)
0

where

r+1

20 = det (Q’(u), Ou—2),...,0(u— 2r)> = 2 1) (5.84)

which is the quantum Wronskian as discussed in section [5.4.3] We note that the
quantum Wronskian (5.8.4]) holds for all values of u.

The T-functions are then defined as certain values of the determinant ([5.8.3)):

T\ (u) = Timm, ..mo...0)(w —m — h/2 + a), (5.8.5)
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where 0 < a < h, h = r + 1 is the Coxeter number of A,, and there are a
components containing m in the vector m in the vector (m,m,...,m,0,...,0).

We also note
Vom,u, TO(u) = 70 () = 1, (5.8.6)

as a consequence of the quantum Wronskian ([5.8.4]).

The T-functions (5.8.5) may also be written in terms of the Q@ functions
associated with the other fundamental representations with highest weights w,.

We recall the definition of the Q®) functions

v = N QW (=, (5.8.7)

@ =g Ao awl (5.8.8)
2 2
2@ =AY, (5.8.9)
where {iy,...,i,} is a subset of {0,1,...,7}, and the subsets are associated with

an integer I by the standard lexicographical ordering ([5.3.47)). We combine ([5.8.7)

and the wedge product constructions of ¥(® and = with the original definition

of the QM functions

g — Z Qg.a)(u)zgw, (5.8.10)
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to find

QVuta-1) QPu+a-3) -+ QVu—a+1)
M . M 3y s W

() = | % (u{ra Y (u{ra g ' “ (u'a—i—l)' (5.8.11)
OPw+a-1) QUu+a—3) - QVu—a+1)

Applying a generalised Laplace expansion to the determinants T (u) by expand-
ing over a-by-a minors, the T-functions T (u) may be written in the convenient

form

("2h)-1
TOW = Y QP (wtm+h/2)QY " (u—m—h/2) (5.8.12)

1,J=0

where €77 is a truncated notation for the Levi-Civita symbol € 4, i.j..j, .- Lhis

form of the T-function will be particularly useful in the study of T'Q-relations.

5.8.2 Fusion relations
The T-functions satisfy the fusion relations
T (u+ DT (u—1) = T ()T, (u) + TE D ()T D (W), (5.8.13)
To verify this, we write the T-functions explicitly in determinant form:
20T (u)

=det | Qu+h/2+m+a—1),...,Q0(u+h/2+m—a+1)

a terms

Y
J/

Qu+h/2—m—a—1),...,Qu—3h/2—m+a+1)]. (5814)
h—a‘trerms
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Let

—

Ay =Q(u+h/24+m+ a — 2k), (5.8.15)

—

B, =Q(u+h/2—m —a—2k). (5.8.16)
The fusion relations (5.8.13]) are then equivalent to the determinant identity

det(Ao, Ay, ... Ay_1, Bo, B, ..., Byu)det(Ar, ..., A, Br, ..., Bp_a)

—det(Ag, Ay, ..., A1, B1,...,Bp_q)det(Ay, ..., Ay, By, B1, ..., Bp_a_1)

—det(Ag, Ay, ..., Ay, B1, ..., Bp_q 1) det(Ay,..., Ay_1,Bo, B1,...,Bn_,) = 0.
(5.8.17)

To prove the fusion relations ((5.8.13)), it remains only to demonstrate the identity
(5.8.17) for all sets of vectors {A, ..., Aq, Bo,...,Bn_o} C R" To do this, we
consider the vector space R"*? with basis {e;}'*}. Using the wedge product

defined on this vector space, we construct the h-vector

r= Y CyegA- NG AN A Nepg, (5.8.18)
0<i<yj<h+1

where the hats on the vectors e;, e; indicate those vectors are to be omitted from
the product. We also choose the coefficients éij to be determinants of vectors C;

in R":

~

C,Lj = det (Co, ey éia e ,éj, e >Ch+l> y (5819)
where the hats on the vectors C;, C; indicate these vectors are omitted from the

determinant.

Given a vector space V' of dimension n and its associated spaces of k-vectors

/\/LC V', there exists an isomorphism between the space of k-vectors known as the
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Hodge star operator, defined as

k h—k
*:/\V—> /\V,

* (eh ARRENAN eik) = Citig.dad1...jn—k i1 ARRS Cin_rs (5'8'20)

where 11 < iy < --- <1 and J; < Jo < -+ < Jp_k. We apply this isomorphism to

the h-vector x defined in (5.8.18)), producing a 2-vector:

* T = Z éij(—1>i+j71€i VAN €. (5821)

0<i<j<h+1

As the wedge product is an antisymmetric operation, we immediately find the

4-vector xx A xx = 0:

*T N\ *T = Z éijékl(—l)iJrj*kHei Nej Nep Ae = 0. (5.8.22)
0<i<j<h+1,
0<k<i<h+1

Each component of this 4-vector is then equal to zero; we then consider the coef-

ficient of the ey A e, A eqq1 A epy1 term in this 4-vector to find:

éOaé(a+1)(h+1) - éO(a+1)éa(h+1) + éO(h+1)éa(a+1) = 0. (5.8.23)
Now choose the arbitrary vectors C, to be

Cp = (5.8.24)

By ifa+1<k<h+1

Rewrite the C'ij terms in their full form to recover the determinant identity

(5.8.17)), and then apply the substitutions (5.8.15) and ([5.8.16|) to recover the
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fusion relations

T (u+ DT (u—1) = T ()T, (u) + T ()T D (W), (5.8.25)

5.8.3 T(Q-relations

Another set of functional relations satisfied by the T-functions and the Q-functions
are the T'Q-relations. T'Q)-relations arose originally in Baxter’s solution of the six-
vertex ice-type integrable model [4] and have since become a staple of integrable
model theory, as the T'Q-relations contain information on the allowed energy levels
of the system in question. We will further demonstrate the ODE/IM correspon-
dence for the A" Toda theory by constructing the T'Q-relations associated with

this model.

The T'Q-relations were constructed from the relevant differential equation for
the Agl) case in [45], and similar relations were found for the AS) case in [5]. In this
section, we will follow the analysis in [42] to exhibit analogous T'Q-relations for
the remaining algebras A where r > 2. We will also check that the T'Q-relations

we derive here match those found in [45] [5].

We recall the Q-functions for the linear problem in the representation V(@ are
given by an) (u), where I = 0,1,..., (Z) — 1. With these, we define a column

vector of values of the function Qf,a):

X@(J) = (Qf,“) (), QW (u+2),...,QW (u +2 (Z) ))T , (5.8.26)

and then, following [42], we define a function of indices Ji, K as a (Z) +1x (Z) +1
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determinant of certain vectors of the form (|5.8.26)):

0 (11,...1(h

a

K ) = det (X(1), X9 (L), ..., X9 (1,

a

). )?<a>(K)) . (5.8.27)

For any choice of the indices I, K, @ = 0. We exploit this by contracting Q with
specially chosen Q=% -functions:
) ¥
Y] - (e1,7,Q" = (u+h —2k)) Q(I1, . .. Ay K) =0, (5.8.28)
0 a

1,J k=1

where the sum is over all indices {1, ... ,](h), P J(h)}. By expanding the de-
terminant Q and using the definition of s (u) (5.8.12)), we find the T'Q-relations

in determinant form:

T, (w45 —1) . T((ff;ih(u +E_ (M) (@ ()
T3 (u+ 1) o T (= (M) 1) QW (u+2)
(")=h+1 —0
Té;‘f;_hﬂ(u +hy (Z) -1 ... T;z%)_h(u + 1) Qg?) (u+ 2(2))
(5.8.29)

We check these T'Q-relations agree with the h = 2 case in [45] and the h = 3 case
in [5].

h=2
In the case h = 2, ((5.8.29) becomes

TYw) TVw-1 QY(u)
T w+1) T (u) Wy 4+ 2)| = 0. (5.8.30)
TMw+2) TVw+1) QM (u+4)
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We note from the definition of TT(,?)(U) (5.8.12)),
70w =0, Tg"(uw—1)=T"(u+1)=1. (5.8.31)

Expanding (|5.8.30]) along the rightmost column, we find

(1)
1 T (u) 0 1
QM (u) " " —QW(u+2) N N
T (u+2) Ty (u+1) T/ (u+2) Ty’ (u+1)
+Qp (u+4) 1 —0. (5.8.32)
1 T (u)

The fusion relations (5.8.13|) for the case h =2,a =1 are

TO (w4 DTO(w—1) =1+ T, ()T | (w). (5.8.33)

m

Substituting these into (5.8.32)) and shifting u — u — 2, we find the T'Q-relation
in [45]:

TOwWQP () = QU (u + 2) + QP (u — 2). (5.8.34)

h=3,a=1

Equation (5.8.29)) in the case h = 3, a = 1 is given by:

A ) Tfll)(u— 1/2) ( )
) (1) O (1)
O +3/2) TV (u+1/2) T{V(w-1/2) Q; —0.  (5.835)
(w+5/2) Tw+3/2) Tw+1/2) Q)
( ) ( ) ( )

TN (u+5/2
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Shifting u — u — 3 to match [5] and expanding the determinant (5.8.35) along
the rightmost columns, we recover the following relation after a rearranging of

@-functions:

QL (u+3)T{” (u+3/2)QW (u - 3)Q® (u — 5)
Y DT+ 1/2)Q9 (u — 3)Q (u — 5)
+ Q1 (w— DT (u - 1/2)Q¥ (u — 3)Q® (u — 5)

— QV (u = 3T (u = 3/2)Q) (u — 3)QW) (u — 5) = 0. (5.8.36)

Noting that the Q®, T and T functions are all quantum Wronskians, they

can be removed from this expression. We then find

Wiy +3) = QW (u~+ )TV (u+1/2)

+ Q) (w =T (w - 1/2) - Q" (u—3) =0, (5.8.37)

which is exactly equivalent to equation (5.7) in [5].

5.9 Conclusions

In this chapter, we began with a differential equation related to the AW affine
Toda field theory. This differential equation had an associated linear problem,
which we used to construct Q)-functions. These ()-functions contained information
on the associated quantum integrable model; a set of Bethe ansatz equations,
the integrals of motion associated with this model, fusion relations between T-
functions (related to the associated transfer matrices of this model) and a set
of T'Q-relations. We have therefore demonstrated an example of the ODE/IM
correspondence between differential equations related to AW affine Toda field

theories and massive quantum integrable models with AW symmetry.

179



Chapter 6

On the massive ODE/IM

correspondence for the

simply-laced Lie algebras

6.1 Introduction

In this chapter, we will generalise the analysis of the massive ODE/IM correspon-
dence in Chapter [ to the remaining simply-laced Lie algebras; the classical family
DV for r > 3, and the exponential Lie algebras Eél), Eél) and Eél).

The Lie algebra notation |37, 38] we have adopted now begins to pay dividends,
as many of the calculations we will need to perform in our analysis of the DY

case will follow immediately from the relevant calculations in the AW case.
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6.2 The D" massive ODE /IM correspondence

6.2.1 The Dq(ﬂl) linear problem

Representations of D,(})
We begin with the gauge-transformed linear problem (9, + E)E/ = 0, with A
defined as in (5.2.14))

A= B0b- H +me [Z V1Y Eq, + p(2) /1 Eag (6.2.1)
1

i=

Since we are now concerned with the affine Lie algebras Dﬁl), we substitute the

relevant dual Kac labels ny,n; as given in section m, giving the D linear

problem

r—2
<a + 306 - H + me’ <p(z)Ea0 + Bay +V2) B+ Ea,_, + Ea)> U =0.

1=2

(6.2.2)

To make further progress, we must choose a particular representation of the Lie
algebra D,(«l), making the linear problem into a system of differential equa-
tions. We will be concerned with representations of Dﬁl) constructed from funda-
mental representations of the simple Lie algebra D,; these are the representations
with highest weight w; (i = 1,...,7), where w; are the fundamental weights of the

simple Lie algebra D,. As in chapter , we denote these representations by L(w;).

As described in [47] and section [4.2.2] we construct evaluation representations
L(w;)y of the affine Lie algebra D by mapping the generator E,, — ¢*"*E,

where k € Z/2. We then define the representations V(®) of the affine Lie algebra
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DY by the following:

VW = L(w)as, (a=1,...,r=2), VUV =Lw)y VY =Lw).
(6.2.3)

The representations L(wy), ..., L(w,_2) can also be generated by wedge products
of elements of the vector space L(w;), as for the fundamental representations of
A,.. The provenance of the remaining representations L(w,_1) and L(w,) is slightly
more complicated; they are known as the half spin representations of D,. The
elements of these representations correspond to generators of the action of the
rotation group on spinors, which arise naturally in the discussion of fermions in
quantum field theory. For more details on their explicit construction in terms of

Pauli matrices see Appendix B of [57].

In this chapter, we will mostly be concerned with the smallest non-trivial repre-
sentation V) = L(w;)o = L(w;). By the Weyl dimension formula (4.2.46)), L(w;)
is 2r-dimensional, and its weights /\,El) are found using the algorithm described in

section They satisfy

A = wi, (6.2.4)
A =2y (=1, 0= 1), (6.2.5)
A=A =17, (6.2.6)

We choose a basis {egl)}fgl of the vector space V(1) such that the generators of

the Cartan subalgebra are diagonalised

Hiel = (A{)'e}”,

= ((51'73' + (527«_1'73‘ - (51‘4_1,]' — (527~+1_Z’7j)e§-1), (627)

and the generators E,., (i =1,...,r), E,, of the Lie algebra DY are represented
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by the matrices with elements

Eoel) = 6,41 50 + bariijebn (6.2.8)
E_aieg.l) = 0ije\) + Gari €1 (6.2.9)
Eoe = 6,410 + 6,400, (6.2.10)
E_oe) =06, 1 ;e + 0,5, (6.2.11)
anegl) = 6Lje§a)fl + (52,je§,). (6.2.12)

We note that the above definitions (6.2.8)-(6.2.12)) hold only for r» > 3, as D, is

no longer a semi-simple Lie algebra (specifically, Dy = A; & A;.)

Using the algorithm in section [£.2.1] a similar procedure may be followed
to generate explicit matrices for the representations V(®. We shall not demon-
strate this here, as by the Weyl dimension formula , the dimensions of the
‘higher’ representations rapidly become large. The representation V() is sufficient
to demonstrate all the major features of the D" case of the massive ODE/IM

COI'I'GSpOIldel’lCG.

The linear problem in the representation V(! and the pseudo-differential

equation

Now that we have constructed an explicit representation of DY in the form of

the matrices (6.2.7)-(6.2.12)), we may write the gauge-transformed linear problem

183



(0+ E)E’ = 0 as an explicit system of 2r coupled differential equations:

DOy + me? by =0, (6.2.13)

DOy + me?V/2 by = 0, (6.2.14)

DY, o + mePN2 b,y =0, (6.2.15)
DY)y + me? &, + me? Py =0, (6.2.16)
DAY, + me? ¢y 5 =0, (6.2.17)

D=2y + me? ¢y =0, (6.2.18)
D(=A) g + me®V/2 g,y = 0, (6.2.19)

D(= )by 1 +me? P, +me’ p(2)in =0, (6.2.20)
D(=AD )iy, + me? p(2)iy = 0, (6.2.21)

where the differential operator D is defined as
D(\) =0+ B\ 09, (6.2.22)

and we have used the symmetry property of the weights of V) (6.2.6) to write

D()\(l)

k) @S D(—)\,(Cl)) for k=1,...,r.

Just as with the representation V® of A" the equations (6.2.13)-(6.2.21)) can

be combined into a single pseudo-differential equation involving 7;51, following the

method in [37]. Let

D(A) =DM .. DMWY, (6.2.23)
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and apply this differential operator to ¢1. Using (6.2.13)-(6.2.17)

DAY, = DOAW) ... DMy (6.2.24)
= —me’ DAY ... D), (6.2.25)
= (—meg)’“_IQ% ((—meGQZTH) + D(AP)JTH) . (6.2.26)

Applying (6.2.18)) to (6.2.26]),

D<A){/}V1 = (_mee)r_l2% (D(_/\q(ﬂl))igr—&-l + D(/\gl)){/)vr+1> . (6.2.27)
Using the definition of the differential operator D (6.2.22)), we find

D)y = (—me®)" 12" 9i), 1. (6.2.28)

Similarly, we combine the equations (6.2.18))-(6.2.21)) to form another equation in

terms of @Zl and JTH. Following the notation in [37], let

DAY = D(=AM) ... D(=AW), (6.2.29)

and apply this operator to QZTH. Using ((6.2.18))-(6.2.20]) we find:

DAY g1 = D(=A") . D(= Ay (6.2.30)

= (—me®) 1272 D(=A) (o + p(2)3). (6.2.31)

To simplify the right hand side of (6.2.31]), we use equations (6.2.13)) and (|6.2.21))
and the definition of the differential operator D(—)\gl)) (6.2.22):

D(=A) (W + p(2)ih1) = 2p(2) O + 1/ (2)dh1 = 24/p(2) 8(\/p(z)121). (6.2.32)
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We substitute (6.2.32)) into (6.2.31]) to find

DAYyt = (—me®) 1275 \/p(2) 8(\/})(2)1;1) . (6.2.33)

The final step is apply the inverse differential operator 9! to both sides of (6.2.28))

and then apply the differential operator D(AT):
DAHO DAYy = (=me®) 127 D(AN Y41, (6.2.34)

and then finally apply (6.2.33]) to derive a pseudo-differential equation for the top

component @Zl:

DN LD = (—me®)r 2271 /p(z) 8(\/1)(2)12;1) , (6.2.35)

which is the equation (4.7) found in [37].

The asymptotic behaviour of the pseudo-differential equation in the
small-|z| and large-|z| limits could now be studied to define the DY Q-functions,
which as for the A" case will be our main ob jects of study. The inverse differential
operator 97! obscures the analysis of the asymptotics of the solutions of this
equation, and for this reason, we will consider the equivalent gauge-transformed
linear problem (0, + ﬁ)\f/ = 0, using the WKB method for systems of linear

equations given in section [4.3.2]

The massless limit

We now show equation (6.2.35)) matches the the DY equation found in [19] for
the massless limit of the D! ODE/IM correspondence. We change variables in
the equation ([6.2.35) and take the massless limit. Following [37], we make the
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change of variables

T = (mee)ﬁz, E = s"(mef)nret (6.2.36)

T = (me )z, E=s"™(me )1, (6.2.37)

and the change of notation

Da(A) = (me”) 751 (0, + B - 0,0, (6.2.38)

We rewrite (6.2.35)) in these new variables, taking the massless limit. We first

set Z — 0 and  — oo and let z — 0 so that x and E remain finite. Using the

small-|z| limit of ¢ (5.2.17), D,(\) becomes

D,(\) = (§>W (ax + 5A'g> . (6.2.39)

Setting

D,(g) == D,(AD) - D,(\"),  Dy(gh) = Da(=A{Y) - Do(=AD),  (6.2.40)

T

to match the notation in [I8, [19], the massless pseudo-differential equation is then

given by

D, (g0, ' Dr(g)tr = 27 /p(w, B) 0, (Vilw, By (6.2.41)

where p(z, E) = 2" — E. This equation corresponds to the DY

equation found
in [19] for the massless limit of the DY ODE/IM correspondence, up to factors

of powers of 2 that can be absorbed into p(x, E).
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6.2.2 Asymptotics of the V1) linear problem

We will need to consider the small-|z| and large-|z| solutions of the gauge-transformed
linear problem (6.2.2)). After undoing the gauge transform, the solutions {El(»l) r
with particular small-|z| behaviour form a basis of the space of solutions of the
linear problem. We write the large-|z| solution ¥ with the most rapid decay to
zero on the positive real axis as |z| — oo as a sum of small-|z| solutions. The

Q-functions are defined as the coefficients of this expansion:
V(o) = ZQ ) 2 (p]6). (6.2.42)

We could also consider the linear problems in the larger representations V() of
DM, The small-|z| and large-|z| solutions of these linear problems then define the
Q@ functions as coefficients of a similar expansion to (6.2.42), as we saw in the
A case. We will define these asymptotics in terms of constants w, which will
satisfy a certain linear system of equations derived from the W-system, found in

equation (3.8) of [3§].

V1) small-|z| asymptotics

In the small-|z| limit, the gauge-transformed linear problem ((6.2.2]) becomes

(@ 09 H) ¥ =0, (6.2.43)

z

where we have used the small-|z| behaviour of the solution to the modified affine
Toda field equation ¢ given in (5.2.17]). Recalling the action of the Cartan subal-

He( V= AMyie | the

gebra generators H; on the basis vectors of V(1) {eg-1 ;

Jl’
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solutions of the small-|z| linear problem (6.2.43)) are given by
~ )
b= el (6.2.44)

where ¢; are arbitrary constants. We therefore choose a basis of solutions to the

original gauge-transformed linear problem (6.2.2)) to be the set {Ej}Q’" with ij

=1

defined to have the asymptotic behaviour

~ 1) (1)
Egl) ~ BN =809 e§1) as |z| — 0. (6.2.45)

~B0g-ALY

We have chosen ¢; = e to ensure invariance of these solutions under

Symanzik rotation ((5.2.11)). It will also be useful to find the small-|z| solutions to
the original linear problem (0, + A)¥ = 0 given in (5.2.9) (setting all constants in

(5.2.9) to their relevant D values), which are accessed by applying the matrix

U~ = eP9H/2 to the gauge-transformed solutions E;l). As we are working in the

!

small-|z| limit, we simplify U~! by applying the small-|z| behaviour of ¢ (5.2.17):
U™t~ (22)P9H2 a5 |2| — 0. (6.2.46)

Applying this matrix to (6.2.45)), we find the small-|z| solutions to the original
D linear problem (5.2.9) behave as

[1]

. (
a 6—(9+wmg-xj”e§1>7 as |z| — 0, (6.2.47)

where we work in polar co-ordinates z = |z|e*.
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V) large-|z| asymptotics

The term proportional to H in the gauge-transformed linear problem ([6.2.2) is
dropped in the large-|z| limit. (6.2.2)) then becomes

r—2
(az + me’ (p(z)EaO + Eoy +V2) Eo, + Eo,_, + Ea>> U=0, (6.248)

=2

due to the large-|z| behaviour of ¢ (5.2.16)):

MpY-H
B0, - H ~ P , as|z| — oo. (6.2.49)
z

We are interested in the particular (subdominant) solution of (/6.2.48|) that decays
most rapidly to zero on the positive real axis. In section 4.3.2] solutions of linear
systems of the form (9, + A)¥ = 0 have asymptotic solutions in the limit |z| = oo

of the form

U ~ v(z)exp (- / o(u)du) . as |z| = oo, (6.2.50)

where v(z) is a particular normalisation of an eigenvector of A and o(z) is its
associated eigenvalue. The subdominant solution corresponds to the eigenvalue
with largest real part of the sum of the matrices in (6.2.48)). Following the method

in section the subdominant solution is given by

\AI}(l)Nf(Z)eXp (_m\/ieej\z/[_'_l) (Z’ (r—-1)M (1)+\/_Z —(r=i)M g (1)

+ el 5,21 + \/_Zz] DM gl —|—z( )Meélr)) , as|z| = oo,

(6.2.51)
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where f(Z) is an arbitrary function in the conjugate variable z, which is fixed by
considering the analogous subdominant solution to the conjugate linear problem
(0; + A)¥ = 0. Firstly, as for the A case we undo the gauge transform by
applying the matrix U~! = e%#/2 to the subdominant solution (6.2.51). Recalling

the large-|z| behaviour of ¢,

U~tel!) ~ (22)Mr 126D as 2] — o0, (6.2.52)

~ (22)MP N 2600, (6.2.53)

To calculate the subdominant solution to the original linear problem ¥ = U 1 it
remains to compute the values p" -/\gl), where p" is the co-Weyl vector (equal to the
Weyl vector as D, is a simply-laced Lie algebra), defined in equation as
the sum of fundamental weights or as half the sum of the positive roots of D,.. To

compute p" - AY we use the definition of the Weyl vector (4.2.45)), the definitions

J
of the weights of the representation V) (6.2.4)-(6.2.6) and the orthogonality of

weights and roots w;-a; = d;; (again this holds as D, is a simply-laced Lie algebra.)

From the D, Weyl vector sum found in section 4.2.2 we have

1 T
\/ . . . .
oV =wi 4w, = 5 ;:1 i(2r —i—1)ay, (6.2.54)
therefore
ISy .
p” - /\ﬁ” =p’w = 3 ;1 i(2r—i—1a;-w; =r—1 (6.2.55)

Using the definitions of the weights (6.2.4)-(6.2.6) the dot products of the Weyl
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vector with the remaining weights are easily generated:

p A = W —ay), =1, = 1), (6.2.56)

3

PN == A =1, (6.2.57)

J

From the definition of the Weyl vector as a sum of fundamental weights and the

orthogonality of weights and roots,

v

p’ oy =1, (6.2.58)

which allows us to compute all the dot products (/6.2.56)-(6.2.57)):

p A =i (=1, 0, (6.2.59)

PN = (-1, G=1....7). (6.2.60)

We now apply the matrix U~! in the large-|z| limit to the large-|z| subdominant
solution (6.2.51)):

ZA4+1

11 _ —ip(r— 1
W = =g ~ f£(Z) exp (—m\/ieeM " 1) : (e ol I)Meg )

r—1 r—1
+V2) et iMell) el pell)) 4 v/2 ) e limhMel)  (6.2.61)
j=2 j=2

—1—6"”(’"’1)Me§1r)) , as|z| — oc.

Similarly to chapters [3| and , we require ¥ to be the large-|z| asymptotic
solution for both the linear problem ([5.2.9) and the conjugate linear problem
(5.2.10)). To ensure this, we set

) ) M+
f(2) = exp (—me 9\/§M " 1) ’ (6.2.62)
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so that the large-|z| asymptotics to the D linear problem are given by

24/2| 7| M+1
T~ exp <—\§\_/[|—2Lm cosh(0 + ip(M + 1)))

r—1
(e—w“‘—l)M el +v2 ) e rmiMell 4ol 4ol (6.2.63)
=2

r—1
+\/§Zei“"(j’l)Megj + ei“"(rl)MeS)> , as|z| — oc.
=2

The asymptotics of the larger linear problems in the representations V(® can be
determined via an explicit construction of the representations V(®. Here we only

sketch the V(@) asymptotics; their general structure is all that we require.

The small-|z| asymptotic solutions Esa) for the V(@ linear problem are given

by

= ~ 675(9““””5’&)'968(1) as |z] = 0, (6.2.64)
where {e§~a)}§i‘:‘“lv(a> is a basis for the representation V@ with Hye'" = (A\[")ie®
and J = 1,...,dim V@ is a standard index with no lexicographic interpretation

as in section [5.3.3l

The large-|z| asymptotics of the subdominant solution of the linear problems

(5.2.9)-(5.2.10) are given (for general Lie algebras) in equation (2.23) of [38] in

the general form

|Z’M+1

M+1

U@ ~ exp (—2wa m cosh(0 + ip(M + 1))) (zz)MP H12y(@ (2)  (6.2.65)

where v()(2) is the eigenvector corresponding to the eigenvalue me’zw, of A in

(5.2.9) with largest positive real part, and the w, are constants determined from

a set of linear equations which arise from the associated W-system, which we will
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discuss in section [6.2.4 From our discussion of the large-|z| asymptotics of the

V@ linear problem we see that w; = v/2. The expressions (6.2.64) and (6.2.65))

will be useful in the discussion of the properties of the @® functions.

6.2.3 (-functions

Having derived the asymptotics of solutions to the D linear problem in the
representation V| we now derive some properties of the Q-functions defined in
equation (6.2.42)). The arguments establishing these properties are almost identi-
cal to those in section [5.4] only differing in the details of the asymptotic solutions
we have derived for the DV case. For brevity we will only consider the cases

where the details are non-trivially different from the AW case.

Notes on quasiperiodicity and the asymptotics of the ()-functions

Recall from section m the definition of the matrix S = e’ #"H (5.4.1) which
is independent of the choice of Lie algebra. Quasiperiodicity of the Q™) functions

follows from the following identities

2 21 271 211
=) UL I i A EW (0] 0
(6.2.66)
2T 271 271
(1) el 1Y e B 1€ Y
SU (<p+ - = - = ) v (] ), (6.2.67)

just as for the AW case. The proof of (6.2.66)) is identical to the proof of ((5.4.2]),

due to the identical form of the small-|z| asymptotics. We briefly demonstrate

the proof of the second identity (6.2.67]). This is done by computing the left-hand
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side of (6.2.67)) directly:

g (%LQ_” g_ﬂ_@>

hM hM h
2/ 2 M+1 2mi v
o <_Q—Z+|1mcosh<9 +itp(M + 1>>> e (6.2.68)

r—1
<e‘w(r_1)Me_2hm(T_1)egl) + 4+v2 Z e_w(r_j)Me_%(’"_j)ey) + efnl) + e§1+)1
j=2

r—1
—l-\/iZei“"(j*l)Me%(j*l)egj + ei“’(’"l)MeT(rl)eg)> . as|z| — oo,
=2

Applying the operator e i P H we find

2 21 21
Sy — - — — —
Pt T T h
r—1
- (ei@(rl)Megl) + \/iz efigo(rfj)Megll) 4 eg}) 4 e&zl (6,2.69)
=2
r—1
VB eIV ew—”Meé?) . as]e] - oo
7j=2

These asymptotics are exactly the same as the large-|z| asymptotics of (V) (y]@).

Since the subdominant solution on the positive real axis for a given linear problem

is unique relation (|6.2.67)) holds.

The identities (6.2.66) and (6.2.67), together with the definition of the Q™
functions (6.2.42)) imply the quasiperiodicity of the Q™) functions:

21

(1) 2mi 2mi _2mi vy A A
Q; <9+hM+ z ) —exp< . (Bg+p") A )Qj (9). (6.2.70)

This quasiperiodicity relation extends to all the Q®-functions associated with the
linear problems (9, + A)¥ = 0 in the representations V@ of DI, This could in
principle be demonstrated using the asymptotics of the subdominant solution in

the large-|z| limit of these larger linear problems, but we do not have an explicit
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expression valid for any r for the eigenvector v(z) in (6.2.65). This eigenvector
can be computed in all cases once the matrices in the representation are known,
but a general expression for it is complicated by the presence of the half-spin

representations in the D case.

The argument leading to the asymptotics of the first of the Q®-functions in
the Re — 4o0 limit is identical to that found in section The forms of the
DY small-|z| and large-|z| asymptotic solutions of ([5.2.9)-(5.2.10)) are similar to
the A asymptotic solutions, and the resulting calculation is unchanged. In the

Re — oo limit the asymptotics of Q\”(6) are

im(M41)

(@99 ~ c§“)em%/h exp (sMﬂmwaee:F i T(h, M)) , e H., (6.2.71)

and similarly the Re — —oo asymptotics are

_ im(M+1)
e 0+ ———

an)(g) ~ cga)e:!:iwva/h exp <3M+1mwa hM 7—(h7 M)) , Qe H,. (6272)

where v, = —(8g+p") - )\(1“), and Hy are defined as strips in the complex #-plane

as in (5.4.30)).

The quantum Wronskian

An analogue to the quantum Wronskian identity discussed in section |5.4.3] also
holds for the Dfnl) QW functions. As we did there, we consider the determinant of

subdominant solutions of the gauge-transformed linear problem UM twisted by

Symanzik rotations (5.2.11)). Using the definition of the QW) functions ([6.2.42)
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and the argument followed for the analogous A" case (5.4.36)-(5.4.39), we find

det (T (0[6), 2T (pl6). .. o T (]0))

le)(g) §1)(9 _ %> o le)(é? . 27@22]\7;[—1))
(1) 0 (1) f — 2mi . 1) 0 — 2mi(2r—1)
_ QQ() 2 ( hM> QQ ( . hM ) (6.2.73)
Qu'(0) Q5O —35) -+ Qu)(0— )

In precisely the same manner as in section [5.4.3] the left-hand side of (6.2.73)) can

be considered in the large-|z| limit, with the result being the numerical value of
the determinant of the QM-functions in (6.2.73). Applying a Symanzik rotation
(5.2.11)) to the large-|z| asymptotics (6.2.51]) we find

M+1

QU0 ~ exp (—mwk\/i 0E___

—k(r—1)  —(r— 1
o M+1> (W k(r=1) ,—( 1)Meg)

r+1

r—1
j=2

r—1
—i-\/éZwk(j’l)z(j’l)Meﬂj + wk(rl)z(”l)Meg)> , as|z| — oo,
=2

(6.2.74)
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o

where w = e%, recalling h = 2r — 2 for the Lie algebra D,;’. The determinant

on the left-hand side of (6.2.73]) then becomes

det (¥ (]0), T (216), .. Qar 1 TV (0)) (6.2.75)
DM ) (- DM L ] .. - CrD-1) —(r-1)M
V3 =DM (=), —(=DM ] | .. @reD)-2) ,—(r-2)M
VI M Bl M 11 e DM
_ 1 1 e 101 - 1 0
1 1 e 101 - 1
V2:M V2wzM R T w@r=1) M
VILDM =D=M ] ] L @ D=2) ,-DM
JDM G- L ] . @) M

hence we have found the Df«l) quantum Wronskian

RONCROES RIS
20 Q- o QAVO-=FA| (6.2.76)
20) QYO - Qe -

This result points to a certain redundancy in the matrix description of the linear
system. The rank of the matrix in (6.2.76) is 2r — 2, meaning that our 2r vec-
tor solutions overcount the number of truly independent solutions of the linear
system by 2. The 2r-dimensional D(w;) representation of D, was irreducible by
construction, however, so it is unclear how to cull two of the dimensions to make

the solutions linearly independent, if this is indeed possible or desirable.

This zero causes another problem in the construction of suitable T-functions
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for the DIV case of the ODE/IM correspondence. For the definition of the T-
functions in the A" case 5.8.3)-(5.8.5)), the constant zy, defined using the A
quantum Wronskian, was used to normalise these T-functions. As for DY 2o = 0,

this determinant definition for T-functions will need to be reconsidered.

6.2.4 The U-system, the Bethe ansatz equations and inte-

grals of motion

We now continue to follow the path to deriving the integrals of motion for the
massive integrable field theory associated with the DY Toda field equations. As
we did for the AY case, we define an embedding of particular representations,
which leads to the D, W-system. (See, for example, [47].) This W-system, just
as in section [5.5.2] leads to associated Bethe ansatz equations. These will be of

the same structure as the Bethe ansatz equations defined in section [5.5.2, With

these BAEs and the Q-asymptotics (6.2.71)-(6.2.72) being the same structurally

as for the A case, the entire integrals of motion calculation in carries over
with only a different Cartan matrix. We may therefore write down the analogous
expression for log Q@ () (5.6.37), expanding it in the Re — oo limit to recover

the integrals of motion.

The V-system and the Bethe ansatz equations

We begin by defining the representations that will be related via an embedding ¢.
We recall the definitions (6.2.3]) of the representations V(®). We define the rotated

representations Vk(a) with a parameter k£ € R:

v = Lwa)azi g (@ =1,...,7 =2),

VI = Lwr)wjorns Vi = L(we)r/a k- (6.2.77)
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As for the A case, the representation Vf?n A Vl(/az) has highest weight 2w, — ay.

We also consider the representation

r

Qv ®)Ber, (6.2.78)

b=1

where B = 21 — C is the D, incidence matrix and C is the D, Cartan matrix.

The representation (6.2.78]) has highest weight

r

> Buwy =Y (2] = C)apwy = 2w, — 0, (6.2.79)
b=1 b=1

and therefore there exists an embedding ¢ given by [51]:

C VO AV = Q)P (a=1,...,r—2), (6.2.80)
b=1
L VO S VDAV =V AV, (6.2.81)

The two representations V_(:E A Vl(/g_l) and V_(q)/Q A Vl(/rQ) have the same highest
weight 2w, 1 —a,_1 = 2w, — a,, = w,_o and have the same dimension (2; 1). They
are therefore isomorphic. We also note the order of the representations in the

embedding ¢ is swapped for a = r — 1,7 as dim (V%) < dim <V_(:721) A ‘/1(;;1)),

or equivalently

2r 2r—1
< > 3. 2.
(7“—2)_<2>’ for r > 3 (6.2.82)

For each representation Vk(a) define \Ifff) to be the subdominant solution on the

positive real axis of the linear problem associated with Vk(a). The embedding ¢
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defines the W-system associated with the DY case:

(W, A U) =V U, (0=, r - 3)
(U AY) = w P o wt ) @ ), (6.2.83)
r— r—1 (r)
L@<m)zwga W%>_wqﬂ W),

With this W-system, we can derive a linear system for the constants w, in the
asymptotics (6.2.65) of the large-|z| solutions W(®. We substitute the large-|z|
asymptotics into the W-system ((6.2.83)). We have

v, A (6.2.84)

|M+1

2muw,|z
ok 2 b v

(cosh (0 +ip(M +1) — F) + cosh (9 +ip(M +1) + %)) } Vi,

and

T

Q) (w®)Pe (6.2.85)

b=1

J2mleTT (5 p h (0 + ip(M
~ exp Mol Z awWp | - cosh (0 +ip(M + 1)) ¢ v,

where v; € V" 1/2 A V1/27 and vy € ®,_,(V®)Bar. The large-|z| asymptotics of

both sides of all the components of the U-system ((6.2.83]) must be the same, imply-

ing the equality of all exponential prefactors of (6.2.84)) and (6.2.85]). Simplifying

the sum of hyperbolic cosines in (6.2.84)), we have

2 cos %wa = z_: Baywy, (6.2.86)
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as in equation (3.8) of [38]. The vector w = (wy, ..., w,) lies in the kernel of the
matrix 2 cos 71 — B, with normalisation of w; determined by the eigenvalue of the
matrix A in the representation V) as determined in section . For the D'V
case, w; = V/2, as seen in equation (6.2.65). This normalisation and the system

of equations ((6.2.86)) is sufficient to uniquely define the constants ws, ..., w,.

For each representation Vk(a), there exists a basis of solutions {Ega)}g@lv(a)

with small-|z| asymptotics given by (6.2.64)). These solutions are defined to be
invariant under Symanzik rotation €2, defined in (5.2.11). Each subdominant

solution \II,(:) = Q;[U(@)] can then be written in terms of this basis of solutions:

dim V(@)
LCUEDY Q' (9- 307 )=o), (62:87)

We substitute the expansions (6.2.87) into the W-system (|6.2.83]) following the

same procedure as in section to find the untwisted D, Bethe ansatz equations:

" Q ®) ( + %Oab>
w1 QU (01 — 3 Cu)

=—1, (a=1,...,7), (6.2.88)

where C'is the D, Cartan matrix, the leading order Q-functions an)(e) have been
abbreivated by Q' (6) = Q@(0) and Q(“)(Hj(»a)) =0.

Calculation of the integrals of motion

The Bethe ansatz equations have been written in Lie algebra notation
and take on the same form as the A" BAEs . The Ref — oo asymp-
totics of the Q®-functions also have the same structure as the analogous
asymptotics of the AW Q@-functions. The calculation of the non-linear inte-

gral equation and the integrals of motion detailed in section then carries over
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completely to the DY case.
As in section , we follow [21] and define the deformed Cartan matrix C/(k):

1 ~

Coms (k) = — Crm (k) = 2, (6.2.89)

7k’
cosh a

where <mt > indicates the nodes corresponding to m and t are connected on the

Dynkin diagram of D, given in section We then define the matrix H(k) by

~ 1 ~ 1

H(k)

= oo = - (6.2.90)
2 sinh ﬁ cosh Tk

The expression for log Q® was derived in section and is given by

im(M +1)

hM

log QW ( 6
og Q) (—i— A

) = 2m7(h, M)w, cosh 6 — T%

— 2 Z/ Hup(0 — 6 +i0) Imlog (1 + a®(¢' — i0))d¢’,  (6.2.91)
b=1 Y~

where H,,(0) is the inverse Fourier transform of Hgy(k), 7(h, M) is the integral
given by equation , and 7, is given by equation . As for the integrals
of motion calculation for the A" case given in section , we expand in
the limit Ref — +o0. This is done by considering the integral form of H(f) in
terms of H (k)

H(O) = % /_ (k)™ d, (6.2.92)

and closing this integral in the upper half of the k-plane. Summing over the
residues produces a power series in e~?, which forms the asymptotic expansion
of log Q@ in the Re§ — +oo limit. The coefficients of this expansion are the
integrals of motion, which further subdivide into local and non-local integrals of

motion.
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To perform the integral (6.2.92)), we require an expression for f](k:) (16.2.90)).

The inverse of the deformed Cartan matrix C for D, is given in [58]:

(
th(wk/h) cosh((r—1—a)wk/h) sinh(wbk/h)
= = COSh(T('I?/Q) - a<r-—2
coth(wk/h) sinh(brwk/h)
~ cosh(m (IZT—LZ)ST—Q
Colk)y=4 h?( :// 2 (a > ),
sinh(rm
Zcosh(rk/2) sinh(rk/h) a=b=>r—1
sinh((r—2)mk/h) - o
\ 4 cosh(mk/2) sinh(rwk/h) a=T, b=r—1
(6.2.93)

with C;'(k) = C,! (k). From and the definition of H(k) (6.2.90) we sce
that the poles of f[(k) are at k = (2p; — 1) and k = ghMi, where py,q € N. If r is
odd there exists an additional family of poles at k = (2p, — 1)hi/2, where p, € N.
We therefore expand the integral as a sum of the residues at these poles:

HO) = ( i e~ (110 Reg [f[(k), k= (2p) — 1)¢]

p1=1

+ Z e~ 1M R g [f[(k), k= thz]) (r is even),

g=1

H(O) =i < i e~ (P11 Reg [ﬁ(k;), k= (2p — 1)1}

p1=1

4 Z o (2p2=Dh6/2 R g [}j(k)’ k= (2py — 1)hi/2} (6.2.94)

p2=1

+ i e MO Res [ﬁ(k), k= thi]) (r is odd),

q=1
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Using (6.2.93) we calculate the residues of H(k):

Res [f[ab(k), k= (2p1 — 1)@] (6.2.95)
(
(=1)P1 cos((2p1—1)m(r—a—1)/h) sin((2p1—1)wb/h) N
7rsin((2p11—1)7r/h) sin((2p1—1)7r/th) a<r—2
(—1)P1 sin((2p1—1)mwb/h)
Zrsin((2p1—1)m/h) g;((Zpl—l)w/hM) a>zr—1,b<r-—2
- (a>b)
(=1)P1 sin((2p1—1)7r/h) o
2”Sin(2(2pl*1)7r/h)2n((2p171)7r/hM) a=b>r—1
(=1)P1 sin((2p1 —1)(r—2)m/h) — —
L 27rsin(2(2p171)7r/h1) sin((2p1—1)7/hM) a=T, b=r 1
If 7 is odd, Res [?Iab(k), k= (2ps — 1)hi/2 (6.2.96)
(
0 a<r—2
0 a>r—1,b<r—2
= (a>0b),
—hsin((2p2—1)7r/2) . -
87Tsin((2p271)7r/(2]\42)) cos((2p2—1)hn/4) a=b Z r 1
—hsin((2p2—1)7(r—2)/2) o o
L 87rsin((2p271)7r/(22M)) cos((2pa—1)hw/4) a=r, b=r—1
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Res | Hup(k), k = thi] (6.2.97)

(

(=1)9Mh cos(¢Mm(r—a—1)) sin(qMb) .
27 sin(qgM ) cos(qghMm/2) a<r—2

(=1)9Mhsin(gMb)
47 sin(gM) cos(?]th/2) azr-— 1’ b <7r—2

(—=1)?Mh sin(gMnr) -
4 sin(2gM ) cos(ghMm/2) a=>b >r—1

(=1)IMh sin(gMm(r—2))
\ 47 sin(2g M) cos(qhMm/2)

a=r,b=r—1

where if a < b, we permute a and b. With these residues and the integral expression
for H(0), we take the Ref — oo limit of the log @) expression (6.2.91)) to find the

integrals of motion:

(M + 1 ;
log Q(‘l) 6+ M = 2m7‘(h, M)u)a cosh 6§ — ’L_?T’ya (6298)
hM h
+ Z ~g:;l Lm0 | (1 mod 2) Z (@ o e (2p2—1)h8/2 | Z 6 e 0hMO.
p1=1 po=1 po
where
35 (6.2.99)
2p1—1 L.

— 22 / e(P1=D(O'=0) Reg [ﬁfab(k), k= (2p) — 1)@] Imlog (1 + a® (6’ — i0)) d¢/,

Iiopa-tynse = 22 / O (6.2.100)

Res [Hab(k), k= (2ps — 1)m'/2] Tmlog (1 + a® (60’ — i0)) } a9,
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are the local integrals of motion for the DY massive integrable field theory and

6((]@) =92 Z/ eth(Q’—iO) Res E[ab(k)a k= thZ] Im IOg (1 + a(b) (0/ — ZO)) do’.
b=1 "7

(6.2.101)

are the non-local integrals of motion. The conjugate integrals of motion j;()a) , 65{”

are found as in chapter |3 by closing the contour integral (6.2.92) in the lower-

half complex k-plane and evaluating the coefficients of the resulting expansion in

powers of e’ and e’

Integrals of motion for Dél) ~ Aél)

As a check on the form of the D'V integrals of motion (6.2.99)-(6.2.101)), we note

that the Lie algebras A3z and D3 have the same Dynkin diagram and are therefore
isomorphic Lie algebras. The only difference between those two algebras in our

notation is the labelling of the nodes on their Dynkin diagrams:

In principle, the Dél) integrals of motion corresponding to the first node 31(,1), 6511)

should match those the Aél) integrals of motion corresponding to the second node

3;5,2)7 6512), up to a relabelling of p and ¢. Similar equivalences should exist for the

other two nodes as well. We demonstrate these equivalences by writing the Aél)
(1)

integrals of motion in a vector form and finding the Dy’ integrals of motion from

these using a change of basis matrix.
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Define the H-matrix in the case Agl)

-1
1 2 cosh % 0
Ha(k) = ) N S S R 6.2.102
A(k) 2 sinh ﬁ cosh ”Tk cosh 7 cosh 7 ( )
0 G 2
and the H-matrix in the case Dél)
2 —1 —1 -
1 cosh %k cosh %k
Hp(k) = ~1 2 0 . 6.2.103
p(k) 2 sinh ﬁ cosh ”Tk cosh 7 ( )
om0 2

These matrices are related by the change of basis matrix P:

010
P=|10 0|, PHskP'=Hpk). (6.2.104)

0 01

The matrix P corresponds to the relabelling of the nodes of the Dynkin diagrams
for A3 and Ds, specifically swapping the labels 1 and 2. As P is a constant matrix

in k, we have at any pole in the complex k-plane
P Res [ﬁA<k)] P! = Res [PﬁA(k)P—l] — Res [ﬁD(k)]. (6.2.105)

This notation will be useful in writing the integrals of motion succinctly. We also

recall the vector notation for the A:(,)l) a-functions defined in equation (5.6.8]):

Imlog (1 + a(6’ —i0)) (6.2.106)

= (Imlog(1 + a™ (¢’ —40)),Imlog(1 + a® (¢’ — i0)), Imlog(1 + a® (¢ — iO)))T.
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The Dél) a-functions (defined similarly to the a-functions (5.6.1) in the A

case) are then recovered by relabelling, represented by pre-multiplying the vector

(6.2.106)) by the matrix P. Finally, we set

3p(A) = (30,33 39T (6.2.107)
&,(A) = (6", 6%, 67)" (6.2.108)

to be vectors constructed from the A:(),l) local and non-local integrals of motion.
With all this notation, we can write the Aél) integrals of motion in the compact

form
J,(A) =2 / Res [ﬁA(k),k — ip| Im{log(1 + a(8’ —i0))}eP?~0d#’. (6.2.109)

)

Now we consider the Dél integrals of motion

3,(D) =2 / Res [ﬁD(k;), k= ip] PIm{log(1 + a(¢ — i0))}e"®—0dg’,

(6.2.110)
_ / " PRes[ (k). k = ip| P~ PIm{log(1 + (¢’ — i0)) " ~Vae

(6.2.111)
=2P / " Res [ﬁA(k), k= z‘p] Im{log(1 + a(f’ — i0))}e? @~ dg’

(6.2.112)
= PIp(4). (6.2.113)

This calculation demonstrates the equivalence of the Agl) and Dél)

local integrals
of motion, up to a relabelling of the nodes of the Dynkin diagram, here facilitated

by the change of basis matrix P. The non-local integrals of motion for Agl) and
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D:())l) are related in the same way:
Sy(D) = PGS,(A). (6.2.114)

The next step in the analysis of the massive ODE/IM correspondence in the DY
case would be to define the T-functions T} )(u) and construct a set of fusion

relations [43]:

T+ )TO (- 1) = T, )T () + [P @), (62.115)

However, the determinant definition of 7% (u) (5-8-3)-(5.8.5)) seen in the analysis
of the A" case does not immediately generalise to the DY case. The right-hand
side of the quantum Wronskian (6.2.76)) arises in the normalisation constant zq in
(5.8.3)). For the DY case, the quantum Wronskian (6.2.76) is zero, which causes
the normalisation of to be undefined. The definition of 7, (u) as seen in

the A" case does not then immediately generalise to the DY case. This is an

interesting open problem.

6.3 The Eé1> massive ODE /IM correspondence

We continue our study of the massive ODE/IM correspondence for the simply-

laced Lie algebras by considering the case of the exceptional Lie algebra Eél).

6.3.1 The linear problem in the representation V") and its

massless limit

We begin our discussion of the Eél) massive ODE/IM correspondence by defining

the relevant representations. We follow the definition in [47], defining V@ as the
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evaluation representations

V(l) = L(W1)07 V(Z) = L(w2)1/2, V(g) = L(Wg)l, (631)

VW = L(wa)1/2, VO = L(ws)o, V= L(we)1/2, (6.3.2)

where the notation L(wy) was defined in section . As for the DIV case, we will
mostly be concerned with the representation V(). The Eél) gauge-transformed

linear problem is in the form (9, + ﬁ)\fl = 0, where A is the matrix given by

A=pB0.¢-H+me (6.3.3)

6
PV By + D /) Fa,
i=1

= 8.6 - H + me’ [Em +V2E,, + V3E., + V2E,, + E.. + V2E,,

+mep(2) By, (6.3.4)

where to pass from (6.3.3)) to (6.3.4) we have substituted the dual Kac labels for

Es found in section 4.2.2]

Let e, be the matrix with elements (e4)i; = 0ia0j5. Using the basis for the
vector space V(1) implicit in [39], the generators E,, in the representation V) are

given by

E,, =e12+ €215 + €1a17 + €16,19 + €18.21 + €20,22, (6.3.5)

as = €23 1t €10,12 + €11,14 + €13,16 + €21,23 + €22 24, (6.3.6)
E,, = €34+ €s10 + €911 + €16,18 + €19,21 + €24,25, (6.3.7)
Ey, = e45 + €68+ €11,13 + 14,16 + €17,19 + €25 26, (6.3.8)
Eo, = es57 4+ egg + €101 + 12,14 + €15,17 + €26 27, (6.3.9)
Eog = €46 + €58 + €79 + €1820 + €21,22 + €234, (6.3.10)
Eoy = €201 + €222 + €243 + €254 + €265 + €277, (6.3.11)

211



where we have corrected the expression for E,, in [39]. The gauge-transformed
linear problem (8, + A)¥ = 0 can then be written in the representation VO as a

set of 27 coupled differential equations of the form

27 6
D()\;l)) ¢j+meez p(z)\/ngEanLZ\/niani e =0, j=1,...,217,
k=1 i=1 ;

ik
(6.3.12)

where the differential operator D(/\g-l)) was defined in equation (5.3.15)). The linear
problem has asymptotic solutions that can be used to define Q-functions,
and hence Bethe ansatz equations and integrals of motion. However, we will
first consider the pseudo-differential equation formulation of the linear problem

(6.3.12)) in the massless limit, for a particular choice of the vector parameter g.

6.3.2 The VU Eél) pseudo-differential equation in the mass-

less limit with g =0

We take the massless limit of the linear problem (/6.3.12) by making the now

familiar change of variables

T = (meQ)MIH z, E= 312M(m69)ifﬁ€7 (6.3.13)

and sending # — oo and z,s — 0 so that z and E remain finite. In this limit, ¢ is
represented by its small-|z| behaviour (5.2.17)), so that the differential operators

D()\;l)) are replaced by the operators Dm(A§1)), given by

T

AW
D,(\") = (ar LB > . (6.3.14)
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The authors of [39] consider the linear problem (6.3.12)) in the massless limit in

the special case g = 0, so that
My _
D, (A ) = 0y (6.3.15)

This simplifies the linear problem significantly, allowing the derivation of a pseudo-
differential equation. Explicitly, the linear problem in the massless limit with

g = 0 is given by the 27 differential equations

Bpthy + 1y = 0, Buth + V203 = 0,

Duths + V304 = 0, Dptha + V205 + V295 = 0,

Duts + U7 + V24 = 0, Buth + V20 = 0,

Byt + 2y = 0, Dpts + o + V311 = 0,

Butho + V301, = 0, Dpthio + Uny + V2019 = 0,

Dpthiy + V2¢n3 + V214 = 0, Oyt + Y14 + P15 = 0,

Oythis + V2 = 0, 0pt1a + V2Une + Y17 = 0,

Buthrs + 17 = 0, Dyt16 + V3Ung + g = 0,

Outhir + V21 = 0, Dpis + V2o + a1 = 0,

athno + V301 =0, Dutioo + p()t1 + o = 0,

Duthar + vV 2tz + V2 = 0, Buths + P(x) g + V2py = 0,

Dating + V204 = 0, Duthos + p(a)ihs + V3ias = 0,

Datins + () tha + V255 = 0, Outhas + ()05 + o7 = 0,
ooy + p(x) iy = 0. (6.3.16)

We combine these into a single equation in 1}1 by repeated differentiation and

substitution. Repeatedly differentiating the first equation in (6.3.16f), simplifying
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derivatives of {bvl in favour of derivatives of 121, we find

OV, = 288v/3 0% (piy) — 10803 8 (pihn) + 1872607 (pifs)

— 5616/20° (i) + 112320 (pis) — 11232pir, (6.3.17)

where for brevity of notation we have set 0, = 0 and p(z) = p. To derive a
pseudo-differential equation in terms of 1;1, we need to write 122, e ,1;7 in terms

of 1;1. 1;2, zzg and QZ4 are easily dealt with, as they are straightforward derivatives
of ’l:;li

1

V2

1

627;51, @Z4 = _\/6

Uy = =0y, Uy = 9%, (6.3.18)

so that (6.3.17)) becomes

0"y = 288v/3 0% () + 1080v/3 8 (p 9y ) + 18726 0% (p 6%y)

+1872v/3 9%(p 0%y) + 11232 d(pibs) — 11232pi)s. (6.3.19)

To deal with the @Z5 and 1;7 terms, we consider certain derivatives of 7;51, 1;5 and

(8
9", = 288v/3 O(piby) — 1080v/3p by — 1872v/ 61y, (6.3.20)
8%0s = 84 A(pth1) + 312p Ibr — 540V 2hma, (6.3.21)
881;7 =-24 3(p1;1) — 84]9 37:51 + 144\/5{524 (6322)

Next, we remove the 1524 terms in ((6.3.21)) and (6.3.22)) using (/6.3.20]). Integrating

and simplifying, we find:

52v/3 05 = 15 0%y + 243072 (pduy,) + 483 073 (piy ), (6.3.23)
13V3 17 = =% — 123073 (pdiy) — 24v/3 077 (pihy). (6.3.24)
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We substitute the expressions (6.3.23) and (6.3.24)) into (6.3.19)), which gives us a

pseudo-differential equation in {/;1:

M O'pOdy + Maf”p Py + S2V3 o2, 90,

\/_

17 L 5,47, 39V3

75\/'

86
——0p 34% (95% + 18pd~ (Pa{/;ﬁ + 3617377(171;1)

+60p 82 (pd) + 120p 05 (piy). (6.3.25)
Using integration by parts, the integral terms can be collected together:

18p 03 (pdn ) + 36p 7 (pihn) + 60p O~ (pd¢n) + 120p 05 (pi)
= 6(dp + 3pd)d°(20p + 3pd)Uy (6.3.26)

The pseudo-differential equation for the V() Eél) linear problem in the massless

limit and with g = 0 is then given by

M o'p O + Ma% 920, + 2302, o0

15f

1 -
@317% \/—35]9 U1+

75
+ —fa Oy + —=

39v/3
2

p U1 + 6(9p + 3pd)d°(20p + 3pd) ;.

(6.3.27)

As a check on the calculation of , we employ the loop counting method
found in [50] which was discussed in section [£.3.1] To employ this method, we first
construct the weight diagram, shown in Figure , for the representation V) from
the matrix A. We then proceed by counting all the loops in this diagram. There
are 297 distinct loops that contribute to the calculation of the Eél) V) pseudo-
differential equation. We will not write a list of all the loops in the diagram above;

we will merely list the contributions resulting from the loops through particular

215



/
|
/
|'I -~
| ™ 5
AN A
| ™ Py
1 - {
|19 N a7
q:"——\OQ______ 15 :E' ;9
T - p
- _,J
.-"'-' J/

\-,_‘\\ 15-._.._.____.--"' ..‘_\.-.‘H.. V
o3 ~d

Figure 4: Weight diagram of the first fundamental representation of Eél).

nodes. The loops through node 1 contribute the terms
288v/3072(pt1) + 1036805 (p0 3 (pe1)) + 2073607 (p0 " (pi1)),  (6.3.28)
the loops through node 2 and not through node 1 contribute the terms

1080303 (pdihy ) + 5184070 (pd~° (pdefy )) + 103680~ (pO~2 (pde1)), (6.3.29)
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the loops through node 3 and not through 1 and 2 contribute the term

1872/30 " (pd* ¢, (6.3.30)
the loops through node 4, not through 1, 2 and 3 contribute the term

187230 (pd ), (6.3.31)
the loops through node 5, not through 1, 2, 3 and 4 contribute the term

1080398 (po*¢y), (6.3.32)

and finally, the remaining loops, which all pass through node 7, contribute the

term

288v/30~ 17 (pd° 1y ). (6.3.33)

Using ((6.3.28)-(6.3.33)), the Eél) V1 pseudo-differential equation becomes

Wy = 2883972 (piby) + 10368 9710 (p 03 (pyn)) + 20736 9T (p 7 (pin))
+1080V3 93 (p 04y ) + 5184075 (p 2 (pdiby ) + 10368 97 (p & (pdey )

+ 1872307 ™ (p 0%y) + 1080v3 070 (p 0*4hy) + 288V3 9~V (p 8P4y ).
(6.3.34)

1
We act on both sides of this expression with the operator @617. We collect

integral terms using integration by parts and expand any derivatives to find the
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pseudo-differential equation

1 ~ 353 2143 ~ 393 ~
@8171/11 \/_a5p¢1+ 5 83p82w1+—2 Op i

75f

'p Oy +

15\/_

Y2 0p My + p 1 + 6(dp + 3pd)d~°(20p + 3pd) s,

(6.3.35)

which matches the pseudo-differential equation (|6.3.27)). This almost matches the

(1)

pseudo-differential equation for Eg~ given in [39], save for the coefficient of the

673 35v/3
12

, rather than
24

~ 3
O'p Oy term, which in [39] is given by

6.3.3 Asymptotics of the V(! linear problem and Q-functions

Just as for the previously considered A" ana DY cases, we define Q-functions
related to the Eél) case of the massive ODE/IM correspondence by considering
small and large-|z| asymptotic solutions of the linear problem (0, + A)¥ = 0.
Solutions of this linear problem can be found from the simpler gauge-transformed
linear problem (0, + g)\fl = 0 (with A defined in (6.3.3)) by applying the matrix
U~! = eP4H/2 {6 ¥ In this section, we will state the small and large-|z| asymptotic

solutions to both the original and gauge-transformed linear problems.

Small-|z| asymptotics

Setting {e( )} 7, to be a basis of V() with He() = ()\g-l))ieg-l), the basis of
solutions {:j }3; of the gauge-transformed linear problem (8, + A)¥ = 0 have

the small-|z| behaviour

_ ( &
Eg;) ~ BN 0N e( ) as |z| — 0. (6.3.36)
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In the small-|z| limit, the matrix U~! takes the form
U™t =ePH2 o (22)90/2 as |2| — 0, (6.3.37)

therefore the small-|z| solutions to the original linear problem (0, + A)¥ = 0 are

U*l%(l)

—_—

g E(l) ~v 6_

. (1)
. B(O+ip)g-A; e§1)’

as |z| — 0. (6.3.38)

Large-|z| asymptotics
In the large-|z| limit, the matrix A is given by

A~ me? |22ME, + Eo, + V2 Eq, + V3 E,,

+V2E,, + Ea, + \/iEaﬁ] . as |z — oo (6.3.39)

The large-|z| solutions of the linear problem (9, + A)¥ = 0 then take the form

v (2) exp (— / Za(u)du> , (6.3.40)

where, following section [4.3.2] v(z) is a particular eigenvector of A in the large-|z|
limit given by (6.3.39)), and o(z) is its associated eigenvalue. The subdominant
solution (the solution with the fastest decay to zero as |z| — oo on the positive

real axis) is associated with the eigenvalue of ([6.3.39) with largest positive real
part. The eigenvalues of (|6.3.39) are

0,0, 0, me?z/3 + /3 ePm/5, me?2M\/3 — V3ePm/12 gy — 1, 11,

(6.3.41)

The eigenvalue with largest real part in (6.3.41)) is me’2™ /3 + /3. Computing

its associated eigenvector we find the subdominant solution to the linear problem
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(0. + A)U = 0 is given by

M+1

T~ v (2) exp (—mee 343

L 1) , as |z| = oo, (6.3.42)

where

RO m M 4 \/m oM D)

+/9+5vV32Mel) + (24 v3) 2 Mel) 4 (14 v/3) 2 MelV

+V3+ \/gz_gMe(71) +1/94+5V3 z_gMeél) +1/3(2+V3) Z_QMeél)
3(2+V3) Z_QMe%) +/3+ V32 Mel) +1/9+5v32MelY

+el) + 2+ v3)el) + (1 +v3)elk (6.3.43)

+1/3+ V32 Mely + W Mel +1/3(2 + V/3) 22Mefy

£ /32 4 V3) el 1 1/9 4 5vE el 4 /34 V3 el

+ (14 V3) el + (24 v3) 2Vl + /9 4 5v3 Vel

+1/3(2+ V3) 2Mel) +1/3 + V32 Meyy) + 2HMel).

v(l)(z) =

I\

;

+

~—

:

We now apply the large-|z| limit of the matrix U~ = e#H/2 to U to find the
large-|z| solution of the original linear problem (9, + A)¥ = 0. In the large-|z|

limit, U~ ~ (22)MP"H/2 | with
U_leg.l) = (zZ)M”V'A;Umeél) as |z| — oo. (6.3.44)

To explicitly define this operator we require the dot products of the Weyl vector
p¥ with the weights /\El). The Weyl vector p" is given by
6

p = wi=8ai + 1505 + 2las + 1504 + 8as + 11ag, (6.3.45)
i=1
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and the weight vectors )\51) are calculated using the algorithm given in section
4.2.1| starting with )\gl) = wy. Using w; - aj = 9,5 for simply-laced Lie algebras, we
v

compute p , written here in a list from ¢ = 1 to ¢ = 27:

p" A =(8,7,6,5,4,4,3,3,2,2,1,1,0,0, (6.3.46)

0,—1,—1,-2,-2,—3,-3,—4,—4,—5,—6,—7, —8).

Applying U™! in the large-|z| limit to (6.3.42) and pre-multiplying by a factor
depending on Z to match the asymptotics of the conjugate linear problem (9; +

A)¥ = 0, we find the subdominant large-|z| solution

) 24/3 M+1
T~ v (e7¥) ex ( V3 m cosh(6 + ip(M + 1))) , as |z| — oo,
M+1
(6.3.47)

with v(V(z) defined as in equation (6.3.43). The large-|z| solution ¥ and the basis

of small-|z| solutions =; Y define QM-functions through the expansion

D(6]y) = ZQ“ )4 (6]). (6.3.48)

The linear problems for the other representations V(® can be analysed in a similar
way, allowing the definition of analogous Q®-functions from the subdominant

solution U(¥) and a basis of small-|z| solutions {_ b }d‘mv(a)

dim V(@)

U@ (g|¢) = Z QW02 (8]p). (6.3.49)
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The V(@ large-|z| subdominant solutions ¥(¥) have the general asymptotic struc-

ture

(@) _ (a)( —i 2[z[MH! ,
U~ v (e exp | — muw, cosh(f + ip(M + 1)) |, as |z| — oo,
M+1
(6.3.50)
where the constants w, satisfy the constraints
. 6
2 cos gl = ;Babwb, wy = \/3+ V3, (6.3.51)

where B = 21 — (' is the Fj incidence matrix. These constraints arise from an
identical argument to that found in section [6.2.4] i.e. by consideration of the

asymptotics of both sides of the Eg WU-system [47]:

(80, D) = 0
(98, A 00,) =90 2w,
(99, A 0)) = e@ @ v @ u), (6.3.52)
(90, A 0) =90 2w,
L(@ﬂﬂA@SQ::W@,
() =0 A,

6.3.4 Bethe ansatz equations and the integrals of motion

Using the same method as in section [5.5.2) the Eg U-system ((6.3.52)) and the
definition of the Q@-functions (6.3.49) imply the Eg Bethe ansatz equations

(a=1,....6), (6.3.53)



where once again we use the truncated notation
Q) = Q' (6). (6.3.54)

The identical form of the Bethe ansatz equations and the leading order asymp-
totics of the Q®-functions ensures the integrals of motion calculation given in
section holds in the case of Eél). As we did for A% and D" we define the

deformed Cartan matrix C(k) with the elements

Cars (k) = ! Coa(k) = 2, (6.3.55)

cosh % ’
where, as in the A" and DY cases, here < ab > implies the nodes a and b are

connected on the Fg Dynkin diagram. We then define the H-matrix via its Fourier

transform H (k):

H(k) = ! C(k)~". (6.3.56)

- : k 7k
2 sinh oM cosh 12

The H-matrix occurs in the expression for log Q@ derived in section :

im(M +1)

log Q¥ (0 + 537

) = 2m7(12, M )w, cosh § — %%

6 oo
— 2i Z/ Hu(0 — 0 +i0) Imlog (1 + a®(¢' — i0))d¢’,  (6.3.57)
b=1 "~

with 7(12, M) and ~, defined in section 5.6 The integrals of motion arise from a
series expansion of ((6.3.57)) in e~?. To calculate this, we apply Cauchy’s theorem

to rewrite the integral

H() = % / h H(k)e* dk (6.3.58)
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as a sum of residues:

H(O) = zi Res [f](k:), k= pz} e 1 i Res [ﬁ(k), ke = 12qMi] e~ 12eM0,
p=1

q=1
(6.3.59)
Substituting this expansion into (6.3.57)) we find
M 1 .
log Q'@ (9 + %) = 2m7(12, M )w, cosh 6 — 21—7;%
+) I 4y T @lmem Ml (6.3.60)
p=1 q=1

where the local integrals of motion 3,(3‘1) are given by

6 0o .
3@ =23 / "= Res | .y (k), k = @'P} Im{log (1 +a® (¢ —i0)) } d¢,

b=1" >
(6.3.61)
and the non-local integrals of motion Géa) are given by
6 oo N
(‘5((1‘1) =2 Z/ e124M(0"=i0) Reg [Hab(k), k= 12qM@']-
b=1 Y "X
Im{log (1 + a® (¢’ —i0))} 0. (6.3.62)

All that remains is to calculate the residues of the matrix H (k). Its poles are
located at k = (12n %+ 1)i, (12n £+ 4)i, (12n £ 5)i, 12¢Mni, for n € Z. As we have
closed the integration contour in the upper-half k-plane, we only consider of the

residues of the poles with positive imaginary part.

As a demonstration, we will now calculate the first local integral of motion
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’ng) and the first non-local integral of motion 6%1). ’ng) is given by

(e}

3 - =
y_ CSC 12M Z/ deo’ e —ZO)Rk Im{log (1 + a® (6/ — ZO)) }, (6363)
k=1

=

B+Va)r .

where

Ry = V2(1+V3),

Ry =2(2+V/3),

Ry = 2V2(2 + V3), (6.3.64)
R, =2(2+V/3),

Ry = v2(1+/3),

Rg =2(1+/3).

The non-local integral of motion 651) is given by
_24M /
el = Z / g’ e?MO=0g, Tm{log (1 +a® (¢ —i0))},  (6.3.65)

where

4 cos(Mm) cos(4M)
2cos(6Mm) 4+ 2cos(4Mn) — 1’
1+ 2cos(2Mm) + 2 cos(4M)
2cos(6Mm) + 2cos(4Mm) — 1’

2 cos(Mm)
2cos(4Mm) — 1’
B 2(1 + cos(2M))
~ 2cos(6MT) +2cos(4Mm) — 1
B 2 cos(M)
~ 2cos(6Mm) + 2cos(4Mm) — 1’
B 1
~ 2cos(4Mm) —1°

1=

9 =

Sy = (6.3.66)
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The conjugate integrals of motion ’jﬁ,a), 6((;1) are calculated in a similar way by

closing the contour of integration in (6.3.58]) in the lower-half k-plane.

6.4 The massive ODE/IM correspondence for
Eél) and Eél)

We now conclude our study of the massive ODE/IM correspondence for the
simply-laced Lie algebras by considering the correspondence for the exceptional
Lie algebras Eél) and Eél). The smallest representations of these exceptional Lie
algebras are quite large, making explicit calculations rather unwieldy. The repre-
sentation V(! has dimension 56 and 248 in Eél) and Eél) respectively. We exhibit
the large-|z| eigenvalues of the Eél) and Eél) A-matrices in the representation V(1)

Bethe ansatz equations for suitably defined @-functions, and integrals of motion.
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6.4.1 EV

The 56-dimensional representation V(%) was given in the Appendix of [39]:

Eo = e78+ €910+ e€11,12 + €13.15 + €16,18 + €19,22 (6.4.1)
+ €35,38 1+ €39,41 T €42.44 + €45 46 + €47,48 + €49 50,

Eo, = €56+ €79 + €510 + €20,23 + €24,26 + €27,29 (6.4.2)
+ €28,30 1+ €31,33 + €34,37 + €47.49 + €48 50 + €51 52,

Eo, = €57+ €69+ €12,14 + €1517 + €1821 + €22.95 (6.4.3)
+ €32,35 1+ €36,30 T €40,42 + €4345 + €48 51 + €50,52,

Eo, = es5 + €911 + €102 + €17,20 + €21,24 + €258 (6.4.4)
+ €29,32 1+ €3336 + €37.40 + €45.47 + €46,48 + €5253,

Eoy = €34+ e11,13 + €12,15 + €14,17 + €24.27 + €26 29 (6.4.5)
+ €98,31 1+ €30,33 1 €40,43 + €42.45 + €44.46 + €53 54,

Eos = €23+ €13.16 + €15,18 + €17,21 + €20,24 + €23,26 (6.4.6)
+ €31,34 1+ €33,37 + €36,40 + €39,42 + €41,44 + €5455,

Eq, = €12+ €16,19 + €18.22 + €21,25 + €24.28 + €26 30 (6.4.7)
+ €97,31 1+ €29.33 + €32.36 + €3539 + €3841 + €55 56,

Eo, = €381+ €412+ €aa3 + €464 + €485 + €506 (6.4.8)

+ €517 + €529 + €5311 + €54,13 + €55,16 + €56,19,

where e, is the matrix with elements (eq)i; = 0ia0;o- V() is considered as it is
the smallest non-trivial representation of Eél); V) the adjoint representation, is

133-dimensional. The gauge-transformed linear problem is given by (9,+A)¥ = 0,
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with
N 7
A= p0.6-H+me |p(z)\/ng Eu, + Z V) E,, (6.4.9)
i=1

where the dual Kac labels ny, ny were given in section £.2.2l The small-|z|

asymptotic solutions {E(Jﬁ) 55 | to this linear problem are given by
20~ 2Pl sz — 0, (6.4.10)
and the large-|z| subdominant solution U© is given by

GO O (2) exp<— / o) du>, (6.4.11)

where o(u) is the eigenvalue of the matrix (6.4.9) in the large-|z| limit with largest
positive real part, and v(®(z) is the corresponding eigenvector. To find o(z), we

consider the characteristic polynomial of the A matrix in the large-|z| limit:

det (ﬁ _ af) ~ 0% — 50,969, 08825 e 38
+ 1,199,792, 259, 072 %M 1220 520 (6.4.12)

— 330,225,942, 528 2 m3e35?  as |z| — oo.

The roots of this polynomial are

o =0,0, me?zM 11/186””/9, (6.4.13)
meezMg/lSe@nH)m/ls’ (6.4.14)
meeszé/lse”m/g, (6.4.15)
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where n = 0,1,...,17 and & < & < &3 are the three real solutions of the polyno-

mial equation

€3 — 50,969, 0882 + 1,199, 792, 259, 072¢ — 330,225,942, 528 = 0. (6.4.16)

The eigenvalue with largest positive real part is then me?z™ fl/ , Where fl/ 18

2.68023308478642....
The definition of the asymptotic solutions i(,a) and U@ in the various funda-

mental representations V(@ of Eél) leads to the definition of Q®-functions

dim V()

U@ (f|p) = Z QY (6)Z (6] ), (6.4.17)

which then satisfy Bethe ansatz equations

=—1, (a=1,...,7), (6.4.18)

where C'is the F; Cartan matrix given in sectlon 2(and Q¥ (0) = an)(e). We
once again consider integrals of motion by computing the residues of the matrix

H(k)

H(k) = ! Oy (6.4.19)

7k
2 sinh 25 18M cosh s

where C(k) is the E; deformed Cartan matrix. The poles of H(k) are at k =
(18n £ 1)z, (18n £ 5)i, (18n £ 7)i, (18n £ 9)i, and k = 18nMi, where n € Z. The
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local integrals of motion are then given by

7 oo
j]ga) _9 Z/ P0'=i0) Reg ﬁ[ab<k)7 k= pl} Im{log (1 + a(b)(9/ _ ZO))} de’,
b=1 Y >

(6.4.20)
and the non-local integrals of motion are given by
T o _
6((1a) —9 Z/ 12aM(8'=i0) R og [Hab(/f), k= 18in]‘
b=1 Y~
Im{log (1 + a® (¢’ —i0))} d¢". (6.4.21)

6.4.2 E\

The 248-dimensional representation of Eél), V) is given in the Appendix of [39].
From the matrices defined there and the dual Kac labels in section [4.2.2] we define

the matrix A:

8
A=B0.¢-H+me | p(z)\/nEsy + Z V1) By, (6.4.22)
i=1

The large-|z| solutions to the linear problem (0,4 A)¥ = 0 are described using the
eigenvalues and eigenvectors of (6.4.22)) in the large-|z| limit. The characteristic
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polynomial in this limit is

o8 19,845,667, 127, 296, 000, 000v/5(me’ 2 )30 5218
—997,429, 956, 592, 632, 574,022, 516, 736, 000, 000, 000(me’ zM )50 188
+ 62,106, 889, 173,106, 930, 566, 304, 048,
704,022, 118, 400, 000, 000, 000, 000v/5 (me® z2)?0 158
+ 1,783,320, 600, 763, 454, 867, 346, 450, 898, 335, 637,
305, 559, 860, 903, 936, 000, 000, 000, 000, 000(me’ 2 )12 5128
— 19,422,643, 883, 849, 883, 504, 740, 159, 769, 364, 196,
361,424, 820, 433, 321, 984, 000, 000, 000, 000, 000, 000, 000v/5(me’ 2 ) 1209
+ 3,518, 345, 698, 492, 137, 878, 835, 967, 728, 970,
575,127,409, 632, 826, 324, 441, 628, 672, 000, 000,
000, 000, 000, 000, 000, 000(me? 2180558 (6.4.23)
+ 262, 380, 855, 963, 325, 641, 992, 292, 565, 498, 191,
833,239, 248, 829, 760, 256, 186, 777, 600, 000, 000,
000, 000, 000, 000, 000, 000, 000v/5(me? zM) #0538
+ 52,477,712, 140,573,920, 113,791, 072, 551, 142, 890, 519, 592,

132,233, 368, 961, 024, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000(me? 221048

The roots of form eight rings of shifted 30*® roots of unity. From the form
of the root at ¢ = 0 has multiplicity eight. Figure|b|is a plot of the roots
of with me’z™ = 1 on the o-plane. From this plot it is apparent there
is no unique root with maximally positive real part. It is therefore an interesting

open problem to obtain the Q®-functions. Nevertheless, we can assume the Bethe
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Re(c)

Figure 5: Eigenvalues of the A-matrix associated with the first fundamental represen-
tation of Eél) in the large-|z| limit.
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ansatz equations take the same form

8 Q0 <9](-a) + A ab>

EQ“’) (04 = i:Cw)

J hM

=1, (a=1,...,8), (6.4.24)

where C' is the Eg Cartan matrix given in section [4.2.2] Integrals of motion are
then calculated from the residues of H(k):
~ 1 -

H(k) = C(k)™, 6.4.25
(k) QSinhﬁCOShg—’g (k) ( )

where C(k) is the Ey deformed Cartan matrix. The poles of H(k) are at k =
(30n £ 1), (30n £ 7)i, (30n £+ 11)i, (30n £+ 13)i and k& = 30nMi, where n € Z.
Integrals of motion are then defined identically to earlier cases, with the local

integrals of motion

8 0 ~
A =23 [ e Res [0, = ip] Tnflog (1+a 0~ 0))} o
b=1 Y~

(6.4.26)
and the non-local integrals of motion are given by
8 o N
sl =2%" / ¢30aM (¢'=i0) Reg [Hab(k), k= 3qu¢]-
b=1 Y ">
Im{log (1 +a® (¢’ —40))} d¢'. (6.4.27)

6.5 Conclusions

In this chapter we have extended the massive ODE /IM correspondence to systems
of differential equations associated with the affine Toda field theories for the Lie

algebras Dfnl), Eél), ES) and Eél). We applied the same procedure used to calculate
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the integrals of motion for the AW case to do the same for the remaining simply-
laced Lie algebras. For the Eél) case, we also constructed the associated g =
0 pseudo-differential equation in the massless limit. In [39], this was done for
Eél) as well, converting the linear problem into three coupled pseudo-differential

equations.

Some open questions regarding the treatment of the exceptional Lie algebras
remain. We have not discussed the larger representations V(® with a > 1 for
the exceptional Lie algebras and their corresponding linear problems. It would be
interesting to compute the asymptotics of these linear problems and define Q(®-
functions exactly. The quantum Wronskians for the Lie algebras we considered
in this chapter are all zero, leading to difficulty defining T-functions using deter-
minants as we saw in section for the Agl) case. The linear problem associated
with the representation V) of Eél) also seems to have no subdominant solution;
this causes the definition of the Q(®-functions for Eél) to become an interesting

open problem.

234



Chapter 7

Conclusions and outlook

This thesis was focused on two major generalisations of the ODE/IM correspon-
dence as presented in [26] O]: the connection between excited states of a confor-
mal field theory (CFT) and suitable second-order ODEs, and the extension of
the correspondence to certain massive integrable models with more general Lie
algebra symmetries. We began in the introduction by introducing the massless
Agl) ODE/IM correspondence, matching spectral determinants constructed from
eigenvalue problems related to second-order ODEs, and the ground-state eigen-

values of Q-operators defined on certain CFTs.

In chapter , we studied an extension of the massless Agl) ODE/IM correspon-
dence to the excited states of the CFTs. The related ODEs were defined by a set
of parameters {z;}% |, z; # z; which were constrained by a set of algebraic locus
equations. Each solution of these locus equations is conjectured to correspond
to an excited state of the CFT. The appearance of singular vectors in the CFT
is telegraphed by the disappearance of one or more of the solutions of the locus
equations. While investigating the solutions of the locus equations, we noticed
that for particular values of the ODE parameters [ and M, one of the solutions

of the locus equations disappeared as three of the parameters z; converged on the

235



same point, but there were no singular vectors at these values of [ and M in the
corresponding CF'T. This discrepancy was resolved by constructing a more general
set of locus equations that were valid at these triple points and solving these for

the location of said triple points.

It would be interesting to extend the work in chapter [2] on the Agl) excited
states to more general Lie algebras. The derivation of the algebraic locus equations
in section hinged on a set of conditions due to Duistermaat [29] that ensured
single-valuedness of the solutions of a particular second-order ODE. To extend
the ODE/IM correspondence to the excited states of an integrable model with,
for example, AW symmetry, a similar set of single-valuedness condition for certain
r"-order ODEs will need to be found. These conditions would then induce a new
set of locus equations which would define a new family of ODEs corresponding to

the excited states of this integrable model.

After considering the ODE/IM correspondence for the excited states of a mass-
less integrable field theory (described by a conformal field theory) we then intro-
duced in chapterthe ODE/IM correspondence as applied to a massive integrable
field theory with A§” symmetry. This case was considered in [45], and we intro-
duced it as an indicative example of the general procedure we followed for the
other simply-laced Lie algebras. Beginning with the affine Toda field equations,
we defined an equivalent pair of systems of differential equations. The asymptotic
solutions of these systems in the small-|z| and large-|z| limits were used to define
@-functions which are the massive analogue to the spectral determinants encoun-
tered in the massless case. These QQ-functions satisfy certain functional relations
called quantum Wronskians, and a set of Bethe ansatz equations. These Bethe
ansatz equations, along with the asymptotic behaviour of the @-functions in the
limits Ref — 400, are used to construct a set of non-linear integral equations,

which themselves facilitated an expression for the logarithm of the @Q-functions.
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The coefficients of this expression expanded in the Ref — +oo limits were the
ground-state eigenvalues of the integrals of motion associated with the massive

integrable field theory.

After codifying Lie algebra notations and outlining some general methods for
analysing systems of differential equations in chapter , the massive ODE/IM
correspondence was defined for the simply-laced Lie algebras in chapters |5 and
@. In the A case we additionally constructed T-functions that were found to
satisfy fusion relations and T'Q-relations. In this way, features of the integrable
models were found to have analogues in the regime of classical partial differential

equations.

An immediate avenue for further research would be to extend the massive
ODE/IM correspondence to the affine Toda field theories described by the non-
simply-laced Lie algebras. This line of inquiry has begun to be explored, with
some results in [18] 38, [48]. Many of the techniques we have applied in this thesis
have depended on the Langlands self-duality of the simply-laced Lie algebras; the
algebras we have seen are invariant under sending roots to co-roots and vice versa.
Without this self-duality, the treatment of the non-simply-laced cases Lie algebras
is rather more subtle. It would be interesting to generalise the methods for finding

functional relations given in [40] to different non-simply-laced Lie algebras.
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