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Abstract

The ODE/IM correspondence is a connection between the properties of particu-

lar differential equations (ODEs) and certain quantum integrable models in two

dimensions (IMs). In its original form, the ODE/IM correspondence originally

connected the spectral determinants of a set of second-order ODEs and the ground-

state eigenvalues of Q-operators defined in a conformal field theory. The spectral

determinants for these ODEs and the Q-operator eigenvalues were found to satisfy

the same functional relations.

In this thesis, we are concerned with two generalisations of this correspondence.

The first of these is the extension of the correspondence to encompass the excited

states of the conformal field theory. The corresponding ODEs are defined by a

set of parameters zi which are constrained by a set of algebraic locus equations.

Studying the space of solutions of these equations, we find an apparent discrepancy

between the number of solutions of the locus equations and the number of states in

a particular level subspace of the conformal field theory, which is not explained by

the occurrence of singular vectors in the conformal field theory. This discrepancy

is resolved by considering a more general set of locus equations defined using a

result due to Duistermaat on the single-valuedness of solutions of second-order

ODEs of the correct form.

The second generalisation of the correspondence of interest is the connection

between linear systems of differential equations constructed as Lax pairs from the

affine Toda field theory equation of motion (for a given affine Lie algebra ĝ), and
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the ground-state eigenvalues of Q-operators associated with a massive integrable

model with symmetry generated by the Lie algebra ĝ. We consider the cases

where g is a simply-laced Lie algebra, deriving asymptotics of the solutions of the

associated linear systems, and from these we construct Q-functions, which encode

various properties of the massive IM in the functional relations they satisfy and

their asymptotic expansions. In the case of A
(1)
r , we also derive T -functions that

satisfy additional sets of functional relations which arise in the IMs.
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Chapter 1

Introduction

The ODE/IM correspondence [23, 37, 1] is an intriguing connection between two

seemingly disparate areas of mathematical physics: the study of the spectral prop-

erties of particular differential equations (ODEs), and certain quantum integrable

models in two dimensions (IMs). This connection first manifested in the form of

identical functional relations occurring in the study of particular ODEs and IMs.

We will now introduce these two halves of the ODE/IM correspondence, before

elaborating on the precise connection between them.

1.1 ODEs and eigenvalue problems

1.1.1 Beginnings: the anharmonic oscillator

The story of the ODE/IM correspondence begins with the study of the spec-

tral properties of the anharmonic oscillator, with dynamics determined by the
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Schrödinger equation with potential x2M :

−d
2ψ(x)

dx2
+ |x|2Mψ(x) = Eψ(x), (1.1.1)

whereM > 1 is a positive integer or half-integer. When (1.1.1) is considered on the

real line, a set of normalisable solutions {ψk(x)}∞k=1 exists with associated discrete

eigenvalues Ek. These eigenvalues Ek can be encoded into a spectral determinant

D(E), an entire function in the parameter E with the zeroes D(Ek) = 0. The

spectral determinant D(E) admits an infinite product expansion

D(E) = D(0)
∞∏
k=1

(
1− E

Ek

)
, (1.1.2)

which, due to the invariance of (1.1.1) under the parity symmetry x→ −x, further

factorises into a product of two spectral determinants D(E) = D+(E)D−(E),

where

D+(E) = D+(0)
∏
k even

(
1− E

Ek

)
, D−(E) = D−(0)

∏
k odd

(
1− E

Ek

)
. (1.1.3)

As a consequence of the parity symmetry, the solutions ψk(x) with k even (odd

respectively) are even (odd) functions. The spectral determinants D+(E), D−(E)

satisfy a particular functional relation [55, 56]:

e
iπ

2(M+1)D+(e
−iπ
M+1E)D−(e

iπ
M+1E)− e

−iπ
2(M+1)D+(e

iπ
M+1E)D−(e

−iπ
M+1E) = 2i, (1.1.4)

The first manifestation of the ODE/IM correspondence was the observation by

Dorey and Tateo in [25] that the functional relation (1.1.4) matched a functional

relation satisfied by the rescaled eigenvalues of Q-operators which arise in the

study of a particular class of IMs [7], conformal field theories. (We will discuss

these models further in section 1.2). These IMs are defined for M > 0, and
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this fact along with numerical investigations and the study of the solvable cases

M = 1/2, 1 (the Airy equation and the harmonic oscillator respectively) led the

authors of [25] to conjecture the extension of the ODE/IM correspondence to

eigenvalue problems of the form (1.1.1) with arbitrary M > 0.

1.1.2 Anharmonic oscillator with angular momentum term

Bazhanov, Lukyanov and Zamolodchikov [9] then extended the correspondence

by adding an angular momentum term to the anharmonic oscillator (1.1.1)

−d
2ψ(x)

dx2
+

(
x2M +

l(l + 1)

x2

)
ψ(x) = Eψ(x). (1.1.5)

The equation (1.1.5) is considered on the positive real axis, and is subject to

boundary conditions at x = 0; the solution ψ(x) is constrained to satisfy ψ(x) ∼

xl+1 or ψ(x) ∼ x−l in the neighbourhood of x = 0. The corresponding IM is a

natural generalisation of the IM related to the anharmonic oscillator (1.1.1). The

equation (1.1.5) is the prototype of all the other differential equations we will

consider in this thesis, so we now take the time to consider this equation more

carefully, defining its spectral determinants and functional relations satisfied by

them. In the rest of this section we follow closely the notation in section 5 of the

review paper [23], which itself is derived from the original papers [26, 9].

To define eigenvalue problems associated with (1.1.5) we stipulate boundary

conditions that solutions must satisfy at the regular singular point x = 0 and

at the irregular singular point at x = ∞. We will require solutions of (1.1.5) to

decay as x → ∞ along the positive real axis. Using the WKB approximation

[13] to analyse equation (1.1.5) in the large-x limit, we define a solution y(x,E, l)

of (1.1.5) which decays as x → ∞ along the positive real axis, with asymptotic

3



expansion in that limit given by

y(x,E, l) ∼ x−M/2

√
2i

exp

(
− xM+1

M + 1

)
as x→∞. (1.1.6)

The choice of normalisation in (1.1.6) simplifies the form of the spectral determi-

nants we will construct in this section.

In the neighbourhood of the regular singular point at x = 0, the behaviour of

any solution of (1.1.5) is a linear combination of xl+1 and x−l. Following [26], we

choose a solution ψ+(x,E, l) to satisfy the x→ 0 asymptotic

ψ+(x,E, l) ∼ xl+1, as x→ 0. (1.1.7)

Due to the remaining linearly independent asymptotic solution x−l, ψ+(x,E, l) is

only uniquely defined for l > −1/2. We extend the definition of ψ+(x,E, l) to all

l by exploiting the symmetry of (1.1.5) under the mapping l→ −1− l, and define

ψ−(x,E, l) = ψ+(x,E,−1− l) ∼ x−l, as x→ 0. (1.1.8)

The solutions ψ±(x,E, l) then form a basis of solutions of (1.1.5) in the small-x

limit for generic l. The basis also respects the symmetry l→ −1− l of (1.1.5).

The two solutions ψ±(x,E, l) define two separate eigenvalue problems; we

consider solutions ψ(x,E, l) of (1.1.5) with associated eigenvalues E±k which satisfy

ψ(x,E±k , l) ∼ ψ±(x,E±k , l) as x→ 0, (1.1.9)

ψ(x,E±k , l) ∼ y(x,E±k , l) as x→ +∞. (1.1.10)

4



To define spectral determinants D∓(E, l) associated with these eigenvalue prob-

lems, we first define the Wronskian of two functions of x

W [f, g] = f(x)g′(x)− f ′(x)g(x), (1.1.11)

which allows us to define a notion of linear independence for solutions of (1.1.5).

Specifically, two solutions f(x) and g(x) of (1.1.5) are linearly independent if and

only if their Wronskian is non-zero. If their Wronskian is zero, f(x) and g(x) are

effectively the same solution of (1.1.5), up to an overall normalisation constant.

The Wronskians

D∓(E, l) = W [y, ψ±](E, l), (1.1.12)

are therefore zero at the values of E where y(x,E, l) and ψ±(x,E, l) are propor-

tional to one another. At these values of E, there exists a global solution with the

required asymptotic behaviours, which is precisely the requirement of the eigen-

value problems (1.1.9)-(1.1.10). The functions D∓(E, l) are therefore spectral

determinants. We also note the identification D+(E,−l − 1) = D−(E, l) follows

from the definitions of the asymptotics (1.1.7)-(1.1.8).

1.1.3 Functional relations

In order to construct functional relations that the spectral determinants D∓(E)

satisfy, we first note the invariance of equation (1.1.5) under the transformation

x→ ω−kx, E → ω2kE, k ∈ Z, ω = e
2πi

2M+2 . (1.1.13)
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Given a solution χ(x,E, l) of (1.1.5), we define a set of rotated functions

χk(x,E, l) = ωk/2χ(ω−kx, ω2kE, l), (1.1.14)

which due to the invariance of (1.1.5) under the transformation (1.1.13), are all

solutions of (1.1.5). It is also convenient to define Stokes sectors Sk in the complex

x-plane

Sk =

∣∣∣∣arg(x)− 2πk

2M + 2

∣∣∣∣ < π

2M + 2
, (1.1.15)

and the rotations of the large-x asymptotic solution y(x,E, l) by

yk(x,E, l) = ωk/2y(ω−kx, ω2kE, l), (1.1.16)

where k ∈ Z. The solutions yk(x,E, l) are the most rapidly decaying solutions of

(1.1.5) as |x| → ∞ on the Stokes sector Sk. We also introduce rotations of the

small-x asymptotic solutions ψ±(x,E) by

ψ±k (x,E, l) = ωk/2ψ±(ω−kx, ω2kE, l). (1.1.17)

We then compute the Wronskians

W [ψ+
k , ψ

−
p ] = −(2l + 1)ω(k−p)(l+1/2), (1.1.18)

W [ψ+
k , ψ

+
p ] = W [ψ−k , ψ

−
p ] = 0, k, p ∈ Z,

and see that for generic l > −1/2, the solutions {ψ+
k , ψ

−
k } are linearly independent

solutions and thus form a basis for the solution space of (1.1.5). (The papers

[23, 26] briefly discusses the isolated values of l where this assumption breaks

down; from here on we assume we choose a value of l where this does not happen.)

The linear independence of ψ+
k , ψ

−
k implies that we may write a solution yk(x,E, l)

6



as a linear combination of ψ+
k and ψ−k

yk(x,E, l) = B−(E, l)ψ−k (x,E, l) +B+(E, l)ψ+
k (x,E, l), (1.1.19)

where B−(E, l) and B+(E, l) are independent of x. By taking Wronskians of

(1.1.19) with respect to ψ+
k and ψ−k respectively and using (1.1.16), (1.1.17) and

(1.1.12) we find

B±(E, l) = ∓D±(ω2kE, l)

2l + 1
. (1.1.20)

Using (1.1.18) and the definitions of the spectral determinants D±(E, l), we find

(2l + 1)yk(x,E, l) = D−(ω2kE, l)ψ−k (x,E, l)−D+(ω2kE, l)ψ+
k (x,E, l). (1.1.21)

To find a functional relation involving only D±(E, l), we consider (1.1.21) at k =

−1 and k = 0 and compute W [y−1, y0] to find:

(2l + 1)2W [y−1, y0] = −D−(ω−2E, l)D+(E, l)W [ψ−−1, ψ
+
0 ] (1.1.22)

−D+(ω−2E, l)D−(E, l)W [ψ+
−1, ψ

−
0 ].

From the large-x asymptotic expressions for y0 (1.1.6) and y−1 (computed by

acting on (1.1.6) with the transformation (1.1.13)), we find W [y−1, y0] = 1. Sub-

stituting this result into (1.1.22), shifting E → ωE and simplifying using (1.1.18),

we are left with the functional relation

ω−(l+1/2)D+(ω−1E, l)D−(ωE, l)− ωl+1/2D+(ωE, l)D−(ω−1E, l) = 2l + 1.

(1.1.23)

When l = 0, this functional reproduces (1.1.4) associated with the equation (1.1.1)

studied by Dorey and Tateo, up to the disparity between the constants on the

7



right-hand sides of (1.1.4) and (1.1.23). This difference arises from the choice of

normalisation in the large-x asymptotics (1.1.6). The functional relation (1.1.23)

also occurs in the related IM, and is called the quantum Wronskian in the IM

literature [7].

Other sets of functional relations occur in the associated IM, and these may

also be constructed using solutions of the differential equation (1.1.5). A partic-

ularly important specimen of functional relations are the so-called TQ-relations,

constructed in [26]. The construction begins with the expansion of the rotated

solution y−1(x,E, l) in the basis {y0, y1}:

y−1(x,E, l) = C(E, l)y0(x,E, l) + C̃(E, l)y1(x,E, l). (1.1.24)

(Any pair of rotated solutions {yn−1, yn} form a basis of solutions of (1.1.5) as

W [yn−1, yn] = 1.) Taking Wronskians of (1.1.24) with respect to y0 and y1 we find

C(E, l)y0(x,E, l) = y−1(x,E, l) + y1(x,E, l). (1.1.25)

We follow [23] and take Wronskians of (1.1.25) with respect to ψ±. We use the

result (5.12) in [23]

W [yk, ψ
±] = ω±(l+1/2)kW [y, ψ±](ω2kE, l) = ω±(l+1/2)kD∓(ω2kE, l), (1.1.26)

to find the so-called TQ-relations

C(E, l)D∓(E, l) = ω∓(l+1/2)D∓(ω−2E, l) + ω±(l+1/2)D∓(ω2E, l). (1.1.27)

The functions C(E, l) and D(E, l) correspond to the ground-state eigenvalues of

T- and Q-operators respectively in a conformal field theory, which is the origin

of the name TQ-relation. The precise nature of this correspondence will be given
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in section 1.2, where we discuss the related conformal field theory and the origin

of the T- and Q-operators.

The last class of functional relations we will encounter in this thesis are fusion

relations. For the differential equation (1.1.5) these are constructed by expanding

y−1 in the basis {yn−1, yn}:

y−1(x,E, l) = C
(n)
0 (E, l)yn−1(x,E, l) + C̃

(n)
0 (E, l)yn(x,E, l) (1.1.28)

The authors of [23] define

C(n)(E, l) = C
(n)
0 (ω1−nE, l) (1.1.29)

and show that they satisfy the fusion relations

C(n−1)(ω−1E)C(n−1)(ωE) = 1 + C(n)(E)C(n−2)(E). (1.1.30)

Besides the functional relations we have exhibited here, analogues of other objects

from conformal field theory may also be constructed from the spectral determi-

nants D±(E); in the following chapters we will encounter Bethe ansatz equations

satisfied by the zeroes of generalisations of the spectral determinants D±(E).

These Bethe ansatz equations, along with the asymptotic behaviour of the spec-

tral determinants, also determine non-linear integral equations which encode ther-

modynamic properties of the associated integrable models. In the next section,

we will elucidate these links more precisely, giving the precise correspondence

between the spectral determinants discussed in this section and the eigenvalues

of the T- and Q-operators associated with a particular family of conformal field

theories.
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1.2 Integrable models (IMs)

We now introduce the other half of the ODE/IM correspondence, which is com-

posed of various integrable quantum field theories. What does it mean for a

quantum field theory to be integrable? One of the characteristics of an integrable

field theory is the existence of infinitely many commuting local integrals of motion

in the theory. This is a direct generalisation of the notion of integrability in a

classical mechanical system. Such a system with n degrees of freedom is inte-

grable if there exists n integrals of motion; that is, n functions of the positions

and velocities of particles in the system that are constants throughout the motion

of the system. These n functions must also pairwise commute with respect to the

Poisson bracket. In the context of field theory, however, the number of degrees of

freedom is infinite, and so the process of ensuring that all such integrals of motion

are accounted for is somewhat more involved. Nevertheless, this general notion of

integrability will be the definition we will adhere to in this thesis. Other possible

definitions of quantum integrability are discussed in [14].

1.2.1 Baxter’s T and Q functions in conformal field theory

A prolific source of integrable field theories as defined above is the family of two-

dimensional conformal field theories [17]. These are two-dimensional field theories

in Euclidean spacetime, parametrised by independent light-cone coordinates z, z̄,

that are invariant under holomorphic/anti-holomorphic transformations of the

coordinates z → w(z), z̄ → w̄(z̄). In two dimensions, this symmetry group is

infinite-dimensional, generated by the family of transformations z → zp, z̄ → z̄q

for p, q ∈ Z. This large symmetry group constrains the class of possible field

theories with this symmetry enormously, and allows for the complete construction

of the possible states and operators in the theory.
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Conformal field theories arise in the physical description of integrable lattice

models at critical points, where the physical system undergoes a phase transition.

The prototypical example of such a lattice model is the two-dimensional Ising

model, described at its critical point by one of a particular family of conformal

field theories called minimal models [12]. A slight generalisation of this model, the

six-vertex ice-type model, defined on an N -by-N ′ lattice (see [23] and [4] for more

details) is most relevant to our current discussion. The partition function of this

model can be written [44, 52] in terms of a transfer matrix T, with the eigenvalues

of this transfer matrix determining the thermodynamic properties of the system at

the critical point. The eigenvalues are calculated using the Bethe ansatz technique;

a possible candidate for an eigenvector of T dependent on some parameters νi

is constructed, with the result that it is an eigenvector of T if and only if the

parameters νi satisfy Bethe ansatz equations. Once the eigenvalues of the transfer

matrix are found (usually in the limit N,N ′ → ∞), physical information about

the model can be extracted from them, and the model is considered solved.

In his treatment of the six-vertex model, Baxter introduced an additional

matrix Q and found it, along with the transfer matrix T satisfied a matrix equa-

tion that is the integrable lattice model analogue to the TQ-relation. Bazhanov,

Lukaynov and Zamolodchikov [6, 7, 8] subsequently demonstrated how to gener-

alise these T and Q matrices to operators in a conformal field theory, with central

charge

c = 1− 6(β − β−1)2, 0 < β < 1, (1.2.1)

and with an additional free ‘vacuum parameter’ p. The space of states of the

conformal field theory is inhabited by representations V∆ of the Virasoro algebra,
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generated by a highest weight state |∆〉, where the highest weight ∆ is given by

∆ =

(
p

β

)2

+
c− 1

24
(1.2.2)

The states in V∆ are generated by acting on |∆〉 with operators Ln, with n ≤ 0.

The operators Ln satisfy the commutation relations of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (1.2.3)

where [Lm, Ln] is the Lie bracket of the Virasoro algebra.

The authors of [6, 7, 8] define a transfer matrix operator T(s, p) : V∆ → V∆,

and a pair of other operators Q±(s, p) : V∆ → V∆, which were found to satisfy

the TQ-relations

T(s, p)Q±(s, p) = Q±(q2s, p) + Q±(q−2s, p), (1.2.4)

where q = eiπβ
2
. The vacuum state |∆〉 is an eigenstate of the T- and Q-operators,

and we define the corresponding ground state eigenvalues in the same way as the

review paper [23]:

T (s, p) = 〈∆|T(s, p) |∆〉 , (1.2.5)

Q±(s, p) = 〈∆| s∓P/β2

Q±(s, p) |∆〉 , (1.2.6)

where the operator P satisfies P |∆〉 = p |∆〉. Applying both sides of the operator

TQ-relation to the vacuum state |∆〉 we find the TQ-relations as satisfied by the

ground state eigenvalues of T (s, p) and Q±(s, p)

T (s, p)Q±(s, p) = e∓2πipQ±(q−2s, p) + e±2πipQ±(q2s, p). (1.2.7)
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This matches with the TQ-relations (1.1.27) we found earlier satisfied by spectral

determinants of (1.1.5). Specifically, setting

β2 =
1

M + 1
, p =

2l + 1

4M + 4
, (1.2.8)

and associating the functions T,Q± with C,D∓ respectively identifies these two

TQ-relations derived in the context of ordinary differential equations and inte-

grable field theory. To make this identification exact, the analytical properties

of C, D must match those of T and Q. In [26], it was shown that C(E, l) and

D−(E, l) = D+(E,−1− l) satisfy the following:

1. C(E, l) and D(E, l) are entire functions of E,

2. The zeroes of D−(E, l) are all real and, if l > −1/2, they are all positive,

3. The zeroes of C(E, l) are all real, and, if −1−M/2 < l < M/2, they are all

negative,

4. If M > 1, the large-E asymptotics of D(E, l) are given by

D−(E, l) ∼ exp
(a0

2
(−E)

M+1
2M

)
, as |E| → ∞, | arg(−E)| < π, (1.2.9)

where

a0 = −B
(
M + 1

2M
+

1

2
,−M + 1

2M

)
, where B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
, (1.2.10)

5.

D−(0, l) =
Γ(1 + 2l+1

2M+2
)

√
2πi

(2M + 2)
2l+1
2M+2

+ 1
2 , (1.2.11)
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6. D±(E, l) can be written as a well-defined product over its zeroes E±k :

D±(E, l) = D±(0, l)
∞∏
k=1

(
1− E

E±k

)
. (1.2.12)

The analogous properties satisfied by T (s, p) and Q+(s, p) given in [7] where 0 <

β2 < 1/2 are

1. T (s, p) and Q+(s, p) are entire functions of s,

2. The zeroes of Q+(s, p) are all real, and if 2p > β2, they are all strictly

positive,

3. The zeroes of T (s, p) are all real, and if |p| < 1/4, they are all negative,

4. The large-s asymptotics of Q±(s, p) are given by

Q+(s, p) ∼ exp

(
a0

β2
(−2)

1
2(1−β2) Γ(1− β2)

1
(1−β2)

)
, (1.2.13)

5. Q+(0, p) = 1,

6. Q±(s, p) can be written as a well-defined product over its zeroes s+
k :

Q±(s, p) =
∞∏
k=1

(
1− s

s±k

)
. (1.2.14)

With these properties satisfied by C,D− and T,Q+, the identification of the T

and Q± functions with the C and D∓ functions is precisely

Q±(s, p) =
D∓( s

v
, 2p
β2 − 1

2
)

D∓(0, 2p
β2 − 1

2
)
, (1.2.15)

T (s, p) = C

(
s

v
,

2p

β2
− 1

2

)
, (1.2.16)
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where M = β−2 − 1, and

v = (2M + 2)−
2M
M+1 Γ

(
M

M + 1

)−2

. (1.2.17)

The spectral determinants D±(E, l) exhibit other features that natively occur in

the study of integrable field theories. By setting E = ωE±k and E = ω−1E±k in

(1.1.23) and dividing the resulting expression, we see that the zeroes of E±k of

D±(E, l) satisfy Bethe ansatz equations

ω±(2l+1)D±(ω2E±k , l)

D±(ω2E±k , l)
= −1, (1.2.18)

which may be expanded using the product expansion (1.2.12) to yield an infinite

set of equations satisfied by the zeroes E±k

ω±(2l+1)

∞∏
j=1

E±k − ω2E±j
E±k − ω−2E±j

= −1. (1.2.19)

Bethe ansatz equations of this type, along with the properties satsfied by the zeroes

of D±(E) and the asymptotics of D±(E), may be encoded into non-linear integral

equations [16]. The asymptotic expansion of D±(E) (1.2.9) picks out a particular

solution of the BAEs, corresponding to the ground state |∆〉 of the conformal field

theory. The non-linear integral equation can be solved numerically for logD±(E),

and hence the spectrum of the eigenvalue problems associated with (1.1.5) may

be found numerically. Using the non-linear integral equation, logD±(E) may also

be expanded [24] as an asymptotic power series in E
M+1
2M and EM+1, and the

coefficients in this expansion are the ground-state eigenvalues of the integrals of

motion of the corresponding integrable field theory.

We have seen above how the authors of [9] and [26], building on [25], demon-

strated the ODE/IM correspondence between eigenvalue problems associated with
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the anharmonic oscillator with an angular momentum term (1.1.5) and the ground-

state eigenvalues of Q-operators associated with conformal field theory. The scope

of the ODE/IM correspondence has since been expanded to encompass links be-

tween more eigenvalue problems and other integrable field theories. In the next

section, we briefly survey some of these generalisations, introducing the two major

generalisations that will concern us for the rest of this thesis.

1.3 Generalisations of the ODE/IM correspon-

dence

Since the early papers [25, 9, 42], there have been large generalisations to the

ODE/IM correspondence, matching ever larger classes of eigenvalue problems to

other quantum integrable models. The example of the ODE/IM correspondence

we have studied in sections 1.1 and 1.2 is related to the Lie algebra A1 = su(2). It

is natural, then, to consider examples of the ODE/IM correspondence connected

with more elaborate Lie algebras. In [54, 22], the eigenvalue problem (1.1.5)

was considered with the x2M term replaced with x2M + αxM−1, where α is a

constant. Functional relations are constructed in a similar manner to the A1 case

considered in sections 1.1 and 1.2. The algebra related to this class of examples

of the ODE/IM correspondence is the Lie superalgebra sl(2|1).

The ODE/IM correspondence has also been extended beyond second-order

ordinary differential equations; in [27] a third-order differential equation was found

to be related to an integrable field theory related to the affine Lie algebra A
(2)
2 .

This work was then extended to differential equations related to the Lie algebra

A
(1)
r in [53, 21]. The spectral determinants of these differential equations were

found to satisfy functional relations related to an integrable field theory associated

with the Lie algebra Ar. Moreover, from these functional relations, the authors
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of [21] derived Ar Bethe ansatz equations and a set of related non-linear integral

equations, which matched non-linear integral equations derived in [58].

A natural generalisation, after considering the ODE/IM correspondence re-

lated to the Lie algebra Ar = su(r + 1), is to bring the other classical families

of simple Lie algebras Br = so(2r + 1), Cr = sp(2r) and Dr = so(2r) into the

fold. In [18, 19], Bethe ansatz equations for the classical Lie algebras were de-

rived from specially constructed pseudo-differential equations; these are equations

which incorporate an inverse derivative operator
(
d
dx

)−1
. Additionally, in [47, 48],

the ODE/IM correspondence was considered for arbitrary simple Lie algebras g

by studying a set of linear systems constructed from representations of Lie algebra

generators of the Langlands dual algebra g∨. The authors of [47, 48] demonstrate

the solutions of these linear systems satisfy the Ψ-system, from which they de-

rive quantum Wronskians and Bethe ansatz equations associated with the simple

Lie algebra g. These results were written in the language of affine opers in [34],

and the quantum Wronskians were rederived in that paper as a consequence of

relations between elements of representations of subalgebras of quantum affine

algebras Uq(ĝ), which contain the previously mentioned Q-operators and their

generalisations to general simple Lie algebras.

There are two other generalisations of the ODE/IM correspondence that are

particularly relevant to this thesis. The prototypical example of the ODE/IM

correspondence we have encountered in sections 1.1 and 1.2 related the spectral

determinants constructed from a second-order differential operator to the ground

state eigenvalues of the Q-operators. For each vacuum state |∆〉 there exists

an infinite family of excited states, constructed by acting on the vacuum state

with generators of the Virasoro algebra (1.2.3). Each of these excited states were

naturally expected to correspond to a particular member of a family of unique

second-order ODEs. This family of ODEs, first studied in [10], depend on a set
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of parameters {zi}Li=1 and are generalisations of the ODE (1.1.5):

−d
2ψ

dx2
+

(
l(l + 1)

x2
+ x2M − 2

d2

dx2

L∑
k=1

log
(
x2M+2 − zk

))
ψ = Eψ. (1.3.1)

In order for the spectral determinants associated with (1.3.1) (with the same

boundary conditions as (1.1.5)) to match the properties of the excited state eigen-

values of the Q-operators, the solutions of (1.3.1) must be single-valued at all

points of the complex x-plane except for x = 0 and x =∞. This requirement [29]

leads to the algebraic locus equations [10, 33]:

∑
j 6=k

zk(z
2
k + (1 + 2M)(3 +M)zkzj +M(1 + 2M)z2

j )

(zk − zj)3

− Mzk
4(1 +M)

+ ∆ = 0, zk distinct, k = 1, . . . , L. (1.3.2)

The ODEs (1.3.1) were denoted as ‘monstrous’ by the authors of [10] because

of their apparent lack of utility in ODE theory. However, equations of the form

(1.3.1) for M = 1 were studied in [32], where the zeroes of Wronskians of Hermite

polynomials related to the equations (1.3.1) were found to form patterns in the

complex-x plane corresponding to certain partitions of integers. In chapter 2

we will study the locus equations (1.3.2) and show how the presence of singular

vectors in the conformal field theory are telegraphed by the loss of one or more

solutions of the algebraic locus equations (1.3.2). We also solve a puzzle that

occurs at certain values of M and l, namely the loss of solutions of (1.3.2) but

without the presence of these singular vectors. This puzzle is resolved by a slight

generalisation of the assumptions used to derive the locus equations.

The second important generalisation was the more recent extension of the

ODE/IM correspondence to massive integrable field theory. All the examples of

the ODE/IM correspondence we have seen so far were associated with massless

18



integrable field theory; namely, various conformal field theories. The first indi-

cation of an extension to massive integrable field theory was given in [11], where

the authors suggested the study of certain partial differential equations in order

to extend the ODE/IM correspondence to massive integrable field theory. This

goal was first realised in [45], with the ODE side of the correspondence replaced

with a classical partial differential equation (in the case of A
(1)
1 , the massive sinh-

Gordon equation) expressible in terms of a Lax pair of linear equations. It is these

linear equations and the properties of their spectral determinants that contain in-

formation on the corresponding massive integrable field theory. We will review

the A
(1)
1 case of the massive ODE/IM correspondence in chapter 3, following the

calculations in [45]. We will begin with the massive sinh-Gordon equation, define

the related Q-functions, and the functional relations and Bethe ansatz equations

that they satisfy. We will also see the Re θ → ±∞ asymptotics of Q will also con-

tain the ground state eigenvalues of the integrals of motion of the related massive

integrable field theory.

The remainder of the thesis will consist of generalising the procedure given in

chapter 3 to systems of classical PDEs with more involved Lie algebra structure.

This was partly performed in [2, 37, 38], where the authors determined Bethe

ansatz equations satisfied by Q-functions in the conformal limit. The relevant

non-linear integral equations for the A
(1)
r case were also given in [41]. We will

generalise the analysis in these papers, following [45] to derive integrals of motion

for the integrable field theories associated with the simply-laced Lie algebras.

We begin with a brief overview of the relevant theory of Lie algebras in chap-

ter 4, which will serve to fix the notation we will use throughout the thesis. This

chapter will also demonstrate methods of converting systems of differential equa-

tions to pseudo-differential equations present in the literature [18, 19, 1], and will
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contain a generalisation of the WKB approxmiation [13] to systems of differen-

tial equations. Having established all the relevant prerequisites, chapter 5 will

extend the massive ODE/IM correspondence to the A
(1)
r case, building on results

in [2, 37, 38]. We consider the remaining simply-laced Lie algebras, namely the

family D
(1)
r and the exceptional Lie algebras E

(1)
6 , E

(1)
7 and E

(1)
8 in chapter 6.

Finally, in chapter 7 we close with some concluding remarks and an outlook for

future research.
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Chapter 2

Excited states of conformal field

theory and the Schrödinger

equation

2.1 Introduction

The prototypical example of the ODE/IM correspondence (1.1.5) we considered

in the introduction was a connection between eigenvalue problems defined by a

second-order Schrödinger-type differential equation and the ground state eigen-

values of Q-operators associated with a particular class of integrable models, con-

formal field theories. Such theories are also inhabited by excited states, which are

themselves eigenstates of the Q-operators. A natural generalisation of the exam-

ple of the ODE/IM correspondence in the introduction would be to find ODEs

that correspond to these excited states.

A family of ODEs (1.3.1) which corresponded to the excited states were found

in [10]. The authors of [10] constructed a set of differential equations dependent
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on a family of parameters {zi}Li=1, which are constrained by a set of algebraic

locus equations (1.3.2). Each solution of the locus equations was conjectured in

[10] to correspond to a particular state in the conformal field theory, although

the exact number of solutions of (1.3.2) for all values of the parameters M and l

is not known definitively. Numerical investigations have so far corroborated the

conjecture of [10], and the case when M = 1 has been explored in detail in our

paper to appear that will also include work in this chapter.

In this chapter, we begin in section 2.2 by introducing information about the

conformal field theories of interest and the spaces of states that define them. We

then introduce the relevant ODEs in section 2.3, whose potentials are constrained

by conditions on the asymptotics and the requirement of single-valuedness of the

solutions of the ODEs. These constraints imply a set of algebraic locus equations

that determine the possible ODEs. Lastly, in section 2.4 we consider the solutions

of the locus equations more closely, solving an apparent discrepancy between the

number of states at certain levels in the conformal field theory and the corre-

sponding admissible ODEs. A more general form of the locus equations than that

given in [10] will rectify this mismatch.

2.2 Conformal field theory

In this section we will briefly introduce the relevant concepts relating to conformal

field theory (CFT). For a more complete introduction to the subject we refer to

the standard text [17]. For our purposes, a CFT is a two-dimensional quantum

field theory, with a Hilbert space of states

H =
⊕

∆

V∆, (2.2.1)
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(here we have omitted the anti-holomorphic space of states H̄, populated by sub-

spaces V∆̄; the full Hilbert space is then H ⊗ H̄) where the subspaces V∆ are

representations of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.2.2)

generated by a highest weight state |∆〉. The constant parameter c is the central

charge of the CFT. A representation (or Verma module [17]) V∆ of the algebra

(2.2.2) is generated by a highest weight state |∆〉, defined by

L0 |∆〉 = ∆ |∆〉 , Ln |∆〉 = 0 for n > 1. (2.2.3)

The remaining states in V∆ are generated by the repeated action of the raising

operators L−n. Using the commutation relations (2.2.2) a general state in V∆

L−k1L−k2 . . . L−km |∆〉, (with k1, k2, . . . , km > 0) is also an eigenstate of L0:

L0 (L−k1L−k2 . . . L−km |∆〉) = (∆ + k1 + · · ·+ km)L−k1L−k2 . . . L−km |∆〉 . (2.2.4)

The representation V∆ then decomposes into a direct sum of subspaces V(L)
∆ ,

V∆ =
∞⊕
L=0

V(L)
∆ , L0V(L)

∆ = (∆ + L)V(L)
∆ . (2.2.5)

where L ∈ Z≥0 is the level of the subspace V(L)
∆ . The subspaces V(L)

∆ are spanned

by p(L) linearly independent states, where p(L) is the number of partitions of

the integer L. Labelling the states in V(L)
∆ by {|1〉 , |2〉 , . . . , |p(L)〉}, we define the

Kacs determinant

det
(
{〈i|j〉}i,j=1,...,p(L)

)
, (2.2.6)
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where, if |i〉 = L−i1 . . . L−im |∆〉 and |j〉 = L−j1 . . . L−jn |∆〉, then

〈i|j〉 = 〈∆|Lim . . . Li1L−j1 . . . L−jn |∆〉 . (2.2.7)

Using the Virasoro algebra (2.2.2) and the properties of the highest weight state

(2.2.3), the Kacs determinant for each level subspace V(L)
∆ may be found as a func-

tion of ∆ and c. Zeroes of the Kacs determinant indicate the presence of singular

vectors |i〉, which are orthogonal to all other states in V∆ and satisfy 〈i|i〉 = 0.

These singular vectors are the highest weight states of a sub-representation of

the Virasoro algebra, indicating the representation V∆ becomes reducible at these

points. The singular vectors should also arise naturally in the related set of differ-

ential equations, and the authors of [10] gave some evidence that this was indeed

the case.

The Q±-operators were constructed in [7, 8, 10] as a CFT analogue to Baxter’s

Q matrices used in the description of the statistical mechanics of six and eight-

vertex ice-type models [4]. These Q±-operators respect the decomposition of the

representation V∆ (2.2.5)

Q± : V(L)
∆ → V(L)

∆ . (2.2.8)

The highest weight state |∆〉 is an eigenvector of the Q-operators

Q±(s) |∆〉 = Q
(vac)
± (s) |∆〉 , (2.2.9)

where s is a complex parameter. It is the vacuum eigenvalues Q
(vac)
± (s) that cor-

respond to spectral determinants D±(E) associated with two eigenvalue problems
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concerning the Schrödinger equation

−d
2ψ(x)

dx2
+

(
x2M +

l(l + 1)

x2

)
ψ(x) = Eψ(x), M > 1, l > −1/2, (2.2.10)

on the positive real axis. The equation (2.2.10) has two solutions in the |x| → 0

limit

χ+(x,E, l) ∼ xl+1, χ−(x,E, l) ∼ x−l |x| → 0, (2.2.11)

and a unique decaying solution on the positive real axis as |x| → ∞:

y(x) ∼ x−M/2 exp

(
− xM+1

M + 1

)
. (2.2.12)

We define two eigenvalue problems by searching for eigenvalues E = E∓k that

produce solutions ψ(x,E±k , l) satisfying

ψ(x,E±k , l) ∼ χ±(x) as |x| → 0, (2.2.13)

ψ(x,E±k , l) ∼ y(x) as |x| → ∞. (2.2.14)

These eigenvalues E±k then define the spectral determinants

D∓(E) = D∓(0)
∞∏
k=1

(
1− E

E∓k

)
. (2.2.15)

The key result of the example of the ODE/IM correspondence we considered in

the introduction was the relation between the spectral determinants D∓(E) and

the vacuum eigenvalues of the Q-operators in the following way [10]:

Q
(vac)
± (s) = (−s)±

2l+1
4 D∓(νs), (2.2.16)
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where the constant ν is given by

ν =

(
2
√
πΓ(3

2
+ 1

2M
)

Γ(1 + 1
2M

)

)
. (2.2.17)

The constants M and l are related to the central charge c (defined in (1.2.1)) and

the highest weight ∆ (1.2.2) in the following way

c = 1− 6M2

M + 1
, ∆ =

(2l + 1)2 − 4M2

16(M + 1)
. (2.2.18)

The result of [10] was to extend the correspondence between the vacuum eigenval-

ues of the Q-operators and the spectral determinants of the Schrödinger equation

(2.2.10) to excited eigenvalues of the Q-operators, corresponding to eigenstates in

V(L)
∆ with L > 0. The corresponding differential equations are of the form

−d
2ψ

dx2
+ V (x)ψ = Eψ, (2.2.19)

where the so-called monstrous [10] potentials V (x) are given by

V (x) =
l(l + 1)

x2
+ x2M − 2

d2

dx2

L∑
k=1

log
(
x2M+2 − zk

)
, (2.2.20)

and the constants {zk}Lk=1 (with zj 6= zk) satisfy the algebraic locus equations

(1.3.2).

In the next section we will derive the monstrous potentials (2.2.20) and the

locus equations (1.3.2) constraining the parameters {zk}Lk=1, from constraints on

the asymptotic and single-valuedness properties of the potentials. A similar cal-

culation is performed in sections 4.4-4.6 of [31]: in that paper the authors work

with ŝl2-opers which are equivalent to second-order Schrödinger operators.
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2.3 Algebraic locus equations

We begin with the general Schrödinger equation

−d
2ψ

dx2
+ V (x)ψ = Eψ, (2.3.1)

and we note [10] that eigenvalue problems of this form (with the boundary con-

ditions (2.2.13) and (2.2.14)) correspond to eigenvalues of the Q-operators if and

only if the potential V (x) satisfies the following properties:

1.

V (ωx) = ω−2V (x), where ω = eiπ/(M+1),

(this symmetry ensures that if χ(x,E, l) is a solution of (2.3.1), rotated

functions of the form (1.1.14) are also solutions of (2.3.1)),

2.

V (x) ∼ l(l + 1)

x2
as |x| → 0,

3.

V (x) ∼ x2M as |x| → ∞,

4. For any value of E all solutions ψ(x,E, l) of (2.3.1) are single-valued except

at x = 0 and x =∞. By this, we mean for any solution ψ(x,E, l) and any

x′ ∈ C \ {0}, ψ(x,E, l) has a convergent Laurent series in some sufficiently

small punctured neighbourhood of x′.

With these conditions, the spectral determinants associated with (2.3.1) satisfy the

same analytic properties and functional relations as the corresponding eigenvalues
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of Q±(s). To implement these conditions, we rewrite V (x) as

V (x) =
l(l + 1)

x2
+ x2M + v(x). (2.3.2)

Property 1 implies

v(x) = x−2F (x2M+2), (2.3.3)

where F is a rational function of x2M+2. Properties 2 and 3 constrain the function

F further, mandating that

F (0) = 0, |F (∞)| <∞. (2.3.4)

These constraints on F along with Liouville’s theorem imply that there exist poles

at finite values of x. Following appendix B of [10], consider the Laurent expansion

of V (x) about a given pole x = xk,p

V (x) =
∞∑

m=−∞

(x− xk,p)mVm, (2.3.5)

where we will see the double index xk,p is a convenient labelling for the poles

of V (x). The Laurent expansion (2.3.5) is constrained by Property 4 above; to

ensure the single-valuedness of the solution ψ(x,E, l) we invoke a result due to

Duistermaat and Grünbaum (Proposition 3.3 in [29]), which states ψ(x,E, l) is

single-valued about x = xk,p if and only if the coefficients of the Laurent expansion

of V (x) satisfy the following conditions:

Vn = 0, where n < −2, (2.3.6)

V−2 = νk,p(νk,p + 1), where νk,p ∈ Z≥0, (2.3.7)

V2k−1 = 0, where k = 0, 1, . . . , νk,p. (2.3.8)
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For now, we consider the simplest non-trivial case considered in [10], where all

the poles have νk,p = 1. We will see that there are particular values of L, l and

M where this assumption breaks down, but for generic values of L, l and M the

following computation of the locus equations (1.3.2) will be valid. We will discuss

the cases where the locus equations break down in section 2.4.

The boundedness of F in the limit |x| → ∞ implies that the potential V (x)

may be written as a sum over Laurent expansions about its poles x = xk,p:

V (x) =
l(l + 1)

x2
+ x2M +

∑
k, p

2

(x− xk,p)2
(2.3.9)

where the constraint V−1 = 0 in (2.3.8) implies the poles at x = xk,p are double

poles. The symmetry constraint imposed by Property 1 also constrains the poles

to be (2M + 2)th roots of some constants zk, so that

xk,p = z
1/(2M+2)
k e2πip/(2M+2), p = 0, 1, . . . , 2M + 1. (2.3.10)

This pattern for the roots is only valid for rational M . The final locus equations

are valid for all M by continuity from rational M . The sum in (2.3.9) then takes

the form

V (x) =
l(l + 1)

x2
+ x2M +

L∑
k=1

2M+1∑
p=0

2

(x− xk,p)2
, (2.3.11)

which we rewrite as a sum of second derivatives of logarithms

V (x) =
l(l + 1)

x2
+ x2M − 2

d2

dx2

L∑
k=1

2M+1∑
p=0

log(x− xk,p), (2.3.12)
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which simplifies using (2.3.10)

V (x) =
l(l + 1)

x2
+ x2M − 2

d2

dx2

L∑
k=1

log
(
x2M+2 − zk

)
, (2.3.13)

which matches the form of the monstrous potential given in [10]. With this general

form of the potential, we now enforce the additional constraints on the Laurent

expansion of (2.3.13) at its poles, given by (2.3.8). Specifically, for the case νk,p = 1

we consider here, we require the component V1 in the Laurent expansion (2.3.5)

about each of the poles of V (x) to be zero.

Without loss of generality, let us consider the Laurent expansion of V (x) about

a pole x = w, where w2M+2 = zk. To aid in the calculation of the coefficient V1

of (x−w) in this Laurent expansion, we rewrite V (x) in a more convenient form,

separating the contributions from the roots of zk from the other roots

V (x) =
l(l + 1)

x2
+ x2M − 2

d2

dx2

2M+1∑
q=0

log
(
x− we

2πiq
2M+2

)
− 2

d2

dx2

∑
j 6=k

log
(
x2M+2 − zj

)
(2.3.14)

The term proportional to (x− w) in the Laurent expansion of V (x) is given by

−2l(l + 1)

w3
+ 2Mw2M−1 − 2

2M+1∑
q=1

d3

dx3
log
(
x− we

2πiq
2M+2

)∣∣∣∣
x=w

(2.3.15)

− 2
∑
j 6=k

d3

dx3
log
(
x2M+2 − zj

)∣∣∣∣
x=w

.

We set (2.3.15) equal to zero and evaluate the derivatives

− 2l(l + 1)

w3
+ 2Mw2M−1 − 4

w3

2M+1∑
q=1

1

(1− e
2πiq

2M+2 )3

− 8(1 +M)

w3

∑
j 6=k

a(zj, zk,M)

(zk − zj)3
= 0, (2.3.16)
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where a(zj, zk,M) is the polynomial

a(zj, zk,M) = (2 + 2M)2z3
k − 3(1 + 2M)(1 +M)zk(zk − zj)

+M(1 + 2M)zk(zk − zj)2. (2.3.17)

The sum of roots of unity in (2.3.16) is given by [36]:

2M+1∑
q=1

1

(1− e
2πiq

2M+2 )3
=

1− 4M2

8
. (2.3.18)

After algebraic manipulation, (2.3.16) then simplifies to the locus equations

∑
j 6=k

zk(z
2
k + (1 + 2M)(3 +M)zkzj +M(1 + 2M)z2

j )

(zk − zj)3
− Mzk

4(1 +M)
+ ∆ = 0.

(2.3.19)

The solutions (z1, z2, . . . , zL) of the locus equations (1.3.2) up to permutations of zk

define monstrous potentials (2.2.20) which themselves define eigenvalue problems

with their associated Schrödinger equations. For a given level L and for generic l

and M , there should then be p(L) solutions of the locus equations, corresponding

to the p(L) states in the subspace V(L)
∆ . For certain values of M and l, the Kacs

determinant (2.2.6) will be zero, indicating the presence of a singular vector in

the space V(L)
∆ . As an example, we compute the Kacs determinant of V(2)

∆ =

{L−2 |∆〉 , L2
−1 |∆〉} using the Virasoro commutation relations (2.2.2):

∣∣∣∣∣∣〈∆|L2L−2 |∆〉 〈∆|L2
1L−2 |∆〉

〈∆|L2L
2
−1 |∆〉 〈∆|L2

1L
2
−1 |∆〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣4∆ + c/2 6∆

6∆ 4∆(2∆ + 1)

∣∣∣∣∣∣ (2.3.20)

= 2∆(16∆2 + 2(4 + c)∆ + c− 18).
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We set this Kacs determinant equal to zero and see that, for

2∆(16∆2 + 2(4 + c)∆ + c− 18) = 0, c = 1− 6M2

M + 1
, (2.3.21)

=⇒ ∆ = 0,
1− 2M

4(1 +M)
, or

1 + 3M

4
. (2.3.22)

These roots match the expressions in [17] for the roots of the Kac determinant for

the level subspace V(L)
∆ ,

∆r,s

(
1

M

)
=

(rM + (r − s))2 −M2

4(M + 1)
, r, s ≥ 1, rs ≤ L. (2.3.23)

We find

∆1,1

(
1

M

)
= 0, ∆1,2

(
1

M

)
=

1− 2M

4(1 +M)
, ∆2,1

(
1

M

)
=

1 + 3M

4
. (2.3.24)

If ∆ matches one of these roots, a singular vector arises in the associated CFT. At

these roots, one of the solutions (z1, z2) of the associated locus equations (2.3.19)

disappears as one or both of the zi goes to zero. The number of solutions of the

locus equations should then match the number of non-singular vectors in V∆
L .

For L ≥ 3, however, there exist points in the (l,M) parameter space where

the number of solutions of the locus equations (1.3.2) reduces, and yet the Kacs

determinant is non-zero, indicating the absence of any singular vectors. Numerical

investigation of the locus equations uncovered this peculiar behaviour at the point

L = 3, l = 3/4, M = 1. As l → 3/4, one of the solutions (z1, z2, z3) converges on

the point (−15/16,−15/16,−15/16), with the solution disappearing entirely at

the point l = 3/4. The locus equations cannot describe this solution, as they were

derived with the assumption that the constants zj were pairwise distinct, which

obviously fails to be true at this so called ‘triple point’. In the next section, we

will investigate the nature of these triple points and present a method of locating
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them.

2.4 Solutions of the locus equations

The algebraic locus equations in the form (1.3.2) cease to have validity at points in

the (l,M) parameter space where any of the solutions zj fail to be distinct. How

then do we handle solutions like the triple point at L = 3, l = 3/4, M = 1? This

problem is resolved by considering the result (2.3.7)-(2.3.8) due to Duistermaat

and Grünbaum again; recall that we chose the integers νk,p = 1, following the

authors of [10]. We may, in principle, relax this condition, although (2.3.8) implies

we must now ensure the cubic and other terms in the Laurent expansion must be

zero as well. For general νk,p we then have a set of locus equations, which must

be simultaneously solved to locate the points where the solutions zj coalesce for

a given l and M .

To demonstrate this, we consider the potential

V (x) =
l(l + 1)

x2
+ x2M − 6

d2

dx2
log
(
x2M+2 − z1

)
. (2.4.1)

This potential has poles at x = x1,p = z
1/(2M+2)
1 e2πip/(2M+2), and the Laurent

expansion of V (x) at each of these poles has dominant behaviour

V (x) ∼ 6

(x− x1,p)2
+ . . . as x→ x1,p, (2.4.2)

i.e. we have set ν1,p = 2 in (2.3.7). This choice of ν1,p means that about any

pole x = w, the terms proportional to both (x − w) and (x − w)3 must be zero.

We therefore expand V (x) about an arbitrary pole x = w, with w2M+2 = z1, and

consider the linear and cubic terms of the Laurent expansion.
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Setting the linear term of the Laurent expansion of V (x) equal to zero yields

−2l(l + 1) + 2Mz1 − 12
2M+1∑
q=1

1

(1− e
2πiq

2M+2 )
= 0. (2.4.3)

We recall the sum of roots of unity in (2.4.3) was evaluated in (2.3.18), so that

−2l(l + 1) + 2Mz1 −
3(1− 4M2)

2
= 0, (2.4.4)

is the constraint on z1, l,M from the constraint V1 = 0 in (2.3.8).

The cubic term set equal to zero yields

−24l(l + 1) + 2M(2M − 1)(2M − 2)z1 − 144
2M+1∑
q=1

1

(1− e
2πiq

2M+2 )5
= 0, (2.4.5)

with the sum of roots of unity in this expression given by

2M+1∑
q=1

1

(1− e
2πiq

2M+2 )5
=

(2M − 3)(2M + 1)(4M2 + 20M − 3)

288
. (2.4.6)

The cubic term then yields an additional constraint on l, M and z1 which must

be satisfied to allow the presence of a triple point

−48l(l + 1) + 4M(2M − 1)(2M − 2)z1

− (2M − 3)(2M + 1)(4M2 + 20M − 3) = 0. (2.4.7)

The presence of two constraints on (l,M, z) indicates that triple points will only

occur at certain values of l and M . As a check on our calculation, we substitute

l = 3/4 and M = 1 into the equations (2.4.4) and (2.4.7). The second of these
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reduces to zero; the first of these yields a linear equation for z1

15

8
+ 2z1 = 0 (2.4.8)

which proves the existence of a triple point at z1 = −15/16 for l = 3/4 and

M = 1. We have therefore demonstrated that if the potential (2.3.13) can be

rewritten in the form (2.4.1) (i.e. if z1 = z2 = z3) the locus equations (2.3.19) are

no longer sufficient to determine the values of the zi. In the case of these triple

points, the cubic term of the Laurent expansion potential V (x) about x = w,

with w2M+2 = z1 must be set equal to zero, satisfying Duistermaat’s condition for

single-valuedness (2.3.8).

One may of course consider more general potentials of the form

V (x) =
l(l + 1)

x2
+ x2M −

L∑
k=1

νk(νk + 1)
d2

dx2
log
(
x2M+2 − zk

)
, (2.4.9)

where νk is an integer ≥ 1. For νk ≥ 1, higher-order terms of odd power in the

Laurent expansion of the potential must be zero, as decreed by (2.3.8). Consider-

ing more general potentials of the form (2.4.9) allows the general analysis of points

where the solutions of the original algebraic locus equations (1.3.2) coincide.

As a final note, we have yet to find an example of a ‘sextuple point’, or other

more complicated examples. In principle, points where ν(ν+1)/2 solutions (where

ν = 0, 1, 2, . . . ) of the original locus equations (1.3.2) coalesce are possible. How-

ever, we have already seen the presence of triple points constrains the allowed

values of l and M by imposing an additional equation l, M and the zk must sat-

isfy. Higher order points such as the sextuple point can only occur at specific

values of l, M and zk.
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We illustrate a sextuple point by considering the potential

V (x) =
l(l + 1)

x2
+ x2M − 12

d2

dx2
log
(
x2M+2 − z1

)
(2.4.10)

where ν1,p = 3 for p = 0, . . . , 2M − 1. For solutions of the associated Schrödinger

eigenvalue problem to be single-valued about a pole x = w (w2M+2 = z1), we

require the linear, cubic, and quintic terms of the Laurent expansion of (2.4.10)

about x = w to vanish. This leads to three equations in l, M and z1:

2M(6M + z1)− 2l(l + 1)− 3 = 0, (2.4.11)

9 + 24l(l + 1) + 8M(−6 +M(−13 + 2M(4 +M))) (2.4.12)

−4(M − 1)M(2M − 1)z1 = 0,

−135− 1440l(l + 1) + 16M(144 + 120M − 428M2 − 27M3 + 48M4 (2.4.13)

+8M5 + (−2 +M)(−1 +M)(−3 + 2M)(−1 + 2M)z1) = 0.

Exploring the solution space of these coupled polynomial equations, we have found

only two solutions that satisfy both l ≥ −1/2 and M > 0. They are

l = 0.214905263947...,M = 0.185911063538..., z1 = 8.35728635815... (2.4.14)

l = 14.56857388290...,M = 3.263779478909..., z1 = 50.3705538334... (2.4.15)

(2.4.11) and the reality of l and M (due to the inequalities on l and M) enforces

the reality of z1. Numerical investigation of the original locus equations (1.3.2)

indicates as predicted the coalescence of the six points zi in one of the eleven

solutions of (1.3.2) near these points.

Points where νk = 4 (where 10 solutions of the locus equations coincide) would

require the coefficients of (x−w), (x−w)3, (x−w)5 and (x−w)7 in the Laurent

expansion of V (x) about x = w. This will induce an overdetermined system of
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L+ 3 equations in L+ 2 parameters l, M and z1, . . . , zL. Numerical investigation

of the locus equations associated with the potential

V (x) =
l(l + 1)

x2
+ x2M − 20

d2

dx2
log
(
x2M+2 − z1

)
, (2.4.16)

revealed no solutions l, M , z1 which satisfied the four equations in the space

l ≥ −1/2, M > 0.

2.5 Conclusions

In this section we have studied the algebraic locus equations given in [10]. We have

given a derivation of these equations, and solved an apparent mismatch between

the number of states in a given level L of the state space of a conformal field theory

at certain values of the central charge c and highest weight ∆ and the number of

solutions of the locus equations (2.3.19). This problem was resolved by considering

higher-order terms in the Laurent expansion of the potential V (x), setting them

equal to zero as mandated by Duistermaat’s conditions (2.3.8). This generates a

set of generalised locus equations, and the solutions of the locus equations in this

more general setting then account for all the states in the conformal field theory.

In principle, the study of excited eigenstates of the Q-operators defined on

A
(1)
1 conformal field theories should extend to all the other field theories we

have considered in this thesis. Particularly, the excited eigenstates conformal

field theories with A
(1)
r Lie algebra symmetry should be straightforward to match

with more exotic differential operators, perhaps depending on sets of parameters

z
(1)
k1
, z

(2)
k2
, . . . z

(r)
kr

, with 1 ≤ ki ≤ p(Li) and with {L1, . . . , Lr} being a set of r in-

tegers. To perform this generalisation, however, we first require a result similar

to Duistermaat and Grünbaum’s result in [29], guaranteeing single-valuedness of
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solutions of differential operators of the form

−d
r+1ψ

dxr+1
+ a1(x)

dr−1ψ

dxr−1
+ · · ·+ +an−2(x)

dψ

dx
+ V (x)ψ(x) = Eψ(x) (2.5.1)

about poles in the coefficients a1(x), . . . , an−2(x), V (x). With this result and a

suitable generalisation of the asymptotic and symmetry properties given in section

[10], it will be possible to derive a class of suitable monstrous (even more so)

potentials and to relate their spectral determinants to eigenvalues of the associated

Qi-operators in the A
(1)
r conformal field theory.
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Chapter 3

The massive ODE/IM

correspondence

3.1 Introduction

The examples of the ODE/IM correspondence we have seen thus far have related

the spectral determinants of second-order Schrödinger-type differential operators

to the eigenvalues of Q-operators that appear in certain conformal field theories.

We now consider another major generalisation of the ODE/IM correspondence,

first indicated in [11] and applied by Lukyanov and Zamolodchikov in [45], which

extends the ODE/IM correspondence to massive integrable field theories. The

story starts with classical partial differential equations (PDEs), with a Lax pair

representation defining associated systems of differential equations. Q-functions

are then defined for these systems, and it is these that contain information on the

ground state eigenvalues of the Q-operators in the massive integrable field theory.

In later chapters, we will explore this massive ODE/IM correspondence related

to classical PDEs related to the simply-laced Lie algebras. We first describe the
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smallest non-trivial simple Lie algebra A
(1)
1 , as in [45], but introducing notation

that will generalise easily to the cases involving larger Lie algebras. In section 3.2

we define the relevant PDE, the modified sinh-Gordon equation, and its Lax pair

representation, a pair of systems of differential equations. The solutions of these

systems define Q-functions, which are the objects of study in section 3.4. The

Q-functions satisfy functional relations and Bethe ansatz equations related to the

integrable field theory, and from these, we define a non-linear integral equation

and use this equation in section 3.5 to derive expressions for the integrals of motion

of the associated massive integrable field theory.

The above procedure, which will provide the framework for our study of more

general Lie algebras, is summarised in Figure 1. We will not consider the T -

functions for the A
(1)
1 case in this chapter; this topic will be covered, along with

the T -functions for the A
(1)
r case, in chapter 5. The Ψ-system is also unnecessary

for the A
(1)
1 case, as the quantum Wronskian is sufficient in this case to derive the

A
(1)
1 Bethe ansatz equations.

3.2 The modified sinh-Gordon equation

3.2.1 The Lax pair representation

Lukyanov and Zamolodchikov [45] began with the modified sinh-Gordon equation,

given by

β∂z∂z̄φ−m2e2βφ + p(z)p(z̄)m2e−2βφ = 0, (3.2.1)
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Classical PDE (affine
Toda field theory

equations of motion)

Lax pair

Small-|z| and
large-|z| asymptotics

Q-functions Quantum Wronskians

Ψ-system
Bethe
ansatz

equations
T -functions

Non-linear
integral

equations

Integrals
of motion

Figure 1: Diagram outlining the procedure that will be followed for the study of the
massive ODE/IM correspondence for the simply-laced Lie algebras.
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where φ(z, z̄) is a scalar field in the independent complex coordinates z and z̄, β

is a dimensionless coupling constant, m is a mass parameter, and

p(z) = z2M − s2M , (3.2.2)

where M > 0, and s > 0. The constant β can be removed by rescaling φ→ φ/β,

but we will retain it to match notation which matches that found in [37, 38] which

generalises more readily to larger Lie algebras. We are also solely concerned with

real solutions to (3.2.1). We will therefore treat z and z̄ as independent complex

variables, but we will only consider the solutions of (3.2.1) on the subset of C2

where z̄ = z∗.

The result of [45] was to connect the modified sinh-Gordon equation (3.2.1)

to the quantum sine- and sinh-Gordon massive integrable field theories. They

began this process by recasting (3.2.1) in the form of a Lax pair. Following

[45], we define the generators {H,E±} of the Lie algebra A1 = su(2), and the

commutation relations that define that algebra

[H,E±] = ±2E±, [E+, E−] = H. (3.2.3)

We then define the Lax pair

(∂z + A)Ψ = 0, (3.2.4)

(∂z̄ + Ā)Ψ = 0, (3.2.5)

where A and Ā are given by

A =
β

2
∂zφH +meθeβφE+ +meθp(z)e−βφE−, (3.2.6)

Ā = −β
2
∂z̄φH +me−θeβφE− +me−θp(z̄)e−βφE+. (3.2.7)
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The modified sinh-Gordon equation (3.2.1) may then be recovered from the com-

patibility condition

∂zĀ− ∂z̄A+ [A, Ā] = 0, (3.2.8)

using the commutation relations (3.2.3).

In this chapter, we work with the fundamental representation of A1

H =

1 0

0 −1

 , E+ =

0 1

0 0

 , E− =

0 0

1 0

 . (3.2.9)

(In [45], H = σ3, E± = σ±.) In the representation (3.2.9), the Lax pair (3.2.4)-

(3.2.5) form two two-dimensional systems of differential equations. The solutions

Ψ of these systems of equations in the |z| → 0 and |z| → ∞ limits will allow

us to define Q-functions which will encode information on the related massive

integrable field theory.

The presence of the exponential terms in the matrices A and Ā make a con-

sideration of the asymptotics of the Lax pair equations (3.2.4)-(3.2.5) more com-

plicated, and make a connection to the eigenvalue problem (1.1.5) discussed in

the Introduction more opaque. To remedy this, we define, for an arbitrary 2-by-2

matrix U(z, z̄), a gauge transformation

A→ UAU−1 + U∂zU
−1, (3.2.10)

Ā→ UĀU−1 + U∂z̄U
−1, Ψ→ UΨ.

Using ∂(UU−1) = U∂U−1 +∂UU−1 = 0, (where ∂ = ∂z or ∂z̄) it is straightforward

to show that the Lax pair equations (3.2.4)-(3.2.5) and the compatibility condition

(3.2.8) are invariant under the gauge transformation (3.2.10). By an astute choice

of gauge it is then possible to remove the exponential terms from A or Ā, although
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this is not possible for both simultaneously.

We demonstrate the utility of this gauge transformation by setting U =

e−βφH/2, where the exponential of an operator X is defined in the standard way

as a power series

eX =
∞∑
k=0

Xk

k!
. (3.2.11)

Gauge transforming A using this matrix U has the effect of removing the incon-

venient exponential terms from A:

A→ Ã = β∂zφH +meθE+ +meθp(z)E− (3.2.12)

where the derivation of (3.2.12) uses the identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + . . . . (3.2.13)

Under this gauge transformation, Ā becomes

Ā→ ˜̄A = me−θe2βφE− +me−θp(z̄)e−2βφE+, (3.2.14)

retaining the exponential terms. If we wish to consider the linear system (∂z̄ +

Ā)Ψ = 0 with the exponential terms removed, we must perform another gauge

transformation on the original Lax pair (3.2.4)-(3.2.5) with U = eβφH/2. We will

mostly work with the choice of gauge defined by U = e−βφH/2, removing the

exponential terms from the holomorphic equation (3.2.4). This choice of gauge

does not affect the final outcome of our calculations; it is merely helpful to consider

the asymptotics of a simpler form of one of the Lax pair equations and then undo

the gauge transformation to find the asymptotic solutions of the original equations.
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It is also useful to introduce the Symanzik rotation [37] Ωk for k ∈ Z:

Ωk : z → zeπik/M , z̄ → z̄e−πik/M , θ → θ − πik

M
, s→ seπik/M . (3.2.15)

Under a Symanzik rotation, the matrices A and Ā are rotated in the complex

plane

A→ e−πik/MA, Ā→ eπik/M Ā. (3.2.16)

The derivative operators ∂z and ∂z̄ have the same respective behaviours under a

Symanzik rotation and so the linear systems (3.2.4)-(3.2.5) are invariant under

Symanzik rotation. Any Symanzik rotation Ωk[Ψ] of the linear systems is also

a solution of the linear systems. We will often exploit this property, defining

solutions of the linear systems (3.2.4)-(3.2.5) that respect the Symanzik rotation.

3.2.2 Solutions of the modified sinh-Gordon equation

The gauge-transformed linear system (∂z + Ã)Ψ̃ = 0, written out using the fun-

damental representation (3.2.9), is given by

∂z + β∂zφ meθ

meθp(z) ∂z − β∂zφ

ψ̃1

ψ̃2

 = 0, (3.2.17)

where Ψ̃ = (ψ̃1, ψ̃2)T . To analyse the asymptotics of the solutions of the system of

equations (3.2.17) we must first define a particular solution φ(z, z̄) of the modified

sinh-Gordon equation (3.2.1). Following [37] we choose a solution φ(z, z̄) which

satisfies the following conditions:

• φ(z, z̄) should be real and finite everywhere, except at |z| = 0.
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• Periodicity

φ(zeπik/M , z̄e−πik/M) = φ(z, z̄), k ∈ Z, (3.2.18)

• Large-|z| asymptotics:

φ(z, z̄) =
M

2β
log(zz̄) + o(1) as |z| → ∞, (3.2.19)

• Small-|z| asymptotics (where g ∈ R):

φ(z, z̄) = g log zz̄ +O(1) as |z| → 0. (3.2.20)

The constant g is not entirely free; it is constrained by the requirement that g log zz̄

is the dominant behaviour for φ in the small-|z| limit. To see this, substitute the

ansatz

φ(z, z̄) = g log zz̄ + f(z, z̄) (3.2.21)

into the modified sinh-Gordon equation (3.2.1). The result is an equation for

f(z, z̄)

zz̄∂z∂z̄f =
2m2

β
(zz̄)1+2βge2βf − 2m2

β
(z2M − s2M)(z̄2M − s2M)(zz̄)1−2βge−2βf .

(3.2.22)

f(z, z̄) is then expanded as a power series in powers of (zz̄)1±2βg, z2M , z̄2M :

f(z, z̄) =
∞∑

a0,a1,b,c=0

F (a0, a1, b, c)(zz̄)a0(1−2βg)+a1(1+2βg)z2bM z̄2cM , (3.2.23)
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where F (a0, a1, b, c) are constants fixed by the substitution of (3.2.23) into the

modified sinh-Gordon equation (3.2.1). Our desired solution φmust satisfy (3.2.20)

in the small-|z| limit, implying that f(z, z̄) = O(1) in that limit and that all pow-

ers of z and z̄ in (3.2.23) must be positive. This leads to the constraints on

g

1− 2βg > 0, 1 + 2βg > 0 =⇒ |βg| < 1/2. (3.2.24)

Setting βg = l, this constraint matches the constraint |l| < 1/2 in [45].

With the solution of the modified sinh-Gordon equation (3.2.1) fixed, we now

consider the asymptotic solutions of the Lax pair in the small-|z| and large-|z|

limits. These will allow us to define the Q-functions which contain information

on the quantum sine-Gordon massive integrable field theory.

3.3 Asymptotics of the linear systems

We first consider the gauge-transformed linear system (∂z + Ã)Ψ̃ = 0, as given by

equation (3.2.17). Having chosen a solution φ(z, z̄) of the modified sinh-Gordon

equation, we now consider the linear system (3.2.17) in the small-|z| and large-|z|

limits.

3.3.1 Small-|z| asymptotics of the linear systems

Substituting the small-|z| behaviour of φ into the linear system (3.2.17), we find

 ∂z + βg
z

meθ

meθp(z) ∂z − βg
z

ψ̃1

ψ̃2

 = 0, (3.3.1)
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a system of equations solely in z. We then take the |z| → 0 limit; in this limit,

the off-diagonal terms become irrelevant, and the system becomes

∂z + βg
z

0

0 ∂z − βg
z

ψ̃1

ψ̃2

 = 0. (3.3.2)

This system is a decoupled pair of equations, and has the pair of solutions

c0

z−βg
0

 , c1

 0

zβg

 , (3.3.3)

where c0 and c1 are arbitrary constants. We then define two solutions Ξ̃0 and Ξ̃1

of (∂z + Ã)Ψ̃ = 0, defined by their asymptotics in the small-|z| limit

Ξ̃0 ∼ c0

z−βg
0

 , Ξ̃1 ∼ c1

 0

zβg

 , as |z| → 0. (3.3.4)

To find the small-|z| solutions of the original linear system (3.2.4), we recall that

solutions to the original linear system can be recovered from gauge transformed

solutions by applying U−1 = eβφH/2 to the gauge transformed solutions Ψ = U−1Ψ̃.

In the small-|z| limit,

U−1 = eβ(g log zz̄)H/2 =

(zz̄)βg/2 0

0 (zz̄)−βg/2

 , (3.3.5)

where we have used the definition of the matrix exponential (3.2.11). The small-|z|
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solutions of the original linear system are then

Ξ0 = U−1Ξ̃0 ∼ c0

e−iβgϕ
0

 , as |z| → 0, (3.3.6)

Ξ1 = U−1Ξ̃1 ∼ c1

 0

eiβgϕ

 , as |z| → 0, (3.3.7)

where we use polar coordinates z = |z|eiϕ. We are free to choose the arbitrary

constants c0 and c1; we choose c0 = e−θβg and c1 = eθβg. This has the effect of

ensuring the solutions Ξi are invariant under Symanzik rotation (3.2.15). The

small-|z| solutions to the linear system (∂z + A)Ψ = 0 are then given by

Ξ0 ∼

e−(θ+iϕ)βg

0

 , Ξ1 ∼

 0

e(θ+iϕ)βg

 , as |z| → 0. (3.3.8)

The solutions Ξ0, Ξ1 form a basis of the solution space of the Lax pair (3.2.4)-

(3.2.5) in the neighbourhood of |z| = 0. In this way, any solution Ψ can be

expressed as a linear combination of these two solutions. The same solutions

would have been found if we began with the conjugate linear problem (∂z̄+Ā)Ψ̃ =

0, applied the gauge transformation (3.2.10) with U = eβφH/2 to remove the

exponential terms, analysed the small-|z| asymptotics, and then reverted the gauge

transformation in that limit. The gauge transformation was merely an aid to our

calculations.
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3.3.2 Large-|z| asymptotics of the linear systems

To consider the large-|z| behaviour of the linear system (3.2.17), we substitute the

large-|z| behaviour of φ defined in (3.2.19), with the result

 ∂z + M
2z

meθ

meθp(z) ∂z − M
2z

ψ̃1

ψ̃2

 = 0. (3.3.9)

We consider this system of equations in the large-|z| limit. The O(1/z) terms

become irrelevant in this limit, and the resulting system can be collected into a

single equation for ψ̃1

−∂2
z ψ̃1 +m2e2θp(z)ψ̃1 = 0. (3.3.10)

Solving this equation for ψ̃1 in the large-|z| limit allows us to compute ψ̃2 and

hence a solution to the linear system in the large-|z| limit. To do this, we apply

the WKB approximation [13] to (3.3.10), with the result

ψ̃1 ∼ b+p(z)−1/4 exp

(
meθ

∫ z√
p(t) dt

)
+ b−p(z)−1/4 exp

(
−meθ

∫ z√
p(t) dt

)
,

(3.3.11)

in the large-|z| limit, and here b± are arbitrary functions of z̄. We require our

large-|z| solution Ψ̃ of the linear system (3.2.17) to have the most rapid decay on

the positive real axis of all the possible solutions (we call this the subdominant

solution of the linear system). To achieve this, we set b+ = 0 in (3.3.11), and we

find

ψ̃1 ∼ b−z
−M/2 exp

(
−meθ z

M+1

M + 1

)
, as |z| → ∞, (3.3.12)
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where, as we are working in the large-|z| limit, we approximate p(z) ∼ z2M , which

allows us to perform the integral over
√
p(t) in (3.3.11).

The expression (3.3.12), along with the linear system (3.2.17) in the large-|z|

limit, defines a large-|z| solution for the gauge-transformed linear system (∂z +

Ã)Ψ̃ = 0,

Ψ̃ ∼ b−

z−M/2

zM/2

 exp

(
−meθ z

M+1

M + 1

)
, as |z| → ∞, (3.3.13)

which is then mapped into a large-|z| solution of the original linear system (3.2.4)

by applying the inverse U−1 = eβφH/2 of the gauge transformation matrix U

Ψ = U−1Ψ̃ ∼

(zz̄)M/4 0

0 (zz̄)−M/4

 Ψ̃, (3.3.14)

∼ b−

(zz̄)M/4 0

0 (zz̄)−M/4

z−M/2

zM/2

 exp

(
−meθ z

M+1

M + 1

)
, (3.3.15)

∼ b−

(z/z̄)−M/4

(z/z̄)M/4

 exp

(
−meθ z

M+1

M + 1

)
, as |z| → ∞. (3.3.16)

The constant b− is chosen by recalling that Ψ must also satisfy the conjugate linear

problem (3.2.5) in the large-|z| limit. Repeating the above large-|z| analysis on

the conjugate linear problem we arrive at a similar expression for Ψ

Ψ ∼ b̄−

(z/z̄)−M/4

(z/z̄)M/4

 exp

(
−me−θ z̄

M+1

M + 1

)
, as |z| → ∞, (3.3.17)

where b̄− is an arbitrary function of z. The two expressions for Ψ are reconciled
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by choosing b−, b̄− to be

b− = exp

(
−meθ z̄

M+1

M + 1

)
, b̄− = exp

(
−me−θ z

M+1

M + 1

)
, (3.3.18)

so that in polar coordinates z = |z|eiϕ, z̄ = |z|e−iϕ, the large-|z| solution Ψ is

written

Ψ ∼

e−iMϕ/2

eiMϕ/2

 exp

(
−2m|z|M+1

M + 1
cosh(θ + i(M + 1)ϕ)

)
, as |z| → ∞, (3.3.19)

which matches the large-|z| solution for the A1 linear system in [2].

3.3.3 Taking the conformal limit

We have calculated small-|z| and large-|z| asymptotics for the solution Ψ of the Lax

pair (3.2.4)-(3.2.5). What remains unclear, however, is the connection between

these systems of differential equations and the eigenvalue problem (1.1.5) that was

discussed in section 1.1.2. In this section we explain this connection, and thus

define the massive analogues of the spectral determinants D±(E, l) we discussed

previously.

We begin with the gauge-transformed linear system (∂z + Ã)Ψ̃ = 0,

∂z + β∂zφ meθ

meθp(z) ∂z − β∂zφ

ψ̃1

ψ̃2

 = 0, (3.3.20)

and rewrite it as a single equation in ψ̃1

(∂z − β∂zφ)(∂z + β∂zφ)ψ̃1 −m2e2θp(z)ψ̃1 = 0. (3.3.21)

We then send z̄ → 0, (treating z and z̄ as independent complex coordinates) which
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allows us to replace φ with its small-|z| asymptotics (3.2.20),

(
∂z −

βg

z

)(
∂z +

βg

z

)
ψ̃1 −m2e2θ(z2M − s2M)ψ̃1 = 0. (3.3.22)

We then take the conformal limit z → 0, θ → +∞, with

x = z(meθ)
1

M+1 , E = s2M(meθ)
2M
M+1 (3.3.23)

held finite. With βg = l, the differential equation becomes

−∂2
xψ̃1 +

(
x2M +

l(l + 1)

x2

)
ψ̃1 = Eψ̃1, (3.3.24)

which is exactly the same differential equation as (1.1.5). We recall that the

subdominant large-|x| solution y(x,E, l) was written as a linear combination of

the two small-|x| solutions ψ±(x,E, l)

y(x,E, l) =
D−(E, l)

2l + 1
ψ−(x,E, l)− D+(E, l)

2l + 1
ψ+(x,E, l) (3.3.25)

The functions y and ψ± are simply the conformal limit counterparts to the first

components of the solutions Ψ̃, Ξ̃0 and Ξ̃1 of the gauge-transformed linear sys-

tem (3.2.17). We then define the massive analogues of the spectral determinants

D±(E, l) as functions Q0(θ, g) and Q1(θ, g)

Ψ̃ = Q0(θ, g)Ξ̃0 +Q1(θ, g)Ξ̃1. (3.3.26)

The choice of gauge does not affect this definition of the Q-functions. Multiplying

both sides of (3.3.26) by U−1 = eβφH/2 we see that

Ψ = Q0(θ, g)Ξ0 +Q1(θ, g)Ξ1. (3.3.27)
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The Q-functions are written in terms of the solutions Ψ, Ξ0 and Ξ1 by taking

particular determinants of (3.3.27)

Q0(θ, g) = det(Ψ,Ξ1), Q1(θ, g) = det(Ξ0,Ψ), (3.3.28)

where we have used det(Ξ0,Ξ1) = 1, derived from the asymptotics of Ξi in the

small-|z| limit. The process of writing Q-functions in terms of determinants in the

massive case is equivalent to the process of taking Wronskians in the massless case

to define the spectral determinants D±(E, l) (1.1.12). To see this, we write the

general solution of the linear system (3.3.20) in terms of a solution ψ̃1 of (3.3.21):

Ψ̃1 =

 ψ̃1

−(meθ)−1(∂z + β∂zφ)ψ̃1

 (3.3.29)

We then take the determinant of two such solutions Ψ̃1 and Ψ̃2

det
(

Ψ̃1, Ψ̃2

)
= −(meθ)−1

∣∣∣∣∣∣ ψ̃1 ψ̃2

(∂z + β∂zφ)ψ̃1 (∂z + β∂zφ)ψ̃2

∣∣∣∣∣∣ (3.3.30)

= −(meθ)−1W [ψ̃1, ψ̃2], (3.3.31)

which demonstrates the equivalence, up to rescaling, of taking determinants in the

massive case and taking Wronskians in the massless case to define the relevant

spectral determinants.

From (3.3.28) and the relationship with the massless spectral determinants

(1.1.12) it is clear that the Q-functions are indeed spectral determinants of the

linear systems (3.2.4)-(3.2.5); points θk where Qi(θk, g) = 0 are precisely the points

where Ψ and Ξi coincide and become the same solution up to normalisation. We

therefore consider the linear systems (3.2.4)-(3.2.5) as eigenvalue problems with

boundary conditions given by the asymptotic solutions Ψ, Ξi. The properties of
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these Q-functions are our main concern for the rest of this chapter.

3.4 Q-functions

We now demonstrate some useful properties of the Q-functions. We will see that

the Q-functions satisfy a quasiperiodicity property and a particular functional

relation known as the quantum Wronskian. We also give an expression for the

asymptotics for Q0(θ, g) in the limits Re θ → ±∞, following [21, 45].

In the calculations that follow it will often be convenient to omit the g-

dependence of the Q-functions, with Qi(θ, g) = Qi(θ).

3.4.1 Quasiperiodicity

The Q-functions satisfy the following quasiperiodicity properties

Q0

(
θ +

iπ(M + 1)

M

)
= e−iπγQ0 (θ) , (3.4.1)

Q1

(
θ +

iπ(M + 1)

M

)
= eiπγQ1 (θ) , (3.4.2)

where γ = −(βg + 1/2). To prove this, we define the matrix

S = eiπH/2 =

eiπ/2 0

0 e−iπ/2

 , (3.4.3)
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and firstly prove the following identities

SΞ0

(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
= e−iπγ Ξ0 (ϕ| θ) , (3.4.4)

SΞ1

(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
= eiπγ Ξ1 (ϕ| θ) , (3.4.5)

SΨ
(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
= Ψ (ϕ| θ) . (3.4.6)

Proof of (3.4.4)-(3.4.5)

Using the small-|z| asymptotics (3.3.8) and the definition of S,

SΞ0

(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
∼

eiπ/2 0

0 e−iπ/2

1

0

 e−(θ+iϕ−iπ)βg, (3.4.7)

∼ e−iπγ Ξ0 (ϕ| θ) , as |z| → 0. (3.4.8)

This identity holds away from z = 0 as S is a constant matrix, unaffected by the

limit. (3.4.5) follows similarly.

Proof of (3.4.6)

We evaluate the left-hand side of (3.4.6) in the large-|z| limit

SΨ
(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
(3.4.9)

∼

eiπ/2 0

0 e−iπ/2

e−iπ/2e−iMϕ/2

eiπ/2eiMϕ/2

 exp

(
−2m|z|M+1

M + 1
cosh(θ + i(M + 1)ϕ)

)

∼ Ψ (ϕ| θ) , as |z| → ∞. (3.4.10)

Similarly to the small-|z| identities, this asymptotics matching is enough for the

identity (3.4.6) to hold everywhere, as S is a constant matrix.
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Proof of the quasiperiodicity properties

We now use the identities (3.4.4)-(3.4.6) to demonstrate the quasiperiodicity prop-

erties of Q0 and Q1. We begin with the determinant definition of Q0,

Q0 (θ) = det (Ψ (ϕ |θ) ,Ξ1 (ϕ |θ)) , (3.4.11)

and invoke the identities (3.4.5) and (3.4.6),

Q0 (θ) = det

(
SΨ

(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
, e−iπγSΞ1

(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

))
(3.4.12)

We extract S from the determinant in (3.4.12) by exploiting the linear algebra

identity

det(Sv1, . . . , Svn) = detS det(v1, . . . , vn), (3.4.13)

which is satisfied for any matrix S and collection of vectors {v1, . . . , vn} ⊂ Rn.

Using detS = 1, equation (3.4.12) then reduces to

Q0 (θ) = e−iπγ det

(
Ψ
(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

)
,Ξ1

(
ϕ+

π

M

∣∣∣ θ − iπ

M
− iπ

))
,

(3.4.14)

= e−iπγQ0

(
θ − iπ

M
− iπ

)
. (3.4.15)

where we have used the independence of the Q-functions from ϕ, which follows

from their definition (3.3.27), which must hold at any values of z, z̄. Shifting

θ → θ + iπ(M+1)
M

, we find the quasiperiodicity property (3.4.1). The analogous

identity (3.4.2) for Q1 follows similarly.
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3.4.2 Asymptotics of Q0(θ) as Re θ → ±∞

For calculations later in this chapter, it will be useful to have available an asymp-

totic expression for Q0(θ) in the limits Re θ → ±∞, similar to the asymptotics

given in equation (3.12) of [45]. We begin by considering the asymptotics of Q0(θ)

in the limit Re θ → +∞, and recall the definition of Q0(θ) as the determinant

Q0(θ) = det
(

Ψ̃, Ξ̃1

)
, (3.4.16)

with Ψ̃ being the subdominant solution of the gauge transformed linear system

(∂z + Ã)Ψ̃ = 0 in the large-|z| limit, and Ξ̃1 is one of the solutions of that linear

system in the small-|z| limit. To find the large-θ asymptotics of Q0(θ), we consider

the general solution of (∂z+Ã)Ψ̃ = 0 in the large-θ limit. We recast (∂z+Ã)Ψ̃ = 0

into an equation for the top component ψ̃1 of Ψ̃

(∂z − β∂zφ)(∂z + β∂zφ)ψ̃1 −m2e2θp(z)ψ̃1 = 0. (3.4.17)

We use the WKB approximation [13] to consider this equation in the θ → +∞

limit; the general solution in that limit is

ψ̃1 ∼ b+p(z)−1/4 exp

(
meθ

∫ z√
p(t) dt

)
+ b−p(z)−1/4 exp

(
−meθ

∫ z√
p(t) dt

)
,

(3.4.18)

which induces the vector solution for the linear system Ψ̃

Ψ̃ ∼ b−

p(z)−1/4

p(z)1/4

 exp

(
−meθ

∫ z√
p(t) dt

)
(3.4.19)

+ b+

p(z)−1/4

−p(z)1/4

 exp

(
meθ

∫ z√
p(t) dt

)
, as Re θ → +∞.
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We require this solution to be compatible with the required subdominant be-

haviour for Ψ̃ in the large-|z| limit

Ψ̃ ∼

z−M/2

zM/2

 exp

(
−me

θzM+1

M + 1

)
, as |z| → ∞, (3.4.20)

and so set b+ = 0 and redefine b− so that Ψ̃ becomes

Ψ̃ ∼ b−

p(z)−1/4

p(z)1/4

 exp

(
meθ

∫ ∞
z

{
(t2M − s2M)1/2 − tM

}
dt− meθzM+1

M + 1

)
,

as Re θ → +∞.

(3.4.21)

In the small-|z| limit, Ψ̃ must be a linear combination of Ξ̃0 and Ξ̃1, as these

solutions span the solution space in that limit. Furthermore, from the asymptotics

of Ξ̃0 and Ξ̃1 in the small-|z| limit (3.3.4) imply that the constants c0, c1 in the

redefinition

b+

p(z)−1/4

p(z)1/4

 = c0 Ξ̃0 + c1 Ξ̃1, (3.4.22)

are independent of θ. Therefore, in the small-|z| limit,

Ψ̃ ∼ exp

(
meθ

∫ ∞
0

{
(t2M − s2M)1/2 − tM

}
dt

)
(c0 Ξ̃0 + c1 Ξ̃1), as Re θ →∞,

(3.4.23)

which combined with the determinant definition of Q0(θ), gives an asymptotic

expression for Q0(θ) in the limit Re θ → +∞,

Q0(θ) ∼ c0 exp

(
meθ

∫ ∞
0

{
(t2M − s2M)1/2 − tM

}
dt

)
. (3.4.24)
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It remains to evaluate the integral in (3.4.24); firstly reparameterise s = s̃(−1)
M+1
2M ,

so that s2M = −s̃2M , and then change variables t = s̃u. The integral becomes

∫ ∞
0

{
(t2M − s2M)1/2 − tM

}
dt = (−1)

M+1
2M sM+1

∫ ∞
0

{
(u2M + 1)1/2 − uM

}
du.

(3.4.25)

A more general form of the integral in (3.4.25) was given in [21, 23]:

τ(h,M) =

∫ ∞
0

{
(uhM + 1)1/h − uM

}
du =

Γ(1 + 1
hM

)Γ(− 1
h
− 1

hM
)

Γ( 1
h
)

. (3.4.26)

Q0(θ) then has the asymptotic expression

Q0(θ) ∼ c0 exp
(
sM+1meθ(−1)

M+1
2M τ(2,M)

)
, as Re θ → +∞. (3.4.27)

We must ensure this asymptotic expression is compatible with the quasiperiodicity

relation (3.4.1) satisfied by Q0(θ). Following [45], define H± to be the strips in

the complex θ-plane satisfying

H+ : 0 < Im θ <
π(M + 1)

M
, H− : −π(M + 1)

M
< Im θ < 0. (3.4.28)

Then, rescaling the constant c0 appropriately,

Q0(θ) ∼ c0e
∓iπγ/2 exp

(
sM+1meθ∓

iπ(M+1)
2M τ(2,M)

)
, θ ∈ H±. (3.4.29)

An exactly analogous argument to the above leads to the Q1(θ) asymptotics in

the same limit

Q1(θ) ∼ c1e
±iπγ/2 exp

(
sM+1meθ∓

iπ(M+1)
2M τ(2,M)

)
, θ ∈ H±. (3.4.30)
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We will also require the asymptotics for Q0(θ) in the limit Re θ → −∞. To recover

these, we begin with the gauge transformed conjugate linear system (∂z̄+ ˜̄A)Ψ̃ = 0

and recast this system of equations as a single equation in the second component

ψ̃2 of Ψ̃

(∂z̄ + β∂z̄φ)(∂z̄ − β∂z̄φ)ψ̃2 −m2e−2θp(z̄)ψ̃2 = 0. (3.4.31)

The same procedure as for the Re θ → +∞ limit is then followed; equation (3.4.31)

is considered in the limit Re θ → −∞, and its solutions induce a particular solution

of (∂z̄+ ˜̄A)Ψ̃ = 0 in that limit. The limit z̄ → 0 is then taken, and the determinant

definition of Q0(θ) (3.4.16) is used to determine the asymptotics of Q(θ) as Re θ →

−∞:

Q0(θ) ∼ c0e
∓iπγ/2 exp

(
sM+1me−θ±

iπ(M+1)
2M τ(2,M)

)
, θ ∈ H±. (3.4.32)

3.4.3 The quantum Wronskian

The Q-functions Q0(θ) and Q1(θ) also satisfy a particular functional relation,

known as a quantum Wronskian [7, 45]. This relation follows naturally from the

definition of the Q-functions (3.3.26) and the Symanzik rotation Ωk, given by

(3.2.15). Under a Symanzik rotation Ωk, (3.3.27) becomes

Ωk[Ψ̃] = Q0

(
θ − iπk

M

)
Ξ̃0 +Q1

(
θ − iπk

M

)
Ξ̃1, (3.4.33)

where we have used the invariance of the small-|z| solutions Ξ̃i under Symanzik

rotation. We then take the determinant of Ψ̃ with Ω1[Ψ̃], and use det
(

Ξ̃0, Ξ̃1

)
= 1
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and the antisymmetry of determinants to find

det
(

Ψ̃,Ω1[Ψ̃]
)

= Q0 (θ)Q1

(
θ − iπ

M

)
−Q0

(
θ − iπ

M

)
Q1 (θ) . (3.4.34)

As the Q-functions were defined as z, z̄-independent coefficients, we may take the

large-|z| limit of (3.4.34) without affecting the Q-functions. In that limit, the

rotated solutions Ωk[Ψ̃] are given by

Ωk[Ψ̃] ∼ e−iπk/2

 z−M/2

eiπkzM/2

 exp

(
−eiπkme

θzM+1

M + 1

)
, as |z| → ∞. (3.4.35)

Using standard properties of determinants, the large-|z| limit of the determinant

det
(

Ψ̃,Ω1[Ψ̃]
)

is then given by

det
(

Ψ̃,Ω1[Ψ̃]
)
∼ e−iπ/2

∣∣∣∣∣∣1 1

1 eiπ

∣∣∣∣∣∣ = 2i. (3.4.36)

Taking the large-|z| limit of (3.4.34) and substituting (3.4.36), we find the quan-

tum Wronskian

Q0 (θ)Q1

(
θ − iπ

M

)
−Q0

(
θ − iπ

M

)
Q1 (θ) = 2i. (3.4.37)

This quantum Wronskian almost exactly matches the quantum Wronskian found

in [45]; the absence of the factor − cos πl is due to Lukyanov and Zamolodchikov’s

different choice for the normalisation and ordering of their small-|z| solutions Ψ±.

Our choice of normalisation will generalise more readily to the cases of the massive

ODE/IM correspondence for more elaborate Lie algebras.
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3.4.4 Bethe ansatz equations

A useful algebraic relation satisfied by Q0(θ) follows immediately from the quan-

tum Wronskian (3.4.37). Define the zeroes θj, j ∈ Z of Q0(θ) satisfying

Q0(θj) = 0. (3.4.38)

We then substitute θ = θj ± iπ
M

into the quantum Wronskian (3.4.37), giving two

relations

Q0

(
θj +

iπ

M

)
Q1 (θj) = 2i, (3.4.39)

Q0

(
θj −

iπ

M

)
Q1 (θj) = −2i. (3.4.40)

We divide (3.4.39) by (3.4.40) and find a set of Bethe ansatz equations (BAEs)

Q0

(
θj + iπ

M

)
Q0

(
θj − iπ

M

) = −1, (3.4.41)

which match the Bethe ansatz equations found in [45]. (In [45] the authors com-

bine Q0 and Q1 into a single Q-function and derive identical BAEs for that new

function. It is currently unclear how to generalise their method for the cases of

more elaborate Lie algebras; we will only require BAEs for the first Q-function,

Q0.) For later calculations it is useful to ‘twist’ these Bethe ansatz equations using

the quasiperiodicity relation (3.4.1):

e−2iπγQ (θj − iπ)

Q (θj + iπ)
= −1. (3.4.42)

where we set Q0(θ) = Q(θ) as we will mainly be concerned with this single Q-

function for the remainder of the chapter. These new twisted BAEs more closely

resemble the BAEs found in [21], for the case of the Lie algebra A1 = su(2). The
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resemblance is not exact, as the twists in the BAEs in that paper are powers of

ω = eiπ/(M+1), rather than e−iπ. To pass between the two sets of BAEs, set

Q(θ) = A(1)(s2Me
2Mθ
M+1 )e−

γMθ
M+1 , E = s2Me

2Mθ
M+1 , (3.4.43)

with the BAEs (3.4.42) becoming

ω2γ A
(1)(ω2MEj)

A(1)(ω−2MEj)
= −1, ω = e

2πi
2M+2 , Ej = s2Me

2M
M+1

θj , (3.4.44)

matching the BAEs in [21], with n = 2, γ = β1 and C11 = 2.

The BAEs in the original twisted form (3.4.42) will be the most useful out

of all these various forms of BAEs in the calculation of an equivalent non-linear

integral equation (NLIE). We will then derive an expression for logQ, and the

asymptotic expansion of that expression will contain the ground-state eigenvalues

of the integrals of motion of the quantum sine-Gordon integrable field theory.

3.5 The non-linear integral equation and inte-

grals of motion

3.5.1 The non-linear integral equation

We begin our construction of the non-linear integral equation for the massive

integrable field theory related to su(2), following the construction given in [21] for

the case of the massless ODE/IM correspondence for the Lie algebras su(n). This

construction is the first step in deriving expressions for the integrals of motion of
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the integrable field theory. We begin by defining the function

a(θ) = e−2iπγQ(θ − iπ)

Q(θ + iπ)
, (3.5.1)

which due to the BAEs (3.4.42), satisfy a(θj) = −1. We then expand Q(θ)-

functions in (3.5.1) using an infinite product expansion. A standard result for

defining an infinite product expansion for an entire function is the Hadamard

factorisation theorem [15]. We recall the order of an entire function f(z) is defined

to be the infimum of the set of numbers a such that |f(z)| < exp(|z|a) for |z|

sufficiently large. The Hadamard factorisation theorem then states that if f has

finite order a, then f(z) can be written in the form

f(z) = zmeg(z)
∏
j

(
1− z

zj

)
, (3.5.2)

where g(z) is a polynomial. From the Re θ → ±∞ asymptotics (3.4.29)-(3.4.32)

of Q(θ) and the Hadamard factorisation theorem, an infinite product expansion

of Q(θ) over its zeroes θj exists for M > 1, given by

Q(θ) = Q(0)e−
γMθ
M+1

∞∏
j=0

(
1− e

2M
M+1

(θ−θj)
)(

1− e−
2M
M+1

(θ−θ−j−1)
)
, (3.5.3)

where the prefactor e−
γMθ
M+1 is inserted to ensure the infinite product expansion of

Q(θ) = Q0(θ) satisfies the quasiperiodicity relation (3.4.1). We then substitute

(3.5.3) into the definition of a(θ) (3.5.1)

a(θ) = e−
2iπγ
M+1

∞∏
j=0

(
1− e

2M
M+1

(θ−θj)e−
2iπM
M+1

)(
1− e−

2M
M+1

(θ−θ−j−1)e
2iπM
M+1

)
(

1− e
2M
M+1

(θ−θj)e
2iπM
M+1

)(
1− e−

2M
M+1

(θ−θ−j−1)e−
2iπM
M+1

) . (3.5.4)

= e−
2iπγ
M+1

∞∏
j=−∞

1− e
2M
M+1

(θ−θj−iπ)

1− e
2M
M+1

(θ−θj+iπ)
. (3.5.5)
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We then take the logarithm of (3.5.5),

log a(θ) =
−2iπγ

M + 1
+

∞∑
j=−∞

F (θ − θj), (3.5.6)

where

F (θ) = log

(
1− e

2M
M+1

(θ−iπ)

1− e
2M
M+1

(θ+iπ)

)
. (3.5.7)

To progress, we now must consider the locations of the zeroes θj. As in [21], where

the BAEs related to the ground state of a massless integrable field theory related

to the Lie algebra su(n) were considered, we work with the assumption that all

the zeroes are along the real axis of the complex θ-plane. We then use Cauchy’s

integral theorem to rewrite the infinite sum over the zeroes θj as a contour integral

∞∑
j=−∞

F (θ − θj) =

∫
ξ

dθ′

2iπ
F (θ − θ′)∂θ′ log(1 + a(θ′)), (3.5.8)

where ξ is a contour in the θ′-plane consisting of two parallel lines enclosing the

real axis, with the direction of integration along ξ chosen such that the real axis

remains on the left of the contour. The logarithm of a(θ) is then given by

log a(θ) =
−2iπγ

M + 1
+

∫
ξ

dθ′

2iπ
F (θ − θ′)∂θ′ log(1 + a(θ′)). (3.5.9)

We then integrate (3.5.9) by parts and consider the two contributions of the

contour γ from above and below the real axis separately. We then rewrite log a(θ)

log a(θ) =
−2iπγ

M + 1

+

∫ ∞
−∞

R(θ − θ′ + i0) {log (1 + a(θ′ + i0))− log (1 + a(θ′ − i0))} dθ′, (3.5.10)

66



where R(θ) = (i/2π)∂θF (θ). We next use the identity a(θ)∗ = a(θ∗)−1, which

follows from the product expansion of a(θ) (3.5.5) and the reality of the zeroes θj,

to rewrite (3.5.10) as

log a(θ) =
−2iπγ

M + 1

+

∫ ∞
−∞

R(θ − θ′ + i0) {log (a(θ′ − i0))− 2i Im log (1 + a(θ′ − i0))} dθ′.

(3.5.11)

The next step is to take a Fourier transform to both sides of (3.5.11). In this

thesis, the Fourier transform is defined as

F [f ](k) = f̃(k) =

∫ ∞
−∞

e−ikθf(θ) dθ, (3.5.12)

and its inverse is given by

F−1[f̃ ](θ) = f(θ) =
1

2π

∫ ∞
−∞

eikθf̃(k) dk. (3.5.13)

Applying a Fourier transform to both sides of (3.5.11), we find

F [log a] =
−4iπ2γ

M + 1
δ(k) + R̃(k){F [log a]− 2iF [Im log(1 + a)]}, (3.5.14)

where we have used the definition of the Dirac delta function δ(k) in integral form

∫ ∞
−∞

e−ikθ dθ = 2πδ(k). (3.5.15)

We collect the F [log a] terms in (3.5.14)

(1− R̃(k))F [log a] =
−4iπ2γ

M + 1
δ(k)− 2iR̃(k)F [Im log(1 + a)], (3.5.16)
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and then divide both sides of (3.5.16) by (1− R̃(k))

F [log a] =
−4iπ2δ(k)

(M + 1)(1− R̃(k))
+

∞∑
p=−∞

b(2p+1)F [e(2p+1)θ] (3.5.17)

− 2iR̃(k)

1− R̃(k)
F [Im log(1 + a)], (3.5.18)

where the terms proportional to the arbitrary constants b(2p+1) arise from the

points k = ±(2p + 1)i (where p ∈ Z) where the inverse of (1 − R̃(k)) is not well

defined. The constants b(2p+1) will be chosen to match the asymptotics of logQ(θ)

(3.4.29)-(3.4.32) in the limits Re θ → ±∞; this choice is best made when an

expression for logQ(θ) is found. For now, we apply the inverse Fourier transform

(3.5.13) to (3.5.18)

log a(θ) = lim
k→0

−2iπγ

(M + 1)(1− R̃(k))

+
∞∑

p=−∞

b(2p+1)e(2p+1)θ − 2i

∫ ∞
−∞

ϕ(θ − θ′ + i0) Im log(1 + a(θ′ − i0)) dθ′,

(3.5.19)

where ϕ(θ) = F−1[(1 − R̃(k))−1R̃(k)]. To simplify (3.5.19), we must calculate

R̃(k) = (i/2π)F [∂θF (θ)] explicitly. We rewrite F (θ) as given by (3.5.7) using the

identity

log

(
1− eX−Y

1− eX+Y

)
= −Y + log

(
sinh X−Y

2

sinh X+Y
2

)
, (3.5.20)

which implies

F (θ) = − 2iπM

M + 1
+ log

(
sinh

(
Mθ
M+1
− iπM

M+1

)
sinh

(
Mθ
M+1

+ iπM
M+1

)) . (3.5.21)
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The Fourier transform of R(θ) = (i/2π)∂θF (θ) is then calculated using equations

(D.53) and (D.54) from [23]

i∂θ log
sinh(σθ + iπτ)

sinh(σθ − iπτ)
=

2σ sin 2πτ

cosh 2σθ − cos 2πτ
, (3.5.22)∫ ∞

−∞

dθ

2π
e−ikθ

2σ sin 2πτ

cosh 2σθ − cos 2πτ
=

sinh(1− 2τ)πk
2σ

sinh πk
2σ

. (3.5.23)

We then find

R̃(k) =
sinh (M−1)πk

2M

sinh (M+1)πk
2M

. (3.5.24)

We now use (3.5.24) to simplify the integral equation (3.5.19), evaluating the limit

term

lim
k→0

−2iπγ

(M + 1)(1− R̃(k))
= −iπγ, (3.5.25)

so that the non-linear integral equation becomes

log a(θ) = −iπγ +
∞∑

p=−∞

b(2p+1)e(2p+1)θ

− 2i

∫ ∞
−∞

ϕ(θ − θ′ + i0) Im log(1 + a(θ′ − i0)) dθ′, (3.5.26)

where

ϕ(θ) =
1

2π

∫ ∞
−∞

eikθ
sinh (M−1)πk

2M

2 cosh πk
2

sinh πk
2M

dk. (3.5.27)

In the next subsection, we will use the non-linear integral equation (3.5.26) and

combine it with the definition of a(θ) (3.5.1) to produce an integral expression for

the logarithm of the Q-function. This expression will then be expanded in the

limits Re θ → ±∞, with the coefficients of the resulting power series containing

the integrals of motion of the A
(1)
1 massive integrable field theory.
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3.5.2 Integral form of logQ
(
θ + iπ(M+1)

2M

)
We begin by taking logarithms of (3.5.1)

log a(θ) = −2iπγ + logQ (θ − iπ)− logQ (θ + iπ) , (3.5.28)

and invoke the logarithm of the quasiperiodicity relation (3.4.1)

logQ

(
θ +

iπn(M + 1)

M

)
= −iπnγ + logQ(θ), n ∈ Z, (3.5.29)

to rewrite (3.5.28) as

log a(θ) = −iπγ + logQ

(
θ +

iπ

M

)
− logQ (θ + iπ) . (3.5.30)

We then set the NLIE (3.5.26) and (3.5.30) equal to one another

logQ

(
θ +

iπ

M

)
− logQ (θ + iπ) (3.5.31)

=
∞∑

p=−∞

b(2p+1)e(2p+1)θ − 2i

∫ ∞
−∞

ϕ(θ − θ′ + i0) Im log(1 + a(θ′ − i0)) dθ′.

The next step is to take Fourier transforms of (3.5.31), simplifying that expression

using the Fourier transform identity

F [f(θ + α)] = eikαF [f(θ)]. (3.5.32)

The result is

2 sinh
πk(M − 1)

2M
F
[
logQ

(
θ +

iπ(M + 1)

2M

)]
=

∞∑
p=−∞

b(2p+1)F [e(2p+1)θ]− 2iF [ϕ](k)F [Im log(1 + a)](k). (3.5.33)
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We then isolate the logQ term, with an extra constant term b(0) appearing due

to the pole of
(

2 sinh πk(M−1)
2M

)−1

at k = 0. We then take the inverse Fourier

transform, with the result

logQ

(
θ +

iπ(M + 1)

2M

)
= b(0) +

∞∑
p=−∞

b(2p+1)e(2p+1)θ

2i sin (2p+1)(M−1)π
2M

(3.5.34)

−2i

∫ ∞
−∞

H(θ − θ′ + i0) Im log(1 + a(θ′ − i0)) dθ′. (3.5.35)

where

H(θ) =
1

2π

∫ ∞
−∞

eikθ

4 cosh πk
2

sinh πk
2M

dk. (3.5.36)

The final integral expression for logQ
(
θ + iπ(M+1)

2M

)
is then found by choosing the

constants b(p) to match the earlier derived asymptotics (3.4.29)-(3.4.32) for Q(θ)

in the limits Re θ → ±∞. We set

b(1)

2i sin (M−1)π
2M

= msM+1τ(2,M),
−b(−1)

2i sin (M−1)π
2M

= msM+1τ(2,M), b(0) = −iπγ
2
,

(3.5.37)

with all other constants b(p) set equal to zero. logQ
(
θ + iπ(M+1)

2M

)
is then given

by

logQ

(
θ +

iπ(M + 1)

2M

)
= −iπγ

2
+ 2mτ(2,M)sM+1 cosh θ (3.5.38)

−2i

∫ ∞
−∞

H(θ − θ′ + i0) Im log(1 + a(θ′ − i0)) dθ′.

3.5.3 Integrals of motion

Recasting the Bethe ansatz equations as a non-linear integral equation, we rewrote

the logarithm of the Q-function in the integral form (3.5.38). The coefficients of
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the expansion of this integral form in the limits Re θ → ±∞ are the integrals of

motion for the massive A
(1)
1 integrable field theory. The H(θ − θ′ + i0) term in

(3.5.38) is itself an integral as defined by (3.5.36). We evaluate this integral using

Cauchy’s residue theorem, resulting in an infinite series. Closing the integration

contour in the upper or lower half k-plane leads to two different expansions for

H(θ). Closing in the upper half plane,

H(θ) = i

∞∑
p=1

Res

[
eikθ

4 cosh πk
2

sinh πk
2M

, k = (2p− 1)i

]
(3.5.39)

+ i

∞∑
q=0

Res

[
eikθ

4 cosh πk
2

sinh πk
2M

, k = 2qMi

]
,

= i
∞∑
p=1

(−1)pe−(2p−1)θ

2π sin (2p−1)π
2M

+ i
∞∑
q=0

(−1)qMe−2qMθ

2π cos qMπ
, (3.5.40)

and in the lower half plane,

H(θ) = −i
∞∑
p=1

Res

[
eikθ

4 cosh πk
2

sinh πk
2M

, k = −(2p− 1)i

]
(3.5.41)

− i
∞∑
q=0

Res

[
eikθ

4 cosh πk
2

sinh πk
2M

, k = −2qMi

]
,

= i

∞∑
p=1

(−1)pe(2p−1)θ

2π sin (2p−1)π
2M

+ i

∞∑
q=0

(−1)qMe2qMθ

2π cos qMπ
, (3.5.42)

We then write logQ
(
θ + iπ(M+1)

2M

)
as a pair of asymptotic series for M > 1 and

| Im θ| < iπ(1+M)
2M

logQ

(
θ +

iπ(M + 1)

2M

)
=
−iπγ

2
+ 2mτ(2,M)sM+1eθ

+
∞∑
p=1

I2p−1e
−(2p−1)θ +

∞∑
q=0

Sq e
−2qMθ, as Re θ → +∞, (3.5.43)
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logQ

(
θ +

iπ(M + 1)

2M

)
=
−iπγ

2
+ 2mτ(2,M)sM+1e−θ

+
∞∑
p=1

Ī2p−1e
(2p−1)θ +

∞∑
q=0

S̄q e
2qMθ, as Re θ → −∞, (3.5.44)

where

I2p−1 = 2mτ(2,M)sM+1δp,1 +

∫ ∞
−∞

(−1)pe(2p−1)(θ′−i0)

π sin (2p−1)π
2M

Im log (1 + a(θ′ − i0)) dθ′,

(3.5.45)

Sq =

∫ ∞
−∞

(−1)qMe2qM(θ′−i0)

π cos qMπ
Im log (1 + a(θ′ − i0)) dθ′, (3.5.46)

and

Ī2p−1 = 2mτ(2,M)sM+1δp,1 −
∫ ∞
−∞

(−1)pe−(2p−1)(θ′−i0)

π sin (2p−1)π
2M

Im log (1 + a(θ′ − i0)) dθ′,

(3.5.47)

S̄q = −
∫ ∞
−∞

(−1)qMe−2qM(θ′−i0)

π cos qMπ
Im log (1 + a(θ′ − i0)) dθ′, (3.5.48)

are the ground state eigenvalues of the local and non-local integrals of motion

for the massive integrable field theory, matching the integrals of motion found in

[45] (with the terms proportional to logS in [45] being absorbed into S0 and S̄0

here).

3.6 Conclusions

In this chapter, we reproduced the results of [45], beginning with the classical

modified sinh-Gordon equation and studying the asymptotic solutions of the as-

sociated Lax pair to recover information about the related massive integrable

field theory. In the remainder of the thesis, we will apply the procedure we have
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detailed here to the affine Toda field theory equations of motion; these are par-

tial differential equations associated with various Lie algebras that generalise the

modified sinh-Gordon equation we have considered in this chapter. With slight

alterations (the derivation of the Bethe ansatz equations requires additional in-

formation about the representation theory of the relevant Lie algebra encoded in

a Ψ-system) this procedure, outlined in Figure 1, will be followed for all other

cases.
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Chapter 4

Lie algebras and systems of

differential equations

4.1 Introduction

In order to generalise the analysis of the ODE/IM correspondence for the Lie

algebra A
(1)
1 in chapter 3, we first require a brief overview of the basic concepts

in the theory of Lie algebras, and in doing so set up notation that will be used

throughout the remainder of the thesis. Many texts exist to provide a far more

thorough introduction to Lie algebras; the brief notes here are based largely on

[17, 30, 35].

The systems of differential equations we will consider for the massive ODE/IM

correspondence for simply-laced Lie algebras are constructed from representations

of the Lie algebras we will consider in section 4.2. In section 4.3, we consider gen-

eral properties of such systems of differential equations, giving a general method of

rewriting them as pseudo-differential equations, and introduce a general method

for the study of their asymptotics.
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4.2 Notes on Lie algebras

A Lie algebra is a vector space g over a field F endowed with a Lie bracket

[ , ] : g× g→ g which satisfies the following:

∀ x, y ∈ g, [x, y] = −[y, x], (antisymmetry) (4.2.1)

∀ x, y, z ∈ g, λ, µ ∈ F, [x, λy + µz] = λ[x, y] + µ[x, z], (linearity) (4.2.2)

∀ x, y, z ∈ g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (Jacobi identity) (4.2.3)

For all Lie algebras we shall consider, the field F = C. The dimension of the

algebra g is the dimension of g when considered as a vector space. A subspace

h ≤ g is said to be a subalgebra of g if ∀ x, y ∈ h, [x, y] ∈ h. An ideal is a subalgebra

satisfying the stronger property [x, y] ∈ h ∀ x ∈ h, y ∈ g. The Lie algebras we will

be chiefly interested in have no non-trivial ideals; such algebras are simple Lie

algebras. A direct sum of simple Lie algebras is a semisimple Lie algebra. For the

remainder of this section g will be a simple Lie algebra of finite type.

A particularly important subalgebra of g is the Cartan subalgebra h, which is

the subspace of largest possible dimension spanned by generators Hi (i = 1, . . . , r)

that satisfy

[Hi, Hj] = 0. (4.2.4)

The number of generators r (the dimension of the subspace h) is the rank of the

Lie algebra.

A matrix representation of a Lie algebra is a homomorphism π : g→ End(V )

(where End(V ) is the endomorphism algebra defined on a vector space V ) such

76



that ∀ g1, g2 ∈ g,

π([g1, g2]) = [π(g1), π(g2)], (4.2.5)

where [π(g1), π(g2)] = π(g1)π(g2)−π(g2)π(g1) is the standard matrix commutator.

The dimension of the representation is the dimension of the vector space V . A

representation is irreducible if there are no non-trivial proper subspaces W ≤ V

such that π(x)W ⊆ W . In this thesis, the differential equations with which we

will be concerned are related to irreducible matrix representations of certain Lie

algebras.

The adjoint representation

An important representation for the study of the structure of Lie algebras is the

adjoint representation; this is the representation where we choose the vector space

V = g. The adjoint map ad : g→ End(g) takes an element x ∈ g and maps it to

a linear map on g with the action

ad(x)(y) = [x, y] ∀ y ∈ g. (4.2.6)

Using the Jacobi identity, it can be seen that this map is indeed a homomor-

phism from g to End(g), and so it is a representation. The adjoint representation

provides information about the nature of the remaining generators of g. Con-

sider Hi, Hj ∈ h. From the definition of the adjoint map and its nature as a

homomorphism,

[ad(Hi), ad(Hj)] = ad([Hi, Hj]) = ad(0) = 0. (4.2.7)
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As all of the matrices ad(Hi) are commuting, and are diagonalisable [30], a stan-

dard result in linear algebra (see Lemma 16.7 in [30]) implies that the matrices

ad(Hi) may be simultaneously diagonalised. Hence we construct an eigenbasis of

the matrices ad(Hi) composed of elements Hj, Eα ∈ g, such that

ad(Hi)(Hj) = [Hi, Hj] = 0, (4.2.8)

ad(Hi)(Eα) = [Hi, Eα] = αiEα. (4.2.9)

The eigenbasis {Hj, Eα} is the Cartan-Weyl basis. The eigenvalues αi are compo-

nents of r-dimensional vectors α which are the roots of the Lie algebra. The set

of roots is denoted by ∆, and the classification of these sets of roots is equivalent

to the classification of simple Lie algebras. For now, it remains only to discuss

the remaining commutators in g, which are of the form [Eα, Eβ] where α, β ∈ ∆.

Consider the commutator

[Hi, [Eα, Eβ]] = [Eα, [Hi, Eβ]] + [[Hi, Eα], Eβ] = (αi + βi)[Eα, Eβ], (4.2.10)

where the first equality is due to the Jacobi identity (4.2.3). It is clear that

[Eα, Eβ] = N(α, β)Eα+β for some structure constant N(α, β), where α + β ∈

∆. If β = −α, then (4.2.10) implies that [Eα, E−α] must commute with all the

commuting generators Hi. As the Hi span the subspace of commuting elements

of g, [Eα, E−α] must then be a linear combination of Hi, up to a free choice of

normalisation of Eα. We will follow the convention in [17] to set [Eα, E−α] =

2α ·H/|α|2, where

α ·H =
r∑
i=1

αiHi, |α|2 =
r∑
i=1

αiαi. (4.2.11)
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Lastly, by (4.2.10), if α+β /∈ ∆, then [Eα, Eβ] = 0. We now summarise the above

commutation relations:

[Hi, Hj] = 0, (4.2.12)

[Hi, Eα] = αiEα, (4.2.13)

[Eα, Eβ] =



N(α, β)Eα+β if α + β ∈ ∆

2α ·H
|α|2

if β = −α

0 if α + β /∈ ∆.

(4.2.14)

Roots

We have described the structure of simple Lie algebras in terms of roots α in a

set of roots ∆. To discover more about the structure of simple Lie algebras, we

will need to learn more about the structure of these roots. To begin, we derive a

useful result that severely constrains the inner products of roots. We consider a

subalgebra of g generated by {Eα, E−α, α·H/|α|2}. This subalgebra is isomorphic

to the Lie algebra su(2):

Eα = J+, (4.2.15)

E−α = J−, (4.2.16)

α ·H/|α|2 = J3, (4.2.17)

where

[J3, J±] = ±J±, [J+, J−] = 2J3. (4.2.18)

We then invoke a pair of results from the representation theory of su(2):
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• If a representation of su(2) is finite-dimensional, then the eigenvalues of J3

are integers or half-integers.

• Let the dimension of an irreducible representation of su(2) be given by 2j+

1, where j is an integer or a half-integer. Then the highest and lowest

eigenvalues of J3 are j and −j.

Any finite-dimensional representation of g must induce a finite-dimensional rep-

resentation of the su(2) subalgebra {Eα, E−α, α · H/|α|2}. Consider repeatedly

acting with the operator ad(Eα) on Eβ. Then there exists a maximal integer p ≥ 0

such that ad(Eα)pEβ is an eigenvector of J3, with eigenvalue j, and similarly, there

exists an maximal integer q ≥ 0 such that ad(E−α)qEβ is an eigenvector of J3 with

eigenvalue −j. From (4.2.10) and the definition of the adjoint map, β + pα and

β − qα are roots which satisfy

α · (β + pα)

|α|2
= j,

α · (β − qα)

|α|2
= −j, (4.2.19)

=⇒ 2α · β
|α|2

= −(p− q) ∈ Z. (4.2.20)

The result (4.2.20) is one of the defining properties of a root system (defined fully

in Definition 11.1 of [30]), and it can be shown that there is a one-to-one corre-

spondence between root systems and semisimple Lie algebras. We only require a

notion of positivity of roots; a set of positive roots ∆+ is a subset of roots ∆ such

that exactly one of ±α ∈ ∆+, and for α, β ∈ ∆+, α + β ∈ ∆+. Given a set of

positive roots, there exists a unique set of simple roots {αi}ri=1 with the following

properties:

• αi ∈ ∆+.

• αi form a basis for the vector space containing the roots.

• αi cannot be written as a sum of two positive roots.

80



• Any positive root can be written as a sum of simple roots with non-negative

integer coefficients.

The simple roots and their inner products define the elements of the Cartan matrix

Cij =
2αi · αj
|αj|2

. (4.2.21)

It is clear from (4.2.20) that the elements of the Cartan matrix are integers. As

αi − αj /∈ ∆ (else αi could be written as a sum of two positive roots), we set

q = 0 in the result (4.2.20) to see αi · αj ≤ 0 for i 6= j. This means that the

off-diagonal elements of C are non-positive integers. The diagonal elements are

equal to 2 from the definition of C. Lastly, we gain more information about the

possible Cartan matrices using the Cauchy-Schwarz inequality:

(αi · αj)2 < |αi|2|αj|2, (i 6= j). (4.2.22)

From (4.2.22) we see that CijCji < 4 for i 6= j. As the elements Cij are non-

positive, this implies Cij = 0,−1,−2 or −3. This strongly constrains the possible

angles between simple roots. Let θij be the angle between αi and αj, so that

αi ·αj = |αi||αj| cos θij. Substituting this into the Cartan matrix definition (4.2.21)

and applying αi · αj ≤ 0 for i 6= j we find

cos θij = −1

2

√
CijCji. (4.2.23)

Along with the constraint that Cij must be integers, θij may only take a handful

of possible values: θij = π/2, 2π/3, 3π/4 or 5π/6. Dividing entries of the Cartan

matrix also leads to a constraint on the ratios of the magnitudes of the roots. If

θij = π/2, the lengths are unrestricted; if θij = 2π/3, the lengths are the same;

if θij = 3π/4, the ratio of the lengths is
√

2, and if θij = 5π/6, the ratio of the
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lengths is
√

3. We are free to choose an overall normalisation for the roots, and

we will choose the longest root to have length
√

2. If all the roots are the same

length, the Lie algebra is said to be simply-laced.

The above constraints on the simple roots allows a complete classification of

the allowed Cartan matrices, and hence a classification of the simple Lie algebras.

Another way of representing the data encoded in the Cartan matrices is through

Dynkin diagrams. A Dynkin diagram is a graph with a vertex associated to each

simple root αi. The vertices corresponding to αi and αj are connected by CijCji

lines. Shorter roots (in the case of non simply-laced Lie algebras) are represented

by filled-in vertices.

Figure 2 shows the Dynkin diagrams for the simple Lie algebras. There are

four infinite families Ar, Br, Cr, Dr and five exceptional Lie algebras E6, E7, E8, F4

and G2. The A, D and E algebras, having diagrams with no filled-in vertices, are

simply-laced and these will be our main algebras of interest.

Other useful definitions

The Cartan matrix (or equivalently, the associated Dynkin diagram) encodes the

inner products of the simple roots αi. The remaining roots of the Lie algebra g are

found in terms of the simple roots by the action of the Weyl group of the algebra.

The Weyl group has r generators si, which act as reflections in the space of roots:

si(β) = β − 2αi · β
αi · αi

αi ∀ β ∈ ∆. (4.2.24)
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The generators si are constrained by the relations

(sisj)
mij = 1, where mij =


1 if i = j,

π

π − θij
otherwise.

(4.2.25)

The roots ∆ of the Lie algebra g are then the orbit of a simple root, say α1,

under the Weyl group. From the result (4.2.20), all elements of ∆ are integer

sums of simple roots. A particularly important root is the highest root −α0 =

n1α1 +n2α2 + · · ·+nrαr, where the coefficients ni are maximised. The coefficients

ni of the highest root are the Kac labels. Defining n0 = 1, we have
∑r

i=0 niαi = 0.

There is a notion of duality for roots. We define the co-root α∨ of a root α:

α∨ =
2α

|α|2
. (4.2.26)

The Cartan matrix elements can then be written Cij = αi · α∨j . The dual Kac

labels n∨i satisfy
∑r

i=0 n
∨
i α
∨
i = 0. The Coxeter number h and its dual h∨ are given

by

h =
r∑
i=0

ni, h∨ =
r∑
i=0

n∨i . (4.2.27)

As we have chosen a normalisation for the simple roots such that the longest root

satisfies |αi|2 = 2, for simply-laced Lie algebras, co-roots are the same as roots.

To be consistent with the notation in the literature [37, 38] we will retain the

distinction between roots and co-roots, although for the simply-laced ADE Lie

algebras we will be primarily concerned with, this will be redundant.
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The Chevalley generators

It is occasionally useful to perform a relabelling of the generators Hi, replacing

them with a different set of generators H̃i in the Cartan subalgebra h:

Hi → H̃i =
2αi ·H
|αi|2

, (4.2.28)

with αi ·H defined as in (4.2.11):

αi ·H =
r∑
j=1

αjiHj, (4.2.29)

where αji is the jth component of the simple root αi.

With this redefinition of the generators of the Cartan subalgebra the commu-

tation relations of g related to the simple roots αi take the elegant form

[Hi, Hj] = 0, (4.2.30)

[Hi, Eαj ] = CjiEαj , (4.2.31)

[Hi, E−αj ] = −CjiE−αj , (4.2.32)

[Eαi , E−αj ] = δijHj, (4.2.33)

(where δij is the Kronecker delta) which along with the Serre relations

ad(Eαi)
(1−Cji)(Eαj) = 0, (4.2.34)

ad(E−αi)
(1−Cji)(E−αj) = 0, i 6= j, (4.2.35)

generate the entire Lie algebra g. The use of Chevalley generators also ensures the

structure constants are all integers, which simplifies analysis of the representations

of g.
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4.2.1 Representation theory of simple Lie algebras

We recall the definition of a matrix representation of a Lie algebra: a homomor-

phism π : g → End(V ) that preserves the Lie algebra structure as defined in

(4.2.5). The adjoint representation (4.2.6) is an example of a matrix representa-

tion of a simple Lie algebra g. This representation has the distinguishing feature

of its associated vector space V being the Lie algebra g itself. We now discuss

general finite-dimensional representations of g.

As the generators Hi are commuting and are diagonalisable, a basis for V {|λ〉}

exists that simultaneously diagonalises the Hi [30]:

Hi |λ〉 = λi |λ〉 (4.2.36)

where the vector λ is a weight. We define the fundamental weights ωi and the

co-fundamental weights ω∨i to satisfy

ωi · α∨j =
2ωi · αj
|αj|2

= δij, ω∨i · αj = δij. (4.2.37)

Using this definition, we find a useful identity for the simple root αi in terms of

the fundamental weights ωj. We write

αi =
r∑
s=1

ksωs, (4.2.38)

and dot with α∨j , simplifying using the definition of the fundamental weights ωs:

αi · α∨j =
r∑
s=1

ksωs · α∨j = kj. (4.2.39)

By definition of the Cartan matrix, kj = Cij, and so the Cartan matrix can be
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thought of as a change of basis from the weight basis to the root basis:

αi =
r∑
j=1

Cijωj. (4.2.40)

It can be shown that any weight λ in a finite-dimensional representation of g can be

written in the form λ = λ1ω1 + λ2ω2 + · · ·+ λrωr and that the coefficients λi are

all integers. It is also straightforward to show from the commutation relations

(4.2.30)-(4.2.33) that the Eαi and E−αi act as raising and lowering operators

respectively:

HiEαj |λ〉 = (λi + Cji)Eαj |λ〉 , (4.2.41)

HiE−αj |λ〉 = (λi − Cji)E−αj |λ〉 . (4.2.42)

In order to construct a finite-dimensional representation it is necessary for there to

exist a highest weight vector |λ〉, such that Eαi |λ〉 = 0 for i = 1, . . . , r. The integer

coefficients λi of the weight λ of this vector are freely chosen, and they serve to

label the representation. Other weight vectors in the representation (themselves

eigenvectors of the Hi) are generated by acting on |λ〉 with lowering operators

E−αj using the following algorithm:

• Start with the highest weight eigenvector |λ〉. If the jth component λj is

positive, add the states E−αj |λ〉 , E2
−αj |λ〉 , . . . , E

λj
−αj |λ〉 to the representa-

tion space. Do this for each j.

• Continue with the same procedure for each of the newly generated states.

• Repeat this process until all the newly generated states have negative (or

zero) weight components.

This algorithm produces a spanning set for the vector space V , however, it is not

a basis as many redundant vectors are generated. We may cull the redundant
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vectors using a Gram-Schmidt procedure with respect to an inner product τ on

the states

τ
(
E−αa1E−αa2 . . . E−αak |λ〉 , E−αb1E−αb2 . . . E−αbl |λ〉

)
(4.2.43)

= 〈λ|Eαak . . . Eαa1E−αb1 . . . E−αbl |λ〉 , (4.2.44)

(where 1 ≤ ap, bq ≤ r) which is evaluated using the commutation relations, the

action of Hi on the highest weight vector |λ〉, and the normalisation 〈λ|λ〉 = 1.

We denote the representation with highest weight λ by L(λ).

The representations L(ωi) are fundamental representations of g, denoted by

V (i) to match the convention in [38]. The sum of the (co-)fundamental weights

ρ (ρ∨) is the (co-)Weyl vector. The Weyl vector ρ and the co-Weyl vector ρ∨ can

also be defined by

ρ =
1

2

∑
α∈∆+

α =
r∑
i=1

ωi, ρ∨ =
1

2

∑
α∈∆+

α∨ =
r∑
i=1

ω∨i . (4.2.45)

All the Lie algebras we will be concerned with are simply-laced, ensuring roots

and co-roots are the same, and ρ∨ = ρ. Using the Weyl vector, it is also possible

to determine the dimension of the representation generated by the highest weight

λ without computing the representation explicitly. To do this, we invoke the Weyl

dimension formula:

dim(L(λ)) =
∏
α∈∆+

(λ+ ρ) · α
ρ · α

. (4.2.46)

We will use this formula to compute the dimensions of the fundamental represen-

tations of the Lie algebras with which we will be concerned. All of the relevant

data for the Lie algebras will be given at the end of this chapter.
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Summing the weights of a Lie algebra representation

We will now justify a result which will be very useful in the following chapters.

Consider a semisimple Lie algebra g and its fundamental representations V (a). Let

the weights of the representation be given by λ
(a)
i , i = 1, . . . , dimV (a), such that

H
(a)
j |λ

(a)
i 〉 = (λ

(a)
i )j |λ(a)

i 〉 (4.2.47)

where the vectors {|λ(a)
i 〉} satisfy 〈λ(a)

i |λ
(a)
i 〉 = 1. We will often require that the

sum of the weight vectors λ
(a)
i is zero:

dimV (a)∑
i=1

λ
(a)
i = 0. (4.2.48)

This result is a corollary of a more general result: the generators of a finite-

dimensional representation of a semisimple Lie algebra are traceless. We demon-

strate this using the Cartan-Weyl basis {Hi, Eα}. Recall that Hi and Eα satisfy

the commutator

[Hi, Eα] = αiEα. (4.2.49)

Take the trace of both sides of (4.2.49). By the cyclic property of traces the left

hand side of (4.2.49) is zero, which immediately implies tr(Eα) = 0. It remains

to show that the traces of the generators Hi of the Cartan subalgebra are zero.

Recall for a general root α ∈ ∆ the commutator of Eα and E−α is given by

[Eα, E−α] =
2α ·H
|α|2

, (4.2.50)

and we once again take the trace of this commutator. As the trace is a linear

operator on matrices we find the following result which must hold for all roots
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α ∈ ∆:

r∑
j=1

αj tr(Hj) = 0. (4.2.51)

We now employ the basis of simple roots for our Lie algebra {α1, α2, . . . , αr}.

Substituting each of these into (4.2.51) yields a system of linear equations

r∑
j=1

(αi)
j tr(Hj) = 0. (4.2.52)

As our simple roots form a basis, the matrix with elements (αi)
j has a kernel

containing only the zero vector. We then immediately find tr(Hi) = 0. As a linear

combination of traceless matrices is itself traceless, we have that any element of a

finite-dimensional matrix representation of a semisimple Lie algebra g is traceless.

We now apply this to find our desired result (4.2.48). We write the trace of a

generator H
(a)
j (where j = 1, . . . , r) as a sum over the eigenbasis {|λ(a)

i 〉} and our

result immediately follows:

tr
(
H

(a)
j

)
=

dimV (a)∑
i=1

〈λ(a)
i |H

(a)
j |λ

(a)
i 〉 =

dimV (a)∑
i=1

(λ
(a)
i )j 〈λ(a)

i |λ
(a)
i 〉 =

dimV (a)∑
i=1

(λ
(a)
i )j = 0.

(4.2.53)

Products of representations

Many of the representations of g we will be concerned with are constructed from

particular products of smaller representations. The first such product of is a

tensor product of representations. Let V and W be representations of a simple

Lie algebra g. Then the tensor product of V and W is denoted by V ⊗W and is

the vector space generated by the elements v⊗w, for v ∈ V and w ∈ W , where ⊗

is a bilinear operation. We then establish a new representation of g on the vector

89



space V ⊗W by defining the action of A ∈ g on elements v ⊗ w ∈ V ⊗W in the

following way:

A(v ⊗ w) = A(v)⊗ w + v ⊗ A(w) ∀ v ∈ V,w ∈ W. (4.2.54)

Given a vector space V (over a field F = C) and the tensor product operator ⊗,

we construct the tensor algebra T (V ) as a direct sum of tensor products of V :

T (V ) = C⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . (4.2.55)

We then construct the exterior algebra Λ(V ) of a vector space V as the quotient

of the tensor algebra T (V ) by the ideal I = {v ⊗ v|v ∈ V }. The wedge product

∧ (or exterior product) is then the product on elements of Λ(V ) induced by the

tensor product ⊗ on T (V ). The wedge product on V satisfies v ∧ v = 0 for all

v ∈ V , and inherits bilinearity from the tensor product ⊗. By setting v = x + y

for x, y ∈ V and using bilinearity to expand (x+ y) ∧ (x+ y), we find the wedge

product is antisymmetric: x ∧ y = −y ∧ x for all x, y ∈ V .

Using the wedge product, we then construct new vector spaces
∧a V

a∧
V = {v1 ∧ v2 ∧ · · · ∧ va| v1, . . . , va ∈ V } , (4.2.56)

and then establish new representations of g on
∧a V by defining the action of

A ∈ g on a-vectors v1 ∧ v2 ∧ · · · ∧ va ∈
∧a V :

A(v1 ∧ v2 ∧ · · · ∧ va) (4.2.57)

= A(v1) ∧ v2 ∧ · · · ∧ va + v1 ∧ A(v2) ∧ · · · ∧ va + · · ·+ v1 ∧ v2 ∧ · · · ∧ A(va).

Many of the representations of interest in this thesis will be products of evaluation

representations Vk, which will be defined below. The evaluation representations
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are defined over the same vector space V and so the product representations

constructed in this section remain well-defined.

4.2.2 Affine Lie algebras and Lie algebra data

The differential equations and integrable models we will consider are related to

affine Lie algebras. We now briefly detail their construction from a given simple

Lie algebra, and note the particular representations of affine Lie algebras that we

will find useful in the following chapters. More complete details of the construction

of affine Lie algebras are found in chapter 14 of [17].

We let C[t, t−1] be the space of Laurent polynomials in the variable t. We then

define an affine Lie algebra ĝ to be the vector space g ⊗ C[t, t−1] ⊕ Cc with the

Lie bracket

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +
m

h∨
κ(a, b)δm+n,0 c, (4.2.58)

[c, ĝ] = 0, (a, b ∈ g, m, n ∈ Z) (4.2.59)

where c is the central element of the affine Lie algebra and κ(a, b) is the Killing

form of the Lie algebra g. These affine Lie algebras retain the simple root structure

of the simple Lie algebras, with an additional simple root α0 equal to the lowest

root of g plus an imaginary root δ [17]. Its corresponding Chevalley generator is

then given by Eα0 ⊗ t, which by an abuse of notation we shall denote Eα0 .

Certain finite-dimensional representations of ĝ will be of interest to us. We

follow [47] and define the evaluation representation of ĝ. Let V be some finite-

dimensional representation of the simple Lie algebra g, and let ζ ∈ C \ {0}. Then
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the evaluation representation V (ζ) of ĝ has the following action on v ∈ V :

(a⊗ tn)v = ζnav, (a ∈ g). (4.2.60)

As in [47] we denote Vk = V (e2πik) to be the evaluation representation of ĝ cor-

responding to the representation V of g and ζ = e2πik. For our purposes, k will

be an integer or a half-integer. If k is an integer, these evaluation representations

are exactly equivalent to the original representation V . If k is a half-integer, the

representation of the Chevalley generator Eα0⊗ t ∈ ĝ becomes Eα0⊗(−1) = −Eα0 .

In this thesis, the affine Lie algebras we will consider are denoted by A
(1)
r = Âr,

D
(1)
r = D̂r, E

(1)
6 = Ê6, E

(1)
7 = Ê7 and E

(1)
8 = Ê8.

Lie algebra data

As stated at the beginning of this chapter, the above sketch of the theory of Lie

algebras is by no means comprehensive. Further details and proofs may be found

in the texts [30], [35] and Chapter 13 of [17]. We conclude this chapter with a

collection of relevant data for the simply-laced Lie algebras Ar, Dr, E6, E7 and

E8. The Weyl vectors and dimensions of fundamental representations for E6, E7

and E8 were calculated using the LieART package for Mathematica.
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Ar

• Cartan matrix

C =



2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 2 −1 0

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −1 2



• Coxeter number h = r + 1

• Highest root −α0 = α1 + α2 + · · ·+ αr−1 + αr

• Weyl vector ρ = ρ∨ =
∑r

i=1 ωi = 1
2

∑r
i=1 i(r − i+ 1)αi

• Kac labels: n0 = n1 = · · · = nr = 1

• Dimensions of fundamental representations V (a) = L(ωa):
(
r+1
a

)
for 1 ≤ a ≤

r − 2, 2r−1 for a = r − 1, r.

93



Dr

• Cartan matrix

C =



2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . 2 −1 −1

0 0 0 . . . −1 2 0

0 0 0 . . . −1 0 2



• Coxeter number h = 2r − 2

• Highest root −α0 = α1 + 2α2 + · · ·+ 2αr−2 + αr−1 + αr

• Weyl vector ρ = ρ∨ =
∑r

i=1 ωi = 1
2

∑r
i=1 i(2r − i− 1)αi

• Kac labels: n0 = n1 = 1, n2 = · · · = nr−2 = 2, nr−1 = nr = 1

• Dimensions of fundamental representations V (a):
(

2r
a

)
for 1 ≤ a ≤ r − 2,

2r−1 for a = r − 1, r.

94



E6

• Cartan matrix

C =



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1

0 0 −1 2 −1 0

0 0 0 −1 2 0

0 0 −1 0 0 2


• Coxeter number h = 12

• Highest root −α0 = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6

• Weyl vector ρ = ρ∨ =
∑6

i=1 ωi = 8α1 + 15α2 + 21α3 + 15α4 + 8α5 + 11α6

• Kac labels: n0 = n1 = 1, n2 = 2, n3 = 3, n4 = 2, n5 = 1, n6 = 2

• Dimensions of fundamental representations V (a):

(27, 351, 2925, 351, 27, 78).
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E7

• Cartan matrix

C =



2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 −1

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

0 0 −1 0 0 0 2



• Coxeter number h = 18

• Highest root −α0 = 2α1 + 3α2 + 4α3 + 3α4 + 2α5 + α6 + 2α7.

• Weyl vector ρ = ρ∨ =
∑7

i=1 ωi = 17α1 + 33α2 + 48α3 + 75
2
α4 + 52α5 + 27

2
α6 +

49
2
α7

• Kac labels: n0 = 1, n1 = 2, n2 = 3, n3 = 4, n4 = 3, n5 = 2, n6 = 1, n7 = 2

• Dimensions of fundamental representations V (a):

(133, 8645, 365750, 27664, 1539, 56, 912).
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E8

• Cartan matrix

C =



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 −1

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 −1 0 0 0 0 2


• Coxeter number h = 30

• Highest root −α0 = 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + 3α8

• Weyl vector ρ = ρ∨ =
∑8

i=1 ωi = 46α1 + 91α2 + 135α3 + 110α4 + 84α5 +

57α6 + 29α7 + 68α8

• Kac labels: n0 = 1, n1 = 2 n2 = 4, n3 = 6, n4 = 5, n5 = 4, n6 = 3, n7 = 2,

n8 = 3

• Dimensions of fundamental representations V (a):

(3875, 6696000, 6899079264, 146325270, 2450240, 30380, 248, 147250).

4.3 Systems of differential equations

The differential equations that form one side of the ODE/IM correspondence are

often most elegantly written in the form of a system of coupled differential equa-

tions. In this section, we will study these systems of differential equations. In
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subsection 4.3.1 we will describe two methods of converting such systems into

pseudo-differential equations, involving the inverse differential operator ∂−1
z . We

apply both methods to a relevant example, demonstrating that they are in agree-

ment. Lastly, in subsection 4.3.2 we consider the asymptotics of systems of differ-

ential equations directly, using a generalisation of the WKB approximation.

A similar procedure is performed in [28] to construct analogues of the Korteweg-

de Vries (KdV) equation from a pair of matrices known as a Lax pair, constructed

from a representation of a simple Lie algebra. In this section, although we con-

struct similar pseudo-differential operators, we do not consider them in the context

of Lax pairs and integrable equations. We will consider them merely as systems

of differential equations, manipulating them directly to find pseudo-differential

operators acting on a single function ψ(x).

4.3.1 From systems of differential equations to

pseudo-differential equations

For the remainder of the chapter, we will consider systems of differential equations

of the form

(∂z + A(z))Ψ(z) = 0, (4.3.1)

where A(z) is an n-by-n matrix and Ψ(z) = (ψ1(z), . . . , ψn(z))T is a column vector.

In component form this system of equations is given by

∂zψi +
n∑
j=1

A(z)ijψj = 0. (4.3.2)

For a general matrix A(z), the system of equations (4.3.1) does not have a closed-

form solution. In the special case [A(z1), A(z2)] = 0 for z1 6= z2, the solution can
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be written explicitly

Ψ(z) = exp

(
−
∫ z

0

A(t) dt

)
Ψ(0). (4.3.3)

However, if [A(z1), A(z2)] 6= 0, the simple solution (4.3.3) no longer holds; the

solution may then only be written in terms of a Magnus series [46]:

Ψ(z) = exp

(
−
∞∑
k=1

Ak(z)

)
Ψ(0), (4.3.4)

where the first few terms in (4.3.4) are given by

A1(z) =

∫ z

0

A(τ1) dτ1, (4.3.5)

A2(z) =
1

2

∫ z

0

∫ τ1

0

[A(τ1), A(τ2)] dτ2 dτ1, (4.3.6)

A3(z) =
1

6

∫ z

0

∫ τ1

0

∫ τ2

0

([A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]]) dτ3 dτ2 dτ1.

(4.3.7)

The Magnus series is effectively a re-ordering of the terms in the more standard

path-ordered exponential, defined as

T
{

exp

(
−
∫ z

0

A(s) ds

)}
(4.3.8)

=

(
I −

∫ z

0

A(s1) ds1 +

∫ z

0

∫ s1

0

A(s1)A(s2) ds2 ds1 + . . .

)
.

Evaluated as full series, the Magnus series (4.3.4) and the expansion of the path-

ordered exponential (4.3.8) are equivalent. The form of the Magnus series, eval-

uated up to its first term, is more useful for our purposes than the first-order

expansion of the path-ordered exponential.

When we consider systems of equations of the form (4.3.1) in the small-|z|

limit, only the first term in this expansion will be relevant. Our matrices A(z)
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will also be diagonal in the small-|z| limit, simplifying the form of the asymptotics

considerably.

In the context of the ODE/IM correspondence, the systems of differential

equations (4.3.1) are more commonly presented in the form of pseudo-differential

equations [20] by combining all the component equations of (4.3.1) into one equa-

tion in ψ1. To discuss pseudo-differential equations and related pseudo-differential

operators, we briefly define the principal characteristic of such operators: the pres-

ence of an inverse differential operator ∂−1
z , with the properties defined in section

3 of [20]:

∂−1
z (zn) =

zn+1

n+ 1
, (4.3.9)

∂−1
z ∂z(z

n) = ∂z∂
−1
z (zn) = zn, (4.3.10)

∂−1
z (f(z)∂z(g(z))) = f(z)g(z)− ∂−1

z (∂z(f(z))g(z)) . (4.3.11)

A pseudo-differential operator can then be considered to be an element of an alge-

bra generated by analytic functions f(z) and differential operators ∂az for a ∈ Z.

We will now demonstrate two different methods of converting systems of differen-

tial equations into pseudo-differential equations, thus exhibiting an example of a

pseudo-differential operator.

Method of repeated differentiation

We will consider a system of ten coupled differential equations, related to the

second fundamental representation (the representation with highest weight ω2) of
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the Lie algebra A
(1)
4 :

∂ψ1 + ψ2 = 0,

∂ψ2 + ψ3 + ψ4 = 0,

∂ψ3 + ψ5 = 0,

∂ψ4 + ψ5 + ψ6 = 0,

∂ψ5 + ψ7 + ψ8 = 0,

∂ψ6 + ψ8 = 0, (4.3.12)

∂ψ7 + ψ9 = 0,

∂ψ8 + ψ9 + p(z)ψ1 = 0,

∂ψ9 + ψ10 + p(z)ψ2 = 0,

∂ψ10 + p(z)ψ4 = 0,

where we have used the truncated notation ∂ = ∂z, and introduced the z-dependent

function p(z). The exact form of p(z) does not concern us in this section. (The

systems of differential equations we will consider in later chapters will contain

constants of the form meθ, but these constants do not affect the calculation of

pseudo-differential equations.)

To construct a single equation in ψ1, we repeatedly differentiate the first equa-

tion in (4.3.12), and find

∂7ψ1 = −5pψ4 + 5∂(pψ2)− 3∂2(pψ1). (4.3.13)

To produce a pseudo-differential equation, we must rewrite ψ2 and ψ4 in terms

of ψ1. The ψ2 term is dealt with straightforwardly using the first equation in
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(4.3.12):

ψ2 = −∂ψ1. (4.3.14)

We rewrite the ψ4 term in (4.3.13) by using the system of equations (4.3.12) to

derive the following useful identities

∂3ψ4 = −3ψ9 − 2pψ1, (4.3.15)

∂5ψ1 = −5ψ9 − 3pψ1. (4.3.16)

We then combine (4.3.15) and (4.3.16), removing the ψ9 terms, to find an equation

for ψ4 in terms of ψ1:

5ψ4 = 3∂2ψ1 − ∂−3(pψ1). (4.3.17)

The pseudo-differential equation that is equivalent to the system of equations

(4.3.12) is then found by substituting (4.3.14) and (4.3.17) into (4.3.13):

∂7ψ1 + 3 ∂2(pψ1) + 5∂(p ∂ψ1) + 3p ∂2ψ1 − p ∂−3(pψ1) = 0. (4.3.18)

This pseudo-differential equation matches the tenth-order ODE studied in section

3.4 of [1], after removing the inverse differential term by dividing (4.3.18) through

by p and differentiating a further three times.

Method of loop-counting

We also present a diagrammatic method, given in section 2.3 of [50], of computing

the equivalent pseudo-differential equation from a system of differential equations.

For a given system of n equations (∂ + A)Ψ = 0 (again setting ∂ = ∂z), we
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construct a directed graph with n vertices, connecting two vertices i and j with

an arrow from i to j if Aij 6= 0. For the system of equations (4.3.12), the directed

graph constructed in this way is shown in Figure 3. We then construct a pseudo-

differential equation corresponding to the system of differential equations (4.3.12)

using its directed graph and the following procedure:

• Find all distinct loops (closed paths of the form i→ · · · → i) in the directed

graph.

• Each loop contributes a term in the pseudo-differential equation. For each

loop, start from the lowest numbered node in the loop, and for each arrow

i→ j, write down (−∂−1Aij).

• Compute the distance of the lowest numbered node from node 1. Let this

distance be a positive integer d. Multiply the product of (−∂−1Aij) terms

by ∂−d on the left and by ∂dψ1.

• Sum all such expressions from each of the loops. Set this sum equal to ψ1.

Simplify as necessary.

We apply this procedure to (4.3.12) by firstly counting all the distinct loops in

Figure 3. All the distinct loops have lowest numbered nodes 1, 2 or 4, and we

categorise them in that way. The loops with lowest node 1 are:

1→ 2→ 3→ 5→ 8→ 1,

1→ 2→ 4→ 5→ 8→ 1, (4.3.19)

1→ 2→ 4→ 6→ 8→ 1,

1→ 2→ 3→ 5→ 7→ 9→ 10→ 4→ 6→ 8→ 1.
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The loops with lowest node 2 are:

2→ 3→ 5→ 7→ 9→ 2,

2→ 3→ 5→ 8→ 9→ 2,

2→ 4→ 5→ 7→ 9→ 2, (4.3.20)

2→ 4→ 5→ 8→ 9→ 2,

2→ 4→ 6→ 8→ 9→ 2.

and the loops with lowest node 4 are

4→ 5→ 7→ 9→ 10→ 4,

4→ 5→ 8→ 9→ 10→ 4, (4.3.21)

4→ 6→ 8→ 9→ 10→ 4.

We next convert these loops into terms in the pseudo-differential equation. As an

example, the loop 4→ 5→ 7→ 9→ 10→ 4 corresponds to the term

(∂−2)(−∂−1)(−∂−1)(−∂−1)(−∂−1)(−∂−1p)∂2ψ1

= −∂−7(p∂2ψ1). (4.3.22)

Performing the same conversion to each of the loops, and then adding the results

and setting them equal to ψ1, we find

ψ1 = −3∂−5(pψ1)− 5∂−6(p∂ψ1)− 3∂−7(p∂2ψ1) + ∂−7(p∂−3(pψ1)). (4.3.23)
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We differentiate this expression seven times and rearrange terms to recover the

pseudo-differential equation (4.3.18)

∂7ψ1 + 3 ∂2(pψ1) + 5∂(p ∂ψ1) + 3p ∂2ψ1 − p ∂−3(pψ1) = 0. (4.3.24)

The system (4.3.12) is a special case of the system of differential equations

related to the second fundamental representation of A
(1)
4 . In general, the deriva-

tive operators ∂z are replaced by more general differential operators of the form

D(λ), where λ is an r-component weight vector associated with the particular

representation of a simple Lie algebra. The system (4.3.12) becomes

D(λ
(2)
1 )ψ1 + ψ2 = 0,

D(λ
(2)
2 )ψ2 + ψ3 + ψ4 = 0,

D(λ
(2)
3 )ψ3 + ψ5 = 0,

D(λ
(2)
4 )ψ4 + ψ5 + ψ6 = 0,

D(λ
(2)
5 )ψ5 + ψ7 + ψ8 = 0,

D(λ
(2)
6 )ψ6 + ψ8 = 0, (4.3.25)

D(λ
(2)
7 )ψ7 + ψ9 = 0,

D(λ
(2)
8 )ψ8 + ψ9 + p(z)ψ1 = 0,

D(λ
(2)
9 )ψ9 + ψ10 + p(z)ψ2 = 0,

D(λ
(2)
10 )ψ10 + p(z)ψ4 = 0.

where λ
(2)
i are the weight vectors associated with second fundamental representa-

tion of A
(1)
4 . The presence of the more general operators D(λ) makes this system

of equations much more difficult to simplify into a single pseudo-differential equa-

tion. The equation will contain terms of the form D(λ
(2)
3 )−1 + D(λ

(2)
4 )−1, which

cannot be simplified except in special cases of the weight vectors. In chapter 6 we
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will see the symmetry of the weight vectors λ
(1)
i in the first fundamental represen-

tation of D
(1)
r allow for the construction of a compact pseudo-differential equation

in that case.

4.3.2 Asymptotics of systems of differential equations

In the following chapters, we will often be concerned with the small-|z| and large-

|z| behaviour of systems of differential equations of the form (∂z + A(z))Ψ = 0.

Particular solutions of these systems in the small-|z| and large-|z| regimes will

defineQ-functions which encode information about the related integrable quantum

field theory. In this section, we will briefly discuss methods of analysing the

asymptotics of systems of differential equation in these regimes, setting up these

methods for use in later chapters.

The small-|z| asymptotics of (∂z + A)Ψ = 0 are easily studied using the first

term of the Magnus series (4.3.4). For small-|z|, the solution is given by

Ψ(z) = exp

(
−
∫ z

0

A(τ1) dτ1

)
, (4.3.26)

which is further simplified by taking the |z| → 0 limit. For the systems of dif-

ferential equations we are concerned with, the matrices A(z) will be diagonal in

this limit. The matrix exponential in (4.3.26) is then a diagonal matrix, and the

small-|z| asymptotics are easily extracted.

The large-|z| asymptotics are more involved; to study these, we will employ a

slight generalisation of the WKB approximation (discussed in [13]) given in [49].
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The WKB approximation for systems of differential equations

We perform a slight change of notation, working with the equation

(ε∂z + A(z))Ψ = 0, (4.3.27)

and considering the ε→ 0 limit. The following ‘abelianisation’ procedure, similar

to that found in section 3.8 of [3], will yield an asymptotic expansion for Ψ(z),

which we will see through an example matches the large-|z| asymptotic expansion

of solutions of (∂z + A)Ψ = 0 when ε = 1. We also must assume that the matrix

A(z) is a diagonalisable matrix in the large-|z| limit, so that a basis of eigenvectors

exists in the neighbourhood of z =∞. All of the systems of differential equations

that we will consider satisfy this property.

We begin by performing a change of variables from Ψ to Ψ̂

Ψ = (P0 + εP1 + ε2P2 + . . . )Ψ̂, (4.3.28)

(where the Pi are z-dependent matrices to be determined) so that the linear system

(4.3.27) becomes

ε∂z((P0 + εP1 + ε2P2 + . . . )Ψ̂) + A(P0 + εP1 + ε2P2 + . . . )Ψ̂

= ε(P0 + εP1 + ε2P2 + . . . )∂zΨ̂ + ε(∂zP0 + ε∂zP1 + . . . )Ψ̂

+ A(P0 + εP1 + ε2P2 + . . . )Ψ̂ = 0. (4.3.29)

We then multiply this expression on the left with the matrix (P0 + εP1 + . . . )−1:

ε∂zΨ̂ = −ε(P0 + εP1 + ε2P2 + . . . )−1(∂zP0 + ε∂zP1 + . . . )Ψ̂

− (P0 + εP1 + ε2P2 + . . . )−1A(P0 + εP1 + ε2P2 + . . . )Ψ̂. (4.3.30)
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(P0 will be a matrix of eigenvectors for the matrix A. P0 is then invertible and for

sufficiently small ε > 0, (P0 +εP1 + . . . )−1 exists.) We then expand the right-hand

side of equation (4.3.30) in powers of ε. We first note

(P0 + εP1 + ε2P2 + . . . )−1 = (I + εP−1
0 P1 + ε2P−1

0 P2 + . . . )−1P−1
0 ,

= (I + εQ1 + ε2Q2 + . . . )−1P−1
0 ,

∼ (I − εQ1 + ε2(Q2
1 −Q2) + . . . )P−1

0 as ε→ 0, (4.3.31)

where for convenience we have set Qi = P−1
0 Pi. We have also used the identity

(I +X)−1 =
∞∑
j=0

(−1)jXj, (4.3.32)

for X = εQ1 + ε2Q2 + . . . . This identity holds when ‖X‖ < 1, which is true for

X = εQ1 + ε2Q2 + . . . for sufficiently small ε > 0. We substitute (4.3.31) into

(4.3.30):

ε∂zΨ̂ = −ε(I − εQ1 + ε2(Q2
1 −Q2) + . . . )P−1

0 (∂zP0 + ε∂zP1 + . . . )Ψ̂ (4.3.33)

− (I − εQ1 + ε2(Q2
1 −Q2) + . . . )P−1

0 AP0(I + εQ1 + ε2Q2 + . . . )Ψ̂,

and consider terms proportional to powers of ε on the right-hand side of equation

(4.3.33).

The only O(ε0) term on the right-hand side of (4.3.33) is

Λ0 = −P−1
0 AP0, (4.3.34)

and we choose P0 such that Λ0 is diagonal. We can always do this given the

starting assumption that A was a diagonalisable matrix.
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The O(ε) term on the right-hand side of (4.3.33) is given by

Λ1 = −[Λ0, Q1]− P−1
0 ∂zP0. (4.3.35)

We choose Q1 so that Λ1 is a diagonal matrix. As Λ0 is diagonal, [Λ0, Q1] has

zeroes along its diagonal. Choosing the elements of Q1 to cancel the off-diagonal

elements, we have

(Λ1)ii = −(P−1
0 ∂zP0)ii. (4.3.36)

The linear system then becomes

ε∂zΨ̂ = (Λ0 + εΛ1 + . . . )Ψ̂, (4.3.37)

which decouples into n separate first-order ordinary differential equations

ε∂zψ̂i = (Λ0 + εΛ1 + . . . )iiψ̂i

=⇒ ψ̂i = Ai exp

(
1

ε

∫ z

(Λ0(s) + εΛ1(s) + . . . )ii ds

)
. (4.3.38)

To recover the asymptotic expansion to the original problem (in Ψ) we act on Ψ̂

with the matrix (P0 + εP1 + . . . ):

Ψ = (P0 + εP1 + . . . )Ψ̂ (4.3.39)

∼ (P0 + εP1 + . . . ) exp

(
1

ε

∫ z

Λ0(s) + εΛ1(s) + . . . ds

)
Ψ̂0 as ε→ 0,

where Ψ̂0 is a constant vector.
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Example: the Airy equation

We illustrate the above method on a well-known system. The Airy equation

ε2∂2
zψ = zψ (4.3.40)

can be written as a system of equations

ε∂zΨ =

0 1

z 0

Ψ, (4.3.41)

where Ψ = (ψ1, ψ2)T . Let

A =

 0 −1

−z 0

 , (4.3.42)

and choose the matrix P0 so that P−1
0 AP0 is diagonal:

P0 =

−z−1/2 z−1/2

1 1

 =⇒ Λ0 =

−z1/2 0

0 z1/2

 . (4.3.43)

Using (4.3.36), we find

Λ1 =
1

4z

1 0

0 1

 . (4.3.44)

Substitute P0, Λ0 and Λ1 into equation (4.3.39) to find asymptotics for Ψ:

Ψ ∼ P0 exp

(
1

ε

∫ z

Λ0(s) + εΛ1(s) ds

)
Ψ̂0, as ε→ 0, (4.3.45)
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implies

Ψ ∼

−z−1/2 z−1/2

1 1

−z1/4e−
2
3ε
z3/2 0

0 z1/4e
2
3ε
z3/2

a
b

 . (4.3.46)

Multiplying out these matrices,

Ψ ∼

−az−1/4e−
2
3ε
z3/2 + bz−1/4e

2
3ε
z3/2

az1/4e−
2
3ε
z3/2 + bz1/4e

2
3ε
z3/2

 as ε→ 0, (4.3.47)

where we set the constant vector Ψ̂0 = (a, b)T . These asymptotics match, up to

a rescaling, the first-order asymptotic expansions for two solutions to the Airy

equation Ai(z) and Bi(z) in the large-|z| limit:

Ai(z) ∼ z−1/4e−
2
3
z3/2 ,

Bi(z) ∼ z−1/4e
2
3
z3/2 ,

Ai′(z) ∼ z1/4e−
2
3
z3/2 ,

Bi′(z) ∼ z1/4e
2
3
z3/2 , as |z| → ∞. (4.3.48)

4.4 Conclusions

In this chapter, we have provided a brief introduction to Lie algebra theory, con-

structing the representations of the Lie algebras that we will work with for the

remainder of the thesis. We have also introduced some techniques for studying

systems of differential equations. We discussed two methods of converting systems

of differential equations into single pseudo-differential equations, which is useful

for the discussion of eigenvalue problems. We have also introduced a generali-

sation of the WKB approximation to certain well-behaved systems of differential

equations, which will be invaluable for the study of the asymptotic solutions of the
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differential equations that constitute one side of the ODE/IM correspondence.
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Figure 2: Dynkin diagrams of the simple Lie algebras. The labels on the vertices
correspond to the fundamental roots and weights related to that vertex.
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Figure 3: Directed graph associated with the A-matrix of the second fundamental rep-

resentation of A
(1)
4 .
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Chapter 5

On the A
(1)
r case of the massive

ODE/IM correspondence

5.1 Introduction

In this chapter, we will find features of an integrable quantum field theory asso-

ciated with the Lie algebra A
(1)
r arising from the differential equations associated

with a classical A
(1)
r Toda field theory. This work will be a direct generalisation

of the A
(1)
1 case of the massive ODE/IM correspondence studied in chapter 3. In

section 5.2 we follow the notation given in [37, 38] and define the differential equa-

tions of interest in terms of the generators of the Lie algebra A
(1)
r . In section 5.3

we work in particular representations of A
(1)
r and define the differential equations

of interest. We then use these differential equations to define Q-functions, and

derive certain useful properties of these equations in 5.4. The solutions of the

differential equations and the representations of A
(1)
r are then as in [38, 47] used

to define Ψ-systems, which imply functional relations on the Q-functions known

as Bethe ansatz equations. In section 5.6 these are then used to derive integrals

115



of motion associated with a massive integrable theory with A
(1)
r symmetry. In

section 5.7 the integrals of motion are used to exhibit the spectral equivalence

between Lastly, in section 5.8 the Q-functions are used to derive other functional

relations which arise in the study of integrable models.

5.2 Affine Toda field theory

5.2.1 Definitions

We begin with the affine Toda field theory Lagrangian associated with the affine

Lie algebra ĝ [37]

L = ∂wφ · ∂w̄φ+
m2

β2

r∑
i=0

ni exp(βαi · φ), (5.2.1)

where we work in light-cone coordinates w, w̄. φ is an r-component vector field

and m and β are constants. We also note the choice of signature to match [38, 45].

The associated equations of motion are

∂w∂w̄φ−
m2

β

r∑
i=0

niαi exp(βαi · φ) = 0. (5.2.2)

The differential equations that we are interested in are the modified affine Toda

field equations, related to the equations of motion (5.2.2) by a change of variables

w → z and a shift in the field φ:

w =

∫ z

p(z̃)1/h dz̃, φ→ φ− ρ∨

βh
log(p(z)p(z̄)). (5.2.3)

116



Applying this transformation to (5.2.2), using properties of the co-Weyl vector

ρ∨:

ρ∨ · αi = 1, ρ∨ · α0 = 1− h, (5.2.4)

we find the modified affine Toda field equations

∂z∂z̄φ−
m2

β

[
r∑
i=1

niαi exp(βαi · φ) + p(z)p(z̄)n0α0 exp(βα0 · φ)

]
= 0. (5.2.5)

We set p(z) = zhM − shM , where M is real and positive and s is complex. We

recover the modified sinh-Gordon equation (3.2.1) by setting r = 1 and substi-

tuting the roots of the Lie algebra A
(1)
1 in (5.2.5). The modified affine Toda field

equations (5.2.5) can be written as the compatibility condition

∂z̄A− ∂zĀ+ [A, Ā] = 0, (5.2.6)

where A and Ā are elements of a representation of the Lie algebra g, given by [38]:

A =
β

2
∂zφ ·H +meθ

[
r∑
i=1

√
n∨i e

βαi·φ/2Eαi + p(z)
√
n∨0 e

βα0·φ/2Eα0

]
,

(5.2.7)

Ā = −β
2
∂z̄φ ·H +me−θ

[
r∑
i=1

√
n∨i e

βαi·φ/2E−αi + p(z̄)
√
n∨0 e

βα0·φ/2E−α0

]
,

(5.2.8)

where we have introduced the spectral parameter θ. Note the dual Kac labels

n∨i = ni|αi|2
2

. The modified affine Toda field equations then have an associated
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Lax pair representation

(∂z + A)Ψ = 0, (5.2.9)

(∂z̄ + Ā)Ψ = 0. (5.2.10)

We will mainly consider only the first of these equations; henceforth we call this

the linear problem. We will be concerned with the asymptotics of the various

solutions of this set of differential equations and the relationships between them.

It will be useful to define polar co-ordinates z = |z|eiϕ. The linear problem

(5.2.9) is then invariant under a Symanzik rotation

Ωk : ϕ→ ϕ+
2πk

hM
, θ → θ − 2πik

hM
, s→ se

2πik
hM , (5.2.11)

for any integer k. The linear problem (5.2.9) is also invariant under a gauge

transformation. Set

Ã = UAU−1 + U∂zU
−1, Ψ̃ = UΨ, (5.2.12)

for an arbitrary matrix U . Then, using ∂z(UU
−1) = U∂zU

−1 + ∂zUU
−1 = 0, we

find

(∂z + Ã)Ψ̃ = U(∂z + A)Ψ = 0, (5.2.13)

hence the linear problem is unchanged. It is useful to set U = e−βH·φ/2, where

the exponential of an operator X was defined in (3.2.11). Gauge transforming A

using this matrix U has the effect of removing the inconvenient exponential terms
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from A:

A→ Ã = β∂zφ ·H +meθ

[
r∑
i=1

√
n∨i Eαi + p(z)

√
n∨0Eα0

]
(5.2.14)

where the derivation of (5.2.14) uses the identity (3.2.13). The conjugate linear

problem (5.2.10) is itself invariant under a similar gauge transformation, with

U = eβH·φ/2.

5.2.2 Asymptotics of φ

To define the solutions to the linear problem (5.2.9) uniquely, we will need to

specify constraints on the solution φ(|z|, ϕ) of the modified affine Toda field equa-

tions (5.2.5). Our required solution for the modified affine Toda field equations

exists only on the subspace of (z, z̄) where z = z̄. Following [37] we impose the

following:

1. φ(|z|, ϕ) should be real and finite everywhere except at |z| = 0.

2. Periodicity:

φ

(
|z|, ϕ+

2π

hM

)
= φ(|z|, ϕ). (5.2.15)

3. Large-|z| asymptotics:

φ(|z|, ϕ) =
2Mρ∨

β
log |z|+ o(1) as |z| → ∞. (5.2.16)

4. Small-|z| asymptotics:

φ(|z|, ϕ) = 2g log |z|+O(1) as |z| → 0. (5.2.17)
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We find the asymptotics in the limit |z| → 0 of the solution to (5.2.5) satisfying

the above constraints. We substitute the ansatz

φ(z, z̄) = g log(zz̄) + f(z, z̄) (5.2.18)

into the modified affine Toda field equations (5.2.5). The result is an equation for

f :

zz̄∂z∂z̄f =
m2

β

r∑
i=1

niαi(zz̄)βαi·g+1eβαi·f (5.2.19)

+
m2

β
n0α0(zhM − shM)(z̄hM − shM)(zz̄)βα0·g+1eβα0·f .

To ensure that the leading order asymptotics (5.2.18) are preserved in the limit

|z| → 0, we require a constraint on g:

βαµ · g + 1 > 0, µ = 0, . . . , r. (5.2.20)

To aid further calculations, we define some more concise notation. Let

D = zz̄∂z∂z̄, (5.2.21)

uµ = (zz̄)βαµ·g+1, (5.2.22)

Bµ =
m2

β
nµαµ, (µ = 0, 1, . . . , r) (5.2.23)

v = zhM , (5.2.24)

v̄ = z̄hM , (5.2.25)

S = shM , (5.2.26)
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so (5.2.19) becomes

Df =
r∑
i=1

Biuie
βαi·f +B0u0(v − S)(v̄ − S)eβα0·f . (5.2.27)

We then expand f as a power series in the variables u0, u1, . . . , ur, v, v̄:

f(uµ, v, v̄) =
∞∑

~a ∈ Nr+1
0

b=0, c=0

F (~a; b, c)~u~avbv̄c (5.2.28)

where we have defined the multi-index ~a = (a0, a1, . . . , ar) where ai = 0, 1, . . .

and the compact notation ~u~a = ua00 u
a1
1 . . . uarr . Noting that D acts as a dilation

operator on powers of z and z̄:

D(zpz̄q) = pqzpz̄q, (5.2.29)

it is therefore straightforward to substitute (5.2.28) into (5.2.27):

∞∑
~a,b,c

(bhM +
r∑

µ=0

(βαµ · g + 1)aµ)(chM +
r∑

µ=0

(βαµ · g + 1)aµ)F (~a; b, c)~u~avbv̄c

=
r∑
i=1

Biui exp

∑
~a,b,c

βαi · F (~a; b, c)~u~avbv̄c


+B0u0(v − S)(v̄ − S) exp

∑
~a,b,c

βα0 · F (~a; b, c)~u~avbv̄c

 (5.2.30)

Expanding this expression term by term in the powers ~u~avbv̄c yields a set of

recurrence relations for the constants F (~a, b, c). In this way, the asymptotics of φ

can in principle be calculated to arbitrarily high orders. We will check that the

first-order terms match those in [37].

We notice that D(vk) = D(v̄k) = 0 and there are no O(vk) or O(v̄k) terms

on the right-hand side of (5.2.30). This means that the values F (~0; k, 0) and
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F (~0; 0, k) for k ≥ 0 are not defined by the recurrence relations for F . They arise

from the field redefinition

φ→ φ− ρ∨

βh
log(p(z)p(z̄)), (5.2.31)

and we expand this as a function of v and v̄ to find the constants F (~0; k, 0) and

F (~0; 0, k):

F (~0; k, 0) = F (~0; 0, k) =
ρ∨

βhkshM
, k ∈ Z≥0. (5.2.32)

This power series expansion of (5.2.31) leaves behind stray constants which are

absorbed into F (~0; 0, 0) = φ(0).

All the other constants F (~a; b, c) are defined by recurrence relations found by

expanding (5.2.30) term-by-term. We denote ~a = a0e0 + a1e1 + · · · + arer where

{ej}rj=0 is the standard orthonormal basis. By considering the u0 term in (5.2.30)

we find

F (e0; 0, 0) =
B0S

2eβα0·F (~0;0,0)

(βα0 · g + 1)2
=
m2s2hMn0α0e

βα0·φ(0)

β(βα0 · g + 1)2
. (5.2.33)

Similarly, considering the ui term for i = 1, . . . , r we find

F (ei; 0, 0) =
Bie

βαi·F (~0;0,0)

(βαi · g + 1)2
=
m2niαie

βαi·φ(0)

β(βαi · g + 1)2
. (5.2.34)

Putting it all together, the first terms of the small-|z| expansion of our chosen

solution to (5.2.5) is

φ ∼ g log zz̄ + φ(0) +
ρ∨

βh

∞∑
k=1

zhkM + z̄hkM

kshkM
(5.2.35)

+
m2s2hMn0α0e

βα0·φ(0)

β(βα0 · g + 1)2
(zz̄)βα0·g+1 +

r∑
i=1

m2niαie
βαi·φ(0)

β(βαi · g + 1)2
(zz̄)βαi·g+1 + . . .

122



This asymptotic expansion matches those found in [37, 45, 2]. With the formalism

above, we can compute arbitrarily high orders of the asymptotic expansion by solv-

ing the recurrence relations given by (5.2.30). This rapidly becomes difficult, as

the exponentials of multinomial series in (5.2.30) produce a plethora of terms. To

second-order, there are ten types of terms to calculate in the power series (5.2.28);

those corresponding to the powers u2
0, u0ui, u0v, u0v̄, uiuj, uiv, uiv̄, v

2, vv̄, v̄2. To

demonstrate the calculation, we calculate the ’cross term’ F (e0 + ei; 0, 0).

The O(u0ui) term of the left-hand side of (5.2.30) is

(βα0 · g + 1)(βαi · g + 1)F (e0 + ei; 0, 0), (5.2.36)

and the O(u0ui) term of the right-hand side is

Bie
βαi·φ(0)βαi · F (e0; 0, 0) +B0S

2eβαi·φ
(0)

βα0 · F (ei; 0, 0). (5.2.37)

We then set these expressions equal to one another, substitute in our expressions

for F (e0; 0, 0) and F (ei; 0, 0) (5.2.33) and (5.2.34), and then solve for F (e0 +

ei; 0, 0):

F (e0 + ei; 0, 0) =
m4

β
s2hMeβ(α0+αi)·φ(0)n0n1

·
(

αi(αi · α0)

(βα0 · g + 1)3(βαi · g + 1)
+

α0(α0 · αi)
(βα0 · g + 1)(βαi · g + 1)3

)
. (5.2.38)

A full asymptotic expansion of φ must contain many such cross terms.
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5.3 A
(1)
r linear problems

5.3.1 Representations of A
(1)
r

The results of the previous section are valid for the affine Toda field theory as-

sociated with any affine Lie algebra ĝ. To make further progress, we consider

a particular case of the modified affine Toda field equations, corresponding to a

choice of Lie algebra and a representation of that algebra. For the rest of this

section, we will be concerned with certain representations of the affine Lie algebra

A
(1)
r . To construct these representations, we begin by explicitly constructing the

smallest non-trivial representation of Ar, L(ω1). This is the first of the fundamen-

tal representations of Ar, with highest weight ω1. We then define the associated

evaluation representations of A
(1)
r , following section 4.2.2. The representations of

interest will then be wedge products of particular evaluation representations, as

defined in section 4.2.1.

The representation L(ω1) is (r + 1)-dimensional, and with the conventions in

[37], the weights λ
(1)
i satisfy

λ
(1)
1 = ω1, (5.3.1)

λ
(1)
i+1 = λ

(1)
i − αi, (i = 1, . . . , r). (5.3.2)

We choose an orthonormal basis {e(1)
j }rj=0 for the vector space associated with

L(ω1). The generators of the Lie algebra act on this vector space in the following
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way:

Eαie
(1)
j = δi,je

(1)
j−1, (5.3.3)

E−αie
(1)
j = δi−1,je

(1)
j+1, (5.3.4)

Hie
(1)
j = [Eαi , E−αi ]e

(1)
j = δi,j+1e

(1)
j − δi,je

(1)
j , (5.3.5)

Eα0e
(1)
j = δ0,je

(1)
r , (5.3.6)

where i = 1, . . . , r. The weight spaces of L(ω1) are one-dimensional, and for

each weight λ
(1)
j+1 (where j = 0, . . . , r) the weight space is spanned by the vector

e
(1)
j , with the normalisations of these vectors fixed by the commutation relations

(5.3.3)-(5.3.6).

The representation L(ω1) naturally extends to an evaluation representation of

A
(1)
r , as detailed in section 4.2.2. As in that section, denote L(ω1)k to be the eval-

uation representation with ζ = e2πik. We will only be concerned with the cases

where k is an integer or a half-integer. In the integer case, the evaluation represen-

tation is equivalent to the original representation of Ar; in the half-integer case,

the evaluation representation has the effect of changing the sign of the generator

Eα0 → −Eα0 .

As described in 4.2.1, we can construct larger representations of A
(1)
r by taking

the wedge product of several copies of L(ω1)k (for various values of k.) The r

representations with which we shall be concerned with are then given by

V (a) =
a∧
i=1

L(ω1)i−a+1
2
. (5.3.7)
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For each of these representations we may write the gauge-transformed linear prob-

lem

(∂z + Ã)Ψ̃ = 0, (5.3.8)

in terms of the matrices Hi, Eα. We recall Ã is given by

Ã = β∂zφ ·H +meθ

[
r∑
i=1

Eαi + p(z)Eα0

]
. (5.3.9)

(We note for A
(1)
r , n∨i = ni = 1.) The linear problem (5.3.8) may then be written

as a system of differential equations. To demonstrate this, we choose the represen-

tation V (1) = L(ω1), and then set the vector Ψ̃ = ψ̃1e
(1)
0 + ψ̃2e

(1)
1 + · · ·+ ψ̃r+1e

(1)
r .

We then write the equation (5.3.8) in its components:

D(λ
(1)
1 )ψ̃1 +meθψ̃2 = 0, (5.3.10)

D(λ
(1)
2 )ψ̃2 +meθψ̃3 = 0, (5.3.11)

... (5.3.12)

D(λ(1)
r )ψ̃r +meθψ̃r+1 = 0, (5.3.13)

D(λ
(1)
r+1)ψ̃r+1 +meθp(z)ψ̃1 = 0, (5.3.14)

where the differential operator D is defined as

D(λ) = ∂z + βλ · ∂zφ. (5.3.15)

Following [21, 37], we combine the equations (5.3.10)-(5.3.14) into a single differ-

ential equation for ψ1. We apply the operators D(λ
(1)
2 ), D(λ

(1)
3 ), . . . , D(λ

(1)
r+1) (in

that order) to both sides of (5.3.10), and use the other equations (5.3.11)-(5.3.14)
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to simplify the resulting expression. The result is

D(λ
(1)
r+1)D(λ(1)

r ) . . . D(λ
(1)
1 )ψ̃1 + (−1)r(meθ)r+1p(z)ψ̃1 = 0. (5.3.16)

This differential equation is the generalisation of (3.3.21) to the affine Lie algebra

A
(1)
r . As in section 3.3.3, we recover the massless analogue of (5.3.16) by taking

the conformal limit, making the change of variables

x = (meθ)
1

M+1 z, E = shM(meθ)
hM
M+1 , (5.3.17)

x̄ = (me−θ)
1

M+1 z̄, Ē = shM(me−θ)
hM
M+1 (5.3.18)

(where h = r + 1) and send z, z̄ → 0, θ → ∞ so that x and E remain finite. In

this limit, the operator D(λ) becomes

D(λ)→ Dx(λ) =

(
E

s

) 1
hM
(
∂x +

βλ · g
x

)
, (5.3.19)

and (5.3.16) becomes

((−1)rD(g) + p(x,E)) ψ̃1 = 0, (5.3.20)

where

Dr(g) = Dx(λ
(1)
r+1) ·Dx(λ

(1)
1 ), p(x,E) = xhM − E. (5.3.21)

The equation (5.3.20) and the properties of its solutions are the main focus of [21].

We could proceed with the analysis of the massive analogue (5.3.16) of this equa-

tion, but it is easier to generalise the procedure to more general representations

V (a) by considering the associated linear systems (5.2.9)-(5.2.10) directly, using

the techniques we developed in chapter 4.3.
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5.3.2 V (1) linear problem asymptotics

We will be interested in solutions of the original linear problem (5.2.9) with par-

ticular small-|z| and large-|z| asymptotics. To this end, we will now consider the

more straightforward gauge-transformed system of equations (5.3.8) in the rep-

resentation V (1). We briefly classify the solutions of this system of equations in

the small-|z| and large-|z| limits, and then undo the gauge transform (5.2.12) by

applying the matrix U−1 to Ψ̃, where U = e−βφ·H/2.

Small-|z| asymptotics

In the representation V (1) the matrix Ã is given by

Ã =



βλ
(1)
1 · ∂zφ meθ 0 · · · 0 0

0 βλ
(1)
2 · ∂zφ meθ · · · 0 0

0 0 βλ
(1)
3 · ∂zφ . . . 0 0

...
...

...
. . .

...
...

0 0 0 · · · βλ
(1)
r · ∂zφ meθ

meθp(z) 0 0 · · · 0 βλ
(1)
r+1 · ∂zφ


.

(5.3.22)

In the limit |z| → 0, we recall from (5.2.35) the leading order behaviour of φ in

the small-|z| limit φ ∼ g log zz̄. We consider Ã in the small-|z| limit, substituting

the small-|z| behaviour of φ. The terms proportional to meθ become irrelevant in
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this limit and so the matrix Ã becomes diagonal:

Ã ∼



βλ
(1)
1 ·g
z

0 · · · 0 0

0
βλ

(1)
2 ·g
z

· · · 0 0

...
...

. . .
...

...

0 0 · · · βλ
(1)
r ·g
z

0

0 0 · · · 0
βλ

(1)
r+1·g
z


(5.3.23)

The system of equations (∂z + Ã)Ψ̃ = 0 then decouples in the small-|z| limit

and is easily solved component-by-component:

∂zψ̃i +
βλ

(1)
i · g
z

ψ̃i = 0 (5.3.24)

=⇒ ψ̃i = ciz
−βλ(1)i ·g, (5.3.25)

where ci+1 are arbitrary constants. Choosing a standard orthonomal basis {e(1)
i }ri=0

for the space V (1) we then have a basis of solutions {Ξ̃i}ri=0 to the system of equa-

tions (∂z + Ã)Ψ̃ = 0:

Ξ̃i ∼ e
(1)
i ci+1z

−βλ(1)i+1·g as |z| → 0. (5.3.26)
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We now apply the matrix U−1 = eβφ·H/2 to these solutions in the small-z limit.

Ξi = U−1Ξ̃i (5.3.27)

= eβφ·H/2e
(1)
i ci+1z

−βλ(1)i+1·g (5.3.28)

= eβφ·λ
(1)
i+1/2e

(1)
i ci+1z

−βλ(1)i+1·g (5.3.29)

∼ (zz̄)βλ
(1)
i+1·g/2e

(1)
i ci+1z

−βλ(1)i+1·g (5.3.30)

∼
( z̄
z

)βλ(1)i+1·g/2
e

(1)
i ci+1 (5.3.31)

∼ e−iβλ
(1)
i+1·gϕe

(1)
i ci+1 (5.3.32)

∼ e−(θ+iϕ)βλ
(1)
i+1·ge

(1)
i , as |z| → 0. (5.3.33)

where we use polar co-ordinates z = |z|eiϕ and choose the constants ci+1 =

e−θβλ
(1)
i+1·g. This is to ensure the solutions Ξi are invariant under Symanzik ro-

tation (5.2.11).

Large-|z| asymptotics

We now consider the linear problem (5.3.8) in the limit |z| → ∞. We recall the

large-|z| behaviour of φ, which we imposed in equation (5.2.16):

φ ∼ Mρ∨

β
log zz̄ + o(1) as |z| → ∞. (5.3.34)
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From this, it is easy to see ∂zφ ∼ O(1/z) and is therefore dominated in the large-|z|

limit by the meθ and meθp(z). The matrix Ã then becomes

Ã ∼



0 meθ 0 · · · 0 0

0 0 meθ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 meθ

meθp(z) 0 0 · · · 0 0


. (5.3.35)

We then apply a generalisation of the WKB approximation [13] to systems of

differential equations, adapted from [49]. Full details are given in section 4.3.2;

here we will state the results of applying the generalised WKB approximation to

the system (∂z + Ã)Ψ̃ = 0.

In the large-|z| limit, there are r+ 1 = h linearly independent solutions of the

system (∂z + Ã)Ψ̃ = 0, with asymptotic behaviour

(
r∑
j=0

ωjzM(j−r/2)e
(1)
j

)
exp

(
−ωme

θzM+1

M + 1

)
, (5.3.36)

where ωr+1 = 1. A particularly important member of this set of solutions is

the solution that decays to zero most rapidly on the positive real axis: this is

the solution (5.3.36) with ω = 1. Denote this subdominant solution Ψ̃(1). We

then undo the effect of the gauge transformation (5.2.12) by multiplying Ψ̃(1) by

U−1 = eβφ·H/2. Using the large-|z| behaviour of φ (5.2.16) the matrix U−1 in the

large-|z| limit is given by

U−1 ∼ (zz̄)Mρ∨·H/2. (5.3.37)

We work in an orthonormal basis {e(1)
i }ri=0 of V (1) with Hi+1e

(1)
i = (λ

(1)
i+1)i e

(1).
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The effect of U−1 on this basis is then

U−1e
(1)
i = (zz̄)Mρ∨·λ(1)i+1/2e

(1)
i . (5.3.38)

To progress, we must compute the dot products of the co-Weyl vector ρ∨ with the

weights λ
(1)
i+1. From the definition of the co-Weyl vector for Ar given in section 4.2.2

and the definitions of the weights λ
(1)
i+1 of the representation V (1) (5.3.1)-(5.3.2) it

is straightforward to compute

ρ∨ · λ(1)
i+1 =

r

2
− i. (5.3.39)

The elements of the matrix U−1 in the basis {e(1)
i }ri=0 are then given by

U−1
ij ∼

(
(zz̄)Mρ∨·H/2

)
ij

= (zz̄)
M
2

( r
2
−j)δij, i, j = 0, . . . , r. (5.3.40)

We now apply this matrix to the subdominant solution of the gauge-transformed

linear problem Ψ̃(1):

U−1Ψ̃(1) ∼

(
r∑
j=0

(z/z̄)(2j−r)M/4e
(1)
j

)
exp

(
−me

θzM+1

M + 1

)
. (5.3.41)

The large-|z| asymptotics of the conjugate linear problem (5.2.10) can also be

analysed in a similar manner to the above. To ensure compatibility with this

calculation (5.2.10) we premultiply U−1Ψ̃(1) by a suitable z̄-dependent function

(at this stage treating z and z̄ as independent complex co-ordinates as discussed
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at the beginning of section 3.2):

Ψ(1) = exp

(
− meθ

M + 1
z̄M+1

)
U−1Ψ̃(1),

=⇒ Ψ(1) ∼

(
r∑
j=0

eiMϕ(j−r/2)e
(1)
j

)
exp

(
−2|z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
,

(5.3.42)

where we have subsequently restricted Ψ(1) to the subset of C2 where z̄ = z∗ by

choosing polar co-ordinates z = |z|eiϕ, z̄ = |z|e−iϕ.

5.3.3 V (a) linear problem asymptotics

We now construct the asymptotic solutions to the V (a) linear problem from the

asymptotic solutions to the V (1) linear problem. We recall that the representation

V (a) of A
(1)
r is constructed from wedge products of copies of the representation

V (1):

V (a) =
a∧
i=1

V
(1)

i−a+1
2

, a = 1, . . . , r. (5.3.43)

The representations V
(1)
k correspond to different evaluation representations of A

(1)
r .

These are related to V
(1)

0 by applying a Symanzik rotation (5.2.11) Ωk to the rele-

vant linear problem. The solutions of this new linear problem are then Symanzik

rotations of the original solutions. Once these are computed, finding the asymp-

totics of the solutions of the V (a) is then reduced to taking the wedge product of

the correct Symanzik rotated V (1) solutions.
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Small-|z| asymptotics

We recall the small-|z| solutions for the V (1) linear problem:

Ξ
(1)
i ∼ e−(θ+iϕ)βλ

(1)
i+1·ge

(1)
i , (i = 0, . . . , r). (5.3.44)

These solutions were normalised to be invariant under any Symanzik rotation.

The calculation of the small-|z| asymptotics of the V (a) linear problem is then

straightforward; we simply take the wedge product of a copies of (5.3.44):

Ξ
(a)
i1i2...ia

= Ξ
(1)
i1
∧ Ξ

(1)
i2
∧ · · · ∧ Ξ

(1)
ia

(5.3.45)

∼ exp
(
−(θ + iϕ)β(λ

(1)
i1+1 + λ

(1)
i2+1 + · · ·+ λ

(1)
ia+1) · g

)
e

(1)
i1
∧ e

(1)
i2
∧ · · · ∧ e

(1)
ia
,

= exp
(
−(θ + iϕ)βλ

(a)
I+1 · g

)
e

(a)
I , (5.3.46)

where in the last line we represent the ordered subset {0 ≤ i1 < i2 < · · · < ia ≤ r}

of {0, 1, . . . , r} by the integer I, where I = 0, 1, . . . ,
(
r+1
a

)
−1. This integer is chosen

using the standard lexicographic ordering of subsets:

{0, 1, . . . , a− 2, a− 1} → I = 0,

{0, 1, . . . , a− 2, a} → I = 1,

...

{r − a+ 1, . . . , r} → I =

(
r + 1

a

)
− 1. (5.3.47)

We also have chosen a basis for V (a), denoted with the same ordering:

e
(1)
i1
∧ e

(1)
i2
∧ · · · ∧ e

(1)
ia

= e
(a)
I . (5.3.48)
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The weights of the representation V (a) are also labelled the same way:

λ
(a)
I+1 = λ

(1)
i1+1 + λ

(1)
i2+1 + · · ·+ λ

(1)
ia+1. (5.3.49)

As with the small-|z| solutions to the V (1) linear problem, the small-|z| solutions

(5.3.45) to the V (a) linear problem form a basis of the vector space V (a).

Large-|z| asymptotics

As with the small-|z| solutions, we begin by recalling the large-|z| solutions for

the V (1) linear problem:

Ψ(1) ∼

(
r∑
j=0

eiMϕ(j−r/2)e
(1)
j

)
exp

(
−2|z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
(5.3.50)

It is easier, however, to work with the gauge-transformed solution

Ψ̃(1) = UΨ ∼

(
r∑
j=0

zM(j−r/2)e
(1)
j

)
exp

(
−me

θzM+1

M + 1

)
. (5.3.51)

Working with this gauge-transformed solution does not affect any of the forthcom-

ing calculations as the matrix U in the large-|z| limit is invariant under Symanzik

rotation (5.2.11):

U ∼ (zz̄)Mρ∨·H/2 → (ze
2πik
hM z̄e−

2πik
hM )Mρ∨·H/2 = (zz̄)Mρ∨·H/2. (5.3.52)

As U is diagonal in the representation V (1), U−1 remains diagonal in the new

representations V (a). At the end of our calculation, just as with the earlier defined

V (1) case, we then multiply our result by U−1 to find the subdominant asymptotic

solution Ψ(a) to the V (a) linear problem in the large-|z| limit.
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The wedge product definition of the representations V (a) implies the subdom-

inant solution Ψ̃(a) is the wedge product of certain Symanzik rotated solutions of

the V (1) linear problem:

Ψ̃(a) =
a∧
i=1

Ψ̃i− 1+a
2
. (5.3.53)

The asymptotics of Ψ̃(1) after a Symanzik rotation are given by

Ψ̃
(1)
k = ΩkΨ̃

(1) ∼

(
r∑
j=0

e
2πijk
h zM(j−r/2)e

(1)
j

)
exp

(
−me

2πik
h eθzM+1

M + 1

)
. (5.3.54)

We substitute this expression into (5.3.53):

Ψ̃(a) = Ψ̃ 1−a
2
∧ Ψ̃ 3−a

2
∧ · · · ∧ Ψ̃a−1

2
(5.3.55)

∼ exp

(
−(ω

1−a
2 + · · ·+ ω

a−1
2 )

meθzM+1

M + 1

)
·

(
r∑

j1=0

ω( 1−a
2 )j1zM(j1−r/2)e

(1)
j1

)

∧

(
r∑

j2=0

ω( 3−a
2 )j2zM(j2−r/2)e

(1)
j2

)
∧ · · · ∧

(
r∑

ja=0

ω(a−1
2 )jazM(ja−r/2)e

(1)
ja

)
,

where ω = e2πi/h. The prefactor contains a geometric series which we simplify

ω
1−a
2 + · · ·+ ω

a−1
2 = ω

1−a
2

(
1 + ω + ω2 + · · ·+ ωa−1

)
,

=
ω

1−a
2 (1− ωa)
1− ω

,

=
sin πa

h

sin π
h

. (5.3.56)

The large-|z| asymptotics of the gauge-transformed solution Ψ̃(a) are then given
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by

Ψ̃(a) ∼ exp

(
−

sin πa
h

sin π
h

meθzM+1

M + 1

)
·

(
r∑

j1,j2,...,ja=0

ω
1−a
2
j1+···+a−1

2
jazM(j1+···+ja−ar/2)e

(1)
j1
∧ · · · ∧ e

(1)
ja

)
. (5.3.57)

As discussed previously, we finally undo the gauge transformation by acting with

U−1 on this solution. As with the V (1) case we premultiply by a z̄-dependent

factor to ensure compatibility with the conjugate linear problem (5.2.10):

Ψ(a) ∼ exp

(
−

sin πa
h

sin π
h

· 2|z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
·

(
r∑

j1,j2,...,ja=0

ω
1−a
2
j1+···+a−1

2
jaeiϕM(j1+···+ja−ar/2)e

(1)
j1
∧ · · · ∧ e

(1)
ja

)
. (5.3.58)

As we have seen, the small-|z| solutions for V (a), Ξ
(a)
J (where we relabel the

solutions with a new lexicographical index J which runs from 0 to dimV (a) − 1)

form a basis of the solution space in the same way as for V (1). The suitably defined

subdominant large-|z| solution Ψ(a) may then be written in this basis:

Ψ(a) =
dimV (a)−1∑

J=0

Q
(a)
J (θ)Ξ

(a)
J . (5.3.59)

These Q-functions will be the main objects of study for the rest of this chapter.

Information about the quantum integrable associated with the affine Toda field

theory associated with the Lie algebra A
(1)
r symmetry is encoded in the various

properties of these Q-functions.
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5.4 Q-functions

Just as for the A
(1)
1 case in section 3.4, we now demonstrate some useful properties

of the A
(1)
r Q-functions. The Q-functions satisfy a quasiperiodicity property and

particular determinants of Q-functions are constant (the quantum Wronskian).

We also give an expression for the asymptotics for particularQ-functions, following

[21, 45].

5.4.1 Quasiperiodicity

For a given representation V (a), we define the operator S = e
2πi
h
ρ∨·H , which is a

diagonal operator with respect to a basis of weight vectors

S = e
2πi
h
ρ∨·H = diag

(
e

2πi
h
ρ∨·λ(a)1 , e

2πi
h
ρ∨·λ(a)2 , . . . , e

2πi
h
ρ∨·λ(a)

dimV (a)

)
. (5.4.1)

We will prove the following identities:

SΞ
(a)
J

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
= exp

(
2πi

h
(ρ∨ + βg) · λ(a)

J+1

)
Ξ

(a)
J (ϕ| θ) ,

(5.4.2)

SΨ(a)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
= Ψ(a) (ϕ| θ) . (5.4.3)

Proof of (5.4.2)

We begin by recalling the invariance of Ξ(a) under a Symanzik rotation:

Ξ
(a)
J

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
= Ξ

(a)
J (ϕ| θ − 2πi

h
). (5.4.4)
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Applying the matrix S to the right hand side of this expression and using the

asymptotic expansion of Ξ
(a)
J (5.3.45):

SΞ
(a)
J (ϕ|θ − 2πi

h
) = e

2πi
h
ρ∨·HΞ

(a)
J (ϕ|θ − 2πi

h
), (5.4.5)

∼ e
2πi
h
ρ∨·λ(a)J+1e−(θ− 2πi

h
+iϕ)βλ

(a)
J+1·ge

(a)
J , (5.4.6)

∼ e
2πi
h

(ρ∨+βg)·λ(a)J+1e−(θ+iϕ)βλ
(a)
J+1·ge

(a)
J , (5.4.7)

∼ e
2πi
h

(ρ∨+βg)·λ(a)J+1Ξ
(a)
J (ϕ|θ), (5.4.8)

as required.

Proof of (5.4.3)

We apply S to the vector part of the twisted large-|z| solution Ψ(a) (5.3.58), noting

that the exponential prefactor is invariant under S:

e
2πi
h
ρ∨·HΨ(a)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
(5.4.9)

=
r∑

j1,j2,...,ja=0

(
ω

1−a
2
j1+···+a−1

2
jaeiϕM(j1+···+ja−ar/2)

·e
2πi
h

(j1+···+ja−ar/2)+ρ∨·λ(a)j1j2...ja

)
e

(a)
J

To proceed, we must evaluate expressions of the form ρ∨ ·λ(a)
j1...ja

; the dot products

of the co-Weyl vector ρ∨ with the weights of the representation V (a). We recall

the weights of the representation V (a) are given by sums of a distinct weights of

V (1):

λ
(a)
J+1 = λ

(1)
j1+1 + λ

(1)
j2+1 + · · ·+ λ

(1)
ja+1, (0 ≤ jk ≤ r, J = 0, . . . , dimV (a) − 1).

(5.4.10)
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We also recall the result of taking the dot product of ρ∨ with the weights of V (1):

ρ∨ · λ(1)
i+1 =

r

2
− i, (0 ≤ i ≤ r). (5.4.11)

The dot product ρ∨ · λ(a)
J+1 is then

ρ∨ · λ(a)
J+1 =

ar

2
− j1 − . . .− ja, (5.4.12)

which we substitute into (5.4.9) to find the required result:

SΨ(a)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
=

r∑
j1,j2,...,ja=0

(
ω

1−a
2
j1+···+a−1

2
jaeiϕM(j1+...+ja−ar/2)

)
e

(1)
j1
∧ · · · ∧ e

(1)
ja
,

= Ψ(a)(ϕ|θ). (5.4.13)

We will also require the main result of section 4.2.1, namely that the sum of the

weights λ
(a)
J of any finite-dimensional representation of a Lie algebra is zero:

dimV (a)∑
J=1

λ
(a)
J = 0. (5.4.14)

From the form of S this immediately implies detS = 1. We also invoke a deter-

minant identity for any set of n-dimensional vectors {vi}ni=1:

det (Sv1, . . . , Svn) = detS det (v1, . . . ,vn) , (5.4.15)

where the notation det (v1, . . . ,vn) represents the determinant of the matrix with

columns vi.

We now apply all these various results to a proof of a quasiperiodicity property
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for the functions Q
(a)
j (θ). Recall the definitions of the Q-functions:

Ψ(a) =
dimV (a)−1∑

K=0

Q
(a)
K (θ)Ξ

(a)
K . (5.4.16)

We isolate a Q-function Q
(a)
J (θ) by taking determinants of (5.4.16):

det
(

Ξ
(a)
0 , . . . ,Ξ

(a)
J−1,Ψ

(a),Ξ
(a)
J+1, . . . ,Ξ

(a)

dimV (a)−1

)
= Q

(a)
J (θ) det

(
Ξ

(a)
0 , . . . ,Ξ

(a)

dimV (a)−1

)
= Q

(a)
J (θ), (5.4.17)

where we use the definition of the small-|z| asymptotics Ξ(a) and (5.4.14) to find

det
(

Ξ
(a)
0 , . . . ,Ξ

(a)

dimV (a)−1

)
= 1.

We now use this determinant form of Q
(a)
J (θ), the determinant identity (5.4.15)

and the identities (5.4.2)-(5.4.3) to derive our desired quasiperiodicity result:

Q
(a)
J (θ) = det

(
Ξ

(a)
0 (ϕ|θ), . . . ,Ξ(a)

J−1(ϕ|θ),Ψ(a)(ϕ|θ),Ξ(a)
J+1(ϕ|θ), . . . ,Ξ(a)

dimV (a)−1
(ϕ|θ)

)
= det

(
e−

2πi
h

(βg+ρ∨)·λ(a)1 SΞ
(a)
0

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
, . . . ,

e−
2πi
h

(βg+ρ∨)·λ(a)J SΞ
(a)
J−1

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
,

SΨ(a)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
,

e−
2πi
h

(βg+ρ∨)·λ(a)J+2SΞ
(a)
J+1

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
, . . . ,

e
− 2πi

h
(βg+ρ∨)·λ(a)

dimV (a)SΞ
(a)

dimV (a)−1

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

))
= exp

(
2πi

h
(βg + ρ∨) · λ(a)

J+1

)
Q

(a)
J

(
θ − 2πi

hM
− 2πi

h

)
,
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where in the last line we have used (5.4.14). A shift in θ gives the desired quasiperi-

odicity result for the Q-functions

Q
(a)
J

(
θ +

2πi

hM
+

2πi

h

)
= exp

(
2πi

h
(βg + ρ∨) · λ(a)

J+1

)
Q

(a)
J (θ), (5.4.18)

which matches the quasiperiodicity relation in [38]. The quasiperiodicity result

for Q
(a)
0 (θ) will be particularly important for the remainder of the chapter

Q
(a)
0

(
θ +

2πi

hM
+

2πi

h

)
= exp

(
−2πi

h
γa

)
Q

(a)
0 (θ), (5.4.19)

where

γa = −(ρ∨ + βg) · λ(a)
1 . (5.4.20)

5.4.2 Asymptotics of Q
(a)
0 (θ) as Re θ → ±∞

We next require an asymptotic expansion for Q
(a)
0 (θ) in the limits Re θ → ±∞.

We begin with the determinant definition of Q
(a)
0 (θ) which follows from (5.4.16)

and (5.4.15)

Q
(a)
0 (θ) = det

(
Ψ̃(a), Ξ̃

(a)
1 , . . . , Ξ̃

(a)

dimV (a)−1

)
. (5.4.21)

We consider the solution Ψ̃(a) to the gauge-transformed linear problem (5.3.8) in

the limit Re θ → ∞. Using the WKB approximation discussed in chapter 4.3,

we choose a solution of the gauge-transformed linear problem in the Re θ → +∞
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limit

Ψ(a) ∼ v
(a)
0 (p(z)) (5.4.22)

· exp

(
−

sin πa
h

sin π
h

meθ
∫ z

∞

{
(thM − shM)1/h − tM

}
dt−

sin πa
h

sin π
h

meθzM+1

M + 1

)
,

where v
(a)
0 (p(z)) is the eigenvector of Ã with eigenvalue meθp(z)1/h, with the

expansion in the basis {e(1)
j1
∧ · · · ∧ e

(1)
ja
} of V (a)

v
(a)
0 (p(z)) =

r∑
j1,j2,...,ja=0

ω
1−a
2
j1+···+a−1

2
jap(z)(j1+···+ja−ar/2)/he

(1)
j1
∧ . . . e(1)

ja
. (5.4.23)

The large-θ solution is chosen to match the required subdominant behaviour for

Ψ(a) in the large-|z| limit

Ψ(a) ∼ v
(a)
0 (zhM) exp

(
−

sin πa
h

sin π
h

meθzM+1

M + 1

)
, as |z| → ∞. (5.4.24)

In the small-|z| limit, Ψ(a) must be a linear combination of the small-|z| solutions

Ξ̃
(a)
J of (5.3.8). The solutions Ξ̃

(a)
J have the asymptotic behaviour

Ξ̃
(a)
J ∼ z−βλ

(a)
J ·ge

(a)
J (5.4.25)

which is independent of θ. This implies that the coefficients cJ of v
(a)
0 (p(z)) in the

small-|z| basis of solutions Ξ̃
(a)
J

v
(a)
0 (p(z)) ∼

dimV (a)−1∑
J=0

cJ Ξ̃
(a)
J , (5.4.26)

are independent of θ. Combining (5.4.26) with (5.4.21) gives an asymptotic ex-

pression for Q
(a)
0 (θ) in the limit Re θ → +∞

Q
(a)
0 (θ) ∼ c

(a)
0 exp

(
meθ

∫ ∞
0

{
(thM − shM)1/h − tM

}
dt

)
. (5.4.27)
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The integral in (5.4.27) is evaluated using (3.4.26),

∫ ∞
0

{
(thM − shM)1/h − tM

}
dt = (−1)

M+1
hM sM+1τ(h,M). (5.4.28)

Q
(a)
0 (θ) then has the asymptotic expression

Q
(a)
0 (θ) ∼ c

(a)
0 exp

(
sM+1meθ(−1)

M+1
hM τ(h,M)

)
, as Re θ → +∞. (5.4.29)

In order for this expression to be compatible with the quasiperiodicity relation

(5.4.19), we first define the strips H± in the complex plane

H+ : 0 < Im θ <
2π(M + 1)

hM
, H− : −2π(M + 1)

hM
< Im θ < 0. (5.4.30)

and rescale the constant c0 appropriately

Q
(a)
0 (θ) ∼ c

(a)
0 e∓iπγa/h exp

(
sM+1meθ∓

iπ(M+1)
hM τ(h,M)

)
, θ ∈ H±. (5.4.31)

The Re θ → −∞ limit ofQ
(a)
0 (θ) is recovered by considering the gauge-transformed

conjugate linear problem (∂z̄ + ˜̄A)Ψ = 0 in the Re θ → −∞ limit. A solution in

that limit is constructed to match the required large-|z| behaviour

Ψ(a) ∼ v
(a)
0 (p(z̄)) (5.4.32)

· exp

(
−

sin πa
h

sin π
h

me−θ
∫ z̄

∞

{
(thM − shM)1/h − tM

}
dt−

sin πa
h

sin π
h

me−θz̄M+1

M + 1

)
,

where v
(a)
0 (p(z̄)) is the eigenvector of ˜̄A with eigenvalue me−θp(z̄)1/h. v

(a)
0 (p(z̄))

is then expanded as a sum of small-|z| solutions, as in (5.4.26), and then the

definition of Q
(a)
0 (θ) (5.4.21) is used to determine the asymptotics of Q

(a)
0 (θ) in
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the limit Re θ → −∞:

Q
(a)
0 (θ) ∼ c

(a)
0 e∓iπγa/h exp

(
sM+1me−θ±

iπ(M+1)
hM τ(h,M)

)
, θ ∈ H±. (5.4.33)

5.4.3 The quantum Wronskian

The Q-functions associated with the linear problem on the representation V (1)

satisfy a particular determinant relation, known as a quantum Wronskian. The

Q-functions for this linear problem are defined by the expansion of the large-|z|

solution Ψ̃(1) in the basis of small-|z| solutions Ξ̃j:

Ψ̃(1) =
r∑
j=0

Q
(1)
j (θ)Ξ̃

(1)
j . (5.4.34)

We apply a Symanzik rotation Ωk to both sides of this expression, recalling that

the solutions Ξ̃
(1)
j are invariant under Ωk:

ΩkΨ̃
(1) =

r∑
j=0

Q
(1)
j (θ − 2πik

hM
)Ξ̃

(1)
j (5.4.35)
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We then take the determinant of r + 1 = h copies of the expression (5.4.35):

det
(

Ψ̃(1),Ω1Ψ̃(1), . . . ,ΩrΨ̃
(1)
)

(5.4.36)

=
r∑

j0,j1,...,jr=0

det
(

Ξ̃j0 , Ξ̃j1 , . . . , Ξ̃jr

) r∏
k=0

Q
(1)
jk

(θ − 2πik

hM
) (5.4.37)

=
r∑

j0,j1,...,jr=0

εj0j1...jr

r∏
k=0

Q
(1)
jk

(θ − 2πik

hM
) (5.4.38)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
(1)
0 (θ) Q

(1)
0 (θ − 2πi

hM
) · · · Q

(1)
0 (θ − 2πir

hM
)

Q
(1)
1 (θ) Q

(1)
1 (θ − 2πi

hM
) · · · Q

(1)
1 (θ − 2πir

hM
)

...
...

. . .
...

Q
(1)
r (θ) Q

(1)
r (θ − 2πi

hM
) · · · Q

(1)
r (θ − 2πir

hM
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.4.39)

As (5.4.39) does not depend on z, we may use the large-|z| asymptotics of the

solutions ΩkΨ̃
(1) to compute (5.4.36). From the large-|z| asymptotics (5.3.36) and

the definition of the Symanzik rotation (5.2.11) it is straightforward to show

ΩkΨ̃
(1) ∼ ω−kr/2



z−rM/2

ωkzM(1−r/2)

...

ωk(r−1)zM(r/2−1)

ωkrzrM/2


exp

(
−ωkme

θzM+1

M + 1

)
(5.4.40)
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where ω = e
2πi
h = e

2πi
r+1 . We then substitute (5.4.40) into (5.4.36):

det
(

Ψ̃(1),Ω1Ψ̃(1), . . . ,ΩrΨ̃
(1)
)

(5.4.41)

= ω−r
2(r+1)/4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z−rM/2 z−rM/2 . . . z−rM/2 z−rM/2

zM(1−r/2) ωzM(1−r/2) . . . ωr−1zM(1−r/2) ωrzM(1−r/2)

...
...

. . .
...

...

zM(r/2−1) ωr−1zM(r/2−1) . . . ω(r−1)2zM(r/2−1) ω(r−1)rzM(r/2−1)

zrM/2 ωrzrM/2 . . . ωr(r−1)zrM/2 ωr
2
zrM/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where we have used the property of roots of unity

r∑
j=0

ωj = 0, (5.4.42)

to remove the exponential factors. Using row operations to remove powers of z

we find this determinant is proportional to a Vandermonde matrix:

det
(

Ψ̃(1),Ω1Ψ̃(1), . . . ,ΩrΨ̃
(1)
)

= ω−r
2(r+1)/4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1

1 ω . . . ωr−1 ωr

...
...

. . .
...

...

1 ωr−1 . . . ω(r−1)2 ω(r−1)r

1 ωr . . . ωr(r−1) ωr
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ω−r

2(r+1)/4
∏

0≤j<k≤r

(ωk − ωj), (5.4.43)

where in (5.4.43) we have used the standard expression for the determinant of a

Vandermonde matrix. We now evaluate this product. Firstly, we expand:

ω−r
2(r+1)/4

∏
0≤j<k≤r

(ωk − ωj) = (−1)r(r+1)/2ω−
1
12
r(r+1)(r+2)

r∏
s=1

(1− ωs)r+1−s.

(5.4.44)
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Substitute the identity

1− ωs = −2iωs/2 sin
πs

h
, (5.4.45)

into (5.4.44) and collect powers of ω and −1:

det
(

Ψ̃(1),Ω1Ψ̃(1), . . . ,ΩrΨ̃
(1)
)

= (2i)h(h−1)/2

h−1∏
s=1

(
sin

πs

h

)h−s
(5.4.46)

= (2i)h(h−1)/2

(
h−1∏
s=1

sin
πs

h

)h/2

(5.4.47)

= ih(h−1)/2hh/2, (5.4.48)

where in the last equality we have used the product identity [36]

h−1∏
s=1

sin
πs

h
=

h

2h−1
. (5.4.49)

We have therefore found the quantum Wronskian:

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
(1)
0 (θ) Q

(1)
0 (θ − 2πi

hM
) · · · Q

(1)
0 (θ − 2πir

hM
)

Q
(1)
1 (θ) Q

(1)
1 (θ − 2πi

hM
) · · · Q

(1)
1 (θ − 2πir

hM
)

...
...

. . .
...

Q
(1)
r (θ) Q

(1)
r (θ − 2πi

hM
) · · · Q

(1)
r (θ − 2πir

hM
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= ih(h−1)/2hh/2. (5.4.50)

This is a generalisation of the quantum Wronskian given in [45] for r = 1 (h = 2).

5.5 Ψ-system and the Bethe ansatz equations

The Q-functions discussed in the previous section satisfy certain useful algebraic

relations known as Bethe ansatz equations. We will derive these equations from

relations between large-|z| solutions of linear problems for the representations
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V (a), known as the Ψ-system. These, in turn, arise from an embedding of a

representation into another representation.

5.5.1 Embedding of representations

We begin by defining the two main representations of interest. We recall the

definition of the representation V (a) of A
(1)
r as a wedge product of a copies of V (1):

V (a) =
a∧
i=1

V
(1)
1−a
2

+i
(5.5.1)

We now define a generalisation of these representations: related evaluation repre-

sentations of A
(1)
r defined by a parameter k:

V
(a)
k =

a∧
i=1

V
(1)
1−a
2

+i+k
(5.5.2)

We are then concerned with the wedge product of two of these representations: the

representation V
(a)
−1/2∧V

(a)
1/2 . For a more explicit construction, we let {e(a)

I }
dimV (a)−1
I=0

be a basis for the vector space V
(a)
−1/2 and V

(a)
1/2 . The vector space V

(a)
−1/2 ∧ V

(a)
1/2 is

then spanned by the set of bivectors

{e(a)
I ∧ e

(a)
J |0 ≤ I < J ≤ dimV (a) − 1}. (5.5.3)

We note that the vectors e
(a)
I are, in this context, not themselves wedge products.

We treat the spaces V
(a)
k as vector spaces in their own right and define a wedge

product on copies of that space, rather than V (1).

We order the basis {e(a)
I }

dimV (a)−1
I=0 of V

(a)
k such that e

(a)
0 is the highest weight
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state, with

Hie
(a)
0 = (λ

(a)
1 )ie

(a)
0 = (ωa)

ie
(a)
0 . (5.5.4)

Beginning with the highest weight ωa, we apply the algorithm in section 4.2.1 to

construct the remaining weights. We find that e
(a)
1 is associated with the weight

ωa − αa. The highest weight state of V
(a)
−1/2 ∧ V

(a)
1/2 is then given by e

(a)
0 ∧ e

(a)
1 ,

associated with the weight 2ωa − αa. We rewrite this weight in the weight basis

using the identity

αi =
r∑
i=1

Cijωj (5.5.5)

=⇒ 2ωa − αa =
r∑
b=1

(2δab − Cab)ωb (5.5.6)

=
r∑
b=1

Babωb (5.5.7)

= ωa−1 + ωa+1, (5.5.8)

where C is the Ar Cartan matrix and B = 2I − C is the incidence matrix. The

representation V
(a)
−1/2 ∧ V

(a)
1/2 therefore has highest weight ωa−1 + ωa+1.

We recall the definition of a tensor product of representations, given in section

4.2.1. Let {e(a−1)
I }dimV (a−1)−1

I=0 be a basis for V (a−1), with e
(a−1)
0 as the highest weight

state with weight ωa−1. Similarly, let {e(a+1)
J }dimV (a+1)−1

J=0 be a basis for V (a+1), with

e
(a+1)
0 as its highest weight state with weight ωa+1. We then construct the tensor

product representation V (a−1) ⊗ V (a+1) with basis

{
e

(a−1)
I ⊗ e

(a+1)
J

∣∣∣ 0 ≤ I ≤ dimV (a−1), 0 ≤ J ≤ dimV (a+1)
}
. (5.5.9)

The highest weight of this representation is ωa−1 + ωa+1, which is the same as

the representation V
(a)
−1/2 ∧ V

(a)
1/2 . There exists an embedding ι between these two
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representations [38, 47]

ι : V
(a)
−1/2 ∧ V

(a)
1/2 → V (a−1) ⊗ V (a+1), (5.5.10)

which maps the highest weight in V
(a)
−1/2 ∧ V

(a)
1/2 to the highest weight in V (a−1) ⊗

V (a+1):

ι
(
e

(a)
0 ∧ e

(a)
1

)
= e

(a−1)
0 ⊗ e

(a+1)
0 . (5.5.11)

We will now use the embedding ι to connect the solutions of the linear problem

(∂z + A)Ψ = 0 in different representations V
(a)
k .

5.5.2 From the Ψ-system to the Bethe ansatz equations

The solutions Ψ
(a)
k to the linear problem associated with V

(a)
k are equivalent to

Symanzik rotated solutions ΩkΨ
(a) of the linear problem associated with V (a).

The embedding (5.5.10) then defines the Ψ-system

ι
(

Ψ
(a)
−1/2 ∧Ψ

(a)
1/2

)
= Ψ(a−1) ⊗Ψ(a+1). (5.5.12)

The small-|z| expansion of the solutions Ψ
(a)
k is given by

Ψ
(a)
k (ϕ|θ) = Q

(a)
0 (θ−k)Ξ

(a)
0 (ϕk|θ−k) +Q

(a)
1 (θ−k)Ξ

(a)
1 (ϕk|θ−k) + . . . (5.5.13)

where we have set

θp = θ +
2iπp

hM
, ϕp = ϕ+

2πp

hM
, (5.5.14)
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for brevity. We now substitute (5.5.13) into the Ψ-system (5.5.12):

ι
(

Ψ
(a)
−1/2 ∧Ψ

(a)
1/2

)
= Ψ(a−1) ⊗Ψ(a+1)

=⇒ ι
((
Q

(a)
0 (θ1/2)Ξ

(a)
0 +Q

(a)
1 (θ1/2)Ξ

(a)
1

)
∧
(
Q

(a)
0 (θ−1/2)Ξ

(a)
0 +Q

(a)
1 (θ−1/2)Ξ

(a)
1

))
= Q

(a−1)
0 (θ)Q

(a+1)
0 (θ)Ξ

(a−1)
0 ⊗ Ξ

(a+1)
0 . (5.5.15)

where we have used the Symanzik rotation invariance of the small-|z| solutions

Ξ
(a)
j . We expand (5.5.15)

(
Q

(a)
0 (θ1/2)Q

(a)
1 (θ−1/2)−Q(a)

0 (θ−1/2)Q
(a)
1 (θ1/2)

)
ι
(

Ξ
(a)
0 ∧ Ξ

(a)
1

)
= Q

(a−1)
0 (θ)Q

(a+1)
0 (θ) Ξ

(a−1)
0 ⊗ Ξ

(a+1)
0 , (5.5.16)

and then take the |z| → 0 limit, applying the asymptotic expansion

Ξ
(a)
J ∼ e−β(θ+iϕ)λ

(a)
J+1·geJ (J = 0, . . . , dimV (a) − 1). (5.5.17)

The result is

(
Q

(a)
0 (θ1/2)Q

(a)
1 (θ−1/2)−Q(a)

0 (θ−1/2)Q
(a)
1 (θ1/2)

)
e−β(θ+iϕ)(ωa−1+ωa+1)·gι

(
e

(a)
0 ∧ e

(a)
1

)
= Q

(a−1)
0 (θ)Q

(a+1)
0 (θ)e−β(θ+iϕ)(ωa−1+ωa+1)·ge

(a−1)
0 ⊗ e

(a+1)
0 (5.5.18)

Substituting (5.5.11) and simplifying leads to a relation between Q-functions

Q
(a)
0

(
θ +

iπ

hM

)
Q

(a)
1

(
θ − iπ

hM

)
−Q(a)

0

(
θ − iπ

hM

)
Q

(a)
1

(
θ +

iπ

hM

)
= Q

(a−1)
0 (θ)Q

(a+1)
0 (θ). (5.5.19)
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We denote the zeroes of the Q0-functions by θ
(a)
j , so that Q

(a)
0 (θ

(a)
j ) = 0. Substi-

tuting θ = θ
(a)
j ± iπ/hM into (5.5.19) yields two equations:

Q
(a)
0

(
θ

(a)
j +

2iπ

hM

)
Q

(a)
1

(
θ

(a)
j

)
= Q

(a−1)
0

(
θ

(a)
j +

iπ

hM

)
Q

(a+1)
0

(
θ

(a)
j +

iπ

hM

)
,

Q
(a)
0

(
θ

(a)
j −

2iπ

hM

)
Q

(a)
1

(
θ

(a)
j

)
= −Q(a−1)

0

(
θ

(a)
j −

iπ

hM

)
Q

(a+1)
0

(
θ

(a)
j −

iπ

hM

)
.

(5.5.20)

Eliminating Q
(a)
1 from these equations yields the untwisted Bethe ansatz equations :

r∏
b=1

Q(b)
(
θ

(a)
j + iπ

hM
Cab

)
Q(b)

(
θ

(a)
j − iπ

hM
Cab

) = −1, (a = 1, . . . , r), (5.5.21)

where we now abbreviate the Q-functions Q
(a)
0 (θ) = Q(a)(θ), as these ‘leading

order’ Q-functions will be our main concern for this section and the next.

5.5.3 Twisting the Bethe ansatz equations

The Bethe ansatz equations (BAEs) (5.5.21) we have derived are untwisted; BAEs

in the literature for the A
(1)
r case [21, 37, 38, 45] contain twists in the form of extra

constant prefactors. To extract information about the integrals of motion of the

associated massive Toda field theory for A
(1)
r , we must twist the BAEs.

We begin with the newly-derived BAEs (5.5.21) and then shift the Q-functions

and their zeroes

Q(b)(θ) = Q̂(b)(θ + νb), θ
(b)
j = θ̂

(b)
j − νb, Q̂(b)(θ̂

(b)
j ) = 0. (5.5.22)

The shifts νb are defined (up to an overall constant) by the antisymmetric matrix
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Λ

νa − νb =
iπ(M + 1)

hM
Λab (5.5.23)

where Λ is chosen to ensure C−Λ is upper triangular and C+Λ is lower triangular.

C − Λ and C + Λ are then matrices with even entries. The BAEs become

r∏
b=1

Q̂(b)
(
θ̂

(a)
j + iπ

hM
(C − Λ)ab − iπ

h
Λab

)
Q̂(b)

(
θ̂

(a)
j + iπ

hM
(C + Λ)ab − iπ

h
Λab

) = −1. (5.5.24)

We then apply the quasiperiodicity relation (5.4.19) to (5.5.24). The BAEs

(5.5.24) become

r∏
b=1

e−iπ(C−Λ)abγb/h Q̂(b)
(
θ̂

(a)
j − iπ

h
(C − Λ)ab − iπ

h
Λab

)
eiπ(C−Λ)abγb/h Q̂(b)

(
θ̂

(a)
j + iπ

h
(C + Λ)ab − iπ

h
Λab

) = −1, (5.5.25)

which reduces to our final set of BAEs which are consistent with [45]

r∏
b=1

e−
2iπ
h
Cabγb

Q̂(b)(θ̂
(a)
j − iπ

h
Cab)

Q̂(b)(θ̂
(a)
j + iπ

h
Cab)

= −1. (5.5.26)

We will be concerned with the shifted Q̂(a)-functions for the remainder of the

chapter. The original Q(a)-functions are recovered by undoing the shift (5.5.22),

where for consistency with (5.5.23) and the matrix Λ we set

νa = −(a− 1)
iπ(M + 1)

hM
. (5.5.27)
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5.6 Non-linear integral equations and integrals

of motion

5.6.1 The non-linear integral equation

The integrals of motion for the A
(1)
r massive Toda theory are the coefficients of the

higher-order terms of the asymptotic expansion of the logarithm of theQ-functions

[45, 5]. The first step in deriving this asymptotic expansion is to construct a useful

non-linear integral equation (NLIE). The construction here will follow that given

in [21] for the massless Ar case, and is a direct generalisation of the derivation

given in section 3.5. We begin by defining the function

a(m)(θ) =
r∏
t=1

e−
2iπ
h
Cmtγt

Q̂(t)(θ − iπ
h
Cmt)

Q̂(t)(θ + iπ
h
Cmt)

. (5.6.1)

As a consequence of the BAEs (5.5.26), a(m)(θ̂
(m)
j ) = −1. We expand the Q̂(t)

functions in this expression using an infinite product expansion:

Q̂(t)(θ) = Q̂(t)(0)e−
γtMθ
M+1

∞∏
j=0

(
1− e

hM
M+1

(θ−θ̂(t)j )
)(

1− e−
hM
M+1

(θ−θ̂(t)−j−1)
)
. (5.6.2)

We then substitute this infinite product expansion into a(m)(θ):

a(m)(θ)

=
r∏
t=1

e−
2iπ

h(M+1)
Cmtγt

∞∏
j=0

(
1− e

hM
M+1

(θ−θ̂(t)j )e−
iπMCmt
M+1

)(
1− e−

hM
M+1

(θ−θ̂(t)−j−1)e
iπMCmt
M+1

)
(

1− e
hM
M+1

(θ−θ̂(t)j )e
iπMCmt
M+1

)(
1− e−

hM
M+1

(θ−θ̂(t)−j−1)e−
iπMCmt
M+1

) ,
=

r∏
t=1

e−
2iπ

h(M+1)
Cmtγt

∞∏
j=−∞

1− e
hM
M+1

(θ−θ̂(t)j −
iπCmt
h

)

1− e
hM
M+1

(θ−θ̂(t)j +
iπCmt
h

)
. (5.6.3)
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We then take the logarithm of (5.6.3):

log a(m)(θ) =
−2iπ

h(M + 1)

r∑
t=1

Cmtγt +
r∑
t=1

∞∑
j=−∞

Fmt(θ − θ̂(t)
j ), (5.6.4)

where

Fmt(θ) = log

(
1− e

hM
M+1

(θ− iπ
h
Cmt)

1− e
hM
M+1

(θ+ iπ
h
Cmt)

)
. (5.6.5)

As in [21], we use Cauchy’s integral theorem to rewrite the infinite sum over the

zeroes θ
(t)
j as a contour integral:

r∑
t=1

∞∑
j=0

Fmt(θ − θ(t)
j ) =

r∑
t=1

∫
ξ

dθ′

2iπ
Fmt(θ − θ′)∂θ′ log

(
1 + a(t)(θ′)

)
, (5.6.6)

where ξ is a contour enclosing the zeroes anticlockwise. As in [21], we assume all

the zeroes are along the real axis. The contour ξ is then chosen to be two parallel

lines enclosing the real axis, with the direction of integration along ξ chosen such

that the real axis remains on the left of the contour. For brevity of notation, we

now omit the components of the matrices C and F and the vectors a(θ), γ from

this calculation. The logarithm of a(θ) is then given by

log a(θ) =
−2iπ

h(M + 1)
Cγ +

∫
ξ

dθ′

2iπ
F (θ − θ′)∂θ′ log (1 + a(θ)) , (5.6.7)

where log (1 + a(θ)) represents the column vector

(
log
(
1 + a(1)(θ)

)
, log

(
1 + a(2)(θ)

)
, . . . , log

(
1 + a(r)(θ)

))T
. (5.6.8)
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Integrating (5.6.7) by parts and considering the two contributions from above and

below the real axis from γ separately, we rewrite log a(θ):

log a(θ) =
−2iπ

h(M + 1)
Cγ

+

∫ ∞
−∞

R(θ − θ′) {log (1 + a(θ′ + i0))− log (1 + a(θ′ − i0))} dθ′

=
−2iπ

h(M + 1)
Cγ

+

∫ ∞
−∞

R(θ − θ′ + i0) {log a(θ′ − i0)− 2i Im log (1 + a(θ′ − i0))} dθ′, (5.6.9)

where R(θ) = (i/2π)∂θF (θ). We now apply a Fourier transform F to both sides

of (5.6.9), where the Fourier transform is defined as

F [f ](k) = f̃(k) =

∫ ∞
−∞

e−ikθf(θ) dθ (5.6.10)

and its inverse is given by

F−1[f̃ ](θ) = f(θ) =
1

2π

∫ ∞
−∞

eikθf̃(k) dk. (5.6.11)

Applying the Fourier transform (5.6.10) to both sides of (5.6.9), we find

F [log a] =
−2iπ

h(M + 1)
Cγ · 2πδ(k) + R̃(k) {F [log a]− 2iF [Im log(1 + a)]} ,

(5.6.12)

where we have used the definition of the Dirac delta function δ(k) in the form of

an integral

∫ ∞
−∞

e−ikθ dθ = 2πδ(k). (5.6.13)
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We collect the F [log a] terms in (5.6.12)

(I − R̃(k))F [log a] =
−2iπ

h(M + 1)
Cγ · 2πδ(k)− 2iR̃(k)F [Im log(1 + a)], (5.6.14)

and then pre-multiply both sides of (5.6.14) by the operator (1− R̃(k))−1

F [log a] =
−2iπ

h(M + 1)
(I − R̃(k))−1Cγ · 2πδ(k)

+ b(1)F [eθ] + b(2)F [e−θ]− 2i(I − R̃(k))−1R̃(k)F [Im log(1 + a)]. (5.6.15)

where the terms proportional to the arbitrary constants b(1) and b(2) arise from

the points k = ±i where the inverse of the operator (I− R̃(k)) is not well-defined.

F−1(I − R̃(k)) can be thought of as a differential operator in θ, with eθ and e−θ

in the kernel of this operator.

We then take the inverse Fourier transform (5.6.11) of (5.6.15):

log a(θ) =
−2iπ

h(M + 1)
(I − R̃(0))−1Cγ

+ b(1)eθ + b(2)e−θ − 2i

∫ ∞
−∞

ϕ(θ − θ′ + i0) Im log(1 + a(θ − i0))dθ′,

(5.6.16)

where ϕ(θ) = F−1[(I − R̃(k))−1R̃(k)]. The constant vectors b1 and b2 will be

chosen to match the Q-asymptotics (5.4.31)-(5.4.33) for Re θ → ±∞. We now

simplify (5.6.16) by computing R(k) explicitly. This is done using the following

relation

log

(
1− eX−Y

1− eX+Y

)
= −Y + log

(
sinh X−Y

2

sinh X+Y
2

)
, (5.6.17)
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and equations (D.53) and (D.54) from [23]:

i∂θ log
sinhσθ + iπτ

sinhσθ − iπτ
=

2σ sin 2πτ

cosh 2σθ − cos 2πτ
, (5.6.18)∫ ∞

−∞

dθ

2π
e−ikθ

2σ sin 2πτ

cosh 2σθ − cos 2πτ
=

sinh(1− 2τ)πk
2σ

sinh πk
2σ

. (5.6.19)

We then see the elements of R(k) are given by

R̃<mt>(k) =
sinh πk

hM

sinh π(M+1)k
hM

, R̃mm(k) =
sinh π(M−1)k

hM

sinh π(M+1)k
hM

, (5.6.20)

where < mt > indicates the nodes m and t on the Dynkin diagram of Ar are

connected, and all other elements of R are zero. Taking the limit of these elements

as k → 0 it can be shown that

(I − R̃(0))−1C = (M + 1)I, (5.6.21)

so that the integral equation (5.6.16) becomes

log a(m)(θ) =
−2iπ

h
γm + b(1)

m eθ + b(2)
m e−θ

− 2i
r∑
t=1

∫ ∞
−∞

ϕmt(θ − θ′ + i0) Im log
(
1 + a(t)(θ′ − i0)

)
dθ′, (5.6.22)

where we have restored component notation.

5.6.2 Integral form of log Q̂(m)
(
θ + iπ(M+1)

hM

)
As stated previously, the integrals of motion are coefficients in an asymptotic

expansion of the logarithm of the Q̂(m)-functions. The next step in deriving this

expansion is to find an expression for log Q̂(m), using the definition of the a-

function (5.6.1) and the newly derived non-linear integral equation (5.6.22).
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We begin by taking logarithms of (5.6.1):

log a(m)(θ) =
r∑
t=1

[
−2iπ

h
Cmtγt + log Q̂(t)

(
θ − iπ

h
Cmt

)
− log Q̂(t)

(
θ +

iπ

h
Cmt

)]
,

(5.6.23)

We then invoke the logarithm of the quasiperiodicity relation (5.4.19) applied to

Q̂
(t)
0 (θ):

log Q̂(t)

(
θ +

2iπ(M + 1)

hM
n

)
= −2iπ

h
nγt + log Q̂(t)(θ), (5.6.24)

where n ∈ Z. Using quasiperiodicity to rewrite log a(m):

log a(m)(θ) =
r∑
t=1

[
2iπ

h
(pmt − qmt − Cmt)γt

+ log Q̂(t)

(
θ − iπ

h
Cmt +

2iπ(M + 1)

hM
pmt

)
(5.6.25)

− log Q̂(t)

(
θ +

iπ

h
Cmt +

2iπ(M + 1)

hM
qmt

)]
,

we choose the matrices p and q with integer entries to satisfy

pmt − qmt − Cmt = −δmt. (5.6.26)

We then set the NLIE (5.6.22) and (5.6.25) equal to one another. The choice of p

and q ensures that the constant terms proportional to γt are eliminated:

r∑
t=1

[
log Q̂(t)

(
θ − iπ

h
Cmt +

2iπ(M + 1)

hM
pmt

)
− log Q̂(t)

(
θ +

iπ

h
Cmt +

2iπ(M + 1)

hM
qmt

)]
= b(1)

m eθ + b(2)
m e−θ − 2i

r∑
t=1

∫ ∞
−∞

ϕmt(θ − θ′ + i0) Im log
(
1 + a(t)(θ′ − i0)

)
dθ′.

(5.6.27)
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The next step is to take Fourier transforms of (5.6.27), simplifying that expression

using the Fourier transform identity

F [f(θ + α)] = eikαF [f(θ)]. (5.6.28)

The result is

r∑
t=1

G̃mt(k)F
[
log Q̂(t)

(
θ +

iπ(M + 1)

hM

)]
= b(1)

m · 2πδ(k + i) + b(2)
m · 2πδ(k − i)− 2i

r∑
t=1

F [ϕmt](k)F [Im log
(
1 + a(t)

)
](k),

(5.6.29)

where G̃(k) is the matrix with elements

G̃<mt>(k) = 2 sinh
πk

hM
, G̃mm(k) = 2 sinh

πk(M − 1)

hM
. (5.6.30)

As with R̃, < mt > indicates the nodes m and t are connected on the Dynkin

diagram of Ar. We rewrite (5.6.29) in component-free notation:

G̃(k)F
[
log Q̂

(
θ +

iπ(M + 1)

hM

)]
= 2πb(1)δ(k + i) + 2πb(2)δ(k − i)− 2iF [ϕ]F [Im log(1 + a)], (5.6.31)

and then premultiply both sides of (5.6.31) by G(k)−1, adding an extra term on

the right-hand side of this expression due to the pole of G−1 at k = 0:

F
[
log Q̂

(
θ +

iπ(M + 1)

hM

)]
= 2πG̃(k)−1b(1)δ(k + i)

+ 2πG̃(k)−1b(2)δ(k − i)− 2iH̃(k)F [Im log(1 + a)] + 2πb(3)δ(k), (5.6.32)
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where b(3) is an arbitrary constant vector and

H̃(k) = G̃(k)−1F [ϕ] = G̃(k)−1(I − R̃(k))−1R̃(k). (5.6.33)

We now take inverse Fourier transforms of (5.6.32):

log Q̂

(
θ +

iπ(M + 1)

hM

)
= G̃(−i)−1b(1)eθ + G̃(i)−1b(2)e−θ + b(3)

− 2i

∫ ∞
−∞

H(θ − θ′ + i0) Im log (1 + a(θ′ − i0)) dθ′.

(5.6.34)

Finally, we undo the shift in the Q-functions (5.5.22) and choose b(1), b(2) and b(3)

to match the earlier derived Q-asymptotics (5.4.31)-(5.4.33)

G̃(−i)−1b(1) = s1+Mmτ(h,M)w, G̃(i)−1b(2) = s1+Mmτ(h,M)w, b(3) = −iπ
h
γ,

(5.6.35)

where w is a vector with components

wa =
sin aπ

h

sin π
h

. (5.6.36)

The logQ(m) functions are then given by

logQ(m)

(
θ +

iπ(M + 1)

hM

)
= 2mτ(h,M)wm cosh θ − iπ

h
γm

− 2i
r∑
t=1

∫ ∞
−∞

Hmt(θ − θ′ + i0) Im log
(
1 + a(t)(θ′ − i0)

)
dθ′. (5.6.37)

5.6.3 Integrals of motion

The final step in the calculation of the integrals of motion of the A
(1)
r Toda theory

is the computation of the asymptotic expansion of the matrix H(θ). H is given
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in terms of the inverse Fourier transform of H̃(k):

H(θ) =
1

2π

∫ ∞
−∞

H̃(k)eikθdk. (5.6.38)

We then need to calculate H̃(k). We recall

H̃(k) = G̃−1(I − R̃)−1R̃, (5.6.39)

and from the definitions of R̃ (5.6.20) and G̃ (5.6.30),

R̃ =
1

2 sinh π(M+1)k
hM

G̃. (5.6.40)

We use this relation between R̃ and G̃ to compute H̃−1:

H̃−1 = R̃−1(I − R̃)G̃

=

(
2 sinh

π(M + 1)k

hM
I − G̃

)
, (5.6.41)

which has components

H̃−1
<mt> = −2 sinh

πk

hM
, H̃−1

mm = 4 sinh
πk

hM
cosh

πk

h
. (5.6.42)

Following [21], define the deformed Cartan matrix C̃:

C̃<mt>(k) = − 1

cosh πk
h

, C̃mm(k) = 2. (5.6.43)

We then write H̃−1 and hence H̃ in terms of C̃:

H̃−1 = 2 sinh
πk

hM
cosh

πk

h
C̃

=⇒ H̃ =
1

2 sinh πk
hM

cosh πk
h

C̃−1. (5.6.44)
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The inverse of the deformed Cartan matrix is given in [21]:

C̃−1
tm (k) = C̃−1

mt (k) =
coth πk

h
sinh π(h−m)k

h
sinh πtk

h

sinhπk
, m ≥ t. (5.6.45)

=⇒ H̃tm(k) = H̃mt(k) =
sinh π(h−m)k

h
sinh πtk

h

2 sinh πk
h

sinh πk
hM

sinhπk
. m ≥ t. (5.6.46)

With H̃ calculated, we now substitute H̃ into the integral term in (5.6.37):

(
−2i

∫ ∞
−∞

H(θ − θ′ + i0) Im log (1 + a(θ′ − i0)) dθ′
)
m

(5.6.47)

= −2i
r∑
t=1

∫ ∞
−∞

Hmt(θ − θ′ + i0) Im log
(
1 + a(t)(θ′)

)
dθ′ (5.6.48)

= −2i
r∑
t=1

∫ ∞
−∞

[
1

2π

∫ ∞
−∞

H̃mt(k)eik(θ−θ′+i0)dk

]
Im log

(
1 + a(t)(θ′)

)
dθ′. (5.6.49)

To proceed, we evaluate the integral over k using Cauchy’s residue theorem. The

poles of H̃(k) are at k = pi and k = hqMi, with p, q ∈ Z. Closing the integration

contour in the upper half plane, the integral over k is given by a sum of residues:

1

2π

∫ ∞
−∞

H̃mt(k)eik(θ−θ′+i0)dk (5.6.50)

= i

∞∑
p=1

Res
[
H̃mt(k)eik(θ−θ′+i0), k = pi

]
+ i

∞∑
q=1

Res
[
H̃mt(k)eik(θ−θ′+i0), k = hqMi

]
.

The residues of H̃mt(k)eik(θ−θ′+i0) are given by

Res
[
H̃mt(k)eik(θ−θ′+i0), k = pi

]
=

(−1)p sin
(
pπm
h

)
sin
(
pπt
h

)
2π sin

(
pπ
h

)
sin pπ

hM

e−p(θ−θ
′+i0),

(5.6.51)

Res
[
H̃mt(k)eik(θ−θ′+i0), k = hqMi

]
=

(−1)qhM

2π sin(qMπ) sin(hqMπ)
gmte

−hqM(θ−θ′+i0),

(5.6.52)
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where gmt is a symmetric function of m and t:

gmt =


sin(qtMπ) sin(q(h−m)Mπ) m ≥ t

sin(qmMπ) sin(q(h− t)Mπ) m < t.

(5.6.53)

Using these residues, the integral (5.6.48) is then expressed as an infinite series in

powers of eθ:

− 2i
r∑
t=1

∫ ∞
−∞

Hmt(θ − θ′ + i0) Im log
(
1 + a(t)(θ′ − i0)

)
dθ′ (5.6.54)

=
∞∑
p=1

I(m)
p e−pθ +

∞∑
q=0

S(m)
q e−hqMθ. (5.6.55)

The asymptotic expansion of logQ(m)(θ + iπ(M+1)
hM

) is then given by

logQ(m)

(
θ +

iπ(M + 1)

hM

)
= 2mτ(h,M)wm cosh θ − iπ

h
γm +

∞∑
p=1

I(m)
p e−pθ +

∞∑
q=0

S(m)
q e−hqMθ, (5.6.56)

where

I(m)
p =

r∑
t=1

∫ ∞
−∞

(−1)p sin
(
pπm
h

)
sin
(
pπt
h

)
π sin

(
pπ
h

)
sin
(
pπ
hM

) ep(θ
′−i0) Im log

(
1 + a(t)(θ′ − i0)

)
dθ′,

(5.6.57)

S(m)
q =

r∑
t=1

∫ ∞
−∞

(−1)qhMgmt
π sin(qMπ) sin(hqMπ)

ehqM(θ′−i0) Im log
(
1 + a(t)(θ′ − i0)

)
dθ′,

(5.6.58)

are the integrals of motion for the massive A
(1)
r Toda field theory. The calculation

of the conjugate integrals of motion Ī
(a)
p ,

¯
S

(a)
q is exactly analogous, and is done

by closing the contour integral (5.6.38) in the lower-half complex k-plane and

evaluating the coefficients of the resulting expansion in powers of eθ and ehMθ.
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5.7 Spectral equivalence

In [22], the authors considered a pair of differential equations

(
− d2

dx2
+ x6 +

l(l + 1)

x2

)
ψ(x) = Eψ(x), (5.7.1)

and

(
d

dx
− g2 − 2

x

)(
d

dx
− g1 − 1

x

)(
d

dx
− g0

x

)
φ(x) + x3φ(x) = Eφ(x), (5.7.2)

where

g0 = (1− 6l)/4, g1 = 1, g2 = (7 + 6l)/4. (5.7.3)

These differential equations are the conformal limits of the equations involved

with the A
(1)
1 and A

(1)
2 cases of the massive ODE/IM correspondence, with certain

choices of the parameters M, g. In [22] it was shown that eigenvalue problems

associated with these equations have spectral determinants that satisfy the same

set of Bethe ansatz equations. This implies that their spectra should be equivalent,

up to a rescaling of eigenvalues. In this section, we consider the massive analogoues

of the equations (5.7.1)-(5.7.2), demonstrating that the suitably defined spectral

determinants satisfy the same set of BAEs, and that the integrals of motion for

these two cases coincide.
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5.7.1 The equivalence of A
(1)
1 and A

(2)
1 Bethe ansatz equa-

tions

The equation (5.7.1) is the conformal limit of (5.3.16), with r = 1 (h = r+ 1 = 2)

and M = 3. We also set

βλ
(1)
1 · g = l, βλ

(1)
2 · g = −l, γ1 = −(ρ∨ + βg) · λ(1)

1 = −l − 1

2
. (5.7.4)

The corresponding A
(1)
1 BAEs (5.5.26) are then

eiπ(2l+1)
Q(1)

(
θ

(1)
j − iπ

)
Q(1)

(
θ

(1)
j + iπ

) = −1. (5.7.5)

Q(1)(θ) also satisfies a quasiperiodicity relation (5.4.19)

Q(1)

(
θ +

4iπ

3

)
= eiπ(l+1/2)Q(1)(θ). (5.7.6)

We now consider equation (5.7.2), which is the conformal limit of (5.3.16), with

r = 2, h = 3 and M = 1. The constants g0, g1 and g2 are related to the weights

λ
(1)
i , in the following way [37]:

g0 = −βλ(1)
1 · g, g1 = 1− βλ(1)

2 · g, g2 = 2− βλ(1)
3 · g. (5.7.7)

We also define the related constants γ̂a = −(ρ∨+βg)·λ(a)
1 in terms of the constants

gi

γ̂1 = g0 − 1, γ̂2 = g0 + g1 − 2. (5.7.8)
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Defining R(1)(θ) and R(2)(θ) as the spectral determinants associated with this

equation, the BAEs are

e−
2iπ
3

(2γ̂1−γ̂2)
R(1)

(
θ

(1)
j − 2iπ

3

)
R(2)

(
θ

(1)
j + iπ

3

)
R(1)

(
θ

(1)
j + 2iπ

3

)
R(2)

(
θ

(1)
j − iπ

3

) = −1, (5.7.9)

e−
2iπ
3

(−γ̂1+2γ̂2)
R(1)

(
θ

(2)
j + iπ

3

)
R(2)

(
θ

(2)
j − 2iπ

3

)
R(1)

(
θ

(2)
j − iπ

3

)
R(2)

(
θ

(2)
j + 2iπ

3

) = −1, (5.7.10)

where R(1)(θ) and R(2)(θ) satisfy the quasiperiodicity relations

R(a)

(
θ +

4iπ

3

)
= e−

2iπ
3
γ̂aR(a)(θ), a = 1, 2. (5.7.11)

We apply (5.7.11) to the A
(1)
2 BAEs (5.7.9)-(5.7.10). The BAEs then become

eiπ(2l+1)
R(2)

(
θ

(1)
j − iπ

)
R(2)

(
θ

(1)
j + iπ

) = −1, (5.7.12)

eiπ(2l+1)
R(1)

(
θ

(2)
j − iπ

)
R(1)

(
θ

(2)
j + iπ

) = −1. (5.7.13)

where we have applied the choice of constants (5.7.3) to match the A
(1)
2 BAEs

(5.7.12)-(5.7.13) with the A
(1)
1 BAE (5.7.5). The BAEs (5.7.12)-(5.7.13) become

two copies of the A
(1)
1 BAE (5.7.5) under the identification

R(2)(θ) = i
√

3R(1)(θ), (5.7.14)

which follows from the definitions of R(1)(θ) and R(2)(θ)

R(1)(θ) = det
(

Ψ(1),Ξ
(1)
1 ,Ξ

(1)
2

)
, R(2)(θ) = det

(
Ψ(2),Ξ

(2)
1 ,Ξ

(2)
2

)
, (5.7.15)
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where the vectors Ξ
(a)
i and Ψ(a) are the small-|z| and large-|z| solutions of the

linear system (5.2.9) in the representation V (a), as defined in section 5.3. With

the choice of constants (5.7.3), these asymptotic solutions have the behaviour

Ξ
(1)
1 ∼ e

(1)
1 , Ξ

(1)
2 ∼ z

−1+6l
4 e

(1)
2 , as |z| → 0, (5.7.16)

Ξ
(2)
1 ∼ e

(2)
1 , Ξ

(2)
2 ∼ z

−1+6l
4 e

(2)
2 , as |z| → 0, (5.7.17)

Ψ(1) ∼ exp

(
−me

θz2

2

)(
z−1e

(1)
0 + e

(1)
1 + ze

(1)
2

)
, as |z| → ∞, (5.7.18)

Ψ(2) ∼ i
√

3 exp

(
−me

θz2

2

)(
z−1e

(2)
0 + e

(2)
1 + ze

(2)
2

)
, as |z| → ∞, (5.7.19)

where {e(a)
J }

dimV (a)−1
J=0 is an orthonormal basis for the vector space V (a). The

definitions of R(1)(θ) and R(2)(θ) then imply the identification (5.7.14). The A
(1)
2

BAEs then reduce to two copies of the A
(1)
1 BAE (5.7.5).

5.7.2 Equivalence of the integrals of motion

We define the a-function (5.6.1) from the A
(1)
1 BAEs (5.7.5)

a(θ) = eiπ(2l+1)Q
(1) (θ − iπ)

Q(1) (θ + iπ)
. (5.7.20)

The R-functions, as they satisfy the same BAEs, also have the same associated

a-function. The procedure we followed in section 5.6 is now applied to derive the

A
(1)
1 and A

(1)
2 integrals of motion for the respective values of M we have considered

in this section.

The A
(1)
1 local integrals of motion Ip for M = 3 are

Ip =

∫ ∞
−∞

(−1)p sin pπ
2

π sin pπ
6

ep(θ
′−i0) Im log (1 + a(θ′ − i0)) dθ′, p ∈ N, (5.7.21)
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and the A
(1)
1 non-local integrals of motion Sq for M = 1 are

Sq =

∫ ∞
−∞

6(−1)q sin 3qπ

π sin 3qπ sin 6qπ
e6q(θ′−i0) Im log (1 + a(θ′ − i0)) dθ′, q ∈ N. (5.7.22)

The A
(1)
2 integrals of motion Î

(m)
p , Ŝ

(m)
q for M = 1 are found by setting a(1)(θ) =

a(2)(θ) and M = 1 in the expressions (5.6.57) and (5.6.58). We find

Î(m)
p =

∫ ∞
−∞

(−1)p sin pmπ
3

(
sin pπ

3
+ sin 2pπ

3

)
π sin2 pπ

3

ep(θ
′−i0) Im log (1 + a(θ′ − i0)) dθ′,

(5.7.23)

Ŝ(m)
q =

∫ ∞
−∞

3(−1)q (sin qπ + sin 2qπ)

π sin 3qπ
e3q(θ′−i0) Im log (1 + a(θ′ − i0)) dθ′,

(5.7.24)

where 3 - p, and q ∈ N. Comparing the A
(1)
1 and A

(1)
2 integrals of motion, we find

I3p+1 = Î
(m)
3p+1, I3p+2 = Î

(m)
3p+2, Sq = Ŝ

(m)
2q , (5.7.25)

the A
(1)
1 M = 3 integrals of motion are completely contained in the set of A

(1)
2

M = 1 integrals of motion.

5.8 T -functions: fusion relations and TQ-relations

The Q-functions discussed in the previous sections define T -functions, which sat-

isfy certain functional identities. In this section, we shall define these T -functions

and demonstrate that they satisfy two such identities- the fusion relations and the

TQ-relations.
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5.8.1 Definitions

The main building block of the functions defined in this section will be the Q-

functions for the linear problem in the first fundamental representation, Q
(1)
j (θ).

It will be convenient to rescale the spectral parameter θ in the arguments of these

Q-functions. The effect on the Q-functions is given by:

Q
(1)
j

(
θ +

iπα

hM

)
→ Q

(1)
j (u+ α) . (5.8.1)

It will also be useful to have a notation for a column vector of Q-functions:

~Q(u) =
(
Q

(1)
0 (u), Q

(1)
1 (u), . . . , Q(1)

r (u)
)T

. (5.8.2)

We define a particular determinant constructed from these vectors of Q-functions

using notation given in [5]:

T(µ0,µ1,...,µr)(u) =
1

z0

r∑
i0,...,ir=0

εi0i1...ir

r∏
k=0

Q
(1)
ik

(u+ 2(µk + r/2− k))

=
1

z0

det
(
~Q(u+ 2µ0 + r), ~Q(u+ 2µ1 + r − 2), . . . , ~Q(u+ 2µr − r)

)
, (5.8.3)

where

z0 = det
(
~Q(u), ~Q(u− 2), . . . , ~Q(u− 2r)

)
= ir(r+1)/2(r + 1)

r+1
2 , (5.8.4)

which is the quantum Wronskian as discussed in section 5.4.3. We note that the

quantum Wronskian (5.8.4) holds for all values of u.

The T -functions are then defined as certain values of the determinant (5.8.3):

T (a)
m (u) = T(m,m,...,m,0,...,0)(u−m− h/2 + a), (5.8.5)
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where 0 ≤ a ≤ h, h = r + 1 is the Coxeter number of Ar, and there are a

components containing m in the vector m in the vector (m,m, . . . ,m, 0, . . . , 0).

We also note

∀ m,u, T (0)
m (u) = T (r+1)

m (u) = 1, (5.8.6)

as a consequence of the quantum Wronskian (5.8.4).

The T -functions (5.8.5) may also be written in terms of the Q(a) functions

associated with the other fundamental representations with highest weights ωa.

We recall the definition of the Q(a) functions

Ψ(a) =

(r+1
a )−1∑
I=0

Q
(a)
I (u)Ξ

(a)
I , (5.8.7)

and recall the wedge product construction of the solutions Ψ(a) and Ξ(a):

Ψ(a) = Ψ
(1)
1−a
2

∧ · · · ∧Ψ
(1)
a−1
2

, (5.8.8)

Ξ
(a)
I = Ξ

(1)
i1
∧ . . .Ξ(1)

ia
, (5.8.9)

where {i1, . . . , ia} is a subset of {0, 1, . . . , r}, and the subsets are associated with

an integer I by the standard lexicographical ordering (5.3.47). We combine (5.8.7)

and the wedge product constructions of Ψ(a) and Ξ(a) with the original definition

of the Q(1) functions

Ψ(1) =
r∑
j=0

Q
(a)
j (u)Ξ

(a)
j , (5.8.10)
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to find

Q
(a)
I (u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
(1)
i1

(u+ a− 1) Q
(1)
i1

(u+ a− 3) · · · Q
(1)
i1

(u− a+ 1)

Q
(1)
i2

(u+ a− 1) Q
(1)
i2

(u+ a− 3) · · · Q
(1)
i2

(u− a+ 1)

...
...

. . .
...

Q
(1)
ia

(u+ a− 1) Q
(1)
ia

(u+ a− 3) · · · Q
(1)
ia

(u− a+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.8.11)

Applying a generalised Laplace expansion to the determinants T
(a)
m (u) by expand-

ing over a-by-a minors, the T -functions T
(a)
m (u) may be written in the convenient

form

T (a)
m (u) =

(r+1
a )−1∑
I,J=0

εIJQ
(a)
I (u+m+ h/2)Q

(h−a)
J (u−m− h/2) (5.8.12)

where εIJ is a truncated notation for the Levi-Civita symbol εi1i2...iaj1...jh−a . This

form of the T -function will be particularly useful in the study of TQ-relations.

5.8.2 Fusion relations

The T -functions satisfy the fusion relations

T (a)
m (u+ 1)T (a)

m (u− 1) = T
(a)
m+1(u)T

(a)
m−1(u) + T (a+1)

m (u)T (a−1)
m (u). (5.8.13)

To verify this, we write the T -functions explicitly in determinant form:

z0T
(a)
m (u)

= det

 ~Q(u+ h/2 +m+ a− 1), . . . , ~Q(u+ h/2 +m− a+ 1),︸ ︷︷ ︸
a terms

~Q(u+ h/2−m− a− 1), . . . , ~Q(u− 3h/2−m+ a+ 1)︸ ︷︷ ︸
h−a terms

 . (5.8.14)
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Let

Ak = ~Q(u+ h/2 +m+ a− 2k), (5.8.15)

Bk = ~Q(u+ h/2−m− a− 2k). (5.8.16)

The fusion relations (5.8.13) are then equivalent to the determinant identity

det(A0, A1, . . . , Aa−1, B0, B1, . . . , Bh−a−1) det(A1, . . . , Aa, B1, . . . , Bh−a)

− det(A0, A1, . . . , Aa−1, B1, . . . , Bh−a) det(A1, . . . , Aa, B0, B1, . . . , Bh−a−1)

− det(A0, A1, . . . , Aa, B1, . . . , Bh−a−1) det(A1, . . . , Aa−1, B0, B1, . . . , Bh−a) = 0.

(5.8.17)

To prove the fusion relations (5.8.13), it remains only to demonstrate the identity

(5.8.17) for all sets of vectors {A0, . . . , Aa, B0, . . . , Bh−a} ⊂ Rh. To do this, we

consider the vector space Rh+2 with basis {ei}h+1
i=0 . Using the wedge product

defined on this vector space, we construct the h-vector

x =
∑

0≤i<j≤h+1

Ĉije0 ∧ · · · ∧ êi ∧ · · · ∧ êj ∧ · · · ∧ eh+1, (5.8.18)

where the hats on the vectors ei, ej indicate those vectors are to be omitted from

the product. We also choose the coefficients Ĉij to be determinants of vectors Ci

in Rh:

Ĉij = det
(
C0, . . . , Ĉi, . . . , Ĉj, . . . , Ch+1

)
, (5.8.19)

where the hats on the vectors Ci, Cj indicate these vectors are omitted from the

determinant.

Given a vector space V of dimension n and its associated spaces of k-vectors∧k V , there exists an isomorphism between the space of k-vectors known as the
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Hodge star operator, defined as

? :
k∧
V →

h−k∧
V,

? (ei1 ∧ · · · ∧ eik) = εi1i2...iaj1...jh−kej1 ∧ . . . ejh−k , (5.8.20)

where i1 < i2 < · · · < ik and j1 < j2 < · · · < jh−k. We apply this isomorphism to

the h-vector x defined in (5.8.18), producing a 2-vector:

?x =
∑

0≤i<j≤h+1

Ĉij(−1)i+j−1ei ∧ ej. (5.8.21)

As the wedge product is an antisymmetric operation, we immediately find the

4-vector ?x ∧ ?x = 0:

?x ∧ ?x =
∑

0≤i<j≤h+1,
0≤k<l≤h+1

ĈijĈkl(−1)i+j+k+lei ∧ ej ∧ ek ∧ el = 0. (5.8.22)

Each component of this 4-vector is then equal to zero; we then consider the coef-

ficient of the e0 ∧ ea ∧ ea+1 ∧ eh+1 term in this 4-vector to find:

Ĉ0aĈ(a+1)(h+1) − Ĉ0(a+1)Ĉa(h+1) + Ĉ0(h+1)Ĉa(a+1) = 0. (5.8.23)

Now choose the arbitrary vectors Ck to be

Ck =


Ak if 0 ≤ k ≤ a

Bk if a+ 1 ≤ k ≤ h+ 1.

(5.8.24)

Rewrite the Ĉij terms in their full form to recover the determinant identity

(5.8.17), and then apply the substitutions (5.8.15) and (5.8.16) to recover the
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fusion relations

T (a)
m (u+ 1)T (a)

m (u− 1) = T
(a)
m+1(u)T

(a)
m−1(u) + T (a+1)

m (u)T (a−1)
m (u). (5.8.25)

5.8.3 TQ-relations

Another set of functional relations satisfied by the T -functions and the Q-functions

are the TQ-relations. TQ-relations arose originally in Baxter’s solution of the six-

vertex ice-type integrable model [4] and have since become a staple of integrable

model theory, as the TQ-relations contain information on the allowed energy levels

of the system in question. We will further demonstrate the ODE/IM correspon-

dence for the A
(1)
r Toda theory by constructing the TQ-relations associated with

this model.

The TQ-relations were constructed from the relevant differential equation for

the A
(1)
1 case in [45], and similar relations were found for the A

(1)
2 case in [5]. In this

section, we will follow the analysis in [42] to exhibit analogous TQ-relations for

the remaining algebras A
(1)
r where r > 2. We will also check that the TQ-relations

we derive here match those found in [45, 5].

We recall the Q-functions for the linear problem in the representation V (a) are

given by Q
(a)
I (u), where I = 0, 1, . . . ,

(
h
a

)
− 1. With these, we define a column

vector of values of the function Q
(a)
J :

~X(a)(J) =

(
Q

(a)
J (u), Q

(a)
J (u+ 2), . . . , Q

(a)
J

(
u+ 2

(
h

a

)))T
, (5.8.26)

and then, following [42], we define a function of indices Jk, K as a
(
h
a

)
+1×

(
h
a

)
+1
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determinant of certain vectors of the form (5.8.26):

Q
(
I1, . . . I(ha)

, K
)

= det
(
~X(a)(I1), ~X(a)(I2), . . . , ~X(a)(I(ha)

), ~X(a)(K)
)
. (5.8.27)

For any choice of the indices Ik, K, Q = 0. We exploit this by contracting Q with

specially chosen Q(h−a)-functions:

∑
I,J

(ha)∏
k=1

1

z0

(
εIkJkQ

(h−a)(u+ h− 2k)
)
Q(I1, . . . , I(ha)

, K) = 0, (5.8.28)

where the sum is over all indices {I1, . . . , I(ha)
, J1, . . . , J(ha)

}. By expanding the de-

terminant Q and using the definition of T
(a)
m (u) (5.8.12), we find the TQ-relations

in determinant form:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T
(a)
1−h(u+ h

2
− 1) . . . T

(a)

(ha)−h
(u+ h

2
−
(
h
a

)
) Q

(a)
K (u)

T
(a)
2−h(u+ h

2
) . . . T

(a)

(ha)−h+1
(u+ h

2
−
(
h
a

)
+ 1) Q

(a)
K (u+ 2)

...
. . .

...
...

T
(a)

(ha)−h+1
(u+ h

2
+
(
h
a

)
− 1) . . . T

(a)

2(ha)−h
(u+ h

2
) Q

(a)
K (u+ 2

(
h
a

)
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(5.8.29)

We check these TQ-relations agree with the h = 2 case in [45] and the h = 3 case

in [5].

h = 2

In the case h = 2, (5.8.29) becomes

∣∣∣∣∣∣∣∣∣
T

(1)
−1 (u) T

(1)
0 (u− 1) Q

(1)
k (u)

T
(1)
0 (u+ 1) T

(1)
1 (u) Q

(1)
k (u+ 2)

T
(1)
1 (u+ 2) T

(1)
2 (u+ 1) Q

(1)
k (u+ 4)

∣∣∣∣∣∣∣∣∣ = 0. (5.8.30)
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We note from the definition of T
(a)
m (u) (5.8.12),

T
(1)
−1 (u) = 0, T

(1)
0 (u− 1) = T

(1)
0 (u+ 1) = 1. (5.8.31)

Expanding (5.8.30) along the rightmost column, we find

Q
(1)
k (u)

∣∣∣∣∣∣ 1 T
(1)
1 (u)

T
(1)
1 (u+ 2) T

(1)
2 (u+ 1)

∣∣∣∣∣∣−Q(1)
k (u+ 2)

∣∣∣∣∣∣ 0 1

T
(1)
1 (u+ 2) T

(1)
2 (u+ 1)

∣∣∣∣∣∣
+Q

(1)
k (u+ 4)

∣∣∣∣∣∣0 1

1 T
(1)
1 (u)

∣∣∣∣∣∣ = 0. (5.8.32)

The fusion relations (5.8.13) for the case h = 2, a = 1 are

T (1)
m (u+ 1)T (1)

m (u− 1) = 1 + T
(1)
m+1(u)T

(1)
m−1(u). (5.8.33)

Substituting these into (5.8.32) and shifting u → u − 2, we find the TQ-relation

in [45]:

T
(1)
1 (u)Q

(1)
k (u) = Q

(1)
k (u+ 2) +Q

(1)
k (u− 2). (5.8.34)

h = 3, a = 1

Equation (5.8.29) in the case h = 3, a = 1 is given by:

∣∣∣∣∣∣∣∣∣∣∣∣∣

T
(1)
−2 (u+ 1/2) T

(1)
−1 (u− 1/2) T

(1)
0 (u− 3/2) Q

(1)
k (u)

T
(1)
−1 (u+ 3/2) T

(1)
0 (u+ 1/2) T

(1)
1 (u− 1/2) Q

(1)
k (u+ 2)

T
(1)
0 (u+ 5/2) T

(1)
1 (u+ 3/2) T

(1)
2 (u+ 1/2) Q

(1)
k (u+ 4)

T
(1)
1 (u+ 7/2) T

(1)
2 (u+ 5/2) T

(1)
3 (u+ 3/2) Q

(1)
k (u+ 6)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (5.8.35)
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Shifting u → u − 3 to match [5] and expanding the determinant (5.8.35) along

the rightmost columns, we recover the following relation after a rearranging of

Q-functions:

Q
(1)
k (u+ 3)T

(0)
1 (u+ 3/2)Q(3)(u− 3)Q(3)(u− 5)

−Q(1)
k (u+ 1)T

(1)
1 (u+ 1/2)Q(3)(u− 3)Q(3)(u− 5)

+Q
(1)
k (u− 1)T

(2)
1 (u− 1/2)Q(3)(u− 3)Q(3)(u− 5)

−Q(1)
k (u− 3)T

(3)
1 (u− 3/2)Q(3)(u− 3)Q(3)(u− 5) = 0. (5.8.36)

Noting that the Q(3), T (0) and T (3) functions are all quantum Wronskians, they

can be removed from this expression. We then find

Q
(1)
k (u+ 3)−Q(1)

k (u+ 1)T
(1)
1 (u+ 1/2)

+Q
(1)
k (u− 1)T

(2)
1 (u− 1/2)−Q(1)

k (u− 3) = 0, (5.8.37)

which is exactly equivalent to equation (5.7) in [5].

5.9 Conclusions

In this chapter, we began with a differential equation related to the A
(1)
r affine

Toda field theory. This differential equation had an associated linear problem,

which we used to construct Q-functions. These Q-functions contained information

on the associated quantum integrable model; a set of Bethe ansatz equations,

the integrals of motion associated with this model, fusion relations between T -

functions (related to the associated transfer matrices of this model) and a set

of TQ-relations. We have therefore demonstrated an example of the ODE/IM

correspondence between differential equations related to A
(1)
r affine Toda field

theories and massive quantum integrable models with A
(1)
r symmetry.
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Chapter 6

On the massive ODE/IM

correspondence for the

simply-laced Lie algebras

6.1 Introduction

In this chapter, we will generalise the analysis of the massive ODE/IM correspon-

dence in Chapter 5 to the remaining simply-laced Lie algebras; the classical family

D
(1)
r for r ≥ 3, and the exponential Lie algebras E

(1)
6 , E

(1)
7 and E

(1)
8 .

The Lie algebra notation [37, 38] we have adopted now begins to pay dividends,

as many of the calculations we will need to perform in our analysis of the D
(1)
r

case will follow immediately from the relevant calculations in the A
(1)
r case.
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6.2 The D
(1)
r massive ODE/IM correspondence

6.2.1 The D
(1)
r linear problem

Representations of D
(1)
r

We begin with the gauge-transformed linear problem (∂z + Ã)Ψ̃ = 0, with Ã

defined as in (5.2.14)

Ã = β∂φ ·H +meθ

[
r∑
i=1

√
n∨i Eαi + p(z)

√
n∨0Eα0

]
. (6.2.1)

Since we are now concerned with the affine Lie algebras D
(1)
r , we substitute the

relevant dual Kac labels n∨0 , n
∨
i as given in section 4.2.2, giving the D

(1)
r linear

problem

(
∂ + β∂φ ·H +meθ

(
p(z)Eα0 + Eα1 +

√
2
r−2∑
i=2

Eαi + Eαr−1 + Eαr

))
Ψ̃ = 0.

(6.2.2)

To make further progress, we must choose a particular representation of the Lie

algebra D
(1)
r , making the linear problem (6.2.2) into a system of differential equa-

tions. We will be concerned with representations of D
(1)
r constructed from funda-

mental representations of the simple Lie algebra Dr; these are the representations

with highest weight ωi (i = 1, . . . , r), where ωi are the fundamental weights of the

simple Lie algebra Dr. As in chapter 4, we denote these representations by L(ωi).

As described in [47] and section 4.2.2, we construct evaluation representations

L(ωi)k of the affine Lie algebra D
(1)
r by mapping the generator Eα0 → e2πikEα0 ,

where k ∈ Z/2. We then define the representations V (a) of the affine Lie algebra
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D
(1)
r by the following:

V (a) = L(ωa)a−1
2
, (a = 1, . . . , r − 2), V (r−1) = L(ωr−1)r/2, V (r) = L(ωr)r/2.

(6.2.3)

The representations L(ω1), . . . , L(ωr−2) can also be generated by wedge products

of elements of the vector space L(ω1), as for the fundamental representations of

Ar. The provenance of the remaining representations L(ωr−1) and L(ωr) is slightly

more complicated; they are known as the half spin representations of Dr. The

elements of these representations correspond to generators of the action of the

rotation group on spinors, which arise naturally in the discussion of fermions in

quantum field theory. For more details on their explicit construction in terms of

Pauli matrices see Appendix B of [57].

In this chapter, we will mostly be concerned with the smallest non-trivial repre-

sentation V (1) = L(ω1)0 = L(ω1). By the Weyl dimension formula (4.2.46), L(ω1)

is 2r-dimensional, and its weights λ
(1)
i are found using the algorithm described in

section 4.2.1. They satisfy

λ
(1)
1 = ω1, (6.2.4)

λ
(1)
i+1 = λ

(1)
i − αi, (i = 1, . . . , r − 1), (6.2.5)

λ
(1)
2r+1−i = −λ(1)

i , (i = 1, . . . , r). (6.2.6)

We choose a basis {e(1)
i }2r

i=1 of the vector space V (1) such that the generators of

the Cartan subalgebra are diagonalised

Hie
(1)
j = (λ

(1)
j )ie

(1)
i ,

= (δi,j + δ2r−i,j − δi+1,j − δ2r+1−i,j)e
(1)
j , (6.2.7)

and the generators Eαi , (i = 1, . . . , r), Eα0 of the Lie algebra D
(1)
r are represented
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by the matrices with elements

Eαie
(1)
j = δi+1,je

(1)
i + δ2r+1−i,je

(1)
2r−i, (6.2.8)

E−αie
(1)
j = δi,je

(1)
i+1 + δ2r−i,je

(1)
2r+1−i, (6.2.9)

Eαre
(1)
j = δr+1,je

(1)
r−1 + δr+2,je

(1)
r , (6.2.10)

E−αre
(1)
j = δr−1,je

(1)
r+1 + δr,je

(1)
r+2, (6.2.11)

Eα0e
(1)
j = δ1,je

(1)
2r−1 + δ2,je

(1)
2r . (6.2.12)

We note that the above definitions (6.2.8)-(6.2.12) hold only for r ≥ 3, as D2 is

no longer a semi-simple Lie algebra (specifically, D2 = A1 ⊕ A1.)

Using the algorithm in section 4.2.1, a similar procedure may be followed

to generate explicit matrices for the representations V (a). We shall not demon-

strate this here, as by the Weyl dimension formula (4.2.46), the dimensions of the

‘higher’ representations rapidly become large. The representation V (1) is sufficient

to demonstrate all the major features of the D
(1)
r case of the massive ODE/IM

correspondence.

The linear problem in the representation V (1) and the pseudo-differential

equation

Now that we have constructed an explicit representation of D
(1)
r in the form of

the matrices (6.2.7)-(6.2.12), we may write the gauge-transformed linear problem
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(∂ + Ã)Ψ̃ = 0 as an explicit system of 2r coupled differential equations:

D(λ
(1)
1 )ψ̃1 +meθ ψ̃2 = 0, (6.2.13)

D(λ
(1)
2 )ψ̃2 +meθ

√
2 ψ̃3 = 0, (6.2.14)

...

D(λ
(1)
r−2)ψ̃r−2 +meθ

√
2 ψ̃r−1 = 0, (6.2.15)

D(λ
(1)
r−1)ψ̃r−1 +meθ ψ̃r +meθ ψ̃r+1 = 0, (6.2.16)

D(λ(1)
r )ψ̃r +meθ ψ̃r+2 = 0, (6.2.17)

D(−λ(1)
r )ψ̃r+1 +meθ ψ̃r+2 = 0, (6.2.18)

...

D(−λ(1)
3 )ψ̃2r−2 +meθ

√
2 ψ̃2r−1 = 0, (6.2.19)

D(−λ(1)
2 )ψ̃2r−1 +meθ ψ̃2r +meθ p(z)ψ̃1 = 0, (6.2.20)

D(−λ(1)
1 )ψ̃2r +meθ p(z)ψ̃2 = 0, (6.2.21)

where the differential operator D is defined as

D(λ) = ∂ + βλ · ∂φ, (6.2.22)

and we have used the symmetry property of the weights of V (1) (6.2.6) to write

D(λ
(1)
r+k) as D(−λ(1)

k ) for k = 1, . . . , r.

Just as with the representation V (1) of A
(1)
r , the equations (6.2.13)-(6.2.21) can

be combined into a single pseudo-differential equation involving ψ̃1, following the

method in [37]. Let

D(λ) = D(λ(1)
r ) . . . D(λ

(1)
1 ), (6.2.23)

184



and apply this differential operator to ψ̃1. Using (6.2.13)-(6.2.17)

D(λ)ψ̃1 = D(λ(1)
r ) . . . D(λ

(1)
1 )ψ̃1 (6.2.24)

= −meθD(λ(1)
r ) . . . D(λ

(1)
2 )ψ̃2 (6.2.25)

...

= (−meθ)r−12
r−3
2

(
(−meθψ̃r+2) +D(λ(1)

r )ψ̃r+1

)
. (6.2.26)

Applying (6.2.18) to (6.2.26),

D(λ)ψ̃1 = (−meθ)r−12
r−3
2

(
D(−λ(1)

r )ψ̃r+1 +D(λ(1)
r )ψ̃r+1

)
. (6.2.27)

Using the definition of the differential operator D (6.2.22), we find

D(λ)ψ̃1 = (−meθ)r−12
r−1
2 ∂ψ̃r+1. (6.2.28)

Similarly, we combine the equations (6.2.18)-(6.2.21) to form another equation in

terms of ψ̃1 and ψ̃r+1. Following the notation in [37], let

D(λ†) = D(−λ(1)
1 ) . . . D(−λ(1)

r ), (6.2.29)

and apply this operator to ψ̃r+1. Using (6.2.18)-(6.2.20) we find:

D(λ†)ψ̃r+1 = D(−λ(1)
1 ) . . . D(−λ(1)

r )ψ̃r+1 (6.2.30)

= (−meθ)r−12
r−3
2 D(−λ(1)

1 )(ψ̃2r + p(z)ψ̃1). (6.2.31)

To simplify the right hand side of (6.2.31), we use equations (6.2.13) and (6.2.21)

and the definition of the differential operator D(−λ(1)
1 ) (6.2.22):

D(−λ(1)
1 )(ψ̃2r + p(z)ψ̃1) = 2p(z) ∂ψ̃1 + p′(z)ψ̃1 = 2

√
p(z) ∂

(√
p(z)ψ̃1

)
. (6.2.32)
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We substitute (6.2.32) into (6.2.31) to find

D(λ†)ψ̃r+1 = (−meθ)r−12
r−1
2

√
p(z) ∂

(√
p(z)ψ̃1

)
. (6.2.33)

The final step is apply the inverse differential operator ∂−1 to both sides of (6.2.28)

and then apply the differential operator D(λ†):

D(λ†)∂−1D(λ)ψ̃1 = (−meθ)r−12
r−1
2 D(λ†)ψ̃r+1, (6.2.34)

and then finally apply (6.2.33) to derive a pseudo-differential equation for the top

component ψ̃1:

D(λ†)∂−1D(λ)ψ̃1 = (−meθ)2r−22r−1
√
p(z) ∂

(√
p(z)ψ̃1

)
, (6.2.35)

which is the equation (4.7) found in [37].

The asymptotic behaviour of the pseudo-differential equation (6.2.35) in the

small-|z| and large-|z| limits could now be studied to define the D
(1)
r Q-functions,

which as for the A
(1)
r case will be our main objects of study. The inverse differential

operator ∂−1
z obscures the analysis of the asymptotics of the solutions of this

equation, and for this reason, we will consider the equivalent gauge-transformed

linear problem (∂z + Ã)Ψ̃ = 0, using the WKB method for systems of linear

equations given in section 4.3.2.

The massless limit

We now show equation (6.2.35) matches the the D
(1)
r equation found in [19] for

the massless limit of the D
(1)
r ODE/IM correspondence. We change variables in

the equation (6.2.35) and take the massless limit. Following [37], we make the
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change of variables

x = (meθ)
1

M+1 z, E = shM(meθ)
hM
M+1 , (6.2.36)

x̄ = (me−θ)
1

M+1 z̄, Ē = shM(me−θ)
hM
M+1 . (6.2.37)

and the change of notation

Dx(λ) = (meθ)
1

M+1 (∂x + βλ · ∂xφ). (6.2.38)

We rewrite (6.2.35) in these new variables, taking the massless limit. We first

set z̄ → 0 and θ → ∞ and let z → 0 so that x and E remain finite. Using the

small-|z| limit of φ (5.2.17), Dx(λ) becomes

Dx(λ) =

(
E

s

) 1
hM
(
∂x +

βλ · g
x

)
. (6.2.39)

Setting

Dr(g) := Dx(λ
(1)
r ) ·Dx(λ

(1)
1 ), Dr(g

†) := Dx(−λ(1)
1 ) ·Dx(−λ(1)

r ), (6.2.40)

to match the notation in [18, 19], the massless pseudo-differential equation is then

given by

Dr(g
†)∂−1

x Dr(g)ψ̃1 = 2r−1
√
p(x,E) ∂x

(√
p(x,E)ψ̃1

)
(6.2.41)

where p(x,E) = xhM −E. This equation corresponds to the D
(1)
r equation found

in [19] for the massless limit of the D
(1)
r ODE/IM correspondence, up to factors

of powers of 2 that can be absorbed into p(x,E).
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6.2.2 Asymptotics of the V (1) linear problem

We will need to consider the small-|z| and large-|z| solutions of the gauge-transformed

linear problem (6.2.2). After undoing the gauge transform, the solutions {Ξ(1)
i }2r

i=1

with particular small-|z| behaviour form a basis of the space of solutions of the

linear problem. We write the large-|z| solution Ψ with the most rapid decay to

zero on the positive real axis as |z| → ∞ as a sum of small-|z| solutions. The

Q-functions are defined as the coefficients of this expansion:

Ψ(1)(ϕ|θ) =
2r∑
i=1

Q
(1)
i (θ) Ξ

(1)
i (ϕ|θ). (6.2.42)

We could also consider the linear problems in the larger representations V (a) of

D
(1)
r . The small-|z| and large-|z| solutions of these linear problems then define the

Q(a) functions as coefficients of a similar expansion to (6.2.42), as we saw in the

A
(1)
r case. We will define these asymptotics in terms of constants wa which will

satisfy a certain linear system of equations derived from the Ψ-system, found in

equation (3.8) of [38].

V (1) small-|z| asymptotics

In the small-|z| limit, the gauge-transformed linear problem (6.2.2) becomes

(
∂z +

βg ·H
z

)
Ψ̃ = 0, (6.2.43)

where we have used the small-|z| behaviour of the solution to the modified affine

Toda field equation φ given in (5.2.17). Recalling the action of the Cartan subal-

gebra generators Hi on the basis vectors of V (1) {e(1)
j }2r

j=1, Hie
(1)
j = (λ

(1)
j )ie

(1)
i , the
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solutions of the small-|z| linear problem (6.2.43) are given by

Ψ̃ = z−βg·λ
(1)
j cje

(1)
j , (6.2.44)

where cj are arbitrary constants. We therefore choose a basis of solutions to the

original gauge-transformed linear problem (6.2.2) to be the set {Ξ̃j}2r
j=1, with Ξ̃j

defined to have the asymptotic behaviour

Ξ̃
(1)
j ∼ z−βg·λ

(1)
j e−βθg·λ

(1)
j e

(1)
j as |z| → 0. (6.2.45)

We have chosen cj = e−βθg·λ
(1)
j to ensure invariance of these solutions under

Symanzik rotation (5.2.11). It will also be useful to find the small-|z| solutions to

the original linear problem (∂z +A)Ψ = 0 given in (5.2.9) (setting all constants in

(5.2.9) to their relevant D
(1)
r values), which are accessed by applying the matrix

U−1 = eβφ·H/2 to the gauge-transformed solutions Ξ̃
(1)
j . As we are working in the

small-|z| limit, we simplify U−1 by applying the small-|z| behaviour of φ (5.2.17):

U−1 ∼ (zz̄)βg·H/2 as |z| → 0. (6.2.46)

Applying this matrix to (6.2.45), we find the small-|z| solutions to the original

D
(1)
r linear problem (5.2.9) behave as

Ξ
(1)
j ∼ e−(θ+iϕ)βg·λ(1)j e

(1)
j , as |z| → 0, (6.2.47)

where we work in polar co-ordinates z = |z|eiϕ.
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V (1) large-|z| asymptotics

The term proportional to H in the gauge-transformed linear problem (6.2.2) is

dropped in the large-|z| limit. (6.2.2) then becomes

(
∂z +meθ

(
p(z)Eα0 + Eα1 +

√
2
r−2∑
i=2

Eαi + Eαr−1 + Eαr

))
Ψ̃ = 0, (6.2.48)

due to the large-|z| behaviour of φ (5.2.16):

β∂zφ ·H ∼
Mρ∨ ·H

z
, as |z| → ∞. (6.2.49)

We are interested in the particular (subdominant) solution of (6.2.48) that decays

most rapidly to zero on the positive real axis. In section 4.3.2 solutions of linear

systems of the form (∂z + Ã)Ψ̃ = 0 have asymptotic solutions in the limit |z| → ∞

of the form

Ψ̃ ∼ v(z) exp

(
−
∫ z

σ(u)du

)
, as |z| → ∞, (6.2.50)

where v(z) is a particular normalisation of an eigenvector of Ã and σ(z) is its

associated eigenvalue. The subdominant solution corresponds to the eigenvalue

with largest real part of the sum of the matrices in (6.2.48). Following the method

in section 4.3.2, the subdominant solution is given by

Ψ̃(1) ∼ f(z̄) exp

(
−m
√

2eθ
zM+1

M + 1

)(
z−(r−1)Me

(1)
1 +

√
2
r−1∑
j=2

z−(r−j)Me
(1)
j

+ e(1)
r + e

(1)
r+1 +

√
2
r−1∑
j=2

z(j−1)Me
(1)
r+j + z(r−1)Me

(1)
2r

)
, as |z| → ∞,

(6.2.51)
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where f(z̄) is an arbitrary function in the conjugate variable z̄, which is fixed by

considering the analogous subdominant solution to the conjugate linear problem

(∂z̄ + Ā)Ψ = 0. Firstly, as for the A
(1)
r case we undo the gauge transform by

applying the matrix U−1 = eβφ·H/2 to the subdominant solution (6.2.51). Recalling

the large-|z| behaviour of φ,

U−1e
(1)
j ∼ (zz̄)Mρ∨·H/2e

(1)
j , as |z| → ∞, (6.2.52)

∼ (zz̄)Mρ∨·λ(1)j /2e
(1)
j . (6.2.53)

To calculate the subdominant solution to the original linear problem Ψ = U−1Ψ̃ it

remains to compute the values ρ∨·λ(1)
j , where ρ∨ is the co-Weyl vector (equal to the

Weyl vector as Dr is a simply-laced Lie algebra), defined in equation (4.2.45) as

the sum of fundamental weights or as half the sum of the positive roots of Dr. To

compute ρ∨ · λ(1)
j we use the definition of the Weyl vector (4.2.45), the definitions

of the weights of the representation V (1) (6.2.4)-(6.2.6) and the orthogonality of

weights and roots ωi·αj = δij (again this holds as Dr is a simply-laced Lie algebra.)

From the Dr Weyl vector sum found in section 4.2.2, we have

ρ∨ = ω1 + · · ·+ ωr =
1

2

r∑
i=1

i(2r − i− 1)αi, (6.2.54)

therefore

ρ∨ · λ(1)
1 = ρ∨ · ω1 =

1

2

r∑
i=1

i(2r − i− 1)αi · ω1 = r − 1. (6.2.55)

Using the definitions of the weights (6.2.4)-(6.2.6) the dot products of the Weyl
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vector with the remaining weights are easily generated:

ρ∨ · λ(1)
i+1 = ρ∨ · (λ(1)

i − αi), (i = 1, . . . , r − 1), (6.2.56)

ρ∨ · λ(1)
2r+1−j = −ρ∨ · λ(1)

j , (j = 1, . . . , r). (6.2.57)

From the definition of the Weyl vector as a sum of fundamental weights and the

orthogonality of weights and roots,

ρ∨ · αi = 1, (6.2.58)

which allows us to compute all the dot products (6.2.56)-(6.2.57):

ρ∨ · λ(1)
i = r − i, (i = 1, . . . , r), (6.2.59)

ρ∨ · λ(1)
r+j = −(j − 1), (j = 1, . . . , r). (6.2.60)

We now apply the matrix U−1 in the large-|z| limit to the large-|z| subdominant

solution (6.2.51):

Ψ(1) = U−1Ψ̃(1) ∼ f(z̄) exp

(
−m
√

2eθ
zM+1

M + 1

)
·
(
e−iϕ(r−1)Me

(1)
1

+
√

2
r−1∑
j=2

e−iϕ(r−j)Me
(1)
j + e(1)

r + e
(1)
r+1 +

√
2
r−1∑
j=2

eiϕ(j−1)Me
(1)
r+j (6.2.61)

+eiϕ(r−1)Me
(1)
2r

)
, as |z| → ∞.

Similarly to chapters 3 and 5, we require Ψ(1) to be the large-|z| asymptotic

solution for both the linear problem (5.2.9) and the conjugate linear problem

(5.2.10). To ensure this, we set

f(z̄) = exp

(
−me−θ

√
2
z̄M+1

M + 1

)
, (6.2.62)
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so that the large-|z| asymptotics to the D
(1)
r linear problem are given by

Ψ(1) ∼ exp

(
−2
√

2|z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
(
e−iϕ(r−1)Me

(1)
1 +

√
2
r−1∑
j=2

e−iϕ(r−j)Me
(1)
j + e(1)

r + e
(1)
r+1 (6.2.63)

+
√

2
r−1∑
j=2

eiϕ(j−1)Me
(1)
r+j + eiϕ(r−1)Me

(1)
2r

)
, as |z| → ∞.

The asymptotics of the larger linear problems in the representations V (a) can be

determined via an explicit construction of the representations V (a). Here we only

sketch the V (a) asymptotics; their general structure is all that we require.

The small-|z| asymptotic solutions Ξ
(a)
J for the V (a) linear problem are given

by

Ξ
(a)
J ∼ e−β(θ+iϕ)λ

(a)
J ·ge

(a)
J as |z| → 0, (6.2.64)

where {e(a)
j }dimV (a)

J=1 is a basis for the representation V (a) with Hie
(a)
J = (λ

(a)
J )ie

(a)
J ,

and J = 1, . . . , dimV (a) is a standard index with no lexicographic interpretation

as in section 5.3.3.

The large-|z| asymptotics of the subdominant solution of the linear problems

(5.2.9)-(5.2.10) are given (for general Lie algebras) in equation (2.23) of [38] in

the general form

Ψ(a) ∼ exp

(
−2wa

|z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
(zz̄)Mρ∨·H/2v(a)(z) (6.2.65)

where v(a)(z) is the eigenvector corresponding to the eigenvalue meθzMwa of A in

(5.2.9) with largest positive real part, and the wa are constants determined from

a set of linear equations which arise from the associated Ψ-system, which we will
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discuss in section 6.2.4. From our discussion of the large-|z| asymptotics of the

V (1) linear problem we see that w1 =
√

2. The expressions (6.2.64) and (6.2.65)

will be useful in the discussion of the properties of the Q(a) functions.

6.2.3 Q-functions

Having derived the asymptotics of solutions to the D
(1)
r linear problem in the

representation V (1), we now derive some properties of the Q-functions defined in

equation (6.2.42). The arguments establishing these properties are almost identi-

cal to those in section 5.4, only differing in the details of the asymptotic solutions

we have derived for the D
(1)
r case. For brevity we will only consider the cases

where the details are non-trivially different from the A
(1)
r case.

Notes on quasiperiodicity and the asymptotics of the Q-functions

Recall from section 5.4.1 the definition of the matrix S = e
2πi
h
ρ∨·H (5.4.1) which

is independent of the choice of Lie algebra. Quasiperiodicity of the Q(1) functions

follows from the following identities

SΞ
(1)
j

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
= exp

(
2πi

h
(ρ∨ + βg) · λ(1)

j

)
Ξ

(1)
j (ϕ| θ) ,

(6.2.66)

SΨ(1)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
= Ψ(1) (ϕ| θ) , (6.2.67)

just as for the A
(1)
r case. The proof of (6.2.66) is identical to the proof of (5.4.2),

due to the identical form of the small-|z| asymptotics. We briefly demonstrate

the proof of the second identity (6.2.67). This is done by computing the left-hand
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side of (6.2.67) directly:

SΨ(1)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
∼ exp

(
−2
√

2|z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
e

2πi
h
ρ∨·H (6.2.68)(

e−iϕ(r−1)Me−
2πi
h

(r−1)e
(1)
1 + +

√
2
r−1∑
j=2

e−iϕ(r−j)Me−
2πi
h

(r−j)e
(1)
j + e(1)

r + e
(1)
r+1

+
√

2
r−1∑
j=2

eiϕ(j−1)Me
2πi
h

(j−1)e
(1)
r+j + eiϕ(r−1)Me

2πi
h

(r−1)e
(1)
2r

)
, as |z| → ∞.

Applying the operator e
2πi
h
ρ∨·H we find

SΨ(1)

(
ϕ+

2π

hM

∣∣∣∣ θ − 2πi

hM
− 2πi

h

)
∼

(
e−iϕ(r−1)Me

(1)
1 +

√
2
r−1∑
j=2

e−iϕ(r−j)Me
(1)
j + e(1)

r + e
(1)
r+1 (6.2.69)

+
√

2
r−1∑
j=2

eiϕ(j−1)Me
(1)
r+j + eiϕ(r−1)Me

(1)
2r

)
, as |z| → ∞.

These asymptotics are exactly the same as the large-|z| asymptotics of Ψ(1)(ϕ|θ).

Since the subdominant solution on the positive real axis for a given linear problem

is unique relation (6.2.67) holds.

The identities (6.2.66) and (6.2.67), together with the definition of the Q(1)

functions (6.2.42) imply the quasiperiodicity of the Q(1) functions:

Q
(1)
j

(
θ +

2πi

hM
+

2πi

h

)
= exp

(
−2πi

h
(βg + ρ∨) · λ(1)

j

)
Q

(1)
j (θ). (6.2.70)

This quasiperiodicity relation extends to all the Q(a)-functions associated with the

linear problems (∂z + A)Ψ = 0 in the representations V (a) of D
(1)
r . This could in

principle be demonstrated using the asymptotics of the subdominant solution in

the large-|z| limit of these larger linear problems, but we do not have an explicit
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expression valid for any r for the eigenvector v(z) in (6.2.65). This eigenvector

can be computed in all cases once the matrices in the representation are known,

but a general expression for it is complicated by the presence of the half-spin

representations in the D
(1)
r case.

The argument leading to the asymptotics of the first of the Q(a)-functions in

the Re θ → ±∞ limit is identical to that found in section 5.4.2. The forms of the

D
(1)
r small-|z| and large-|z| asymptotic solutions of (5.2.9)-(5.2.10) are similar to

the A
(1)
r asymptotic solutions, and the resulting calculation is unchanged. In the

Re θ →∞ limit the asymptotics of Q
(a)
1 (θ) are

Q
(a)
1 (θ) ∼ c

(a)
1 e∓iπγa/h exp

(
sM+1mwae

θ∓ iπ(M+1)
hM τ(h,M)

)
, θ ∈ H±, (6.2.71)

and similarly the Re θ → −∞ asymptotics are

Q
(a)
1 (θ) ∼ c

(a)
1 e∓iπγa/h exp

(
sM+1mwae

−θ± iπ(M+1)
hM τ(h,M)

)
, θ ∈ H±. (6.2.72)

where γa = −(βg+ ρ∨) · λ(a)
1 , and H± are defined as strips in the complex θ-plane

as in (5.4.30).

The quantum Wronskian

An analogue to the quantum Wronskian identity discussed in section 5.4.3 also

holds for the D
(1)
r Q(1) functions. As we did there, we consider the determinant of

subdominant solutions of the gauge-transformed linear problem Ψ̃(1) twisted by

Symanzik rotations (5.2.11). Using the definition of the Q(1) functions (6.2.42)
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and the argument followed for the analogous A
(1)
r case (5.4.36)-(5.4.39), we find

det
(

Ψ̃(1)(ϕ|θ),Ω1Ψ̃(1)(ϕ|θ), . . . ,Ω2r−1Ψ̃(1)(ϕ|θ)
)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
(1)
1 (θ) Q

(1)
1 (θ − 2πi

hM
) · · · Q

(1)
1 (θ − 2πi(2r−1)

hM
)

Q
(1)
2 (θ) Q

(1)
2 (θ − 2πi

hM
) · · · Q

(1)
2 (θ − 2πi(2r−1)

hM
)

...
...

. . .
...

Q
(1)
2r (θ) Q

(1)
2r (θ − 2πi

hM
) · · · Q

(1)
2r (θ − 2πi(2r−1)

hM
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.2.73)

In precisely the same manner as in section 5.4.3, the left-hand side of (6.2.73) can

be considered in the large-|z| limit, with the result being the numerical value of

the determinant of the Q(1)-functions in (6.2.73). Applying a Symanzik rotation

(5.2.11) to the large-|z| asymptotics (6.2.51) we find

ΩkΨ̃
(1) ∼ exp

(
−mωk

√
2eθ

zM+1

M + 1

)(
ω−k(r−1)z−(r−1)Me

(1)
1

+
√

2
r−1∑
j=2

ω−k(r−j)z−(r−j)Me
(1)
j + e(1)

r + e
(1)
r+1

+
√

2
r−1∑
j=2

ωk(j−1)z(j−1)Me
(1)
r+j + ωk(r−1)z(r−1)Me

(1)
2r

)
, as |z| → ∞,

(6.2.74)
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where ω = e
2πi
h , recalling h = 2r − 2 for the Lie algebra D

(1)
r . The determinant

on the left-hand side of (6.2.73) then becomes

det
(

Ψ̃(1)(ϕ|θ),Ω1Ψ̃(1)(ϕ|θ), . . . ,Ω2r−1Ψ̃(1)(ϕ|θ)
)

(6.2.75)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z−(r−1)M ω−(r−1)z−(r−1)M · · · 1 1 · · · ω−(2r−1)(r−1)z−(r−1)M

√
2z−(r−2)M ω−(r−2)z−(r−2)M · · · 1 1 · · · ω−(2r−1)(r−2)z−(r−2)M

...
... · · · ...

... · · · ...
√

2z−M
√

2ω−1z−M · · · 1 1 · · · ω−(2r−1)z−M

1 1 · · · 1 1 · · · 1

1 1 · · · 1 1 · · · 1
√

2zM
√

2ωzM · · · 1 1 · · · ω(2r−1)zM

...
... · · · ...

... · · · ...
√

2z(r−2)M ω(r−2)z(r−2)M · · · 1 1 · · · ω(2r−1)(r−2)z(r−2)M

z(r−1)M ω(r−1)z(r−1)M · · · 1 1 · · · ω(2r−1)(r−1)z(r−1)M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

hence we have found the D
(1)
r quantum Wronskian

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q
(1)
1 (θ) Q

(1)
1 (θ − 2πi

hM
) · · · Q

(1)
1 (θ − 2πi(2r−1)

hM
)

Q
(1)
2 (θ) Q

(1)
2 (θ − 2πi

hM
) · · · Q

(1)
2 (θ − 2πi(2r−1)

hM
)

...
...

. . .
...

Q
(1)
2r (θ) Q

(1)
2r (θ − 2πi

hM
) · · · Q

(1)
2r (θ − 2πi(2r−1)

hM
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (6.2.76)

This result points to a certain redundancy in the matrix description of the linear

system. The rank of the matrix in (6.2.76) is 2r − 2, meaning that our 2r vec-

tor solutions overcount the number of truly independent solutions of the linear

system by 2. The 2r-dimensional D(ω1) representation of Dr was irreducible by

construction, however, so it is unclear how to cull two of the dimensions to make

the solutions linearly independent, if this is indeed possible or desirable.

This zero causes another problem in the construction of suitable T -functions
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for the D
(1)
r case of the ODE/IM correspondence. For the definition of the T -

functions in the A
(1)
r case (5.8.3)-(5.8.5), the constant z0, defined using the A

(1)
r

quantum Wronskian, was used to normalise these T -functions. As for D
(1)
r z0 = 0,

this determinant definition for T -functions will need to be reconsidered.

6.2.4 The Ψ-system, the Bethe ansatz equations and inte-

grals of motion

We now continue to follow the path to deriving the integrals of motion for the

massive integrable field theory associated with the D
(1)
r Toda field equations. As

we did for the A
(1)
r case, we define an embedding of particular representations,

which leads to the Dr Ψ-system. (See, for example, [47].) This Ψ-system, just

as in section 5.5.2, leads to associated Bethe ansatz equations. These will be of

the same structure as the Bethe ansatz equations defined in section 5.5.2. With

these BAEs and the Q-asymptotics (6.2.71)-(6.2.72) being the same structurally

as for the A
(1)
r case, the entire integrals of motion calculation in 5.6 carries over

with only a different Cartan matrix. We may therefore write down the analogous

expression for logQ(a)(θ) (5.6.37), expanding it in the Re θ →∞ limit to recover

the integrals of motion.

The Ψ-system and the Bethe ansatz equations

We begin by defining the representations that will be related via an embedding ι.

We recall the definitions (6.2.3) of the representations V (a). We define the rotated

representations V
(a)
k with a parameter k ∈ R:

V
(a)
k = L(ωa)a−1

2
+k, (a = 1, . . . , r − 2),

V
(r−1)
k = L(ωr−1)r/2+k, V

(r)
k = L(ωr)r/2+k. (6.2.77)
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As for the A
(1)
r case, the representation V

(a)
−1/2 ∧ V

(a)
1/2 has highest weight 2ωa − αa.

We also consider the representation

r⊗
b=1

(V (b))Bab , (6.2.78)

where B = 2I − C is the Dr incidence matrix and C is the Dr Cartan matrix.

The representation (6.2.78) has highest weight

r∑
b=1

Babωb =
r∑
b=1

(2I − C)abωb = 2ωa − αa, (6.2.79)

and therefore there exists an embedding ι given by [51]:

ι : V
(a)
−1/2 ∧ V

(a)
1/2 →

r⊗
b=1

(V (b))Bab , (a = 1, . . . , r − 2), (6.2.80)

ι : V (r−2) → V
(r−1)
−1/2 ∧ V

(r−1)
1/2 ' V

(r)
−1/2 ∧ V

(r)
1/2 , (6.2.81)

The two representations V
(r−1)
−1/2 ∧ V

(r−1)
1/2 and V

(r)
−1/2 ∧ V

(r)
1/2 have the same highest

weight 2ωr−1−αr−1 = 2ωr−αr = ωr−2 and have the same dimension
(

2r−1

2

)
. They

are therefore isomorphic. We also note the order of the representations in the

embedding ι is swapped for a = r− 1, r as dim
(
V (r−2)

)
≤ dim

(
V

(r−1)
−1/2 ∧ V

(r−1)
1/2

)
,

or equivalently

(
2r

r − 2

)
≤
(

2r−1

2

)
, for r ≥ 3. (6.2.82)

For each representation V
(a)
k define Ψ

(a)
k to be the subdominant solution on the

positive real axis of the linear problem associated with V
(a)
k . The embedding ι
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defines the Ψ-system associated with the D
(1)
r case:

ι
(

Ψ
(a)
−1/2 ∧Ψ

(a)
1/2

)
= Ψ(a−1) ⊗Ψ(a+1), (a = 1, . . . , r − 3),

ι
(

Ψ
(r−2)
−1/2 ∧Ψ

(r−2)
1/2

)
= Ψ(r−3) ⊗Ψ(r−1) ⊗Ψ(r), (6.2.83)

ι
(
Ψ(r−2)

)
= Ψ

(r−1)
−1/2 ∧Ψ

(r−1)
1/2 = Ψ

(r)
−1/2 ∧Ψ

(r)
1/2.

With this Ψ-system, we can derive a linear system for the constants wa in the

asymptotics (6.2.65) of the large-|z| solutions Ψ(a). We substitute the large-|z|

asymptotics into the Ψ-system (6.2.83). We have

Ψ
(a)
−1/2 ∧Ψ

(a)
1/2 (6.2.84)

∼ exp

{
−2mwa|z|M+1

M + 1
·(

cosh

(
θ + iϕ(M + 1)− iπ

h

)
+ cosh

(
θ + iϕ(M + 1) +

iπ

h

))}
v1,

and

r⊗
b=1

(Ψ(b))Bab (6.2.85)

∼ exp

{
−2m|z|M+1

M + 1
·

(
r∑
b=1

Babwb

)
· cosh (θ + iϕ(M + 1))

}
v2,

where v1 ∈ V
(a)
−1/2 ∧ V

(a)
1/2 , and v2 ∈

⊗r
b=1(V (b))Bab . The large-|z| asymptotics of

both sides of all the components of the Ψ-system (6.2.83) must be the same, imply-

ing the equality of all exponential prefactors of (6.2.84) and (6.2.85). Simplifying

the sum of hyperbolic cosines in (6.2.84), we have

2 cos
π

h
wa =

r∑
b=1

Babwb, (6.2.86)
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as in equation (3.8) of [38]. The vector w = (w1, . . . , wr) lies in the kernel of the

matrix 2 cos π
h
I−B, with normalisation of w1 determined by the eigenvalue of the

matrix A in the representation V (1) as determined in section 6.2.1. For the D
(1)
r

case, w1 =
√

2, as seen in equation (6.2.65). This normalisation and the system

of equations (6.2.86) is sufficient to uniquely define the constants w2, . . . , wr.

For each representation V
(a)
k , there exists a basis of solutions {Ξ(a)

J }dimV (a)

J=1

with small-|z| asymptotics given by (6.2.64). These solutions are defined to be

invariant under Symanzik rotation Ωk, defined in (5.2.11). Each subdominant

solution Ψ
(a)
k = Ωk[Ψ

(a)] can then be written in terms of this basis of solutions:

Ψ
(a)
k (ϕ|θ) =

dimV (a)∑
J=1

Q
(a)
J

(
θ − 2πik

hM

)
Ξ

(a)
J (ϕ|θ). (6.2.87)

We substitute the expansions (6.2.87) into the Ψ-system (6.2.83) following the

same procedure as in section 5.5.2 to find the untwistedDr Bethe ansatz equations:

r∏
b=1

Q(b)
(
θ

(a)
j + iπ

hM
Cab

)
Q(b)

(
θ

(a)
j − iπ

hM
Cab

) = −1, (a = 1, . . . , r), (6.2.88)

where C is the Dr Cartan matrix, the leading order Q-functions Q
(a)
1 (θ) have been

abbreivated by Q
(a)
1 (θ) = Q(a)(θ) and Q(a)(θ

(a)
j ) = 0.

Calculation of the integrals of motion

The Bethe ansatz equations (6.2.88) have been written in Lie algebra notation

and take on the same form as the A
(1)
r BAEs (5.5.21). The Re θ → ∞ asymp-

totics of the Q(a)-functions (6.2.65) also have the same structure as the analogous

asymptotics of the A
(1)
r Q(a)-functions. The calculation of the non-linear inte-

gral equation and the integrals of motion detailed in section 5.6 then carries over
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completely to the D
(1)
r case.

As in section 5.6, we follow [21] and define the deformed Cartan matrix C̃(k):

C̃<mt>(k) = − 1

cosh πk
h

, C̃mm(k) = 2, (6.2.89)

where <mt> indicates the nodes corresponding to m and t are connected on the

Dynkin diagram of Dr given in section 4.2. We then define the matrix H̃(k) by

H̃(k) =
1

2 sinh πk
hM

cosh πk
h

C̃−1 (6.2.90)

The expression for logQ(a) was derived in section 5.6 and is given by

logQ(a)

(
θ +

iπ(M + 1)

hM

)
= 2mτ(h,M)wa cosh θ − iπ

h
γa

− 2i
r∑
b=1

∫ ∞
−∞

Hab(θ − θ′ + i0) Im log
(
1 + a(b)(θ′ − i0)

)
dθ′, (6.2.91)

where Hab(θ) is the inverse Fourier transform of H̃ab(k), τ(h,M) is the integral

given by equation (3.4.26), and γa is given by equation (5.4.20). As for the integrals

of motion calculation for the A
(1)
r case given in section 5.6, we expand (6.2.91) in

the limit Re θ → +∞. This is done by considering the integral form of H(θ) in

terms of H̃(k)

H(θ) =
1

2π

∫ ∞
−∞

H̃(k)eikθ dk, (6.2.92)

and closing this integral in the upper half of the k-plane. Summing over the

residues produces a power series in e−θ, which forms the asymptotic expansion

of logQ(a) in the Re θ → +∞ limit. The coefficients of this expansion are the

integrals of motion, which further subdivide into local and non-local integrals of

motion.
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To perform the integral (6.2.92), we require an expression for H̃(k) (6.2.90).

The inverse of the deformed Cartan matrix C̃ for Dr is given in [58]:

C̃−1
ab (k) =



coth(πk/h) cosh((r−1−a)πk/h) sinh(πbk/h)
cosh(πk/2)

a ≤ r − 2

coth(πk/h) sinh(bπk/h)
2 cosh(πk/2)

a ≥ r − 1, b ≤ r − 2

sinh(rπk/h)
4 cosh(πk/2) sinh(πk/h)

a = b ≥ r − 1

sinh((r−2)πk/h)
4 cosh(πk/2) sinh(πk/h)

a = r, b = r − 1

(a ≥ b),

(6.2.93)

with C̃−1
ba (k) = C̃−1

ab (k). From (6.2.93) and the definition of H̃(k) (6.2.90) we see

that the poles of H̃(k) are at k = (2p1−1)i and k = qhMi, where p1, q ∈ N. If r is

odd there exists an additional family of poles at k = (2p2− 1)hi/2, where p2 ∈ N.

We therefore expand the integral (6.2.92) as a sum of the residues at these poles:

H(θ) = i

(
∞∑
p1=1

e−(2p1−1)θ Res
[
H̃(k), k = (2p1 − 1)i

]
+
∞∑
q=1

e−qhMθ Res
[
H̃(k), k = qhMi

])
(r is even),

H(θ) = i

(
∞∑
p1=1

e−(2p1−1)θ Res
[
H̃(k), k = (2p1 − 1)i

]
+

∞∑
p2=1

e−(2p2−1)hθ/2 Res
[
H̃(k), k = (2p2 − 1)hi/2

]
(6.2.94)

+
∞∑
q=1

e−qhMθ Res
[
H̃(k), k = qhMi

])
(r is odd),
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Using (6.2.93) we calculate the residues of H̃(k):

Res
[
H̃ab(k), k = (2p1 − 1)i

]
(6.2.95)

=



(−1)p1 cos((2p1−1)π(r−a−1)/h) sin((2p1−1)πb/h)
π sin((2p1−1)π/h) sin((2p1−1)π/hM)

a ≤ r − 2

(−1)p1 sin((2p1−1)πb/h)
2π sin((2p1−1)π/h) sin((2p1−1)π/hM)

a ≥ r − 1, b ≤ r − 2

(−1)p1 sin((2p1−1)πr/h)
2π sin(2(2p1−1)π/h) sin((2p1−1)π/hM)

a = b ≥ r − 1

(−1)p1 sin((2p1−1)(r−2)π/h)
2π sin(2(2p1−1)π/h) sin((2p1−1)π/hM)

a = r, b = r − 1

(a ≥ b).

If r is odd, Res
[
H̃ab(k), k = (2p2 − 1)hi/2

]
(6.2.96)

=



0 a ≤ r − 2

0 a ≥ r − 1, b ≤ r − 2

−h sin((2p2−1)πr/2)
8π sin((2p2−1)π/(2M)) cos((2p2−1)hπ/4)

a = b ≥ r − 1

−h sin((2p2−1)π(r−2)/2)
8π sin((2p2−1)π/(2M)) cos((2p2−1)hπ/4)

a = r, b = r − 1

(a ≥ b),
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Res
[
H̃ab(k), k = qhMi

]
(6.2.97)

=



(−1)qMh cos(qMπ(r−a−1)) sin(qMπb)
2π sin(qMπ) cos(qhMπ/2)

a ≤ r − 2

(−1)qMh sin(qMπb)
4π sin(qMπ) cos(qhMπ/2)

a ≥ r − 1, b ≤ r − 2

(−1)qMh sin(qMπr)
4π sin(2qMπ) cos(qhMπ/2)

a = b ≥ r − 1

(−1)qMh sin(qMπ(r−2))
4π sin(2qMπ) cos(qhMπ/2)

a = r, b = r − 1

(a ≥ b),

where if a ≤ b, we permute a and b. With these residues and the integral expression

for H(θ), we take the Re θ →∞ limit of the logQ expression (6.2.91) to find the

integrals of motion:

logQ(a)

(
θ +

iπ(M + 1)

hM

)
= 2mτ(h,M)wa cosh θ − iπ

h
γa (6.2.98)

+
∞∑
p1=1

I
(a)
2p1−1 e

−(2p1−1)θ + (r mod 2) ·
∞∑
p2=1

I
(a)
(2p2−1)h/2e

−(2p2−1)hθ/2 +
∞∑
q=1

S(a)
q e−qhMθ,

where

I
(a)
2p1−1 (6.2.99)

= 2
r∑
b=1

∫ ∞
−∞

e(2p1−1)(θ′−i0) Res
[
H̃ab(k), k = (2p1 − 1)i

]
Im log

(
1 + a(b)(θ′ − i0)

)
dθ′,

I
(a)
(2p2−1)h/2 = 2

r∑
b=1

∫ ∞
−∞

{
e(2p2−1)h(θ′−i0)/2 · (6.2.100)

Res
[
H̃ab(k), k = (2p2 − 1)hi/2

]
Im log

(
1 + a(b)(θ′ − i0)

) }
dθ′,
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are the local integrals of motion for the D
(1)
r massive integrable field theory and

S(a)
q = 2

r∑
b=1

∫ ∞
−∞

eqhM(θ′−i0) Res
[
H̃ab(k), k = qhMi

]
Im log

(
1 + a(b)(θ′ − i0)

)
dθ′.

(6.2.101)

are the non-local integrals of motion. The conjugate integrals of motion Ī
(a)
p ,

¯
S

(a)
q

are found as in chapter 3 by closing the contour integral (6.2.92) in the lower-

half complex k-plane and evaluating the coefficients of the resulting expansion in

powers of eθ and ehMθ.

Integrals of motion for D
(1)
3 ' A

(1)
3

As a check on the form of the D
(1)
r integrals of motion (6.2.99)-(6.2.101), we note

that the Lie algebras A3 and D3 have the same Dynkin diagram and are therefore

isomorphic Lie algebras. The only difference between those two algebras in our

notation is the labelling of the nodes on their Dynkin diagrams:

1 2 3

A3

1

2

3

D3

In principle, the D
(1)
3 integrals of motion corresponding to the first node I

(1)
p ,S

(1)
q

should match those the A
(1)
3 integrals of motion corresponding to the second node

I
(2)
p , S

(2)
q , up to a relabelling of p and q. Similar equivalences should exist for the

other two nodes as well. We demonstrate these equivalences by writing the A
(1)
3

integrals of motion in a vector form and finding the D
(1)
3 integrals of motion from

these using a change of basis matrix.
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Define the H̃-matrix in the case A
(1)
3

H̃A(k) =
1

2 sinh πk
4M

cosh πk
4


2 −1

cosh πk
4

0

−1
cosh πk

4

2 −1
cosh πk

4

0 −1
cosh πk

4

2


−1

, (6.2.102)

and the H̃-matrix in the case D
(1)
3

H̃D(k) =
1

2 sinh πk
4M

cosh πk
4


2 −1

cosh πk
4

−1
cosh πk

4

−1
cosh πk

4

2 0

−1
cosh πk

4

0 2


−1

. (6.2.103)

These matrices are related by the change of basis matrix P :

P =


0 1 0

1 0 0

0 0 1

 , P H̃A(k)P−1 = H̃D(k). (6.2.104)

The matrix P corresponds to the relabelling of the nodes of the Dynkin diagrams

for A3 and D3, specifically swapping the labels 1 and 2. As P is a constant matrix

in k, we have at any pole in the complex k-plane

P Res
[
H̃A(k)

]
P−1 = Res

[
PH̃A(k)P−1

]
= Res

[
H̃D(k)

]
. (6.2.105)

This notation will be useful in writing the integrals of motion succinctly. We also

recall the vector notation for the A
(1)
3 a-functions defined in equation (5.6.8):

Im log (1 + a(θ′ − i0)) (6.2.106)

=
(
Im log

(
1 + a(1)(θ′ − i0)

)
, Im log

(
1 + a(2)(θ′ − i0)

)
, Im log

(
1 + a(3)(θ′ − i0)

))T
.
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The D
(1)
3 a-functions (defined similarly to the a-functions (5.6.1) in the A

(1)
r

case) are then recovered by relabelling, represented by pre-multiplying the vector

(6.2.106) by the matrix P . Finally, we set

Ip(A) = (I(1)
p , I(2)

p , I(3)
p )T , (6.2.107)

Sq(A) = (S(1)
q ,S(2)

q ,S(3)
q )T (6.2.108)

to be vectors constructed from the A
(1)
3 local and non-local integrals of motion.

With all this notation, we can write the A
(1)
3 integrals of motion in the compact

form

Ip(A) = 2

∫ ∞
−∞

Res
[
H̃A(k), k = ip

]
Im{log(1 + a(θ′ − i0))}ep(θ′−i0)dθ′. (6.2.109)

Now we consider the D
(1)
3 integrals of motion

Ip(D) = 2

∫ ∞
−∞

Res
[
H̃D(k), k = ip

]
P Im{log(1 + a(θ′ − i0))}ep(θ′−i0)dθ′,

(6.2.110)

= 2

∫ ∞
−∞

P Res
[
H̃A(k), k = ip

]
P−1P Im{log(1 + a(θ′ − i0))}ep(θ′−i0)dθ′

(6.2.111)

= 2P

∫ ∞
−∞

Res
[
H̃A(k), k = ip

]
Im{log(1 + a(θ′ − i0))}ep(θ′−i0)dθ′

(6.2.112)

= PIp(A). (6.2.113)

This calculation demonstrates the equivalence of the A
(1)
3 and D

(1)
3 local integrals

of motion, up to a relabelling of the nodes of the Dynkin diagram, here facilitated

by the change of basis matrix P . The non-local integrals of motion for A
(1)
3 and
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D
(1)
3 are related in the same way:

Sq(D) = PSq(A). (6.2.114)

The next step in the analysis of the massive ODE/IM correspondence in the D
(1)
r

case would be to define the T -functions T
(a)
m (u) and construct a set of fusion

relations [43]:

T (a)
m (u+ 1)T (a)

m (u− 1) = T
(a)
m+1(u)T

(a)
m−1(u) +

r∏
b=1

(T (b)
m (u))Bab . (6.2.115)

However, the determinant definition of T
(a)
m (u) (5.8.3)-(5.8.5) seen in the analysis

of the A
(1)
r case does not immediately generalise to the D

(1)
r case. The right-hand

side of the quantum Wronskian (6.2.76) arises in the normalisation constant z0 in

(5.8.3). For the D
(1)
r case, the quantum Wronskian (6.2.76) is zero, which causes

the normalisation of (5.8.3) to be undefined. The definition of T
(a)
m (u) as seen in

the A
(1)
r case does not then immediately generalise to the D

(1)
r case. This is an

interesting open problem.

6.3 The E
(1)
6 massive ODE/IM correspondence

We continue our study of the massive ODE/IM correspondence for the simply-

laced Lie algebras by considering the case of the exceptional Lie algebra E
(1)
6 .

6.3.1 The linear problem in the representation V (1) and its

massless limit

We begin our discussion of the E
(1)
6 massive ODE/IM correspondence by defining

the relevant representations. We follow the definition in [47], defining V (a) as the
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evaluation representations

V (1) = L(ω1)0, V (2) = L(ω2)1/2, V (3) = L(ω3)1, (6.3.1)

V (4) = L(ω4)1/2, V (5) = L(ω5)0, V (6) = L(ω6)1/2, (6.3.2)

where the notation L(ωk) was defined in section 4.2.2. As for the D
(1)
r case, we will

mostly be concerned with the representation V (1). The E
(1)
6 gauge-transformed

linear problem is in the form (∂z + Ã)Ψ̃ = 0, where Ã is the matrix given by

Ã = β∂zφ ·H +meθ

[
p(z)

√
n∨0Eα0 +

6∑
i=1

√
n∨i Eαi

]
(6.3.3)

= β∂zφ ·H +meθ
[
Eα1 +

√
2Eα2 +

√
3Eα3 +

√
2Eα4 + Eα5 +

√
2Eα6

]
+meθp(z)Eα0 , (6.3.4)

where to pass from (6.3.3) to (6.3.4) we have substituted the dual Kac labels for

E6 found in section 4.2.2.

Let ea,b be the matrix with elements (ea,b)ij = δiaδjb. Using the basis for the

vector space V (1) implicit in [39], the generators Eαi in the representation V (1) are

given by

Eα1 = e1,2 + e12,15 + e14,17 + e16,19 + e18,21 + e20,22, (6.3.5)

Eα2 = e2,3 + e10,12 + e11,14 + e13,16 + e21,23 + e22,24, (6.3.6)

Eα3 = e3,4 + e8,10 + e9,11 + e16,18 + e19,21 + e24,25, (6.3.7)

Eα4 = e4,5 + e6,8 + e11,13 + e14,16 + e17,19 + e25,26, (6.3.8)

Eα5 = e5,7 + e8,9 + e10,11 + e12,14 + e15,17 + e26,27, (6.3.9)

Eα6 = e4,6 + e5,8 + e7,9 + e18,20 + e21,22 + e23,24, (6.3.10)

Eα0 = e20,1 + e22,2 + e24,3 + e25,4 + e26,5 + e27,7, (6.3.11)
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where we have corrected the expression for Eα0 in [39]. The gauge-transformed

linear problem (∂z + Ã)Ψ = 0 can then be written in the representation V (1) as a

set of 27 coupled differential equations of the form

D(λ
(1)
j ) ψ̃j +meθ

27∑
k=1

[
p(z)

√
n∨0Eα0 +

6∑
i=1

√
n∨i Eαi

]
jk

ψ̃k = 0, j = 1, . . . , 27,

(6.3.12)

where the differential operator D(λ
(1)
j ) was defined in equation (5.3.15). The linear

problem (6.3.12) has asymptotic solutions that can be used to define Q-functions,

and hence Bethe ansatz equations and integrals of motion. However, we will

first consider the pseudo-differential equation formulation of the linear problem

(6.3.12) in the massless limit, for a particular choice of the vector parameter g.

6.3.2 The V (1) E
(1)
6 pseudo-differential equation in the mass-

less limit with g = 0

We take the massless limit of the linear problem (6.3.12) by making the now

familiar change of variables

x = (meθ)
1

M+1 z, E = s12M(meθ)
12M
M+1 , (6.3.13)

and sending θ →∞ and z, s→ 0 so that x and E remain finite. In this limit, φ is

represented by its small-|z| behaviour (5.2.17), so that the differential operators

D(λ
(1)
j ) are replaced by the operators Dx(λ

(1)
j ), given by

Dx(λ
(1)
j ) =

(
∂x +

βg · λ(1)
j

x

)
. (6.3.14)
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The authors of [39] consider the linear problem (6.3.12) in the massless limit in

the special case g = 0, so that

Dx(λ
(1)
j ) = ∂x. (6.3.15)

This simplifies the linear problem significantly, allowing the derivation of a pseudo-

differential equation. Explicitly, the linear problem in the massless limit with

g = 0 is given by the 27 differential equations

∂xψ̃1 + ψ̃2 = 0, ∂xψ̃2 +
√

2ψ̃3 = 0,

∂xψ̃3 +
√

3ψ̃4 = 0, ∂xψ̃4 +
√

2ψ̃5 +
√

2ψ̃6 = 0,

∂xψ̃5 + ψ̃7 +
√

2ψ̃8 = 0, ∂xψ̃6 +
√

2ψ̃8 = 0,

∂xψ̃7 +
√

2ψ̃9 = 0, ∂xψ̃8 + ψ̃9 +
√

3ψ̃10 = 0,

∂xψ̃9 +
√

3ψ̃11 = 0, ∂xψ̃10 + ψ̃11 +
√

2ψ̃12 = 0,

∂xψ̃11 +
√

2ψ̃13 +
√

2ψ̃14 = 0, ∂xψ̃12 + ψ̃14 + ψ̃15 = 0,

∂xψ̃13 +
√

2ψ̃16 = 0, ∂xψ̃14 +
√

2ψ̃16 + ψ̃17 = 0,

∂xψ̃15 + ψ̃17 = 0, ∂xψ̃16 +
√

3ψ̃18 + ψ̃19 = 0,

∂xψ̃17 +
√

2ψ̃19 = 0, ∂xψ̃18 +
√

2ψ̃20 + ψ̃21 = 0,

∂xψ̃19 +
√

3ψ̃21 = 0, ∂xψ̃20 + p(x)ψ̃1 + ψ̃22 = 0,

∂xψ̃21 +
√

2ψ̃22 +
√

2ψ̃23 = 0, ∂xψ̃22 + p(x)ψ̃2 +
√

2ψ̃24 = 0,

∂xψ̃23 +
√

2ψ̃24 = 0, ∂xψ̃24 + p(x)ψ̃3 +
√

3ψ̃25 = 0,

∂xψ̃25 + p(x)ψ̃4 +
√

2ψ̃26 = 0, ∂xψ̃26 + p(x)ψ̃5 + ψ̃27 = 0,

∂xψ̃27 + p(x)ψ̃7 = 0. (6.3.16)

We combine these into a single equation in ψ̃1 by repeated differentiation and

substitution. Repeatedly differentiating the first equation in (6.3.16), simplifying
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derivatives of ψ̃i in favour of derivatives of ψ̃1, we find

∂17ψ̃1 = 288
√

3 ∂5(pψ̃1)− 1080
√

3 ∂4(pψ̃2) + 1872
√

6∂3(pψ̃3)

− 5616
√

2∂2(pψ̃4) + 11232∂(pψ̃5)− 11232pψ̃7, (6.3.17)

where for brevity of notation we have set ∂x = ∂ and p(x) = p. To derive a

pseudo-differential equation in terms of ψ̃1, we need to write ψ̃2, . . . , ψ̃7 in terms

of ψ̃1. ψ̃2, ψ̃3 and ψ̃4 are easily dealt with, as they are straightforward derivatives

of ψ̃1:

ψ̃2 = −∂ψ̃1, ψ̃3 =
1√
2
∂2ψ̃1, ψ̃4 = − 1√

6
∂3ψ̃1, (6.3.18)

so that (6.3.17) becomes

∂17ψ̃1 = 288
√

3 ∂5(pψ̃1) + 1080
√

3 ∂4(p ∂ψ̃1) + 1872
√

6 ∂3(p ∂2ψ̃1)

+ 1872
√

3 ∂2(p ∂3ψ̃1) + 11232 ∂(pψ̃5)− 11232pψ̃7. (6.3.19)

To deal with the ψ̃5 and ψ̃7 terms, we consider certain derivatives of ψ̃1, ψ̃5 and

ψ̃7:

∂13ψ̃1 = 288
√

3 ∂(pψ̃1)− 1080
√

3p ∂ψ̃1 − 1872
√

6ψ̃24, (6.3.20)

∂9ψ̃5 = 84 ∂(pψ̃1) + 312p ∂ψ̃1 − 540
√

2ψ̃24, (6.3.21)

∂8ψ̃7 = −24 ∂(pψ̃1)− 84p ∂ψ̃1 + 144
√

2ψ̃24. (6.3.22)

Next, we remove the ψ̃24 terms in (6.3.21) and (6.3.22) using (6.3.20). Integrating

and simplifying, we find:

52
√

3 ψ̃5 = 15 ∂4ψ̃1 + 24
√

3 ∂−9(p∂ψ̃1) + 48
√

3 ∂−8(pψ̃1), (6.3.23)

13
√

3 ψ̃7 = −∂5ψ̃1 − 12
√

3 ∂−8(p∂ψ̃1)− 24
√

3 ∂−7(pψ̃1). (6.3.24)
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We substitute the expressions (6.3.23) and (6.3.24) into (6.3.19), which gives us a

pseudo-differential equation in ψ̃1:

1

864
∂17ψ̃1 =

1√
3
∂5p ψ̃1 +

35
√

3

12
∂4p ∂ψ̃1 +

21
√

3

2
∂3p ∂2ψ̃1 +

39
√

3

2
∂2p ∂3ψ̃1

+
75
√

3

4
∂p ∂4ψ̃1 +

15
√

3

2
p∂5ψ̃1 + 18p∂−8(p∂ψ̃1) + 36p∂−7(pψ̃1)

+ 6∂p ∂−9(p∂ψ̃1) + 12∂p ∂−8(pψ̃1). (6.3.25)

Using integration by parts, the integral terms can be collected together:

18p ∂−8(p∂ψ̃1) + 36p ∂−7(pψ̃1) + 6∂p ∂−9(p∂ψ̃1) + 12∂p ∂−8(pψ̃1)

= 6(∂p+ 3p∂)∂−9(2∂p+ 3p∂)ψ̃1 (6.3.26)

The pseudo-differential equation for the V (1) E
(1)
6 linear problem in the massless

limit and with g = 0 is then given by

1

864
∂17ψ̃1 =

1√
3
∂5p ψ̃1 +

35
√

3

12
∂4p ∂ψ̃1 +

21
√

3

2
∂3p ∂2ψ̃1 +

39
√

3

2
∂2p ∂3ψ̃1

+
75
√

3

4
∂p ∂4ψ̃1 +

15
√

3

2
p ∂5ψ̃1 + 6(∂p+ 3p∂)∂−9(2∂p+ 3p∂)ψ̃1.

(6.3.27)

As a check on the calculation of (6.3.27), we employ the loop counting method

found in [50] which was discussed in section 4.3.1. To employ this method, we first

construct the weight diagram, shown in Figure 4, for the representation V (1) from

the matrix Ã. We then proceed by counting all the loops in this diagram. There

are 297 distinct loops that contribute to the calculation of the E
(1)
6 V (1) pseudo-

differential equation. We will not write a list of all the loops in the diagram above;

we will merely list the contributions resulting from the loops through particular
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Figure 4: Weight diagram of the first fundamental representation of E
(1)
6 .

nodes. The loops through node 1 contribute the terms

288
√

3∂−12(pψ̃1) + 10368∂−16(p∂−8(pψ̃1)) + 20736∂−17(p∂−7(pψ̃1)), (6.3.28)

the loops through node 2 and not through node 1 contribute the terms

1080
√

3∂−13(p∂ψ̃1) + 5184∂−16(p∂−9(p∂ψ̃1)) + 10368∂−17(p∂−8(p∂ψ̃1)), (6.3.29)
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the loops through node 3 and not through 1 and 2 contribute the term

1872
√

3∂−14(p∂2ψ̃1), (6.3.30)

the loops through node 4, not through 1, 2 and 3 contribute the term

1872
√

3∂−15(p∂3ψ̃1), (6.3.31)

the loops through node 5, not through 1, 2, 3 and 4 contribute the term

1080
√

3∂−16(p∂4ψ̃1), (6.3.32)

and finally, the remaining loops, which all pass through node 7, contribute the

term

288
√

3∂−17(p∂5ψ̃1). (6.3.33)

Using (6.3.28)-(6.3.33), the E
(1)
6 V (1) pseudo-differential equation becomes

ψ̃1 = 288
√

3 ∂−12(pψ̃1) + 10368 ∂−16(p ∂−8(pψ̃1)) + 20736 ∂−17(p ∂−7(pψ̃1))

+ 1080
√

3 ∂−13(p ∂ψ̃1) + 5184 ∂−16(p ∂−9(p∂ψ̃1)) + 10368 ∂−17(p ∂−8(p∂ψ̃1))

+ 1872
√

3 ∂−14(p ∂2ψ̃1) + 1080
√

3 ∂−16(p ∂4ψ̃1) + 288
√

3 ∂−17(p ∂5ψ̃1).

(6.3.34)

We act on both sides of this expression with the operator
1

864
∂17. We collect

integral terms using integration by parts and expand any derivatives to find the
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pseudo-differential equation

1

864
∂17ψ̃1 =

1√
3
∂5p ψ̃1 +

35
√

3

12
∂4p ∂ψ̃1 +

21
√

3

2
∂3p ∂2ψ̃1 +

39
√

3

2
∂2p ∂3ψ̃1

+
75
√

3

4
∂p ∂4ψ̃1 +

15
√

3

2
p ∂5ψ̃1 + 6(∂p+ 3p∂)∂−9(2∂p+ 3p∂)ψ̃1,

(6.3.35)

which matches the pseudo-differential equation (6.3.27). This almost matches the

pseudo-differential equation for E
(1)
6 given in [39], save for the coefficient of the

∂4p ∂ψ̃1 term, which in [39] is given by
367
√

3

24
, rather than

35
√

3

12
.

6.3.3 Asymptotics of the V (1) linear problem and Q-functions

Just as for the previously considered A
(1)
r and D

(1)
r cases, we define Q-functions

related to the E
(1)
6 case of the massive ODE/IM correspondence by considering

small and large-|z| asymptotic solutions of the linear problem (∂z + A)Ψ = 0.

Solutions of this linear problem can be found from the simpler gauge-transformed

linear problem (∂z + Ã)Ψ̃ = 0 (with Ã defined in (6.3.3)) by applying the matrix

U−1 = eβφ·H/2 to Ψ̃. In this section, we will state the small and large-|z| asymptotic

solutions to both the original and gauge-transformed linear problems.

Small-|z| asymptotics

Setting {e(1)
j }27

j=1 to be a basis of V (1), with Hie
(1)
j = (λ

(1)
j )ie

(1)
j , the basis of

solutions {Ξ̃(1)
j }27

j=1 of the gauge-transformed linear problem (∂z + Ã)Ψ̃ = 0 have

the small-|z| behaviour

Ξ̃
(1)
j ∼ z−βg·λ

(1)
j e−βθg·λ

(1)
j e

(1)
j , as |z| → 0. (6.3.36)
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In the small-|z| limit, the matrix U−1 takes the form

U−1 = eβφ·H/2 ∼ (zz̄)g·H/2, as |z| → 0, (6.3.37)

therefore the small-|z| solutions to the original linear problem (∂z + A)Ψ = 0 are

U−1Ξ̃
(1)
j = Ξ

(1)
j ∼ e−β(θ+iϕ)g·λ(1)j e

(1)
j , as |z| → 0. (6.3.38)

Large-|z| asymptotics

In the large-|z| limit, the matrix Ã is given by

Ã ∼ meθ
[
z12MEα0 + Eα1 +

√
2Eα2 +

√
3Eα3

+
√

2Eα4 + Eα5 +
√

2Eα6

]
, as |z| → ∞. (6.3.39)

The large-|z| solutions of the linear problem (∂z + Ã)Ψ̃ = 0 then take the form

v(1)(z) exp

(
−
∫ z

σ(u)du

)
, (6.3.40)

where, following section 4.3.2, v(z) is a particular eigenvector of Ã in the large-|z|

limit given by (6.3.39), and σ(z) is its associated eigenvalue. The subdominant

solution (the solution with the fastest decay to zero as |z| → ∞ on the positive

real axis) is associated with the eigenvalue of (6.3.39) with largest positive real

part. The eigenvalues of (6.3.39) are

0, 0, 0, meθzM
√

3 +
√

3 epπi/6, meθzM
√

3−
√

3 e(2p+1)πi/12, p = 0, 1, . . . , 11.

(6.3.41)

The eigenvalue with largest real part in (6.3.41) is meθzM
√

3 +
√

3. Computing

its associated eigenvector we find the subdominant solution to the linear problem
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(∂z + Ã)Ψ̃ = 0 is given by

Ψ̃(1) ∼ v(1)(z) exp

(
−meθ

√
3 +
√

3
zM+1

M + 1

)
, as |z| → ∞, (6.3.42)

where

v(1)(z) = z−8Me
(1)
1 +

√
3 +
√

3 z−7Me
(1)
2 +

√
3(2 +

√
3) z−6Me

(1)
3

+

√
9 + 5

√
3 z−5Me

(1)
4 + (2 +

√
3) z−4Me

(1)
5 + (1 +

√
3) z−4Me

(1)
6

+

√
3 +
√

3 z−3Me
(1)
7 +

√
9 + 5

√
3 z−3Me

(1)
8 +

√
3(2 +

√
3) z−2Me

(1)
9

+

√
3(2 +

√
3) z−2Me

(1)
10 +

√
3 +
√

3 z−Me
(1)
11 +

√
9 + 5

√
3 z−Me

(1)
12

+ e
(1)
13 + (2 +

√
3)e

(1)
14 + (1 +

√
3)e

(1)
15 (6.3.43)

+

√
3 +
√

3 zMe
(1)
16 +

√
9 + 5

√
3 zMe

(1)
17 +

√
3(2 +

√
3) z2Me

(1)
18

+

√
3(2 +

√
3) z2Me

(1)
19 +

√
9 + 5

√
3 z3Me

(1)
20 +

√
3 +
√

3 z3Me
(1)
21

+ (1 +
√

3) z4Me
(1)
22 + (2 +

√
3) z4Me

(1)
23 +

√
9 + 5

√
3 z5Me

(1)
24

+

√
3(2 +

√
3) z6Me

(1)
25 +

√
3 +
√

3 z7Me
(1)
26 + z8Me

(1)
27 .

We now apply the large-|z| limit of the matrix U−1 = eβφ·H/2 to Ψ̃(1) to find the

large-|z| solution of the original linear problem (∂z + A)Ψ = 0. In the large-|z|

limit, U−1 ∼ (zz̄)Mρ∨·H/2, with

U−1e
(1)
j = (zz̄)Mρ∨·λ(1)j /2e

(1)
j as |z| → ∞. (6.3.44)

To explicitly define this operator we require the dot products of the Weyl vector

ρ∨ with the weights λ
(1)
i . The Weyl vector ρ∨ is given by

ρ∨ =
6∑
i=1

ωi = 8α1 + 15α2 + 21α3 + 15α4 + 8α5 + 11α6, (6.3.45)
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and the weight vectors λ
(1)
i are calculated using the algorithm given in section

4.2.1, starting with λ
(1)
1 = ω1. Using ωi ·αj = δij for simply-laced Lie algebras, we

compute ρ∨ · λ(1)
i , written here in a list from i = 1 to i = 27:

ρ∨ · λ(1)
i = (8, 7, 6, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, (6.3.46)

0,−1,−1,−2,−2,−3,−3,−4,−4,−5,−6,−7,−8) .

Applying U−1 in the large-|z| limit to (6.3.42) and pre-multiplying by a factor

depending on z̄ to match the asymptotics of the conjugate linear problem (∂z̄ +

Ā)Ψ = 0, we find the subdominant large-|z| solution

Ψ(1) ∼ v(1)(e−iϕ) exp

(
−2
√

3 +
√

3 |z|M+1

M + 1
m cosh(θ + iϕ(M + 1))

)
, as |z| → ∞,

(6.3.47)

with v(1)(z) defined as in equation (6.3.43). The large-|z| solution Ψ and the basis

of small-|z| solutions Ξ
(1)
j define Q(1)-functions through the expansion

Ψ(1)(θ|ϕ) =
27∑
j=1

Q
(1)
j (θ)Ξ

(1)
j (θ|ϕ). (6.3.48)

The linear problems for the other representations V (a) can be analysed in a similar

way, allowing the definition of analogous Q(a)-functions from the subdominant

solution Ψ(a) and a basis of small-|z| solutions {Ξ(a)
J }dimV (a)

J=1 :

Ψ(a)(θ|ϕ) =
dimV (a)∑
J=1

Q
(a)
J (θ)Ξ

(a)
J (θ|ϕ). (6.3.49)
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The V (a) large-|z| subdominant solutions Ψ(a) have the general asymptotic struc-

ture

Ψ(a) ∼ v(a)(e−iϕ) exp

(
−2|z|M+1

M + 1
mwa cosh(θ + iϕ(M + 1))

)
, as |z| → ∞,

(6.3.50)

where the constants wa satisfy the constraints

2 cos
π

12
wa =

6∑
b=1

Babwb, w1 =

√
3 +
√

3, (6.3.51)

where B = 2I − C is the E6 incidence matrix. These constraints arise from an

identical argument to that found in section 6.2.4, i.e. by consideration of the

asymptotics of both sides of the E6 Ψ-system [47]:

ι
(

Ψ
(1)
−1/2 ∧Ψ

(1)
1/2

)
= Ψ(2),

ι
(

Ψ
(2)
−1/2 ∧Ψ

(2)
1/2

)
= Ψ(1) ⊗Ψ(3),

ι
(

Ψ
(3)
−1/2 ∧Ψ

(3)
1/2

)
= Ψ(2) ⊗Ψ(4) ⊗Ψ(6), (6.3.52)

ι
(

Ψ
(4)
−1/2 ∧Ψ

(4)
1/2

)
= Ψ(3) ⊗Ψ(5),

ι
(

Ψ
(5)
−1/2 ∧Ψ

(5)
1/2

)
= Ψ(4),

ι
(
Ψ(3)

)
= Ψ

(6)
−1/2 ∧Ψ

(6)
1/2.

6.3.4 Bethe ansatz equations and the integrals of motion

Using the same method as in section 5.5.2, the E6 Ψ-system (6.3.52) and the

definition of the Q(a)-functions (6.3.49) imply the E6 Bethe ansatz equations

6∏
b=1

Q(b)
(
θ

(a)
j + iπ

hM
Cab

)
Q(b)

(
θ

(a)
j − iπ

hM
Cab

) = −1, (a = 1, . . . , 6), (6.3.53)
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where once again we use the truncated notation

Q(a)(θ) = Q
(a)
1 (θ). (6.3.54)

The identical form of the Bethe ansatz equations and the leading order asymp-

totics of the Q(a)-functions ensures the integrals of motion calculation given in

section 5.6 holds in the case of E
(1)
6 . As we did for A

(1)
r and D

(1)
r we define the

deformed Cartan matrix C̃(k) with the elements

C̃<ab>(k) =
−1

cosh πk
12

, C̃aa(k) = 2, (6.3.55)

where, as in the A
(1)
r and D

(1)
r cases, here < ab > implies the nodes a and b are

connected on the E6 Dynkin diagram. We then define the H-matrix via its Fourier

transform H̃(k):

H̃(k) =
1

2 sinh πk
12M

cosh πk
12

C̃(k)−1. (6.3.56)

The H-matrix occurs in the expression for logQ(a) derived in section 5.6:

logQ(a)

(
θ +

iπ(M + 1)

12M

)
= 2mτ(12,M)wa cosh θ − iπ

12
γa

− 2i
6∑
b=1

∫ ∞
−∞

Hab(θ − θ′ + i0) Im log
(
1 + a(b)(θ′ − i0)

)
dθ′, (6.3.57)

with τ(12,M) and γa defined in section 5.6. The integrals of motion arise from a

series expansion of (6.3.57) in e−θ. To calculate this, we apply Cauchy’s theorem

to rewrite the integral

H(θ) =
1

2π

∫ ∞
−∞

H̃(k)eikθ dk (6.3.58)
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as a sum of residues:

H(θ) = i

∞∑
p=1

Res
[
H̃(k), k = pi

]
e−pθ + i

∞∑
q=1

Res
[
H̃(k), k = 12qMi

]
e−12qMθ.

(6.3.59)

Substituting this expansion into (6.3.57) we find

logQ(a)

(
θ +

iπ(M + 1)

12M

)
= 2mτ(12,M)wa cosh θ − iπ

12
γa

+
∞∑
p=1

I(a)
p e−pθ +

∞∑
q=1

S(a)
q e−12qMθ, (6.3.60)

where the local integrals of motion I
(a)
p are given by

I(a)
p = 2

6∑
b=1

∫ ∞
−∞

ep(θ
′−i0) Res

[
H̃ab(k), k = ip

]
Im
{

log
(
1 + a(b)(θ′ − i0)

)}
dθ′,

(6.3.61)

and the non-local integrals of motion S
(a)
q are given by

S(a)
q = 2

6∑
b=1

∫ ∞
−∞

e12qM(θ′−i0) Res
[
H̃ab(k), k = 12qMi

]
·

Im
{

log
(
1 + a(b)(θ′ − i0)

)}
dθ′. (6.3.62)

All that remains is to calculate the residues of the matrix H̃(k). Its poles are

located at k = (12n± 1)i, (12n± 4)i, (12n± 5)i, 12qMni, for n ∈ Z. As we have

closed the integration contour in the upper-half k-plane, we only consider of the

residues of the poles with positive imaginary part.

As a demonstration, we will now calculate the first local integral of motion
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I
(1)
1 and the first non-local integral of motion S

(1)
1 . I

(1)
1 is given by

I
(1)
1 = −

3 csc
(

π
12M

)
(3 +

√
3)π

6∑
k=1

∫ ∞
−∞

dθ′ e(θ′−i0)Rk Im
{

log
(
1 + a(k)(θ′ − i0)

)}
, (6.3.63)

where

R1 =
√

2(1 +
√

3),

R2 = 2(2 +
√

3),

R3 = 2
√

2(2 +
√

3), (6.3.64)

R4 = 2(2 +
√

3),

R5 =
√

2(1 +
√

3),

R6 = 2(1 +
√

3).

The non-local integral of motion S
(1)
1 is given by

S
(1)
1 = −24M

π

6∑
k=1

∫ ∞
−∞

dθ′ e12M(θ′−i0)Sk Im
{

log
(
1 + a(k)(θ′ − i0)

)}
, (6.3.65)

where

S1 =
4 cos(Mπ) cos(4Mπ)

2 cos(6Mπ) + 2 cos(4Mπ)− 1
,

S2 =
1 + 2 cos(2Mπ) + 2 cos(4Mπ)

2 cos(6Mπ) + 2 cos(4Mπ)− 1
,

S3 =
2 cos(Mπ)

2 cos(4Mπ)− 1
, (6.3.66)

S4 =
2(1 + cos(2Mπ))

2 cos(6Mπ) + 2 cos(4Mπ)− 1
,

S5 =
2 cos(Mπ)

2 cos(6Mπ) + 2 cos(4Mπ)− 1
,

S6 =
1

2 cos(4Mπ)− 1
.
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The conjugate integrals of motion Ī
(a)
p , S̄

(a)
q are calculated in a similar way by

closing the contour of integration in (6.3.58) in the lower-half k-plane.

6.4 The massive ODE/IM correspondence for

E
(1)
7 and E

(1)
8

We now conclude our study of the massive ODE/IM correspondence for the

simply-laced Lie algebras by considering the correspondence for the exceptional

Lie algebras E
(1)
7 and E

(1)
8 . The smallest representations of these exceptional Lie

algebras are quite large, making explicit calculations rather unwieldy. The repre-

sentation V (1) has dimension 56 and 248 in E
(1)
7 and E

(1)
8 respectively. We exhibit

the large-|z| eigenvalues of the E
(1)
7 and E

(1)
8 A-matrices in the representation V (1),

Bethe ansatz equations for suitably defined Q-functions, and integrals of motion.
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6.4.1 E
(1)
7

The 56-dimensional representation V (6) was given in the Appendix of [39]:

Eα1 = e7,8 + e9,10 + e11,12 + e13,15 + e16,18 + e19,22 (6.4.1)

+ e35,38 + e39,41 + e42,44 + e45,46 + e47,48 + e49,50,

Eα2 = e5,6 + e7,9 + e8,10 + e20,23 + e24,26 + e27,29 (6.4.2)

+ e28,30 + e31,33 + e34,37 + e47,49 + e48,50 + e51,52,

Eα3 = e5,7 + e6,9 + e12,14 + e15,17 + e18,21 + e22,25 (6.4.3)

+ e32,35 + e36,39 + e40,42 + e43,45 + e48,51 + e50,52,

Eα4 = e4,5 + e9,11 + e10,12 + e17,20 + e21,24 + e25,28 (6.4.4)

+ e29,32 + e33,36 + e37,40 + e45,47 + e46,48 + e52,53,

Eα5 = e3,4 + e11,13 + e12,15 + e14,17 + e24,27 + e26,29 (6.4.5)

+ e28,31 + e30,33 + e40,43 + e42,45 + e44,46 + e53,54,

Eα6 = e2,3 + e13,16 + e15,18 + e17,21 + e20,24 + e23,26 (6.4.6)

+ e31,34 + e33,37 + e36,40 + e39,42 + e41,44 + e54,55,

Eα7 = e1,2 + e16,19 + e18,22 + e21,25 + e24,28 + e26,30 (6.4.7)

+ e27,31 + e29,33 + e32,36 + e35,39 + e38,41 + e55,56,

Eα0 = e38,1 + e41,2 + e44,3 + e46,4 + e48,5 + e50,6 (6.4.8)

+ e51,7 + e52,9 + e53,11 + e54,13 + e55,16 + e56,19,

where ea,b is the matrix with elements (ea,b)ij = δiaδjb. V
(6) is considered as it is

the smallest non-trivial representation of E
(1)
7 ; V (1), the adjoint representation, is

133-dimensional. The gauge-transformed linear problem is given by (∂z+Ã)Ψ = 0,
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with

Ã = β∂zφ ·H +meθ

[
p(z)

√
n∨0Eα0 +

7∑
i=1

√
n∨i Eαi

]
(6.4.9)

where the dual Kac labels n∨0 , n∨i were given in section 4.2.2. The small-|z|

asymptotic solutions {Ξ̃(6)
J }56

J=1 to this linear problem are given by

Ξ̃
(6)
J ∼ z−βg·He

(6)
J , as |z| → 0, (6.4.10)

and the large-|z| subdominant solution Ψ̃(6) is given by

Ψ̃(6) ∼ v(6)(z) exp

(
−
∫ z

σ(u) du

)
, (6.4.11)

where σ(u) is the eigenvalue of the matrix (6.4.9) in the large-|z| limit with largest

positive real part, and v(6)(z) is the corresponding eigenvector. To find σ(z), we

consider the characteristic polynomial of the Ã matrix in the large-|z| limit:

det
(
Ã− σI

)
∼ σ56 − 50, 969, 088z18Mmeθσ38

+ 1, 199, 792, 259, 072 z36Mm2e2θσ20 (6.4.12)

− 330, 225, 942, 528 z54Mm3e3θσ2 as |z| → ∞.

The roots of this polynomial are

σ = 0, 0, meθzMξ
1/18
1 enπi/9, (6.4.13)

meθzMξ
1/18
2 e(2n+1)πi/18, (6.4.14)

meθzMξ
1/18
3 enπi/9, (6.4.15)
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where n = 0, 1, . . . , 17 and ξ1 < ξ2 < ξ3 are the three real solutions of the polyno-

mial equation

ξ3 − 50, 969, 088ξ2 + 1, 199, 792, 259, 072ξ − 330, 225, 942, 528 = 0. (6.4.16)

The eigenvalue with largest positive real part is then meθzMξ
1/18
3 , where ξ

1/18
3 =

2.68023308478642....

The definition of the asymptotic solutions Ξ̃
(a)
J and Ψ̃(a) in the various funda-

mental representations V (a) of E
(1)
7 leads to the definition of Q(a)-functions

Ψ(a)(θ|ϕ) =
dimV (a)∑
J=1

Q
(a)
J (θ)Ξ

(a)
J (θ|ϕ), (6.4.17)

which then satisfy Bethe ansatz equations

7∏
b=1

Q(b)
(
θ

(a)
j + iπ

hM
Cab

)
Q(b)

(
θ

(a)
j − iπ

hM
Cab

) = −1, (a = 1, . . . , 7), (6.4.18)

where C is the E7 Cartan matrix given in section 4.2.2 and Q(a)(θ) = Q
(a)
1 (θ). We

once again consider integrals of motion by computing the residues of the matrix

H̃(k)

H̃(k) =
1

2 sinh πk
18M

cosh πk
18

C̃(k)−1. (6.4.19)

where C̃(k) is the E7 deformed Cartan matrix. The poles of H̃(k) are at k =

(18n± 1)i, (18n± 5)i, (18n± 7)i, (18n± 9)i, and k = 18nMi, where n ∈ Z. The
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local integrals of motion are then given by

I(a)
p = 2

7∑
b=1

∫ ∞
−∞

ep(θ
′−i0) Res

[
H̃ab(k), k = pi

]
Im
{

log
(
1 + a(b)(θ′ − i0)

)}
dθ′,

(6.4.20)

and the non-local integrals of motion are given by

S(a)
q = 2

7∑
b=1

∫ ∞
−∞

e12qM(θ′−i0) Res
[
H̃ab(k), k = 18qMi

]
·

Im
{

log
(
1 + a(b)(θ′ − i0)

)}
dθ′. (6.4.21)

6.4.2 E
(1)
8

The 248-dimensional representation of E
(1)
8 , V (1), is given in the Appendix of [39].

From the matrices defined there and the dual Kac labels in section 4.2.2, we define

the matrix Ã:

Ã = β∂zφ ·H +meθ

[
p(z)

√
n∨0Eα0 +

8∑
i=1

√
n∨i Eαi

]
(6.4.22)

The large-|z| solutions to the linear problem (∂z+Ã)Ψ̃ = 0 are described using the

eigenvalues and eigenvectors of (6.4.22) in the large-|z| limit. The characteristic
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polynomial in this limit is

σ248 + 9, 845, 667, 127, 296, 000, 000
√

5(meθzM)30σ218

−997, 429, 956, 592, 632, 574, 022, 516, 736, 000, 000, 000(meθzM)60σ188

+ 62, 106, 889, 173, 106, 930, 566, 304, 048,

704, 022, 118, 400, 000, 000, 000, 000
√

5(meθzM)90σ158

+ 1, 783, 320, 600, 763, 454, 867, 346, 450, 898, 335, 637,

305, 559, 860, 903, 936, 000, 000, 000, 000, 000(meθzM)120σ128

− 19, 422, 643, 883, 849, 883, 504, 740, 159, 769, 364, 196,

361, 424, 820, 433, 321, 984, 000, 000, 000, 000, 000, 000, 000
√

5(meθzM)150σ98

+ 3, 518, 345, 698, 492, 137, 878, 835, 967, 728, 970,

575, 127, 409, 632, 826, 324, 441, 628, 672, 000, 000,

000, 000, 000, 000, 000, 000(meθzM)180σ68 (6.4.23)

+ 262, 380, 855, 963, 325, 641, 992, 292, 565, 498, 191,

833, 239, 248, 829, 760, 256, 186, 777, 600, 000, 000,

000, 000, 000, 000, 000, 000, 000
√

5(meθzM)210σ38

+ 52, 477, 712, 140, 573, 920, 113, 791, 072, 551, 142, 890, 519, 592,

132, 233, 368, 961, 024, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000(meθzM)240σ8

The roots of (6.4.23) form eight rings of shifted 30th roots of unity. From the form

of (6.4.23) the root at σ = 0 has multiplicity eight. Figure 5 is a plot of the roots

of (6.4.23) with meθzM = 1 on the σ-plane. From this plot it is apparent there

is no unique root with maximally positive real part. It is therefore an interesting

open problem to obtain the Q(a)-functions. Nevertheless, we can assume the Bethe
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Figure 5: Eigenvalues of the A-matrix associated with the first fundamental represen-

tation of E
(1)
8 in the large-|z| limit.
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ansatz equations take the same form

8∏
b=1

Q(b)
(
θ

(a)
j + iπ

hM
Cab

)
Q(b)

(
θ

(a)
j − iπ

hM
Cab

) = −1, (a = 1, . . . , 8), (6.4.24)

where C is the E8 Cartan matrix given in section 4.2.2. Integrals of motion are

then calculated from the residues of H̃(k):

H̃(k) =
1

2 sinh πk
30M

cosh πk
30

C̃(k)−1, (6.4.25)

where C̃(k) is the E8 deformed Cartan matrix. The poles of H̃(k) are at k =

(30n ± 1)i, (30n ± 7)i, (30n ± 11)i, (30n ± 13)i and k = 30nMi, where n ∈ Z.

Integrals of motion are then defined identically to earlier cases, with the local

integrals of motion

I(a)
p = 2

8∑
b=1

∫ ∞
−∞

ep(θ
′−i0) Res

[
H̃ab(k), k = ip

]
Im
{

log
(
1 + a(b)(θ′ − i0)

)}
dθ′,

(6.4.26)

and the non-local integrals of motion are given by

S(a)
q = 2

8∑
b=1

∫ ∞
−∞

e30qM(θ′−i0) Res
[
H̃ab(k), k = 30qMi

]
·

Im
{

log
(
1 + a(b)(θ′ − i0)

)}
dθ′. (6.4.27)

6.5 Conclusions

In this chapter we have extended the massive ODE/IM correspondence to systems

of differential equations associated with the affine Toda field theories for the Lie

algebrasD
(1)
r , E

(1)
6 , E

(1)
7 and E

(1)
8 . We applied the same procedure used to calculate
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the integrals of motion for the A
(1)
r case to do the same for the remaining simply-

laced Lie algebras. For the E
(1)
6 case, we also constructed the associated g =

0 pseudo-differential equation in the massless limit. In [39], this was done for

E
(1)
7 as well, converting the linear problem into three coupled pseudo-differential

equations.

Some open questions regarding the treatment of the exceptional Lie algebras

remain. We have not discussed the larger representations V (a) with a > 1 for

the exceptional Lie algebras and their corresponding linear problems. It would be

interesting to compute the asymptotics of these linear problems and define Q(a)-

functions exactly. The quantum Wronskians for the Lie algebras we considered

in this chapter are all zero, leading to difficulty defining T -functions using deter-

minants as we saw in section 5.8 for the A
(1)
r case. The linear problem associated

with the representation V (1) of E
(1)
8 also seems to have no subdominant solution;

this causes the definition of the Q(a)-functions for E
(1)
8 to become an interesting

open problem.
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Chapter 7

Conclusions and outlook

This thesis was focused on two major generalisations of the ODE/IM correspon-

dence as presented in [26, 9]: the connection between excited states of a confor-

mal field theory (CFT) and suitable second-order ODEs, and the extension of

the correspondence to certain massive integrable models with more general Lie

algebra symmetries. We began in the introduction by introducing the massless

A
(1)
1 ODE/IM correspondence, matching spectral determinants constructed from

eigenvalue problems related to second-order ODEs, and the ground-state eigen-

values of Q-operators defined on certain CFTs.

In chapter 2, we studied an extension of the massless A
(1)
1 ODE/IM correspon-

dence to the excited states of the CFTs. The related ODEs were defined by a set

of parameters {zi}Li=1, zi 6= zj which were constrained by a set of algebraic locus

equations. Each solution of these locus equations is conjectured to correspond

to an excited state of the CFT. The appearance of singular vectors in the CFT

is telegraphed by the disappearance of one or more of the solutions of the locus

equations. While investigating the solutions of the locus equations, we noticed

that for particular values of the ODE parameters l and M , one of the solutions

of the locus equations disappeared as three of the parameters zi converged on the
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same point, but there were no singular vectors at these values of l and M in the

corresponding CFT. This discrepancy was resolved by constructing a more general

set of locus equations that were valid at these triple points and solving these for

the location of said triple points.

It would be interesting to extend the work in chapter 2 on the A
(1)
1 excited

states to more general Lie algebras. The derivation of the algebraic locus equations

in section 2.3 hinged on a set of conditions due to Duistermaat [29] that ensured

single-valuedness of the solutions of a particular second-order ODE. To extend

the ODE/IM correspondence to the excited states of an integrable model with,

for example, A
(1)
r symmetry, a similar set of single-valuedness condition for certain

rth-order ODEs will need to be found. These conditions would then induce a new

set of locus equations which would define a new family of ODEs corresponding to

the excited states of this integrable model.

After considering the ODE/IM correspondence for the excited states of a mass-

less integrable field theory (described by a conformal field theory) we then intro-

duced in chapter 3 the ODE/IM correspondence as applied to a massive integrable

field theory with A
(1)
1 symmetry. This case was considered in [45], and we intro-

duced it as an indicative example of the general procedure we followed for the

other simply-laced Lie algebras. Beginning with the affine Toda field equations,

we defined an equivalent pair of systems of differential equations. The asymptotic

solutions of these systems in the small-|z| and large-|z| limits were used to define

Q-functions which are the massive analogue to the spectral determinants encoun-

tered in the massless case. These Q-functions satisfy certain functional relations

called quantum Wronskians, and a set of Bethe ansatz equations. These Bethe

ansatz equations, along with the asymptotic behaviour of the Q-functions in the

limits Re θ → ±∞, are used to construct a set of non-linear integral equations,

which themselves facilitated an expression for the logarithm of the Q-functions.
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The coefficients of this expression expanded in the Re θ → ±∞ limits were the

ground-state eigenvalues of the integrals of motion associated with the massive

integrable field theory.

After codifying Lie algebra notations and outlining some general methods for

analysing systems of differential equations in chapter 4, the massive ODE/IM

correspondence was defined for the simply-laced Lie algebras in chapters 5 and

6. In the A
(1)
r case we additionally constructed T -functions that were found to

satisfy fusion relations and TQ-relations. In this way, features of the integrable

models were found to have analogues in the regime of classical partial differential

equations.

An immediate avenue for further research would be to extend the massive

ODE/IM correspondence to the affine Toda field theories described by the non-

simply-laced Lie algebras. This line of inquiry has begun to be explored, with

some results in [18, 38, 48]. Many of the techniques we have applied in this thesis

have depended on the Langlands self-duality of the simply-laced Lie algebras; the

algebras we have seen are invariant under sending roots to co-roots and vice versa.

Without this self-duality, the treatment of the non-simply-laced cases Lie algebras

is rather more subtle. It would be interesting to generalise the methods for finding

functional relations given in [40] to different non-simply-laced Lie algebras.
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