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Abstract 

Disasters are calamitous events that severely affect the life conditions of an entire 

community, being the disasters either nature-based (e.g., earthquake) or man-made (e.g., 

terroristic attack). Disaster-related issues are usually dealt with according to the Disaster 

Operations Management (DOM) framework, which is composed of four phases: mitigation 

and preparedness, which address pre-disaster issues, and response and recovery, which 

tackle problems arising after the occurrence of a disaster. The ultimate scope of this 

dissertation is to present novel optimization models and algorithms aimed at improving 

operations belonging to the mitigation and response phases of the DOM. 

On the mitigation side, this thesis focuses on the protection of Critical Information 

Infrastructures (CII), which are commonly deemed to include communication and 

information networks. The majority of all the other Critical Infrastructures (CI), such as 

electricity, fuel and water supply as well as transportation systems, are crucially dependent 

on CII. Therefore, problems associated with CII that disrupt the services they are able to 

provide (whether to a single end-user or to another CI) are of increasing interest. This 

dissertation reviews several issues emerging in the Critical Information Infrastructures 

Protection (CIIP), field such as: how to identify the most critical components of a 

communication network whose disruption would affect the overall system functioning; how 

to mitigate the consequences of such calamitous events through protection strategies; and 

how to design a system which is intrinsically able to hedge against disruptions. To this end, 

this thesis provides a description of the seminal optimization models that have been 

developed to address the aforementioned issues in the general field of Critical 

Infrastructures Protection (CIP). Models are grouped in three categories which address the 

aforementioned issues: survivability-oriented interdiction, resource allocation strategy, and 

survivable design models; existing models are reviewed and possible extensions are 

proposed. In fact, some models have already been developed for CII (i.e., survivability-

interdiction and design models), while others have been adapted from the literature on 

other CI (i.e., resource allocation strategy models). The main gap emerging in the CII field is 

that CII protection has been quite overlooked which has led to review optimization models 

that have been developed for the protection of other CI. Hence, this dissertation contributes 

to the literature in the field by also providing a survey of the multi-level programs that have 

been developed for protecting supply chains, transportation systems (e.g., railway 

infrastructures), and utility networks (e.g., power and water supply systems), in order to 

adapt them for CII protection. Based on the review outcomes, this thesis proposes a novel 
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linear bi-level program for CIIP to mitigate worst-case disruptions through protection 

investments entailing network design operations, namely the Critical Node Detection 

Problem with Fortification (CNDPF), which integrates network survivability assessment, 

resource allocation strategies and design operations. To the best of my knowledge, this is 

the first bi-level program developed for CIIP. The model is solved through a Super Valid 

Inequalities (SVI) decomposition approach and a Greedy Constructive and Local Search (GCLS) 

heuristic. Computational results are reported for real communication networks and for 

different levels of both disaster magnitude and protection resources.  

On the response side, this thesis identifies the current challenges in devising realistic 

and applicable optimization models in the shelter location and evacuation routing context 

and outlines a roadmap for future research in this topical area. A shelter is a facility where 

people belonging to a community hit by a disaster are provided with different kinds of 

services (e.g., medical assistance, food). The role of a shelter is fundamental for two 

categories of people: those who are unable to make arrangements to other safe places (e.g., 

family or friends are too far), and those who belong to special-needs populations (e.g., 

disabled, elderly). People move towards shelter sites, or alternative safe destinations, when 

they either face or are going to face perilous circumstances. The process of leaving their own 

houses to seek refuge in safe zones goes under the name of evacuation. Two main types of 

evacuation can be identified: self-evacuation (or car-based evacuation) where individuals 

move towards safe sites autonomously, without receiving any kind of assistance from the 

responder community, and supported evacuation where special-needs populations (e.g., 

disabled, elderly) require support from emergency services and public authorities to reach 

some shelter facilities. This dissertation aims at identifying the central issues that should be 

addressed in a comprehensive shelter location/evacuation routing model. This is achieved 

by a novel meta-analysis that entail: (1) analysing existing disaster management surveys, (2) 

reviewing optimization models tackling shelter location and evacuation routing operations, 

either separately or in an integrated manner, (3) performing a critical analysis of existing 

papers combining shelter location and evacuation routing, concurrently with the responses 

of their authors, and (4) comparing the findings of the analysis of the papers with the findings 

of the existing disaster management surveys. The thesis also provides a discussion on the 

emergent challenges of shelter location and evacuation routing in optimization such as the 

need for future optimization models to involve stakeholders, include evacuee as well as 

system behaviour, be application-oriented rather than theoretical or model-driven, and 

interdisciplinary and, eventually, outlines a roadmap for future research. Based on the 



iii 
 

identified challenges, this thesis presents a novel scenario-based mixed-integer program 

which integrates shelter location, self-evacuation and supported-evacuation decisions, 

namely the Scenario-Indexed Shelter Location and Evacuation Routing (SISLER) problem. To 

the best of my knowledges, this is the second model including shelter location, self-

evacuation and supported-evacuation however, SISLER deals with them based on the 

provided meta-analysis. The model is solved through a Branch-and-Cut algorithm of an off-

the-shelf software, enriched with valid inequalities adapted from the literature. 

Computational results are reported for both testbed instances and a realistic case study.  
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1 Introduction 

This chapter describes the context where this doctoral activity has been set, specifies the 

topics that have been investigated, illustrates the research questions that have been posed, 

details the contributions to knowledge that have been produced and, finally, outlines the 

structure of this dissertation.   

 

1.1 Research background 

The International Federation of Red Cross and Red Crescent Societies (IFRC) defines a 

disaster as the sudden occurrence of an hazardous event that severely affects the members 

of an entire community, leading to various unfavourable consequences (e.g., life-threatening 

circumstances, economic losses) that the community cannot tackle on its own  (IFRC 2017).  

A disaster can be classified as either natural or man-made (Van Wassenhove 2006). 

Examples of natural disasters are earthquakes (Italy, 2017), hurricanes (US, 2017), floods 

(Central Europe, 2015), and bushfires (Australia, 2009), while terroristic attacks (UK, 2005) 

are examples of man-made disasters. The upward trend of disaster occurrence, as displayed 

in Figure 1, puts a lot of strain onto the humanitarian system, leading to an increased focus 

on Disaster Management (DM) issues. 

 

Figure 1. Relevant natural loss events worldwide 1980 – 2017 (MunichRe 2018) 

 

Figure 1 shows the rise in number for four different natural disaster categories over the 

time range 1980 – 2017: geophysical events (in red), such as earthquakes, tsunamis, and 
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volcanic activity; meteorological events (in green), such as tropical cyclones, extratropical, 

convective or local storms; hydrological events (in blue), such as flood and mass movement; 

and climatological events (in orange), such as extreme temperatures, droughts, and forest 

fires. Both geophysical events and meteorological events have nearly doubled, climatological 

events have increased threefold, and hydrological events have almost registered a sevenfold 

rise. The variegated nature of disasters highlights the importance of sensing/forecasting 

algorithms, in fact, disasters like hurricanes can be predicted. However, the fact that a 

disaster can be predicted is not enough and prompts issue related to the accuracy of the 

prediction itself. Nevertheless, forecast data can be deployed to inform decision-makers 

prior to the occurrence of a disaster and take relevant actions (e.g., preventive evacuation). 

The occurrence of disasters is exacerbated by climate change given that, “often, climate 

change acts mainly through adding new dimensions and complications to sometimes 

longstanding challenges” (Barros 2014), already present in the disaster-affected regions. 

Hence, these data undoubtedly warrant further investigation to improve DM practices. 

Disaster operations are usually categorized according to the Disaster Operations 

Management (DOM) framework (Altay and Green 2006), which is composed of four 

programmatic phases, as illustrated in Figure 2: 1) mitigation, which includes activities to 

prevent the onset of a disaster or reduce its impact (e.g., risk assessment procedures, 

protection planning); 2) preparedness, which include plans to handle an emergency (e.g., 

personnel training, communication system development, emergency supply stocking); 3) 

response, which is about the implementation of plans, policies and strategies developed in 

the preparedness phase (e.g., to put into action an evacuation plan); and 4) recovery, which 

involves long-term planning actions to bring the life conditions of a community back to 

normality (e.g., debris removal, infrastructure restoration).  

 

Figure 2. Disaster Operations Management (DOM) framework 
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The former two phases focus on pre-disaster issues while the latter two deal with post-

disaster ones. The operations embedded within each one of the DOM phases correspond to 

different actions to be taken and, more specifically, to different levels of decision-making: 

strategic (i.e., set in the long-term), tactical (i.e., set in the medium-term), and operational 

(i.e., set in the short-term) decisions. Table 1 provides a more detailed explanation of DOM 

from a decision-making perspective. 

 

Table 1. Decision-making levels and DOM phases 

 Mitigation Preparedness Response Recovery 

Strategic Zoning 
Emergency 

planning 
Urban search 

and rescue 

Rebuilding of 
roads and 

bridges and key 
facilities 

Tactical 

Active preventive 
measures to 

control 
developing 
situations 

Construction 
of an 

emergency 
operations 

centre 

Shelter 
opening 

Disaster debris 
clean-up 

Operational 
Controls on 

rebuilding after 
events 

Maintaining 
emergency 

supplies 

Evacuation 
routing 

Financial 
assistance to 

individuals and 
governments 

 

Specifically, on the rows, the three different decision-making levels are depicted (i.e., 

strategic, tactical, and operational) while, on the columns, the four different DOM phases 

(i.e., mitigation, preparedness, response, and recovery) are considered. Despite examples 

are provided for each possible combination (decision-making level, DOM phase), it has to be 

clear that DM operations are extremely interrelated. For example, the zoning procedure 

(strategic, mitigation) is propaedeutic to shelter opening (tactical, response) and evacuation 

routing (operational, response).  

This thesis aims at improving specific operations belonging to the mitigation and response 

phases of the DOM, which are infrastructure protection and evacuation planning, 

respectively, as it is described in a more in-depth way in the next section (Section 1.2). On 

one side, infrastructure protection investment planning aims at mitigating disastrous 

circumstances, including climate change-driven ones, and eventually, make infrastructures 

more resilient to withstand disruptive events. On the other side, evacuation planning aims 
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at responding to calamitous circumstances so as to improve 1community resilience after the 

occurrence of a disaster. Hence, this research activity is in line with the philosophy 

underpinning the 2030 Agenda for Sustainable Development, which is to promote and to 

progress towards the achievement of sustainable development for all the communities 

around the world. In particular, this thesis proposes research which can contribute to the 

implementation of three out of the seventeen United Nations (UN) Sustainable Development 

Goals (SDGs), which are illustrated in Figure 3: SDG 9 (industry, innovation, and 

infrastructure); SDG 11 (sustainable cities and communities); and SDG 13 (climate action). 

Specifically, this dissertation touches upon lines of research dealing with infrastructure-

based systems such as communication and transportation networks (SDG 9) which can be 

potentially affected by either man-made or climate-prompted disasters (such as floods). The 

contribution of this dissertation is to provide mathematical tools to mitigate the effects of 

such disastrous circumstances (SDG 13) through approaches aimed at increasing systems 

resilience (e.g., network design, disruptive scenarios evaluation) so as to make them more 

sustainable (SDG 11) while hedging against disruptions. 

 

Figure 3. United Nations (UN) Sustainable Development Goals (SDGs) (United Nations) 

                                                           
1The IFRC defines resilience as “the ability of individuals, communities, organizations or 

countries exposed to disasters, crises and underlying vulnerabilities to anticipate, prepare 
for, reduce the impact of, cope with and recover from the effects of shocks and stresses 
without compromising their long-term prospects” (IFRC Framework for Community 
Resilience 2014).  
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1.2 Research topics 

This thesis deals with operations belonging to the mitigation and response phases of the 

DOM. In particular, on the mitigation side, the attention is devoted to the protection of 

Critical Information Infrastructures (CII), which are a specific category of Critical 

Infrastructures (CI).  On the response side, the focus is on two key evacuation planning 

operations, which are shelter location and evacuation of endangered populations. The 

motivations underpinning the need to investigate these specific topics are the following: 

- Over time, various optimization models tackling Critical Infrastructure Protection 

(CIP) issues have been developed. These models, which are multi-level programs, 

have been designed for CI such as: supply chains (Scaparra and Church 2008); 

transportation systems (Cappanera and Scaparra 2011), including railway systems 

(Scaparra, Starita and Sterle 2015); and utility networks, such as electricity (Brown, 

Carlyle, Salmeron and Wood 2006) and water supply (Jiang and Liu 2018) systems. 

However, to the best of my knowledge, no multi-level program has been yet 

proposed to tackle Critical Information Infrastructure Protection (CIIP).  

- Over the years, optimization has tried to capture some of the issues related to DM 

problems, including the ones within the specific context of shelter location and 

evacuation routing. Traditionally, these problems have been addressed separately 

and only recently researchers have started to propose combined models. However, 

despite these first attempts, the optimization models that have been proposed are 

still far from being fully comprehensive and, most importantly, their application in 

the real world is still scarce (Van Wassenhove and Besiou 2013; Pedraza-Martinez 

and Van Wassenhove 2016).  

To redress these two gaps in the literature, some background information on these two 

topics, i.e., CIIP as well as shelter location and evacuation routing, is provided in Sections 

1.2.1 and 1.2.2, respectively. 

1.2.1 Critical Information Infrastructure Protection 

Critical Infrastructures are those physical and virtual assets, networks and systems whose 

disruption would have a debilitating impact on vital societal functions, thus affecting a 

nation’s security, economy, and public health and safety (Nickolov 2006). The nature of these 

infrastructures, along with the potential threats arising from disasters, whether nature-
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based or man-made, has prompted a significant amount of research into what is referred to 

as Critical Infrastructure Protection. 

This thesis focuses on a specific category of CI, namely the Critical Information 

Infrastructures, and reviews recent developments in the optimization field aimed at 

addressing Critical Information Infrastructure Protection issues. CIIP is defined as those plans 

and strategies developed by network operators, infrastructure owners and others, aimed at 

keeping the service level of CII above a pre-determined threshold, despite the occurrence of 

disruptive events of various natures (Suter and Brunner 2008). CII, such as the public 

telephone network, Internet, terrestrial and satellite wireless networks (Patterson and 

Personick 2003), are those systems, belonging to the information and communications 

technology (ICT), whose correct functioning is fundamental not only for the services they 

provide but also for other kinds of CI which either rely or are based on them. Examples of CII 

are backbone networks that ensure connectivity among distributed systems in order to allow 

remote monitoring, access control, data sharing as well as payment services. Network nodes 

are either servers, routers or switches whose main tasks are to regulate network traffic and 

manage data transmission over the network arcs. Network components (i.e., nodes and arcs) 

are prone to either physical or cyber-attacks.  

It is clear that CII are key elements in production and service systems. Even a local failure 

at the single CII level (e.g., shut down servers, interrupted cable connections, etc.) may 

prompt far-reaching adverse effects on the CI relying on it. Bigger disruptions may have even 

more catastrophic cascading consequences. For example, the 2001 World Trade Center 

attacks crippled communications by destroying telephone and Internet lines, electric circuits 

and cellular towers (Grubesic, O’Kelly and Murray 2003, Murray 2013). This caused a cascade 

of disruptions at all levels, from fuel shortages, to transportation and financial services 

interruptions. Kwasinski (2011) reports the catastrophic effects that some notable natural 

disasters have produced on communication networks. For example, the storm surge of 

Hurricane Katrina of 2005 halted 2.5 million of conventional public switched telephone 

network (PSTN) lines which, eventually, led to loss of service in wireless networks due to 

system interdependency. Another example is the Great East Japan earthquake of 2011 as 

well as the resulting tsunami. In fact, the occurrence of this calamitous event affected all the 

CI in the country: 1.5 million households were reported not to have access to their water 

supply, 4.4 million households were left without electricity, nuclear power plants were 

affected by explosions and radioactive leakage, all railway services were suspended, and 

communications were interrupted. In particular, 1.5 million PSTN lines were not able to 
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provide service due to power outages as well as severed transmission links, in fact, the 

tsunami destroyed many bridges where the fibre optic transmission cables were installed 

(Kwasinski 2011). These events claim that more research is needed towards CIIP. 

1.2.2 Shelter location and evacuation routing 

Diverse types of disasters require a different evacuation process. For example, hurricanes 

and wildfires allow for preventive evacuation while earthquakes and floods demand 

immediate evacuation. Inefficient evacuation plans can have severe consequences such as 

life losses, or evacuees suffering from psychological harm and feeling resentment towards 

governmental organizations (Camp Coordination and Camp Management (CCCM) Cluster 

2014).  

This thesis focuses on shelter location and evacuation routing operations, which lie on 

the boundary between disaster preparedness and disaster response. The specific DOM phase 

these operations fit into may differ, as highlighted by Gama, Santos and Scaparra (2016), also 

depending on the type of disaster. However, in line with the framework proposed by Altay 

and Green (2006), it is assumed that shelter opening and evacuation routing are disaster 

response operations. 

A shelter is a facility where people belonging to a community hit by a disaster are provided 

with different kinds of services (e.g., medical assistance, food). The role of a shelter is 

fundamental for two categories of people: those who are unable to make arrangements to 

other safe places (e.g., family or friends are too far), and those who belong to special-needs 

populations. These include transit-dependent and vulnerable people, such as “those with 

disabilities, the elderly, the medically homebound, and poor or immigrants who are 

dependent on transit for transport” (Transportation Research Board 2008, p. 52). London 

Resilience Team (2014) identifies three types of shelters: Emergency Evacuation Centres 

(EEC), Short Term Shelters (STS), and Emergency Rest Centres (ERC).  These three types of 

shelters differ in terms of size, services provided to the evacuees and opening times. An EEC 

offers immediate, basic shelter to a large number of people for a maximum staying of about 

12 hours; services at an EEC include basic sanitation and drinkable water, but exclude beds 

and food. An STS can accommodate evacuees coming from either an EEC or who need to be 

directed to an ERC or an alternative safe destination; in addition to EEC services, an STS can 

provide also food for up to 48 hours. An ERC provides dormitory facilities, on top of STS 

services, to accommodate those people without any other alternative. An ERC can be kept 
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open up to the transition to the recovery phase or even during that phase, depending on the 

specific circumstances.  

People move towards shelter sites, or alternative safe destinations, when they either face 

or are going to face perilous circumstances. The process of leaving their own houses to seek 

refuge in safe zones goes under the name of evacuation. London Resilience Team (2014) 

identifies three types of evacuation: self-evacuation: individuals move towards safe sites 

(either a shelter or not) autonomously, without receiving any kind of assistance from the 

responder community; assisted evacuation: individuals arrange their own transportation 

towards shelters, but require some advice from public authorities (e.g., directions); 

supported evacuation: special-needs populations (e.g., disabled, elderly) require support 

from emergency services and public authorities to reach some shelter facilities. An 

evacuation process may deploy different transportation modes: this goes under the name of 

multimodal evacuation. For example, under flood circumstances, evacuation may be carried 

out using a combination of land (buses), water (boats) and air (helicopters) transport. Figure 

4 summarizes what has been described in terms of both shelter and evacuation types. 

Therefore, it is paramount to plan for efficient evacuation procedures. 

 

Figure 4. Shelter and evacuation types (London Resilience Team 2014, p. 22) 

 

Despite Critical Information Infrastructure Protection and Shelter Location and 

Evacuation Routing belong to two different DOM phases, mitigation and response, 

respectively, they are extremely intertwined. As an example, a potential failure in 
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(tele-)communication networks could prompt a failure in a Decision Support System (DSS) 

for evacuation planning based on a GIS interface, real-time data evaluation and optimization 

thus affecting disaster response procedures. Another reason why mitigation and response 

operations could also be addressed together is that, during a disaster, the dissemination of 

warning signals and the evacuation itself heavily rely on critical infrastructures (e.g., 

communication and transport systems). Damage to these infrastructures may have direct 

effects on the affected populations’ ability to evacuate. Hence, models to evaluate the 

impact of critical infrastructure protection (mitigation) on the evacuation process itself 

(response) could be developed. Obviously, each area shall be investigated as separate first, 

as in this dissertation, prior to put forward the potential integration of these different 

operations. This, eventually, would not only lead to advances in the OR discipline towards 

the challenging and interdisciplinary nature of DM problems but also help to bridge the gap 

between theory and practice. 

 

1.3 Research questions 

The research questions that are posed in this thesis are firstly introduced within the CIIP field 

and, subsequently, within the context of shelter location and evacuation routing operations. 

Research questions emerging in the Critical Information Infrastructure Protection field 

are as follows: 

CIIP.1. What are the most critical elements of a system that, if disrupted, would 

interrupt or significantly degrade the system’s normal functioning?  

CIIP.2. How can such an interruption be prevented or mitigated by resource 

allocation plans aimed at hardening system elements?  

CIIP.3. Is it possible and worthwhile to design and establish infrastructures that are 

intrinsically able to resist service failure when a disruptive event occurs?  

 

Research questions emerging in the shelter location and evacuation routing context 

(abbreviated as SLER to categorize the questions) are as follows: 

SLER.1. What are the current challenges emerging in the shelter location and 

evacuation routing field from an optimization-based perspective? 

SLER.2. When planning for efficient evacuation plans: 
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a. How many shelters should be opened and where should they be 

located?  

b. How should self-evacuation be addressed in the planning framework? 

c. How should supported-evacuation be organized in order to assist 

people belonging to sensitive categories (e.g., disabled, elderly)? 

 

1.4 Research contributions 

The aim of this dissertation is to contribute to research on mitigation and response 

operations for DM. In particular, novel optimization models are developed to shed light on 

aspects that have not been fully considered or neglected in the existing literature.  

Research contributions related to the Critical Information Infrastructure Protection arena, 

aimed at answering the research questions that have been detailed in the previous section 

(Section 1.3), are as follows: 

- Optimization models to assess CII survivability are reviewed and summarized in three 

categories: survivability-oriented interdiction models, resource allocation strategy 

models, and survivable design models. The first class of models is aimed at identifying 

interdiction scenarios of CII and quantifying the consequences deriving from 

potential losses of system critical components in terms of ability to provide service. 

The second class of models is aimed at optimizing the allocation of resources (i.e., 

budget) among the components of already existent systems in order to protect 

them. The third class of models is aimed at planning new CII which are able to meet 

survivability criteria when disruptive events occur. This thesis provides a description 

of the seminal models in each of the aforementioned categories thus answering 

questions CIIP.1, CIIP.2, and CIIP.3. In fact: survivability-oriented interdiction models 

allow to identify the most critical components of a system whose disruption would 

compromise its correct functioning (CIIP.1); resource allocation strategy models 

individuate how protection means should be distributed among the components of 

an existing system thus representing a viable tactic to withstand disruptive 

circumstances (CIIP.2); and survivable design models outline how to create a system 

which is intrinsically able to hedge against disastrous events (CIIP.3). Based on the 

analysis, among the three research spheres, resource allocation strategy models for 

CII seems to have been overlooked during the years, while, on the contrary, it has 
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been quite a prolific research area when it comes to other CI (e.g., supply chains, 

transportation systems, and utility networks).  

- Based on the findings of the previous analysis, an attempt at filling the current gap 

in resource allocation strategy models for CII consists in proposing a novel protection 

optimization model, namely the Critical Node Detection Problem with Fortification 

(CNDPF). In this case, system nodes are vulnerable to disruptions however, instead 

of protecting nodes through the installation of security measures (e.g., alarms, 

motion detectors, biometric scanners, badge swipes, access codes, and human and 

electronic surveillance such as Perimeter Intruder Detection Systems (PIDS) and 

Closed Circuit Television (CCTV) (Nickolov 2006)) the adopted approach consists in 

altering the infrastructure design by augmenting the network with additional arcs. In 

fact, this type of defense strategy would increase the network redundancy, and its 

resilience to a greater extent, thus allowing the system to maintain a certain level of 

service and withstand disruptive circumstances. This approach is based on the inner 

characteristics of ICT network-based systems. Nodes usually store algorithms, 

databases and network management tools whose failure can severely compromise 

the correct system functioning, while arcs are transmission cables that allow to 

transfer data from a node to another but do not store any sensitive information. 

Hence, additional arcs could alter the configuration of the most critical network 

nodes and permit to preserve a certain level of service despite disaster occurrence. 

More specifically, the problem addressed in this thesis is the following: within a 

limited amount of budgetary resources, a connectivity augmentation problem needs 

to be solved (Eswaran and Tarjan 1976) in order to minimize the negative impact on 

connectivity due to worst-case scenario losses affecting the network nodes. The 

introduction of the CNDPF permits to build a novel model which combines 

survivability assessment, protection strategies, and survivable design, thus providing 

an integrated answer to questions CIIP.1, CIIP.2, and CIIP.3. 

- The CNDPF is modeled through a bi-level program which is solved through a 

decomposition method based on Super Valid Inequalities (SVI) (Wood 1993; 

O’Hanley and Church 2011; Losada, Scaparra and O’Hanley 2012; Starita and 

Scaparra 2016) and through a Greedy Constructive and Local Search (GCLS) heuristic. 

Computational results are reported for real communication networks and for 

different levels of both disaster magnitude and protection resources. 
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Research contributions related to the shelter location and evacuation routing arena, 

aimed at answering the research questions that have been detailed in the previous section 

(Section 1.3), are as follows: 

- DM surveys paying specific attention to how operations research, and optimization 

in particular, has contributed to the shelter location and evacuation routing field are 

analyzed and compared. The most recent optimization models combining the 

aforementioned operations are reviewed and, to clarify some ambiguities arising 

from the analysis of existent models and gather additional insights, an ad-hoc 

questionnaire was sent to the authors of these papers and the responses, included 

in this thesis, are critically examined. This process has led to identify the current 

challenges in this research field which are discussed together with further research 

directions, linking the emerging findings with those arising from previous surveys, 

thus answering question SLER.1.  

- Based on the findings of the previous analysis, an attempt at filling some gaps in the 

literature consists in proposing a novel scenario-based flow-location-allocation-

routing model to optimize evacuation planning decisions, including where and how 

many shelters to open and how to route both car-based evacuees (i.e., self-

evacuees) and bus-based evacuees (i.e., supported-evacuees) to them, across 

different network disruption scenarios, namely the Scenario-Indexed Shelter 

Location and Evacuation Routing (SISLER) problem. The definition of this new model 

answers question SLER.2 in each aspect (a, b, and c). In fact, it is clear that shelter 

location, self-evacuation and supported-evacuation are highly interconnected and 

must be addressed simultaneously. In fact, self-evacuees and supported-evacuees 

must share the same resources (e.g., capacitated shelters, evacuation routes, etc.). 

Moreover, the scenarios are used to capture the uncertainty characterizing road 

conditions in the aftermath of a disaster. Although both shelter location and 

evacuation routing operations belong to the disaster response phase, shelters must 

often be set up and equipped with personnel and relief supplies when the disaster 

is still evolving and road conditions are uncertain or subject to changes. Therefore, 

it is paramount to identify shelter locations which are easily accessible in different 

disruption scenarios and guarantee an efficient evacuation in every scenario.  
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1.5 Outline 

The remainder of this thesis is organized as follows.  

Chapter 2 provides a review of survivability-oriented interdiction, resource allocation 

strategy, and survivable design optimization models for CIIP. It also offers an outlook on how 

multi-level programming has been deployed to develop protection models for CIP, in the 

context of supply chains, transportation systems (e.g., railway infrastructures), and utility 

networks (e.g., electric and water supply), so as to lay the foundations for future work within 

the CIIP field.  

Chapter 3 introduces the Critical Node Detection Problem with Fortification, describes 

the model formulation as well as the solution methodologies that have been developed to 

solve it, which are a SVI decomposition algorithm and a heuristic approach (GCLS), and 

provides computational results on real communication networks. 

Chapter 4 illustrates the emergent challenges of shelter location and evacuation routing 

in optimization by reviewing DM-specific survey papers, discussing optimization models 

tackling shelter location and evacuation routing operations, either separately or in an 

integrated manner, and reporting the results of the critical analysis of existing papers 

combining shelter location and evacuation routing, concurrently with the responses of their 

authors. The chapter concludes with a discussion on the challenges that have been identified, 

leading to a roadmap for future research. 

Chapter 5 presents the Scenario-Indexed Shelter Location and Evacuation Routing 

problem, details the model formulation, and offers experimental results on both testbed 

instances and a realistic case study.  

Finally, Chapter 6 offers some conclusive remarks. 
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2 A synthesis of optimization approaches for tackling Critical 

Information Infrastructure survivability 

This chapter discusses several issues emerging in the CIIP field such as: how to identify the 

most critical components of a communication network whose disruption would affect the 

overall system functioning; how to mitigate the consequences of such calamitous events 

through protection strategies; and how to design a system which is intrinsically able to hedge 

against disruptions. This chapter provides a description of the seminal optimization models 

that have been developed to address the aforementioned issues in the general field of CIP. 

Models are grouped in three categories: survivability-oriented interdiction, resource 

allocation strategy, and survivable design models; existing models are reviewed and possible 

extensions are proposed. In fact, some models have already been developed for CII (i.e., 

survivability-interdiction and design models), while others have been adapted from the 

literature on other CI (i.e., resource allocation strategy models). Hence, the main gap 

emerging in the CII field is that CII protection has been quite overlooked which has led to 

review optimization models that have been developed for the protection of other CI. Hence, 

this chapter provides also a survey of the multi-level programs that have been developed for 

protecting supply chains, transportation systems (e.g., railway infrastructures), and utility 

networks (e.g., power and water supply systems), in order to adapt them for CII protection. 

 

2.1 Identifying critical network components: survivability-oriented 

interdiction models 

The identification of critical components in network-based systems can be traced back to a 

few decades ago in the context of transportation infrastructures for military purposes 

(Wollmer 1964). More recently, Church, Scaparra and Middleton (2004) introduced 

optimization models for identifying critical facilities in service and supply systems.  

Interdiction models, as referred to in the literature, identify network components which 

are the most critical, i.e., the ones that, if disrupted, inflict the most serious damage to the 

system. The importance of these kinds of models is easily understandable: they not only shed 

light on a system’s major vulnerabilities, but also help form the basis for developing 

protection and/or recovery plans.  
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Interdiction models are driven by specified criteria (also called impact metrics). When 

dealing with CII, such as communication and information networks, the two important 

criteria are network reliability and network survivability. In (Soni, Gupta and Pirkul 1999), 

network reliability is defined as the probability measure that a network functions according 

to a predefined specification; whereas, network survivability is defined as the ability of a 

network to maintain its communication capabilities in the face of equipment failure. 

Moreover, according to Soni, Gupta and Pirkul (1999), it is possible to subdivide network 

survivability into two categories: physical survivability and logical survivability. A network is 

physically survivable if after the physical failure of some nodes or arcs, a path connecting all 

the nodes still exists. Logical survivability is about survivability at higher levels of the Open 

Systems Interconnection (OSI) model and assumes that the underlying physical network is 

survivable.   

The focus of this section is on evaluating how disruptive events impact a network’s 

physical survivability by identifying its critical components, which can be nodes and/or arcs. 

In the case of communication and information networks, nodes can be switches, multiplexers, 

cross-connects, routers; arcs represent connections among them (Soni, Gupta and Pirkul 

1999; Soni and Pirkul 2002). 

Murray (2013) identifies four metrics to evaluate network physical survivability: maximal 

flow (Wollmer 1964), shortest path (Corley and David 1982), connectivity (Lin et al. 2011; 

Soni, Gupta and Pirkul 1999), and system flow (Myung and Kim 2004; Murray, Matisziw and 

Grubesic 2007). Here an example of an optimization model designed to ascertain the 

survivability of system flow is provided. This model is a variation of the model introduced in 

(Myung and Kim 2004) and later extended and streamlined in (Murray, Matisziw and 

Grubesic 2007). It identifies the r most vital components of a network, i.e., those components 

which, if disrupted, maximize the amount of flow that can no longer be routed over the 

network. In the specific case of CII, the flow represents data and information. In the following, 

this model will be referred to as the Survivability Interdiction Model (SIM).   

2Given a network 𝐺(𝑁, 𝐴), where 𝑁 is the set of nodes and 𝐴 is the set of arcs, let 𝛺 be 

the set of origin nodes, indexed by 𝑜 ; H the set of elements (nodes/arcs) that can be 

disrupted, indexed by ℎ; 𝛥 the set of destination nodes, indexed by 𝑑; 𝑃 the set of paths, 

                                                           
2 For the sake of clarity, the reader is informed that the mathematical notations hereby 

introduced are for this specific chapter and do not relate with those introduced in other 
chapters of this dissertation. 
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indexed by 𝑝; 𝑁𝑜𝑑  the set of paths enabling flow between an origin-destination pair 𝑜 − 𝑑; 

𝛷𝑝 the set of components belonging to path 𝑝; 𝑓𝑜𝑑 the flow routed between an o-d pair; and 

𝑟 the number of components to be disabled. The decision variables are: 𝑆ℎ equal to 1 if 

component ℎ is disrupted, 0 otherwise; and 𝑋𝑜𝑑  equal to 1 if flow cannot be routed between 

a pair 𝑜 − 𝑑, 0 otherwise. The mathematical formulation is: 

 

𝑚𝑎𝑥 𝑧 =  ∑ ∑ 𝑓𝑜𝑑𝑋𝑜𝑑𝑑∈𝛥𝑜∈𝛺    (1) 

s.t.   

      ∑ 𝑆ℎ ≥ℎ∈𝜙𝑝
𝑋𝑜𝑑  ∀ 𝑜 ∈ 𝛺, 𝑑 ∈ 𝛥, 𝑝 ∈ 𝑁𝑜𝑑 (2) 

      ∑ 𝑆ℎℎ∈𝐻 = 𝑟                                                                              (3) 

      𝑆ℎ ∈ {0,1}  ∀ h ∈ 𝐻 (4) 

      𝑋𝑜𝑑 ∈ {0,1} ∀ 𝑜 ∈ 𝛺, 𝑑 ∈ 𝛥 (5) 

 

The objective function (1) maximizes the total flow disrupted (or interdicted). Constraints 

(2) state that the flow between an 𝑜 − 𝑑 pair can be considered lost (X𝑜𝑑 = 1), only if every 

path connecting nodes 𝑜 and 𝑑 is affected by the disruption (i.e., at least one of its arc is 

disrupted). Constraint (3) is a typical cardinality constraint which stipulates that exactly 𝑟 

arcs/nodes are to be disrupted. Finally, constraints (4) and (5) represent the binary 

restrictions on the interdiction and flow variables, respectively. 

The original SIM in (Myung and Kim 2004) only considers arc disruption. It was later 

modified to address node disruption in (Murray, Matisziw and Grubesic 2007). This work also 

presents a variant of SIM which identifies lower bounds to the flow loss caused by the 

disruption of 𝑟  nodes, thus allowing the assessment of both best-case and worst-case 

scenario losses. This kind of analysis is useful to build the so-called reliability envelope, a 

diagram originally developed in (O’Kelly and Kim 2007) to depict possible outcomes for the 

failure of communication systems. In (Murray, Matisziw and Grubesic 2007), SIM was applied 

to the Abilene network, an Internet-2 backbone with 11 routers and 14 linkages connecting 

US institutions. The analysis shows that the worst-case interdiction of one node (Washington, 

D.C.) can cause a data flow decrease of over 37%; a two-node interdiction scenario 

(Washington, D.C. and Indianapolis) a decrease of over 73%. 

One arguable aspect of existing interdiction models such as SIM is that the number of 

components to be disrupted is fixed to a specific and known value 𝑟. This assumption is made 
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to capture the possible extents of disruptive events: large values of 𝑟 mimic large disruptions 

involving the simultaneous loss of several components, while small values are used to model 

minor disruptions (Losada et al. 2012). In practice, it is difficult to anticipate the extent of a 

disruption and therefore select a suitable 𝑟  value. In addition, the critical components 

identified for a small 𝑟 value are not necessarily a subset of the critical components identified 

for larger values. Consequently, these models are usually run for several values of 𝑟 so as to 

identify the most vital components across disruption scenarios of different magnitude 

(Murray, Matisziw and Grubesic 2007).  

Another aspect worth mentioning is that the use of cardinality constraints like (3) is useful 

for identifying worst-case scenario losses caused by natural disasters. However, in case of 

malicious attacks, models must capture the fact that different amount and type of resources 

(e.g., human, financial, etc.) may be needed in a concerted attack to fully disable network 

components and cause maximum damage (Scaparra and Church 2015). From an attacker’s 

perspective, in fact, resources may vary significantly according to the target. This is 

particularly true within the context of physical survivability as opposed to logical survivability. 

For example, a physical attack on a relatively small number of major switching centers for 

long-distance telecommunications may require considerably more resources than launching 

a logic denial-of-service attack on the Internet. However, the former type of attack may 

cause much longer lasting damage (Lin, Patterson and Hennessy 2003).  

This aspect can be captured by either replacing (3) with a budget constraint (see (Aksen, 

Piyade and Aras 2010) and (Losada et al. 2012) in the context of distribution systems) or by 

developing models that directly minimize the attacker expenditure to achieve a given level 

of disruption.  Examples of the latter can be found in (Lin et al. 2011). This work presents 

some mixed integer programming models which minimize the cost incurred by an attacker 

to disconnect the network according to different survivability metrics (e.g., degree of 

disconnectivity). These attacker models are then used to assess the robustness of two 

protection resource allocation strategies: a uniform allocation (the defense budget is 

distributed equally among the nodes) and a degree-based allocation (the budget is 

distributed among the nodes proportionally to their degree of connectivity). As it will be 

discussed in the next section, this approach, where protection decisions are not tackled 

explicitly within a mathematical model but are only assessed and/or developed on the basis 

of the results of an interdiction model, often leads to a suboptimal allocation of protective 

resources. 
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Another aspect that interdiction models must capture is the fact that the outcome of an 

attack is highly uncertain.  When dealing with malicious disruptions, this is a crucial issue as 

attackers, such as terrorists or hackers, aim at allocating their offensive resources so as to 

maximize their probability of success. Clearly, there is a correlation between the amount of 

offensive resources invested and the probability of success of an attack: the more the former, 

the higher the latter. Church and Scaparra (2007a) introduce an interdiction model for 

distribution systems where an interdiction is successful with a given probability and the 

objective is to maximize the expected disruption of an attack on 𝑟 facilities. Losada et al. 

(2012) further extend this model by assuming that the probability of success of an 

interdiction attempt is dependent on the magnitude/intensity of the disruption. Similar 

extensions could be developed for SIM to assess the survivability of physical networks to 

attacks with uncertain outcomes. 

To summarize, survivability-oriented interdiction models have been reviewed in this 

section. Specifically, SIM identifies the r most vital components of a network which, if 

disrupted, maximize the amount of information flow that can no longer be routed over the 

network. Moreover, a discussion of potential limitations introduced by the assumptions 

underpinning SIM has been provided, together with possible lines of research for variants of 

SIM. For example: (1) usage of either a cardinality-like constraint or budget-like constraint to 

mimic interdiction resources availability based on the disastrous circumstances to be 

addressed: natural disasters and malicious attacks, respectively; (2) do not assume a 

deterministic outcome for an attack but account for uncertainty: the amount of interdiction 

resources to be invested on a specific target shall be linked to the probability of success of 

the interdiction itself. 

 

2.2 Enhancing critical network survivability: resource allocation 

strategy models 

Optimization approaches can be used to improve CII survivability by optimizing investments 

in protection measures. CII protection measures may be divided into three different 

categories: technical (e.g., security administration), management (e.g., security awareness, 

technical training) and operational (e.g., physical security) (see (Viduto et al. 2012)).  The 

interest of this chapter lies in the last category. Examples of physical security measures 

include: alarms, motion detectors, biometric scanners, badge swipes, access codes, and 

human and electronic surveillance, e.g., Perimeter Intruder Detection Systems (PIDS) and 
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Closed Circuit Television (CCTV) (Nickolov 2006). In a broader sense, protection strategies 

may include increasing redundancy and diversity (Sterbenz et al. 2010a). Redundancy 

consists in creating one or more copies of the same network element/content and is key to 

tackle random uncorrelated failures. Diversity aims at avoiding components of a system to 

undergo the same kind of failure and is used to tackle correlated failures.  

Although interdiction models like SIM are instrumental for the identification of the most 

critical CII components, protection resource allocation approaches which solely rely on this 

information to prioritize protection investments often result in suboptimal defensive 

strategies (Cappanera and Scaparra 2011;Church and Scaparra 2007). This is due to the fact 

that when a component (e.g., the most critical) is protected, the criticality of the other 

components may change. Protections and interdictions decisions must therefore be 

addressed in an integrated way.  This is typically done by using bi-level optimization programs 

(Dempe 2002). These programs are hierarchical optimization models which emulate the 

game between two players, referred to as leader and follower. In the CIIP context, the leader 

is the network operator or infrastructure owner, who decides which system components to 

protect; the follower represents a saboteur (hacker or terrorist) who tries to inflict maximum 

damage to the system by disabling some of its components. The defender decisions are 

modeled in the upper level program, whereas the lower level program models the attacker 

decisions and, therefore, computes worst-case scenario losses in response to the protection 

strategy identified in the upper level.  

A bi-level program for CIIP is presented below, which embeds SIM in the lower level, and 

is referred to as the Survivability Protection Problem (SPP). In addition to the parameters and 

variables defined in Section 2.1, SPP uses the following notation: 𝐵  is the total budget 

available for protection; 𝑐ℎ  is the unit cost for protecting component ℎ; 𝑍ℎ  is a decision 

variable equal to 1 if component ℎ is protected, 0 otherwise.  

SPP can be formulated as follows: 

 

𝑚𝑖𝑛 𝐻(𝑧)  (6) 

s.t.   

      ∑ 𝑐ℎ𝑍ℎ ≤ 𝐵ℎ∈𝐻    (7) 

      𝑍ℎ ∈ {0,1}  ∀ h ∈ 𝐻   (8) 

      𝐻(𝑧) =  𝑚𝑎𝑥 ∑ ∑ 𝑓𝑜𝑑𝑋𝑜𝑑𝑑∈𝛥𝑜∈𝛺    (9) 
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      s.t.   

           (2) - (5)   

           𝑆ℎ ≤ 1 − 𝑍ℎ    ∀ h ∈ 𝐻 (10) 

 

The upper level model identifies which network components to protect given limited 

budgetary resources (7) so as to minimize a function, 𝐻(𝑧), which represents the highest 

flow loss (6) resulting from the interdiction of 𝑟 components. The lower level model is the 

SIM with the additional set of constraints (10) which guarantee that if a component is 

protected, it cannot be attacked. 

Protection models like SPP can be extended in a number of ways. For example, protection 

investments over time could be considered, given that funds for enhancing CI security usually 

become available at different times. An example of bi-level protection model that considers 

dynamic investments can be found in (Starita and Scaparra 2016) within the context of 

transportation infrastructures. Probabilistic extensions of SPP should also be considered, 

where the protection of an element does not completely prevent its interdiction, but may 

reduce its probability of failure. Other issues that should be captured are the uncertainty in 

the number of simultaneous losses of components (see for example Liberatore, Scaparra and 

Daskin 2011a), and the correlation among components failures (Liberatore, Scaparra and 

Daskin 2012).  

Obviously, there are other approaches other than bi-level programming which can be 

used to optimize protection strategies. For example, Viduto et al. (2012) combine a risk 

assessment procedure for the identification of system risks with a multi-objective 

optimization model for the selection of protection countermeasures. To mitigate cyber-

threats, Sawik (2013) uses mixed integer models in conjunction with a conditional value-at-

risk approach to identify optimal protection countermeasure portfolios under different risk 

preferences of the decision maker (risk-adverse vs. risk-neutral).   

To summarize, a potential survivability protection model has been introduced in this 

section. Specifically, SPP is a bi-level program where the defender aims at minimizing the 

negative impact of an attacker, modelled through SIM. Additionally, features to be included 

for potential variants of SPP have been outlined. For example: (1) protection investments 

over time could be considered, given that funds usually become available at different periods 

in time; (2) the protection of an element could not completely prevent its interdiction, but 
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may reduce its probability of failure; (3) uncertainty in the number of simultaneous losses of 

components and/or correlation among components failures could be addressed.  

 

2.3 Planning survivable networks: design models  

Given the crucial importance of CII to the vast majority of economic activities and services, 

telecommunication and information systems are designed in such a way that they are 

intrinsically survivable, i.e. they satisfy some more or less stringent connectivity criteria. The 

design of survivable network is a well-studied problem in the optimization field. For an early 

survey, the interested reader can refer to (Soni, Gupta and Pirkul 1999). A comprehensive 

review of survivable network design models would be outside the scope of this thesis. To 

provide a complete treatment of survivability related optimization problems, one of the 

earliest and most studied models, namely the Survivable Network Design (SND) model found 

in (Soni and Pirkul 2002), is discussed in the following. 

Given an undirected graph 𝐺(𝑁, 𝐸), where 𝑁  is the set of nodes and 𝐸  is the set of 

undirected edges (𝑖, 𝑗), each pair of communicating nodes is identified as a commodity 𝑘 

(being 𝐾 the set of the commodities), whose origin and destination are labeled as 𝑂(𝑘) and 

𝐷(𝑘), respectively. Let 𝑐𝑖𝑗  be the design cost of edge (𝑖, 𝑗), and 𝑞 the number of node disjoint 

paths required for all the commodities (so the system will be able to face 𝑞 − 1 failures at 

most). The decision variables are: 𝑈𝑖𝑗  equal to 1 if edge (𝑖, 𝑗) is included in the design, 0 

otherwise; and 𝑋𝑖𝑗
𝑘  equal to 1 if commodity 𝑘 uses edge (𝑖, 𝑗), 0 otherwise. The formulation 

is the following: 

𝑚𝑖𝑛 𝑧 =  ∑ 𝑐𝑖𝑗𝑈𝑖𝑗(𝑖,𝑗)∈𝐸    (11) 

s.t.   

      ∑ 𝑋𝑖𝑗
𝑘

𝑗∈𝑁 − ∑ 𝑋𝑗𝑖
𝑘

𝑗∈𝑁 = {
𝑄 𝑖𝑓 𝑖 ≡ 𝑂(𝑘)

−𝑄 𝑖𝑓 𝑖 ≡ 𝐷(𝑘)
0 otherwise     

  ∀ 𝑘 ∈ 𝐾 (12) 

      𝑋𝑖𝑗
𝑘 ≤ 𝑈𝑖𝑗  ∀ 𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸 (13) 

      𝑋𝑗𝑖
𝑘 ≤ 𝑈𝑖𝑗  ∀ 𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸 (14) 

      ∑ 𝑋𝑖𝑗
𝑘

𝑖∈𝑁 ≤ 1  ∀ 𝑘 ∈ 𝐾, 𝑗 ∈ 𝑁 ∧ 𝑗 ≠ 𝐷(𝑘) (15) 

     𝑋𝑖𝑗
𝑘 , 𝑋𝑗𝑖

𝑘 = {0,1} ∀ 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (16) 

      𝑈𝑖𝑗 = {0,1} ∀ 𝑖, 𝑗 ∈ 𝑁 (17) 
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The objective function (11) minimizes the cost of the topological network design. 

Constraints (12) guarantee network flow conservation. Constraints (13) and (14) stipulate 

that flow can traverse an edge only if the edge is included in the design. The combined use 

of constraints (12), (13) and (14) enforce the edge-disjoint paths over the network. 

Constraints (15) guarantee that at most one unit of flow can traverse a node that is neither 

a commodity origin nor destination, thus ensuring the correct number of node-disjoint paths 

in the network. Finally, constraints (16) and (17) represent the binary restrictions on the 

variables. 

Many other survivable network design models can be found in the literature which differ 

in terms of underlying network (wired vs. wireless), network topology (e.g., ring, mesh, star, 

line, tree, etc.), connectivity requirements (e.g., edge and/or vertex-connectivity), path-

length restrictions (e.g., hop limits (Orlowski and Wessäly 2006)), cost minimization 

(Orlowski and Wessäly 2005), and dedicated settings (e.g., path protection, link and path 

restoration (Orlowski and Wessäly 2006)).  

Note that recent survivability design models embed interdiction models to ascertain 

components criticality (Smith, Lim and Sudargho 2007; Chen, Cohn and Pinar 2011). Such 

models are able to identify cost-effective CII configurations which are inherently survivable 

without the need to specify the number of disjoint paths required between each pair of 

communicating nodes, like in SND. 

To summarize, the most well-known survivability design model has been introduced in 

this section. Specifically, SND aims at minimizing the total design expenditure. SND, and 

design models in general, are well-established in the literature. However, potential variants 

could be prompted by the need to address different underlying networks (wired vs. wireless), 

network topology (e.g., ring, mesh, star, line, tree, etc.), connectivity requirements (e.g., 

edge and/or vertex-connectivity) and/or path-length restrictions.  

Among the three aforementioned lines of research, the one that has been so far 

overlooked is the development of resource allocation strategy models to tackle CIIP issues. 

In the following section, an overview of the principal bi-level programs is provided and, in 

some specific cases, multi-level programs that have been developed for the protection of 

other CI.  
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2.4 Multi-level programming for Critical Infrastructure Protection 

Bi-level programming, and multi-level programming more in general, has been widely 

deployed for CIP. Relevant studies are categorized according to the type of underlying CI: 

supply chains, transportation systems (such as railway networks), and utility networks (such 

as power and water supply systems). Eventually, an overview of CII is provided along with 

what makes them different from other kinds of CI. 

2.4.1 Supply chains 

A supply chain system is usually represented by a network whose nodes are grouped into 

two categories: demand points (or customers) and service points (or facilities), where the 

former require a certain amount of either a product or a service that should be supplied by 

the latter. A failure in a supply chain may prompt adverse effects such as inability to satisfy 

customer demands and bring either production or service provision to a halt. Hence, 

protection of supply chains has been investigated in-depth over the years. Bi-level, and multi-

level, programs have accounted for several aspects that can be classified in two main groups: 

interdiction-related features, such as deterministic or stochastic interdiction, full or partial 

disruption, and single or multiple kinds of attacks, and supply chain-related features, such as 

a hierarchical or decentralized structure and facility capacity backups, as described in the 

following. 

Scaparra and Church (2008) propose a bi-level program for the R-Interdiction Median 

problem with Fortification (RIMF), initially introduced as an integer linear program by Church 

and Scaparra (2007).  The aim of the RIMF is to identify the optimal distribution of limited 

resources among existing facilities of a vulnerable system so as to minimize the effect of 

worst-case disruptions arising from the loss of 𝑟 unprotected facilities. The effect of such 

disruptions is evaluated as the total demand-weighted distance between non-interdicted 

facilities and customers. The RIMF is solved through an Implicit Enumeration (IE) algorithm. 

Aksen, Piyade and Aras (2010) define the Budget Constrained R-Interdiction Median 

problem with Capacity Expansion (BCRIMF-CE). BCRIMF-CE differs from RIMF because of: (1) 

the facility protection cardinality constraint is replaced with a budget constraint; and (2) 

facilities capacity can be expanded, subject to a certain expense, to withstand the aftermath 

of facility interdiction. An IE algorithm, similar to the one proposed in Scaparra and Church 

(2008), is deployed.  
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Liberatore, Scaparra, and Daskin (2011a) and Liberatore and Scaparra (2011b) provide the 

Stochastic R-Interdiction Median Problem with Fortification (S-RIMF) where the defender 

aims at finding the optimal allocation of hardening resources under uncertain circumstances 

regarding the system components to be disrupted. Liberatore, Scaparra, and Daskin (2011a) 

introduce expected cost-based models while Liberatore and Scaparra (2011b) describe 

regret-based models. Liberatore, Scaparra, and Daskin (2011a) reformulate the proposed 

model according to a max-covering formulation and solve it according to a heuristic 

concentration-based approach while Liberatore and Scaparra (2011b) deploy a commercial 

optimization software. 

Losada, Scaparra and O’Hanley (2012) define the Fortification and R-Interdiction Median 

problem with facility recovery Time and frequent disruptions (FRIMT). Main assumptions 

underpinning FRIMT are: (1) the same facility can be disrupted more than once during 

different time periods; and (ii) a facility, once interdicted, is fully inoperative only during its 

recovery time. Hence, the allocation of protective resources is twofold: to withstand 

disruptions and to improve system resilience. A Benders decomposition, a SVI decomposition 

approach, and a hybridization of the previous two methods are used to solve the FRIMT 

model. 

Aksen and Aras (2012) extend the BCRIMF-CE by proposing the Bi-level Fixed Charge 

Location Problem (BFCLP), which addresses conjunctively fixed charge facility location, 

interdiction and protection. The authors identify two sets of costs the system planner incurs, 

those prior and those after an interdiction. Two heuristic methods are proposed to solve the 

BFCLP: a Tabu Search (TS) and a Sequential Solution Method (SSM). Aksen, Aras and Piyade 

(2013) propose the Bi-level p-median problem for the Planning and Protection of Critical 

Facilities (BPPCF), similar to the BFCLP, and solve it through an exhaustive search algorithm 

as well as TS and SSM approaches. 

Zhu, Zheng, Zhang, and Cai (2013) formulate a non-linear bi-level mixed-integer program 

to model the R-Interdiction Median problem with Probabilistic protection (RIMP) where it is 

assumed that facilities, once protected, can still be interdicted to a certain extent. The 

authors also propose the RIMP with Multiple Interdictors (RIMP-MI) where it is assumed that 

a facility can be stricken by multiple attackers at the same time. An iterated greedy search 

heuristic is proposed to solve both RIMP and RIMP-MI. 

Aksen, Akca, and Aras (2014) introduce the Bi-level Partial Facility Interdiction Problem 

(BPFIP), which addresses partial interdiction for median-based systems with capacitated 
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facilities and demand outsourcing. Partial interdiction is modelled through facility capacity 

reduction: if a facility is attacked, it may still be able to serve customers but with reduced 

capacity. A Progressive Grid Search (PGS) and a Multi-start revised Simplex Search heuristic 

(MSS) are deployed to solve the BPFIP.  

Zhang, Zheng, Zhu, and Cai (2014) present the Fortification Median problem for 

disruptions caused by Mixed types of Attacks (FMMA) as a non-linear bi-level program. 

FMMA represents an all-hazards approach because it accounts for different proportions of 

both worst-case and random attacks thus providing a more trustworthy protection scheme. 

The authors solve the FMMA through an extension of the IE algorithm proposed in Scaparra 

and Church (2008). 

Aliakbarian, Dehghanian and Salari (2015) extend the RIMF to hierarchical CI (e.g., oil 

refineries, food warehouses) and solve it with three different methodologies: (i) a Variable 

Neighbourhood Search-based approach (VDNS), (ii) a Simulated Annealing-based approach 

(SA), and (iii) a hybrid version of the aforementioned approaches (SA-VDNS). 

Cheng, Lai, Yang, and Zhu (2016) develop three hybrid heuristics to tackle the RIMF. The 

proposed framework addresses the leader’s problem with a metaheuristic to be chosen 

among a TS, SA, or a Genetic Algorithm (GA) while the follower’s problem is solved through 

an off-the-shelf optimization software. 

Akbari-Jafarabadi, Tavakkoli-Moghaddam, Mahmoodjanloo, and Rahimi (2017) define 

the Tri-level Facility Location R-Interdiction Median (TFLRIM) problem where the defender 

aim is to minimize the total costs prior to and following an interdiction. A TS and Rain-Fall 

Optimization (RFO) approaches are used to solve the TFLRIM. 

Parajuli, Kuzgunkaya, and Vidyarthi (2017) extend the work of Aksen, Piyade and Aras 

(2010), by introducing a tri-level program which assumes protection through capacity 

backups subject to gradual availability. The model is solved through an extension of the IE 

algorithm of Scaparra and Church (2008).  

Fard and Hajiaghaei-Keshteli (2018) extend the work of Aksen, Akca, and Aras (2014) by 

introducing a non-linear bi-level program to model partial interdiction of supply chain 

systems where the defender has two objectives to pursue: (1) to minimize the cost of 

deploying different defensive schemes, and (2) to minimize the total system cost. The 

authors produce two hybrid metaheuristics to solve the proposed model: the former 

combines Water Wave Optimization (WWO) and a GA while the latter combines a Whale 
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Optimization Algorithm (WHA) and Particle Swarm Optimization (PSO), which are all 

evolutionary-based solution methods. 

Khanduzi and Maleki (2018) produce a dynamic variant of the RIMF, namely the Multi-

period Interdiction problem with Fortification (MIF). The MIF is solved through an exact 

method (Benders decomposition) and three hybrid metaheuristics (the upper level model is 

solved through three possible population-based algorithms including a GA, a Teaching 

Learning Based Optimization (TLBO) algorithm, or a Dragonfly Algorithm (DA) while the lower 

level model is solved through a commercial optimization software).  

Zhang, Zheng and Cai (2018) propose the R-Interdiction Median problem with 

Fortification for Decentralized supply systems (D-RIMF). The authors devise a bi-level multi-

agent framework where each facility and each customer act as an independent agent. D-

RIMF is solved through both exact (Scaparra and Church (2008)’s IE algorithm) and heuristic 

approaches (q-round algorithm). 

2.4.2 Transportation systems 

Transportation systems allow the movement of people and goods from an initial origin to a 

final destination. They are deemed to include infrastructures such as railway networks and 

multi-modal systems. Network nodes and arcs mimic train stations and network tracks in 

railway systems, while they represent terminals and connections among them, in multi-

modal systems, respectively. Despite being less investigated than supply chains, various bi-

level as well as multi-level programs have been developed for both railway networks and 

multi-modal systems, as described in the following. 

Cappanera and Scaparra (2011) define a generic tri-level defender-attacker-user model, 

namely the Shortest-Path interdiction Problem with Fortification (SPIF) for shortest-path 

networks. SPIF aims at optimally distributing fortification resources across network arcs so 

to minimize the length of the shortest path connecting a supply and a demand node after 

worst-case disruptions affecting some unprotected network connections. SPIF is solved 

through Scaparra and Church (2008)’s IE algorithm after collapsing the bi-level attacker-user 

model into a single-level attacker model thus reducing the initial tri-level program to a bi-

level program through dualization. Sadeghi, Seifi and Azizi (2017) provide an extension of the 

SPIF by assuming partial fortification and solve the resulting model through a decomposition-

based approach. 
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A few papers have introduced protection models within the specific domain of railway 

networks protection. For example, Jin, Lu, Sun and Yin (2015) propose a tri-level model 

whose objective is to fortify vulnerable train stations so as to minimize the travel delay 

resulting from targeted attacks while assigning railway system users to alternative accessible 

paths. The authors account for several offensive strategies differing for their intensity and 

model a multiple origin-destination commuter flow. The proposed model is solved through 

a nested variable neighbourhood search algorithm. 

Scaparra, Starita and Sterle (2015) introduce the Railway Protection Investment problem 

(RPI), a bi-level model whose aim is to identify the allocation of protective resources that 

minimizes the disruption of passenger flow due to worst-case interdictions affecting railway 

system components (i.e., either stations or tracks). The authors solve the RPI through SVI 

decomposition. Starita and Scaparra (2016) extend the RPI by assuming that protective 

resources are available over time thus adding the time perspective to the RPI and defining 

the Dynamic Network Protection (DNP) model. The DNP is solved through Benders 

decomposition and SVI decomposition. Starita and Scaparra (2018) further expand the two 

aforementioned works by introducing the Network Protection Problem with Variable 

Demand Loss (NPVDL), which considers the post-disruption passenger behaviour. Namely, 

the post-disruption passenger demand depends on the travelling times of the available 

alternative paths. The authors solve the NPVDL through an exact (SVI decomposition) and a 

heuristic approach (SA). 

Within the context of multi-modal systems and, more specifically, those addressing a 

combination of rail and truck based transportations, the following contributions have been 

produced. Sarhadi, Tulett and Verma (2015) propose a tri-level model for the protection of 

a rail intermodal terminal network. The objective is to determine the optimal investment 

strategy aimed at fortifying some rail-truck intermodal terminals so to withstand system 

inefficiencies due to targeted attacks. The authors use three different solution techniques to 

solve the proposed optimization model: complete enumeration, Scaparra and Church 

(2008)’s IE algorithm, and a traffic-based heuristic. Sarhadi, Tulett and Verma (2017) extend 

this work by approaching the tri-level model with a two-stage solution method: the IE 

algorithm of Scaparra and Church (2008) is deployed at the first stage to break the tri-level 

model into smaller bi-level programs, each to be solved, at the second stage, with Benders 

decomposition. 
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2.4.3 Utility networks 

Utility networks account for power and water supply systems. Network nodes and arcs mimic 

generators and buses as well as transmission lines in power supply systems, while they 

represent water storage facilities, treatment plants, and junctions, as well as pumps, valves, 

and pipes in water supply systems, respectively. Several multi-level programs have been 

developed for electric grids, which seem to be the power supply systems whose protection 

has been mostly investigated, while bi-level programming has been deployed only recently 

for water supply system protection, as described in the following. 

Brown, Carlyle, Salmeron and Wood (2006) introduce a generic tri-level defender-

attacker-defender (DAD) model for the protection of electric power grids. The objective is to 

identify the most effective transmission line hardening plan so as to minimize the damages 

resulting from possible outages due to a malicious attacker. The authors solve the model 

with Benders decomposition.  

Yao, Edmunds, Papageorgiou and Alvarez (2007) develop a tri-level DAD model specific 

for power systems protection. The objective is to minimize the power generation costs and 

the level of unmet demand so as to withstand worst-case outages due to an attack on some 

unprotected network components (e.g., power lines, buses, and substations). The tri-level 

model is decomposed into smaller bi-level programs, each of them solved according to the 

set covering decomposition scheme reported in Israeli and Wood (2002). 

Alguacil, Delgadillo and Arroyo (2014) propose another tri-level model for electric grid 

defence planning, based on the same principles of the one of Brown, Carlyle, Salmeron and 

Wood (2006). The tri-level model is collapsed into a bi-level program which is solved through 

the IE algorithm of Scaparra and Church (2008). Yuan, Zhao and Zeng (2014) basically solve 

the same model of Alguacil, Delgadillo and Arroyo (2014), where budget constraints 

substitute cardinality constraints for both defender and attacker decisions, through a 

Column-and-Constraint-Generation (C&CG) algorithm. Wu and Conejo (2017) solve the 

model of Alguacil, Delgadillo and Arroyo (2014) through Benders decomposition with primal 

cuts and compare the results with the application of Scaparra and Church (2008)’s IE 

algorithm. Xiang and Wang (2018) extend Alguacil, Delgadillo and Arroyo (2014)’s tri-level 

model by defining the Multiple-Attack-Scenario (MAS) DAD model. The MAS accounts for 

multiple offensive circumstances that are mimicked through multiple attacker scenarios 

which are represented through many middle-levels of the tri-level program. The model is 

solved through a C&CG algorithm. 
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Fang and Sansavini (2017) propose a novel tri-level model for electric systems protection 

that, differently from the previous contributions that are focused on power system defence 

planning, combines transmission expansion planning and transmission switching. 

Transmission expansion planning deals with the installation of additional network 

components while transmission switching consists in changing the system topology by 

switching either on or off some pre-existing system components. Hence, both transmission 

expansion planning and transmission switching perform network design operations. 

However, the former installs new components while the latter rearranges pre-existing ones. 

The aim of the model is to minimize the total investment cost, accounting for both 

transmission expansion planning and transmission switching measures, together with the 

system performance level so to withstand the aftermath of worst-case targeted attacks on 

the power network. The authors solve the proposed tri-level model through a cutting plane 

strategy based on primal cuts. 

On the other side, Jiang and Liu (2018) are the first to propose a bi-level program to 

address water supply network protection. The authors introduce a multi-objective defender-

attacker model where the defender aims at maximizing the expected network satisfaction 

rate along with the protection investments while the attacker aims at minimizing the 

expected network performance as well as the offensive resource expenditure. The authors 

solve the proposed model through a three step algorithm which comprises the deployment 

of different solution techniques: a nested heuristic GA, a heuristic GA, and a minimax regret 

approach. 

2.4.4 Critical Information Infrastructures 

Critical Information Infrastructures, such as the public telephone network, Internet, 

terrestrial and satellite wireless networks (Patterson and Personick 2003), are those systems, 

belonging to the information and communications technology (ICT), whose correct 

functioning is fundamental not only for the services they provide but also for other kinds of 

CI which either rely or are based on them. Examples of CII are backbone networks that ensure 

connectivity among distributed systems in order to allow remote monitoring, access control, 

data sharing as well as payment services. Network nodes are either servers, routers or 

switches whose main tasks are to regulate network traffic and manage data transmission 

over the network arcs. Network components (i.e., nodes and arcs) are prone to either 

physical or cyber-attacks.  
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However, the above features, make CII different from other CI thus requiring a novel bi-

level program addressing them. Firstly, in case of supply chains, transportation 

infrastructures and utility networks, interdiction targets are also protection targets, e.g., if a 

node is to be attacked, the protection strategy will entail to fortify the node so as to make it 

less vulnerable and eventually hedge against the interdictor strategy. Differently, in the case 

of CII, given that nodes are more sensitive targets than arcs, it would be more sensible to 

deploy as a protection strategy the construction of additional connections so as to mitigate 

the loss of some nodes by increasing system redundancy and maintaining its functioning. The 

choice of the aforementioned protection strategy is also linked to the impact of disruptions. 

In fact, once a communication network has been severely damaged without the chance to 

keep its service, this may have not just an immediate negative effect but also a far-reaching 

adverse one due to the inoperability of other infrastructures (such as utility networks, 

dispatching framework of supply chain systems) linked to it, thus requiring longer recovery 

times and leading to large economical losses. Differently, the set-up of a protection strategy 

based on design will increase system resilience and redundancy thus allowing to mitigate 

negative crippling effects. Secondly, from a modelling perspective, typical objective functions 

for other CI involve system flow (e.g., flow of goods for supply chain systems, passenger flow 

for transportation infrastructures, power units for utility networks) while, despite 

information flows are routed over CII networks, the main objective would be to keep the 

network (and its components) connected the most so as to allow information to circulate. 

Hence, CII are different from other CI thus requiring a specific protection framework to 

account for their protection. 

 

2.5 Conclusions 

This chapter reviewed the research activities conducted over recent years in the general field 

of CIP aimed at mitigating the effects of physical attacks against CII components from an 

optimization-based perspective. This chapter has investigated three main lines of research: 

survivability assessment models, resource allocation strategy models, and survivable design 

models. Each model category has been designed to identify different crucial aspects: under 

what circumstances the infrastructure is still able to provide its service; how resources should 

be allocated in order to protect the infrastructure; and how a new infrastructure should be 

designed in order to be naturally survivable.  
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The survivability optimization models discussed in this paper are basic models that can 

be extended in a number of ways. For example, interdiction and protection models could be 

extended to tackle both physical and logical survivability issues by incorporating routing and 

link capacity assignment decisions. In addition, most of the optimization models developed 

so far are deterministic. However, failures and disruptions are random events, often difficult 

to predict. The probabilistic behaviour of complex CII under disruptions would be better 

modelled by using stochastic models, including uncertain parameters (e.g., uncertainty on 

arc/node availability, extent of a disruption, etc.). Alternatively, the uncertainty 

characterizing disruptions could be captured in scenario-based models which incorporate 

robustness measures for the identification of solutions which perform well across different 

disruption scenarios.  Future models could even combine the optimization of protection and 

restoration strategies in a unified framework so as to distribute resources efficiently across 

the different stages of the disaster management cycle (protection plans belong to the pre-

disaster stage while recovery plans refer to the post-disaster stage). Other resource 

allocation models could consider identifying trade-off investments in physical protection and 

cyber-security to mitigate the impact of both physical and logical attacks. Models which 

address design and protection issues conjunctively also deserve further investigation. The 

models discussed in this paper have been solved by using a variety of optimization algorithms, 

including exact methods (e.g., decomposition) and heuristics (e.g., evolutionary algorithms). 

Obviously, the development of more complex models would necessarily require additional 

research into the development of more sophisticated solution techniques, possibly 

integrating exact and heuristic methodologies.  

Some models were already present in the CIIP literature (i.e., survivability-oriented 

interdiction and survivable design models) while others have been adapted from application 

to other CI (i.e., resource allocation strategy models). In particular, what emerged is that the 

development of protection models for CII has been so far overlooked. This has prompted to 

review what has been done for the protection of other CI (e.g., supply chains, transportation 

systems, and utility networks), which has laid the foundation for the novel bi-level program 

for CIIP to be presented in Chapter 3. 
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3. Optimizing resource allocation investments for Critical 

Information Infrastructure Protection: a connectivity 

augmentation-based approach 

This chapter presents a novel linear bi-level program for the protection of CII, which 

integrates network survivability assessment, resource allocation strategies and design 

operations, namely the Critical Node Detection Problem with Fortification. To the best of my 

knowledge, this is the first bi-level program devised to tackle CII protection issues. The model 

is solved through a SVI decomposition approach and a heuristic approach (GCLS). 

Computational results are reported for real communication networks and for different levels 

of both disaster magnitude and protection resources. 

 

3.1 The Critical Node Detection Problem with Fortification 

Information infrastructure security can be improved through the optimal allocation of 

protective resources among system components. To mitigate the risk of disruption, 

infrastructure elements whose failure would worsen the system functioning the most are to 

be identified and protection measures are to be implemented. Examples of protection 

measures are efficient investment of resources to either fortify the system most critical 

components or entail network design operations aimed at increasing system redundancy (as 

in this work). 

Various approaches towards the identification of the most critical components of a 

system have been developed over the years. Starita, Esposito Amideo and Scaparra (2018) 

describe and compare two different methods: vulnerability metrics and interdiction models. 

Vulnerability metrics are indices that provide a criticality ranking of all the system 

components prior to the occurrence of an attack. Examples are robustness metrics, which 

Rueda, Calle and Marzo (2017) classify in three main categories: (1) structural measures, such 

as average nodal degree and vertex (edge) connectivity; (2) centrality measures, such as 

node degree and node betweenness; and (3) functional measures, such as elasticity and 

endurance. On the other side, interdiction models, as described in Section 2.1, are 

mathematical programs that optimally identify those network elements whose unavailability 

would disrupt the system the most. Interdiction models account for the existing 

interdependency among system components under different disastrous circumstances, an 
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aspect that is entirely neglected by a vulnerability metric-based approach, eventually 

yielding more accurate results. Interdiction models have been largely used for network 

problems (e.g., shortest path (Wollmer 1964; Wood 1993), maximal flow problems (Myung 

and Kim 2004), and location problems (e.g., median and covering (Church, Scaparra and 

Middleton 2004)). 

The identification of network criticalities is a prerequisite for the definition of optimal 

protection strategies. To this end, either a sequential or an integrated approach can be 

adopted. A sequential approach is composed of two stages: network criticalities are 

identified at the former stage, through either vulnerability metrics or interdiction models, 

and the results are used to prioritize the allocation of protective resources. This approach 

has been proven to lead to sub-optimal protection decisions because it fails to capture the 

changes in the component criticality when some components are protected over others 

(Cappanera and Scaparra 2011). This pitfall can be overcome with the adoption of an 

integrated approach that deploys bi-level optimization models. Bi-level programs (Dempe 

2002), also known as defender-attacker models, mimic a game between two players: a 

defender (e.g., the infrastructure owner) and an attacker (e.g., a terrorist, a hacker, or a 

disaster). The upper level program models the defender decisions who aims at optimally 

distributing protective resources over the network while minimizing the impact of worst-

case disruptions due to the attacker. The lower level program models the attacker actions 

whose target is to maximize the damage inflicted on the network. Hence, bi-level programs 

entail a series of subsequent defense/attack moves that allow to model the dynamic 

interaction of different players. 

3.1.1 Model assumptions 

The CNDPF problem is formulated as a bi-level linear mixed-integer program. The 

assumptions underpinning the model are as follows. 

1. A limited budget is available to protect the network; similarly, interdiction resources 

are also assumed to be limited. The reason being that, from a practical perspective, 

the defender is the network operator who has to strategically allocate a portion of 

its finances to invest in infrastructure protection while the attacker is a malicious 

individual who can affect the network through limited opportunities. In fact, if either 

the attacker or the defender had unlimited resources, the problem under analysis 

could not be posed given that either the network would be fully unavailable (i.e., 
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attacker with unlimited resources) or the network would be immune to attacks (i.e., 

defender with unlimited budget). 

2. Only network nodes can be disrupted and, as such, become inoperative; however, 

all the arcs that are incident in an interdicted node are considered to become 

inoperative as well and, as such, are removed from the network. Specifically, in the 

case of CII, network nodes are either servers, routers or switches whose main tasks 

are to regulate network traffic and manage data transmission while network arcs are 

mere connection among nodes. Hence, network nodes store critical information thus 

making them more prone to attacks than arcs. Also, when a node becomes 

inoperable, it means that at least one of the terminal points of the corresponding arc 

is not functioning anymore which, eventually, makes the arc unable to fulfill its data 

transmission function. Consequently, if a node is inoperable, incident arcs are 

inoperable as well thus yielding more damage to the infrastructure. 

3. Protection measures consist in building additional arcs to mitigate worst-case 

scenario losses of network nodes, the reason being to aim to increase system 

redundancy despite potential malicious attacks so as to keep the functioning 

standard of the infrastructure as high as possible. 

4. The amount of resources needed to disrupt network nodes as well as installing 

additional arcs is known. 

5. The upper level objective is to maximize the lowest network connectivity, resulting 

from worst-case scenario disruptions of network nodes modeled at the lower level, 

through the installation of additional arcs within a limited budget. 

3.1.2 Model formulation 

3The bi-level program for CNDPF deploys the following notation. 

 

Sets, indices and parameters 

𝐺(𝑁, 𝐴): connected network 

𝑁: set of network nodes, indexed by 𝑖, 𝑗, or 𝑘 

𝐴: set of network arcs 

                                                           
3 For the sake of clarity, the reader is informed that the mathematical notations hereby 

introduced are for this specific chapter and do not relate with those introduced in other 
chapters of this dissertation. 
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𝐴̅: set of potential arcs (i.e., all the possible arcs (𝑖, 𝑗) such that 𝑖, 𝑗 ∈ 𝑁 ∧  𝑖 ≠ 𝑗, (𝑖, 𝑗) ∉ 𝐴) to 

be added for protection 

𝑖, 𝑗, 𝑘: indices used for nodes 

𝐷: amount of disruption resources available 

𝐵: amount of protection resources available 

𝑑𝑖: amount of resources needed to disrupt node 𝑖 ∈ 𝑁 

𝑐𝑖𝑗: amount of resources needed to install arc (𝑖, 𝑗) ∈ 𝐴̅ 

 

Decision variables 

𝑉𝑖: 1 if node 𝑖 ∈ 𝑁 is disrupted, 0 otherwise 

𝑍𝑖𝑗: 1 if arc (𝑖, 𝑗) ∈ 𝐴̅ is installed, 0 otherwise 

𝑈𝑖𝑗: 1 if there is connectivity between nodes 𝑖 and 𝑗, 0 otherwise 

 

CNDPF is formulated as follows: 

 

[CNDPF] 𝑚𝑎𝑥 𝐻(𝒁)  (18) 

                s.t.   
 

                      ∑ 𝑐𝑖𝑗𝑍𝑖𝑗 ≤ 𝐵(𝑖,𝑗)∈𝐴̅    (19) 

                      𝑍𝑖𝑗 ∈ {0,1}  ∀ (𝑖, 𝑗) ∈ 𝐴̅ (20) 

                      where 𝐻(𝒁) =  𝑚𝑖𝑛 ∑ ∑ 𝑈𝑖𝑗𝑗∈𝑁𝑖∈𝑁   (21) 

                      s.t.  
  

                                 𝑈𝑖𝑗 + 𝑉𝑖 + 𝑉𝑗 ≥ 1  ∀ (𝑖, 𝑗) ∈ 𝐴 (22) 

                                 𝑈𝑖𝑗 + 𝑈𝑗𝑘 − 𝑈𝑖𝑘 ≤ 1  ∀ 𝑖, 𝑗, 𝑘 ∈ 𝑁 (23) 

                                 ∑ 𝑑𝑖𝑉𝑖 ≤ 𝐷𝑖∈𝑁    (24) 

                                 𝑈𝑖𝑗 + 𝑉𝑖 + 𝑉𝑗 ≥ 1 − 𝑀(1 − 𝑍𝑖𝑗)  ∀ (𝑖, 𝑗) ∈ 𝐴̅ (25) 

                                 𝑉𝑖 ∈ {0,1}  ∀ 𝑖 ∈ 𝑁 (26) 

                                 𝑈𝑖𝑗 ∈ {0,1}  ∀ 𝑖, 𝑗 ∈ 𝑁 (27) 

 

The upper level model aims at protecting the network through the installation of 

additional arcs within a limited budget (19) so as to maximize (18) a function, 𝐻(𝒁), which 

represents the lowest network connectivity (21) resulting from node disruptions (24). 

Constraints (20) are binary restrictions on the protection variables. Constraints (22) state 

that, for each arc (𝑖, 𝑗), nodes 𝑖 and 𝑗 must be connected (𝑈𝑖𝑗 = 1) unless either 𝑖 or 𝑗 are 
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disrupted (𝑉𝑖 = 1 ∨ 𝑉𝑗 = 1). Constraints (23) guarantee that if nodes 𝑖 and 𝑗 as well as nodes 

𝑗  and 𝑘  are connected (𝑈𝑖𝑗 = 1 ∧ 𝑈𝑗𝑘 = 1), then nodes  𝑖  and 𝑘  must also be connected 

(𝑈𝑖𝑘 = 1). Constraints (24) state that nodes can be disrupted within limited interdiction 

resources equal to 𝐷 . Constraints (25) connect the upper and lower level variables. 

Specifically, if a link is installed between nodes 𝑖  and 𝑗  (𝑍𝑖𝑗 = 1 ), then 𝑖  and 𝑗  must be 

connected (𝑈𝑖𝑗 = 1) unless either 𝑖 or 𝑗 are interdicted (𝑉𝑖 = 1 ∨ 𝑉𝑗 = 1). Finally, constraints 

(26) and (27) are binary restrictions on the interdiction and connectivity variables, 

respectively. 

Note that the lower level model is a variant of the CNP (Arulselvan et al. 2009) with a 

change to the circular constraints thereby defined, resulting in the new set of constraints (23) 

and the addition of constraints (25) that link the upper and the lower levels of the program. 

In fact, CNP can only be used for undirected network, while CNDPF is more general given 

that, real communication networks, based on the type of data transmission, are either 

undirected or directed. More specifically, given a transportation line, if information flows in 

both directions a full-duplex scheme is deployed, thus modeled as an undirected network, 

while if information is allowed through only one direction, a half-duplex scheme is used, thus 

modeled as a directed network (Fertin and Raspaud 1998).   

 

3.2 Solution Methodology 

Several solution techniques, either exact or heuristic, have been developed over the years to 

solve bi-level programs; some examples are provided as follows.  

Depending on the type of decisional variables (e.g., continuous, integer, binary), different 

exact methods can be deployed. If none of the lower level variables are constrained to be 

integer, Karush-Kuhn-Tucker (KKT) conditions can be applied: in fact, in such case, the lower 

level model is dualized thus providing a single model to be solved (Bard 1998). However, 

when variables are constrained to be binary, IE algorithms and decomposition methods, such 

as Benders decomposition (Benders 1962) and SVI decomposition (Israeli and Wood 2002), 

are to be deployed. As emerges in Section 2.4, among the ten bi-level programs solved 

through exact methods, an IE algorithm (Scaparra and Church 2008; Aksen, Piyade and Aras 

2010; Zhang, Zheng, Zhu, and Cai 2014; Zhang, Zheng and Cai 2018); a SVI decomposition 

approach (Losada, Scaparra and O’Hanley 2012; Scaparra, Starita and Sterle 2015; Starita and 

Scaparra 2016; Starita and Scaparra 2018); Benders decomposition (Losada, Scaparra and 

O’Hanley 2012; Starita and Scaparra 2016; Khanduzi and Maleki 2018); and a PGS method 
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(Aksen, Akca, and Aras 2014) were used. This shows that IE algorithms and SVI 

decomposition have been quite deployed over time. 

Section 2.4 allowed also to appreciate a variety of heuristic approaches that have been 

devised to solve bi-level programs. These include: iterated greedy search (Zhu, Zheng, Zhang, 

and Cai 2013); MSS (Aksen, Akca, and Aras 2014); SSM (Aksen and Aras 2012; Aksen, Aras 

and Piyade 2013); metaheuristics such as SA (Aliakbarian, Dehghanian and Salari 2015; Cheng, 

Lai, Yang, and Zhu 2016; Starita and Scaparra 2018), TS (Aksen and Aras 2012; Aksen, Aras 

and Piyade 2013; Cheng, Lai, Yang, and Zhu 2016), and VNS (Aliakbarian, Dehghanian and 

Salari 2015); and evolutionary algorithms, such as DA (Khanduzi and Maleki 2018), GA (Cheng, 

Lai, Yang, and Zhu 2016; Fard and Hajiaghaei-Keshteli 2018; Jiang and Liu 201; Khanduzi and 

Maleki 2018), PSO (Fard and Hajiaghaei-Keshteli 2018), TLBO (Khanduzi and Maleki 2018), 

WHA (Fard and Hajiaghaei-Keshteli 2018), and WWO (Fard and Hajiaghaei-Keshteli 2018).  

Based on the literature findings and the structure of the CNDPF, two solution approaches, 

both exact and heuristic, are proposed to solve model (18) – (27): a SVI decomposition 

algorithm and a heuristic approach (GCLS) composed of two phases (i.e., a greedy 

constructive search and a local search), which are described in the following. 

3.2.1 SVI decomposition algorithm for the CNDPF 

The proposed SVI algorithm is a decomposition approach (Israeli and Wood 2002). Similarly 

to standard Benders decomposition approaches, SVI algorithms partition the initial bi-level 

program into an upper level and a lower level problems, usually named the Relaxed Master 

Problem (RMP) and the Sub-Problem (SP), respectively. Once the RMP and SP for the specific 

problem under consideration have been formulated, both problems are solved sequentially 

at each iteration. The solutions obtained from SP are then used to generate SVIs, which are 

subsequently appended to the RMP to be re-solved. 

The main difference between Benders and SVI decomposition methods is that the RMP 

of the latter is a feasibility seeking problem. Hence, as stated by Losada, Scaparra and 

O’Hanley (2012), Benders decomposition algorithms usually require a relatively small 

number of iterations that are quite computationally expensive. Differently, SVI 

decomposition algorithms usually require a more significant number of iterations that are 

less computationally expensive. However, the SVI decomposition method has proven to 

perform better than the Benders when solving bi-level programs (O’Hanley and Church 2011; 

Losada, Scaparra and O’Hanley 2012; Starita and Scaparra 2016). Therefore, despite both SVI 

and Benders decomposition have been quite used for solving bi-level programs, as stated in 
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the preface to this section, the performance aspect has led to prefer SVI over Benders for 

the CNDPF.  

 

The SVI decomposition algorithm for CNDPF is now described in terms of RMP, SP, and 

SVIs. The RMP is a feasibility seeking problem (i.e., there is no objective function), which is 

composed of a set of SVIs and constraints (19) and (20). At each iteration, RMP returns a 

feasible protection strategy 𝒁̂. Subsequently, SP is solved to obtain the best interdiction plan 

𝑽̂ in correspondence of 𝒁̂. Hence, SP corresponds to the lower level [CNDPF] where the 

protection variables have been fixed. We name it AP and formulate it as follows: 

 

[AP(𝒁̂)] 𝑧𝐴𝑃 = 𝑚𝑖𝑛 ∑ ∑ 𝑈𝑖𝑗𝑗∈𝑁𝑖∈𝑁   (28) 

              s.t.    
 

 

                      𝑈𝑖𝑗 + 𝑉𝑖 + 𝑉𝑗 ≥ 1 − 𝑀(1 − 𝑍̂𝑖𝑗)  ∀ (𝑖, 𝑗) ∈ 𝐴̅ (29) 

                      (22) – (24); (26) – (27)   

 

AP yields a feasible solution (𝒁̂, 𝑽̂, 𝑼̂) and a lower bound (𝑧𝐴𝑃̂) to CNDPF. The obtained 

𝑽̂ and 𝑼̂ is then deployed to generate SVIs that are subsequently appended to the RMP. The 

constraints adopted as SVIs are described in the following proposition, where are also proven 

to be supervalid. In particular, an inequality is supervalid if the two following conditions are 

satisfied (O’Hanley and Church 2011): (1) the incumbent solution is infeasible once the 

inequality is appended; and (2) the inequality does not discard any optimal solution unless 

the current incumbent is optimal. 

 

Proposition 1. Given a feasible lower bound 𝐻𝐿𝐵  for [CNDPF] and connectivity value 𝐻̂ 

following an interdiction, let 𝐴̅𝑡 be a subset of the potential arcs to be added at iteration 𝑡 

where each arc (𝑖, 𝑗) ∈ 𝐴̅𝑡  satisfies the following three conditions at each iteration 𝑡 : (i) 

𝑈𝑖𝑗 = 0 , (ii) 𝑉𝑖 = 0 , and (iii) 𝑉𝑗 = 0 . Namely, 𝐴̅𝑡  includes all the arcs with the following 

features: the arc should link nodes that are not already connected (i) and neither the initial 

(ii) nor the terminal (iii) nodes of the arc are disrupted. If 𝐻̂ ≤ 𝐻𝐿𝐵, the following inequality 

is supervalid for RMP     

∑ 𝑍𝑖𝑗(𝑖,𝑗)∈𝐴̅𝑡 ≥ 1  (SVI-1) 

(i.e., at least one arc in 𝐴̅𝑡 must be added). 
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Proof. At iteration 𝑡, ∑ 𝑍𝑖𝑗(𝑖,𝑗)∈𝐴̅𝑡 ≥ 1 yields to the selection of one arc (𝑖, 𝑗) ∈ 𝐴̅𝑡  , (𝑖, 𝑗)𝑡∗. 

At iteration 𝑡 + 1, (𝑖, 𝑗)𝑡∗ won’t satisfy at least one of the three conditions (i.e., (i) 𝑈𝑖𝑗 = 0, 

(ii) 𝑉𝑖 = 0, and (iii) 𝑉𝑗 = 0). Hence, the current incumbent solution is removed through (SVI-

1), which satisfies the first condition to be supervalid. If the current incumbent solution 

(𝒁,̂ 𝑽̂, 𝑼̂)  is optimal, (SVI-1) is supervalid by default. Let us assume that (𝒁,̂ 𝑽̂, 𝑼̂)  with 

objective value 𝐻̂ ≤ 𝐻𝐿𝐵 is not optimal and that an optimal solution (𝒁̃, 𝑽̃, 𝑼̃) with objective 

value 𝐻̃ > 𝐻𝐿𝐵 exists. If no arc (𝑖, 𝑗) ∈ 𝐴̅𝑡  is added at iteration 𝑡, 𝐻̃ ≤ 𝐻̂, since no additional 

protection has been provided; hence, 𝐻̃ ≤ 𝐻̂ ≤ 𝐻𝐿𝐵, which would be a contradiction. Hence, 

this satisfies also the second condition for (SVI-1) to be supervalid. □ 

The SVI decomposition algorithm stops when, due to budgetary limitations, the addition 

of further arcs causes the RMP to be unfeasible: this guarantees that the algorithm produces 

a solution in a finite numbers of steps. For completeness, the pseudo-code of the SVI 

decomposition algorithm is reported in Figure 5. 

 

Algorithm1 SVI decomposition algorithm 

𝑯𝒐𝒑𝒕 = −∞, 𝒁̂ ← 𝟎, 𝒁𝒃𝒆𝒔𝒕 ← 𝟎   

    Do 

          Solve 𝐴𝑃(𝑍̂)𝑡𝑜 𝑓𝑖𝑛𝑑 𝐻̂, 𝑽̂, 𝑎𝑛𝑑 𝑼̂ 

                 if 𝐻𝑜𝑝𝑡 < 𝐻̂ then 

                    𝐻𝑜𝑝𝑡 = 𝐻̂ and 𝒁𝒃𝒆𝒔𝒕 ← 𝒁̂ 

                  end if 

             Add 𝑆𝑉𝐼(𝑽̂, 𝑼̂)𝑡𝑜 𝑅𝑀𝑃 

             Solve RMP 

          while 𝑅𝑀𝑃 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒           

return (𝒁𝒃𝒆𝒔𝒕, 𝑈𝑜𝑝𝑡) 

Figure 5. Pseudo-code of the SVI decomposition algorithm 

 

3.2.2 Heuristic approach (GCLS) for the CNDPF  

The Greedy Constructive and Local Search heuristic is composed of two sequential phases: 

(1) a greedy constructive algorithm to obtain a first feasible solution; and (2) a local search 

where the neighbourhood of the current solution is explored in order to enhance the greedy 

constructive procedure and eventually find potential better solutions. In addition to AP(𝒁̂), 
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the heuristic uses DP(𝒁̂, 𝑽̂), which is the defender model and computes the system value (i.e., 

connectivity) for a given pair of protection and disruption plans (𝒁̂, 𝑽̂). DP(𝒁̂, 𝑽̂) is defined as 

follows. 

 

[DP(𝒁̂, 𝑽̂)] 𝑧𝐷𝑃 = 𝑚𝑎𝑥 ∑ ∑ 𝑈𝑖𝑗𝑗∈𝑁𝑖∈𝑁   (30) 

                  s.t. 𝑈𝑖𝑗 + 𝑉𝑖̂ + 𝑉𝑗̂ ≥ 1  ∀ (𝑖, 𝑗) ∈ 𝐴 (31) 

                        𝑈𝑖𝑗 + 𝑉𝑖̂ + 𝑉𝑗̂ ≥ 1 − 𝑀(1 − 𝑍̂𝑖𝑗) ∀ (𝑖, 𝑗) ∈ 𝐴̅ (32) 

                        (23); (27)   

 

3.2.2.1 Greedy constructive algorithm 

This phase of GCLS aims at building a first feasible solution. This stage starts by identifying 

the importance of each network node according to the attacker. The importance of node 𝑘 ∈

𝑁, 𝜌𝑘, is defined as follows  

 

𝜌𝑘 =
𝑂𝐷(𝑘)

𝑑𝑘
 

 

where 𝑂𝐷(𝑘) is the value of the outdegree of node 𝑘 and 𝑑𝑘 is the amount of resources 

needed to disrupt node 𝑘. 𝜌𝑘 is used as a proxy to estimate the likelihood that node 𝑘 will 

appear in an interdiction plan. Network nodes can then be ordered according to descending 

values of 𝜌𝑘, thus yielding a criticality ranking of all the network nodes. The choice of the 

outdegree to define a node importance is twofold. Firstly, the degree of a node is a 

connectivity-based metric commonly used to evaluate the centrality (i.e., the importance) of 

a node. Secondly, if we consider a directed network, it is not possible to talk about degree 

but either indegree or outdegree. Hence, given the context of communication infrastructures 

where the importance is to disseminate information, we opted for the outdegree rather than 

the indegree. However, when dealing with undirected networks, we will simply refer to the 

value of the degree.  

To identify a first feasible defense strategy, it is necessary to devise an arc ranking. To this 

end, the following additional notation is introduced: 

- 𝑎 = index used for network arcs where 𝑎 = (𝑖, 𝑗) ∈ 𝐴̅, 

- 𝒁̂𝑎 = protection plan where only arc 𝑎 ∈ 𝐴̅ is added, 

- 𝑽̂𝑘 = disruption plan where only node 𝑘 ∈ 𝑁 is interdicted. 
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Next we define an arc-node matrix whose rows are arcs 𝑎 ∈ 𝐴̅ and whose columns are 

nodes 𝑘 ∈ 𝑁. The generic element 𝑏𝑎,𝑘 of this matrix is DP(𝒁̂𝑎  , 𝑽̂𝑘), which is the value of the 

objective function of DP when arc 𝑎 ∈ 𝐴̅ is added and node 𝑘 ∈ 𝑁 is interdicted. We then 

introduce a new parameter 𝜑𝑎, for each arc 𝑎 ∈ 𝐴̅, defined as follows 

 

𝜑𝑎 =
∑ 𝑏𝑎,𝑘 ∗ 𝜌𝑘 

|𝑁|
𝑘=1

𝑐𝑎

 

 

where the numerator is divided by the cost required to install arc 𝑎 ∈ 𝐴̅ thus representing 

the network connectivity benefit per unit cost. Arcs are then ranked in descending order of 

𝜑𝑎 (in the following we refer to 𝜑𝑎 as 𝜑𝑖𝑗).  

 

A first feasible defense strategy can then be constructed. We introduce the following 

additional notation: 

- 𝑁̅𝑡 = set of non-disrupted nodes at each iteration 𝑡, defined as 𝑁\𝑁𝑡 where 𝑁𝑡 is the 

set of the optimal disrupted nodes obtained by solving AP at each iteration 𝑡 

- 𝐴̅0 = set 𝐴̅ ordered by descending values of 𝜑𝑖𝑗  

- 𝐴̅𝑡 = subset of 𝐴̅ at iteration 𝑡 where arcs are ordered by descending values of 𝜑𝑖𝑗  

and (𝑖, 𝑗) is such that 𝑖, 𝑗 ∈ 𝑁̅𝑡 

- 𝒁𝒈 = greedy protection plan  

- 𝐶𝑔 = cost of the greedy solution 𝒁𝒈 

- 𝑓𝑜𝑢𝑛𝑑 = boolean variable identifying if an arc to build the protection strategy has 

been found 

- 𝑜𝑏𝑗𝑔 = objective value of AP corresponding to the greedy solution 𝒁𝒈, i.e., 𝑜𝑏𝑗𝑔 = 

𝐴𝑃(𝒁𝒈) 

The greedy constructive (GC) procedure provides a first feasible protection plan by adding 

arcs ranked according to 𝜑𝑖𝑗. The procedure terminates when no more arcs can be added 

without violating the defender budget constraint. The pseudo-code of the GC procedure is 

reported in Figure 6. 
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Algorithm2 GC procedure 

𝒁𝒈 ← ∅, 𝐶𝑔 = 0  

      𝑘 =  0  

             for (𝑖, 𝑗) ∈ 𝐴̅0 do 

              𝑍𝑖𝑗
𝑔

= 1, 𝐶𝑔 = 𝐶𝑔+ 𝑐𝑖𝑗  

                    if    𝑘 <  𝑟 

                    𝑘 =  𝑘 +  1  

                    end if   

                    else exit for   

             end for 

      𝑓𝑜𝑢𝑛𝑑 =  𝑡𝑟𝑢𝑒 

     while (𝑓𝑜𝑢𝑛𝑑) do 

            Solve 𝐴𝑃(𝒁𝒈) to get 𝑧𝐴𝑃 

            𝑓𝑜𝑢𝑛𝑑 =  𝑓𝑎𝑙𝑠𝑒 

            for (𝑖, 𝑗) ∈ 𝐴̅𝑡 do 

                    if    𝐶𝑔 + 𝑐𝑖𝑗 ≤ 𝐵    

                    𝑓𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒, 𝑍𝑖𝑗
𝑔

= 1, 𝐶𝑔 = 𝐶𝑔+ 𝑐𝑖𝑗 , 𝑜𝑏𝑗𝑔 = 𝑧𝐴𝑃 

                           if    𝑓𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒    

                           exit for   

                     end if   

            end for 

      end while 

return (𝒁𝒈, 𝐶𝑔, 𝑜𝑏𝑗𝑔) 

Figure 6. Pseudo-code of the GC procedure 

 

3.2.2.2 Local search  

This phase of GCLS aims at exploring the neighbourhood of the solution obtained from the 

greedy constructive algorithm. Two swap policies have been identified that define the 

neighbourhood: a one-to-one swap policy (i.e., LS1: for one arc that is removed, only one arc 

is swapped in) and a two-to-two swap policy (i.e., LS2: for two arcs that are removed, only 

two arcs are swapped in). The following additional notation is introduced: 

- 𝐴̅𝑇−1 = 𝐴̅𝑡  where 𝑡 =  𝑇 − 1 and 𝑇 is the last iteration of the greedy constructive 

algorithm 

- 𝒁𝑳𝑺 = local search protection plan 

- 𝐶𝐿𝑆 = cost of the local search protection plan 𝒁𝑳𝑺. 
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The local search (LS) procedure analyses the arcs that have been added in the current 

solution and tries to swap them out. To reduce the computational effort, only those arcs 

whose 𝜑𝑖𝑗  is below a certain threshold 𝜑𝑀𝐴𝑋 are considered for the swap. The pseudo-code 

of the LS procedure implementing the one-to-one swap policy (i.e., LS1) is reported in Figure 

7. 

 

Algorithm3 LS1 

𝒁𝒃𝒆𝒔𝒕 ← 𝒁𝒈, 𝐶𝑏𝑒𝑠𝑡 = 𝐶𝑔,𝑜𝑏𝑗𝑏𝑒𝑠𝑡 = 𝑜𝑏𝑗𝑔  

    𝑓𝑜𝑢𝑛𝑑 =  𝑡𝑟𝑢𝑒 

     while (𝑓𝑜𝑢𝑛𝑑) do 

        𝑓𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒 

        for (𝑖, 𝑗) ∈ 𝐴̅𝑇−1 do 

              𝒁𝑳𝑺 ← 𝒁𝒃𝒆𝒔𝒕, 𝐶𝐿𝑆 = 𝐶𝑏𝑒𝑠𝑡   

              if 𝑍𝑖𝑗
𝐿𝑆 == 1 and 𝜑𝑖𝑗 < 𝜑𝑀𝐴𝑋  then 

              𝑓𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒, 𝑍𝑖𝑗
𝐿𝑆 = 0 

              𝑠𝑤𝑎𝑝1(0, 𝐶𝐿𝑆 − 𝑐𝑖𝑗) 

              if    𝑓𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒    

              exit for 

              end if 

         end for 

      end while 

return 𝒁𝒃𝒆𝒔𝒕, 𝑜𝑏𝑗𝑏𝑒𝑠𝑡  

Figure 7. Pseudo-code of the LS1 procedure 

 

The routine 𝑠𝑤𝑎𝑝 that appears in the LS examines all the possible combinations of arcs 

that can be swapped in. Each time a feasible move is identified, the objective value of the 

new corresponding solution is computed, which is accomplished by solving AP. A threshold 

𝜑𝑀𝐼𝑁, similar to 𝜑𝑀𝐴𝑋, is used to reduce the computational effort. Only those arcs whose 

𝜑𝑖𝑗  is higher than 𝜑𝑀𝐼𝑁 are considered to be swapped in. The pseudo-codes of the 𝑠𝑤𝑎𝑝1 

procedure is reported in Figure 8. Similarly, the pseudo-code of the LS procedure 

implementing the two-to-two swap policy (i.e., LS2) and the pseudocode of the 𝑠𝑤𝑎𝑝2 

procedure are reported in Figure 9 and 10, respectively.  
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Algorithm4 Swap1 

   for (𝑖, 𝑗) ∈ 𝐴̅𝑇−1 do 

       if 𝑍𝑖𝑗
𝐿𝑆 == 0 and 𝜑𝑖𝑗 > 𝜑𝑀𝐼𝑁  and 𝐶𝐿𝑆 + 𝑐𝑖𝑗 ≤ 𝐵  then 

        𝑍𝑖𝑗
𝐿𝑆 = 1 

        𝑆𝑜𝑙𝑣𝑒 𝐴𝑃(𝒁𝑳𝑺) to get  𝑧𝐴𝑃 

        if 𝑧𝐴𝑃 > 𝑜𝑏𝑗𝑏𝑒𝑠𝑡   then 

        𝒁𝒃𝒆𝒔𝒕 ← 𝒁𝑳𝑺, 𝐶𝑏𝑒𝑠𝑡 = 𝐶𝐿𝑆 + 𝑐𝑖𝑗 , 𝑜𝑏𝑗𝑏𝑒𝑠𝑡 = 𝑧𝐴𝑃   

        end if 

        𝐶𝐿𝑆 = 𝐶𝐿𝑆 + 𝑐𝑖𝑗   

        𝑠𝑤𝑎𝑝1((𝑖, 𝑗), 𝐶𝐿𝑆)  

        end if 

   end for 

Figure 8. Pseudo-code for the swap1 procedure 

 

Algorithm5 LS2 

𝒁𝒃𝒆𝒔𝒕 ← 𝒁𝒈, 𝐶𝑏𝑒𝑠𝑡 = 𝐶𝑔,𝑜𝑏𝑗𝑏𝑒𝑠𝑡 = 𝑜𝑏𝑗𝑔  

    𝑓𝑜𝑢𝑛𝑑 =  𝑡𝑟𝑢𝑒  

    while (𝑓𝑜𝑢𝑛𝑑) do 

        𝑓𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒  

        for (𝑖, 𝑗) ∈ 𝐴̅𝑇−1 do 

             for (𝑘, 𝑙) ∈ 𝐴̅𝑇−1 do 

                  𝒁𝑳𝑺 ← 𝒁𝒃𝒆𝒔𝒕, 𝐶𝐿𝑆 = 𝐶𝑏𝑒𝑠𝑡  

                  if (𝑍𝑖𝑗
𝐿𝑆 == 1 and 𝜑𝑖𝑗 < 𝜑𝑀𝐴𝑋) and (𝑍𝑘𝑙

𝐿𝑆 == 1 and 𝜑𝑘𝑙 < 𝜑𝑀𝐴𝑋) then 

                  𝑓𝑜𝑢𝑛𝑑 = 𝑡𝑟𝑢𝑒, 𝑍𝑖𝑗
𝐿𝑆 = 0, 𝑍𝑘𝑙

𝐿𝑆 = 0 

                  𝑠𝑤𝑎𝑝2(0, 𝐶𝐿𝑆 − 𝑐𝑖𝑗 − 𝑐𝑘𝑙) 

                  if    𝑓𝑜𝑢𝑛𝑑 = 𝑓𝑎𝑙𝑠𝑒    

                  exit for 

                  end if 

              end for 

         end for 

      end while 

return 𝒁𝒃𝒆𝒔𝒕, 𝑜𝑏𝑗𝑏𝑒𝑠𝑡  

Figure 9. Pseudo-code for the LS2 procedure  
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Algorithm6 Swap2 

   for (𝑖, 𝑗) ∈ 𝐴̅𝑇−1 do 

       for (𝑘, 𝑙) ∈ 𝐴̅𝑇−1 do 

              if (𝑍𝑖𝑗
𝐿𝑆 == 0  and 𝜑𝑖𝑗 > 𝜑𝑀𝐼𝑁  and  𝐶𝐿𝑆 + 𝑐𝑖𝑗 ≤ 𝐵)  and (𝑍𝑘𝑙

𝐿𝑆 == 0  and 𝜑𝑘𝑙 > 𝜑𝑀𝐼𝑁                               

and 𝐶𝐿𝑆 + 𝑐𝑘𝑙 ≤ 𝐵)  then 

               𝑍𝑖𝑗
𝐿𝑆 = 1 and 𝑍𝑘𝑙

𝐿𝑆 = 1 

               𝑆𝑜𝑙𝑣𝑒 𝐴𝑃(𝒁𝑳𝑺) to get  𝑧𝐴𝑃  

                    if 𝑧𝐴𝑃 > 𝑜𝑏𝑗𝑏𝑒𝑠𝑡   then 

                    𝒁𝒃𝒆𝒔𝒕 ← 𝒁𝑳𝑺 , 𝐶𝑏𝑒𝑠𝑡 = 𝐶𝐿𝑆 + 𝑐𝑖𝑗 + 𝑐𝑘𝑙 , 𝑜𝑏𝑗𝑏𝑒𝑠𝑡 = 𝑧𝐴𝑃   

                    end if 

                𝐶𝐿𝑆 = 𝐶𝐿𝑆 + 𝑐𝑖𝑗 + 𝑐𝑘𝑙  

                𝑠𝑤𝑎𝑝2((𝑖, 𝑗), (𝑘, 𝑙), 𝐶𝐿𝑆)  

                end if 

         end for 

   end for 

Figure 10. Pseudo-code for the swap2 procedure 

 

3.3 Experimental Results 

In this section, the two solution methodologies (i.e., SVI and GCLS) are tested and compared 

on real telecommunication networks. Two real networks belonging to the Sterbenz et al. 

(2010b) repository, which contains different kinds of real telecommunication networks such 

as national computer, global-scale optical, and international wide-area networks, have been 

considered for experimentation. Table 2 summarizes the main topological properties of the 

selected networks, which are undirected: network name (NETWORK); number of nodes (|N|); 

number of arcs (|A|); minimum, average, and maximum node degree (MINDEG, AVGDEG, 

and MAXDEG, respectively); and minimum, average, and maximum geographical distance 

(MINDIST, AVGDIST, and MAXDIST, respectively) measured in kilometers.  

 

Table 2. Summary of the topological features of the case study networks 

Network |N| |A| MINDIST AVGDIST MAXDIST MINDEG AVGDEG MAXDEG 

HiberniaCanada 10 20 22.2 139 364 1 2 3 

GtsRomania 19 44 1.2 22.2 50 1 2.32 11 
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3.3.1 Model parameters settings 

The model parameters are generated as follows: 

1. The amount of resources needed to disrupt node 𝑘 ∈ 𝑁, 𝑑𝑘, depends on its degree, 

𝐷𝐸𝐺(𝑘). This assumption is based on the fact that the higher the node degree, the 

more important the node itself which, consequently, requires more resources to be 

interdicted (Motter 2004; Yehezkel and Cohen 2012; Lu and Li 2016). Namely, 

network nodes have been classified in three degree-based categories such as low, 

medium, and high importance nodes which, respectively, require 2, 4, and 6 units of 

disruption resources to be fully interdicted. Categories have been identified as 

follows: low importance nodes are those for which 𝐷𝐸𝐺(𝑘) ∈

[𝑀𝐼𝑁𝐷𝐸𝐺; 𝐴𝑉𝐺𝐷𝐸𝐺 − (𝐴𝑉𝐺𝐷𝐸𝐺/4)[; medium importance nodes are those for 

which 𝐷𝐸𝐺(𝑘) ∈ [𝐴𝑉𝐺𝐷𝐸𝐺 − (𝐴𝑉𝐺𝐷𝐸𝐺/4); 𝐴𝑉𝐺𝐷𝐸𝐺 + (𝐴𝑉𝐺𝐷𝐸𝐺/4)[; and high 

importance nodes are those for which 𝐷𝐸𝐺(𝑘) ∈ [𝐴𝑉𝐺𝐷𝐸𝐺 + (𝐴𝑉𝐺𝐷𝐸𝐺/

4); 𝑀𝐴𝑋𝐷𝐸𝐺[. As such, 𝑑𝑘 is a non-decreasing step-function of  𝐷𝐸𝐺(𝑘). 

2. The amount of resources needed to install arc (𝑖, 𝑗) ∈ 𝐴̅, 𝑐𝑖𝑗, depends on its length, 

𝐷𝐼𝑆𝑇(𝑖, 𝑗). This assumption is because the bigger the distance among nodes, the 

more expensive the installation of the arc connecting them (Kahng, Liu and 

Mǎandoiu 2002). Namely, potential arcs have been classified in three length-based 

categories such as small, medium, and large length arcs which, respectively, require 

2, 4, and 6 units of the defender budget to be installed. Categories have been 

identified as follows: small length arcs are those for which 𝐷𝐼𝑆𝑇(𝑖, 𝑗) ∈

[𝑀𝐼𝑁𝐷𝐼𝑆𝑇; 𝐴𝑉𝐺𝐷𝐼𝑆𝑇 − (𝐴𝑉𝐺𝐷𝐼𝑆𝑇/2)[; average length arcs are those for which 

𝐷𝐼𝑆𝑇(𝑖, 𝑗) ∈ [𝐴𝑉𝐺𝐷𝐼𝑆𝑇 − (𝐴𝑉𝐺𝐷𝐼𝑆𝑇/2); 𝐴𝑉𝐺𝐷𝐼𝑆𝑇 + (𝐴𝑉𝐺𝐷𝐼𝑆𝑇/2)[;  and large 

length arcs are those for which 𝐷𝐼𝑆𝑇(𝑖, 𝑗) ∈ [𝐴𝑉𝐺𝐷𝐼𝑆𝑇 + (𝐴𝑉𝐺𝐷𝐼𝑆𝑇/

2); 𝑀𝐴𝑋𝐷𝐼𝑆𝑇[. As such, 𝑐𝑖𝑗  is a non-decreasing step-function of 𝐷𝐼𝑆𝑇(𝑖, 𝑗). 

3. The interdictor budget, 𝐷, is defined as a percentage of 𝑃, which is the sum of the 

resources needed to disrupt all network nodes (i.e., 𝑃 =  ∑ 𝑑𝑘
|𝑁|
𝑘=1 ). Hence, 𝐷 =

 𝛼1𝑃. In our experiments 𝛼1 assumes the following values: 0.05, 0.10, 0.15, 0.20, 

0.25, and 0.30. To guarantee 𝐷 integrality, it has been rounded up to the nearest 

integer value. 

4. The defender budget, 𝐵, is defined as a percentage of 𝑄, which is the sum of the 

costs of all the arcs that can be potentially installed (i.e., 𝑄 =  ∑ 𝑐𝑖𝑗(𝑖,𝑗)∈𝐴̅ ). Hence, 

𝐵 =  𝛼2𝑄 where 𝛼2 assumes the following values: 0.01, 0.02, 0.03, 0.04, and 0.05. 

To guarantee 𝐵 integrality, it has been rounded up to the nearest integer value. 
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3.3.2 Solution methodologies settings 

Both SVI and GCLS approaches are implemented using CPLEX 12.6.2 embedded in a C++ 

program (i.e., CPLEX Callable Libraries deployed through Microsoft Visual Studio Professional 

2012). Experiments have been run on a computer with an Intel® Core™ i5-5200U CPU @ 

2.20GHz and 8.00 GB of RAM. The SVI algorithm uses CPLEX default parameters while the 

GCLS parameters have been chosen empirically after a calibration phase. With reference to 

the greedy construction algorithm, the values of 𝑟 (i.e., the number of elements to initialize 

the greedy solution 𝒁𝒈), which depend on both network size (i.e., |𝑁|, |𝐴|) and defender 

budget (i.e., 𝐵), are chosen as displayed in Table 3. 

 

Table 3. Values of 𝒓 for different combination of networks and protection budget 

  Network 

B HiberniaCanada GtsRomania 

0.01 2 2 

0.02 2 4 

0.03 4 4 

0.04 4 6 

0.05 4 8 

 

The settings of the local search parameters are as follows: 

- 𝜑𝑀𝐼𝑁 =  ⌊𝑚𝑎𝑥(𝜑𝑖𝑗) −
𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜑𝑖𝑗)

4
⌋ ;                                                                                

- 𝜑𝑀𝐴𝑋 =  ⌈𝑚𝑎𝑥(𝜑𝑖𝑗)⌉. 

 

3.3.3 HiberniaCanada network results 

The HiberniaCanada network is composed of 10 nodes and 20 arcs and connects several 

points between Canada and US. Table 4 shows the names of the locations corresponding to 

each node while Figure 11 displays the network itself. 
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Table 4. HiberniaCanada network – Node details 

 

Network node Place 

1 New York 
2 Moncton 
3 Edmundston 
4 Quebec 
5 Montreal 
6 Toronto 
7 Buffalo 
8 Albany 
9 Boston Bar 

10 Halifax 

 

 

Figure 11. Hibernia Canada network (adapted from Google Maps) 

 

The SVI algorithm was able to solve all the instances within the given CPU time 

threshold, in particular, given the reduced dimensions of the HiberniaCanada network, 

instances were solved in a matter of a few seconds. Table 5 and Table 6 report the objective 

function values and the CPU time values, respectively, for all the possible combination of 𝛼1 

(i.e., interdiction budget) and 𝛼2  (i.e., protection budget) and for the two solution 

approaches (i.e., SVI decomposition algorithm and GCLS1). Due to the reduced dimensions 

of the HiberniaCanada network, as it can be appreciated from Figure 11, GCLS2 has not been 

tested.  

6 
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Table 5. HiberniaCanada network results – Objective function values 

Objective Function 

 α2 = 0.00 α2 = 0.01 α2 = 0.02 α2 = 0.03 α2 = 0.04 α2 = 0.05 

α1 SVI GCLS1 SVI GCLS1 SVI GCLS1 SVI GCLS1 SVI GCLS1 SVI GCLS1 

0.05 72 72 72 72 72 72 72 72 72 72 72 72 

0.1 36 36 36 36 56 56 56 56 56 56 56 56 

0.15 26 26 26 26 42 42 42 42 42 42 42 42 

0.2 18 18 18 18 30 30 32 32 42 42 42 42 

0.25 14 14 14 14 18 18 22 22 26 26 26 26 

0.3 10 10 10 10 12 12 14 14 16 16 16 16 

AVG 29.33 29.33 29.33 29.33 38.33 38.33 39.67 39.67 42.33 42.33 42.33 42.33 

 

Table 6. HiberniaCanada network results – CPU time values 

CPU Time 

 α2 = 0.00 α2 = 0.01 α2 = 0.02 α2 = 0.03 α2 = 0.04 α2 = 0.05 

α1 SVI GCLS1 SVI GCLS1 SVI GCLS1 SVI GCLS1 SVI GCLS1 SVI GCLS1 

0.05 0.1 0.0 0.1 0.0 0.1 0.3 0.1 0.4 0.1 0.6 0.2 0.6 

0.1 0.2 0.0 0.2 0.0 0.4 0.6 0.4 1.1 0.3 1.4 0.2 1.4 

0.15 0.3 0.1 0.3 0.1 0.9 0.6 0.5 1.4 1.1 1.4 1.7 2.1 

0.2 0.2 0.1 0.2 0.1 1.1 0.8 1.7 1.6 1.8 1.2 2.3 2.3 

0.25 0.1 0.1 0.1 0.1 0.7 1.0 2.1 2.8 3.7 1.7 4.1 2.7 

0.3 0.2 0.1 0.2 0.1 0.7 0.9 1.8 2.0 2.3 1.7 2.2 2.1 

AVG 0.2 0.1 0.2 0.1 0.7 0.7 1.1 1.5 1.6 1.3 1.8 1.9 
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Several observations can be drawn from the analysis of Table 5. Results are first 

commented based on the outcome of the SVI algorithm. For example, for 𝛼1 = 0.1, when 𝛼2 

rises from 0.01 to 0.02, the value of network connectivity improves by around 56% (from 36 

to 56). Similarly, for 𝛼1 = 0.15, when 𝛼2 increases from 0.01 to 0.02, the value of network 

connectivity improves by around 62% (from 26 to 42). Further examples where, for a fixed 

interdiction budget level, an improvement in network connectivity can be appreciated across 

different levels of protection resources are described as follows: 

- for 𝛼1 = 0.2, the value of network connectivity increases by nearly 67% (from 18 to 

30), 78% (from 18 to 32), and 133% (from 18 to 42) when 𝛼2 rises from 0.01 to 0.02, 

0.03, and 0.04, respectively; 

- for 𝛼1 = 0.25, the value of network connectivity improves by around 29% (from 14 

to 18), 57% (from 14 to 22), and 86% (from 14 to 26) when 𝛼2 rises from 0.01 to 0.02, 

0.03, and 0.04, respectively; 

- for 𝛼1 = 0.3, the value of network connectivity increases by nearly 20% (from 10 to 

12), 40% (from 10 to 14), and 60% (from 10 to 16) when 𝛼2 rises from 0.01 to 0.02, 

0.03, and 0.04, respectively. 

The same results can be appreciated from the application of GCLS1. Further 

observations can be drawn from a computational perspective. From the analysis of Table 6, 

looking at specific single instances, it can be said that SVI and GCLS1 have comparable CPU 

times (i.e., matter of a few seconds) and, in majority of the cases, SVI solve instances to 

optimality faster than GCLS1 however, there are some cases where GCLS1 is faster than SVI.  

 Figure 12 displays the value of network connectivity for each interdiction budget level 

across the different levels of protection resources (results are reported based on the SVI 

decomposition algorithm).  
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Figure 12. HiberniaCanada network results – Network connectivity VS protection resources 

 

Figure 12 allows to appreciate the importance of deploying protection resources to 

increase network connectivity under disruptive circumstances. In fact, in absence of any kind 

of protection (i.e., 𝛼2 = 0), the higher the interdiction budget level, the higher the loss in 

network connectivity. In particular, network connectivity drops by around 50% (from 72 to 

36), 64% (from 72 to 26), 75% (from 72 to 18), 81% (from 72 to 14), and 86% (from 72 to 10) 

when 𝛼1 raises from 0.05 to 0.1, 0.15, 0.2, 0.25, and 0.3, respectively. However, it can be 

observed that an investment of 2% of the total protection budget already allows to improve 

network connectivity. In fact, if solutions are compared for 𝛼2 = 0 and 𝛼2 = 0.02, there is an 

increase in network connectivity by around 56% (from 36 to 56), 62% (from 26 to 42), 67% 

(from 18 to 30), 29% (from 14 to 18), and 20% (from 10 to 12) when 𝛼1 is equal to 0.1, 0.15, 

0.2, 0.25, and 0.3, respectively. Further improvements can be appreciated for higher 

amounts of protection resources. 

Overall, in the specific case of the HiberniaCanada network, it can be stated that the SVI 

performs best, in terms of both objective function values and CPU time values however, in 

the absence of this exact method, GCLS1 is able to find the optimal solution for each problem 

instance with CPU times comparable to those of SVI. Hence, GCLS1 seems to be a promising 

heuristic method.  
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3.3.4 GtsRomania network results 

The GtsRomania network is composed of 19 nodes and 44 arcs and connects several points 

within Romania. Table 7 shows the names of the locations corresponding to each node while 

Figure 13 displays the network itself. 

Table 7. GtsRomania network – Node details 

 

Network node Place 

1 Craiova 

2 Plaiesti 

3 Brasov 

4 Targoviste 

5 Constanta 

6 Bucarest 

7 Galati 

8 Focsani 

9 Targu,Mures 

10 Timisoara 

11 Sibiu 

12 Iasi 

13 Piatra,Neamt 

14 Bacau 

15 Deva 

16 Cluj 

17 Oradea 

18 Bors 

19 Arad 
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Figure 13. GtsRomania network (adapted from Google Maps) 

 

The SVI algorithm was not able to solve all the instances within the given CPU time 

threshold set equal to 28800 seconds (i.e., 8 hours), while GCLS1 and GCLS2 were able to 

obtain a solution in fewer time, and in particular, GCLS2 was able to match the solution found 

by SVI in 8 hours in matters of minutes. Given the larger network dimensions, compared to 

those of the HiberniaCanada, an upper bound on the max number of iterations was set for 

both GCLS1 and GCLS2. This upper bound (i.e, MAXITER) has been identified based on 

combinations of 𝛼1 and 𝛼2. Table 8 and Table 9 reports the objective function values and the 

CPU time values, respectively, for all the possible combinations of 𝛼1 and 𝛼2 and for the 

three solution approaches (SVI, GCLS1, and GCLS2), respectively. Given that the GtsRomania 

network is larger than the HiberniaCanada network, also GCLS2 has been tested.
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Table 8. GtsRomania network results – Objective function values 

Objective Function 

 α2 = 0.00 α2 = 0.01 α2 = 0.02 α2 = 0.03 α2 = 0.04 α2 = 0.05 

α1 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 

0.05 272 272 272 272 272 272 272 272 272 272 272 272 272 272 272 272 272 272 
0.1 112 112 112 210 210 210 240 240 240 240 240 240 240 240 240 240 240 240 

0.15 50 50 50 116 116 116 182 162 182 182 182 182 182 182 182 182 182 182 
0.2 16 16 16 72 72 72 132 110 132 138 134 134 156 156 156 156 156 156 

0.25 8 8 8 24 24 22 42 42 42 58 62 62 72 78 78 76 78 78 
0.3 2 2 2 10 10 10 20 20 20 28 24 28 32 30 32 48 32 32 

AVG 76.7 76.7 76.7 117.3 117.3 117.0 148.0 141.0 148.0 153.0 152.3 153.0 159.0 159.7 160.0 162.3 160.0 160.0 

 

Table 9. GtsRomania network results – CPU time values 

CPU Time 

 α2 = 0.00 α2 = 0.01 α2 = 0.02 α2 = 0.03 α2 = 0.04 α2 = 0.05 

α1 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 SVI GCLS1 GCLS2 

0.05 1.1 0.6 0.6 1.5 29.8 81.4 1.0 47.6 272.3 0.8 46.8 15.6 0.9 38.8 16.7 1.1 21.7 24.3 

0.1 1.1 0.7 0.7 67.0 22.2 166.7 46.5 61.4 604.7 10.0 110.7 26.8 9.3 98.9 26.5 11.0 21.7 147.3 

0.15 0.9 0.5 0.5 137.1 35.3 219.3 958.1 30.9 711.6 954.8 107.4 60.0 351.7 108.4 165.8 123.7 36.3 148.4 

0.2 0.8 0.2 0.2 517.5 22.6 273.6 28800* 24.6 406.8 28800* 64.9 806.3 9326.4 67.9 1572.5 905.8 30.5 171.1 

0.25 0.6 0.2 0.2 183.5 39.3 229.8 28800* 53.9 756.8 28800* 38.9 836.6 28800* 43.0 1167.5 28800* 17.3 142.6 

0.3 0.6 0.1 0.1 79.6 18.3 265.6 20236.6 54.3 692.0 28800* 27.6 575.9 28800* 31.1 771.4 28800* 26.5 148.2 

AVG 0.8 0.4 0.4 164.4 27.9 206.1 13140.4 45.4 574.0 14560.9 66.0 386.9 11214.7 64.7 620.1 9773.6 25.7 130.3 

Legend: * = not solved to optimality within the pre-fixed time limit of 28800 seconds
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Several observations can be drawn from the analysis of Table 8. Results are first 

commented based on the outcome of the SVI algorithm. Examples where, for a fixed 

interdiction budget level, an improvement in network connectivity can be appreciated across 

different levels of protection resources are described as follows: 

- for 𝛼1 = 0.1, the value of network connectivity increases by nearly 88% (from 112 to 

210) and 114% (from 112 to 240) when 𝛼2  rises from 0 to 0.01, and 0.02, 

respectively; 

- for 𝛼1 = 0.15, the value of network connectivity improves by around 132% (from 50 

to 116) and 264% (from 50 to 182) when 𝛼2 increases from 0 to 0.01, and 0.02, 

respectively; 

- for 𝛼1 = 0.2, the value of network connectivity increases by nearly 350% (from 16 to 

72), 725% (from 16 to 132), 763% (from 16 to 138), and 875% (from 16 to 156) when 

𝛼2 rises from 0 to 0.01, 0.02, 0.03, and 0.04, respectively; 

- for 𝛼1 = 0.25, the value of network connectivity improves by around 200% (from 8 

to 24), 425% (from 8 to 42), 625% (from 8 to 58), 800% (from 8 to 72), and 850% 

(from 8 to 76) when 𝛼2  increases from 0 to 0.01 0.02, 0.03, 0.04, and 0.05, 

respectively; 

- for 𝛼1 = 0.3, the value of network connectivity increases by nearly 400% (from 2 to 

10), 900% (from 2 to 20), 1300% (from 2 to 28), 1500% (from 2 to 32)and 2300% 

(from 2 to 48), when 𝛼2 rises from 0 to 0.01 0.02, 0.03, 0.04, and 0.05, respectively. 

Slightly different results can be observed from the application of GCLS1 and GCLS2. 

Specifically, GCLS1 is not able to obtain the same objective value returned by SVI in 9 cases 

out of 36 (i.e., for 𝛼2 = 0.02, when 𝛼1 = 0.15 and 0.2; for 𝛼2 = 0.03, when 𝛼1 = 0.2, 0.25 and 

0.3; and for 𝛼2 = 0.04 and 0.05, when 𝛼1 = 0.25 and 0.3), while GCLS2 fails to do so in three 

cases (i.e., for 𝛼2 = 0.01, when 𝛼1 = 0.25; for 𝛼2 = 0.03, when 𝛼1 = 0.2; and for 𝛼2 = 0.05, 

when 𝛼1 = 0.3). Figure 14 displays the value of network connectivity for each interdiction 

budget level across the different levels of protection resources (results are reported based 

on the SVI decomposition algorithm). 
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Figure 14. GtsRomania network results – Network connectivity VS protection resources 

 

Figure 14 allows to appreciate the importance of deploying protection resources to 

increase network connectivity under disruptive circumstances. In fact, in absence of any kind 

of protection (i.e., 𝛼2 = 0), the higher the interdiction budget level, the higher the loss in 

network connectivity. In particular, network connectivity drops by around 59% (from 272 to 

112), 82% (from 272 to 50), 94% (from 272 to 16), 97% (from 272 to 8), and 99% (from 272 

to 2) when 𝛼1 raises from 0.05 to 0.1, 0.15, 0.2, 0.25, and 0.3, respectively. However, it can 

be observed that an investment of 1% of the total protection budget already allows to 

improve network connectivity. In fact, if solutions are compared for 𝛼2 = 0 and 𝛼2 = 0.01, 

there is an increase in network connectivity by around 88% (from 112 to 210), 132% (from 

50 to 116), 350% (from 16 to 72), 200% (from 8 to 24), and 400% (from 2 to 10) when 𝛼1 is 

equal to 0.1, 0.15, 0.2, 0.25, and 0.3, respectively. Further improvements can be appreciated 

for higher amounts of protection resources. 

From the analysis of Table 9, it seems that GCLS2 performs better than GCLS1. In 

particular, despite for “simple instances” (i.e., 𝛼1 = 0.05 and 0.10 whichever 𝛼2 is) GCLS2 

finds the same objective function value of SVI but in longer time, when it comes to instances 

that have not been solved to optimality, GCLS2 is able to match the objective function value 

found by SVI in matter of minutes. On the other side, GCLS1 looks inefficient. Although 

sometimes it matches the objective function values by SVI even in shorter time than GCLS2, 

the number of instances whose objective function value does not match the one of SVI is 
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higher as well as the gap between the obtained solutions (as it can be observed from Table 

8). Figure 15 displays the interdiction budget level-average values of CPU time across 

different level of protection resources for the three solution approaches (these figures are 

explicitly reported in correspondence of row AVG of Table 9).  

 

 

Figure 15. GtsRomania network results – CPU time VS protection resources 

 

Figure 15 reports that, on average, for 𝛼2 = 0.02, 0.03, 0.04, and 0.05, GCLS1 (in orange) 

and GCLS2 (in grey) are faster than SVI (blue), in fact, the three solution methods require: 

45, 574 and 13140.4 seconds when 𝛼2 = 0.02; 66, 386.9, and 14560.9 seconds when 𝛼2 = 

0.03; 64.7, 620.1 and 11241.7 seconds when 𝛼2 = 0.04; and 25.7, 130.3, and 9773.6 seconds 

when 𝛼2 = 0.05, respectively.  

Overall, in the specific case of the GtsRomania network, it can be stated that the SVI 

finds difficulties in closing many instances hence, the need for a heuristic approach is more 

evident. In particular, GCLS2 performs better than GCLS1 in terms of objective function 

values, while the inverse phenomenon can be observed when it comes to computational 

performance. However, based on the obtained results, GCLS2 seems like the most promising 

method to solve larger instances. 

Finally, in order to provide an idea on how, for a fixed interdiction budget level, different 

solutions (in terms of network connectivity, disrupted nodes and added arcs) are obtained 

in correspondence of different amount of protection resources, Figure 16, 17, and 18 report 

the solutions obtained for the GtsRomania network through the application of the SVI 

algorithm when 𝛼1 = 0.20 and 𝛼2 = 0.01, 0.03, and 0.05, respectively. 
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Figure 16. GtsRomania network results - CNDPF solution for 𝜶𝟏 = 0.20 and 𝜶𝟐 = 0.01 

 

 

Figure 17. GtsRomania network results - CNDPF solution for 𝜶𝟏 = 0.20 and 𝜶𝟐 = 0.03 
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Figure 18. GtsRomania network results - CNDPF solution for 𝜶𝟏 = 0.20 and 𝜶𝟐 = 0.05 

 

Network nodes and arcs are identified with black round shapes and black straight lines, 

respectively, while network nodes that have been disrupted and arcs that have been added 

are represented by red crossed round shapes and green straight lines, respectively. From the 

combined analysis of Figure 16, 17, and 18, it can be observed that different nodes have been 

disrupted in the three reported solution: 6 and 17 in Figure 16 and 18 while 6, 9 and 19 in 

Figure 17. The disruption of different nodes is paired with different arcs being selected for 

addition: (3,8), (12,13), and (15,16) in Figure 16; (2,3), (3,4), (3,8), (7,8), (8,19), (9,16), and 

(13,14) in Figure 17; and (1,7), (1,8), (2,3), (2,4), (2,5), (2,8), (3,4), (3,7), (3,9), and (3,10) in 

Figure 18. Also, given that more protection resources correspond to more arcs that can be 

added, this has led to appreciate an increase in network connectivity from 72 (α1 = 0.20 and 

α2 = 0.01, Figure 16) to 138 (α1 = 0.20 and α2 = 0.03, Figure 17) to 156 (α1 = 0.20 and α2 = 

0.05, Figure 18). 

 

3.4 Conclusions 

This chapter has introduced a novel bi-level program (CNDPF) to optimize CII protection by 

integrating network vulnerability assessment, resource allocation strategies and design 

operations. To the best of my knowledge, this is the first bi-level program devised for CIIP. In 

particular, the upper level models the infrastructure owner whose objective is to maximize 
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the network connectivity, resulting from worst-case disruptions due to a generic interdictor 

modelled at the lower level, by increasing system redundancy through the installation of 

additional arcs. CNDPF differs significantly from bi-level programs that have been developed 

for other kinds of CI. As a matter of fact, different infrastructures yield to different targets to 

be considered. For example, while a railway system aims at maximizing the amount of 

passenger flow despite malicious attacks, telecommunications networks prioritize network 

connectivity so as to guarantee its basic functioning. From a modelling perspective, 

differences can also be appreciated in terms of adopted constraints: while bi-level programs 

for railway infrastructure protection entail flow conservation and/or shortest path 

constraints, CNDPF accounts for connectivity conservation constraints. The CNDPF has been 

solved through a SVI decomposition approach and a heuristic approach (GCLS). In particular, 

the heuristic approach has been tested according to two different swap policies thus yielding 

to two different algorithms (GCLS1 and GCLS2). Computational results have been reported 

for real communication networks and for different levels of both disaster magnitude and 

protection resources. Experimentation has proven that SVI is a quite successful exact method 

however, it can encounter difficulties when problem dimensions increase, which motivates 

the need to develop an alternative (or auxiliary) heuristic approach. GCLS1 has proven to be 

more successful on a small network while GCLS2 has proven to perform better on a larger 

network. Nevertheless, results have reported that a reasonable expenditure of protection 

resources can yield to a significant improvement in the network connectivity.  

However, CNDPF is not exempt from limitations based on its underpinning assumptions. 

For example, CNDPF is a deterministic model because assumes that both interdiction (i.e., 

how costly to disrupt a node is) and protection (i.e., how costly to build an additional arc is) 

resources are known. However, both interdiction and protection resources could be 

uncertain and based on the probability of success of the attack/defense strategy thus 

requiring a stochastic programming formulation. Another assumption that could be revised 

and lead to different models is the one related to the adopted objective function. In fact, 

currently, the defender aims at maximizing the network connectivity while minimizing the 

damage inflicted by the attacker. Nevertheless, the objective of the defender could be to 

minimize the protection investment expenditure while guaranteeing a minimum 

connectivity threshold. Hence, despite the successful and encouraging results so far 

obtained, enhancements of CNDPF from a modeling perspective could be considered. 
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4 Optimizing shelter location and evacuation routing 

operations: the critical issues 

This chapter focuses on two specific operations of the DOM response phase: shelter location 

and evacuation routing. Specifically, this chapter aims at identifying the central issues that 

should be addressed in a comprehensive shelter location/evacuation routing model. This is 

achieved by: (1) analysing existing DM surveys, (2) reviewing optimization models tackling 

shelter location and evacuation routing operations, either separately or in an integrated 

manner, (3) performing a critical analysis of existing papers combining shelter location and 

evacuation routing, concurrently with the responses of their authors, and (4) comparing the 

findings of the analysis of the papers (i.e., (3)) with the findings of the existing DM surveys 

(i.e., (1)). The chapter concludes with a discussion on the emergent challenges of shelter 

location and evacuation routing in optimization and outlines a roadmap for future research.  

 

4.1 Analysis of existing Disaster Management surveys 

Operations Research, and optimization in particular, has been applied to DM since the early 

1980s (Altay and Green 2006; Simpson and Hancock 2009). A variety of problems, pertaining 

to different DOM stages, have been modelled through optimization techniques as reported 

in the surveys by (Simpson and Hancock 2009; Caunhye, Nie and Pokharel 2012; Galindo and 

Batta 2013; Hoyos, Morales and Akhavan-Tabatabaei 2015; Özdamar and Ertem 2015; 

Bayram 2016). In the following, these seven surveys are briefly reviewed, which deal with 

either DM in general or evacuation planning operations, and compare them in terms of 

research area, journal outlets, state-of-the-art and their proposed research directions. The 

discussion does not include surveys that do not explicitly discuss shelter location and 

evacuation planning problems such as De La Torre, Dolinskaya and Smilowitz (2012) and Çelik 

(2016), which focus only on disaster relief routing and disaster recovery, respectively. 

Surveys that are limited in scope (Grass and Fischer 2016), only offer a qualitative outlook 

(Jabbour et al. 2017) and tutorials (Kara and Savaşer 2017) are also excluded. The seven 

surveys are reviewed in chronological order. A summary of the main issues can be found in 

Table 10. 
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Table 10.  Survey Review Summary  

Survey Research Area 
Journal Outlets and  
Timeframe 

State-of-the-art Future Research Directions 

Altay and 
Green (2006) 

OR/MS applied to 
DM 

Outlets: Both non-traditional OR 
and OR journals; top three OR 
journals: EJOR, JORS, MS 
Timeframe: 1980-2004 

Methodology: Mathematical Programming 
(Most used) / Soft OR (Least used) 
DOM phase research ranking: Mitigation, 
Response, Preparedness, Recovery 
Research aim ranking: Model, Theory, 
Application 

Development of hierarchical and multi-
objective approaches, deployment of Soft OR 
methodologies, focus on recovery issues, and 
usage of disruption management models 

Simpson and 
Hancock 
(2009) 

Emergency 
response-related 
OR (EOR) 

Outlets: Engineering-based, non-
traditional OR and OR journals; 
top three OR journals for disaster 
services: EJOR, JORS, MS 
Timeframe: 1965-2007 

EOR categories: Urban services, Emergency 
Management Services, Disaster services, 
General emergency 
Methodology: Mathematical Programming 
(Most used) / Soft OR (Least used) 

Deployment of Soft OR approaches, 
development of ad-hoc DSS, inclusion of multi-
agency coordination, and definition of specific 
efficiency criteria 

Caunhye, Nie 
and Pokharel 
(2012) 

Optimization for 
emergency logistics 

Outlets: TRE, EJOR, MS (mostly) 
Timeframe: 1976-2011 

Review of optimization models for facility 
location, stock- prepositioning, evacuation, 
relief distribution, and casualty 
transportation operations 

Development of combined and multi-objective 
models, advanced algorithms, research effort 
towards recovery operations, definition of 
specific efficiency criteria, and inclusion of 
human behavior 

Galindo and 
Batta (2013) 

OR/MS applied to 
DM 

Outlets: Both non-traditional OR 
and OR outlets; top three OR 
journals: JORS, EJOR, COR 
Timeframe: 2005-2010 

Methodology: Mathematical Programming 
(Most used) / Soft OR (Least used) 
DOM phase research ranking: Response, 
Preparedness, Mitigation, Recovery 
Research aim ranking: Model, Theory, 
Application 

Stakeholder involvement, development of 
cutting-edge technologies, (more) realistic 
modelling assumptions, combination of 
different methodologies, deployment of Soft OR 
approaches, and definition of specific efficiency 
criteria 

 

Legend: COR = Computers & Operations Research; EJOR = European Journal of Operational Research; JORS = Journal of the Operational Research Society; MS = Management 

Science; OR = Operations Research; SEPS = Socio-Economic Planning Sciences; SS = Safety Science; TRB = Transportation Research Part B; TRE = Transportation Research Part 

E; TS = Transportation Science. 
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 Table 10.  Survey Review Summary (Continued) 

Survey Research Area 
Journal Outlets and  
Timeframe 

State-of-the-art Future Research Directions 

Hoyos, 
Morales and 
Akhavan-
Tabatabaei 
(2015) 

OR applied to DM Outlets: EJOR, SEPS, TS, SS 
(mostly) 
Timeframe: 2006-2012 

Methodology: Mathematical Programming 
(Most used) / Queuing Theory (Least used) 
DOM phase research ranking: Response, 
Mitigation, Preparedness, Recovery 
 

Better understanding of specific disaster-
related features, combination of different 
methodologies, usage of multi-period models, 
research effort towards inventory, evacuation 
planning, casualty transportation, and recovery 
activities, investigation into information 
systems, critical infrastructures and secondary 
(or even cascading) disasters, and 
development of multi-objective models for 
stakeholder coordination 

Özdamar and 
Ertem (2015) 

OR for response 
and recovery 
activities 

Outlets: No journal-based 
analysis 
Timeframe: 1993-2014  

Review of optimization models for relief 
delivery, casualty transportation, mass 
evacuation, and recovery operations 

Development of algorithms to handle large-
scale disaster data sets, models tackling 
recovery issues in an integrated way, 
combination of practitioner and academic best 
practices, inclusion of real-time data, and 
stakeholder coordination 

Bayram (2016) Optimization 
models for large 
scale evacuation 
planning 

Outlets: OR/MS, DM, behavioral 
sciences, and engineering-based 
outlets; models mostly from TRB 
Timeframe: 1952-2016  

Review on traffic assignment models, 
evacuation modelling, and behavioral 
studies 

Inclusion of human behavior and special-needs 
population, usage of Intelligent Transportation 
Systems (ITS), and development of stochastic, 
dynamic, and combined models 

 

Legend: COR = Computers & Operations Research; EJOR = European Journal of Operational Research; JORS = Journal of the Operational Research Society; MS = Management 

Science; OR = Operations Research; SEPS = Socio-Economic Planning Sciences; SS = Safety Science; TRB = Transportation Research Part B; TRE = Transportation Research Part 

E; TS = Transportation Science.  
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Altay and Green (2006) provide a literature survey of OR/MS applied to DM over the time 

period 1980 – 2004. The authors group all the collected papers according to several aspects 

such as deployed methodology, DOM phase, and research contribution across different 

journal categories. The following findings can be inferred from their analysis: 1) the most 

favoured methodology is mathematical programming while the least deployed are Soft OR 

approaches, also known as Problem Structuring Methods (PSMs) (Rosenhead and Mingers 

2001); 2) among the four DOM phases, the most investigated one is mitigation while the 

least enquired is recovery; and 3) the research aim is highly model-based rather than theory-

oriented or application-driven. Altay and Green (2006) propose various research directions. 

Firstly, hierarchical and multi-objective approaches need to be developed to account for the 

multi-agency nature of DOM operations. Secondly, methodologies so far underutilised, such 

as Soft OR approaches, and more advanced technologies, such as sensing algorithms, should 

be further investigated. Thirdly, more research should be devoted to the recovery phase 

given its crucial role in restoring lifeline services and normal life conditions. Finally, business 

continuity models and disruption management models that incorporate sustainability issues 

in infrastructure design are required to ensure efficient response and recovery operations. 

Simpson and Hancock (2009) focus on emergency response-related OR articles during the 

period 1965-2007. They group papers into four focus categories: urban services (e.g., police, 

fire and ambulance services); disaster services (e.g., evacuation planning); hazard specific 

(e.g., hurricanes, earthquakes or floods), and general emergency. They use this 

categorization to analyse trends in volume, focus and outlets of emergency OR research and 

observe a shift in focus over time from urban services to general emergencies. As for the 

methodologies, they confirm Altay and Green (2006) findings: mathematical programming is 

the most common methodology across all focus categories with the exception of hazard 

specific, whereas Soft OR approaches are still scarcely used in spite of their suitability to 

address the unstructured nature of emergency problems. Simpson and Hancock (2009) 

identify four main areas for further research: 1) development of Soft OR approaches as key 

tools to enable policy-maker involvement in the modelling process, encourage a sense of 

ownership, and ultimately lead to impact on policy making; 2) development of more 

sophisticated information and decision support systems (DSS); 3) inclusion of volunteer 

coordination within a multi-agency framework; 4) definition of ad-hoc key performance 

indicators able to capture the ill-defined and unique nature of emergency problems.  
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Caunhye, Nie and Pokharel (2012) review optimization models for emergency logistics 

developed during the period 1976-2011. They focus on core DOM operations such as facility 

location, stock pre-positioning, evacuation, relief distribution and casualty transportation. 

Through their analysis, the authors first observe three main gaps: optimization models 

addressing different DOM operations in an integrated manner are scarce, multi-objective 

approaches are underutilised due to solving difficulties, and more advanced algorithms are 

required. They also identify several research opportunities. Optimization models are needed 

for some operation-specific problems such as: facility siting as a post-disaster operation, 

possibly including stock transfer activities; pre- and post-disaster capacity planning; dynamic 

post-disaster inventory; casualty transportation incorporating aspects such as transportation 

time, injury severity and medical centre service load. As previously noted by Simpson and 

Hancock (2009), suitable performance measures, which go beyond timely responsiveness 

and cost-efficiency, need to be defined (e.g., multi-agency coordination effectiveness and 

relief planning robustness). Finally, the uncertainties related to human behavior in post-

disaster environments need to be addressed, for example by using robust optimization and 

chance constraints.  

Galindo and Batta (2013) continue the review of Altay and Green (2006), with the ultimate 

goal of evaluating if any changes emerged in OR applied to DM during the timeframe 2005-

2010. Their comparative analysis reveals that no drastic changes have occurred in the field. 

In fact: (1) the most favoured methodology is still mathematical programming while Soft OR 

is still underused; (2) the most investigated DOM phase is response, immediately followed 

by preparedness, but the least studied is still recovery; and (3) the research aim is even more 

model-driven and even less application-oriented. Novelties include the combination of 

different methodologies (Afshar, Rasekh and Afshar 2009), the integration of DOM phases 

(Fiorucci et al. 2005) and the development of case studies, although these mostly rely on 

unrealistic assumptions. In addition to those identified by Altay and Green (2006), they 

suggest the following research directions: improvement of the coordination among DOM 

actors; development of cutting-edge technologies (e.g., GIS-based); thorough understanding 

of DOM problems and use of statistical analysis to build realistic assumptions, define 

disruption scenarios, and deal with information unavailability; exploration of Soft OR 

approaches and interdisciplinary techniques; and use of performance indicators to evaluate 

strategies.  
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Hoyos, Morales and Akhavan-Tabatabaei (2015) present a review on OR techniques with 

stochastic components in DOM during the time period 2006-2012. The authors classify the 

collected papers according to DOM phase and deployed methodology. The results of their 

analysis are: (1) the most deployed methodology is stochastic mathematical programming, 

in particular for preparedness and response operations such as facility pre-positioning, 

resource allocation, relief distribution, and casualty transportation, while the least deployed 

is queuing theory; (2) in the mitigation phase, research mostly focuses on probabilistic and 

statistical models such as logistic regression and artificial networks (e.g., for demand 

prediction); and (3) stochastic methods for the recovery phase are largely understudied. The 

authors identify several research directions: a better understanding of the features related 

to a specific disaster is needed to formulate accurate and realistic assumptions; combination 

of different methodologies should be encouraged as well as the usage of multi-period 

models to tackle the evolving aspects of disasters; several topics including inventory 

planning, search and rescue activities and especially recovery operations deserve greater 

attention; consideration and integration of issues such as infrastructure damage, secondary 

(or even cascading) disasters, multi-agency coordination and communication are needed for 

building more applicable models. 

Özdamar and Ertem (2015) review logistics models for response operations (relief 

delivery, casualty transportation and mass evacuation) and recovery operations (road and 

infrastructure restoration, and debris management). They analyse both structural (e.g., 

objectives, constraints) and methodological (e.g., solution methods) aspects of these 

problems. Moreover, they provide a brief discussion on the use of information systems in 

humanitarian logistics. The authors identify various areas for improvement, including: 1) 

development of on-line, fast optimization algorithms that are able to handle large-scale 

disasters; 2) development of integrated models that combine multiple recovery issues (e.g., 

debris clean-up, infrastructure restoration); 3) integration of practitioner and academic 

researcher best practices (e.g., user-friendly interfaces from the former, sophisticated 

mathematical models from the latter); 4) development of globally accessible databases and 

holistic commercial software for DM so as to overcome implementation issues linked to the 

lack of real-time data and stakeholder coordination.  

Bayram (2016) provides a survey of OR papers for large-scale evacuation planning. In 

particular, the author reviews traffic assignment models (e.g., user equilibrium, system 

optimal, etc.), typical objectives in evacuation modelling (e.g., clearance time minimization, 

total evacuation time minimization, etc.), and evacuee behavior issues (e.g., perceived risk, 
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ethnicity, gender, etc.). Moreover, deterministic and stochastic models tackling self-

evacuation are described, followed by those including shelter decisions and addressing mass-

transit-based evacuation. Bayram (2016) concludes the survey with some suggestions, aimed 

at making future optimization models more realistic and implementable. These include: 

better modelling of human behavior; more focus on special-needs population, mass-transit-

based and multi-modal evacuation as opposed to self-evacuation; usage of strategies based 

on intelligent transportation systems; development of stochastic and dynamic models, 

models integrating shelter location and evacuation decisions, and game-theoretic 

approaches for man-made disasters. 

 

4.2 Optimization for shelter location and evacuation routing 

Within the DM context, optimization researchers have proposed several models tackling 

shelter location and evacuation routing problems, either separately or in an integrated 

manner. As noted in (Bayram 2016), the majority of evacuation studies focus on evacuation 

with private vehicles (often referred to as car-based evacuation), whereas mass-transit-

based (or bus-based) evacuation models are more sparse.  Shelter location problems have 

also received considerable attention over time. Overall, most of the focus so far has been on 

models that address shelter location, car-based and bus-based evacuation as separate 

problems. Recently, more attention has been paid to combined shelter location and 

evacuation routing problems. Combined models can integrate 1) shelter location and car-

based evacuation decisions; 2) shelter location and bus-based evacuation decisions; or 3) 

shelter location and both car- and bus-based evacuation issues, as displayed in Figure 19.  

 

                               

Figure 19. Combination of shelter location and evacuation routing problems 
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As noted in (Caunhye, Nie and Pokharel 2012), only a few optimization models have 

addressed shelter location and evacuation routing in an integrated manner prior to 2011. 

Also, these early combined models only integrated shelter location and car-based evacuation 

decisions (problem category 1, Figure 19). These are briefly described below. 

Kongsomsaksakul, Yang and Chen (2005) present a bi-level program under flood 

circumstances. The upper level mimics the public authority objective (i.e., to minimize the 

total evacuation time by identifying optimal shelter locations); the lower level models the 

evacuee target (i.e., to reach a shelter facility as quickly as possible). The authors develop a 

genetic algorithm to solve the proposed optimization model and they apply it to the Logan 

network, Utah (USA). 

Alçada‐Almeida et al. (2009) develop a multi-objective optimization model for fire 

disasters. The objectives to be minimized are: (1) total traveling distance from evacuation 

zones to shelter sites; (2) evacuee fire risk while reaching a shelter facility; (3) evacuee fire 

risk while staying at a shelter site; and (4) total evacuation time from shelters to hospitals. 

The proposed optimization model is embedded into a GIS-based decision support system 

and applied to the city of Coimbra (Portugal).  

Ng, Park and Waller (2010) present a bi-level program that considers both system and 

user optimal approaches. The system optimal approach is adopted in the upper level to 

optimally locate shelter facilities while the user optimal approach is deployed at the lower 

level to identify the optimal evacuation routes. The authors solve the model with a Simulated 

Annealing algorithm and present a realistic case study for Sioux Falls, North Dakota (USA), 

under a hypothetical man-made threat. 

Li et al. (2011) introduce a scenario-based bi-level program under hurricane 

circumstances. The ultimate goal of the model is to find optimal shelter sites while 

considering the effect of this decision onto driver route-choice behavior. The authors apply 

the proposed optimization model to the state of North Carolina (USA) as a realistic case study.  

In summary, prior to 2011, the main emphasis has been on modelling shelter location and 

car-based evacuation as separate problems, with only a handful of models combining the 

two problems. In 2011, the seminal paper for bus-based evacuation was introduced (Bish 

2011), thus enabling the development of models in the other combined categories (problem 

categories 2 and 3, Figure 19). An in-depth analysis of recent combined shelter location and 
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evacuation routing models developed from 2012 onwards is subject of investigation and will 

be discussed next.  

 

4.3 Emergent challenges in optimizing shelter location and evacuation 

routing  

In this section, a brief overview of all the existing recent articles, which will be referred to as 

case studies, is provided. A structured analysis of the case studies will be then presented, 

which also includes a discussion of the responses of the authors to an ad-hoc questionnaire. 

4.3.1 Case studies overview 

The analysis focuses on the timeframe January 2012 – December 2017. The existing papers 

have been collected by exploring the INFORMS journal database, Science Direct, and the 

Springer Journal Database, which have been queried with two main keywords: “shelter” and 

“evacuation”. Nine articles matched the search criteria whose outlet-based distribution is as 

follows: three papers in Transportation Research Part E, two in the EURO Journal on 

Computational Optimization, one in the European Journal of Operational Research, one in 

the Journal of Transport Geography, one in Transportation Research Part B, and one in 

Transportation Science. These papers are briefly discussed in chronological order to illustrate 

the temporal evolution of the field (in case of year ties, papers are ordered by first author 

surname).  

Coutinho-Rodrigues, Tralhão and Alçada-Almeida (2012) define a multi-objective 

location-routing model to address the evacuation of self-evacuees. In particular, the authors 

extend the model proposed by Alçada‐Almeida et al. (2009) by optimizing the location 

decisions and including two additional criteria in the objective function. The objectives to be 

minimized are: (1) total traveling distance from evacuation zones to shelter sites on primary 

paths (i.e., best available evacuation routes); (2) evacuee risk while reaching a shelter facility 

on primary paths; (3) total traveling distance from evacuation zones to shelter sites on 

backup paths (i.e., best available evacuation routes when primary paths are unavailable); (4) 

evacuee risk while staying at a shelter site; (5) total evacuation time from shelters to an 

hospital; and (6) total number of shelters to be opened. The model is solved with an off-the-

shelf optimization software and is tested on a realistic case study for the Baixa region of the 

city of Coimbra (Portugal). 
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Li et al. (2012) tackle the evacuation of self-evacuees, who move towards either a shelter 

site or an alternative destination, under different hurricane scenarios. They present a 

scenario-indexed bi-level program where shelter location and evacuation routing problems 

are addressed conjunctively. The upper level model is a two-stage stochastic location and 

allocation problem and entails shelter decisions. The lower level deploys a dynamic user 

equilibrium model to mimic evacuee behavior and account for congestion-related issues, in 

line with a user optimal approach. The ultimate goal is to identify optimal evacuation 

planning decisions by taking into consideration how different shelter locations can influence 

evacuee route choice. The bi-level program is solved with heuristic algorithms whose 

applicability is tested on a realistic case study for the state of North Carolina (USA). 

Goerigk, Deghdak and Heßler (2014) address the evacuation towards shelter sites of both 

self-evacuees and supported evacuees through a multi-period, multi-criteria mixed-integer 

program. To the best of my knowledge, this is the only paper to address shelter location, car-

, and bus-based evacuation into a combined optimization model, called the Comprehensive 

Evacuation Problem (CEP). The authors model the dynamic aspect of an evacuation process 

and account for different planning objectives conjunctively such as the evacuation time, the 

number of shelters to be opened, and the risk exposure of the evacuees. The authors assume 

a System Optimal (SO) approach where a planning authority is in charge of both shelter and 

evacuation routing decisions. The optimization model is solved with a genetic algorithm and 

tested on two realistic case studies: the evacuation of the city of Kaiserslautern (Germany) 

due to a bomb defusion and the evacuation of the city of Nice (France) due to an earthquake 

with a subsequent flood. 

Bayram, Tansel and Yaman (2015) present a non-linear mixed-integer program for self-

evacuation towards shelter destinations. The model is based on a Constrained System 

Optimal (CSO) approach. A CSO perspective assumes that evacuees are willing to accept, to 

a certain level of tolerance, to travel routes that are not the shortest ones. The proposed 

CSO model accounts for both shelter and evacuation routing decisions while minimizing the 

total evacuation time, which is modelled through a non-linear function of the traffic volume. 

Furthermore, the authors formulate a system optimal model whose results are compared 

with the CSO one to evaluate the fairness, with respect to both routes and shelters, of the 

emergent planning decisions. They also investigate the evacuation plan efficiency. The 

problem is solved by using a second order cone programming approach and results are 

presented for both test and realistic case studies, such as the Istanbul European and Istanbul 

Anatolian networks under earthquake circumstances.  
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Kılcı, Kara and Bozkaya (2015) address shelter location and self-evacuation with the 

ultimate goal of improving the Turkish Red Crescent (TRC) approach. TRC considers ten 

different criteria (e.g., transportation of relief items, healthcare providers, road connections) 

to rank candidate shelter sites: each candidate area receives a score per each criterion, then 

potential areas are sorted in decreasing  order of the total score, and shelters are built in the 

areas with the highest score. The authors improve the TRC approach by developing a 

mathematical model that considers evacuation zones-to-shelters distances and shelter site 

utilization. The aim is to identify the optimal location of temporary shelter areas and match 

evacuation districts to shelter areas so as to satisfy several utilization and efficiency criteria. 

The model is solved through a commercial solver and applied to two realistic case studies 

under earthquake circumstances: the Kartal district of Istanbul and the province of Van 

(Turkey).  

Gama, Santos and Scaparra (2016) present a multi-period mixed-integer program for self-

evacuation towards shelter sites. The proposed optimization model tackles together shelter 

location, warning signals dissemination, and evacuation routing decisions under flood 

circumstances. The aim is to optimally identify, based on a flood propagation model, opening 

times and locations for shelter sites, timings for evacuation order dissemination, and optimal 

evacuees-to-shelter allocation while minimizing the total traveling time between evacuation 

zones and shelter destinations. The model is solved with a Simulated Annealing algorithm 

whose applicability is tested on a realistic case study for Wake County, North Carolina (USA). 

Heßler and Hamacher (2016) propose a sink location problem to mimic a self-evacuation 

process, where evacuees are at given nodes (evacuation zones) and shelter sites are assumed 

to be the sinks. The model objective is to minimize the opening costs of the shelters while 

guaranteeing that shelter capacities and link capacities (used to model road traffic) are not 

exceeded. The authors present different variations of the sink location problem that can be 

used in different disaster situations (e.g., bomb disposal). The models are solved through 

adaptations of source location heuristics and their applicability is tested on both random and 

realistic instances (i.e., the evacuation of the city of Kaiserslautern, Germany, under a bomb 

disposal scenario). 

Shahparvari et al. (2016) deal with evacuation under bushfire circumstances and focus on 

a specific category of supported evacuees: late evacuees who initially shelter in place 

(American Red Cross 2003) as a precautionary measure but then need to evacuate with the 

support of public authorities (hence, by buses), under short notice scenario. The authors 
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present a multi-objective integer program that identifies the best shelter location and 

evacuation routes while optimizing two conflicting objectives: maximizing the number of 

evacuees employing the least risk-prone routes and minimizing the utilization of resources 

(in terms of both shelters and vehicles). The model is solved with an 𝜀-constraint approach 

and is tested on the 2009 Black Saturday bushfire in Victoria (Australia).  

Bayram and Yaman (2017) present a scenario-based two-stage stochastic non-linear 

mixed-integer program for self-evacuation towards shelter destinations. They extend the 

work of Bayram, Tansel and Yaman (2015) by addressing the uncertainty affecting evacuation 

demand as well as potential alteration to the network structure (both roads and shelter sites) 

due to the disaster occurrence. The authors develop an ad-hoc exact solution approach 

based on both Benders decomposition and cutting plane method. Results are presented for 

both test and realistic case studies, such as the Istanbul European and Istanbul Anatolian 

networks under earthquake circumstances.  

Table 11 briefly summarises the main features of shelter location, car-based evacuation, 

bus-based evacuation as separate problems as well as shelter location and car-based 

evacuation, shelter location and bus-based evacuation and shelter location together with 

both car-based and bus-based evacuations as combined problems in terms of objectives, 

constraints and case studies. 



73 
 

Table 11. Features of shelter location, car-based evacuation, bus-based evacuation as separate problems as well as shelter location and car-based evacuation, shelter 

location and bus-based evacuation and shelter location together with both car-based and bus-based evacuation as combined problems 

Problem Objectives Constraints Case Studies 

Shelter 
Location 

Total Evacuation Time (Sherali, Carter and Hobeika 1991; 
Zhao et al. 2015), Total Travel Distance (Chen et al. 2013; 
Xu et al. 2016), Total Risk (Chowdhury et al. 1998), Total 
Shelter Cost (Zhao et al. 2015), Shelter Coverage (Xu et 
al. 2016) 

Maximum Shelter Capacity (Sherali, Carter and 
Hobeika 1991; Zhao et al. 2015), Budgetary Restriction 
(Chen et al. 2013; Chowdhury et al. 1998), Maximum 
Evacuation Distance (Zhao et al. 2015; Xu et al. 2016), 
Minimum Coverage Requirement (Xu et al. 2016) 

Hurricanes (Sherali, Carter and 
Hobeika 1991), Cyclones 
(Chowdhury et al. 1998), 
Earthquakes (Chen et al. 2013; Zhao 
et al. 2015; Xu et al. 2016) 

Car-based 
Evacuation 

Total Travel Distance (Cova and Johnson 2003), Network 
Clearance Time (Miller-Hooks and Patterson 2004), Total 
Evacuation Time (Xie and Turnquist 2011), Total Number 
of Evacuees (Lim et al. 2012), Total Traveling time (Ren 
et al. 2013), Network Congestion (Lim et al. 2015) 

Flow Conservation (Cova and Johnson 2003; Miller-
Hooks and Patterson 2004; Xie and Turnquist 2011; 
Lim et al. 2012; Ren et al. 2013) 

Bomb threat (Cova and Johnson 
2003), Hurricanes (Lim et al. 2012), 
Nuclear plant evacuation (Xie and 
Turnquist 2011), Terrorist attack 
(Ren et al. 2013) 

Bus-based 
Evacuation 

Maximum Evacuation Time (Bish 2011; Goerigk, Grün 
and Heßler 2013; Goerigk and Grün 2014; Goerigk, 
Deghdak and T’Kindt 2015) 
Maximum number of transferred evacuees with lowest 
risk (Shahparvari et al. 2017; Shahparvari, Abbasi and 
Chhetri 2017; Shahparvari and Abbasi 2017) 

Flow Conservation (Bish 2011; Shahparvari et al. 2017; 
Shahparvari, Abbasi and Chhetri 2017; Shahparvari 
and Abbasi 2017) 
Bus capacity (Bish 2011; Shahparvari et al. 2017; 
Shahparvari, Abbasi and Chhetri 2017; Shahparvari 
and Abbasi 2017) 

Bomb disposal (Goerigk and Grün 
2014; Goerigk, Deghdak and T’Kindt 
2015) 
Bushfire (Shahparvari et al. 2017; 
Shahparvari, Abbasi and Chhetri 
2017; Shahparvari and Abbasi 2017) 
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Table 11. Features of shelter location, car-based evacuation, bus-based evacuation as separate problems as well as shelter location and car-based evacuation, shelter 

location and bus-based evacuation and shelter location together with both car-based and bus-based evacuation as combined problems (Continued) 

Problem Objectives Constraints Case Studies 

Shelter Location and 
Car-based Evacuation 

Total Evacuation Time (Kongsomsaksakul, Yang and 
Chen 2005; Alςada-Almeida et al. 2009; Ng, Park and 
Waller 2010; Li et al. 2011, Li et al. 2012), Total 
Number of Shelters (Coutinho-Rodrigues, Tralhão 
and Alçada-Almeida 2012) Total Risk (Alςada-
Almeida et al. 2009; Coutinho-Rodrigues, Tralhão 
and Alçada-Almeida 2012), Total Shelter Opening 
Cost (Heßler and Hamacher 2016), Total Travel 
Distance (Kongsomsaksakul, Yang and Chen 2005; 
Alςada-Almeida et al. 2009; Ng, Park and Waller 
2010; Coutinho-Rodrigues, Tralhão and Alçada-
Almeida 2012; Bayram, Tansel and Yaman 2015; 
Gama, Santos and Scaparra 2016; Bayram and 
Yaman 2017)   

Flow Conservation (Kongsomsaksakul, 
Yang and Chen 2005; Heßler and 
Hamacher 2016), Maximum/Minimum 
Number of Evacuees for Shelter 
Opening (Alςada-Almeida et al. 2009; 
Coutinho-Rodrigues, Tralhão and 
Alçada-Almeida 2012), Number of 
Shelters (Alςada-Almeida et al. 2009; Li 
et al. 2011, Li et al. 2012; Coutinho-
Rodrigues, Tralhão and Alçada-
Almeida 2012; Bayram, Tansel and 
Yaman 2015; Gama, Santos and 
Scaparra 2016; Bayram and Yaman 
2017), Shelter Utilization (Kılcı, Kara 
and Bozkaya 2015)   

Bomb disposal (Heßler and Hamacher 
2016), Earthquakes (Bayram, Tansel and 
Yaman 2015; Kılcı, Kara and Bozkaya 2015; 
Bayram and Yaman 2017), Fires (Alςada-
Almeida et al. 2009; Coutinho-Rodrigues, 
Tralhão and Alçada-Almeida 2012); Floods 
(Kongsomsaksakul, Yang and Chen 2005; 
Gama, Santos and Scaparra 2016), 
Hurricanes (Li et al. 2011; Li et al. 2012) 

Shelter Location and 
Bus-based Evacuation 

Total Number of Evacuees (Shahparvari et al. 2016), 
Total Resources (Shahparvari et al. 2016) 
 

Shelter Capacity Expansion 
(Shahparvari et al. 2016), Total 
Number of Rescue Vehicles 
(Shahparvari et al. 2016) 

Bushfires (Shahparvari et al. 2016) 

Shelter Location,  
Car-based Evacuation 
and Bus-based 
Evacuation 

Total Evacuation Time (Goerigk, Deghdak and Heßler 
2014), Total Number of Shelters (Goerigk, Deghdak 
and Heßler 2014), Total Risk (Goerigk, Deghdak and 
Heßler 2014) 

Flow Conservation (Goerigk, Deghdak 
and Heßler 2014), Shelter Capacity 
(Goerigk, Deghdak and Heßler 2014), 
Vehicle Capacity (Goerigk, Deghdak 
and Heßler 2014) 

Bomb disposal (Goerigk, Deghdak and 
Heßler 2014), Earthquakes (Goerigk, 
Deghdak and Heßler 2014) 
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4.3.2 The analysis of the nine case studies 

The analysis of the nine case studies has been carried out according to the lifecycle 

underpinning hard OR disciplines (e.g., simulation), which is structured into four phases: 

conceptual modelling (CM), model coding (MC), experimentation (E), and implementation (I) 

(Robinson 2014). 

Several issues have been identified for each block of the optimization lifecycle for shelter 

location and evacuation routing. Aspects belonging to the conceptual modelling phase 

include: stakeholder involvement; data collection; evacuee categories, behavior and 

demographics; equity of the evacuation process; evacuation zones and shelter sites 

definition; resource availability; and communication and infrastructures. Model coding 

themes are those related to the different types of programming (e.g., multi-period, multi-

objective, scenario-based, stochastic) and solution methods (e.g., exact algorithms, 

heuristics, commercial solvers), along with the deployment of user-friendly interfaces (e.g., 

GIS-based). Realistic case studies, stakeholder involvement at both experimentation and 

calibration stages, and usage of additional data sources are aspects addressed in the 

experimentation block. Implementation consists in using the modelling approaches in real 

situations and includes aspects such as model dissemination to stakeholders and practical 

applications.  

Each case study has been analysed according to these aspects. To clarify some ambiguities 

that have arisen, an ad-hoc questionnaire was sent to all the authors of the nine case studies. 

However, in eight out of nine cases, only one author answered, mainly the corresponding 

author. In the only case where more than one author answered, results have been evaluated 

for clashes and the responses of the corresponding author are reported. The questionnaire 

was developed using Qualtrics survey software, in line with survey design principles (Saris 

and Gallhofer 2007). The questionnaire, which should be intended as a supplemental 

validation tool of the analysis, has been structured into four main blocks that mimic the four 

phases of the optimization lifecycle. An additional block of questions was added to the 

questionnaire to gain further insights, such as the kind of contribution the authors meant to 

provide. The questionnaire has undergone a pilot phase, where it has been evaluated by a 

non-profit organization member, an academic and one of the authors of the existing papers. 

The pilot phase helped structure the final questionnaire that can be found in Table 12.  
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Table 12.  Questionnaire 

Shelter Location and Evacuation Routing in Disaster Management 

Conceptual Modelling (CM) Block 

Q1 Has the author work been commissioned by someone?  

Q1.1 If yes, who is (are) the commissioner(s)? 

Q2 
Have stakeholders (i.e., those who have interest in the problem) been involved in the 
study?  

Q2.1 If yes, which stakeholders have been involved? 

Q2.1 

If no, explain why (more than one option is allowed): 
a) Difficult to identify relevant stakeholders 
b) Difficult to get stakeholder contact details 
c) Stakeholders too busy or not interested 
d) Stakeholders skeptical about potential study benefits 
e) Main focus of the paper is methodological 
f) Too time-consuming to involve the stakeholders 

Q3 Has any primary data (e.g., interviews, surveys, etc.) collection been carried out? 

Q3.1 If yes, which are the primary data that have been collected along with their sources? 

Q4 Has any secondary data (i.e., available from the web) collection been conducted? 

Q4.1 If yes, which are the secondary data that have been collected along with their sources? 

Q5 Has a specific type of disaster (e.g., earthquake, flood) been analyzed? 

Q5.1 If yes, which disaster? 

Q6 

Have the following evacuee categories been considered (more than one option is allowed): 
a) Self-evacuees who move towards a shelter 
b) Self-evacuees who move towards other destinations 
c) Supported evacuees who move towards a shelter 

Q6.1 

If supported evacuees have been considered, have the following aspects been included in 
the model (more than one option is allowed): 

a) Vehicle type 
b) Vehicle availability 
c) Qualified driver ability 
d) Driver willingness to expose him/herself to danger 
e) Multimodal transportation 

Q7 

How have the evacuee starting positions been defined? 
a) Centroids of evacuation zones 
b) Bus stops 
c) Others 

Q7.1 If others, please explain. 

Q8 Has the time of the day been considered when defining the evacuation starting points? 

Q9 

Has the evacuee behavior been accounted for (more than one option is allowed): 
a) Response to warning signals 
b) Individual route preference 
c) Route diversion to collect family members 

Q10 
Have the evacuee demographics (e.g., age, sex, disabilities, social class, etc.) been taken 
into account? 

Q10.1 If yes, what is (are) the demographic aspect(s) that has (have) been considered? 

Q11 
Have you considered egalitarian policies requiring that the needs of all targeted 
populations are met? 
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Table 12.  Questionnaire (Continued) 

Q12 
Have different kinds of shelters been included in your model (i.e., providing different 
services such as food, first-aid, dormitory facilities, etc.)? 

Q13 

Have the candidate sites for potential shelters been selected from the following (more 
than one option is allowed): 

a) City and/or County Owned Facilities (e.g., school sites, community centers, 
recreational facilities) 

b) Congregations (e.g., churches) 
c) Open Spaces (e.g., camping areas) 
d) Alternative sites (e.g., medical care sites) 
e) None of the above 

Q13.1 
If none of the above, please explain your assumptions on the candidate sites for potential 
shelters. 

Q14 Has resource availability (e.g., staff, shelter capacity, budget, etc.) been considered? 

Q15 
Have communication issues (e.g., warning signals, evacuation instructions) been 
addressed? 

Q16 Has road congestion been included in the model? 

Q17 Have infrastructure disruptions (e.g., communications, road, etc.) been accounted for? 

Q18 
Has the intrinsic dynamic aspect of the evacuation process been tackled (e.g., disaster 
propagation, availability of resources over time)? 

Model Coding (MC) Block 

Q19 Is the optimization model multi-period (e.g., developed over time intervals)? 

Q20 Is the optimization model multi-objective? 

Q20.1 If yes, what are the objectives that have been considered? 

Q20.1 If no, which objective has been considered? 

Q21 Has scenario-based modelling been deployed? 

Q22 Has stochastic programming been employed? 

Q23 

Which kind of solution method has been deployed (more than one option is allowed): 
a) An off-the-shelf software (e.g., CPLEX) 
b) Ad hoc exact method 
c) Ad hoc heuristic 

Q24 Has a friendly interface been developed to facilitate the use of the model (e.g., GIS-based)? 

Experimentation (E) Block 

Q25 Has any realistic case study been presented in your paper? 

Q26 Has any stakeholder been involved in the experimentation phase of the study? 

Q26.1 

If yes, in which experimentation phase of the study (more than one option is allowed): 
a) Development of the scenarios to be analyzed 
b) Sensitivity analysis to be conducted 
c) Other 

Q26.1 If other, please explain. 

Q27 Have additional data sources been used for further purposes (e.g., sensitivity analysis)? 

Q27.1 If yes, which one(s)? 

Implementation (I) Block 

Q28 Has the proposed model ever been handed over to the stakeholders (e.g., for a policy)? 

Q29 As a result of your study, have any arrangements for a future evacuation plan been made? 
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Table 12.  Questionnaire (Continued) 

Further Questions (FQ) Block 

Q30 
What is the main contribution of your paper: 

a) Theoretical/Methodological/Technical contribution to optimization modelling 
b) Practical contribution to disaster management  

Q31 
Which of the following aspects held you up the most in making your model realistic: 

a) Technical limitations 
b) Access to people and data 

Q32 
Are there any recent (January 2012 – December 2016 time frame) research articles on 
shelter location and evacuation planning that you would suggest us to look at? 

Q33 Is there any other issue this questionnaire should have included? 

 

 

Results have been critically analysed and compared across the papers and the author 

responses. This process has led to the identification of the main challenges of shelter location 

and evacuation routing in optimization at the present time, which can be grouped as follows: 

stakeholder involvement, evacuation modes, clear definition of modelling inputs, evacuee 

behavior, system behavior, and methodology. Each of these is discussed next. A summary of 

the results emerging from the analysis and the author questionnaire responses can be found 

in Table 13.  

4.3.2.1 Stakeholder involvement 

The analysis of questions pertaining to stakeholder involvement revealed that there was no 

previous agreement with any stakeholders (Q1) in any of the nine case studies. The 

responses suggest that those who engaged with stakeholders did not clearly explain the 

extent of the involvement (i.e., in which phase of the optimization process the stakeholders 

participated, what kind of contribution they provided to the study) (Q2, Q26). Evacuation  

planning operations involves a multitude of stakeholders, including “emergency 

management practitioners, civil protection agencies, local disasters preparedness and 

response workers, disaster-affected and host communities, and public service providers” 

(Camp Coordination and Camp Management (CCCM) Cluster 2014, p. 13). Stakeholder 

engagement is an essential component of decision-making in multi-organisation settings 

(Huxham 1991). As discussed by Edelenbos and Klijn (2005), stakeholders involved in 

interactive decision-making allow to tackle the changing aspects of the problem under study 

and to create solutions that are better than those produced in absence of engagement. 
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Table 13. Insights achieved through critical analysis of the existing papers (left column) and questionnaire responses of their authors (right column)  

 
Coutinho-

Rodrigues et 
al., 2012 

Li et al.,              
2012 

Goerigk et al.,    
2014 

Bayram et al.,           
2015 

Kilci et al.,          
2015 

Gama et al.,    
2016 

Hessler et 
al., 2016 

Shahparvari et 
al., 2016 

Bayram et al., 
2017 

CM 

Q1  - - - - - - - - - - - - - - - - - 

Q2 - - -  - - - - -  - - - - -  - - 

Q3 - -   - - - - - - - - - - -  - - 

Q4                   

Q5 - -     -            

Q6 SES SES 
SES, 
SED 

SES, 
SED 

SES,SE SES,SE SES SES SES SES SES SES 
SES,
SED 

SES, 
SED 

SE SE SES SES 

Q7 C C O C O BS O C C C C C O O O O O C 

Q8  - - - - - -  - - - - - - - - -  

Q9 - - RP 
WS, 
RP 

- - RP RP - RP WS WS - - - - RP RP 

Q10 - - -  - - - - - - - - - - - - - - 

Q11 -  -  - -   - - - - - - -    

Q12 - - - - - - - - - - - - - - - - - - 

Q13 OS OS COF - - COF - 
COF,CO, 

OS,AS 
COF, 
OS 

COF, 
OS 

COF COF,OS COF COF COF,OS COF,OS - 
COF,CO,

OS 
Q14      -        -     

Q15 - - - - - - - - - -   - - - - - - 

Q16 - -       - - - -       

Q17   - - -  - - - -   - -     

Q18 - -    - - - - -   - - -  - - 

Legend: CM = Conceptual Modelling; MC = Model Coding; E = Experimentation; I = Implementation;  = Yes; - = No or No clear information; SES = Self-Evacuees who move 

towards a Shelter; SED = Self-Evacuees who move towards other Destinations; SE = Supported Evacuees (who move towards a shelter); C = Centroids; BS = Bus stops; O = 

Other; WS = Warning Signals; RP = Route Preference; COF = City/County Owned Facilities; CO = COngregations; OS = Open Spaces; AS = Alternative Sites; S = off-the-shelf 

Software; EX = EXact method; H = Heuristics; GA = Genetic Algorithm; SA = Simulated Annealing 
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Table 13. Insights achieved through critical analysis of the existing papers (left column) and questionnaire responses of their authors (right column) (Continued) 

MC 

Q19 - -    - - - - -   - - -  - - 

Q20       - -   - - - -   - - 

Q21 - -   - - - - -  - - - - -    

Q22 - -   - - - - -  - - - - -    

Q23 S S H H GA GA S S - S S,SA S,SA EX,H EX,H S S,EX,H EX EX 

Q24 - - - - - - - - - - - - - - -  - - 

E 

Q25                   

Q26 - -  - - - - - - - - - - - - - - - 

Q27 - - - - - - - - - - - - - - -    

I 
Q28 - - - - - - - - - - - - - - -  - - 

Q29 - - - - - - - - - - - - - - - - - - 

 

Legend: CM = Conceptual Modelling; MC = Model Coding; E = Experimentation; I = Implementation;  = Yes; - = No or No clear information; SES = Self-Evacuees who move 

towards a Shelter; SED = Self-Evacuees who move towards other Destinations; SE = Supported Evacuees (who move towards a shelter); C = Centroids; BS = Bus stops; O = 

Other; WS = Warning Signals; RP = Route Preference; COF = City/County Owned Facilities; CO = COngregations; OS = Open Spaces; AS = Alternative Sites; S = off-the-shelf 

Software; EX = EXact method; H = Heuristics; GA = Genetic Algorithm; SA = Simulated Annealing 
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Among the papers analysed, only three reported stakeholder participation (Q2) and use 

of primary data (Q3). Li et al. (2012) report that through the involvement of the State 

Department of Emergency Management and the American Red Cross, the modelling team 

organized focus groups with emergency managers and was provided with the set of 

candidate shelter sites for the study; they also conducted phone surveys to residents of the 

area under study. Kılcı, Kara and Bozkaya (2015) state that TRC officials were aware of the 

study but did not directly contribute to it. Finally, Shahparvari et al. (2016) report some 

stakeholder engagement and primary data collection, and mention handing over their 

optimization model to stakeholders (Q28). In all the three cases, the information about 

stakeholder participation was retrieved from the questionnaire responses, but was not 

mentioned in the papers.  

Arguably the case studies analysed have provided a “realistic”, rather than real, 

application of the proposed models (Q25), mostly relying only on secondary data sources 

(Q4). Realistic case studies, albeit useful to prove concepts, do not translate into practical 

implementations (Q29). According to the questionnaire responses (Q31), the major barrier 

to develop realistic, and therefore applicable, models was the access to people and data. 

Moreover, most of the authors contributed either theoretically, methodologically, or 

technically to optimization modelling rather than practically to the field of DM (Q30). 

Reasons for this can be the nature of the academic incentive system, which tends to reward 

researchers based on their theoretical rather than practical work, as well as the adoption of 

an isolationist approach that does not entail engagement with communities external to OR 

(Mortenson, Doherty and Robinson 2015). 

In summary, the analysis seems to suggest that lack of stakeholder involvement leads to 

missed opportunities for primary data collection, which in turn leads to the development of 

realistic, as opposed to real, case studies and eventually to lack of real implementation of 

optimization models.  

4.3.2.2 Evacuation modes 

An evacuation process can occur in different ways: evacuees can move autonomously 

towards either a shelter or an alternative destination while public authorities can arrange 

transportation for those evacuees in need of support. Hence, it is possible to identify three 

main different categories of evacuees (Q6): self-evacuees who move towards a shelter (SES), 

self-evacuees who move towards other destinations (SED), and supported evacuees who 

move towards a shelter (SE).  
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Six case studies tackle only one category of evacuees: five focus on SES (Coutinho-

Rodrigues, Tralhão and Alçada-Almeida 2012; Bayram, Tansel and Yaman 2015; Kılcı, Kara 

and Bozkaya 2015; Gama, Santos and Scaparra 2016; Bayram, Tansel and Yaman 2017) while 

only one addresses SE (Shahparvari et al. 2016). The remaining three case studies integrate 

two categories of evacuees together. Li et al. (2012) and Heßler and Hamacher (2016) deal 

with both SES and SED while Goerigk, Deghdak and Heßler (2014) address SES and SE. Hence, 

none of the nine case studies considers the three categories of evacuees in an integrated 

manner. In addition, in all the case studies evacuation takes place exclusively on road 

networks. Other types of transport or multi-modal evacuation have so far been neglected in 

combined optimization models. 

4.3.2.3 Clear definition of modelling inputs and parameters 

As observed in (Galindo and Batta 2013), a major drawback of many DOM optimization 

models is that the assumptions about the inputs for such models are often unclear, limited 

or unrealistic. This observation was confirmed in the analysis, for example in relation to 

inputs such as evacuation starting positions (Q7), candidate shelter sites (Q13) and resource 

availability (Q14). 

Evacuation starting points (Q7) are usually either area centroids (i.e., a point where the 

population of a certain evacuation zone is assumed to be concentrated) for self-evacuation, 

or bus stops (where evacuees are picked up) for supported evacuation. Seven out of the nine 

case studies did not explicitly specify the assumption concerning the evacuation starting 

positions. The questionnaire responses clarified that Coutinho-Rodrigues, Tralhão and 

Alçada-Almeida (2012), Li et al. (2012), Bayram, Tansel and Yaman (2015), and Bayram and 

Yaman (2017) consider centroids; Goerigk, Deghdak and Heßler (2014) assume bus stops; 

while Heßler and Hamacher (2016) and Shahparvari et al. (2016) consider evacuee houses 

and designated assembly points, respectively. 

Shelter candidate site categories (Q13) can be defined according to the classification 

given by Riverside County Fire Department (2011), which includes: city and/or county owned 

facilities (e.g., school sites, community centres), congregations (e.g., churches), open spaces 

(e.g., camping areas), and alternative sites (e.g., medical care sites). Assumptions regarding 

possible shelter locations were often omitted in the case studies. The questionnaire answers 

revealed that Goerigk, Deghdak and Heßler (2014) assume county-owned facilities as 

shelters to be, and Bayram, Tansel and Yaman (2015) consider all the possible shelter 
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categories, while Li et al. (2012) were provided with shelter site information by the American 

Red Cross who runs them. 

In terms of resource availability (Q14), Gama, Santos and Scaparra (2016) report a specific 

formula (Lorena and Senne 2004) for computing shelter capacities. Kılcı, Kara and Bozkaya 

(2015) adopt specific realistic measures (e.g., “at least 3.5 square meters covered living space 

should be assigned to each person in the shelter areas”, p. 326). However, the remaining case 

studies do not mention how shelter capacities were computed. Clear definitions or 

assumptions concerning other resources (e.g., vehicles, shelter staff, shelter type or road 

availability) were also mostly neglected. In particular, Goerigk, Deghdak and Heßler (2014) 

and Shahparvari et al. (2016), who account for SE, did not consider the vehicle procurement 

aspect (Q6.1). Vehicles can be procured by public authorities as well as volunteers (e.g., non-

profit organizations). Hence, it should be clearly defined who is supplying the vehicles given 

that, if different parties are doing so, a further level of coordination may be required and it 

should be captured within an optimization model. 

In summary, what emerges in the analysis is that a limited number of authors provided 

clear specifications of modelling inputs and other relevant parameters.  

4.3.2.4 Evacuee behavior 

In the analysis of evacuee behavior, five dimensions have been identified to affect the way 

people evacuate during an emergency (Figure 20): time of day (Q8), route diversion (Q9), 

evacuee demographics (Q10), route preference (Q9), and warning signals (Q9). These are 

explored in turn next.   

 

                           

Figure 20. Evacuee behavior aspects of an evacuation process 
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Time of day (Q8), route diversion (Q9), and evacuee demographics (Q10) are three 

extremely intertwined aspects that, according to social science studies (Liu, Murray-Tuite 

and Schweitzer 2012; King and Jones 2015; Preston and Kolokitha 2015; Preston et al. 2015) 

should be accounted for when planning for an evacuation because of their impact onto 

evacuee behavior. Despite their relevance, these elements have not been addressed in the 

case studies.  

Route preferences (Q9) play a critical role in evacuation planning and clearly affect the 

outcome of an evacuation process. Evacuation planning models embed traffic assignment 

models to simulate evacuee movements on the network. Traffic assignment models include: 

user equilibrium (UE), nearest allocation (NA), system optimal (SO), and constrained system 

optimal (CSO) approaches (Bayram 2016). A user-equilibrium (UE) approach mimics the 

selfish attitude of evacuees, who choose evacuation routes to minimize their individual 

traveling time. This approach is based on the assumption that such a behavior on the 

individual level creates an equilibrium at the system level. It also assumes that evacuees have 

full information of the network conditions, something that is not realistic during an 

emergency (i.e., potential disruptions may affect links on certain routes). A nearest allocation 

(NA) approach mimics evacuees who follow their shortest path based on geographical 

distances and free-flow traffic to move towards the nearest shelter facility. Although 

reasonable form a practical point of view, this approach may led to poor system efficiency. 

On the other side of the spectrum, a system optimal (SO) approach simulates the perspective 

of a facility planner who has full control on the route assignment and aims at maximizing the 

system benefit (including congestion reduction). This may lead to the assignment of 

evacuees to routes that are longer than their preferred ones. Although SO approaches are 

easier to model and solve, they fail to capture the evacuee route preferences. A constrained 

system optimal (CSO) approach can be seen as a trade-off between the SO and the UE/NA 

approaches. CSO stipulates that evacuees are assigned to “acceptable” paths only (i.e., paths 

whose length does not exceed the one of their shortest path by more than a given tolerance 

level).  

Among the nine case studies, only three explicitly take into account the evacuee route 

preference, by using a dynamic UE model (Li et al. 2012) and a CSO approach (Bayram, Tansel 

and Yaman 2015; Bayram and Yaman 2017).  In the remaining studies, a SO approach is 

adopted where the allocation of evacuees to shelters is done centrally using assignment, 

network flow or vehicle routing-based approaches. 
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The issuance of a warning signal (Q9) can prompt different reactions among the 

evacuees: to ignore the warning, to inform neighbours/relatives of the disaster, to start to 

evacuate immediately. Once the warning is clearly received and understood, people do not 

evacuate simultaneously but over time. The evacuation pattern often follows an S-shaped 

curve (Perry, Lindell and Greene 1981; Rawls and Turnquist 2012; Murray-Tuite and Wolshon 

2013; Li et al. 2013; Gama, Santos and Scaparra 2016). Among the existing case studies, only 

Gama, Santos and Scaparra (2016) tackle shelter location, evacuation routing and warning 

signal dissemination in an integrated manner so as to model the impact of warning signals 

on the evacuation process. 

To summarize, the analysis shows that evacuee behavior aspects of an evacuation process 

have been scarcely tackled. In fact, three out of the five aspects (i.e., time of day, route 

diversion, and evacuee demographics) have been entirely neglected while route preferences 

and warning signals have been addressed only by three and one out of the nine case studies, 

respectively.  

4.3.2.5 System behavior 

The analysis of the system behavior includes dynamic aspects related to the system status 

over time and issues related to the system performance criteria. 

Dynamic aspects include shelter resources (Q14), shelter categories (Q12), congestion 

(Q16), and infrastructure disruptions (Q17). The term shelter resources captures several 

issues such as capacities (i.e., the amount of space available to accommodate evacuees), 

budget and staff (to set up the shelters), and relief supplies (to be provided to the evacuees). 

Shelter resources are considered to be a dynamic aspect of the evacuation process because 

budget, staff members, supplies and shelters are usually not readily available at the onset of 

a disaster but become available over time (Gama, Santos and Scaparra 2016). Although the 

issue of shelter resources, modelled through either cardinality, budgetary, capacity or staff 

constraints, has been somehow captured in all the case studies, the availability of resources 

over time has been mostly neglected. The only exception is the dynamic model proposed by 

Gama, Santos and Scaparra (2016), which assumes that only a limited number of shelters can 

be opened in each time period of the planning horizon. The issue of considering different 

kinds of shelter facilities (Q12), which satisfy different evacuee needs over time, has also 

been largely neglected. As described in the first chapter, section 1.2.2, three categories of 

shelters can be considered, all providing different services. All the models in the case studies 

only consider one type of shelter.  
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Six of the case studies have attempted at incorporating congestion issues (Q16). Goerigk, 

Deghdak and Heßler (2014), Heßler and Hamacher (2016) and Shahparvari et al. (2016) tackle 

congestion in a simplified way by using capacitated network arcs. In Li et al. (2012), 

congestion is captured in the dynamic UE model, which computes time-dependent traveling 

times. Bayram, Tansel and Yaman (2015) and Bayram and Yaman (2017) model congestion 

through a link performance function developed by the US Bureau of Public Roads (BPR), 

according to a transportation-based approach.  

With the exception of two case studies, infrastructure disruption (Q17) has been largely 

unaddressed. The optimization model by Gama, Santos and Scaparra (2016) considers road 

disruptions during flood disasters. Specifically, the model assumes that, according to flood 

propagation, the water depth on roads changes over time, thus affecting speed and traveling 

times or making roads unavailable.  Shahparvari et al. (2016) also considers road accessibility 

over time, which depends on the propagation of bushfires on various segments of transport 

routes. Bayram and Yaman (2017) address the occurrence of potential disruptions affecting 

both nodes and arcs of the road network (i.e., shelter sites and road connections, 

respectively). 

The need to develop suitable performance criteria for DOM problems has been widely 

recognized, as discussed in this chapter, section 4.1. The models of the nine case studies use 

the following objectives as performance criteria: expected unmet shelter demand and 

expected total network traveling time (Li et al. 2012); total evacuation time, total evacuee 

risk, and total number of shelters (Coutinho-Rodrigues, Tralhão and Alçada-Almeida 2012; 

Goerigk, Deghdak and Heßler 2014; Bayram and Yaman 2017); total traveling time (Bayram, 

Tansel and Yaman 2015; Gama, Santos and Scaparra 2016; Bayram and Yaman 2017); shelter 

opening cost (Coutinho-Rodrigues, Tralhão and Alçada-Almeida 2012; Heßler and Hamacher 

2016); combination of characteristics of open shelter areas (Kılcı, Kara and Bozkaya 2015); 

and cumulative disruption risk and shelter and vehicle usage (Shahparvari et al. 2016). 

Overall, the major emphasis has been on efficiency (evacuation time) and some measure of 

shelter/resource costs. Only three case studies have considered risks, whereas fairness, a key 

criteria to guarantee egalitarianism in emergency situations, has only been addressed in the 

CSO model by Bayram, Tansel and Yaman (2015). In this model, fairness is evaluated through 

a specific indicator, named price of fairness, which measures the difference between the 

evacuation times of a CSO and SO solutions. The authors consider two different indicators, 

normal and loaded unfairness (see Jahn et al. 2005), which are evaluated with respect to 

both routes and shelters. A comprehensive sensitivity analysis is carried out to provide 
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insights on the relationship between the CSO tolerance level (used to embed fairness) and 

the price of fairness.  

To recap, system behavior aspects of an evacuation process have been tackled to 

different extents: shelter resources have been addressed across all the nine case studies 

although not in a dynamic context; congestion issues have been considered in six studies, 

sometimes through simplified models; infrastructure disruptions, risk and fairness issues are 

still largely understudied. 

4.3.2.6 Methodology 

Different modelling techniques and solution methodologies are deployed in optimization. In 

terms of modelling, three case studies propose multi-period models (Q19) (Li et al. 2012; 

Goerigk, Deghdak and Heßler 2014; Gama, Santos and Scaparra 2016). Multi-objective 

programming (Q20) is used in five case studies, with different combinations of objectives 

(Coutinho-Rodrigues, Tralhão and Alçada-Almeida 2012; Li et al. 2012; Goerigk, Deghdak and 

Heßler 2014; Kılcı, Kara and Bozkaya 2015; Shahparvari et al. 2016). Uncertainty has been 

explicitly modelled only in the scenario-based models (Q21) bi-level program proposed by Li 

et al. (2012), where the upper level is a stochastic program (Q22), and the scenarios 

represent different hurricane circumstances, and by Bayram and Yaman (2017).  

The mathematical models have been solved using a range of different methodologies 

(Q23), including off-the-shelf optimization solvers, exact methods and ad-hoc heuristics. In 

some cases, more than one method has been used for comparative analysis. As to be 

expected considering the difficulty of these models, five case studies developed ad-hoc 

heuristics, such as simulated annealing and genetic algorithms (Li et al. 2012; Goerigk, 

Deghdak and Heßler 2014; Gama, Santos and Scaparra 2016; Heßler and Hamacher 2016; 

Shahparvari et al. 2016). In some cases, heuristic solutions have been compared with those 

of commercial optimization software (Gama, Santos and Scaparra 2016) or exact methods, 

such as source location algorithms (Heßler and Hamacher 2016) and 𝜀-constraint techniques 

(Shahparvari et al. 2016). None of the nine case studies included the development of a user-

friendly GIS-based interface (Q24) as a supporting tool for using the models. 

To summarize, the analysis shows that a few case studies developed multi-period and 

multi-objective models while scenario and stochastic programming was used in one case 

only. The complexity of combined models has favoured the usage of heuristic approaches as 

solution methodology. User-friendly GIS-based interfaces have so far been overlooked. 
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4.4 Discussion and roadmap for future research 

The nine case studies (Section 4.3.1) encompass different aspects of shelter location and 

evacuation routing operations. Through their analysis, various challenges that optimization 

should tackle to embed more realism into future models have been identified so that they 

can be used to inform decision making in real disaster situations. Further research directions 

are now outlined: some of them confirm gaps identified in previous surveys (Section 4.1) 

while others newly stem from the analysis of the nine case studies.  

4.4.1 Stakeholder involvement 

Five surveys explored in section 4.1 (Altay and Green 2006; Simpson and Hancock 2009; 

Galindo and Batta 2013; Hoyos, Morales and Akhavan-Tabatabaei 2015; Özdamar and Ertem 

2015) propose research on optimization modelling that involves engaging with stakeholders 

to enable the actual implementation of optimization models (e.g., arrangements for a future 

evacuation plan). The case studies analysed in this study report limited engagement with 

stakeholders. However, the authors who did involve them report that they were able to 

collect primary data (Li et al. 2012; Shahparvari et al. 2016). Stakeholder identification and 

involvement can be achieved through Problem Structuring Methods (PSMs), such as Soft 

Systems Methodology and System Dynamics (Pidd 2003; Wang, Liu and Mingers 2015), 

whose deployment for DM problems has been explicitly advocated (Altay and Green 2006; 

Simpson and Hancock 2009; Galindo and Batta 2013). In particular, Simpson and Hancock 

(2009) propose the investigation of the combination of Hard and Soft OR/PSM techniques in 

disaster response and their deployment within a multi-methodology approach (Sachdeva, 

Williams and Quigley 2007). They put forward two main reasons: (1) the capability of PSMs 

to deal with the unstructured nature of the problems arising from an emergency response 

context, and (2) the scarcity of truly high-impact application of results emerging from Hard 

OR methodologies, mainly due to a lack of structured involvement of all the stakeholders, 

echoed by Franco and Montibeller (2010). Van Wassenhove and Besiou (2013) propose 

System Dynamics to be paired with common OR methods to capture the complex reality of 

systems such as reverse logistics and humanitarian logistics. However, to the best of my 

knowledge, PSMs have not yet been proposed to tackle evacuation planning issues, offering 

new research opportunities. Optimization could look to Discrete Event Simulation (DES) 

studies that have used PSMs to engage stakeholders in the modelling process through 

facilitated workshops (Tako and Kotiadis 2015; Kotiadis and Tako 2018). 
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4.4.2 Evacuation modes 

Among the seven surveys, only Bayram (2016), who carries out an evacuation planning-

oriented literature review, suggests to account for special-needs population (i.e., supported 

evacuees). The analysis of the nine case studies shows that three different categories of 

evacuees can be identified: SES, SED, and SE. However, these evacuee categories have been 

considered either as separate ones (Coutinho-Rodrigues, Tralhão and Alçada-Almeida 2012; 

Bayram, Tansel and Yaman 2015; Kılcı, Kara and Bozkaya 2015; Gama, Santos and Scaparra 

2016; Shahparvari et al. 2016; Bayram and Yaman 2017) or as a combination of two out of 

three (Li et al. 2012; Goerigk, Deghdak and Heßler 2014; Heßler and Hamacher 2016). To be 

more comprehensive, even if undoubtedly more complex, all the three different categories 

should be considered in an integrated manner given that they share common resources. In 

fact, SES and SE share shelter facilities, which affects both shelter capacity (i.e., number of 

people who can be accommodated) and resources (e.g., relief supplies). All the evacuees 

share the road network, leading to congestion and, ultimately, affecting the evacuation time. 

Moreover, what emerges in the analysis is that optimization researchers have so far 

neglected to account for assisted evacuation and multimodal evacuation. Assisted 

evacuation, as mentioned in chapter 1, section 1.2.2, deals with evacuees who drive their 

own vehicles but are in need of advice from public authorities (e.g., directions) while 

multimodal evacuation requires different transportation modes. To model assisted 

evacuation, collateral problems should be considered such as how and where evacuees 

would be informed about the adopted evacuation strategies (e.g., contraflow lane reversal). 

For example, advanced traveler information can be provided through the deployment of 

portable Variable Message Signs (VMS), which can be opportunely located and re-located 

(Sterle, Sforza and Esposito Amideo 2016). On the other side, multimodal evacuation would 

require to investigate the optimization of different kinds of evacuation (each one related to 

a different mean of transportation) and their coordination. The use of alternative transport 

modes has been investigated for other emergency logistics operations (e.g., helicopter 

operations for disaster relief in (Ozdamar 2011). Multimodal emergency evacuation of large 

cities has been investigated in (Abdelgawad and Abdulhai 2010). However, combined 

optimization models for shelter location and evacuation planning have so far only considered 

evacuation by cars and buses. More research is definitely warranted for the development of 

combined models integrating different kinds of transportation.  
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4.4.3 Clear definition of modeling inputs and parameters 

Evacuation planning operations should be more application-oriented rather than theoretical 

or model-driven. Pedraza-Martinez and Van Wassenhove (2016) have recently edited a 

special issue on humanitarian operations management problems focused on collaborative 

journal articles with field practitioners or articles exploring how the research fits practical 

issues. This can be thought of as a first step to push researchers towards a more application-

oriented perspective. To foster real application, more realistic assumptions underpinning 

optimization models are needed, as already pointed out in the survey by Galindo and Batta 

(2013). The analysis reveals that there is a lack of realistic assumptions when referring to 

modelling inputs and parameters. Indeed, few authors provide a clear specification of inputs 

such as evacuee starting points, shelter candidate positions, and shelter capacities. On the 

other hand, those authors who explicitly pointed out their modelling assumptions were able 

to embed more realism into the proposed optimization models. In order to provide more 

realistic modelling assumptions, the suggestion is to favour primary data collection over 

secondary data collection. In fact, all the nine case studies relied on secondary data sources 

(e.g., government publications, websites) while only two out of these used primary data (e.g., 

personal interviews, surveys). Primary data can be collected if researchers establish a kind of 

contact with relevant stakeholders (e.g., civil protection agencies). Embedding more realism 

through the use of primary data can be fostered through stakeholder involvement (Tako and 

Kotiadis 2015; Kotiadis and Tako 2018). In addition, the uncertainty of some problem inputs, 

such as evacuee demand, arrival time at pick up location, and traveling times, needs to be 

clearly understood and reliably modelled by using probabilistic analysis, statistics methods 

and social science studies. 

4.4.4 Evacuee behavior 

Two surveys (Caunhye, Nie and Pokharel 2012; Bayram 2016) advocate the integration of 

human behavior in optimization models. Human behavior, in fact, adds an additional layer 

to the uncertainty characterising evacuation processes and should therefore be addressed, 

for example through the use of robust optimization (Caunhye, Nie and Pokharel 2012). The 

analysis of human behavior has been broken down into five main aspects: time of day, route 

diversion, evacuee demographics, route preference, and warning signals. The analysis shows 

that the former three aspects, which are extremely intertwined, have been completely 

neglected despite their impact in determining how people evacuate. To the best of my 

knowledge, in the broad field of optimization, few studies, which do not belong to the sample 
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of case studies, have attempted to consider the above issues. Alçada‐Almeida et al. (2009) 

tackled the time of day as an evacuation issue for major fires with an application to the city 

of Coimbra (Portugal). Murray-Tuite and Mahmassani (2003) propose two linear integer 

programming models in the context of emergency evacuation to account for route diversion. 

The first model defines the meeting location for the different family members. The second 

model identifies who is the one in charge of family member pick-up and how pick-up is 

scheduled. The emerging results are fed into a simulation software that allows to analyse 

traffic conditions and eventually re-schedule what has been decided previously. More 

recently, Ukkusuri et al. (2016) develop what they name “A-RESCUE: Agent-based Regional 

Evacuation Simulator Coupled with User Enriched Behavior”, which is a simulation tool that 

combines household behavior and traffic assignment issues. This may suggest to put forward 

a combination of optimization and simulation for evacuation planning where optimization 

could be deployed for shelter location decisions while simulation for evacuation routing ones. 

The criticality of the time of day, route diversion, and evacuee demographics is explored 

in a study on child pick-up during daytime emergency situations (Liu, Murray-Tuite and 

Schweitzer 2012). The authors, through more than three hundred interviews, identify diverse 

behavioral parental patterns across three diverse scenarios: a usual weekday and two 

hypothetical emergency situations (i.e., two sudden incidents at daytime). Distance between 

parents and children is a crucial aspect. Usually a mother’s workplace is nearer than a father’s 

to schools/homes, which contributes to a gender difference in the behavior with the nearest 

parent more likely to pick the children up in an emergency situation. In addition, the study 

highlights that household economic status-related aspects, such as income, ethnicity, and 

education level (hence, demographics) are also relevant. Indeed high income households are 

more likely to pick up children in all the different scenarios. As evidenced in this study, time 

of day and demographics critically affect route diversion, eventually leading to delay and re-

routing during an evacuation process. These three aspects should be further examined from 

a social science point of view and then incorporated into optimization models at the 

conceptual modelling stage. For example, evacuee demographics can be analysed through 

the analysis of census data (Camp Coordination and Camp Management (CCCM) Cluster 

2014).  

Route preference and warning signals dissemination and perception have been partly 

addressed but their integration into optimization models still requires some enhancements. 

Two case studies adopted traffic assignment models to account for route preference (Li et al. 

2012; Bayram, Tansel and Yaman 2015). The issue with these approaches is that they do not 
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account for related aspects that can affect the evacuation process. Traffic assignment models 

could be integrated with evacuation strategies such as contraflow lane reversal (i.e., one or 

more lanes of a highway are used in the opposing traffic direction), deletion of crossing 

manoeuvres in correspondence of network intersections, traffic signals, and usage of 

shoulders (Murray-Tuite and Wolshon 2013). Recently, more advances in this area have been 

achieved through simulation-based approaches (Takabatake et al. 2017; Yuan et al. 2017). 

Route preference approaches could also take into account background traffic (i.e., the one 

generated by those who do not take active part in the evacuation), intermediate trips (i.e., 

the ones dictated by route preference as child-pick up), and shadow evacuation (i.e., the one 

put into action by those people who are not in need of evacuating but do so for own 

precautionary measure). Only one case study has addressed warning signals dissemination 

and perception (Gama, Santos and Scaparra 2016). A recent advance towards optimization 

for warning signals dissemination is due to Yi et al. (2017) who developed a bi-level program. 

The upper level is a multi-stage stochastic program that optimizes the issuance of warning 

signals across several hurricane scenarios while the lower level evaluates both cost and risk 

associated with the emerging strategy. 

Sorensen and Mileti (1988) define three main sources through which warning information 

are disseminated: official channels (e.g., police officers), informal channels (e.g., friends, 

relatives), and media (e.g., television), where different warning dissemination channels 

affect the response to a warning signal (Sorensen 1991). In particular, Camp Coordination 

and Camp Management (CCCM) Cluster (2014) report that “the media plays a very important 

and relevant role in all phases of evacuation” (p. 35). Nowadays, clear examples are social 

media platforms such as Facebook whose Safety Check tool allows people to communicate 

their status (safe or not) if they are in a disaster-affected area. Fry and Binner (2016) address 

the role of social media in supporting emergency evacuation operations through a means of 

both mathematical modelling and Behavioral OR (BOR). For example, social media platforms 

could be deployed to manage vehicle procurement so to coordinate both original fleet and 

volunteer cars. Moreover, social media could be paired with advanced simulation techniques 

such as agent-based modelling to produce a more trustworthy estimation of the evacuation 

demand (i.e., number of people who need to evacuate). As an example, Nagarajan, Shaw and 

Albores (2012) develop an Agent-Based Simulation (ABS) model to analyse the role of 

evacuee behavior as an unofficial and implicit channel of warning dissemination. In 

particular, the authors evaluate if evacuees, who have been warned, forward their message 

to their neighbours and how this affects the overall warning dissemination.  This is different 
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from the common perspective that evacuee behavior is an output, rather than an input, for 

warning signals and could be considered in future optimization research. Hence, the 

thorough examination of social media data through machine learning, artificial intelligence 

and/or statistics-based techniques and ABS could be deployed to mitigate spatial/temporal 

evacuation demand uncertainty and, eventually, arrange a more efficient distribution of 

evacuation resources. Examples of evacuation resources include different types of vehicles, 

relief items to equip the shelters, and personnel (first responders, drivers, volunteers, clinical 

staffing and emergency officers). In conclusion, a combined social media mining-simulation 

approach to model evacuee behavior could benefit not just disaster response (i.e., 

evacuation) but also disaster preparedness (i.e., relief supply pre-positioning) and foster the 

development of integrated models which combine operations across different DOM phases. 

Undoubtedly, incorporating evacuee behavior poses significant challenges: it requires 

advanced tools to collect and analyse data and expertise in other disciplines (e.g., social 

sciences, machine learning, and psychology). It results in highly complex mathematical 

models that may be difficult to solve thus requiring novel and cutting-edge solution 

methodologies. However, the inclusion of behavioral aspects would result in models that are 

more reliable and more likely to be used in real disaster situations. 

4.4.5 System behavior 

System behavior encompasses different aspects: shelter resources, shelter categories, 

congestion, infrastructure disruptions and performance criteria. The need to address some 

of these aspects (e.g., road disruptions and more suitable performance indicators) has been 

advocated in some previous surveys (e.g., Altay and Green 2006). The analysis further refined 

the investigation into these issues. 

Firstly, shelter resources have not been tackled in a comprehensive way. In fact, while 

shelter capacities have been considered, the availability of resources over time has not. In 

addition, shelter categories (hence, evacuee needs over time) have been entirely neglected. 

This is an aspect that has been addressed from a shelter location only perspective but not in 

conjunction with routing decisions. In a recent study, Chen et al. (2013) introduce a three-

level-hierarchical shelter location model under earthquake circumstances: by considering 

different categories of shelters the model takes into account the temporal variance of 

evacuees’ needs. Similar hierarchical location models could be embedded in comprehensive 

evacuation planning models. Secondly, congestion could be addressed more systematically. 

In fact, as in car-based evacuation routing models only (Cova and Johnson 2003; Xie and 
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Turnquist 2011), congestion can be eased through the introduction of constraints aimed at 

preventing conflicts in correspondence of road intersections as well as through contraflow 

lane reversal assumptions (Brachman and Church 2009). Such issues could be integrated into 

user optimal traffic assignment models to simulate traffic more accurately and support 

decisions for congestion reduction during the evacuation. Thirdly, future models could 

account for infrastructure disruptions which are known to occur in reality. During a disaster, 

the transport network changes over time as some roads in the affected area may become 

unavailable. Road unavailability and disaster propagation clearly affect the evacuation 

process and need to be captured through the use of stochastic and dynamic models, as done 

for other DM operations such as vehicle procurement within disaster relief routing (Rath, 

Gendreau and Gutjahr 2016). Finally, egalitarian policies guaranteeing equal treatment 

among evacuees have not been adequately addressed in optimization. Shelter location 

models only have attempted to tackle this aspect through the definition of specific 

constraints such as the distance between an evacuation zone and a shelter cannot exceed a 

specific threshold (Zhao et al. 2015; Xu et al. 2016) or each shelter should provide a minimum 

level of coverage (Xu et al. 2016). In addition to the usage of specific constraints, new field-

specific performance criteria could be defined. For example, Caunhye, Nie and Pokharel 

(2012) report that performance measures such as “coordination effectiveness and proper 

organizational structure” (p.11) could be developed to account for the fact that humanitarian 

logistics is an environment with a plurality of actors (e.g., stakeholders, communities). 

Moreover, objectives such as risk, given the uncertain nature of disasters, and equity, to 

account for egalitarian treatment of evacuees, should be put forward. 

4.4.6 Methodology 

Three surveys advocate multi-objective models (Altay and Green 2006; Caunhye, Nie and 

Pokharel 2012; Hoyos, Morales and Akhavan-Tabatabaei 2015), with two of these suggesting 

multi-period and stochastic models (Hoyos, Morales and Akhavan-Tabatabaei 2015; Bayram 

2016). The analysis shows that multi-objective and multi-period models have been 

developed to a certain extent but there is a clear lack of stochastic models for evacuation 

planning, which supports (Hoyos, Morales and Akhavan-Tabatabaei 2015). In fact, the 

authors report that evacuation planning requires stochastic programming to address 

uncertain aspects such as evacuation demand, infrastructure disruptions, facility 

survivability, route reliability, and sudden traffic events. Hence, it is paramount to devise ad-

hoc cutting-edge algorithms, as also outlined in the surveys of Altay and Green (2006); 
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Caunhye, Nie and Pokharel (2012); and Bayram (2016). Further advances in the field would 

also be favoured by the development of user-friendly GIS-based interfaces as well as the 

usage of information systems (Hoyos, Morales and Akhavan-Tabatabaei 2015; Özdamar and 

Ertem 2015). Last but not the least, the analysis reveals that optimization may not be able to 

tackle all the aforementioned aspects on its own but may need to be paired with other 

disciplines. For example, a better understanding of the features related to a specific disaster 

(e.g., probability of occurrence, evolution over time) requires the deployment of propagation 

models (as for floods) or the usage of ground motion records (as for earthquakes), whose 

expertise belongs to different disciplines such as climatology, hydrology, meteorology and 

civil engineering. Moreover, disastrous events involve handling large data sets for which 

appropriate data mining/management techniques are required. Similarly, the study of 

human reaction when facing perilous circumstances requires social scientists as 

psychologists. Again, warning signals could be analysed through the deployment of 

simulation approaches (e.g., agent-based modelling), whereas demand and scenario 

predictions could be obtained through advanced statistics techniques. The expertise of 

transport engineers could support the development of traffic assignment models along with 

evacuation strategies (e.g., contraflow lane reversal). In essence, the development of 

efficient evacuation plans requires holistic approaches merging the expertise of different 

researchers. Hence, the final suggestion is to aim for interdisciplinarity. 

 

4.5 Conclusions 

Shelter location and evacuation routing, and evacuation planning more in general, is a field 

which offers plenty of opportunities for both practitioners and researchers, belonging not 

just to the optimisation arena but also to other fields of expertise. The most recent 

optimisation models tackling shelter location and evacuation routing problems in an 

integrated manner have been critically analysed. Through the analysis of these state of the 

art models, the current challenges emerging in this research area have been identified and a 

roadmap for future research has been outlined.  

The analysis confirms some of the findings of previous DM-specific surveys. Namely, the 

following issues need to be addressed: 1) usage of Soft OR/PSMs approaches; 2) modelling 

of infrastructure disruptions; 3) development of multi-objective, combined, multi-period and 

stochastic models, along with cutting edge algorithms; 4) clear and realistic modelling 

assumptions; and 5) deployment of information systems and user-friendly GIS-based 
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platforms. In addition, what emerges in this work, which enriches and completes the 

previous surveys, are the following gaps: 1) primary data collection to embed more realism 

into optimisation models; 2) models which combine different evacuee categories; 3) models 

including assisted and multi-modal evacuation and issues such as evacuation vehicle 

procurement; 4) inclusion of issues such as time of day, route diversion, evacuee 

demographics, route preferences, and warning signals to model evacuee behaviour more 

accurately; 5) novel equity-based approaches for shelter location and evacuation routing; 6) 

integration of infrastructure disruption, congestion, and shelter categories into optimisation 

models; and 7) interdisciplinary research towards shelter location and evacuation routing. 

The ultimate scope of this dissertation is to detail the current state-of-the-art in the 

optimization field for shelter location and evacuation routing so as to identify current 

challenges and outline a roadmap for future research. This could be paired with an analysis 

of the current state-of-practice by reviewing decision-making requirements and current best 

practices in the field as offered by several disaster emergency institutions such the Federal 

Emergency Management Agency (FEMA) in the US. The above vision is quite ambitious and 

requires an interdisciplinary approach towards shelter location and evacuation routing 

operations. However, a novel scenario-based flow-location-allocation-routing model is 

introduced in Chapter 5, which aims at filling some of the aforementioned gaps such as: 

modeling of infrastructure disruptions, realistic modelling assumptions, combination of 

different evacuee categories, inclusion of route preference, and adoption of equity-based 

approaches. 
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5. An integrated user-system approach for shelter location 

and evacuation routing 

This chapter presents a novel scenario-based mixed-integer program which integrates 

shelter location, self-evacuation and supported-evacuation decisions, namely the Scenario-

Indexed Shelter Location and Evacuation Routing (SISLER) problem. To the best of my 

knowledge, only Goerigk, Deghdak and Heßler (2014) have so far produced an optimization 

model tackling the aforementioned three aspects together. However, the approach hereby 

adopted is different, as it will be clarified in the following. The model is solved through a 

Branch-and-Cut algorithm of an off-the-shelf software, enriched with valid inequalities 

adapted from the literature. Computational results are reported for both testbed instances 

and a realistic case study.  

 

5.1 The Scenario-Indexed Shelter Location and Evacuation Routing 

problem 

The ultimate goal of SISLER is to tackle some of the current challenges in the shelter location 

and evacuation routing field that have emerged in the analysis carried out in Chapter 4. As a 

remainder, the challenges have been grouped into five macro-categories: (1) stakeholder 

involvement, (2) evacuation modes, (3) clear definition of modeling inputs and parameters, 

(4) evacuee behavior, and (5) system behavior. In particular, SISLER contributes to knowledge 

by attempting to address gaps regarding categories (2), (4) and (5). 

Firstly, SISLER combines shelter location with two different types of evacuation, i.e., car-

based evacuation and bus-based evacuation, thus addressing the need to consider different 

evacuation modes in a combined way (challenge belonging to category (2)). To the best of 

my knowledge, only another paper has recently attempted to consider the aforementioned 

three aspects together Goerigk, Deghdak and Heßler (2014), which has been described in 

section 4.3.1. 

Secondly, SISLER challenges Goerigk, Deghdak and Heßler (2014)’s assumption related to 

the adoption of a SO approach where a planning authority is in charge of shelter location, 

car-based evacuation, and bus-based evacuation decisions. In fact, it may be argued that this 

assumption is not very realistic, unless paramilitary circumstances are in place, given that 

self-evacuees will always attempt to travel the shortest available route. This is the reason 
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why SISLER assumes that all self-evacuees, even the furthest ones, are able to reach a shelter 

within a traveling time threshold and, based on how strict or loose this threshold is (i.e.,  how 

much self-evacuees are willing to travel either a shorter or lengthier route), they are free to 

decide which path to take. On the other side, the system planner is in charge of opening 

shelter sites and arranging supported-evacuation. This assumption allows to tackle 

challenges belonging to both categories (4) and (5). In fact, self-evacuee willingness to travel 

either shorter or lengthier routes allows to account for evacuee behavior (4) while, imposing 

that all self-evacuees, despite their position, are able to reach a shelter within a traveling 

time threshold, attempts to address equity issues, which are system behavior-related 

challenges (5). 

Thirdly, SISLER deploys scenario-based programming, which is a modeling technique that 

has already been successfully deployed within the disaster management field (e.g., 

emergency relief supply pre-positioning (Rawls and Turnquist (2010)) as well as in the specific 

shelter location and evacuation routing research area (Li et al. (2012), as described in Section 

4.3.1). It may be argued that, during disaster response, given that the disaster has occurred, 

the specific scenario to deal with is known. However, within a restricted time frame to put 

into action an evacuation plan, it is fundamental to know in advance how to proceed. 

Therefore, under uncertain circumstances and based on disaster-specific historical data of 

the areas under consideration, a scenario-based formulation is an efficient tool to obtain a 

solution that is robust across different disastrous conditions. In particular, the scenario-

based formulation of SISLER allows to account for road network infrastructure disruptions in 

a direct way, as to be detailed in the following (Section 5.1.1), which is another system 

behavior-related challenge (5). On the contrary, Goerigk, Deghdak and Heßler (2014) provide 

a multi-objective formulation where the evacuation time, the number of shelters to be 

opened, and the risk exposure of the evacuees are combined. The risk exposure of the 

evacuees may address infrastructure disruptions indirectly however, it does not allow to 

provide a trustworthy solution across different possible disastrous circumstances. 

5.1.1 Model assumptions 

The assumptions underpinning the SISLER problem are as follows.  

1. Both self-evacuation and supported-evacuation are considered, the reason being 

to address both the majority of the evacuees (i.e., those who can autonomously 

drive a vehicle) as well as the remaining minority (e.g., the elderly, the medically-

homebound, etc.).  
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2. Self-evacuation involves people evacuating with their own vehicles towards a 

shelter (people moving towards other destinations are not considered). In the 

following, this type of evacuation is also referred to as evacuation mode (a) or 

car-based evacuation.   

3. Supported-evacuation is arranged by public authorities and relies on buses which 

are stored and dispatched from a depot. In the following, this type of evacuation 

is also referred to as evacuation mode (b) or bus-based evacuation. 

4. The area affected by the disaster is divided in different evacuation zones. Both 

self-evacuation and supported-evacuation start at the centroid of each zone. In 

fact, prior to plan for the evacuation of a certain area, a process named zoning is 

carried out, which divides the region under study in different zones. Then, for 

each zone, the point where all evacuees are assumed to depart for evacuation is 

identified, namely the centroid. 

5. The proposed model is deterministic hence, for each zone, the number of self-

evacuees and supported-evacuees (i.e., evacuation demand) is known.  

6. Both shelters and buses have a limited capacity. In fact, when planning for 

shelters, the amount of space available to each evacuee as well as to vehicles 

taking them to safe sites should be accounted for (guidelines can be found from 

agencies such as the Turkish Red Crescent (Kılcı, Kara and Bozkaya 2015)). 

Similarly, buses have limited space to be allocated that needs to be considered. 

7. Split delivery of supported-evacuees is possible (more than one bus may collect 

people from the same area and bring them to different shelters). However, all 

self-evacuees from the same zone go to the same shelter. From a practical point 

of view, in fact, it would be difficult to direct self-evacuees to different shelters.  

8. The objective is to minimize the completion time of the supported-evacuation. 

9. Self-evacuees use the shortest available path to reach their assigned shelters. To 

guarantee an egalitarian allocation, even the furthest group of self-evacuees must 

be able to reach a shelter site within a given traveling time threshold.  

10. Contraflow lane reversal (Murray-Tuite and Wolshon 2013) has been assumed on 

the network arcs whose destination node is a shelter site, which means that those 

arcs can be traveled only in one direction (i.e., towards the shelter). This is an 

approach that has been already adopted in various evacuation processes in the 

US (Brachman and Church 2009). 
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11. Each bus performs a single trip to collect evacuees from the evacuation zones, the 

reason being that a flood-like disaster has been considered while designing this 

model. When a flood strikes, there is a central zone that gets affected and then 

the disaster starts to propagate in the neighboring areas. Hence, from an 

evacuation perspective, once a bus has departed from the depot, it collects the 

evacuees, takes them to a shelter and stops there, without returning to the 

dangerously affected area. 

12. Several disruption scenarios are considered, which differ in terms of road network 

arc availability, and each scenario occurs with a given probability. In particular, 

scenarios of increasing disaster magnitude have been considered, such as small-

scale, medium-scale and large-scale disruption circumstances, so as to account 

for disaster propagation. Nevertheless, different type of scenarios could be 

considered. 

5.1.2 Model formulation 

4The SISLER problem can be described as follows.  

 

Sets and indices 

𝐺(𝑁, 𝐴): directed network 

𝑁: set of network nodes 

𝑁𝑎 (𝑁𝑎 ⊆ 𝑁): set of zones where evacuation mode (a) starts, indexed by 𝑖 

𝑁𝑏 (𝑁𝑏 ⊆ 𝑁): set of zones where evacuation mode (b) starts, indexed by 𝑖, where 𝑁𝑎 ∩ 𝑁𝑏 ≠

∅ hence, some zones may have both evacuations (mode (a) and (b)) occurring 

𝑁𝑠 (𝑁𝑠 ⊆ 𝑁) : set of potential shelter sites, indexed by 𝑗 

𝐷: set of network disruption scenarios, indexed by 𝑑 

𝐴: set of network arcs 

𝐴𝑑 (𝐴𝑑 ⊆ 𝐴): set of available arcs under disruption scenario 𝑑 

𝐾: set of buses stored and dispatched from a depot node 𝑜 (𝑜 ∈ 𝑁), indexed by 𝑘 

 

Parameters 

𝑞𝑖
𝑎: expected number of mode (a) evacuees in zone 𝑖 ∈ 𝑁𝑎 

                                                           
4 For the sake of clarity, the reader is informed that the mathematical notations hereby 

introduced are for this specific chapter and do not relate with those introduced in other 
chapters of this dissertation. 
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𝑞𝑖
𝑏: expected number of mode (b) evacuees in zone 𝑖 ∈ 𝑁𝑏 

𝐶𝑗: capacity of a shelter at site 𝑗 

𝑟𝑗: amount of resources to set up a shelter at site 𝑗 

𝑅: total amount of available resources 

𝐵𝑘: capacity of bus 𝑘 

𝜏𝑙𝑚
𝑑 : traveling time from node 𝑙 to node 𝑚 in scenario 𝑑 (for bus-based evacuation) 

𝑡𝑖𝑗
𝑑 : shortest traveling time from zone 𝑖 ∈ 𝑁𝑎 to site 𝑗 in scenario 𝑑 (for car-based evacuation) 

𝑇𝑑: self-evacuees traveling time threshold in scenario 𝑑 

𝑝𝑑: probability of occurrence of scenario 𝑑 

𝛼: parameter representing the car-based evacuees willingness to travel, 𝛼 ∈ [0,1] 

 

Decision variables 

𝛾𝑑: bus-based evacuation maximum completion time in scenario 𝑑 

𝑔𝑙𝑚
𝑘𝑑: number of evacuees who travel from node 𝑙 to node 𝑚 with bus 𝑘 in scenario 𝑑 

𝑣𝑖
𝑘𝑑: number of evacuees who start evacuation at node 𝑖 ∈ 𝑁𝑏 with bus 𝑘 in scenario 𝑑 

𝑤𝑗
𝑘𝑑: number of evacuees who end evacuation at site 𝑗 with bus 𝑘 in scenario 𝑑 

𝑥𝑖𝑗
𝑑 : 1 if the evacuees in zone 𝑖 ∈ 𝑁𝑎 are assigned to shelter 𝑗 in scenario 𝑑, 0 otherwise 

𝑧𝑙𝑚
𝑘𝑑: 1 if bus 𝑘 travels from node 𝑙 to node 𝑚 in scenario 𝑑, 0 otherwise 

𝑦𝑗: 1 if a shelter is opened at site 𝑗, 0 otherwise 
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The mathematical formulation of SISLER is the following. 

 

[SISLER] 𝑚𝑖𝑛 ∑ 𝑝𝑑𝑑∈𝐷 𝛾𝑑   (33) 

               s.t.   

               𝛾𝑑 ≥ ∑ 𝜏𝑙𝑚
𝑑 𝑧𝑙𝑚

𝑘𝑑
(𝑙,𝑚)∈𝐴𝑑

  ∀ 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷  (34) 

               ∑ 𝑧𝑜𝑚
𝑘𝑑

𝑚:(𝑜,𝑚)∈𝐴𝑑
≤ 1  ∀ 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (35) 

               𝑣𝑚
𝑘𝑑 + ∑ 𝑔𝑙𝑚

𝑘𝑑
𝑙:(𝑙,𝑚)∈𝐴𝑑

= 𝑤𝑚
𝑘𝑑 + ∑ 𝑔𝑚𝑙

𝑘𝑑
𝑙:(𝑚,𝑙)∈𝐴𝑑

  ∀ 𝑚 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷  (36) 

               ∑ 𝑧𝑙𝑚
𝑘𝑑

𝑙:(𝑙,𝑚)∈𝐴𝑑
− ∑ 𝑧𝑚𝑙

𝑘𝑑
𝑙:(𝑚,𝑙)∈𝐴𝑑

= 0  
∀ 𝑚 ∈ 𝑁\(𝑜 ∪ 𝑁𝑠),  

𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷  

(37) 

              𝑔𝑙𝑚
𝑘𝑑 ≤ 𝐵𝑘𝑧𝑙𝑚

𝑘𝑑  ∀ (𝑙, 𝑚) ∈ 𝐴𝑑,𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷  (38) 

              ∑ 𝑣𝑖
𝑘𝑑

𝑘∈𝐾 = 𝑞𝑖
𝑏  ∀ 𝑖 ∈ 𝑁𝑏,𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (39) 

              𝑣𝑙
𝑘𝑑 = 0  ∀ 𝑙 ∈ 𝑁\𝑁𝑏 , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷  (40) 

              𝑤𝑙
𝑘𝑑 = 0  ∀ 𝑙 ∈ 𝑁\𝑁𝑠 , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷  (41) 

               ∑ 𝑥𝑖𝑗
𝑑

𝑗∈𝑁𝑠
= 1  ∀ 𝑖 ∈ 𝑁𝑎 , 𝑑 ∈ 𝐷  (42) 

               ∑ 𝑡𝑖𝑗
𝑑 𝑥𝑖𝑗

𝑑 ≤ (1 + 𝛼)𝑇𝑑
𝑗∈𝑁𝑠

  ∀ 𝑖 ∈ 𝑁𝑎 , 𝑑 ∈ 𝐷 (43) 

              ∑ 𝑞𝑖
𝑎𝑥𝑖𝑗

𝑑
𝑖∈𝑁𝑎

+ ∑ 𝑤𝑗
𝑘𝑑

𝑘∈𝐾 ≤ 𝐶𝑗𝑦𝑗  ∀ 𝑗 ∈ 𝑁𝑠, 𝑑 ∈ 𝐷 (44) 

              ∑ 𝑟𝑗𝑦𝑗𝑗∈𝑁𝑠
≤ 𝑅   (45) 

              𝛾𝑑 ≥ 0 ∀ 𝑑 ∈ 𝐷 (46) 

              𝑔𝑙𝑚
𝑘𝑑 ≥ 0  ∀ (𝑙, 𝑚) ∈ 𝐴𝑑 , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (47) 

              𝑣𝑙
𝑘𝑑 ≥ 0 ∀ 𝑙 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (48) 

              𝑤𝑙
𝑘𝑑 ≥ 0  ∀ 𝑙 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (49) 

              𝑥𝑖𝑗
𝑑 ∈ {0,1}   ∀ 𝑖 ∈ 𝑁𝑎 , 𝑗 ∈ 𝑁𝑠, 𝑑 ∈ 𝐷  (50) 

              𝑧𝑙𝑚
𝑘𝑑 ∈ {0,1}   ∀ (𝑙, 𝑚) ∈ 𝐴𝑑 , 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (51) 

              𝑦𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝑁𝑠 (52) 

 

The objective function (33) minimizes the expected bus-based evacuation maximum 

completion time over the different network scenarios. Constraints (34) guarantee that 𝛾𝑑 is 

the completion time (i.e., the longest bus route) in scenario 𝑑. Constraints (35) – (41) model 

the bus-based evacuation. For each bus 𝑘 and scenario 𝑑, constraints (35) ensure that each 

bus departs from the depot 𝑜 (if it departs); constraints (36) and (37) are flow conservation 

constraints; constraints (38) impose that people travel an arc only if a bus, whose capacity 

cannot be exceeded, serves that arc; constraints (39) guarantee that all the people of zone 

𝑖 ∈ 𝑁𝑏 evacuate to some shelter; constraints (40) and (41) state that evacuation starts only 
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at nodes 𝑖 ∈ 𝑁𝑏  and ends at shelter sites 𝑗 ∈ 𝑁𝑠 , respectively. Constraints (42) and (43) 

model the car-based evacuation. For each scenario 𝑑, constraints (42) ensure that every 

evacuation zone 𝑖 ∈ 𝑁𝑎 is assigned to exactly one shelter, while constraints (43) ensure that 

the evacuation time for cars does not exceed a given threshold. Constraints (44) link together 

both self-evacuation and supported-evacuation variables by imposing that the shelter 

capacity cannot be exceeded, while constraint (45) states that the total amount of resources 

available to set up shelters cannot be exceeded. Constraints (46) – (52) are non-negativity 

and binary constraints. 

Note that SISLER’s objective can yield multiple optimal solutions, some of which are 

inefficient from the car-based evacuation perspective. To guarantee an efficient allocation 

of self-evacuees to shelters, a lexicographic objective function is deployed by adding a 

second term (car-based evacuation total duration time across all the scenarios) to the 

objective (33) (as adopted by Bish (2011)). In particular, the lexicographic objective 

formulation is the following: 

 

𝑚𝑖𝑛 ∑ 𝑝𝑑𝑑∈𝐷 (𝛾𝑑 +
1

𝐿
𝛩𝑑)   (53) 

 

where  𝛩𝑑 = ∑ ∑ 𝑡𝑖𝑗
𝑑 𝑥𝑖𝑗

𝑑
𝑁𝑠𝑖∈𝑁𝑎

 is the total car-based evacuation duration time for scenario 

𝑑 ∈ 𝐷, and  𝐿 =  2 ∑ 𝑇𝑑
𝑑∈𝐷  is a lexicographic constant which ensures that the supported-

evacuation maximum completion time dominates the self-evacuation total duration time. 

An interesting feature of SISLER is that it allows decision planners to identify a trade-off 

between self-evacuation and supported-evacuation oriented solutions, by changing a 

parameter which represents the route length that car-based evacuees are willing to accept. 

This permits to balance the bus-based evacuation completion time objective and the car-

based evacuation equity requirement. Figure 21 displays an example.  
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Figure 21. Self-evacuation oriented solution (a) and supported-evacuation oriented solution (b) 

 

In Figure 21, triangle, square, and round shapes represent, respectively, the depot, 

candidate shelter sites, and evacuation zone centroids. Selected shelters are marked with a 

cross and centroids are identified with the acronyms of the evacuees departing from there 

(i.e., SES = Self-Evacuees who move towards a Shelter, SE = Supported Evacuees who move 

towards a shelter, and M = mixed demand, which is a combination of SES and SE). Normal 

and dashed arrow lines represent, respectively, SES assignments and SE routes. A tighter 

threshold (a) favours self-evacuation by inducing the opening of shelters close to self-

evacuees or mixed evacuation zones; if the threshold becomes looser (b), the supported-

evacuation maximum completion time decreases while the self-evacuation total duration 

time increases. 

 

5.2 Solution Methodology 

SISLER has been solved through a Branch-and-Cut approach of an off-the-shelf software, 

which has been enriched with valid inequalities adapted from the literature.  

Branch-and-Cut approaches are exact methods that have been largely applied to solve 

various integer programming (IP) problems (Mitchell 2002). A Branch-and-Cut approach is 

the combination of two other well-known IP solution methods: the Branch-and-Bound and 

the Cutting Plane methods. A Branch-and-Cut approach consists of designing a Branch-and-

Bound algorithm where at each node of the decision tree some cuts are generated so to 

obtain either an integer solution or a bound improvement. Then, once the efficacy of these 

cuts decreases, no additional cuts are generated and the branching phase starts. In particular, 
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a Branch-and-Cut approach allows to overcome some of the drawbacks of the two 

aforementioned methods (i.e., the Branch-and-Bound and the Cutting Plane methods). 

Compared to a pure Branch-and-Bound approach, the Branch-and-Cut provides a (dynamic) 

strengthening of the model formulation. On the other side, compared to a pure Cutting Plane 

method, the branching phase allows to overcome the "tailing off" status (i.e., a long series 

of iterations where cuts are added without a significant improvement of the current model 

formulation). 

Inequalities that are generated can be valid either locally or globally. Locally means that 

cuts are valid only in correspondence of the specific node of the decision tree (as well as its 

descendants) where they have been added. On the other side, globally means that 

inequalities are valid throughout the entire decision tree. In this case, it is possible to store 

all the cuts that have been generated into a data structure that takes the name of pool of 

constraints. Given the initial model formulation, when a new node of the decision tree is 

generated, the branching conditions are imposed and the linear relaxation is computed. A 

solution is obtained which, if fractional, prompts the search for constraints that have been 

violated which are then added to the current formulation. Then, the linear relaxation is 

solved again until all the constraints within the pool are satisfied. If the obtained solution is 

still fractional, either new procedures are implemented to find new global cuts or the 

branching phase starts; otherwise, if the solution is integer and all the constraints are not 

violated, the solution is optimal. Hence, the two key components of a Branch-and-Cut 

algorithm are: 

- the pool of constraints, which stores all the cuts that are globally valid, and 

- the separation procedures, which allow to identify inequalities that are violated in 

correspondence of the current linear relaxation solution. 

The design of efficient separation procedures is a crucial point of a Branch-and-Cut 

approach. They can either be general purpose, which means that they are applicable to any 

generic IP, or ad-hoc, which means that they are implemented for a specific class of problems. 

5.2.1 Valid inequalities for SISLER 

Valid inequalities for SISLER have been identified based on the sub-problems SISLER is 

composed of which are: the Bus Evacuation Problem (BEP), the Capacitated Facility Location 

Problem (CFLP), and the Multi-Commodity Flow Problem (MCFP). 
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Firstly, the literature on the BEP is little given that this problem has been introduced fairly 

recently (Bish 2011). However, the BEP is related to the well-known Vehicle Routing Problem 

(VRP). The routing aspect of SISLER is not pure given that the buses, once they start the 

journey from the depot, stop at a shelter destination without returning to the depot. This is 

motivated by the fact that SISLER is a static model and, as such, the evacuation occurs within 

a unique period where buses drop supported-evacuees at shelter sites. Moreover, even in 

case of a dynamic model, it would be safer to assume that buses do not return to the depots 

but just to some of the evacuation nodes (in fact, bus depots were subject to flooding in the 

aftermath of Hurricane Katrina in 2005 (Bish (2011)).  Given the usage of buses, the following 

round-up constraints (Boccia et al. 2018) are introduced for SISLER 

 

∑ ∑ 𝑧𝑜𝑚
𝑘𝑑

𝑘∈𝐾𝑚:(𝑜,𝑚)∈𝐴𝑑

≥ ⌈
∑ 𝑞𝑖

𝑏
𝑖∈𝑁𝑏

𝐵𝑘

⌉                          ∀ 𝑑 ∈ 𝐷 (54) 

 

which impose a lower bound on the number of buses that can be used for each scenario, 

having assumed that 𝐵𝑘 = 𝐵  ∀ 𝑘 ∈ 𝐾.  

Secondly, the literature on inequalities for the CFLP (Leung and Magnanti 1989; Klose and 

Drexl 2005) presents three main categories of inequalities:  

- Aggregated Capacity Constraints (ACC) such as 

 

∑ 𝐶𝑗𝑦𝑗 ≥

𝑗∈𝑁𝑠

⌈ ∑ 𝑞𝑖
𝑎

𝑖∈𝑁𝑎

+ ∑ 𝑞𝑖
𝑏

𝑖∈𝑁𝑏

⌉  (55) 

 

which, given facilities with equal capacity restrictions (i.e., 𝐶𝑗 = 𝐶  ∀ 𝑗 ∈ 𝑁𝑠), impose 

a lower-bound on the number of facilities that should be opened. 

 

- Residual Capacity (RC) constraints such as 

 

∑ 𝑞𝑖
𝑎

𝑖∈𝑁𝑎
𝑥𝑖𝑗

𝑑 + ∑ 𝑤𝑗
𝑘𝑑 − 𝑅𝐶 ∑ 𝑦𝑗𝑗∈𝑁𝑠𝑘∈𝐾 ≤ ∑ 𝑞𝑖

𝑎
𝑖∈𝑁𝑎

+

+ ∑ 𝑞𝑖
𝑏

𝑖∈𝑁𝑏
− 𝑅𝐶 ⌈

∑ 𝑞𝑖
𝑎

𝑖∈𝑁𝑎 +∑ 𝑞𝑖
𝑏

𝑖∈𝑁𝑏

𝐶𝑗
⌉     

∀ 𝑗 ∈ 𝑁𝑠,𝑑 ∈ 𝐷          

 

(56) 
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where 1 ≤ 𝑅𝐶 ≤ 𝐶 , having assumed 𝐶𝑗 = 𝐶  ∀ 𝑗 ∈ 𝑁𝑠 . These constraints identify 

the customer demand that the last available facility should satisfy. In the case of 

SISLER, evacuees are seen as customers (hence, evacuee demand as customer 

demand), and shelters as facilities.  

 

- Variable Upper Bounds (VUB) constraints such as 

 

 𝑥𝑖𝑗
𝑑 ≤ 𝑦𝑗  ∀ 𝑖 ∈ 𝑁𝑎 , 𝑗 ∈ 𝑁𝑠, 𝑑 ∈ 𝐷 (57) 

 

which require that a customer can be assigned to a facility only if the facility is open. 

For SISLER, it means that self-evacuees move towards a shelter site in a certain 

scenario only if the shelter has been opened.  

 

Finally, the literature for the MCFP presents various inequalities however, those which 

could be easily deployed for SISLER are the Strong Inequalities (SI) introduced by Chouman, 

Crainic and Gendron (2009) for the Multi-Commodity Capacitated Fixed-Charge Network 

Design (MCND) problem, which is based on the MCFP. The concept underpinning this set of 

constraints is the following: if a network arc is deployed, then the amount of flow of a certain 

commodity traversing that arc should be less than or equal to the demand of the commodity 

itself. This set of constraints, given that the two categories of evacuees (i.e., self-evacuees 

and supported-evacuees) can be seen as two different commodities, has been adopted and 

used for supported-evacuees. The adapted valid inequalities are the following: 

 

𝑣𝑖
𝑘𝑑 ≤ 𝑞𝑖

𝑏 ∑ 𝑧𝑖𝑚
𝑘𝑑

𝑚:(𝑖,𝑚)∈𝐴𝑑

      ∀ 𝑖 ∈ 𝑁𝑏, 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷                              (58) 

 

Specifically, for each scenario 𝑑, the amount of supported-evacuees leaving evacuation zone 

𝑖 ∈ 𝑁𝑏 with bus 𝑘 should not exceed the total evacuation demand of that zone and travel 

only an arc (𝑖, 𝑚) which is available.  

Among all the aforementioned valid inequalities, (54) and (58) have demonstrated to 

yield an improvement in the value of the linear relaxation of SISLER, when considered 

separately or in combination, while the remaining valid inequalities did not affect the value 
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of the linear relaxation of SISLER. Therefore, (54) and (58) have been embedded as valid 

inequalities at the root node of the decision tree within the IBM ILOG CPLEX 12.6 Branch-

and-Cut framework.  

It has been possible to appreciate which are the cuts that CPLEX adopts to solve SISLER 

instances and in which amount (based on average values): flow cover cuts (61%), mixed 

integer rounding (MIR) cuts (25%), lift-and-project cuts (8%), implied bound cuts (3%), cover 

and Gomory fractional cuts (both at 1%), and clique, zero-half, and GUB cuts (that together 

constitute 1%). The in-depth description of the aforementioned cuts is out of the scope of 

this dissertation and the interested reader can start referring to CPLEX User’s Manual (CPLEX), 

and then proceed with relevant branch-and-cut literature (Mitchell 2002). However, an 

interesting observation can be drawn on the first two categories of cuts added by CPLEX (i.e., 

flow cover and MIR cuts, which represent the majority of the cuts) and the nature of SISLER. 

In fact, flow cover cuts are defined based on constraints containing continuous variables 

whose upper bound varies between zero and a positive value according to the corresponding 

binary variables, while MIR cuts are produced by imposing integer rounding on the 

coefficient of integer decisional variables as well as the corresponding right-hand side 

constraint. This is in line with the flow problem component of SISLER, which contribute to 

model the bus-based evacuation.  

 

5.3 Experimental Results 

SISLER is a mixed-integer linear programming (MILP) model which was implemented using 

IBM ILOG OPL modeling language and solved with the Branch-and-Cut algorithm of the solver 

CPLEX, version 12.6, enriched with additional valid inequalities, as described in Section 5.2.1, 

on a computer with an Intel® Core™ i5-5200U CPU @ 2.20GHz and 8.00 GB of RAM.  

5.3.1 Testbed instances generation 

Two testbed instances of different density have been deployed to test SISLER: one of 25 

nodes and 56 arcs (25X56) and another one of 25 nodes and 165 arcs (25X165). Both 

instances have been generated as follows. A 100x100 square study area like the one 

displayed in Figure 22 has been considered, where the black area represents the central zone 

of the disaster (i.e., where the disaster starts), the grey area the region where the disaster 

can propagate, and the white area the safety zone (i.e., the disaster cannot reach that area). 
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The coordinates of evacuation zones, transshipment nodes, and shelter sites were generated 

at random in the black, light grey, and white areas, respectively. 

 

 

Figure 22. Study area 

 

Specifically, evacuation zones where only self-evacuation occurs account for 25% of the 

network nodes (i.e., 6 nodes), evacuation zones where only supported-evacuation occurs 

account for 15% of the network nodes (i.e., 4 nodes), evacuation zones where both self-

evacuation and supported-evacuation occur account for 15% of the network nodes (i.e., 4 

nodes), pure transshipment nodes account for 15% of the network nodes (i.e., 4 nodes), 

shelter sites account for the remaining 25% of the network nodes (i.e., 6 nodes), and the 

remaining 5% of the network nodes constitutes the depot node. Arcs were also generated at 

random and Euclidean distances were used as a proxy for traveling times. In accordance with 

the contraflow lane reversal assumption, it has been assumed that arcs from transshipment 

nodes to candidate shelter sites can be traveled only in one direction (i.e., towards the 

shelter). Three scenarios have been considered: (1) a small disruption scenario, where all 

network arcs are available, (2) a medium disruption scenario, where some network arcs 

connecting evacuation nodes (i.e., within the black area), accounting for 20% of the network 

arcs, have been affected by the disaster, and (3) a large disruption scenario where some arcs 

connecting evacuation and transshipment nodes (i.e., from the black to the grey area), 

accounting for 10% of the network arcs, have been disrupted in addition to the arcs already 

inoperable in the medium scenario. Arcs to be disrupted were decided at random however, 

when advancing from the medium to the large scenario, within a level of proximity. This 

choice of scenarios has been motivated having in mind a specific disaster such as flooding 
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where the off-set of the disaster occurs in certain points of networks and then propagates 

from there within a certain degree of proximity. 

Results are reported for two cases: where only one of the three scenarios is considered 

(i.e., single scenario instances) and where all the three scenarios are together (i.e., combined 

scenario instances). 

In terms of model parameters, the following settings have been adopted. 

1. Evacuation demand (measured in numbers of households) was assumed to be a 

random integer uniformly distributed between 50 and 550, as in (Gama, Santos 

and Scaparra 2016). 

2. A homogeneous bus fleet was assumed  (i.e., 𝐵𝑘 = 𝐵  ∀ 𝑘 ∈ 𝐾) and the number 

of buses was computed as the round-up ratio [total bus-based evacuation 

demand/bus capacity], : 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠 = ⌈
∑ 𝑞𝑖

𝑏
𝑖∈𝑁𝑏

𝐵
⌉. 

 

3. Shelter capacities were computed as reported by Gama, Santos and Scaparra 

(2016), based on (Lorena and Senne 2004), as the round-up ratio [total 

evacuation demand/maximum number of shelters that can be opened]: 

 

𝐶𝑗 = ⌈
∑ 𝑞𝑖

𝑎+𝑖∈𝑁𝑎
∑ 𝑞𝑖

𝑏
𝑖∈𝑁𝑏

𝑝∗𝛽
⌉  

 

where, more specifically, 𝑝  is the maximum number of shelters that can be 

opened based on the budget constraint (45) and 𝛽 is a weighting parameter set 

equal to 0.8. Shelter capacities are assumed to be the same for each shelter (i.e., 

𝐶𝑗 = 𝐶  ∀ 𝑗 ∈ 𝑁𝑠). 

4. For each scenario and car-based evacuation zone, the shortest traveling time and 

the time threshold were computed in a pre-processing phase. Self-evacuee 

shortest travelling times for each scenario (i.e., 𝑡𝑖𝑗
𝑑 ) were computed through a 

shortest path algorithm, while the self-evacuee traveling time threshold for each 

scenario (i.e., 𝑇𝑑 ) was computed through an auxiliary capacitated p-center 

model. In particular, the p-center model aims at minimizing the self-evacuee 

maximum traveling time to reach shelter sites. In this case, shelter capacities are 
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still computed as based on (Lorena and Senne 2004) however, only the total self-

evacuee evacuation demand is considered (i.e., ∑ 𝑞𝑖
𝑎

𝑖∈𝑁𝑎
) to compute the 

reduced shelter capacity. 

5. A decreasing probability distribution was used to combine the three different 

scenarios ( 𝑝1 = 0.5, 𝑝2 = 0.3 , and 𝑝3 =  0.2 ). This choice is based on the 

assumption that a large-scale disastrous circumstance (i.e., scenario 3) is less 

likely than a medium-scale one (i.e., scenario 2), which in turn is less likely than a 

small-scale disruption leaving transport links unaffected (i.e., scenario 1).   

5.3.1.1 Computational results for the 25x56 network 

The network with 25 nodes and 56 arcs was used as a proof of concept to demonstrate the 

validity of the problem and to preliminary test the SISLER formulation. Given its dimensions, 

even without adding the inequalities found for SISLER, both single and combined scenario 

instances were solved in a matter of few seconds.  

The results for the 25x56 network are displayed in Table 14, 15, 16 and 17 for the small, 

medium, large scenarios, and their combination, respectively. The tables report the bus-

based evacuation maximum completion time, the car-based evacuation total duration time, 

and the open shelters for different values of 𝛼 ranging from 0 to 1 (note that the potential 

shelter sites for the 25x56 network are nodes 19, 20, 21, 22, 23, and 24).  

 

Table 14. Computational results for the 25x56 network – Scenario 1 (Small) 

Scenario 1 (Small) 

α 

Bus-based 
evacuation 
maximum 

completion time 

Car-based 
evacuation        

total duration 
time 

Open shelters 

0 212 282 {19,20,23,24} 

0.1 212 282 {19,20,23,24} 

0.2 143 301 {19,21,23,24} 

0.3 143 301 {19,21,23,24} 

0.4 143 301 {19,21,23,24} 

0.5 138 323 {19,22,23,24} 

0.6 138 323 {19,22,23,24} 

0.7 138 323 {19,22,23,24} 

0.8 138 323 {19,22,23,24} 

0.9 138 323 {19,22,23,24} 

1 138 323 {19,22,23,24} 
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Table 15. Computational results for the 25x56 network – Scenario 2 (Medium) 

Scenario 2 (Medium) 

α 

Bus-based 
evacuation 
maximum 

completion time 

Car-based 
evacuation        

total duration 
time 

Open shelters 

0 175 347 {19,21,23,24} 

0.1 175 347 {19,21,23,24} 

0.2 175 347 {19,21,23,24} 

0.3 175 347 {19,21,23,24} 

0.4 175 347 {19,21,23,24} 

0.5 168 427 {20,22,23,24} 

0.6 168 427 {20,22,23,24} 

0.7 168 427 {20,22,23,24} 

0.8 168 421 {19,20,22,24} 

0.9 168 421 {19,20,22,24} 

1 168 421 {19,20,22,24} 

 

Table 16. Computational results for the 25x56 network – Scenario 3 (Large) 

Scenario 3 (Large) 

α 

Bus-based 
evacuation 
maximum 

completion time 

Car-based 
evacuation        

total duration 
time 

Open shelters 

0 211 447 {19,20,22,24} 

0.1 211 447 {19,20,22,24} 

0.2 211 447 {19,20,22,24} 

0.3 211 447 {19,20,22,24} 

0.4 211 447 {19,20,22,24} 

0.5 211 447 {19,20,22,24} 

0.6 211 447 {19,20,22,24} 

0.7 211 447 {19,20,22,24} 

0.8 211 447 {19,20,22,24} 

0.9 211 447 {19,20,22,24} 

1 211 447 {19,20,22,24} 
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Table 17. Computational results for the 25x56 network – All Scenarios (Mix) 

All Scenarios (Mix) 

α 

Bus-based 
evacuation 
maximum 

completion time 

Car-based 
evacuation        

total duration 
time 

Open shelters 

0 216 322.4 {19,20,23,24} 

0.1 216 322.4 {19,20,23,24} 

0.2 166.2 361.2 {20,21,23,24} 

0.3 166.2 361.2 {20,21,23,24} 

0.4 166.2 361.2 {20,21,23,24} 

0.5 161.6 415.2 {20,22,23,24} 

0.6 161.6 415.2 {20,22,23,24} 

0.7 161.6 415.2 {20,22,23,24} 

0.8 161.6 415.2 {20,22,23,24} 

0.9 161.6 415.2 {20,22,23,24} 

1 161.6 415.2 {20,22,23,24} 

 

From the analysis of the tables, it is possible to infer the trade-off between the bus-based 

evacuation maximum completion time and the car-based evacuation total duration time.  

For example, in the small scenario (i.e., Table 14) when 𝛼 increases from 0.1 to 0.2, the 

supported-evacuation maximum completion time drops by nearly 33% (from 212 to 143), 

while the self-evacuation total duration time increases by around 7% (from 282 to 301), 

which also implies a change in the shelter location decisions (from node 20 to node 21). 

Another change in both evacuation times and shelter locations can be observed when 𝛼 rises 

from 0.4 to 0.5. In this case, the bus-based evacuation maximum completion time decreases 

by nearly 3% (from 143 to 138), while the car-based evacuation total duration time raises by 

around 7% (from 301 to 323), and node 22 is open instead of node 21. A visual representation 

of the trade-off between the bus-based evacuation maximum completion time and the car-

based evacuation total duration time when 𝛼 varies between 0 and 1 for the small scenario 

is displayed in Figure 23. 
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Figure 23. Evacuation times trade-off for different values of 𝜶 – 25x56 network – Scenario 1 
(Small) 

 

Other examples can be appreciated from the analysis of the medium scenario (i.e., Table 

15). When 𝛼 increases from 0.4 to 0.5, the supported-evacuation maximum completion time 

drops by nearly 4% (from 175 to 168), while the self-evacuation total duration time increases 

by around 23% (from 347 to 427), leading to a shift in shelter location decisions (two nodes 

are changed among four, specifically, nodes 20 and 22 are preferred over nodes 19 and 21). 

Conversely, when 𝛼 rises from 0.7 to 0.8, the bus-based evacuation time does not change 

however, the car-based evacuation completion time decreases by nearly 1%  (from 427 to 

421) and there is a change in shelter location decisions (from node 20 to node 19). This is 

motivated by the fact that the more 𝛼 increases, the more the self-evacuation traveling time 

threshold becomes looser, thus allowing allocations that were infeasible for lower values of 

𝛼. A visual representation of the trade-off between the bus-based evacuation maximum 

completion time and the car-based evacuation total duration time when 𝛼 varies between 0 

and 1 for the medium scenario is displayed in Figure 24. 
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Figure 24. Evacuation times trade-off for different values of 𝜶 – 25x56 network – Scenario 2 
(Medium) 

 

Differently from the small and medium scenarios, no trade-off between the bus-based 

evacuation maximum completion time and the car-based evacuation total duration time can 

be appreciated for the large scenario (i.e., Table 16). In this case, the solution is always the 

same, irrespective of the value of 𝛼 . However, the trade-off can still be observed when 

combining the three scenarios (i.e., Table 17). In fact, when 𝛼 increases from 0.1 to 0.2, the 

supported-evacuation maximum completion time drops by nearly 23% (from 216 to 166.2), 

while the self-evacuation total duration time rises by around 12% (from 322.4 to 361.2), and 

this implies a change in the shelter location decisions (from node 19 to node 21). Another 

change in both evacuation times and shelter locations can be appreciated when 𝛼 raises 

from 0.4 to 0.5. In this case, the bus-based evacuation maximum completion time decreases 

by nearly 3% (from 166.2 to 161.6), while the car-based evacuation total duration time rises 

by around 15% (from 361.2 to 415.2), and node 22 is opened instead of node 21. A visual 

representation of the trade-off between the bus-based evacuation maximum completion 

time and the car-based evacuation total duration time when 𝛼 varies between 0 and 1 for 

the combined scenario is displayed in Figure 25.  
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Figure 25. Evacuation times trade-off for different values of 𝜶 – 25x56 network – All Scenarios 
(Mix) 

 

Moreover, the comparison of the results across all the tables highlights the importance 

of considering multiple scenarios. The solutions found when all the three scenarios are taken 

into account can differ quite significantly from the solutions obtained for a single scenario. 

For example, the optimal set of shelters in the solution obtained when 𝛼 = 0.2, 0.3 and 0.4, 

which is composed of nodes 20, 21, 23, and 24, is different from the optimal set selected in 

the single scenario instances for the same values of 𝛼 (i.e., 19, 21, 23, and 24 for both the 

small and medium scenarios and 19, 20, 22, and 24 for the large scenario), and so are the 

bus routes and self-evacuee to shelter allocations. 

Table 18 reports the values of the linear relaxation of SISLER without any inequality (LR), 

with the addition of inequalities (54) (LR+BUS), with the addition of inequalities (58) 

(LR+FLOW), and with the addition of both inequalities (54) and (58) (LR+BUS+FLOW) for the 

small (S), medium (M), large (L) scenarios, and their combination (MIX), respectively. 

 

Table 18. Computational results for the 25x56 network – Linear relaxation values 

Scenario LR LR+BUS LR+FLOW LR+BUS+FLOW 

S 103.83 111.83 113.9 120.83 

M 113.18 121.98 137.9 145.9 

L 117.98 132.38 141.7 153.57 

MIX 109.47 118.99 126.66 134.9 
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From the analysis of the table, it is possible to appreciate the improvement in the value 

of the linear relaxation of SISLER due to the addition of the inequalities. The presence of 

inequalities (54), (58), and their combination increases, respectively, the value of the linear 

relaxation by around: 8% (from 103.83 to 111.83), 10% (from 103.83 to 113.9), and 16% 

(from 103.83 to 120.83) in the small scenario; 8% (from 113.18 to 121.98), 22% (from 113.18 

to 137.9), and 29% (from 113.18 to 145.9) in the medium scenario; 12% (from 117.98 to 

132.38), 20% (from 117.98 to 141.7), and 30% (from 117.98 to 153.57) in the large scenario; 

and 9% (from 109.47 to 118.99), 16% (from 109.47 to 126.66), and 23% (from 109.47 to 134.9) 

in the combined scenario. The value of the linear relaxation is the same whichever value of 

𝛼 hence, it seems that the choice of 𝛼 is not relevant to this matter. Usually, an improvement 

in the value of the linear relaxation allows to solve instances in a shorter amount of time. As 

mentioned previously, it was not possible to appreciate these benefits of the additional 

inequalities in terms of computational performance on the 25x56 network. However, the 

positive contribution of the additional inequalities will be demonstrated through the analysis 

of the experimental results of the 25x165 network, specifically when it comes to combined 

scenario instances. 

5.3.1.2 Computational results for the 25x165 network 

Following the same scheme for instance generation, computational results are now reported 

for a more dense network with 25 nodes and 165 arcs. In particular, it is demonstrated how 

the inclusion of the ad-hoc inequalities within the IBM ILOG CPLEX Branch-and-Cut 

framework  makes a clear difference and allows to always obtain an integer solution, which 

would have not been possible otherwise, within the pre-fixed computational time limit set 

equal to 3600 seconds. The reason for this tight time limit is due to the fact that, in order to 

effectively deploy SISLER during the DOM response phase, it has to provide solutions in a 

reasonable amount of time.  

Results are displayed in Table 19, 20, 21 and 22 for the small, medium, large scenarios, 

and their combination, respectively. The tables report the CPU time spent at the root node 

in seconds (Time at the root node) and the total CPU time spent to solve an instance in 

seconds (Total CPU time) without any inequality (I), with the addition of inequalities (54) 

(I+BUS), with the addition of inequalities (58) (I+FLOW), and with the addition of both 

inequalities (54) and (58) (I+BUS+FLOW) for different values of 𝛼 ranging from 0 to 1. The 

tables also report the solution details in terms of bus-based evacuation maximum 

completion time (Bus max time), the car-based evacuation total duration time (Car tot time) 



118 
 

and the open shelters (note that the potential shelter sites for the 25x165 network are nodes 

19, 20, 21, 22, 23, and 24) for all the different values of 𝛼. 

Table 19. Computational results for the 25x165 network – Scenario 1 (Small) 

Scenario 1 (Small) 

 I I+BUS I+FLOW I+BUS+FLOW Solution details 

α 

Time 
at 

root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Bus      
max 
time 

Car        
tot 

time 

Open 
shelters 

0 2.17 120.28 3.20 22.23 1.53 144 1.17 27.22 133 402 {20,21,24} 

0.1 2.90 20.28 4.15 13.28 1.56 108.5 1.59 23.24 132 407 {20,23,24} 

0.2 1.70 18.22 2.25 44.73 1.31 28.39 1.00 28.27 132 407 {20,23,24} 

0.3 2.40 90.26 2.46 43.35 1.28 40.83 1.20 34.45 132 407 {20,23,24} 

0.4 2.11 16.04 2.56 17.72 1.45 25.49 1.04 22.11 132 407 {20,23,24} 

0.5 2.56 75.75 1.86 81.79 1.31 134.88 1.67 23.17 132 407 {20,23,24} 

0.6 2.07 57.6 1.84 33.74 1.28 30.11 1.62 37.21 132 407 {20,23,24} 

0.7 2.04 11.61 1.61 18.39 1.64 33.82 1.22 26.57 132 407 {20,23,24} 

0.8 2.37 12.23 1.29 27.24 1.47 37.28 1.06 23.6 132 407 {20,23,24} 

0.9 1.62 15.79 2.17 12.39 1.69 33.17 1.51 39.42 132 407 {20,23,24} 

1 2.06 16.05 1.76 12.51 1.56 34.62 1.75 43.41 132 407 {20,23,24} 

AVG 2.2 41.3 2.3 29.8 1.46 59.2 1.4 29.9 132.1 406.6 N/A 
 

Table 20. Computational results for the 25x165 network – Scenario 2 (Medium) 

Scenario 2 (Medium) 

 I I+BUS I+FLOW I+BUS+FLOW Solution details 

α 
Time at 

root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Bus      
max 
time 

Car        
tot 

time 

Open 
shelters 

0 6.26 7.79 3.63 4.34 0.84 2.04 0.95 12.85 133 402 {20,21,24} 

0.1 3.54 5.73 4.24 8.35 1.16 5.12 1.28 7.24 133 401 {20,23,24} 

0.2 3.28 5.93 2.01 5.3 1.14 3.68 1.08 1.7 133 401 {20,23,24} 

0.3 2.11 3.95 2.76 3.17 1.33 4.84 0.80 1.73 133 401 {20,23,24} 

0.4 2.18 2.53 1.82 4.87 0.83 9.2 1.22 5.41 133 401 {20,23,24} 

0.5 1.73 3.77 1.89 10.45 1.15 4.59 1.04 7.13 133 401 {20,23,24} 

0.6 1.19 3.65 2.06 6.54 0.73 5.07 0.56 1.39 133 401 {20,23,24} 

0.7 1.90 2.59 1.87 3.57 1.11 10.97 0.83 3.39 133 401 {20,23,24} 

0.8 1.54 3.52 1.67 5.26 0.84 6.71 0.55 1.47 133 401 {20,23,24} 

0.9 0.84 1.76 0.76 3.04 0.81 13.73 0.73 5.29 133 401 {20,23,24} 

1 0.91 1.67 0.76 2.34 0.97 13.46 0.79 6.01 133 401 {20,23,24} 

AVG 2.3 3.9 2.1 5.2 1.0 7.2 0.9 4.9 133.0 401.1 N/A 
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Table 21. Computational results for the 25x165 network – Scenario 3 (Large) 

Scenario 3 (Large) 

 I I+BUS I+FLOW I+BUS+FLOW Solution details 

α 
Time at 

root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Bus      
max 
time 

Car        
tot 

time 

Open 
shelters 

0 4.88 5.57 4.90 5.41 2.45 6.69 1.00 6.3 139 409 {20,22,24} 

0.1 4.66 9.7 5.80 13.62 2.40 3.43 1.51 3.2 137 416 {22,23,24} 

0.2 1.81 3.01 1.97 9.84 1.04 5.97 0.81 5.91 133 420 {20,21,24} 

0.3 3.81 5.48 1.89 3.2 1.00 8.61 0.73 8.75 133 420 {20,21,24} 

0.4 2.21 4.57 1.36 9.48 0.73 27.71 0.84 6.33 133 420 {20,21,24} 

0.5 2.04 4.45 0.89 5.66 1.16 42.89 0.64 7.08 133 420 {20,21,24} 

0.6 1.45 36.57 1.48 9.58 0.83 13.48 0.75 7.69 133 420 {20,21,24} 

0.7 1.12 6.99 1.01 12.64 0.69 49.37 1.67 6.36 133 420 {20,21,24} 

0.8 1.69 7.29 1.45 7.83 0.98 9.11 0.94 14.88 133 420 {20,21,24} 

0.9 1.86 8.02 0.97 8.85 1.00 24.48 0.42 17.14 133 420 {20,21,24} 

1 1.14 20.23 1.00 26.16 1.11 10.31 0.50 6.54 133 420 {20,21,24} 

AVG 2.4 10.2 2.1 10.2 1.2 18.4 0.9 8.2 133.9 418.6 N/A 
 

Table 22. Computational results for the 25x165 network – All Scenarios (Mix) 

All Scenarios (Mix) 

 I I+BUS I+FLOW I+BUS+FLOW Solution details 

α 
Time at 

root 
node 

Total 
CPU 
time 

Time 
at root 
node 

Total 
CPU 
time 

Time 
at 

root 
node 

Total 
CPU time 

Time 
at 

root 
node 

Total 
CPU time 

Bus      
max 
time 

Car        
tot 

time 

Open 
shelters 

0 - - - - - - - - - - - 

0.1 4.04 3600* 5.41 3600* 2.06 143.69 2.18 522.67 135 395.3 {22,23,24} 

0.2 3.32 3600* 4.04 3600* 3.06 623.74 2.50 474.41 132.5 411.2 {20,23,24} 

0.3 3.60 3600* 2.93 3600* 3.38 736.04 2.54 2769.05 132.5 411.2 {20,23,24} 

0.4 3.32 3600* 4.74 3408 3.11 3600* 2.31 282.14 132.5 411.2 {20,23,24} 

0.5 3.09 3600* 3.12 3600* 3.95 947.85 2.89 1922.12 132.5 411.2 {20,23,24} 

0.6 3.84 3600* 4.15 3600* 2.80 630.01 2.68 855.87 132.5 411.2 {20,23,24} 

0.7 3.32 3600* 3.21 3600* 3.34 1194.53 2.25 253.8 132.5 411.2 {20,23,24} 

0.8 3.14 3600* 3.56 3600* 2.42 1707.12 2.28 534.18 132.5 411.2 {20,23,24} 

0.9 5.23 3600* 5.04 3600* 2.96 2409.87 2.34 418.72 132.5 411.2 {20,23,24} 

1 3.48 3600* 3.20 3600* 3.31 3600* 2.62 440.56 132.5 411.2 {20,23,24} 

AVG 3.6 3600 3.9 3580.8 3 1559.3 2.5 847.4 132.8 409.6 N/A 
 

Legend: - = No solution has been found; * = Instance not been solved to optimality within the pre-

fixed time limit of 3600 seconds; N/A = Not Applicable 
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Similarly to the 25x56 network, it is possible to infer the trade-off between the bus-based 

evacuation maximum completion time and the car-based evacuation total duration time. For 

example, in the small scenario (i.e., Table 19) when 𝛼 increases from 0 to 0.1, the supported-

evacuation maximum completion time drops by nearly 1% (from 133 to 132), while the self-

evacuation total duration time increases by around 1% (from 402 to 407). This entails a 

change in the shelter location decisions where node 23 is open instead of node 21. A visual 

representation of the trade-off between the bus-based evacuation maximum completion 

time and the car-based evacuation total duration time when 𝛼 varies between 0 and 1 for 

the small scenario is displayed in Figure 26. 

 

 

Figure 26. Evacuation times trade-off for different values of 𝜶 – 25x165 network – Scenario 1 
(Small) 

 

Another example can be appreciated from the analysis of the medium scenario (i.e., Table 

20). When 𝛼 increases from 0 to 0.1, the bus-based evacuation maximum completion time 

does not change however, the car-based evacuation total duration time decreases slightly 

(from 402 to 401). This is motivated by the fact that the more 𝛼 increases, the more the self-

evacuation traveling time threshold becomes looser, thus allowing allocations that were 

infeasible for lower values of 𝛼. This also entails a change in the shelter location decisions 

where node 23 is open instead of node 21.  

  

130
160
190
220
250
280
310
340
370
400
430

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ev
ac

u
at

io
n

 t
im

e

alpha

Evacuation times VS alpha - 25x165 network -
Scenario 1 (Small)

Bus_max_time Car_tot_time



121 
 

Further examples emerge in the analysis of the large scenario (i.e., Table 21). When 𝛼 

increases from 0 to 0.1, the supported-evacuation maximum completion time drops by 

nearly 1% (from 139 to 137), while the self-evacuation total duration time increases by 

around 2% (from 409 to 416), and there is a change in shelter locations (from node 20 to 

node 23). Another change in both evacuation times and shelter sites can be observed when 

𝛼 rises from 0.1 to 0.2. In this case, the bus-based evacuation maximum completion time 

decreases by nearly 3% (from 137 to 133), while the car-based evacuation total duration time 

raises by around 1% (from 416 to 420), and the optimal set of shelter locations changes from 

22, 23, and 24 to 20, 21, and 24. A visual representation of the trade-off between the bus-

based evacuation maximum completion time and the car-based evacuation total duration 

time when 𝛼 varies between 0 and 1 for the large scenario is displayed in Figure 27. 

 

 

Figure 27. Evacuation times trade-off for different values of 𝜶 – 25x165 network – Scenario 3 (Large) 

 

Finally, the trade-off can also be inferred when the three scenarios are combined together 

(i.e., Table 22). In fact, when 𝛼 rises from 0.1 to 0.2, the supported-evacuation maximum 

completion time decreases by around 2% (from 135 to 132.5), while the car-based 

evacuation total duration time rises by nearly 4% (from 395.3 to 411.2), and node 20 is 

opened instead of node 22. A visual representation of the trade-off between the bus-based 

evacuation maximum completion time and the car-based evacuation total duration time 

when 𝛼 varies between 0 and 1 for the combined scenario is displayed in Figure 28. 
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Figure 28. Evacuation times trade-off for different values of 𝜶 – 25x165 network – All Scenarios (Mix) 

 

Table 23 reports the values of the linear relaxation of SISLER without any inequality (LR), 

with the addition of inequalities (54) (LR+BUS), with the addition of inequalities (58) 

(LR+FLOW), and with the addition of both inequalities (54) and (58) (LR+BUS+FLOW) for the 

small (S), medium (M), large scenarios (L), and their combination (MIX), respectively. 

 

Table 23. Computational results for the 25x165 network – Linear relaxation values 

Scenario LR LR+BUS LR+FLOW LR+BUS+FLOW 

S 64.86 68.36 86.86 90.30 

M 64.86 68.36 95.36 98.61 

L 64.86 68.36 95.36 98.61 

MIX 64.86 68.36 91.11 94.46 

 

Further observations can be drawn from the combined analysis of Tables 19, 20, 21, 22, 

and 23 that concern the value of the linear relaxation of SISLER, the total CPU time spent to 

solve an instance, and the number of instances that have not been solved to optimality 

within the pre-fixed time limit (this applies exclusively to combined scenario instances). Table 

23 shows that the addition of inequalities (54), (58), as well as their combination, leads to an 

improvement of the value of the linear relaxation of SISLER by around, respectively: 5% (from 

64.86 to 68.36), 34% (from 64.86 to 86.86), and 39% (from 64.86 to 90.30) in the small 
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scenario; 5% (from 64.86 to 68.36), 47% (from 64.86 to 95.36), and 52% (from 64.86 to 98.61) 

in both the medium and large scenarios; and 5% (from 64.86 to 68.36), 40% (from 64.86 to 

91.11), and 46% (from 64.86 to 94.46) in the combined scenario. These values are correlated 

to the time spent at the root node as well as the total CPU time spent to solve an instance 

and, specifically in case of combined scenario instances (i.e., Table 22), to the number of 

instances that have been solved within the pre-fixed time limit of 3600 seconds. The 

presence of additional inequalities entails an increase in the time spent at the root node by 

around 8% (from 3.6 to 3.9) when adding inequalities (54), while a decrease by nearly 16% 

(from 3.6 to 3) when adding inequalities (58), and 32% (from 3.6 to 2.5) for their combination, 

based on average computed values (AVG). On the other side, the total CPU time decreases 

by around 3% (from 3600 to 3508.8), 57% (from 3600 to 1559.3), and 76% (from 3600 to 

847.4) for inequalities (54), (58), and their combination, respectively, based on average 

computed values (AVG). These results are in line with the increase in the value of the linear 

relaxation previously reported. Furthermore, the presence of inequalities allows to solve 

instances to optimality within the pre-fixed time limit and to reduce the average gap for 

those that were not solved to optimality, as displayed in Table 24. In particular, Table 24 

reports the lower bound value (LB), the upper bound value (UB), which is the best found 

integer, and the resulting gap (GAP) for combined scenario instances without any inequality 

(I), with the addition of inequalities (54) (I+BUS), with the addition of inequalities (58) 

(I+FLOW), and with the addition of both inequalities (54) and (58) (I+BUS+FLOW) when 𝛼 

varies from 0 to 1. 

Table 24. Computational results for the 25x165 network – All Scenarios (Mix) – Gap analysis 

  I I+BUS I+FLOW I+BUS+FLOW 

α LB UB GAP LB UB GAP LB UB GAP LB UB GAP 

0 - - - - - - - - - - - - 

0.1 131.54 137 3.99% 131.17 137 4.26% 135 135 0% 135 135 0% 

0.2 113.09 133 14.97% 129.14 133 2.90% 132.5 132.5 0% 132.5 132.5 0% 

0.3 126.63 133 4.79% 123.94 133 6.81% 132.5 132.5 0% 132.5 132.5 0% 

0.4 123.99 133 6.77% 132.5 132.5 0% 132.24 132.5 0.20% 132.5 132.5 0% 

0.5 132.5 133 0.38% 123.64 133 7.04% 132.5 132.5 0% 132.5 132.5 0% 

0.6 123.04 133 7.49% 132.5 133 0.38% 132.5 132.5 0% 132.5 132.5 0% 

0.7 125.13 133 5.92% 127.87 133 3.86% 132.5 132.5 0% 132.5 132.5 0% 

0.8 125.43 133 5.69% 129.13 133 2.91% 132.5 132.5 0% 132.5 132.5 0% 

0.9 128.54 133 3.35% 130.83 133 1.63% 132.5 132.5 0% 132.5 132.5 0% 

1 128.74 133 3.20% 126.54 133 4.86% 130 132.5 1.89% 132.5 132.5 0% 

AVG 125.86 133.4 5.65% 128.73 133.35 3.46% 132.474 132.75 0.21% 132.75 132.75 0 
 

Legend: - = No solution has been found; N/A = Not Applicable 
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The addition of inequalities (54), which yield the lowest increase of the linear relaxation 

value, did not allow to solve any of the combined scenario instance to optimality. Conversely, 

the addition of inequalities (58), to which corresponds a higher increase of the linear 

relaxation value, allowed to close to optimality eight out of ten combined scenario instances. 

Finally, the combination of inequalities (54) and (58), to which corresponds the best 

improvement in the value of the linear relaxation, yield to close to optimality all the 

combined scenario instances. Moreover, a decrease in the average gap by around 39% (from 

5.65% to 3.46%) and 96% (from 5.65% to 0.21%) can be appreciated for inequalities (54) and 

(58), respectively. 

5.3.2 Case study: Sioux Falls network 

5.3.2.1 Case study description 

In addition to testbed instances, SISLER has also been tested on a realistic case study, which 

is the Sioux Falls network (network data are available at Transportation Network, which is a 

network repository for transportation research (Transportation Network for Research Core 

Team)). The Sioux Falls network has been quite used in the transportation literature, 

including evacuation planning studies (Ng, Park and Waller 2010). The network is composed 

of 24 nodes and 76 arcs and it is displayed in Figure 29. 

 

Figure 29. Sioux Falls Network (adapted from Transportation Network for Research Core Team) 
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For experimentation purposes: node 4, 7, 8, 14, 19, and 21 are assumed to be car-based 

evacuation only zones; node 3, 9, 15, and 22 are assumed to be bus-based evacuation only 

zones; node 5, 11, 16, and 23 are assumed to be mixed-evacuation zones (i.e., both car-based 

and bus-based evacuations can occur); node 1, 2, 13, 18, and 20 are assumed to be candidate 

shelter sites; node 12 is assumed to be the depot; and the remaining network nodes are 

assumed to be pure transshipment nodes. Note that, based on SISLER assumptions, arcs 

whose final destination is a candidate shelter location are travelled only towards the shelter 

(hence, the arc that is travelled in the opposite direction is not considered) and, given that 

buses are not returning to the depot, all the network arcs originally having node 12 as a 

terminal point have been discarded. This has led to a reduced version of the Sioux Falls 

network with 24 nodes and 58 arcs, as reported in Figure 30. 

 

 

Figure 30. Sioux Falls network under SISLER assumptions – Scenario 1 (Small) 

 

Network nodes are categorized in Figure 30 as follows: blue, red, and brown round shapes 

represent car-based only, bus- based only, and mixed-evacuation demand zones, 

respectively; green square shapes are shelter candidate locations; and the yellow triangle is 

the depot. 
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Evacuation demand and traveling times have been computed based on the Sioux Falls 

network data that have been found (Transportation Networks). Model parameter settings 

(e.g., bus fleet, number of buses, shelter capacity, self-evacuees traveling time threshold, 

and scenario probability distribution) are computed exactly as described for the testbed 

instances. The three different scenarios have been designed as follows: for the small scenario 

(Scenario 1), it is assumed that all network arcs are available, which is the network displayed 

in Figure 30; for the medium scenario (Scenario 2), it is assumed that arcs (4,5), (5,4), (8,16), 

(14,15), (15,14), and (16,8) are disrupted; and for the large scenario (Scenario 3), it is 

assumed that arcs (10,11), (10,17), (11,10), (17,10), (21,24), and (24,21) are disaster-affected, 

in addition to the arcs already unavailable in the medium scenario. Figure 31 and Figure 32 

display the Sioux Falls network under Scenario 2 and Scenario 3 circumstances, respectively. 

 

 

Figure 31. Sioux Falls network under SISLER assumptions – Scenario 2 (Medium) 
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Figure 32. Sioux Falls network under SISLER assumptions – Scenario 3 (Large) 

 

5.3.2.2 Computational results 

The results for the Sioux Falls network are displayed in Table 25, 26, 27, and 28 for the small, 

medium, large scenarios, and their combination, respectively. The tables report the bus-

based evacuation maximum completion time, the car-based evacuation total duration time 

and the open shelters for different values of 𝛼  ranging from 0 to 1 (remember that the 

potential shelter sites for the Sioux Falls network are nodes 1, 2, 13, 18, and 20). 

  



128 
 

Table 25. Computational results for the Sioux Falls network – Scenario 1 (Small) 

Scenario 1 (Small) 

α 
Bus-based 

evacuation max 
completion time 

Car-based 
evacuation        
total time 

Open Shelters 

0 25 83 {2,18,20] 

0.1 25 83 {2,18,20} 

0.2 25 74 {13,18,20} 

0.3 25 74 {13,18,20} 

0.4 25 74 {13,18,20} 

0.5 25 74 {13,18,20} 

0.6 25 74 {13,18,20} 

0.7 25 74 {13,18,20} 

0.8 25 74 {13,18,20} 

0.9 25 74 {13,18,20} 

1 25 74 {13,18,20} 
 

 

Table 26. Computational results for the Sioux Falls network – Scenario 2 (Medium) 

Scenario 2 (Medium) 

α 
Bus-based 

evacuation max 
completion time 

Car-based 
evacuation        
total time 

Open Shelters 

0 41 75 {1,18,20} 

0.1 41 75 {1,18,20} 

0.2 41 75 {1,18,20} 

0.3 31 79 {13,18,20} 

0.4 31 79 {13,18,20} 

0.5 31 79 {13,18,20} 

0.6 31 79 {13,18,20} 

0.7 31 79 {13,18,20} 

0.8 31 79 {13,18,20} 

0.9 31 79 {13,18,20} 

1 31 79 {13,18,20} 
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Table 27. Computational results for the Sioux Falls network – Scenario 3 (Large) 

Scenario 3 (Large) 

α 
Bus-based 

evacuation max 
completion time 

Car-based 
evacuation        
total time 

Open Shelters 

0 44 88 {1,2,20} 

0.1 44 88 {1,2,20} 

0.2 44 88 {1,2,20} 

0.3 44 88 {1,2,20} 

0.4 44 88 {1,2,20} 

0.5 44 88 {2,13,18} 

0.6 44 88 {2,13,18} 

0.7 44 88 {1,2,20} 

0.8 44 88 {2,13,18} 

0.9 44 88 {2,13,18} 

1 44 88 {2,13,18} 

 

From the analysis of the tables, it is possible to infer the trade-off between the bus-based 

evacuation maximum completion time and the car-based evacuation total duration time.  

For example, in the small scenario (i.e., Table 25) when 𝛼 increases from 0.1 to 0.2, the 

supported-evacuation maximum completion time does not change while the self-evacuation 

total duration time reduces by around 11% (from 83 to 74). This is motivated by the fact that 

the more 𝛼 increases, the more the self-evacuation traveling time threshold becomes looser, 

thus allowing allocations that were infeasible for lower values of 𝛼 and, in this specific case, 

it also implies a change in the shelter location decisions (from node 2 to node 13). A change 

in both evacuation times and shelter locations can be observed from the analysis of the 

medium scenario (i.e., Table 26). When 𝛼  increases from 0.2 to 0.3, the bus-based 

evacuation maximum completion time drops by nearly 23% (from 41 to 31), while the car-

based evacuation total duration time increases by around 5% (from 75 to 79), leading to a 

shift in shelter location decisions (node 13 is opened instead of node 1). A visual 

representation of the trade-off between the bus-based evacuation maximum completion 

time and the car-based evacuation total duration time when 𝛼 varies between 0 and 1 for 

the medium scenario is displayed in Figure 33. 
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Figure 33. Evacuation times trade-off for different values of 𝜶 – Sioux Falls network – Scenario 2 
(Medium) 

 

Moreover, regarding the large scenario (i.e., Table 27), neither the supported-evacuation 

maximum completion time nor the self-evacuation total duration time change however, 

there are some changes in the shelter location decisions (e.g., when 𝛼 increases from 0.4 to 

0.5). The reason for this can be the presence of multiple optimal solutions. In fact, the 

objective function considers the supported-evacuation maximum completion time and the 

self-evacuation total duration time in its lexicographic form however, the shelter location 

decisional variables are not present in the objective function.  

Single scenario instances were solved in matter of few seconds. Results of combined 

scenario instances are reported in Table 28. The table reports the CPU time spent at the root 

node in seconds (Time at the root node) and the total CPU time spent to solve an instance in 

seconds (Total CPU time) under four different circumstances which are without any 

inequality (I), with the addition of inequalities (54) (I+BUS), with the addition of inequalities 

(58) (I+FLOW), and with the addition of both inequalities (54) and (58) (I+BUS+FLOW) for 

different values of 𝛼 ranging from 0 to 1. The tables also report the solution details in terms 

of bus-based evacuation maximum completion time (Bus max time), the car-based 

evacuation total duration time (Car tot time) and the open shelters for all the different values 

of 𝛼.
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Table 28. Computational results for the Sioux Falls network – All Scenarios (Mix) 

All Scenarios (Mix) 

 I I+BUS I+FLOW I+BUS+FLOW Solution details 

α 
Time at 

root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Time at 
root 
node 

Total 
CPU 
time 

Bus      
max 
time 

Car        
tot 

time 

Open 
shelters 

0 1.25 949.75 1.28 800.71 1.58 2099.81 1.39 267.28 36 73 {1,18,20} 

0.1 1.20 3002.2 1.29 2797.32 1.76 783.81 1.45 826.6 36 73 {1,18,20} 

0.2 1.20 344.19 1.26 512.7 1.69 638.98 2.06 817.54 36 73 {1,18,20} 

0.3 1.09 105.19 1.11 65.26 1.78 94.71 1.97 52.88 33 75.4 {1,18,20} 

0.4 1.23 66.69 1.36 60.79 1.95 58.41 1.70 141.8 31 81.9 {1,18,20} 

0.5 1.01 337.77 1.34 130.96 1.53 401.61 1.33 349.96 31 76.9 {13,18,20} 

0.6 1.31 175.19 1.29 186.03 1.34 595.89 1.42 433.37 31 76.9 {13,18,20} 

0.7 1.34 369.83 1.11 214.92 1.64 229.43 1.39 433.64 30.6 83.1 {2,18,20} 

0.8 1.11 229.73 1.14 119.47 1.67 144.77 1.62 80.09 30.6 83.1 {2,18,20} 

0.9 1.00 143.32 1.19 401.25 1.39 92.56 1.37 326.09 30.6 83.1 {2,18,20} 

1 1.19 338.47 1.08 233.19 1.68 128.5 1.53 75.49 30.6 83.1 {2,18,20} 

AVG 1.17 551.12 1.22 502.05 1.64 478.95 1.58 345.85 32.4 78.4 N/A 

 

From the analysis of Table 28, it is possible to infer the trade-off between the bus-based 

evacuation maximum completion time and the car-based evacuation total duration time. For 

example, when 𝛼 increases from 0.2 to 0.3, the supported-evacuation maximum completion 

time drops by around 8% (from 36 to 33) while the self-evacuation total duration time 

increases by around 3% (from 73 to 75.4) however, this does not entail a change in shelter 

location decisions. Another example can be observed when 𝛼 rises from 0.3 to 0.4, in fact, 

the bus-based evacuation maximum completion time decreases by around 6% (from 33 to 

31) while the car-based evacuation total duration time increases by around 1% (from 75.4 to 

76.9). Differently, when 𝛼  increases from 0.4 to 0.5, there is no change in bus-based 

evacuation maximum completion time however, the car-based evacuation total duration 

time drops by around 6% (from 81.9 to 76.9). This is motivated by the fact that the more 𝛼 

increases, the looser is the self-evacuation traveling time threshold thus allowing self-

evacuees to shelter allocation that were not allowed for previous values of 𝛼. Moreover, this 

leads to a change in the shelter location decisions, in fact, node 13 is opened instead of node 

1. A further example of trade-off between bus-based evacuation and car-based evacuation 

that does also require a shift in shelter location decisions can be appreciated when 𝛼 rises 

from 0.6 to 0.7, where the supported-evacuation maximum completion time drops by 

around 1% (from 31 to 30.6) while the self-evacuation total duration time increases by 

around 8% (from 76.9 to 83.1), and node 2 is opened instead of node 13. A visual 
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representation of the trade-off between the bus-based evacuation maximum completion 

time and the car-based evacuation total duration time when 𝛼 varies between 0 and 1 for 

the combined scenario is displayed in Figure 34. 

 

 

Figure 34. Evacuation times trade-off for different values of 𝜶 – Sioux Falls network – All Scenarios 
(Mix) 

 

Moreover, the comparison of the results across all the tables highlights the importance 

of considering multiple scenarios. In fact, the solutions found when all the three scenarios 

are taken into account can differ quite significantly from the solutions obtained for a single 

scenario. For example, the optimal set of shelters in the solution obtained when 𝛼 = 0.7, 0.8, 

0.9, and 1, which is composed of nodes 2, 18, and 20, is different from the optimal set 

selected in each individual scenario for the same values of 𝛼 (i.e., 13, 18, and 20 for both the 

small and medium scenarios and 2, 13, and 18 for the large scenario), and so are the bus 

routes and self-evacuee to shelter allocations. 

Table 29 reports the values of the linear relaxation of SISLER without any inequality (LR), 

with the addition of inequalities (54) (LR+BUS), with the addition of inequalities (58) 

(LR+FLOW), and with the addition of both inequalities (54) and (58) (LR+BUS+FLOW) for the 

small (S), medium (M), large scenarios (L), and their combination (MIX), respectively. 
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Table 29. Computational results for the Sioux Falls network – Linear relaxation values 

Scenario LR LR+BUS LR+FLOW LR+BUS+FLOW 

S 19.31 19.31 19.57 19.57 

M 19.82 19.82 20.09 20.09 

L 24.42 24.42 24.68 24.68 

MIX 20.48 20.48 20.75 20.75 

 

Further observations can be drawn from the combined analysis of Tables 28 and 29 from 

a computational perspective. A slight improvement in the value of the linear relaxation of 

SISLER can be appreciated due to the addition of the inequalities. The presence of 

inequalities (54) does not yield any improvement while inequalities (58) increase the value 

of the linear relaxation by around 1% in each single scenario (from 19.31 to 19.57 in the small 

scenario, from 19.82 to 20.09 in the medium scenario, and from 24.42 to 24.68 in the large 

scenario). The combination of inequalities (54) and (58) does not produce any improvement. 

The reason for this result may be due to either the specific network under consideration or 

the scenario settings. The presence of additional inequalities entails an increase in the time 

spent at the root node by around 3% (from 1.17 to 1.22), 39% (from 1.17 to 1.64), and 33% 

(from 1.17 to 1.58), for inequalities (54), (58), and their combination, respectively, based on 

average computed values (AVG). Inversely, the total CPU time decreases by around 9% (from 

551.12 to 502.05), 13% (from 551.12 to 478.95), and 37% (from 551.12 to 345.85) for 

inequalities (54), (58), and their combination, respectively, also based on average computed 

values (AVG). This is in line with the increase in the value of the linear relaxation (from 20.48 

to 20.75) that can be appreciated for both inequalities (58) and combination of both (54) and 

(58). Hence, this demonstrates the positive contribution deriving from additional inequalities. 

Obviously, there are some instances for specific values of 𝛼 , where the addition of 

inequalities may actually delay the completion of an instance however, the above statements 

hold on average terms, and single instances should be studied separately for each network. 
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5.4 Conclusions 

This chapter has introduced a novel scenario-based mixed-integer program to optimize 

shelter location and evacuation routing decisions simultaneously. In particular, to the best 

of my knowledge, this is the second model that attempts to address together shelter 

location, car-based evacuation, and bus-based evacuation. The model integrates both user 

and system perspectives, in fact, the former is still in charge of his routes and the latter 

arranges shelter sites and evacuation for special-needs populations. Trade-off solutions 

between the two perspectives can be appreciated through the willingness of self-evacuees 

to travel paths that are lengthier than their shortest ones. The model has been solved 

through a Branch-and-Cut algorithm of an off-the-shelf software which has been enriched 

with additional inequalities based on the study of the literature of related problems. 

Experimentation has been carried out on both testbed instances and a realistic case study. 

Results have shown user-system trade-off solutions and have also highlighted the 

importance of considering different disruption scenarios. In fact, in some cases, the solution 

obtained for combined scenarios can be quite different from the solutions of the related 

single scenario instances. Moreover, it has been proven that the addition of further 

inequalities has positively contributed to the model solution from a computational 

perspective. In fact, for the larger testbed network, it has allowed to solve instances within 

the pre-fixed time limit and has sped up the total CPU time needed to close instances on an 

average basis (this has been appreciated also for the realistic case study). Hence, the 

obtained results demonstrate that the approach is able to find robust and efficient 

evacuation plans, thus providing local governments and emergency planners with a valuable 

decision support tool.  

Nevertheless, SISLER is not exempt from limitations based on its underpinning 

assumptions. Firstly, SISLER is a deterministic model because assumes that the evacuation 

demand is known. However, evacuees may not be willing to leave their own houses despite 

warning signals thus requiring adjustments to the evaluation of the evacuation demand. This 

shortcoming may be tackled through the development of a formulation based on robust 

programming so as to account for uncertainties in the evacuation demand. Secondly, SISLER, 

is a static model and, given that disasters are intrinsically dynamic, a further research step 

would be to develop a time-dependent formulation so as to account for several aspects: 

disaster propagation (whichever the choice of disruption scenarios), traffic evolution (so as 

to include also congestion), and resources availability (both in terms of shelters to be 

equipped and vehicles to be used). Thirdly, the usage of the Euclidean distance as a proxy for 
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travelling times may not be correctly representative of a real network. From a mathematical 

perspective, the Euclidean distance is a norm 2 while the Manhattan distance is a norm 1: in 

order to account for real-like distances, a norm between 1 and 2 shall be used. Finally, from 

a computational perspective, SISLER has been tested on networks whose node cardinality is 

around 25 and whose arc cardinality ranges from 56 to 165; also, only three possible 

scenarios have been considered (i.e., small-like disruption, medium-like disruption, and 

large-like disruption). With these settings, the proposed Branch-and-Cut approach with 

additional inequalities has proven to be successful however, an increase in the number of 

disruption scenarios and/or network dimensions will require the development of new ad-

hoc cuts (to be identified through polyhedral theory) and/or to devise other approaches 

(such as applying Benders decomposition or deploying some forms of relaxation to obtain 

bounds to speed up the resolution process). Hence, despite the successful and encouraging 

results so far obtained, enhancements of SISLER from both a modeling and an algorithmic 

perspectives will have to be considered in order to increase its potential as a realistic model 

and its application to larger real-life networks (i.e., scalability). 
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6. Conclusions 

This chapter summarizes the contributions of this dissertation and offers some further 

research directions towards the two research fields this doctoral activity has dealt with: 

critical information infrastructure protection and shelter location and evacuation routing.   

 

6.1 Research summary 

This dissertation has focused on operations belonging to the mitigation and response phases 

of the DOM. In particular, on the mitigation side, the attention has been devoted to the field 

of critical information infrastructure protection, while, on the response side, two key 

evacuation planning operations have been investigated, shelter location and evacuation 

routing. 

Within the CIIP context, the following research questions have been answered: CIIP.1) 

what are the most critical elements of a system that, if disrupted, would interrupt or 

significantly degrade the system’s normal functioning; CIIP.2) how can such an interruption 

be prevented or mitigated by resource allocation plans aimed at hardening system elements; 

and CIIP.3) is it possible and worthwhile to design and establish infrastructures that are 

intrinsically able to resist service failure when a disruptive event occurs? Questions CIIP.1), 

CIIP.2), and CIIP.3) have been answered by reviewing survivability-oriented interdiction, 

resource allocation strategy, and survivable design models. From the review process, it has 

emerged that resource allocation strategy models to protect CII constitute a research area 

so far overlooked. Hence, the focus has then be narrowed to the resource allocation strategy 

models category, and a survey of multi-level programs that have been developed for 

protecting other CI (i.e., supply chains, transportation systems, and utility networks) has been 

produced so to identify some aspects that could be adapted for CIIP.  Moreover, a novel bi-

level program, namely the Critical Node Detection Problem with Fortification (CNDPF) 

problem, has been introduced. In particular, the ultimate goal is to minimize the negative 

impact on network connectivity due to worst-case disruptions, affecting the system nodes, 

through mitigation strategies finalized at the installation of additional network arcs. A SVI 

decomposition method and a Greedy Constructive Local Search (GCLS) approach have been 

developed to solve the model. Two real telecommunication networks (Sterbenz et al., 2010b) 

have been used to test the model and the corresponding solution methodologies. 

Experimental results have proven that the SVI decomposition algorithm is a quite successful 

exact method however, it can encounter difficulties when problem dimensions increase, 
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which motivates the need to develop an alternative (or auxiliary) heuristic approach. The 

Greedy Constructive and Local Search heuristic with a one-to-one swap policy (GCLS1) has 

proven to be a valid alternative to the SVI decomposition algorithm when applied to a small 

network, while The Greedy Constructive and Local Search heuristic with a two-to-two swap 

policy (GCLS2) has performed satisfyingly on a larger network, and proved to be better than 

GCLS1. Nevertheless, results have highlighted that a reasonable expenditure of protection 

resources can yield significant improvements in the network connectivity. 

Within the shelter location and evacuation routing context, the following research 

questions have been answered: SLER.1) what are the current challenges emerging in the 

shelter location and evacuation routing field from an optimization-based perspective; SLER.2) 

when planning for efficient evacuation plans: how many shelters should be opened and 

where should they be located, how should self-evacuation be addressed in the planning 

framework, and how should supported-evacuation be organized in order to assist people 

belonging to sensitive categories (e.g., disabled, elderly)? Question SLER.1) has been 

answered by reviewing specific optimization-based disaster management surveys and 

critically analysing the most recent optimization models tackling the two aforementioned 

problems in an integrated manner. Through the analysis of these state of the art models, the 

current challenges emerging in this research area have been identified. These include: 

stakeholder involvement, evacuation modes, clear definition of modelling inputs, evacuee 

behavior, system behavior, and methodology. In addition, a roadmap for future research has 

been outlined. Furthermore, based on some of the identified challenges, question SLER.2) 

has been answered by defining a novel scenario-based location-allocation-routing model to 

optimize evacuation planning decisions. The proposed model, called the Scenario-Indexed 

Shelter Location and Evacuation Routing (SISLER) model, integrates shelter location and 

evacuation routing decisions, while considering both a user perspective (self-evacuation) and 

a system perspective (supported-evacuation). It also addresses the uncertainty of the 

infrastructure availability after a disaster by optimizing evacuation plans across several 

disruption scenarios. It has been demonstrated that the model can be used to identify user-

system trade-off solutions on both testbed instances and a realistic case study. 

Experimentation has also highlighted the importance of considering different disruption 

scenarios.  

 



138 
 

6.2 Further research directions 

6.2.1 Critical Information Infrastructure Protection 

The research on CIIP issues aimed at hedging against potential physical attacks is still evolving. 

The demand for such work has been prompted by disasters of diverse nature, with 9/11 

being a seminal one.  

On a general note, the survivability optimization models that have been reviewed in this 

dissertation are basic models that can be extended in a number of ways. For example, 

interdiction and protection models could be extended to tackle both physical and logical 

survivability issues by incorporating routing and arc capacity assignment decisions. In 

addition, most of the optimization models developed so far are deterministic. However, 

failures and disruptions are random events, often difficult to predict. The probabilistic 

behavior of complex CII under disruptions would be better modelled by using stochastic 

models, including uncertain parameters (e.g., uncertainty on arc/node availability, extent of 

a disruption, etc.). Alternatively, the uncertainty characterizing disruptions could be 

captured in scenario-based models which incorporate robustness measures for the 

identification of solutions which perform well across different disruption scenarios.  Future 

models could even combine the optimization of protection and restoration strategies in a 

unified framework so as to distribute resources efficiently across the different stages of the 

DOM cycle (protection plans belong to the pre-disaster stage while recovery plans refer to 

the post-disaster stage). Other resource allocation models could consider identifying trade-

off investments in physical protection and cyber-security to mitigate the impact of both 

physical and logical attacks. The models discussed in this dissertation have been solved by 

using a variety of optimization algorithms, including exact methods (e.g., decomposition) and 

heuristics (e.g., evolutionary algorithms). The development of more complex models, such 

as stochastic, bi-level and multi-objective models, would necessarily require additional 

research into the development of more sophisticated solution techniques, possibly 

integrating exact and heuristic methodologies into a hybrid heuristic framework. Another 

possible line of research could be to investigate hyper-heuristics, which can be defined as 

learning mechanisms that either choose or generate heuristics to solve complex 

combinatorial problems and whose final aim is to find the best sequence of heuristics to be 

used rather than solving the problem just with one method (Burke et al. 2013).  

On a more specific level, critical information infrastructure protection can be achieved 

through the optimal allocation of protective resources among system components. 
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Alternatively, CIIP can be achieved through network design operations (i.e., network 

extension aimed at increasing system redundancy). The CNDPF belongs to the latter category. 

Some possible research directions are described as follows. Firstly, from a modeling 

perspective, the option of partial interdiction as proposed by (Aksen, Akca and Aras 2014) 

could be considered. Partial interdiction means that the disruption of a network node does 

not necessarily imply its total inoperability. This could be eventually linked with the concept 

of level of service or recovery time, as introduced by Losada, Scaparra and O’Hanley (2012). 

The CNDPF has been formulated as a deterministic bi-level program however, given that the 

failure of a system component is an uncertain event, a stochastic version could be defined 

(Liberatore, Scaparra and Daskin 2011; Losada et al. 2012). To this end, a probability could 

be associated to the failure of a specific network node. Moreover, it would also be interesting 

to incorporate different interdiction models at the lower level, as those described in 

(Faramondi et al. 2017; Faramondi et al. 2018). These include: the β-Vertex Disruptor 

problem, which aims at identifying the smallest set of network nodes whose removal would 

degrade the network connectivity to a pre-fixed level, or the Cardinality Constrained Critical 

Node Detection Problem (CC-CNP), which aims at identifying the smallest set of network 

nodes to be disrupted so that the size of the largest connected component is within a 

predefined acceptance threshold.  Secondly, from a methodological perspective, alternative 

swap policies for the local search phase (e.g., one-to-many) in combination with different 

ordering (e.g., increasing rather than decreasing) for the greedy constructive procedure 

could be investigated for GCLS. Moreover, other different local search-based heuristic 

approaches could be tested in order to assess how to tackle some of the shortcomings 

emerged in the application of GCLS. These include Greedy Randomized Adaptive Search 

Procedure (GRASP), Iterated Greedy Local Search, and Variable Neighborhood Search (VNS). 

Eventually, these models could also be tested on network with specific topologies (i.e., full 

mesh, star, etc.) so as to identify any connection between the algorithm suitability and the 

network topological structure. 

Finally, the ultimate challenge when developing optimization approaches for increasing 

CII survivability is to consider the interdependency among multiple CI and the potential 

cascading failures across different lifeline systems. As noted by (Sharkey et al. 2015), 

information sharing and coordination among infrastructures significantly improve the 

effectiveness of survivability strategies, as opposed to decentralized decision making. 

However, existing models that address network interdependencies are either overly 

simplistic or too theoretical. This line of research certainly warrants further investigation. 
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6.2.2 Shelter location and evacuation routing 

Shelter location and evacuation routing, and evacuation planning more in general, is a field 

which offers plenty of opportunities for both practitioners and researchers, which still 

requires in-depth investigation given that their combination has not yet been tackled 

comprehensively.  

On a general note, the following issues should be addressed: adoption of Soft OR/PSMs 

approaches; development of multi-objective, combined, multi-period and stochastic models, 

along with cutting edge algorithms; clear and realistic modelling assumptions; deployment 

of information systems and user-friendly GIS-based platforms; primary data collection to 

embed more realism into optimisation models; combination of different evacuee categories; 

inclusion of assisted and multi-modal evacuation and issues such as evacuation vehicle 

procurement; addressing of issues such as time of day, route diversion, evacuee 

demographics, route preferences, and warning signals to model evacuee behaviour more 

accurately; adoption of novel equity-based approaches for shelter location and evacuation 

routing; integration of infrastructure disruption, congestion, and shelter categories into 

optimisation models; and interdisciplinary research towards shelter location and evacuation 

routing. 

On a more specific level, this dissertation introduced a scenario-based location-allocation-

routing model to optimize evacuation planning decisions, namely SISLER. SISLER is still far 

from being comprehensive and could be further extended to include other complicating 

aspects, such as a time perspective (through a time-dependent formulation), congestion 

issues, multiple objectives, demand uncertainties, evacuation modes (i.e., inclusion of SED) 

and evacuee behavior. Decisions about the timing of evacuation orders and the distribution 

of relief supplies to shelters could also be integrated into the model. The model needs to be 

tested on larger networks, for different probability distributions and with different disruption 

scenarios. Undoubtedly, solving larger problems with many disruption scenarios will require 

to further improve the solution method that has been proposed (through the definition of 

ad-hoc valid inequalities and separation procedures), to be eventually paired with ad-hoc 

heuristic approaches. Moreover, advanced methods for generating realistic scenarios, even 

in a different way from the one proposed, and solving large-scale stochastic programs (e.g., 

Sample Average Approximation) should be developed; robust optimization approaches could 

be adopted to account for evacuation demand uncertainties and different targets (e.g., 

evacuation time, evacuee risk, network congestion, shelter coverage) could be considered 

through a multi-objective optimization framework. Furthermore, it could be also 
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investigated how to improve the current lexicographic objective function formulation so as 

to also account for the optimization of the bus routes directly into the objective function. 

Obviously, this requires more research into identifying values of the lexicographic constants 

so that not just the main objective is dominant but the first lexicographic component 

dominates over the second one. 

Hence, the research proposed in this doctoral dissertation has got potential to 

practically improve mitigation and response operations in Disaster Management and could 

serve to emergency management decision-makers such as public authorities, NGOs as well 

as humanitarian operators. Eventually, the integration of operations belonging to different 

DOM phases should be put forward. For example, preparedness and response phases could 

be treated together by combining relief supply pre-positioning, shelter opening operations 

and evacuation. In fact, shelters need to be equipped with different resources (e.g., first-aid 

kits, food) prior to be operative. Mitigation and response operations could also be addressed 

together. During a disaster, in fact, the dissemination of warning signals and the evacuation 

itself heavily rely on critical infrastructures (e.g., communication and transport systems). 

Damage to these infrastructures may have direct effects on the affected populations’ ability 

to evacuate. Hence, models to evaluate the impact of critical infrastructure protection 

(mitigation) on the evacuation process itself (response) could be developed. Obviously, this 

ambitious vision requires developing ad-hoc sophisticated algorithms, able to deal with the 

complexity of comprehensive mathematical models and large scale real-time data. This 

would not only lead to advances in the OR discipline towards the challenging and 

interdisciplinary nature of DM problems but also help to bridge the gap between the 

development of optimization tools and their practical application in disaster situations so as 

to propose novel approaches that are more closely aligned with technology and practice. 
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7. Research contributions 

This section reports the papers that have been published and the conference talks that have 

been given during the doctoral activity. Some of the produced contributions are part of the 

thesis (as specified) while others are not included. However, they are listed for completeness 

in order to provide a detailed summary of the research that has been produced.  

 

7.1 Papers 

Esposito Amideo A., Scaparra M.P., Kotiadis K. (2018). Optimising Shelter Location and 
Evacuation Routing Operations: The Critical Issues. European Journal of Operational 
Research (In press) – Chapter 4 

 

Starita S., Esposito Amideo A., Scaparra M.P. (2018). Assessing Urban Rail Transit 
Systems Vulnerability: Metrics vs. Interdiction Models. In: D'Agostino G., Scala A. 
(eds) Critical Information Infrastructures Security. CRITIS 2017. Lecture Notes in 
Computer Science, vol 10707. Springer, Cham. DOI: https://doi.org/10.1007/978-3-
319-99843-5_13 

 

Faramondi, L., Oliva, G., Setola, R., Pascucci, F., Esposito Amideo, A., and Scaparra, M. P. 
(2017). Performance Analysis of Single and Multi-Objective Approaches for the Critical 
Node Detection Problem. In: Sforza A., Sterle C. (eds) Optimization and Decision 
Science: Methodologies and Applications. ODS 2017. Springer Proceedings in 
Mathematics & Statistics, vol 217 (pp. 315-324). Springer, Cham. DOI: 
https://doi.org/10.1007/978-3-319-67308-0_32 

 

Esposito Amideo, A., and Scaparra, M. P. (2017). A Scenario Planning Approach for Shelter 
Location and Evacuation Routing. In: Sforza A., Sterle C. (eds) Optimization and 
Decision Science: Methodologies and Applications. ODS 2017. Springer Proceedings 
in Mathematics & Statistics, vol 217 (pp. 567-576). Springer, Cham. DOI: 
https://doi.org/10.1007/978-3-319-67308-0_57 – Chapter 5 is an extension of this 
research paper 

 

Esposito Amideo A., Scaparra M.P. (2017). A Synthesis of Optimization Approaches for 
Tackling Critical Information Infrastructure Survivability. In: Havarneanu G., Setola 
R., Nassopoulos H., Wolthusen S. (eds) Critical Information Infrastructures Security. 
CRITIS 2016. Lecture Notes in Computer Science, vol 10242 (pp. 75-87). Springer, 
Cham. DOI: https://doi.org/10.1007/978-3-319-71368-7_7 – Chapter 2 is an 
extension of this research paper 
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7.2 Conference Talks 

Esposito Amideo, A.*, Scaparra, M. P., Sforza, A., and Sterle C.. Integrating Shelter Location 
and Evacuation Routing: A Trade-Off between User and System Perspectives. OR60 
“Anniversary” Conference, 11th-13th September 2018, Lancaster, UK. – Chapter 5 
contains elements of this presentation 

 

Esposito Amideo, A.*, Scaparra, M. P., Sforza, A., and Sterle C.. An integrated user-system 
approach for shelter location and evacuation routing. 7th International Workshop on 
Freight Transportation and Logistics, Odysseus 2018, 3rd-8th June 2018, Cagliari, ITALY. 
– Chapter 5 contains elements of this presentation 

 

Starita, S., Esposito Amideo, A.*, and Scaparra, M. P..  Assessing Urban Rail Transit Systems 
Vulnerability: Metrics vs. Interdiction Models. The 12th International Conference on 
Critical Information Infrastructures Security, CRITIS2017, 9th-11th October 2017, IMT 
School for Advanced Studies, Lucca, ITALY. 

 

Esposito Amideo, A.*, and Scaparra, M. P.. A Scenario Planning Approach for Shelter 
Location and Evacuation Routing. International Conference on Optimization and 
Decision Science, XLVII Annual Meeting of AIRO, ODS 2017, 4th-8th September 2017, 
Sorrento, Naples, ITALY. – Chapter 5 contains elements of this presentation 

 

Esposito Amideo, A.*, Scaparra, M. P., and Kotiadis, K.. OR Applied to Shelter Location and 
Evacuation Routing: Emerging Challenges and Further Research Directions. Socialising 
Business Research – Connecting and Advancing Knowledge, 5th-7th June 2017, Kent 
Business School, University of Kent, Canterbury, UK. – Chapter 4 contains elements of 
this presentation 

 

Esposito Amideo, A.*, and Scaparra, M. P.. A Synthesis of Optimization Approaches for 
Tackling Critical Information Infrastructure Survivability. The 11th International 
Conference on Critical Information Infrastructures Security, CRITIS2016, 10th-12th 
October 2016, UIC Headquarters, Paris, FRANCE. – Chapter 2 contains elements of this 
presentation 
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