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Abstract 

Traditional face recognition systems have achieved remarkable performances when the 

whole face image is available. However, recognising people from partial view of their 

facial image is a challenging task. Face recognition systems’ performances may also be 

degraded due to low resolution image quality. These limitations can restrict the 

practicality of such systems in real-world scenarios such as surveillance, and forensic 

applications. Therefore, there is a need to identify people from whatever information is 

available and one of the possible approaches would be to use the texture information 

from available facial skin regions for the biometric identification of individuals. 

This thesis presents the design, implementation and experimental evaluation of an 

automated skin-based biometric framework. The proposed system exploits the skin 

information from facial regions for person recognition. Such a system is applicable 

where only a partial view of a face is captured by imaging devices. The system 

automatically detects the regions of interest by using a set of facial landmarks. Four 

regions were investigated in this study: forehead, right cheek, left cheek, and chin. A 

skin purity assessment scheme determines whether the region of interest contains 

enough skin pixels for biometric analysis. Texture features were extracted from non-

overlapping sub-regions and categorised using a number of classification schemes. To 

further improve the reliability of the system, the study also investigated various 

techniques to deal with the challenge where the face images may be acquired at 

different resolutions to that available at the time of enrolment or sub-regions themselves 

be partially occluded. The study also presented an adaptive scheme for exploiting the 

available information from the corrupt regions of interest.  

Extensive experiments were conducted using publicly available databases to evaluate 

both the performance of the prototype system and the adaptive framework for different 

operational conditions, such as level of occlusion and mixture of different resolution 

skin images. Results suggest that skin information can provide useful discriminative 

characteristics for individual identification. The comparison analyses with state-of-the-

art methods show that the proposed system achieved a promising performance. 
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Chapter 1  

Introduction 

 

 

 

1.1 An Introduction to Biometric Recognition Systems 

Identity management is crucial in ensuring adequate security in both the public and 

private sectors. In the early years of the digital age, a person’s identity was confirmed 

using traditional methods such as a secret text string (a password) or a physical object 

such as a token or card, or by some combination of both. Such security measures may 

fail to verify the user when a password is forgotten or a card is lost. It is clear that while 

complex passwords are hard to be memorised, simple or short passwords can be easily 

guessed/stolen or even shared. Additionally, traditional mechanisms do not provide 

strong evidence for post-event person recognition such as suspect identification at crime 

scene. 

Technological advances have created a need for more secure methods that overcome the 

limitations of traditional approaches. Biometric technologies have great potential in this 

context. Biometric systems offer a neutral and more reliable solution to the problem of 

person recognition. Biometric recognition originally refers to the automated 

verification/identification of an individual’s identity based on measurements of their 

physical or behavioural traits. Such systems have become commonplace for secure 

access control. Since biometric characteristics are inherent to individuals, it is difficult 
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to be manipulated, shared, or forgotten. However, a key concern is which biological 

measurements are suitable as biometric characteristics. To answer that question, 

biometric characteristics should satisfy the following requirements [1]: 

 Universality: each individual should have the selected characteristics. 

 Distinctiveness: the characteristic should facilitate discrimination among 

different individuals. 

 Permanence: the characteristic should be sufficiently stable, with little or no 

change over time. 

 Collectability: the characteristic should be capable of being captured and 

quantised. 

 Performance: measurement of the characteristic should achieve an acceptable 

level of accuracy and should take account of other factors such as cost and 

operational speed. 

 Acceptability: individuals should be willing to permit use of the characteristic 

and to present it to the system. 

 Circumvention: the characteristic should be sufficiently robust to fraudulent 

approaches.  

In contemporary society, there is a need for a reliable real-time system for identity 

recognition in many contexts, including computer network access, border control, and 

financial transactions. In improving security in these and other settings, the most 

commonly used biometric modalities are face recognition, fingerprinting, and iris 

recognition. Any reliable biometric recognition system usually consists of two main 

stages: (i) enrolment and (ii) recognition. At the enrolment stage, data are captured from 

individuals, and the extracted features are stored as gallery templates. At the recognition 

stage, the system establishes the identity of individuals by comparing the similarity 

between the gallery (template) and probe. 

Depending on the application scenario, recognition systems can operate in either of two 

modes: verification or identification. In verification mode, the system attempts to 

validate an individual’s claimed identity by comparing the captured image with the 

image in the database (template)—in other words, the system performs a one-to-one 
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match. The claimed identity is verified using a pre-set threshold that determines the 

system’s decision, as for instance in mobile applications for access control. In contrast, 

in identification mode, the system seeks to determine an individual’s identity by 

comparing the probe capture against all gallery templates stored in the database. The 

system produces a set of similarity scores for matching, and the probe capture is 

assigned to the database item with the highest similarity score. In this case, the system 

performs a one-to-many match, also referred as 1: N, where N is the number of samples 

in the gallery template. This mode is commonly used in forensic or surveillance 

applications [2]. 

1.2 Skin Texture as a Biometrics 

Biometric traits including fingerprints, irises, and faces have been widely used in 

practical applications that range from phone access to border control. Face recognition 

systems are also a proven component of biometric technology. The key advantages of 

face recognition systems are their non-intrusiveness and the fact that they do not require 

the test subject’s cooperation because of their ability to identify the individual in a 

crowd. However, despite the successes of face recognition, some challenges remain to 

be addressed. For example, in typical applications such as the identification of 

individuals in video surveillance frames or in images captured by handheld devices such 

as mobile phones, where without user cooperation, a face may be only partially 

captured. In such scenarios, face recognition systems will probably fail to identify 

individuals, as this requires the whole face image. One possible solution is to exploit 

information from the available part of the face image, and in such these scenarios, skin 

texture features are a key source of significant biometric information. 

Skin texture has been shown to contain plentiful and detailed information that can be 

used in various contexts, including health status [3] and identity information [4] [5] [6] 

[7]. In medical research, skin texture has been studied in many contexts, including 

computer-aided diagnosis in dermatology, where the patient’s skin texture can be used 

for diagnostic purposes [3]. In this latter diagnostic application, skin texture can be used 

for biomedical evaluation of skin treatments and their effectiveness. With the rapid 

developments over the last decade, well-known biometric technologies such as 
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fingerprints [8] and palm prints [9] have employed skin texture to detect identity, using 

fingerprint skin to extract texture features for a person identification [10]. More 

recently, skin texture has been used to help identify the pattern of blood vessels hidden 

in colour images [11]. 

It is generally believed that facial skin appearance is influenced by factors such as 

ageing [12], variations in illumination [13], facial expression [14], makeup and gender 

[15]. Skin appearance also changes noticeably over the lifespan [16]. In general, young 

people have smoother skin than older people, and ageing is clearly revealed by wrinkles 

or other facial marks. Environmental and social factors such as lifestyle, weather 

changes, smoking, and stress all cause major variations in the appearance of human 

skin. 

Forensic demands and the weaknesses of other biometric traits make it essential to 

develop recognition systems based exclusively on skin information, and a few studies 

have investigated the use of human skin texture information to identify individuals. The 

earliest work proposed by Lin et al. [5] investigated the possibility of using skin texture 

information as additional source of distinctiveness to achieve performance improvement 

for face recognition systems. Skin marks (e.g. scars, moles, freckles) have also been 

studied as a means of improving the overall accuracy of face recognition systems [17]. 

In general, a skin biometric system commonly consists of the following components: 

image acquisition, skin region localisation, skin region segmentation, skin feature 

extraction, and skin classification. Figure 1.1 describes a generic skin biometric system. 

 
Figure 1.1 Schematic diagram of a skin biometric system 

In the image acquisition step, the system captures the skin image and quantises the 

sample into digital form for further processing. 

Skin region localisation determines the region of interest (ROI), using facial landmarks 

such as the outer corner of each eye, the nasal bridge, and the corners of the mouth. 

Automatic localisation is often performed by identifying a set of geometric facial 

Feature extraction 
Skin region 

segmentation

Skin region 

localisation
Image acquisition Skin classification
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measurements, using methods such as Active Shape Models [18], Active Appearance 

Models [19], or Chehra Face Tracker [20] to detect facial landmarks. 

Skin region segmentation crops the localised ROI. To validate the usability of the 

ROI, it is submitted to skin purity assessment scheme. Skin colour pixel detection 

techniques are usually applied to categorise image pixels as skin or non-skin on the 

basis of quantised pixel colour. This step is sometimes applied prior the skin purity 

assessment scheme, ensuring that the acquired skin data can be reliably processed for 

further steps. 

Feature extraction constructs features from pure skin regions. Extracting and 

generating a compact and expressive representation (known as a feature set) plays a 

vital role in skin biometric systems. The feature set is usually stored as a template in the 

system database for further comparisons. 

Skin classification compares features extracted from different approaches to generate 

matching scores for biometric recognition. As noted earlier, the objective of 

identification mode is to determine the user’s identity among a set of individuals, in 

which the claimed identity is compared against the entire template in the database (one-

to-many matching). In verification mode, the claimed identity is compared only to the 

template corresponding to the claimed identity (one-to-one matching). 

1.3 Motivation and Objectives of the Research 

The present study aims to develop the usability and practicality of facial skin biometric 

technology for wider application in forensic, surveillance, and security contexts where a 

system must be capable of identifying individuals in crowded scenes. In such scenarios, 

one critical issue is that traditional biometric traits (e.g. fingerprint, iris, face) are either 

not always available and/or cannot be captured. Face recognition systems may help to 

mitigate such issues, but in such scenarios, the face image may be partly occluded by 

objects or accessories (sunglasses, hat, scarf, etc.), or by facial hair. As a composition of 

micro-patterns, skin information is a potentially useful source of biometric information 

for person recognition in such cases. Additionally, the development of multimedia 

hardware such as HDTV and high-resolution digital cameras means that an image of the 
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skin can readily be obtained, making it easy to extract and analyse subtle and detailed 

information. It has been suggested that relatively high-resolution images are needed to 

capture the distinctiveness of skin texture. For example, in [21] and [7], skin features 

extracted from high-resolution images for person verification yielded promising results. 

Conversely, the use of lower resolution images can significantly undermine skin 

biometric performance, and overcoming noise degradation to improve skin system 

performance remains an open problem. A further issue is that matching of skin 

information captured at different resolutions has yet to be investigated. 

On that basis, the present thesis addresses the design of a robust framework to improve 

automatic skin-based biometric person recognition systems. The thesis also explores the 

effect of skin resolution changes on recognition performance. The key objectives of the 

study are as follows: 

 to design an automated skin purity assessment scheme prior to extraction of skin 

information for analysis of biometric features 

 to develop an effective skin biometric system for different facial regions  

 to explore which facial skin regions provide the best biometric information 

 to investigate the system’s performance using skin features at different 

resolutions 

 to establish an adaptive skin-based biometric framework to extract only skin 

image pixels from a noisy region of interest 

 to explore the possibility of using only a small part of the region of interest at 

arbitrary resolution for a person identification 

1.4 Contributions 

This thesis is concerned with the development of a framework for exploiting skin 

texture features for person recognition. The main contributions are summarised as 

follows: 
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First, a skin pixel detection technique is designed and implemented to assess the 

potential of the skin region of interest for biometric processing. This step removes the 

need for human interaction and enhances the accuracy of the process. The technique is 

based on skin colour thresholding at pixel level to detect distortions such as hair or other 

artefacts. Two colour spaces were adopted and combined with other techniques in the 

literature. It is shown that the proposed skin detection’s performance returned 

comparable results (Chapter 4). 

Second, a fully automated localisation technique of facial skin regions including 

Forehead, Right cheek, Left cheek, Chin is presented. Geometric measurements for 

facial skin region of interest are proposed to accurately determined skin regions within 

the face image (Chapter 5). 

Third, an automated skin-based biometric system is presented to investigate the use for 

texture information of each facial skin region, evaluated, and compared with other 

published results. Skin texture features extracted using different methods were explored 

and compared. The experimental results demonstrate that the proposed system achieved 

an improved performance and reliable results. Skin regions which have a more closely 

planar surface (e.g. forehead, and chin region) provided better recognition than less-

planar regions (e.g. cheek) (Chapter 5). 

Fourth, a novel scheme for using facial skin texture features at different resolutions is 

proposed and implemented. Skin features extracted from images of different resolutions 

are investigated to identify a person from different scales. Information fusion at feature 

extraction and score levels are analysed. Experimental results show that not only the 

high-resolution skin image can provide valuable biometric information, but also low-

resolution skin image can contribute significant biometric information (Chapter 6). 

Fifth, an adaptive skin-based biometric technique to exploit of the available skin 

information from the region of interest is proposed. The feasibility of the proposed 

technique is adapted and implemented for evaluating arbitrariness of both skin region 

location and skin resolution for personal identification (Chapter 7). 
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1.5 Thesis Structure 

As shown in Figure 1.2, the thesis is organised in eight chapters, which can be briefly 

summarised as follows. 

 Chapter 2 includes a comprehensive survey of the literature on face recognition 

systems and the current challenges posed by skin texture features. Historical 

developments in face recognition systems are also discussed. Human skin and 

related issues covering the state of the art are presented. Finally, frequently used 

databases for the evaluation skin biometric systems are reviewed. 

 Chapter 3 presents a comprehensive, up-to-date review of advances in texture 

analysis over the last two decades. The chapter covers different aspects of 

texture analysis, including problem descriptions, texture feature extraction 

methods, and texture feature classifications. The measures commonly used for 

assessing the performance of biometric systems are also presented. 

 Chapter 4 describes the techniques used for face skin detection. The chapter 

includes a comprehensive, up-to-date review of previous work on skin pixel 

detection techniques. Skin modelling schemes for purity assessment and the 

database used for system validation are described in detail. The proposed 

technique’s performance is also discussed. 

 Chapter 5 presents the design and implementation of a skin-based biometric 

system. The system is established to explore the potential of facial skin regions 

for person identification. Skin pixel detection and purity assessment for skin 

images that support skin biometric processing are also discussed, along with 

performance evaluation techniques. The chapter then presents an advanced 

purity assessment scheme of facial skin regions to further improve the 

performance of the skin texture-based biometric recognition system. 

Experimental results suggest that skin biometric performance is better for the 

forehead region compared to other facial skin regions. 
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 Chapter 6 reports the design, evaluation, and validation of the skin biometric 

system at different resolutions. Approaches used to scale skin face images using 

interpolation methods to generate different skin resolutions are described in 

detail. Experimental setup and experimental results are also discussed, along 

with the influence of skin image resolution on person recognition. 

 Chapter 7 describes the technique used to process available information from a 

part of the skin image, where the other part is inadequate for biometric purposes. 

The chapter also details extensive experiments on the proposed adaptive skin 

biometric technique. Finally, the ability of matching different skin resolution 

images at arbitrary locations within the ROI is investigated, and the results of 

the experiments are presented and discussed. 

 Chapter 8 draws conclusions from this research and makes recommendations 

for future work. 
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Figure 1.2 The outline of the thesis  

Chapter 1 : Introduction

Chapter 2 : Literature Review 

Chapter 3 : Texture Analysis

Chapter 4 : Detecting Facial Skin Regions for 

Biometric Use

Chapter 5 : Exploring the Potential of Facial 

Skin Regions for Identity Information

Chapter 6 : Usability of Skin Texture Biometrics 

for Low-Resolution Images

Chapter 7 : Adaptive Skin Extraction Features 

Using Biometric Information

Chapter 8 : Conclusions and Future Work
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Literature Review 

 

 

 

2.1 Introduction 

This chapter revisits previous works on facial skin-based biometric systems for identity 

information, beginning with a brief but precise description of challenges for face 

recognition systems and the historical development of these systems. As the thesis 

focuses on building and developing an algorithm for automatic facial skin-based 

biometrics, much of the chapter is concerned with the nature of human skin and related 

issues. Generic facial skin systems are also detailed, and the chapter ends with an 

outline of the databases most commonly used for skin-based recognition. 

2.2 Challenges for Face Recognition 

Face recognition is now among the most widely used modalities in biometrics. While 

the accuracy of face recognition systems has improved significantly over the last two 

decades, some limitations and technical challenges remain. A state-of-the-art review 

highlights the following challenges for face recognition systems: 

 Unconstrained environment 

 Real-time recognition 
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 Ageing  

 Changes in face position, size, and pose 

 Changes in facial expressions 

 Low-resolution facial images due to camera quality, lens characteristics or 

distance between camera and object 

 Accessories such as glasses, caps, and hair 

 Partial occlusion of the face  

 Gender classification 

 Facial changes at a distance 

Facial skin texture provides additional information that can help to overcome some of 

these challenges. Facial skin can be represented by structures on its surface such as 

wrinkles, scars, pores, birthmarks and moles. On that basis, this chapter reviews the 

most recent research on face recognition systems, focusing on the use of skin 

information for recognition of individuals. Following a general introduction to historical 

development in face recognition systems, the focus then narrows to progress in facial 

skin biometric systems as reported in the literature. 

2.3 Historical Developments in Face Recognition Systems 

Face recognition systems have been widely used since the 1960s, and progress has been 

made in applying them in real-world settings [2]. Algorithms have developed rapidly, 

and the increasing number of available databases has contributed to system 

improvements. Another major factor in these improvements is the greater range and 

availability of imaging devices [22]. Image sensors have become smaller and less 

costly, making it possible to embed them in many electronic devices. Figure ‎2.1 

illustrates some fundamental milestones in the progress of face recognition systems and 

camera sensors over time, including the evolution of face recognition algorithms and 

turning points in the development of face acquisition systems. 
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Figure ‎2.1 Some significant milestones in the history of face recognition systems [2] 

 

2.4 Human Skin 

Skin can be defined as the outer tissue of the body. Humans usually take great care of 

their skin’s appearance, and this is of great interest in several fields of technology and 

science, including medicine, cosmetology, computer graphics and computer vision (see 

Figure  2.2). While briefly addressing some of these areas, this section is principally 

concerned with developments in computer vision. 

Skin texture images can be corrupted or changed as a result of factors such as hair, 

cosmetics, spectacles, acne, freckles, razor burns or changes of lighting. Skin texture is 

also affected by ambient environment (e.g. sunlight causing sunburn, skin peeling, 

darkening freckles etc.), as well as by diseases or treatments (e.g. skin allergy, eczema, 

vitiligo, drug eruptions, chicken pox). Biometric studies have devoted great attention to 

skin appearance as a means of identifying individuals, as for instance in the extensive 

research on fingerprint recognition systems. Skin on other parts of the body has also 

been used for personal identification, including the palm, leg, arm and thigh [23]. 



  Chapter 2 Literature Review 

14 

 

 

Figure ‎2.2 Fields of science and technology utilising skin appearance [24] 

 

2.4.1 Skin Texture and Disease Detection 

Skin texture has been used in medical image analysis to detect a wide range of diseases. 

For example, breast cancer can be detected at an early stage through classification of 

parenchymal density and detection of micro-calcifications [25]. In dermatology, skin 

texture information has been used in developing a method of bidirectional imaging to 

analyse the skin’s surface [3]. Five dermatological disorders have been classified on the 

basis of skin texture: acne, congenital melanocytic nevus (medium-sized), keratosis 

pilaris, psoriasis and acute allergic contact dermatitis [3]. 

2.4.2 Skin Texture and Cosmetology 

Females are more likely to using makeup in their daily life to remove facial flaws or to 

change the appearance of their face for cosmetic purposes. Additionally, makeup is still 

widely used as a socially acceptable and cost-efficient option. However, makeup can 

create problems for face recognition systems, as it may change the appearance of the 

individual’s skin texture, and researchers have recently begun to address this issue. For 
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example, Guo et al. [26] used four features to study the relationship between faces with 

makeup and those without: skin colour tone, smoothness, texture and highlights. Using 

a correlation-based scheme, they explored makeup-invariant face authentication using 

two images of the same person: one with makeup (of different kinds) and one without. 

The results indicated that a combination of colour and smoothness features in the image 

helped to detect the presence of makeup. 

Dantcheva et al. [27] tested the effect of facial makeup on an automated biometric 

system and found that it significantly changed the facial appearance by altering colour, 

contrast and texture, undermining the performance of the face recognition system. In a 

study of facial aesthetics based on soft biometrics and photo quality, Dantcheva and 

Dugelay [28] expanded the range of face recognition to include artificial features such 

as makeup and hairstyle. They claimed that their method can detect the modification of 

aesthetics in facial images. Chen et al. [29] studied the binary classification of faces 

with and without makeup, including shape, texture and colour features as a means of 

detecting facial makeup from an unconstrained facial image. Two unconstrained female 

datasets (the YouTube makeup database (YMU) [27] and the Makeup in the Wild 

database (MIW) [29]) were used to evaluate their proposed system. The experiments 

investigated the effects of facial pose, illumination, expression and image resolution, 

using Gabor wavelets and local binary pattern (LBP) texture descriptors to characterise 

micro-patterns and micro-structures in the facial images. Support Vector Machine 

(SVM) and AdaBoost classifiers were employed for classification. Recent work by 

Batool and Chellappa [30] reported a technique for detecting wrinkles and other 

imperfections in the facial skin, based on texture-orientation field and Gabor filter 

features. The algorithm detected wrinkles and inpainted irregularly shaped gaps to 

remove them. 

2.4.3 Skin Information for Personal Recognition 

Skin biometric systems (i.e. approaches that typically use only skin information for 

personal recognition) are sometimes embedded in other systems to enhance the overall 

recognition performance. For example, Klare et al. [31] [32] divided facial features into 

three main levels for representing face images: 1) global appearance, which can be 
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assessed using Eigenfaces; 2) geometric and structural measurements to differentiate 

between two similar faces (often extracted by SIFT, LBP descriptors, and/or Gabor 

wavelets); and 3) skin irregularities and micro-features (e.g. scars, facial marks) that 

may be useful in cases of inter-class similarity (e.g. identical twins) or partial view (e.g. 

occlusions). The authors examined the uniqueness of level (2) using Multiscale Local 

Binary Patterns (MLBP) and Scale-Invariant Feature Transform (SIFT) descriptors, and 

of level (3) using facial marks to assess inter-class similarity. Their system was 

developed to analyse the uniqueness of several facial components (e.g. eyes, eyebrows, 

nose, mouth), using linear discriminant analysis (LDA) to address two questions in 

particular: (i) whether facial feature subspaces can be learned in order to distinguish 

between twin pairs and (ii) whether these subspaces affect face recognition performance 

in non-twin comparisons. 

Partial faces are encountered in many real-world scenarios, especially in unconstrained 

image capture environments involving surveillance cameras or handheld devices (e.g. 

mobile phones). As only a small part of the person’s facial image may be available at 

the crime scene, that part must be fully exploited in order to identify the individual 

concerned. In [33], the authors claimed to have developed an approach to partial face 

recognition that could distinguish an arbitrary partial face without face alignment. The 

approach used a variable-size description to represent each face by a set of keypoint 

descriptors, based on holistic or partial face images represented by a large dictionary of 

gallery descriptors. 

Su et al. [34] proposed an approach that combined global and local facial features as a 

hierarchical ensemble classifier (HEC). At each position of the facial image, the Gabor 

wavelet transform was exploited for local feature extraction. These features were then 

assembled into a number of so-called local Gabor feature vectors (LGFV), each 

corresponding to a local patch of the facial image. 

Automated facial skin biometric techniques address the need for forensic, surveillance 

and security applications in crowded scenes. In particular, it has been reported that two 

persons (even twins) may be unlikely to share the same skin characteristics [35]. Several 

studies have investigated the possibility of utilising skin texture as a source of 

information for identifying individuals. For instance, Pierrard et al. [6] proposed a 
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method for extracting local skin irregularities such as moles and birthmarks from facial 

images, which would then be analysed to determine the individual’s identity. However, 

a major limitation of that framework was that human interaction (i.e., manual detection) 

was required to define facial landmarks (e.g. nose, corners of both eyes). Lin and Tang 

[5] proposed a multilayer system for face recognition, in which facial skin features 

constituted one of these layers. They defined skin texture as repetitive texture units, and 

a Gabor filter was used for feature extraction and skin texture representation. Linear 

Discriminant Analysis (LDA) was applied to reduce the irrelevant variations. Their 

results suggested that skin texture can be used as an auxiliary feature. Park and Jain [17] 

also proposed a person identification technique based on facial marks such as scars, 

moles, and freckles. The active appearance model (AAM) was used to localise primary 

facial features such as eyes, eyebrows, nose, mouth, face boundary. Laplacian of 

Gaussian (LoG) operator was applied to detect facial marks. However, as not all users 

exhibit such facial marks; these are insufficient to establish the identity of all 

individuals in a real-world application. 

Using high-resolution facial images, Dong et al. [7] recently proposed a pose-invariant 

method of face verification that is robust to alignment errors and pose variations. In 

their proposed system, eye and mouth regions were used to locate facial landmarks. 

These landmarks were manually demarcated. The feature extraction step involved 

Principal Component Analysis (PCA) and the Scale Invariant Feature Transform (SIFT) 

descriptor [36] (PCASIFT); they named their method Pore-Principal Component 

Analysis (PCA)-Scale Invariant Feature Transform (SIFT) (PPCASIFT). In [21], they 

proposed another descriptor called Pore-SIFT (PSIFT), using skin from the hairless 

cheek region of the facial image to evaluate the algorithm. The algorithm’s performance 

was evaluated using three public databases: the Bosphorus dataset (1400 × 1200 pixels) 

[37], the Multi-PIE dataset [38] (face images of this dataset with a minimum resolution 

of 600 × 700 pixels provided sufficient detail to reliably match two skin images from 

the same subject), and the FRGC v2.0 dataset [39], all comprising high-resolution 

images. The method was compared with the Eigenface method (PCA), the Gabor 

feature with PCA (Gabor+PCA) method, the LBP method and the LBP feature with 

PCA (LBP+PCA) method. 
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Recent advances in imaging technologies and the wide availability of digital cameras 

have made many more human images available for police and forensic investigations. 

Different parts of human body can be easily captured at the crime scene. In such cases, 

skin texture may be the only option. For example, several studies have investigated the 

use of blood vessel patterns and skin marks [40] [41] for personal identification. 

Although blood vessel patterns can be captured using near infrared imaging systems, the 

visibility of these patterns depends on factors such as the thickness of the subcutaneous 

fat layer and the skin’s pigmentation level. The other limitation is that while skin marks 

are easier to observe, they are likely to be covered by hair or other items. Another study 

[23] used various parts of the human body, including inner forearms and inner thighs, to 

extract distinctive skin information for identification purposes. The goal of their study 

was to develop a skin texture system for forensic applications. Local binary pattern 

(LBP) and Gabor filters were used to extract skin texture features, and partial least 

squares regression (PLS regression) was used to classify skin texture. 

Skin texture on the back of the hand has also been investigated for the purposes of 

identification and gender classification [42]. In that study, hand images were collected 

using a high-resolution camera, yielding a high quality skin texture image of 450 dpi 

(dots per inch). 

Moreover, skin texture features are exploited in different aspect of human recognition. 

For example, Jizheng et al. [43] proposed an algorithm for facial expression recognition 

using structural characteristics and texture information obtained from the face image. 

Using the active appearance model (AAM) to determine facial landmarks, three facial 

features—skin deformation energy parameter, connection angle ratio coefficient and 

feature point distance ratio coefficient—were used to differentiate between individuals. 

Facial expressions were then classified by exploiting the radial basis function neural 

network. 

Table ‎2.1 shows performances of the most relevant work in the literature, including both 

identification and verification biometric evaluation systems. The uses of skin images 

vary according to the application, but the literature reveals that more work remains to be 

done on face skin images. 
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Table ‎2.1 State of the art n facial skin texture biometric performance 

Publication 
Face representation 

Database (No. 

of subjects) 
Accuracy 

Authors Year  

Pamudurth

y et al. [44] 
2005 

Skin textures (pores) using skin 

correlation (DISC)  
Private NA 

Lin and 

Tang [5] 
2006 

Skin textures using SIFT and R-

LDA 

XM2VTS 

(295) 

Recognition rate 

= 0.669 

Pierrard 

and Vetter 

[6] 

2007 
Irregularities in facial skin (e.g. 

moles, birthmarks) 
FERET ( 194) 

Recognition rate  

> 87%  

Yi et al. 

[45] 
2009 

Skin texture using LoG and 

binary features  
MBGC (114) 

Verification rate 

= 

77% at FAR = 

0.1  

Jain and 

Park [46] 
2009 

Facial marks (e.g. freckles, moles, 

scars) 

using LoG and morphological 

operators 

FERET (426 

images, 213 

subjects); 

Mugshot 

(1,225 

images, 671 

subjects) 

Recognition rate 

= 93.90% 

(FERET) 93.14 

% (Mugshot) 

Park and 

Jain [17] 
2010 

Global and local texture using 

AAM, LoG, PCA 

FERET 

(10 213) 
EER= 3.853% 

Klare et al. 

[32]  
2011 

Facial marks using SIFT and 

MLBP 

Twin data 

(174) 

TAR = 50%  

at FAR = 1.0 

Al-Qarni 

and Deravi 

[47] 

2012 
Skin texture using  

Gabor and LBP operators 
XM2VTS (84) 

Recognition rate 

= 68.16% 

Li et al. [7] 

[21] 
2015 

Pore-scale skin features using 

PSIFT and PPCASIFT  

FRGC v2.0 

dataset 

EER = 5.51% 

(PSIFT) and 

7.36% 

(PPCASIFT) 

Weng et al. 

[48] 
2016 Skin texture using RPSM  PubFig (140) 

Verification rate 

= 66% 
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2.4.4 Skin texture biometrics in Low-Resolution Images 

There is clear evidence that image resolution is important for the performance of 

biometric recognition systems. For example, in identifying a person by means of 

surveillance cameras or cell phone face recognition, challenges that may affect system 

performance include expression, age, illumination, pose, occlusion, and distance, and 

these have not been fully resolved [49] [50]. 

Image resolution is a critical factor in recognition performance. In commercial face 

recognition systems, facial images are usually considered high-resolution when the 

distance between the eyes (the inter-pupillary distance) is greater than 60 pixels. 

However, government systems (e.g. passport or personal identification technologies) 

require an inter-pupillary distance of at least 90 pixels for successful recognition [51]. 

As the best practice, the ISO/IEC JTC 1/SC 37 committee recommended that this 

distance should be 120 pixels, which would require 12 pixels per millimetre (300 pixels 

per inch). On that basis, an inter-pupillary distance of less than 60 pixels would be 

considered low-resolution. 

Matching two face images of the same subject at different resolutions (e.g. different 

distances) is of particular interest in forensic applications, and some work has been done 

on recognising faces in high-resolution (HR) and low-resolution (LR) images. LR 

images captured by surveillance cameras [52] [53] are often indistinct, making 

individuals difficult to be recognised. Using traditional methods [54] [55], HR images 

usually provide more detail than LR. To exploit LR images, computer vision and 

machine learning researchers have employed a technique known as super-resolution 

(SR) to generate HR images from LR [56]. There are three categories of SR: learning-

based, functional-interpolation, and reconstruction-based. All of these methods work 

only with the whole face image [57]. 

Earlier work [58] achieved face recognition by applying SR to low-resolution images. 

However, accuracy decreased dramatically when whole face image resolution was less 

than 16 x 16 pixels in size. It has been reported that some algorithms require a 

resolution of at least 32 x 32 pixels [59] to recognise individual faces, but recognition 

may be possible below this resolution in real-world applications [59] [60]. Early 
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research addressed this problem by introducing different SR algorithms [61] [62], but to 

date, low-resolution (e.g. captured from a distance) partial face images have not been 

considered. Instead, most previous studies have focused on whole face images, which 

are often unavailable. The partial view of the face at a distance has not been investigated 

because the whole face image has not delivered acceptable performance at a distance. 

Today, high quality facial images can be easily captured from different distances, using 

imaging devices such as high-resolution cameras, phones, webcams, and other 

inexpensive computing resources. For example, pan-tilt-zoom (PTZ) cameras can 

capture a high-resolution facial image from up to 12 meters, with automatic tracking 

and close-ups [63]. It also has been reported [59] that face recognition systems are 

developing rapidly, with increasing access to high-resolution equipment [59]. All of 

these factors facilitated this exploration of the use of a small part of the facial image 

(such as facial skin) to identify individuals at a non-fixed location/distance. 

HR digital cameras have facilitated more sophisticated analysis of skin texture features, 

and extensive research has confirmed that skin information extracted from a small part 

of the facial image can provide meaningful biometric information [64] [65]. It is 

opportune, then, to investigate the possibility of matching the skin information 

embedded in high- and low-resolution images. The present work investigated the use of 

skin texture features at different resolutions to identify an individual, assessing how the 

proposed framework performs in difficult conditions (e.g. using low-resolution images) 

and how image resolution affects recognition. The study contributes to the enhancement 

of skin-based biometric systems, and to the best of author’s knowledge, this is the first 

work to clarify the relationship between resolution and use of facial skin images for 

person recognition. 

2.5 Generic Face Skin Biometric System 

As skin texture is one of the most important sources of information about the face, it is 

important to understand the strategies used to obtain this information. In general, every 

biometric system initially follows the steps in Figure 1.1. Most face images are captured 

in the visible light spectrum, and sensors are likely to differ across imaging devices, 

causing changes in the appearance of facial skin. Face images can be categorised into 
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two main types of feature [66]. The first category refers to global features that describe 

the overall shape of the human face, including eyes, nose and mouth, which requires the 

whole face image for classification purposes. The second category refers to local 

features that describe the structure of face image components, each of which can be 

used independently to classify individuals. Using these components independently is 

advantageous in addressing some of the challenges of face recognition, such as 

occlusion, pose and facial expression. 

2.5.1 Face Detection 

The objective of face detection systems is to detect and locate faces in an image. Any 

face detection system should be able to deal effectively with arbitrary variations such as 

pose and occlusion. There is a broad agreement that the Viola and Jones’ face detector 

is by far the most successful face detection algorithm [67]. This algorithm is based on 

Haar-like features and a cascade AdaBoost classifier [68]. Another typical approach 

uses colour images and skin-based detection. Greyscale facial images can be also 

detected using knowledge-based, feature-based, template-based and appearance-based 

methods. For more details of these methods, the interested reader should refer to [69] 

[70] [71]. 

Recently, Liao et al. [72] proposed a method to identify face images using 

unconstrained face detection with arbitrary facial variations. The technique is based on a 

pixel-level feature called Normalized Pixel Difference (NPD), which is computed as the 

ratio of the difference between any two pixel intensity values to the sum of their values. 

It was claimed that this face detector can handle issues such as pose variation, occlusion 

and lower image resolution in unconstrained scenarios [72]. 

2.5.2 Face Normalisation 

The preliminary processes of facial feature alignment include face normalisation, which 

is often implemented once the face image is detected. This technique can be applied to 

enhance face recognition systems, where normalisation can be either geometric or 

photometric. Geometric normalisation is usually applied to reduce the rotation of face 

images (head pose etc.) while photometric normalisation is applied to eliminate the 
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effect of illumination. These representative methods to normalise face image are 

reviewed as follows. 

2.5.2.1 Geometric Normalisation 

Normalisation of facial images can be used to alleviate the influence of head pose when 

the region of interest (ROI) is cropped. This technique is applied to the eyeballs to fix 

the tilt of the facial image. Formally, let (xr,yr) be the coordinates of the right eyeball 

centre and (xl,yl) the coordinates of the left eyeball centre. The image can be rotated 

clockwise or counter clockwise. The direction is determined by using the polarity of 

difference of vertical distances (yr-yl) between the coordinates of the two eyeball 

centres. The new coordinates of the eyeball centres are computed as follows: 

 

[
 𝑥′

 𝑦′
] = [ 

𝑐𝑜𝑠𝜃            −𝑠𝑖𝑛𝜃 
𝑠𝑖𝑛𝜃                𝑐𝑜𝑠𝜃

 ] [ 
 𝑥 
𝑦 ]                                                         ( 2. 1) 

 

where θ is the angle of image rotation, calculated as: 

 

𝜃 = 𝑡𝑎𝑛−1 (
𝑦𝑟 − 𝑦𝑙
𝑥𝑟 − 𝑥𝑙

 )                                                               ( 2. 2) 

 

2.5.2.2 Photometric Normalisation 

Photometric normalisation is used to eliminate any illumination effects, often after 

geometric normalisation. The technique can take two forms, the first of which is to train 

face images to learn a global model of possible illumination—for instance, by linear 

subspace analysis [73]. The second type uses conventional image processing 

transformations that require no training sample, such as the Retinex [74], Histogram 

Equalisation, pre-processing sequence [75] and Limited Adaptive Histogram 

Equalisation approaches. 
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2.5.3 Feature Extraction and Classification 

As this thesis focuses on facial skin texture information, feature extraction will be 

described in Chapter 3 as an element of skin texture analysis. Classifiers used to classify 

skin texture information will be also described at that point (see Sections 3.4 and 3.5). 

2.6 Databases 

There are several facial skin image datasets, which are derived from face image 

databases. Each of these was collected to deal with specific challenges in human 

identification. The most widely used facial image databases are listed in Table ‎2.2. 

Other human body skin databases available to the research community are also collected 

for either forensic or crime-related applications. Among recent datasets of this kind, the 

NTU datasets [76] include the NTU Internet Image Set v1 [76], the NTU Human Back 

Skin Dataset, the NTU Human Chest Skin Dataset, the NTU Human Inner Forearm 

Skin Dataset v.2, the NTU Human Inner Thigh Skin Dataset v.2, [77] [78], the NTU 

Lower Leg Skin Dataset [79] and the NTU Tattoo Dataset [80]. All of these datasets 

were collected from prisoners, gangsters or offenders to enable law enforcement 

agencies to investigate suspects and to identify criminals. 

In addition, NIR images were collected using an NIR camera [23]. For example, Images 

in NTU colour forearm dataset have corresponding NIR images in the NTU NIR 

dataset. Datasets were collected from different subjects who were mainly Chinese, 

Malay, Indian, Vietnamese, and Caucasian in Singapore. The interested readers are 

referred to [23] [76] [77] [78] [79] [80]. 

2.7 Summary 

To exploit facial skin information, challenges for face recognition systems and their 

development over the last decade must first be understood by undertaking a 

comprehensive literature review. This extensive overview of facial skin biometric 

addressed topics of general relevance, and a generic face skin biometric system was 

briefly but precisely discussed. 
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Table ‎2.2 Widely used face image databases 

Database 
No. of 

subjects 

No. of images 

per subject 

No. of images in 

the database 

XM2VTS 295 4 1180 

FERET 1,199 ≈ 12 14,126 

AR 126 ≈ 32 4,000 

Oulu Physics 125 16 2,000 

AT&T (formerly ORL) 40 10 400 

FRGC 625 80 50,000 

Yale 15 11 165 

Yale B 10 576 5,760 

SCface 130 32 4,160 

SCface B 130 31 4,160 

PIE 337 - 750,000 

Cohn-Kanade AU-Coded 

Facial Expression 
100 - 500 

MIT-CBCL 10 200 2,000 

JAFFE ≈ 30 7 213 

BioID Face 23 66 1,521 

Caltech 10000 Web Faces ≈ 10,000 - 10,000 

CAS-PEAL face 1,040 - 99,594 

Georgia Tech Face 

Database (GTFD) 
50 15 

750 (no longer 

existing) 

Indian Face Database 40 - more than 440 

Face Detection Data Set and 

Benchmark 
2,845 - 5,171 

PIE Database, CMU 68 - 41,368 

UCD Colour Face Image 

Database for Face Detection 
≈299 1 299 

UMIST Face Database 20 - 564 
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The most widely used databases for evaluating skin biometric systems were also 

presented. The next chapter describes skin texture analysis and its use in the field of 

biometrics. 
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Chapter 3  

Previous Work on Texture Analysis 

 

 

 

3.1 Introduction 

This chapter presents a comprehensive literature review exploring previous works on 

texture analysis. The state of the art review includes all relevant references and material 

related to challenges, historical developments and approaches to feature extraction and 

classification. Because the present research focuses on local feature-based methods, the 

chapter only emphasises such approaches. As well as providing useful and necessary 

background knowledge that informs the present work, the literature search helped to 

ensure that this research programme will make a worthwhile contribution. 

3.2 History of Texture Analysis 

Since the 1960s, texture analysis has been widely studied as a fundamental and 

challenging problem in many fields, including computer vision and pattern recognition 

[81]. The need to understand how texture perception works in human vision and its use 

in a wide variety of applications has prompted intensive research. By the 1990s, human 

vision research had broadened to include problems such as texture classification, 

segmentation, synthesis and shape. Texture analysis has been applied in areas such as 

medical image analysis [82], analysis of satellite images [83], face analysis [84] [85] 
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and biometrics [86] [87]. In the 1990s, Ojala et al. [88] conducted a comprehensive 

evaluation of texture feature performance, resulting in a texture feature descriptor called 

Local Binary Pattern (LBP) [88], which represents a major milestone in the history of 

texture analysis. Figure 3.1 overviews progress and major milestones in the field of 

texture analysis. 

 

Figure ‎3.1 Timeline of work on texture representation [89] 

 

3.3 Review of Texture Analysis Definitions and Challenges 

3.3.1 Texture Analysis 

There is no single definition of the term ‘texture’ on which all scientific and academic 

researchers agree, presenting a challenge for many researchers in the fields of image 

processing and computer vision. This sub-section briefly reviews some existing 

definitions. 

 Texture can be understood as repletion of a greyscale or colour pattern on an 

image [90]. 

 Texture is defined in terms of biological vision as an important cue that helps 

humans to distinguish between objects. [91]. 

 Visual texture refers to an image surface containing variations of intensity that 

form certain repeated patterns [92]. 

 Image texture is a rich source of visual information about the nature or shape of 

physical objects [93]. 



Chapter 3 Previous Work on Texture Analysis 

29 

 

 Textures can be defined as complex visual patterns composed of both entities 

and sub-patterns that contain a degree of characteristic brightness, colour, slope 

and size [94]. 

 Texture constitutes a macroscopic region; its structure can be attributed to 

repetitive patterns of elements or primitives organised according to a placement 

rule [95]. 

 Texture can be understood as the appearance, structure and arrangement of the 

parts of an object within an image [96]. 

 Texture can be defined as an attribute of a field that has no components that 

appear enumerable. Overall properties of texture include coarseness, bumpiness 

and fineness [97]. 

3.3.2 Issues Related to Texture Analysis 

The various approaches to texture analysis and feature extraction usually proposed to 

address five common categories of problem: 

1. Texture segmentation is the technique of separating an image into several 

regions. Its many applications include interpretation of satellite images, traffic control 

systems, diagnostic medical imaging, measuring tissue volumes and studying 

anatomical structure. The technique can be divided into two distinct approaches: region-

based and edge-based. While region-based texture segmentation uses textural similarity 

between neighbouring regions, the edge-based method detects boundaries with adjacent 

regions that are dissimilar in texture. The latter approach does not therefore need to 

identify the number of texture regions in an entire image [98, 99]. 

2. Texture classification is used to assign unknown objects to one of the known 

texture classes. This can be implemented in real-world applications to allow subjects to 

be viewed as a sort of texture, as for instance in fabric classification [100], rock 

classification [101] and identification of wood species [102]. The process involves two 

steps: a training phase and a test phase. In the training phase, a set of grey-level images 

is derived from every texture class, and their properties are captured by means of the 

selected texture analysis approach, yielding a set of textural features for every image to 

build the model of each texture class. In the testing phase, classification algorithms are 
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used to compare the feature vector with all vectors obtained in the training phase in 

order to assign the test sample to the class that returns the best match. 

3. Texture defect detection is a method of determining the location of pixels 

exhibiting a notable deviation in intensity values in a textured image. This has been 

applied in a number of ways to the problem of inspection of different surfaces, 

including wood, steel, paper and textiles, attracting great interest from industry as a 

means of replacing the repetitive process of manual inspection [103, 104]. 

4. Texture synthesis provides descriptions for modelling image texture; the 

model can then be used to represent the texture, usually in computer graphics [105]. In 

[106, 107], texture synthesis based on the first-order and second-order properties of 

joint wavelet coefficients yielded good results, but high frequencies were not 

reproduced in some highly structured patterns. 

5. Shape from texture shows image properties that allow detection of the shape 

of an object in 3D—that is, reconstruction of 3D surface geometry from texture 

information such as intensity differences on the object’s surface, orientation of edges 

and corners and shadowing effects [108-110]. 

3.4 Feature Extraction from Texture 

The aim of texture feature extraction is to transform the input texture image into a 

feature vector that describes the properties of a texture, facilitating subsequent tasks 

such as classification. Among many feature extraction approaches explored in the last 

two decades especially in the early 1990s and early 2000s, research on texture features 

focused mainly on four well-established methods of feature description [92]: 

geometrical methods (e.g. morphological methods), model-based methods (e.g. Markov 

Random Fields), signal processing methods (e.g. Gabor filters, Laws masks) and 

statistical methods (e.g. co-occurrence features, Local Binary Pattern). In this section, a 

number of the most common approaches are described in more detail. 
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3.4.1 Co-Occurrence Features 

The most traditional method for extracting a representative texture feature is the Grey 

Level Co-occurrence Matrix (GLCM), which is based on second-order statistical texture 

features. The earliest and most relevant work based on this method was proposed in 

[111]. GLCM essentially represents the joint probability distribution of a co-occurring 

pair of pixel values. To extract the GLCM, an image f (x,y) is scanned to count how 

often pixels whose values are different are separated by a fixed distance d in a certain 

direction θ, where d is the distance between two pixel positions (x1,y1) and (x2,y2) and 

θ= 0°, 45°, 90° and  135°. From these four directions , four matrixes P(θ, d) can be 

derived, which can be expressed as P(0
°
,d), P(45

°
,d), P(90

°
,d), and P(135

°
,d). Formally, 

each matrix can be defined as [111]: 

P(0
°
,d)= {P0(i, j); i ϵ [0,m], j ϵ [0,m]} 

where each P0(i, j) is the number of times when  

 

f(x1,y1) = i f(x2,y2) = j,  | x1 – x2| = d and y1 = y2 

 

The three remaining matrixes are similarly defined: P(45
°
,d), P(90

°
,d), P(135

°
,d).  

 

Many features can be derived from this matrix; for instance, Haralick [111] proposed 

fourteen descriptors to represent texture features, which can be categorised into four 

main groups: 

i. statistical measures including sum average, variance and difference variance 

ii. features extracted from information theory, such as entropy 

iii. visual textural characteristics, including contrast and angular second moment 

iv. correlation-based measures 

3.4.2 Local Binary Pattern (LBP) Operator 

The Local Binary Pattern (LBP) operator can be seen as a statistical texture descriptor 

of the characteristics of local structure. It is also regarded as one of the most attractive 
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operators in image processing and computer vision; as well as efficiently providing the 

local structures of an input image. LBP is also tolerant of monotonic illumination 

changes and ease of computation. On the other hand, certain issues related to this 

operator must be taken into consideration: (a) how to describe different local patterns of 

textures and how these patterns are extracted; (b) selecting local patterns to form an 

effective texture descriptor; and (c) representing textures based on the substantial subset 

of these local patterns. Since 2004, LBP has attracted increasing intention in pattern 

recognition and computer vison circles, especially in relation to face recognition [112], 

[84], where LBP descriptor is said to provide complementary information for 

representing local facial features. For that reason, this subsection examines LBP and its 

properties in greater detail. 

3.4.2.1  A Taxonomy of the LBP Operator 

LBP was originally designed by Ojala et al. [88] for the purpose of texture description. 

It is widely used because of its success as a texture analysis descriptor. As noted earlier, 

the attractiveness of this approach relates to its robustness against monotonic grey level 

transformation, and its low computational burden. The basic idea of this approach is to 

describe a 3 x 3 neighbourhood around each pixel to generate a binary code; in other 

words, each pixel is compared to its eight neighbours in a 3 x 3 window. Any 

neighbours with values larger than or equal to the central pixel are assigned a value of 1 

while neighbours with values lower than the central pixel are assigned a value of 0. In 

this case, each pixel has a binary number obtained by weighting all binary values 

around it in an anticlockwise direction. The binary number is then converted to the 

corresponding decimal value to label the given pixel. Finally, the histogram of labels is 

utilised as a texture descriptor. Simply put, the 256-bin histogram computed for a region 

can be used as a texture descriptor. Figure 3.2 illustrates the original LBP operator. 

However, the major drawback of the original LBP method is that the small 3 x 3 

neighbourhood could not accommodate dominant features or large-scale structures. It 

also generates a high dimensionality in data vectors, making it challenging to obtain a 

reasonable structure. Clearly, if the histograms have too many bins, and the average 

number of entries per bin is very small, the histograms become sparse and unstable. 
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Figure ‎3.2 Example of the original LBP operator [84] 

 

3.4.2.2 Extension of LBP 

In order to deal with texture at different scales, the LBP operator was developed and 

extended to mitigate the limitations of the original version [113]. Here, local 

neighbourhoods are defined as a set of points, evenly spaced on a circle centred on the 

pixel to be labelled, permitting any radius and any number of sampling points. The 

notation (P, R) is utilised for pixel neighbourhoods, where P represents the number of 

sampling points and R is the neighbourhood radius. To illustrate, P points around pixel 

(x, y) lie at coordinates [113]. 

(𝑥𝑝, 𝑦𝑝) = (𝑥 + 𝑅𝑐𝑜𝑠(
2𝜋𝑝

𝑃
) , 𝑦 −  𝑅𝑠𝑖𝑛(

2𝜋𝑝

𝑃
))                                                        ( 3. 1) 

where p = 0,1,2,…, P-1. If the sampling point does not fall at the centre of a pixel (i.e. 

at integer coordinates), the pixel value is computed using bilinear interpolation [114]. 

Figure 3.3 shows three different examples of the extended LBP (ELBP) operator. 

 

 

                       (a)                                         (b)                                        (c) 

Figure ‎3.3 Example of the basic LBP operator using different P and R: circular, (a) with 

(8,1), (b) with (16,2), and (c) with (24,3) neighbourhoods [114] 
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Formally, given a pixel at (xc, yc), the resulting LBP is formulated as [88]: 

𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐)  =  ∑ 𝑠(𝑔𝑝−

𝑃−1

𝑝=0

𝑔𝑐)2
𝑝                                                                     ( 3. 2) 

 

where gc, gp correspond to the grey scale of the central pixel 𝑐(𝑥𝑐  , 𝑦𝑐) and the 

neighbourhood pixels, respectively. The function s(x) is defined in [88] as follows: 

 

𝑠(𝑥) = {
1,            𝑖𝑓  𝑥 ≥ 0
   0,           𝑖𝑓   𝑥 < 0

                                                                         ( 3. 3) 

From these definitions, the histogram of LBP labels calculated over a region is 

exploited as a texture descriptor. 

3.4.2.3  Rotation Invariant of LBP Operator 

The above descriptions indicate that the LBP can produce 2
p 

different values, 

corresponding to the different binary patterns formed using p pixels in the 

neighbourhood set. However, there is a concern with regard to image rotation; when the 

image is rotated; the neighbourhood pixels are moved along the perimeter of the circle, 

resulting in different LBP values. To address this difficulty, a rotation-invariant LBP 

has been proposed [113], which is formulated as: 

 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = 𝑚𝑖𝑛{ 𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖)|,   𝑖 = 0,1, … , 𝑃 − 1}                                         ( 3. 4)  

where ROR(x, 𝑖) performs a circular bitwise right shift, on the p-bit number x, 𝑖 times 

[113]. 

3.4.2.4 Mappings of the LBP Labels: Uniform Patterns 

As invariance and robustness to rotation are desirable for many applications, the 

original LBP was developed to mitigate the effect of local neighbourhood rotation as so-

called uniform patterns (U). A pattern’s uniformity measure is the number of bitwise 

transitions from 0 to 1 (or vice versa) when the bit pattern is circular. For example, 
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while the patterns 00000000 (0 transitions), 01110000 (2 transitions) and 11001111 (2 

transitions) are uniform, the patterns 11001001 (4 transitions) and 01010011 (6 

transitions) are not. The transition or discontinuity should be two transitions at most. In 

[113], it was observed that, in texture images, uniform patterns account for about 90% 

of all patterns in an (8, 1) neighbourhood and about 70% in a (16, 2) neighbourhood. 

The uniform mapping can produce an LBP operator with less than 2
p
 different labels. 

For example, the standard LBP with a neighbourhood of 8 pixels generates a dimension 

of 256, but the uniform LBP (LBP
U2

) yields only 59 labels, using the same neighbours 

as with the standard LBP. The LBP
U2

P,R is defined as [113]: 

 

𝐿𝐵𝑃𝑃,𝑅
𝑈2  (𝑥, 𝑦) = {

   𝐼 (𝐿𝐵𝑃𝑃,𝑅(𝑥, 𝑦))         𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2, 𝐼(𝑧) ∈ 2 [0, (𝑃 −  1)𝑃 +  2)

(𝑃 −  1)𝑃 +  2             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                
              ( 3. 5) 

where 

𝑈(𝐿𝐵𝑃𝑃, 𝑅) = | 𝑠(𝑔𝑝−1 − 𝑔𝑐)| +∑ |𝑠(𝑔𝑝 − 𝑔𝑐) − 𝑠(𝑔𝑝−1  − 𝑔𝑐)|       
𝑝

𝑝=1
         ( 3. 6)  

If U(x) is less than 3, the current pixel will be labelled by an index function I(ᴢ); 

otherwise, it will be assigned a value of (P-1)P +2. 

 

3.4.2.5 Multi-Scale LBP 

More structural texture information can be captured by applying a multi-scale LBP. 

This technique combines the information obtained by N LBP descriptors with varying P 

and R values. In this sense, each pixel within an image can obtain N different LBP 

codes. While the LBP codes at different radii are not independent, using multi-

resolution analysis often improves the discriminative power of texture features. The 

multi-scale LBP descriptor was extended for application to face recognition in what is 

known as the Multi-scale Block Local Binary Pattern (MB-LBP) [115]. The key idea 

was to compare average pixel values within small blocks; 8 neighbours were 

considered, generating labels from 0 to 255. For example, using MB-LBP, a block size 

of 3 × 3 pixels compares the average grey values at the centre of the block to the 
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average values of the 8 neighbouring blocks of the same size, resulting in an effective 

area of 9 × 9 pixels. The MB-LBP technique is illustrated in Figure 3.4. 

 

Figure ‎3.4 Example of MB-LBP showing (a) the original LBP, and (b) the 9 × 9 MB-

LBP descriptor. For each sub-region, the average sum of image intensity is computed 

and thresholded by the centre block to attain MB-LBP [115] 

As indicated above, interest in LBP for texture analysis has been growing since 1996, 

generating extensive research. Figure ‎3.5 shows the timeline and milestones for this 

descriptor over the last two decades. 

 

Figure ‎3.5 Evolution of the LBP descriptor [89] 

3.4.3 Gabor Filter-based Texture Features 

As a powerful texture analysis tool, Gabor filtering has been widely used for feature 

extraction, where its function is modified into a linear form. Using this filter, an image 

is convolved with the filter to generate a response image. It is worth noting that a Gabor 
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filter is similar to the edge-detection approach. In the signal domain, two methods have 

been used to describe one-dimensional signals: as a function of time and as a function of 

frequency. Fourier transforms (or inverse) are used to transform these functions from 

one method to another; as a result, they produce the same information in different 

forms. On this definition, the Gabor filter yields a minimal joint-uncertainty of ∆𝑡 × ∆𝑓 

simultaneously in the time (spatial) and frequency domains [116]. It follows that 

 

∆𝑡 ×  ∆𝑓 ≥  1 2⁄                                                                                                          ( 3. 7) 

 

where ∆𝑡 is the duration of the signal and ∆𝑓 is its bandwidth in the frequency domain. 

In [116], Dennis Gabor proposed that the function can be defined as a complex 

sinusoidal wave modulated by a Gaussian probability function [116]: 

 

𝜓(𝑡) = 𝑒−𝛼
2 (𝑡−𝑡0)

2
𝑒−𝑗2𝜋𝑓0𝑡+𝜙                                                                                                                            ( 3. 8) 

 

where α is the sharpness (time duration and bandwidth) of the Gaussian probability 

function, t0 is the time location of the Gaussian function, f0 is the frequency of 

oscillation (or frequency location) and ϕ is the phase shift of the oscillation. 

3.4.3.1 1-D Fourier Transform 

The one dimensional (1-D) Fourier transform for the Gabor elementary function (Eq. 

3.8) can also be defined as 

𝛹(𝑓) = √
𝜋

𝛼2
 𝑒−(

𝜋
𝛼
)
2
( 𝑓−𝑓0)

2

 𝑒−𝑗2𝜋𝑡0 (𝑓−𝑓0)+𝜙                                                       ( 3. 9) 

Eqs. (3.8) and (3.9) show that the Gabor function includes the Gaussian form in both 

time and frequency domains, which means that the Gaussian can be set at t0 and f0 for 

both time and frequency, respectively. Once the origin-centred filter is located for a 

convolution task, phase shift and time are removed (t0 = 0, ϕ= 0). In addition, further 
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justifications can be provided for defining the Gabor elementary functions using Eq. 

(3.10): 

 

𝜓(𝑡) =  𝑒−𝛼
2𝑡2  𝑒−𝑗2𝜋𝑓0𝑡                                                                                                  ( 3. 10) 

 

The time duration of the Gabor filter relies on the central frequency f0 to ensure that, 

even with different frequencies, Gabor filters are scaled versions of each other, as 

defined by 

𝛼 =
|𝑓0|

𝛾
                                                                                                      ( 3. 11) 

where f0 is the central frequency of the filter and 𝛾 is a parameter that controls the 

sharpness of the filter (time duration and bandwidth).  

Using Eq. (3.9), the maximum response used for a complex signal is given by 

 

√  
𝜋

𝛼2
                                                                                                          ( 3. 12) 

 

In this case, the maximum response should occur at 𝑢 =  𝑓0. Consequently, the 1-D 

Gabor filter function can be normalised as follows: 

 

𝜓(𝑡) =
|𝑓0|

𝛾√𝜋
𝑒
−(
|𝑓0|
𝛾
  )2𝑡2

 𝑒−𝑗2𝜋𝑓0𝑡                                                                            ( 3. 13) 

3.4.3.2 2-D Gabor filter 

A 2-D Gabor filter in a basic kernel is almost the same as a 1-D Gabor filter; interested 

readers should refer to the development of the 2-D Gabor filter that began with 

Granlund in 1978 [117], who introduced a form of general picture operator for solving 

many properties, such as the octave spacing on the frequency. Works related to this 

problem are reported by Daugman [118], who developed the uncertainty principle for 

the two-dimensional plane. Daugman outlined the similarity between the structure based 
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on the 2D Gabor function and the organisation and characteristics of the mammalian 

visual system. In the 2-D Gabor filter, the basic parameters are modified as pairs in the 

x-axis and y-axis. Time t has been replaced, using the spatial coordinates (x,y) in a 

spatial domain, and the frequency u is replaced by the frequency pair (u, v) in the 

frequency domain. The 2-D Gabor function can then be defined as [117] [118]. 

 

𝜓(𝑡) =  𝑒−(𝛼
2𝑥′2+𝛽2𝑦′2) 𝑒−𝑗2𝜋𝑓0𝑥

′                                                                         

𝑥′ = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃                                                       ( 3. 14)  

𝑦′ = 𝑥 𝑠𝑖𝑛𝜃 + 𝑦 𝑐𝑜𝑠𝜃                                                                      

 

where β is the sharpness of the second Gaussian axis and θ is its orientation. In order to 

provide a similar shape of filter, sharpness is connected to frequency, which can be 

achieved by 𝛼 = |𝑓0|/𝛾 and 𝛽 = |𝑓0|/𝜂. The two parameters 𝛾 and 𝜂 control the 

sharpness of the filter in both the major and minor axes. The 2-D Gabor filter in the 

spatial domain can be formulated as 

 

𝜓(𝑥, 𝑦) =  
𝑓2

𝜋𝛾𝜂
𝑒
− (

𝑓2

𝛾2
𝑥′2+

𝑓2

𝜂2
𝑦′2)

 𝑒𝑗2𝜋𝑓𝑥
′
  

 

𝑥′ = 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃                                                 ( 3. 15) 

𝑦′ = 𝑥 𝑠𝑖𝑛𝜃 + 𝑦 𝑐𝑜𝑠𝜃                                                                

 

where 𝑓 is the central frequency of the filter, θ is the orientation angle of the Gaussian 

major axis and the plane wave, 𝛾 is the sharpness along the major axis, and 𝜂 is the 

sharpness along the minor axis (perpendicular to the wave). In the given form, the 

aspect ratio of the Gaussian is = 
𝜂
𝛾⁄ . As the normalised 2-D Gabor filter function has 

an analytical form in the frequency domain, 
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𝜓(𝑢, 𝑣) =  𝑒
− 
𝜋2

𝑓2
 (𝛾2( 𝑢′−𝑓)

2
+ 𝜂2𝜐′

2

                                                                       

 𝑢′ = 𝑢 𝑐𝑜𝑠𝜃 + 𝜐 𝑠𝑖𝑛𝜃                                                                  ( 3. 16)  

𝜐′ = 𝑢 𝑠𝑖𝑛𝜃 + 𝜐 𝑐𝑜𝑠𝜃                                                                                 

It is clear that the successful use of 2-D Gabor filters depends on optimisation of their 

parameters. A filter response r for an image function I(x,y) should be calculated at any 

location (x,y) with the convolution as follows: 

 

𝑟𝐼(𝑥, 𝑦; 𝑓, 𝜃) = 𝜓 (𝑥, 𝑦; 𝑓, 𝜃) ∗ 𝐼(𝑥, 𝑦)                                                                 (  3. 17)  

 

3.5 Feature Classification 

The classification task of assigning unknown objects (patterns) to the correct class takes 

two forms: (1) supervised classification, where the object has a set of data samples with 

associated labels and class type and (2) unsupervised classification, where the data are 

not labelled, and the object finds its group by identifying the features that distinguish 

one group from another. In general, there are two ways of measuring the similarity 

between feature vectors; the first of these is to measure the distance between the image 

features, and the second is to measure their similarity. Different distance metrics and 

other classification approaches have been used for this task. This section reviewed the 

most commonly used methods of feature classification, including distance metrics and 

supervised classification. 

3.5.1 Distance Metrics 

In determining the distance between two patterns, a distance measure is a metric on a 

feature space used to quantify pattern similarity or dissimilarity; various measures are 

proposed in the literature [119] [120] [121]. Given two feature vectors a and b, the 

distance measure d can be called a metric if the following conditions are met: 

 Reflectivity: d(a, b) = 0, if a = b  
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 Positivity: d(a, b) > 0 if a is distinct from b 

 Symmetry: d(a, b) = d(b, a)  

 Triangle inequality: d(a,c) ≤ d(a,b) + d(b,c) for every c. 

The various distance measures used in different communities include the following: 

L1 norm:  

𝑑(𝑎, 𝑏) =  ∑ |𝑎𝑖 − 𝑏𝑖|
𝑛

𝑖=1
                                                              ( 3. 18) 

L2 norm:  

𝑑(𝑎, 𝑏) =  √∑(𝑎𝑖 − 𝑏𝑖)2
𝑛

𝑖=1

                                                           ( 3. 19) 

Cosine distance: 

𝑑(𝑎, 𝑏) =  − 
𝑎 .  𝑏

‖𝑎‖ − ‖𝑏‖ 
=  −

∑ 𝑎𝑖
𝑛
𝑖=1  𝑏𝑖

√∑ 𝑎𝑖
2𝑛

𝑖=1 . √∑ 𝑏𝑖
2𝑛

𝑖=1  

                                ( 3. 20) 

Mahalanobis Cosine: 

𝑑(𝑎, 𝑏) =  − 
𝑚 .  𝑛

‖𝑚‖ − ‖𝑛‖ 
 

   

𝑚𝑖 =
𝑎𝑖
𝜎𝑖
  , 𝑛𝑖 =

𝑏𝑖
𝜎𝑖
                                                         ( 3. 21)  

 

where ai, bi are ith dimension of both vector a and b, and σi is the standard deviation of 

ith dimension in the Mahalanobis space. 

An increasing number of machine learning approaches have been used to classify data 

into groups for biometric purposes, including linear discriminant analysis (LDA) [122] 

[123] [124], artificial neural networks [125] [126] [127], K-nearest neighbour [128] 
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[129], support vector machines [130] [131] [132] and sparse representation classifier 

[133]. Some relevant classifiers used in this research are reviewed in more detail below. 

3.5.2 K-Nearest Neighbour (k-NN) 

This classification is the one of the fundamental algorithms in the field of pattern 

recognition. It is easy and efficient and is also known as the lazy classification 

algorithm. The key principle of k-NN is that it compares distance/similarity between 

template feature samples and probe (or test) samples, where the comparison distance 

can be any of the distance metrics described in Sub-section 3.5.1. The test samples are 

then assigned to the nearest labelled samples from the training feature space. 

Assignment of the test sample is often decided by a majority vote rule taking the k value 

into account, where the value of k is an integer (usually less than 10). If k = 1, the 

algorithm is called a simple nearest neighbour classifier, and the decision is based on 

the label of that nearest neighbour’s class [128]. If k is large, the k-NN yields smooth 

boundaries [129]. 

Cover and Hart [134] proposed that the error rate of the 1-nearest-neighbour classifier is 

never more than twice the Bayes rate for the same data. Consequently, the main 

attraction of this algorithm, along with its asymptotic performance, is that it optimises 

selection of only one parameter k. A full account of the theoretical basis of the k-NN 

classifier has been introduced in [96] and [98]. Despite the popularity of the k-NN 

classifier, it has some limitations; for example, it is sensitive to local distribution of the 

training sample in the feature space, which may lead to unstable performance. The 

density of the data clusters also affects performance and may lead to wrong decision 

making; some k-NN algorithms have therefore used distance d as a weight (1/d) to 

improve decision making [128]. 

3.5.3 Support Vector Machines (SVM) 

Support Vector Machines (SVMs) are the most powerful classification methods and 

have been employed in a wide range of classification and regression problems, 

including face detection [130], face verification [131] and gender classification [132]. 

SVM is a supervised learning method that uses so-called ‘support vectors’ to build a 
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model for classification or regression. The basic idea of SVM was proposed in [135], 

and the algorithm was developed in [136]. The SVM classifier integrates the notation of 

supporting vectors and kernel tricks. Given a set of training samples, it aims to 

determine a maximal separating hyperplane between two classes so that classification 

error is minimized. As the available data are not always linearly separable in the feature 

space, the data feature space can be mapped into a space with higher dimensionality to 

simplify separation in that space [137]. Mapping of the feature space onto higher spaces 

is the so-called kernel trick. SVM is described in more detail in [138]. 

Given training samples (xi, yi), where xi ϵ R
n
, yi ϵ {−1, +1} for 1 ≤ i ≤ l, and l is the 

number of samples, the hyperplanes can be expressed as 

 

H1: 𝑤𝑇 𝑥𝑖− b = +1 

( 3.22) 

H2: 𝑤𝑇 𝑥𝑖− b = −1 

 

where b is the offset of the hyperplane from the origin and w is the n dimensional vector 

perpendicular to the separating hyperplane (see Figure 3.6). Based on Eq. (3.22), the 

solution should meet the following constraints: 

{
𝑤𝑇 𝑥𝑖 + 𝑏 ≥  +1 ∀  𝑦𝑖 = +1  

𝑤𝑇 𝑥𝑖 + 𝑏 ≥  +1 ∀ 𝑦𝑖 = −1   

                                                                            ( 3. 23 ) 

These two constraints are combined into one set of inequalities: 

 

𝑦𝑖(𝑤
𝑇 𝑥𝑖 − 𝑏)  ≥ 1 , 𝑖 = 1,2, … , 𝑙                                                                           ( 3. 24) 
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Figure ‎3.6 Separation of the data into two classes 

 

If the data are linearly separable, the separation of their hyperplane is formulated as: 

 

𝜔𝑇 𝑥𝑖 − 𝑏 = 0 

where the distance between the canonical hyperplanes and the separating hyperplane is 

calculated as: 

1

‖𝜔‖
 

In this case, optimising the separating margin is equivalent to maximising the distance 

between H1 and H2. The largest distance between H1 and H2 is calculated as: 

 

2

‖𝜔‖
 

 

The SVM learning problem (i.e. optimisation problem) is expressed as follows: 

 

minimise      
1

2
 ‖𝜔‖      subject to 𝜔𝑇 𝑥𝑖 − 𝑏 ≥  1                                     (‎3. 25)  

 

Saddle points of Lagrange’s function can tackle the optimisation problem as follows: 
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  minimise 𝐿(𝜔, 𝑏, 𝑎) ≡
1

2
 ‖𝜔‖ − ∑𝛼𝑖 [ 

𝑙

𝑖=1

𝜔𝑇 𝑥𝑖 −  𝑏) − 1                 ( 3. 26) 

 

where {𝛼𝑖 : 1, … 𝑙 ;  𝛼𝑖 ≥ 0} are Lagrangian multipliers; ω,b, and αi ≥ 0 can minimise L 

and the dual form of the Lagrangian, which can be formulated as follows:  

 

maximise 𝐿𝐷 = ∑𝛼𝑖 − 
1

2
 ∑∑𝛼𝑖

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

 𝛼𝑗  𝑦𝑖 𝑦𝑗 𝑥𝑖
𝑇 𝑥𝑗                             ( 3. 27) 

subject to     ∑𝛼𝑖

𝑙

𝑖=1

𝑦𝑖 = 0, 𝛼𝑖  ≥ 0 ∀𝑖                                                                    

 

If the data are not linearly separable, the technique should be changed. The positive 

slack variables {𝜁𝑖 , 𝑖 = 1, … , 𝑙, 𝜁𝑖  ≥ 0  } are introduced into the original constraints, 

with additional penalty value C for points that cross the boundaries to consider the 

classification error. 

 

minimise    
1

2
 ‖𝜔‖ +  𝐶∑𝜁𝑖

𝑙

𝑖=1

                                                    ( 3. 28) 

subject to      𝑦𝑖(𝜔
𝑇 𝑥𝑖 − 𝑏) ≥  1 − 𝜁𝑖 , ∈𝑖 ≥ 0                                       

  

To exclude 𝜔, b, and 𝜁, the linear technique can be applied; the dual form of Lagrange’s 

function is expressed as: 

maximise     𝐿𝐷 = ∑𝛼𝑖 − 
1

2
 ∑∑𝛼𝑖

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

 𝛼𝑗  𝑦𝑖 𝑦𝑗  𝑥𝑖
𝑇 𝑥𝑗         (‎3. 29) 

subject to     ∑𝛼𝑖

𝑙

𝑖=1

𝑦𝑖 = 0, 0 ≤  𝛼𝑖 ≤ 𝐶 ∀𝑖                                     
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Nonlinear classifiers were proposed in [139] by using the kernel trick. The kernel 

function is defined as a map that transforms data from the original space whose data are 

not linearly separable to a higher dimensional space to make data linearly separable. 

The kernel function can be formulated as 𝐾( 𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗). The discriminant 

function is 𝑔(𝑥𝑖) =  𝜔
𝑇𝜙 (𝑥𝑖) + 𝑏 , and the corresponding dual form replaces 𝑥𝑖𝑥𝑗 in 

[140] by 𝐾( 𝑥𝑖 , 𝑥𝑗): 

 

maximise 𝐿𝐷 = ∑𝛼𝑖 − 
1

2
 ∑∑𝛼𝑖

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝑖=1

 𝛼𝑗  𝑦𝑖  𝑦𝑗  𝜙(𝑥𝑖)
𝑇𝜙 𝑥𝑗                         ( 3. 30)  

subject to  ∑𝛼𝑖

𝑙

𝑖=1

𝑦𝑖 = 0, 0 ≤  𝛼𝑖 ≤ 𝐶 ∀𝑖                                                            

 

The most common kernel functions used to reliably build SVM classifiers are: 

Liner: 

𝐾( 𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖
𝑇𝑥𝑗                                                             ( 3. 31) 

Polynomial: 

𝐾( 𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
, 𝛾 > 0                                ( 3. 32) 

Radial basis function (RBF): 

𝐾( 𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 ( −𝛾 ‖𝑥𝑖 − 𝑥𝑗‖
2
) , 𝛾 > 0               ( 3. 33) 

Sigmoid:  

𝐾( 𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)                                      ( 3. 34) 

where γ, r and d are kernel parameters. 

3.5.4 Sparse Representation Classifier (SRC) 

The sparse representation classifier (SRC) was introduced in [133], achieving high 

performance for face recognition. Given a set of labelled training samples from K 
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classes, the task is to determine the class to which a new unseen test sample belongs. 

Let ni be the training samples from the i-th class; all samples are arranged as columns. 

 

𝐴𝑖 = [𝜐𝑖,1  , 𝜐𝑖,2, … , 𝜐𝑖,𝑛𝑖] ∈  𝑅
𝑚×𝑛                                                         ( 3. 35) 

 

Each column 𝜐𝑖,𝑗 in matrix 𝐴𝑖 is the vectorised intensity image. In this case, given 

enough samples from the i-th class, any new test sample 𝒴 from the same class is 

approximated to lie in the linear span of the columns of matrix 𝐴𝑖. This can be 

formulated as follows:  

 

𝒴 = ∑𝛼𝑖,𝑗 𝜐𝑖,𝑗

𝑛𝑖

𝑗=1

                                                                                           (  3. 36) 

where 𝛼𝑖,𝑗  ∈  𝑅, 𝑗 = 1,2, … , 𝑛𝑖. The matrix A is built by concatenating the training 

samples from all classes: 

𝐴𝑚×𝑛 = [𝐴1, 𝐴2, … , 𝐴𝑘]                                                                ( 3. 37)  

= [ 𝜐1,1, 𝜐1,2, … , 𝜐1,𝑛1|… | 𝜐𝑘,1, … , 𝜐𝑘,𝑛𝑘]                                        

where 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1  is formulated as:  

𝒴 = 𝐴𝑥 ∈ 𝑅𝑚×𝑛                                                                                      ( 3. 38) 

𝑥 = [0,… , 0, … , 𝛼𝑖,1, … , 𝛼𝑖,𝑛𝑖  , … , 0, … ,0] 
𝑇                                      ( 3. 39) 

 

𝑥 in (Eq. 3.39) is the a coefficient vector that consists of zero expect those 

corresponding to the i-th class. The objective of a given new test sample 𝒴 and matrix 𝐴 

is to obtain an 𝑥 that is informative in terms of recognition of test samples. The sparse 

representation approach looks for the sparsest solution to the linear system (𝒴 = 𝐴𝑥 ); 

sparser is better in identifying the unknown test sample, solving the following 

optimization problem: 

(𝑙0) ∶  𝑥0
^ =  arg min ‖𝑥‖0                subject to 𝐴𝑥 = 𝒴                  ( 3. 40) 
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where ‖𝑥‖0 represents the 𝑙0-norm, which counts the number of non-zero entries in a 

vector. Where the solution of 𝑥0 is sparse enough, the solution 𝑙0-minimisation problem 

equates to the following 𝑙1-minimisation problem: 

 

(𝑙1) ∶  𝑥1
^ =  arg min ‖𝑥‖1                        subject to     𝐴𝑥 =  𝒴                ( 3. 41) 

 

Using (3.41), the residual 𝑟 between the training sample and the test sample can be 

formulated as [133]: 

 

𝑟𝑖 = ‖𝒴 − ∑𝑥1 𝑖,𝑗 𝜐𝑖,𝑗

𝑘

𝑗=1

‖

2

                                                                   ( 3. 42) 

 

The test sample is assigned to the subject with the smallest residual. 

3.6 Biometric Information Fusion Strategies 

Biometric information from different sources may lead to error in recognition systems, 

mainly because of the limited ability to represent subjects, as well as practical problems 

such as noisy sensor data or indistinct information. Integration of different sources of 

biometric information may be the best option to improve the accuracy, robustness and 

efficiency of biometric systems and to also reduce recognition error rates. Fusion of 

biometric data can be implemented at various levels: 

i. Sensor level: raw data acquired from multiple sensors are usually integrated for new 

data feature extraction. 

ii. Feature level: feature sets extracted from multiple sources can be fused to generate 

new features to represent the subject. 

iii. Match score level: output scores of multiple classifiers are fused to form a single 

score on which to make the final decision. 

iv. Rank level: this level is often related to identification systems where each classifier 

generates a set of scores for enrolled subjects (higher rank indicates best match). 
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v. Decision level: using matching scores, the claimed identity is determined as genuine 

or impostor (i.e. verification system accept or reject). 

For interested readers, all of these techniques are explained in more detail in the 

literature [141] [142] [143] [144]. For more interpretation, fusion-based biometric systems 

can be implemented at the following levels. 

3.6.1 Sensor-level Fusion 

As mentioned above, raw data acquired from multiple sensors are combined at sensor 

level; for example, face images captured from multiple cameras can be combined to 

form a single face image. The data obtained from these sensors must be compatible in 

order to be fused at this level. 

3.6.2 Feature-level Fusion 

In feature-level fusion, feature sets originating from multiple biometric systems or from 

multiple algorithms are fused to form a single feature vector. Two different techniques 

can be used to fuse feature vectors: if the feature vectors are homogeneous, a single 

feature vector can be formed using a weighted average of subject feature vectors; if the 

feature vectors are non-homogeneous or from different modalities, a single feature 

vector can be formed by concatenation. 

3.6.3 Score-level Fusion 

Each matcher provides a matching score showing the proximity of the reference feature 

vector to the probe. The scores are fused to generate a new matching score that can be 

used to render an identity decision. Because of its performance and simplicity, this 

strategy is the most commonly discussed level of fusion. Certain common rules are 

usually applied to generate a final score, including Maximum, Minimum, Sum, Product, 

and Mean [145]. In some cases, score normalisation techniques are applied to transform 

scores into a common domain. The various score normalisation techniques reported in 

the literature [145] [146] include Min-Max, Z-Score, Tanh, Median-MAD and Double-

sigmoid. 



Chapter 3 Previous Work on Texture Analysis 

50 

 

3.6.4 Decision-level Fusion 

In this approach, decisions produced from multiple classifiers are combined using 

different techniques including “AND” and “OR” rules [147], majority voting [148], 

weighted majority voting [149] and Bayesian decision fusion [150]. 

3.7 Measuring Biometric System Performances 

In the academic literature, the performance of biometric systems is typically quantified 

in terms of two measures: cumulative match characteristic (CMC) and receiver 

operating characteristic (ROC). Both of these measures are plotted graphically as 

curves. The CMC curve commonly represents the degree of change in recognition 

accuracy for the top k ranked similarity scores. More generally, it is used to evaluate 

performance in identification mode. The CMC plot shows the probability of correct 

identification (y-axis) against the number of individuals (x-axis). Although rank-one 

recognition accuracy is often preferred, some studies consider the first ten or twenty 

similarity scores returned [151]. 

ROC curves are commonly used to evaluate performance in verification mode. A 

biometric verification system is subject to two types of error: False Acceptance (FA) 

and False Rejection (FR). FA occurs when two samples obtained from two different 

individuals are assigned to one individual; FR occurs when two samples obtained from 

the same individual are assigned to two different individuals. False Acceptance Rate 

(FAR) and False Rejection Rate (FRR) are calculated as follows: 

𝐹𝐴𝑅 =
Number of false acceptances

Total number of impostors
                                              (‎3. 43) 

𝐹𝑅𝑅 =
Number of false rejections

Total number of genuines
                                                   (‎3. 44) 

 

ROC curves can provide statistical measures such as equal error rate (EER), area under 

the curve (AUC), and genuine acceptance rate (GAR). These curves express the trade-

off between GAR (1-FRR) (plotted on the y-axis) and FAR (plotted on the x-axis), 

using a set of threshold values (ɵ). For a given a value of ɵ, the EER is the rate where 
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FAR = FRR. The sum of both errors (FAR and FRR) represents the system’s total error 

rate (TER). The verification rate (1-FRR) at FAR = 0.1% is commonly used to represent 

system accuracy. 

3.8 Summary 

This chapter covered the most significant areas of immediate relevance. After introducing 

the challenges of texture analysis techniques and related issues, well-known methods for 

extracting texture features were discussed, including Local Binary Pattern (LBP) and Gabor 

wavelets filters. Texture feature classification approaches were also outlined, followed by 

different schemes for fusing biometric information. Finally, the different ways for 

evaluating the performance of biometric recognition systems were presented. The next 

chapter provides a detailed description and discussion of the proposed new technique 

for skin pixel detection and its purity analysis.  
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Chapter 4  

Detecting Facial Skin Regions for Biometric Use  

 

 

 

4.1 Introduction 

This chapter describes the design, implementation and evaluation of a technique for skin 

detection to be incorporated into biometric systems. This incorporation reduces the 

challenges associated with human interactions and provides the potential for automation 

of skin-based biometric recognition. Following an overview of existing approaches to 

skin detection, the chapter outlines various skin colour models and their limitations. The 

chapter also discusses the databases used for the evaluation, the generation of ground 

truth by subjective observations, as well as skin region purity analysis. Finally, the 

chapter reports the qualitative and quantitative results obtained using the proposed 

framework. 

The chapter is organised as follows. Section 4.2 describes the challenges for skin 

detection, followed by a brief but precise review of the relevant literature in Section 4.3. 

Sections 4.4 and 4.5 describe the general framework for the proposed skin detection 

technique and skin quality assessment. The experimental setup and results are presented 

in Section 4.6 and Section 4.7. The chapter concludes with a summary in Section 4.8. 
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4.2 Challenges for Skin Detection 

Skin colour detection is utilised in a wide range of applications and involves both image 

processing and computer vision. Existing techniques for face detection [152], gesture 

recognition [153] [154] and tracking require a well-designed algorithm for skin 

detection [155] [156]. Although the skin detection problem is well known to 

researchers, it is difficult to find a single algorithm for skin detection that will provide 

accurate results under different conditions [157]. At the main time, the simplicity of 

skin colour detection technique has attracted researchers for more investigation. 

Most of the existing research on skin detection focuses on skin information and 

segmentation of skin colour pixels [158], [159]. Skin colour in an image is dependent to 

a number of factors. For example, camera characteristics: the same person’s skin colour 

may look different when captured by different cameras, as camera sensor characteristics 

determine the captured image’ properties. Illumination: distribution of light changes 

with ambient environmental variables (indoor, outdoor, shadows etc.), thus, creating the 

so-called ‘colour constancy problem’ [160]. Individual characteristics: an individual’s 

skin colour may be affected by factors such as age, gender or body part exposure. 

Ethnicity: skin colour varies across different regions, as in Asian, African and 

Caucasian variants. Other factors: artefacts such as makeup or glasses impact on skin 

colour, as do hairstyle, background and shadows. All these factors fall out of the scope 

of the present thesis. Thus, interested readers are referred to [158] [159] and [160]. 

Any skin detection technique should endeavour to minimise the impact of these 

parameters for satisfactory result. 

4.3 Previous Works on Skin Detection 

There are two types of skin detection techniques: pixel-based and region-based 

technique. Pixel-based technique is to classify each pixel individually whether skin or 

non-skin from its neighbour. The region-based detection technique requires additional 

characteristics such as texture and intensity. While Skin detection based on colour 

belongs to pixel-based category, the task here associated with skin detection is to assign 

pixels to one of two categories: skin pixel and non-skin pixel. By exploring skin 
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detection techniques for use in this study, several colour spaces were mainly reviewed. 

Studies of skin detection based on colour commonly use one of three main methods 

[161]: 

 parametric skin distribution modelling, including Gaussian and Gaussian 

mixture models; 

 non-parametric skin distribution modelling, including lookup tables and Bayes 

skin probability maps; 

 cluster colour space, where skin regions are treated as cluster pixels 

While skin detection remains an integral part of face recognition systems, the 

appearance of the facial skin can change dramatically for various reasons, including 

illumination, pose, expression and image quality. Skin detection involves the capture of 

image pixels and regions that constitute skin tone colour. In studies of skin colour pixel 

detection [159], [162], different colour spaces are used for this task. For example, the 

early work introduced by Sobottka et al. [163] developed skin detection method based 

on HSV colour space. Hsu et al. [164] adopted various thresholds by partitioning HIS 

colour space into three zones to classify skin pixels. Zaqout et al. [165] used the RGB 

colour space to segment skin regions, and Yang et al. [166] proposed an approach based 

on the YCbCr colour space to detect skin pixels, using neural network classification. 

Abdul Rahman et al. [167] employed a skin colour model based on three colour 

spaces—RGB, HSV (using only H values) and YCbCr—to detect human faces. Sawicki 

et al. [168] proposed a thresholding method for detecting skin colour, using CMYK 

colour space. 

For present purposes, the cluster colour space method seems preferable because of the 

algorithm’s simplicity and low computational complexity. Human skin colour is distinct 

from other objects and can be recognised for the purposes of classification. It is clear 

that explicit thresholding facilitates construction of fast methods. A commonly used 

method is to define a skin colour decision boundary for different colour space 

components, specifying a range of threshold values for each colour space component. If 

the image pixel value falls within the predefined range(s), it is considered a skin pixel. 

The proposed framework involves methods of this kind. 
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The present framework utilises different colour spaces to differentiate between skin 

region pixels and other objects within the facial image for biometric purposes. As use of 

a single colour space to detect skin regions may fail to overcome the issues referred to 

above, deploying more than one colour space can help to eliminate some of these issues 

and so improve detection performance. In the proposed framework, three colour 

spaces—RGB, HSV, and YCbCr—are applied in different ways to assess the purity of 

the skin region of interest (ROI). Although the RGB colour space is widely used in 

image segmentation methods, it does not separate luminance and chrominance 

information; HSV and YCbCr enable separation of the requisite colour information for 

skin pixel detection. 

4.4 A General Framework for Skin Purity Analysis 

The motivation for developing the proposed framework is that it can be used as a prior 

biometric process to automate skin-based biometric systems. The general structure of 

the framework is set out in Figure ‎4.1, showing the stages of skin detection prior to use 

in a skin-based biometric system.  

 

 

 Figure  4.1 General structure of the proposed skin detection framework 

 

The technique proposed here focuses on the assessment of facial skin images for 

biometric purposes. Four facial skin regions were chosen for evaluation: forehead, right 

cheek, left cheek and chin. The objective of the proposed system is to automate the 

process of deciding whether the target region contains sufficient skin. As the biometric 

system developed in this research is based on skin regions from partially occluded facial 

images, other global facial features (such as eyebrows, eyes, nose and mouth) would not 

be captured, and this is one reason for partitioning the face image into four skin regions. 

It is also likely that skin content in one of these regions can be captured even when the 

whole face is not visible, enabling the system to decide whether that skin region can be 
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used for biometric purposes. For example, in video surveillance frames, the captured 

image should contain at least one of these facial skin regions, and it is worth assessing 

each region independently for biometric information. 

4.5 Skin Colour Schemes  

The extracted ROI is automatically assessed to determine whether it can be used for 

biometric purposes. Clearly, any ROI that is unduly corrupted by artefacts—whether 

natural (e.g. hair, moles) or artificial (e.g. headgear, glasses)—will be considered 

invalid for biometric analysis. Unlike other studies based on the use of features encoded 

in skin (moles, birthmarks, etc.) as discriminatory biometric features, or where skin 

regions are manually chosen, the present goal is to automate assessment of pure skin as 

a biometric source, as moles and other artefacts are not universal across all individuals. 

Automation not only enhances efficiency but also ensures the accuracy and consistency 

of large-scale processing. 

In this implementation, colour modelling was utilised to assess the purity of the 

extracted ROI. While skin tone typically occupies a compact region within the colour 

space, skin colour can change for the reasons noted above (e.g. variations in 

illumination, camera sensors, gender, age, ethnicity). As demonstrated earlier, among 

the many reasons for using colour spaces to distinguish skin pixels from other elements 

in a facial image, skin colours are computationally robust against challenges like partial 

occlusion, scaling, pose and rotation. 

As no single colour space is likely to overcome the issues referred to in Section 4.2, 

applying more than one colour space helps to mitigate such issues and improves 

detection performance. 

Additionally, morphological operations (‘opening’ followed by a ‘majority’ operator 

and a 3x3 square structuring element) were applied to refine skin regions and to 

eliminate incorrectly marked small groups of pixels (due to noise etc.) within the ROI. 

Figure ‎4.2 specifies the algorithmic flowchart for the proposed skin purity analysis 

technique. 
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For this study, two rules derived from the three colour spaces are used to identify skin 

pixels in the extracted ROI. These are subsequently combined to assess whether the 

ROI contains adequate skin to merit subsequent processing. While the first model uses 

the RGB colour space, the second uses CbCr and H values from the HSV and YCbCr 

colour spaces. These rules are described as follows: 

Scheme 1: This scheme utilises only the RGB colour space as originally proposed in 

[169]. In this model, a pixel is marked as pure skin if its RGB values satisfy the 

conditions in (4.1) below: 

 

Pixel=

{
 
 

 
 

  
skin,               if      

R > 95 and G < 40 and B > 40 and
(max(R,G,B) -min(R,G,B))> 15 and
|R - G|> 15 and R > G and R >B

                  

  non-skin,              otherwise                                                                     

 (4.1) 

 

Scheme 2: This scheme detects skin pixel values within the region of interest by 

combining two colour spaces: HSV and YCbCr. It is clear that any other colour space 

can be obtained from RGB. Generally speaking, the transformation between RGB and 

YCbCr is basically linear while the transformation between RGB and HSV is nonlinear. 

To identify skin pixels using this scheme, the RGB values for each pixel are first 

converted to HSV and YCbCr components. Once these values have been computed for 

each pixel, they can be classified as skin or non-skin by comparing the Cr, Cb and H 

values against a set of threshold values. 

Scheme 2 proposed here is basically based on pixel colour analysis. Experimentally, it 

is found that as skin pixel values are expected to fall within the ranges of 140≤ Cr ≤170, 

140≤ Cb ≤198 and 0.01 ≤ H ≤0.10, values for H (hue), Cb and Cr are thresholded. Any 

pixel values falling outside these ranges are classified as non-skin pixels. The adaptive 

skin colour scheme uses trial and error approach to choose threshold values for lower 

and upper bounds of the three components (Cr, Cb, and H). For this scheme, the 

thresholds have finally been formulated as: 
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Pixel=

{
 
 

 
 skin,                         if     

140 ≤  Cr ≤  170 and
140 ≤  Cb ≤  198 and
0.01 ≤  H ≤  0.10     

  

      non-skin,                        otherwise                                 

            (4.2) 

Both model schemes yield masks that identify which pixels within the ROI are to be 

classified as skin. If the number of skin pixels within the mask is greater than a 

predefined threshold of skin purity assessment, the skin ROI is considered pure. 

Scheme 3: This scheme combines components from Scheme 1 and Scheme 2. If either 

Scheme 1 or Scheme 2 classifies the ROI as a pure skin region, the ROI is accepted for 

biometric analysis. 

4.6 Experimental Setup 

This section provides more detail about the databases and the approach used to 

determine the ground truth for assessment of the skin detection technique. 

4.6.1 Databases 

Two databases were used to evaluate the proposed framework. The Skin Segmentation 

dataset [170] was used to evaluate the skin pixel detection technique, and XM2VTS 

[171] was used for skin regional purity assessment. 

4.6.1.1 The Skin Segmentation Dataset 

The first set of experiments (related to skin/non-skin detection) were conducted using 

the Skin Segmentation dataset [170]. This skin/non-skin dataset contains 245,057 pixel 

samples. 50,859 are skin pixel samples and 194,198 are non-skin pixel samples in the 

RGB colour space. The data were generated from two facial image databases called 

PAL and FERET. The dataset contains skin pixel samples from facial images 

representing various ages (young, middle, and old) and racial groups (White, Black, and 

Asian), including both males and females. 
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Figure ‎4.2 Proposal for a general skin detection system. The RGB skin image input is transformed to HSV and YCbCr. While skin 

modelling Scheme1 uses only one colour space (RGB), skin modelling Scheme2 combines two further colour spaces (HSV and YCbCr). 
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4.6.1.2 XM2VTS Database 

The validity of the proposed framework was tested using the XM2VTS multimodal 

database [171], comprising colour stills, video sequences and speech recordings taken 

from 295 individuals of both genders and of various ethnic origins. Four frontal face 

images of each subject were captured during four sessions over a period of five months, 

in a controlled environment with uniform illumination and a blue background. The 

database includes 1,180 images (295 individuals x 4 images), each measuring 720×567 

pixels. 

4.6.2 Generating the Ground Truth for Purity Analysis 

Judgments based on subjective observations are widely accepted and used in the 

literature on image processing and machine learning [172]. It is equally clear that the 

evaluation of any skin detection algorithm depends on the availability of skin image 

samples that are reliably and appropriately tagged with an accurate ground truth label. 

Achieving a consistently high level of precision in labelling skin images is likely to 

prove challenging, especially for skin/non-skin boundaries. This problem is not unusual 

in machine learning and image processing, as for instance when attempting to define 

and quantify concepts of sadness or happiness when processing facial expressions. 

Making assumptions based on self-assessments may offer one means of generating an 

acceptable ground truth, as experienced viewers can provide useful measures, especially 

when evaluating a number of images. On that basis, all images in the XM2VTS 

database [171] were manually labelled with multiple observers’ subjective judgements 

about the ROI purity. Although most observers had experience in working technically 

with image processing, it was difficult to define the concept of skin region purity, and 

the observers were asked to choose the best definition. For the purposes of objective 

assessment, 79 images were selected. The 79-selected image included 19 images from 

forehead and 20 images from other regions (right cheek, left cheek and chin region), 

with different noise sources (hair, glasses, reflections etc.). The overall decision 

integrated the judgments of 15 evaluators, using majority rule for final definition of skin 

purity. The 15 researchers worked in relevant fields, including machine learning, image 

processing and biometric technology. Finally, the stability of the evaluators’ annotations 
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and their decisions were also studied and analysed. Table ‎4.1 summarises the outcome 

of this manual ground truth generation for the four facial skin regions in the XM2VTS 

database images. It should be noted here that the Chehra software [20] (this approach is 

explained in Section 5.2 with more details) failed to locate landmarks in 52 of the 1,180 

XM2VTS images. Of the remaining 1,128 images, all four images were marked for only 

274 individuals (out of 295). These 1,096 images (274 x 4) were analysed for the 

purposes of this study. 

Table ‎4.1 Ground truth of skin and non-skin images of the four facial regions from 

XM2VTS database 

Decision 

No. of images per region in ground truth (manual) 

Forehead Left Cheek Right Cheek Chin 

Acceptable 700 1025 1039 997 

Non-acceptable 396 71 57 99 

 

As shown in Table ‎4.1, of the 1,096 extracted ROIs for the forehead, 700 were 

classified by the human operators as pure skin regions while ROIs for the left and right 

cheek numbered 1025 and 1039, respectively. For the chin, 997 ROIs were classified as 

pure skin. The remaining images were considered corrupted by various artefacts. 

Table ‎4.2 shows some sample ROIs with assigned categories. 

Table ‎4.2 Some samples of ROIs graded as accepted and rejected by the evaluators 

(ground truth) 

Decision 
ROI 

Forehead Left Cheek Right Cheek Chin 

Acceptable     

Rejected     

A case study of objective observations judging the suitability of sample skin images for 

skin purity ROI is analysed. Figure 4.3 shows the decisions made by the observers. 
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(a) Forehead region 

 

(b) Right cheek region 

 

(c) Left cheek region 

 

(d) Chin region 

Figure ‎4.3 Manual labelling of the four facial skin regions by 15 observers to create 

a ground truth from the XM2VTS database 
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Although it is very hard to judge whether the tested image sample contains 

sufficient skin information for biometric analysis, an overwhelming majority of the 

observers agreed in their final decision. The annotations of the different evaluators 

and their discriminative power are clear evidence of the stability of their decisions 

made. 

4.6.3 Automated Skin Purity Analysis 

Purity of the ROI may be degraded by the presence of hair or artefacts such as glasses, 

makeup, and reflections caused by lighting. These factors affect the accuracy of skin 

biometric performance. Clearly, a “usable” ROI should have a large majority of pure 

skin pixels at the cost of some noise in the image (e.g. hair, artefacts), using a 

predefined threshold. Here, based on the idea described in [173], the threshold for 

measuring goodness of ROI was set in the 95–99% range, allowing a small amount of 

non-pure skin pixels in the ROI (termed false acceptance). It was determined 

empirically that skin detection performance is not affected by items in this range. 

4.7 Experimental Results and Discussion  

The main objectives of the present study were to automate the skin-based biometric 

system and to extend the population coverage of biometric processing as far as possible. 

This section discusses the outcome of the proposed framework and compares it to the 

ground truth generated by human volunteers. Skin images categorised as satisfactory are 

recommended for further biometric use in scenarios such as identification or 

verification. 

4.7.1 Performance of the Proposed Skin Pixel Detection 

This sub-section only studies the performance of the proposed skin pixel detection 

scheme (Scheme 2).The skin pixel detection technique was proposed to automatically 

recognise skin and non-skin pixels in each region of interest. The scheme was 

developed on the basis of pixel colour analysis. The RGB colour space is converted to 

HSV and YCbCr colour spaces. Pixel values are thresholded where skin pixel values are 

expected to fall within the quantified ranges (refer to Eq. 4.2). All pixel values falling 
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outside these ranges are considered non-skin. The approach performance was measured 

in terms of True Positive Rate (TPR) and True Negative Rate (TNR), which are defined 

as follows. 

TPR =
No. of skin pixels correctly classified

Total no. of skin pixels
                              (4.3) 

 

TNR =
No. of non skin pixels correctly classified

Total no. of non skin pixels
                     (4.4) 

 

Using the above parameters, experiments were performed using the Skin Segmentation 

dataset [170]. Table 4.3 summarises the results, including the efficiency of the proposed 

technique and comparative results for other existing skin pixel detection techniques that 

used the same dataset. Non-skin detection was more accurate (99.91%) than skin 

detection (93.97%), indicating that the proposed technique is robust for detection of 

non-skin pixel values. However, some skin and non-skin pixels are clearly being 

misclassified; almost 6% of skin pixel values were falsely rejected, and more 

investigation is needed. In the proposed system, any ROI containing skin pixels below a 

predefined threshold would be rejected to eliminate distortions caused by artefacts such 

as spectacles, reflections, or shadows. 

Table ‎4.3 Performance of skin/non-skin detection technique compared with other 

published results 

Method Technique TPR TNR 

Bhatt et al. [170] Fuzzy Decision Trees 98.09 92.51 

Çatak [174] 
MapReduce-based distributed Ada Boosting 

of extreme learning machine (ELM) 
99.56 N/A 

Proposed technique 

(Scheme 2) 

Thresholding Cb, Cr & hue (H) values 

140 ≤ Cr ≤ 170 and 

140 ≤ Cb ≤ 198 and 

0.01 ≤ H ≤ 0.10 

93.97 99.91 
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Note that the threshold of skin regional purity assessment for this scheme and its impact 

on skin- based biometric system are investigated separately in Section 5.6. 

4.7.2 Performance of Skin Detection Regional Purity Analysis 

This experiment was conducted on the XM2VTS database to assess all colour schemes 

with their performances on skin region of interest. As demonstrated in Section 4.5, three 

skin pixel detection techniques were investigated, using different colour spaces. The 

three schemes were termed Scheme 1 (using only the RGB colour space), Scheme 2 

(using Cb, Cr and H values from two different colour spaces) and Scheme 3 (combining 

Schemes 1 and 2). These schemes were therefore used to assess and validate the purity 

of skin regions extracted from facial images using XM2VTS database. Where the 

proportion of skin pixels was higher than a chosen threshold, the ROI was deemed to be 

of adequate purity. The measures used to evaluate the performance of the proposed 

framework were set out in metrics numbered from 4.5 to 4.9. Different terms are 

formulated which can be defined as follows: TP refers to cases where colour models 

correctly classify an acceptable purity skin ROI, and TN refers to cases where a 

corrupted region is correctly classified. FP refers to cases where the corrupted region is 

classified as adequate, and FN refers to cases where an adequate region is classified as 

corrupted. All measurements used here are formulated as follows: 

 

Precision =
TP

TP + FP
                                                                                                (4.5) 

Recall =
TP

TP + FN
                                                                                                      (4.6) 

False Positive Rate (FPR) =
FP

FP + TN
                                                                 (4.7) 

False Negative Rate (FNR) =
FN

TN + FP
                                                               (4.8) 

F −Measure = 2
Precision. Recall

Precision + Recall
                                                                   (4.9) 

As noted above, optimisation for the best threshold (ɵ) can be obtained using different 

thresholds. Figure  4.4 shows ROC curves for five different thresholds (95–99%) in 

comparing and selecting optimal thresholds for the four facial skin regions. Ideally, for 
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present purposes, a threshold should still be used to reduce the number of false negatives, 

as a skin-based biometric system should accommodate as many skin images as possible. 

Because a fixed threshold is difficult to set, 98% was chosen as a trade-off between 

system accuracy and population coverage for all facial skin regions in the XM2VTS 

database. Metric measures such as Precision, Recall, F-measure, FPR and FNR are 

detailed for the three schemes in Table 4.4. The results suggest that Scheme 3 is probably 

the best choice for assessment of ROI applicability for biometric purposes. 

 

                                   (a)                                                                  (b) 

 

                                   (c)                                                                  (d) 

Figure ‎4.4 ROC curves of thresholding optimisation for (a) forehead, (b) left cheek (c) 

right cheek, (d) chin skin region using the three different schemes 
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ROC curves are commonly used to optimise the threshold parameter for the influence 

analysis. Figure 4.4 shows that although Scheme 1 performed better with forehead and 

cheek regions, it performed worse with chin regions. While Scheme 2 achieved better 

performance with chine, it performed generally worse than Scheme 1 and Scheme 3 

with forehead and cheek regions. From these observations, scheme 3 seems to be an 

appropriate choice for skin purity assessment. In terms of optimising the thresholds, as 

five thresholds were tested (95-99%), FPR is still higher for all schemes. If the 

threshold is higher (97-99%), FPR is decreased indicating more accurate results. 

Consequently, 98% is chosen for skin purity assessment. These preliminary analyses 

justify the selection of the optimal value of the appropriate parameter for the proposed 

skin detection framework. The F-measure represents a balance between Precision and 

Recall, and the higher F-measure, the better the performance. Although precision is 

slightly higher for Schemes 1 and 2, Scheme 3 achieved the highest Recall for all four 

facial skin regions. Table 4.4 shows all these statistical measurements of the three 

investigated schemes. 

Table ‎4.4 Skin detection framework performance of the three schemes for the four 

independent facial skin regions (the threshold value is set to 98%) 

ROI Scheme Precision Recall FPR FNR F-measure 

F
o
re

h
ea

d
 Scheme 1 0.83 0.91 0.32 0.09 0.87 

Scheme 2 0.83 0.73 0.26 0.27 0.78 

Scheme 3 0.81 0.93 0.38 0.07 0.87 

L
ef

t 
C

h
ee

k
 Scheme 1 0.99 0.91 0.20 0.09 0.95 

Scheme 2 0.98 0.78 0.20 0.22 0.87 

Scheme 3 0.98 0.92 0.23 0.08 0.95 

R
ig

h
t 

C
h
ee

k
 Scheme 1 0.99 0.90 0.21 0.10 0.94 

Scheme 2 0.99 0.79 0.18 0.21 0.88 

Scheme 3 0.99 0.91 0.25 0.09 0.95 

C
h
in

 

Scheme 1 0.98 0.92 0.19 0.08 0.95 

Scheme 2 0.99 0.95 0.14 0.05 0.97 

Scheme 3 0.97 0.97 0.25 0.03 0.97 
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From the results presented in Table 4.4, it can be seen that Scheme 3 has achieved a 

better performance in terms of F-measure and Recall in comparison to other two 

schemes. It can also be observed that the performance of Scheme 3 of all four regions 

outperformed the other two schemes. This observation indicates that Scheme 3 is more 

applicable to deal with skin noise compared to Scheme 1 and Scheme 2 and it can be 

suggested that Scheme 3 is the best choice for assessing purity of facial skin region. The 

impact of Scheme 3 on population coverage will be also explained in Section 5.6. 

4.7.3 Analysis of Computational Cost 

In designing a system, it is important to consider in the process that how fast or slow 

particular algorithm performs. Any algorithm takes different time for the same input due 

to some factors such as processor speed, desk speed, compiler, etc. in this experiment, it 

is assumed that the machine used for the running the algorithm is affordable and the 

time complexity is computed by the execution time. The proposed framework was run 

in the MATLAB R2014a programing environment on a personal computer (operating 

system Windows 7 Enterprise, 3.20 GHZ, 16 GB memory 64-bit processor). The speed 

of the process was measured in seconds per ROI. Table 4.5 shows the computational 

cost for each of the three schemes. 

Table ‎4.5 Computational time for the three skin detection schemes 

ROI 
Computation time (seconds) 

Scheme 1 Scheme 2 Scheme 3 

Forehead 0.132 0.122 0.147 

Left Cheek 0.135 0.129 0.144 

Right Cheek 0.134 0.133 0.139 

Chin 0.144 0.125 0.153 

 

4.8 Summary 

The essential principles of skin pixel detection technique explained in this chapter have 

informed the proposed automatic framework for assessing ROI skin content for 

biometric purposes. The general skin pixel detection framework was detailed. Three 
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colour schemes were investigated. All three colour schemes were evaluated and 

validated using different databases. The technique for assessing skin purity of ROI was 

also described. Subjective observations and the mechanism used to generate the ground 

truth for purity analysis were also detailed. Finally, computational cost was also 

analysed. 

In terms of the proposed skin pixel detection scheme (Scheme 2), the scheme’s 

performance shows promise in skin pixel detection technique compared to the state-of-

the-art methods. 

Comprehensive experimental analysis was also made for each individual scheme. The 

analysis was covered all three colour schemes for skin purity assessment. Skin regional 

purity’s performance is analysed in terms of Recall and Precision. In general, the 

proposed technique promises to enhance human interaction and is likely to be more 

accurate. Although all the colour schemes returned comparable results, Scheme 3 

proved most effective for skin purity assessment and is preferable in terms of population 

coverage and as a trade-off among alternative schemes. To conclude, the proposed 

technique (Scheme 2) can determine automatically regions excessively corrupted by 

non-skin pixels, which are excluded from biometric processing. In the next chapter, the 

proposed technique will be implemented in a skin-based biometric system.  
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5.1 Introduction 

This chapter describes the design, implementation and evaluation of a prototype skin-

based biometric identification system to investigate the use of textural information from 

facial skin regions as a source of biometric information. This information is likely to be 

of interest when the entire facial image is not available, as for instance in forensic 

investigations or surveillance images. Four regions were chosen to obtain facial skin 

texture: forehead (R1), right cheek (R2), left cheek (R3), and chin (R4), as these are 

relatively easy to distinguish and at least some of these are likely to be visible even in 

partially occluded facial images. To facilitate extraction of these regions of interest, 

facial landmarks are automatically detected. A skin purity assessment technique, 

proposed in Chapter 4, is applied to identify the regions with sufficient skin content. 

Each of the available skin regions is analysed independently in attempting to establish 

the individual’s identity, using features based on Local Binary Patterns (LBP) and Gabor 

wavelet filters. Fusion of features from the skin sub-regions is applied prior to 

classification of the images. 



Chapter 5 Exploring the Potential of Facial Skin Regions for Identity Information 

71 

 

Experiments were performed using the publicly available the XM2VTS database to 

evaluate the performance of the skin-based biometric recognition system. As the 

proposed skin detection technique yielded promising and comparable results to other 

state-of-the-art techniques, this method is incorporated with the skin-based biometric 

system for people identification proposed in this chapter. Of the regions investigated, the 

forehead and chin were found to provide the richest biometric information. 

Facial recognition (FR) has many practical applications and is a well-established 

research problem in computer vision. The most common FR technique is based on 

holistic facial features, but in practice, it can be difficult to obtain the whole facial 

image, which is often occluded by objects, accessories (e.g., sunglasses, hat, scarf) or 

facial hair [175]. Occlusion caused by these issues may distort or hide some 

characteristics of facial images. At this point, a system based solely on textural 

information extracted from local features and dealing with part of the face would be of 

considerable value in identifying individuals from partial images, using an automated 

facial skin-based recognition system. Matching two facial skin regions is very 

challenging because it requires the extraction of distinctive features from skin images 

that are uncalibrated because of the variations in illumination, posture, facial hair, and 

accessories. Another challenge for skin biometric systems is that intra-class variations 

are still larger than inter-class variations [176]. An ideal skin feature representation 

should be capable of discriminating between different individuals. While researchers 

commonly use pure skin regions and avoid any facial skin noise, this is likely to be 

impractical in real-world applications [5] [21] [175]. Therefore, establishing systems to 

automatically deal with these issues are expected to standardise the examination process 

and also make the process more efficient. 

For texture analysis, skin image resolution is crucial, as this determines the level of skin 

detail that can be extracted from the image. A common scientific measure of face image 

resolution is inter-pupillary distance: the distance between the centres of the two pupils. 

Face images are described as high resolution when this distance is greater than 60 pixels 

[39]. ISO/ICAO standards also recommend a minimum inter-pupillary distance of 90 

pixels for facial images in travel documents [51]. Li et al. [7] proposed a system for 

defining skin texture in terms of pore-scale facial features, extracted from pores, fine 
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wrinkles, and hair using PCASIFT. They investigated the hairless cheek region using a 

number of databases such as Multi-PIE [38], which contains high-resolution images 

with an inter-pupillary distance exceeding 400 pixels. As a result of these 

considerations, the XM2VTS database [171] has been used in the present study which 

contains facial images with inter-pupillary distances in the range 84–126 pixels. 

The contribution of this chapter can be summarised as follows: (1) An automated skin-

based biometric system is proposed for use when the whole face image is not available, 

and (2) the system automatically segments the regions of interest and investigates the 

possibility of using each region as a source of biometric information in cases of partial 

occlusion by exploring likely visible skin regions. 

The chapter is organised as follows. Section 5.2 describes a general framework for the 

skin-based biometric system, including detection of facial landmarks, localisation of 

region of interest, feature extraction, classification, and evaluation and validation of the 

skin-based biometric system. Section 5.3 presents the experimental setup. The results 

obtained from both skin pixel detection framework and biometric system performance 

are then analysed in Section 5.4. Further improvement of biometric system and results 

of the analysis are described in Section 5.5 and Section 5.6 respectively. Finally, 

conclusions of this chapter are drawn in Section 5.7. 

5.2 General Framework of the Proposed System 

The schematic of the proposed system shown in Figure 5.1indicates all the stages of the 

framework, each of which is subsequently described in detail. The framework 

comprises four principal stages: (i) pre-processing, (ii) skin purity assessment, (iii) 

feature extraction and image representation, and (iv) classification. In the pre-processing 

stage, the facial image is captured, and the facial landmarks are detected to 

automatically localise the ROI based on facial geometric measurements. In the second 

stage, skin purity analysis assesses whether the input includes sufficient skin for 

biometric processing. The third and fourth stages are feature extraction and 

classification respectively which are widely used in biometric systems. In the feature 

extraction stage, the skin image ROI is further split into several non-overlapping sub 

regions to capture the skin’s textural detail.  
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Figure ‎5.1 Framework of the proposed skin-based biometric system 
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The skin feature is then extracted from each sub region, all of which are concatenated to 

a final single feature vector. Finally, the classification stage classifies these features for 

person identification. 

5.2.1 Detecting Facial Landmarks for ROI Segmentation 

Automatic extraction of facial landmarks is a fundamental step in designing a fully 

automated recognition system. This process can readily support real-world applications 

such as face recognition, criminal identification, and surveillance. In many such 

applications in real scenarios, facial feature detection and localisation are crucial, and 

some competing techniques seem to be more effective for automatic facial feature 

learning. Among these, Active Shape Model (ASM) [18] and Active Appearance Model 

(AAM) [19] are widely used to detect facial landmarks. AAM analyses texture 

information using pixel intensity within the face region while ASM uses the shape 

information from the entire facial image. Most recently, Chehra Face Tracker [20] [177] 

has emerged as an efficient method of localisation using cascade linear regression to 

learn the mapping, using both texture and shape information from the facial image. 

Chehra works with frontal facial images and provides 49 different facial landmarks and 

10 eye landmark points. In the proposed scheme, extracted facial landmarks using 

Chehra software are used to correctly locate the region of interest (ROI). In this context, 

ROIs are chosen to be those areas that contain the most visible skin regions on the 

face—the forehead, right cheek, left cheek, and chin region. Facial landmarks detected 

by Chehra, such as eye corners, nasal bridge, and mouth corners are utilised to precisely 

locate these four ROI regions. Figure  5.2 shows some examples of facial landmarks 

detected by the software. 

 

Figure ‎5.2 Facial landmarks detected by Chehra Face Tracker 
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5.2.2 Geometric Skin Localisation Measurements 

It is worth noting that the preliminary processing step uses the coordinates of both eyes 

to normalise the facial images. As a first step, all facial images are automatically aligned 

horizontally, using the eye-centres as reference points. Geometric measurements for 

ROIs are based on the geometric model proposed in [178]. Figure ‎5.3 depicts the 

geometric measurements for segmenting each region within the facial image. Assuming 

that the detected images are frontal-view faces, the selected regions will be determined 

as follows. 

Forehead region (R1): Let (𝑥𝑟𝑒𝑦𝑒, 𝑦𝑟𝑒𝑦𝑒) and (𝑥𝑙𝑒𝑦𝑒, 𝑦𝑙𝑒𝑦𝑒) be the outer corner of each 

eye (right and left respectively), and let d1 be the distance between them. This distance 

was computed as: 

𝑑1 = [(𝑥𝑟𝑒𝑦𝑒 − 𝑥𝑙𝑒𝑦𝑒)
2
− (𝑦𝑟𝑒𝑦𝑒 − 𝑦𝑙𝑒𝑦𝑒)

2]0.5                                                              ( 5. 1)   

The vertical distance between the outer corners of the eyes and the rectangular forehead 

region (R1) is set to 0.3d1. The size of the rectangular forehead region, which is located 

exactly 0.3d1 above the eye corners, is d1 x 0.4d1 pixels.  

Right (R2) and Left (R3) cheek regions: Let (𝑥𝑢𝑝𝑝𝑒𝑟,𝑦𝑢𝑝𝑝𝑒𝑟) and (𝑥𝑙𝑜𝑤𝑒𝑟,𝑦𝑙𝑜𝑤𝑒𝑟) be 

the two selected points on the nasal bridge (dorsum nasi). The distance between these 

points is calculated as:  

𝑑2 =  [(𝑥𝑢𝑝𝑝𝑒𝑟 − 𝑥𝑙𝑜𝑤𝑒𝑟)
2 − (𝑦𝑢𝑝𝑝𝑒𝑟 − 𝑦𝑙𝑜𝑤𝑒𝑟)

2]0.5                                                ( 5. 2) 

The locations of right cheek (R2) and left cheek (R3) regions are set at d2 from the 

nasal bridge respectively. Each region will have dimensions of d2 x d2 pixels.  

Chin region (R4): Let (𝑥𝑟𝑚, 𝑦𝑟𝑚) and (𝑥𝑙𝑚, 𝑦𝑙𝑚) be the two corner points of the mouth 

region. The distance between the mouth corners is calculated as:  

𝑑3 = [(𝑥𝑟𝑚 − 𝑥𝑙𝑚)
2 − (𝑦𝑟𝑚 − 𝑦𝑙𝑚)

2]0.5                                                              ( 5. 3) 

The size of the chin region (R4) is 0.55d3 × 0.35d3 pixels, located at a vertical distance 

of 0.35d3 beneath the mouth region.  
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ROI size and location parameters are optimised empirically to ensure that they fall 

within the facial boundaries of all faces in the database. After detecting the facial 

landmarks, the four regions (R1–R4) are cropped for further analysis.  

Table ‎5.1 shows all the parameters of the four regions, including their dimensions and 

locations. 

 

Figure ‎5.3 Geometric facial landmark measurements for ROI localisation. These 

measurements were empirically determined using Chehra software. All ROIs fall within 

the face boundary 

Table ‎5.1 ROI dimensions based on different face landmarks, where d1 is the distance 

between the two eyes, d2 is the length of the dorsum nasi, and d3 is the distance 

between the outer mouth corners 

ROI Key facial landmarks Dimensions(pixels) Location 

Forehead outer corners of two eyes d1 × 0.4d1 
0.3d1 above eye 

centres 

Cheeks nasal bridge (dorsum nasi) d2 × d2 
d2 away from nasal 

bridge 

Chin corners of the mouth 0.55d3 × 0.35d3 
0.35d3 below the 

corners of the mouth 

R3

d2

d2R2 d2

d2

d1

R1

0.3d1

0.4d1

d1
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5.2.3 Skin Pixel Detection for Skin Purity Analysis 

This phase investigates the suitability of the extracted ROI for further processing. As 

explained in Section 4.5, the proposed skin pixel detection technique (termed Scheme 2) 

employs two colour spaces: HSV and YCbCr in this study. In real-world applications, 

choosing a single colour space to detect skin pixel regions may not overcome all the 

challenges of skin pixel detection. Applying more than one colour space not only helps 

to eliminate some of these issues but also improves detection performance. To identify 

the skin pixels, RGB values for each pixel are converted to HSV and YCbCr values. 

Once these values have been computed, each pixel is classified as skin or non-skin by 

comparing Cr, Cb, and H values against a set of empirically determined thresholds. 

Morphological operations (i.e. opening followed by majority operation, using a 3x3 

square structuring element) were also applied to eliminate incorrectly marked pixels 

within the skin region. These operations help in removing or filling small groups of 

pixels caused by noise within the facial image, such as a strand of hair or facial marks 

(e.g. freckle, mole, scar). 

As the skin purity assessment takes place, if the proportion of skin pixels in the ROI is 

less than the purity assessment threshold, those regions are then excluded from 

subsequent biometric analysis. 

5.2.4 Feature Extraction 

If the ROI is classified as a pure skin, the feature extraction is applied after converting 

the image to greyscale. Irrespective of the ROI size, each is divided into four sub-

regions, each of which is treated separately for feature extraction. The generated feature 

vectors are concatenated to form a single feature vector. The two techniques utilised for 

feature extraction are Local Binary Pattern (LBP) and the Gabor wavelet filters. 

5.2.4.1 Local Binary Pattern (LBP) 

The advantage of the LBP method is that it is a powerful descriptor for extracting local 

texture features. The original LBP operator labels each pixel by thresholding it within a 

3×3 window, using the centre pixel value to obtain the result as a binary number. The 
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resulting binary numbers for all pixels are converted to corresponding decimal numbers, 

which can be used to build a histogram for texture description [88]. LBP was 

subsequently developed to accept any window size [113]. The descriptor was developed 

to define local neighbours as a set of sampling points (P), evenly spaced on a circle 

centred at the pixel to allow any radius (R) and any number of points. If the point does 

not fall in the centre of a pixel, this is resolved by means of bilinear interpolation. 

Formally, given a pixel at (xc, yc), the resulting LBP is formulated as [88] [113]: 

𝐿𝐵𝑃(𝑥𝑐 , 𝑦𝑐)  =  ∑ 𝑠(𝑔𝑝 − 

𝑃−1

𝑝=0

𝑔𝑐)2
𝑝                                                                     ( 5. 4) 

where 𝑔𝑐, 𝑔𝑝 correspond to the grey-scale of the central pixel c(𝑥𝑐 , 𝑦𝑐) and the P 

neighbourhoods pixels, respectively. The function 𝑠(𝑥) is defined as [113] : 

𝑠(𝑥) = {
 1            𝑖𝑓  𝑥 ≥ 0
0            𝑖𝑓  𝑥 < 0     

                                                                         (‎5. 5) 

 

5.2.4.2 Gabor Filters 

Gabor functions, which have been successfully employed in biometric systems, are 

mathematically attractive for minimizing the joint space-spatial frequency uncertainty 

[118] [179] [180]. A two-dimensional Gabor filter is derived from a Gaussian kernel 

function modulated by a complex sinusoidal plane. The feature vector is constructed 

from the concatenation of all the means and the standard deviation values of Gabor bank 

filter response magnitudes. This technique was used in [181] and proved robust for 

extraction of texture features. Formally, a 2D Gabor filter 𝜓 in the spatial domain can 

be expressed as: 

𝜓(𝑥, 𝑦; 𝑓, 𝜃) =  
𝑓2

𝜋𝛾𝜂
𝑒− (𝛼

2𝑥′+𝛽2𝑦′) 𝑒𝑗2𝜋𝑓𝑥
′
  

𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃                                                       ( 5. 6)  

𝑦′ = 𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃           
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where f is the central frequency of the sinusoidal plane wave, θ represents the 

orientation angle of the Gaussian major axis with respect to the plane wave, α and β are 

the sharpness along the major axis, and the sharpness along the minor axis 

(perpendicular to the wave) respectively. In the given form, the aspect ratio between the 

frequency and sharpness is constant. 𝜂=f/β and γ=f/α. The skin image ζ, ζ(x,y) can be 

convolved with the 2-D Gabor filter function using a bank of scale u and orientation v. 

fu = fmax (√2)
-u

 and θ = 
𝑘 𝜋

𝑛
 where k = {0,…, n-1}. Therefore, the convolution can be 

expressed as: 

 

rζ (x,y; fu;θv) = 𝜓(𝑥, 𝑦; 𝑓, 𝜃)* ζ(x,y)                                             (‎5.7) 

 

 All means μuv and standard deviations σuv of the magnitude | rζ | are computed to 

construct the skin feature vector F. 

5.2.4.3 Feature Representation for LBP and Gabor Filters 

The dimension of the feature vector depends on the method used for feature extraction. 

For example, for the LBP operator with parameters P = 8 and R = 5, the vector 

dimension is 2
8
 = 256 for each sub-region. Following feature-level fusion of the four 

sub-regions, the dimension becomes 1024 (= 256×4). Gabor wavelets of eight different 

scales {u ϵ 0,…,7} and eight orientations {v ϵ 0,…,7} were used, resulting in a feature 

dimension of 128 (= 8×8×2). Other parameters were set as fmax = 0.25, γ= 2  , 𝜂= 2 . 

The feature vector was then constructed from the concatenation of the four sub-regions, 

generating a 512-dimension feature vector. This technique was previously used in [182] 

and proved robust for extraction of texture features. 

5.2.5 Skin Features Classification 

Two types of classifier were used here for biometric identification by using skin texture: 

k-Nearest Neighbour (k-NN) classifier (k = 1), and Support Vector Machine (SVM) 

[12]. Optimal kernel selection for SVM is performed by testing different kernels, such 

as sigmoid, polynomial, Gaussian (Radial Basis Function), and linear kernels. 

Following trials, the polynomial function was selected as optimal. 
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5.3 Experimental Setup 

In order to analyse the performance of skin biometric system, the XM2VTS [171] 

database facial images are utilised in this work. As already described in Section 4.6, the 

XM2VTS is a multi-modal database comprising still colour images, video sequences, 

and speech recordings from 295 individuals. The total number of the frontal images is 

1,180 (295 individuals, 4 images each). 

Chehra Face Tracker software [20] [177] can detect facial landmarks in only 1,128 of 

the 1,180 available images. All four images were marked for only 274 of 295 

individuals in the XM2VTS database. These 274 individuals were used for the 

experiments in this thesis and the remaining 21 were excluded. As explained in the 

previous section (Sub-sections 5.2.1 and 5.2.2), the four ROIs were segmented from the 

face images, and these regions may differ in terms of noise such as hair or facial marks 

(e.g. moles, wrinkles, scars). As the distance between the two eyes ranges between 

approximately 84 and 126 pixels, the size of extracted facial skin regions may also vary 

between images. 

5.4 Experimental Analysis 

As outlined above, the main objective of the present study is to construct a facial skin-

based biometric system, both to overcome the limitations of facial recognition systems 

in cases such as occluded view or noise in the facial area and to supplement existing 

facial recognition systems by providing additional information. 

5.4.1 Facial Landmark Detection 

Figure 5.4 shows some examples of users who were detected and not detected by 

Chehra Face Tracker software. It was noticed that blurring, reflections, and head pose 

impacted negatively on the effectiveness of Chehra Face Tracker software [20] [177]. 

The exclusion of 21 individuals was an error termed as failure to acquire (FTA), where 

the landmarks in a face image cannot be detected. Using Chehra software, the FTA rate 

was 4.40 % that is 52 of 1,180 images were not detected. 
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(a) Facial landmarks were detected 

  

(b) Facial landmarks were not detected 

Figure ‎5.4 Some examples of users (a) whose facial landmarks were detected and (b) 

were not detected by Chehra Face Tracker software 

5.4.2 Skin Purity Analysis 

As a preliminary step, first, only the proposed skin pixel detection scheme (Scheme 2) 

was applied. The skin pixel detection scheme output is returned in the form of a binary 

mask (1 = skin pixels, 0 = non-skin pixels). Figure ‎5.5 shows the algorithmic flowchart 

for this purity analysis process. 

 

Figure ‎5.5 Flowchart of the proposed purity assessment technique using skin pixel 
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ROI images containing non-skin pixels greater than a defined threshold were rejected 

from subsequent analysis. Users will be required to provide a new sample in such cases. 

All the accepted images were used to assess the performance of the proposed biometric 

system. Figure  5.6 shows samples of the four regions with differing levels of noise and 

indicates whether these were rejected or accepted for further processing. 

 

Figure ‎5.6 Examples of accepted and rejected ROIs based on the skin purity assessment 

technique 

The forehead region is less likely to be affected by facial expressions while cheek 

regions are prone to noise (e.g. sporadic marks, facial hair, shadows, or other artefacts) 

that could impact negatively on performance. 

 
Figure ‎5.7 Subjects with useable regions by set of thresholds for forehead and chin 
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In males, the chin region contains hair roots that make the skin region darker, and the 

skin detector is likely to classify some of these pixels as non-skin. In this analysis, 

different selective threshold values were used to control acceptable non-skin corruption 

in the extracted ROIs. Figure ‎5.7 shows an example of two different skin regions 

(forehead and chin) and the percentage of skin pixels in a specific ROI for all images of 

these individuals. The data suggested that different skin purity thresholds may be 

appropriate for different regions when using Scheme 2 for skin pixel detection 

technique. Experimental results for this skin pixel detection technique were deeply 

explained in Section 4.7. 

5.4.3 Performance of Skin Biometrics 

All images accepted as pure skin are then input to the biometric system for person 

identification. The optimised skin purity assessment technique is incorporated into the 

proposed skin-based biometric system and tested using facial images from the 

XM2VTS database. The experimental protocol uses three images from each person as 

gallery (training) set; the remaining images are used as a probe (testing) set. Where the 

ROI is recognised as pure skin, the region is split into four sub-regions for feature 

extraction, irrespective of ROI size. 

Table ‎5.2 presents the rank-one recognition rates, with an example of the chosen 

threshold for skin purity assessment technique for each of the four facial skin regions. 

For instance, a purity threshold of 90% skin pixels was selected experimentally for the 

chin region while the threshold for the forehead region was also set experimentally at 

97%. The reason for selecting different threshold values is that the number of users 

included in the evaluation for the four ROIs was approximately similar. Note that the 

similarity of population coverage makes the comparison between the four facial skin 

regions for the skin biometric performance to be reasonably fair. The algorithm was run 

several times, and average recognition rates are reported. 

The results suggest that classification accuracy is much higher for the forehead and the 

chin regions than those for the cheek regions. The highest rate of recognition accuracy 

(91.33%) was for the forehead region. The chin region ranked second for recognition 

accuracy (80.97%) when using the LBP descriptor features with SVM classifier. Both 
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cheek regions returned lower accuracy rates and this possibly because the cheeks are 

more affected by variations in lighting, facial expression, and posture, presence or 

absence of spectacles, and so on. This means that the forehead and chin are likely to 

provide more robust biometric information in cases where the face is only partly visible, 

and these were therefore selected for further exploration. 

It has been observed that when compared to SVM, the Gabor filters did not perform 

well on the nearest neighbour classifier (k-NN), and this aligns with the results reported 

in [183] and [181]. 

Table ‎5.2 Recognition accuracy (rank-one) at a defined threshold for the four ROIs (%) 

ROI 

S
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ty
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(%
) 
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. 
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f 
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LBP Gabor Wavelet 

k-NN SVM k-NN SVM 

Forehead 97 98 75.77 91.33 23.70 66.58 

Right Cheek 100 104 44.47 60.34 19.71 54.33 

Left Cheek 100 89 41.01 57.58 23.03 46.91 

Chin 90 113 60.62 80.97 26.33 74.12 

 

The LBP performed much better than Gabor wavelet for skin texture information 

extraction, and SVM also performed better than the k-NN classifier. As they provided 

the best accuracies, Figure ‎5.8 shows rank-n recognition rates for the two ROIs 

(forehead, and chin) based on LBP operator using k-NN and SVM classifiers. The 

results confirm the superior performance of the forehead region for individual’s 

identification. 
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Figure ‎5.8 CMC curves of recognition rates for the two ROIs (forehead and chin) based 

on LBP operator using k-NN and SVM classifiers 

Further investigation using different thresholds of skin purity with the forehead and the 

chin region (see Figure ‎5.9) suggested that recognition rates are affected by the use of 

lower skin purity threshold. Increasing the purity skin threshold, the identification 

performance was improved leading to higher accuracy for biometric system. 

 

 

   (a)       (b) 

Figure ‎5.9 Recognition rates for (a) forehead and (b) chin region based on LBP 

operator using two different classifiers (k-NN and SVM) with different thresholds 
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5.4.4 Comparison with Existing Systems 

The proposed system achieves better performance than previously published 

alternatives. Table 5.3 compares the proposed system framework with earlier work. For 

fair comparison, only the results of the proposed scheme (Scheme 2) based on LBP for 

feature extraction and SVM for classification are compared. The comparison shows that 

the cheek regions (right and left) provided slightly lower but comparable accuracy 

(60.34% and 57.58%, respectively). 

Although the chin region has not (to the best of the author’s knowledge) been 

investigated before, it has delivered better performance within the proposed system 

framework, confirming its utility as a source of biometric information. When compared 

to previously published results, recognition rate for the forehead region is significantly 

higher (by about 23%), indicating the superiority of the proposed technique. 

Table ‎5.3 Proposed system’s recognition performance compared to earlier methods 

using the same database (XM2VTS) 

Algorithm 

System Parameters 

Skin ROI Accuracy Features 

method 

Classification 

method 

Lin et al. [5] 
Regularised 

LDA 

Adaptive metric 

fusion 
Cheeks + Forehead 0.67 

Al-Qarni et al. [184] Gabor filter k-NN Forehead 0.68 

Proposed system  LBP operator SVM 

Forehead 0.91 

Right cheek 0.60 

Left cheek 0.58 

Chin 0.81 

 

5.5 Further Improvement using Multi Scheme Purity Assessment for 

Skin-based Biometrics 

The experimental results presented in Section 5.4 demonstrated that the skin-based 

biometric system is capable of distinguishing individuals. The main objective of these 

experiments presented in this section is to incorporate more colour spaces in skin purity 
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assessment technique to overcome the failure-to-acquire errors that occur when only 

scheme 2 for skin pixel detection was used. This is achieved by introducing an 

enhanced skin pixel detection technique (Scheme 3). This scheme was explained in 

Section 4.5 and its performance was analysed in Section 4.7. Additionally, a common 

skin purity assessment threshold for all ROIs is also explored. It is clear that setting a 

common threshold may be a better solution to avoid the selection of a threshold which 

might be data dependant. All these concerns were tackled in this section with further 

investigation. 

5.5.1 Improving the Skin Purity Analysis Assessment 

The skin purity assessment technique assesses whether the extracted ROI is unduly 

occluded by artefacts, either natural (e.g. hair, moles) or artificial (e.g. headgear). 

Unlike other studies, in which features like moles and birthmarks were used as the 

discriminatory biometric features, the present work explores the suitability of pure skin 

region as a source of biometric information, since moles and other distinguishing marks 

are not universal across individuals. Note that such artefacts can be imitated easily. In 

this implementation, skin colour models were used to ascertain the level of purity of the 

extracted skin region of interest. While an individual's skin tone typically occupies a 

compact region in the colour space, skin appearance can be altered by factors such as 

illumination or camera sensor, as well as by the individual’s age, sex, ethnicity, and so 

on. As skin colour is largely invariant to partial occlusion, scaling, pose, and rotation, it 

permits more reliable differentiation between skin pixels and other artefacts within a 

facial image. Other sources of variability (e.g. exposure to weather, especially sunlight) 

are not considered here, as all of the database images used were captured in a controlled 

environment. 

 

Given the evidence that use of more than one colour space helps to eliminate some of 

the above concerns and so improve skin pixel detection performance, the enhanced skin 

pixel detection technique (i.e. termed Scheme 3) presented here uses three colour 

spaces: RGB, HSV and YCbCr. Although the RGB colour space (Scheme 1) is widely 

used in image segmentation, one of its limitations is that luminance and chrominance 

information are not separated. However, HSV and YCbCr (Scheme 2) contain pure 
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colour information and should therefore facilitate separation of skin pixels from 

artefacts for the purposes of colour-based skin purity assessment analysis. Therefore, 

the two schemes generated a binary mask in which morphological operations (i.e. 

opening followed by majority operators, using a 3x3 square structuring element) were 

applied to eliminate small groups of pixels that were incorrectly marked (because of 

noise or small dots such as moles) within the skin ROI. In Scheme 3, these two masks 

were combined to take a final decision. Scheme 3 was then applied to assess whether 

the skin in the ROI was adequate for subsequent processing (see Sections 4.5 and 4.7 

for more detail). 

5.6 Experimental Results and Discussion 

This section presents the results obtained from the proposed skin-based biometric 

system using Scheme 3 for skin purity assessment. Results of skin purity assessment 

technique are discussed. Biometric performance is also analysed. Finally, a comparative 

study is presented. 

5.6.1 Skin Region Purity Analysis 

A combination of two colour schemes (Scheme 3) was used to determine the purity of 

skin regions extracted from the facial images. Where the proportion of skin pixels was 

higher than a chosen threshold, the ROI was deemed to be of adequate quality 

(accepted) for subsequent processing. Performance was measured using True Positive 

Rate (TPR) and True Negative Rate (TNR). True positive (TP) refers to cases where the 

colour models correctly classified an acceptable purity ROI, and true negative (TN) 

refers to cases where a non-pure region was correctly classified (rejected). Additionally, 

Half Total Error Rates (HTER = (FPR+FNR)/2) were also computed to determine the 

optimal threshold for skin purity assessment technique. 

Taking two different facial skin regions as examples (i.e. forehead and chin region), 

Figure 5.10 and Figure 5.11 show TPR and TNR for all three colour schemes 

separately. It is observed experimentally that, while the scheme1 performed better in 

identifying pure forehead skin regions, the Scheme 2 performed better for occluded 

regions. It is also found that Scheme 2 performed better than Scheme 1 in identifying 
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pure chin skin region. As expected, TPR fell gradually and TNR increased as the 

threshold was increased. Additionally, from the results shown in Figures 5.10 and 5.11, 

it can be seen that, for TPR, Scheme 1 and Scheme 2 do not always lead to an improved 

performance. It is clear that, for both regions, Scheme 3 achieved the top performance 

in comparison to the other two schemes. This observation indicates that more skin 

images can be recognised by using Scheme 3 for skin purity assessment. In terms of 

TNR, Scheme 2 performed relatively better than the other two schemes. Considering 

these measures and to mitigate the influence of using either Scheme 1 or Scheme 2, 

Scheme 3 is the best choice as a trade-off for skin purity assessment. 

 

(a)                                                            (b) 

Figure ‎5.10 (a) TPR and (b) TNR of purity assessment schemes for various threshold 

values of forehead region 

 

 

(a)                                                            (b) 

Figure ‎5.11 (a) TPR and (b) TNR of purity assessment schemes for various threshold 

values of chin region 
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In conclusion, observations from the results presented in Figures 5.10 and 5.11 

suggested that according to the performance analysis measures applied in this 

experiment include TPR and TNR, Scheme 3 always achieved the highest performance 

for identifying skin pixels (TPR) with different facial skin regions. However, Scheme 1 

and Scheme 2 are less stable which leads to misclassification with different facial skin 

regions. Scheme 2 is likely more robust for identifying non-skin pixels (TNR) compared 

the other two schemes. This observation can be seen clearly in Figure 5.10 (b) and 

Figure 5.11 (b) when the purity threshold is above 97%. Using Scheme 2, the more 

users will be rejected to be processed for biometric identification. In this case, Scheme 3 

will mitigate the limitation of Scheme 1 and Scheme 2. Therefore, Scheme 3 is selected 

as a proper choice for skin purity assessments. 

To identify the ideal threshold, HTER values of all four facial skin regions were plotted 

for different threshold settings (see Figure 5.12). Unlike TPR and TNR, which are 

measures of success, HTER values provide a composite measure of false positive (FP) 

and false negative (FN) errors. As Scheme 3 was chosen, HTER for this scheme has 

been investigated to analyse the optimal value of the threshold for skin purity 

assessment for the four facial skin regions. By comparing HTER between these regions, 

it can be seen that the error on the forehead region was higher than the other regions. 

The lowest error rate achieved by chin region. HTER rates initially dropped quite 

rapidly as the threshold increased but remained relatively stable once the threshold 

reached 97% or greater. 

 

Figure ‎5.12 HTER of purity assessment scheme 3 for various threshold values of facial 

skin regions 
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To conclude, it can be seen from the Figure 5.12 that, by comparing HTER for all four 

regions, forehead region has generated higher errors compared to other three regions. 

Chin region has achieved the lowest error with all thresholds. Generally, the error was 

more stable if the threshold was above 97%. Therefore, 98% has been chosen for skin 

purity threshold. 

In practice, a biometric system should cover across large population. Using Scheme 3, 

therefore, the population coverage is dramatically increased as skin biometric system 

can work in more robust conditions. Table 5.4 shows the number of individuals 

obtained from the three schemes indicating the advantages of using Scheme3 in skin 

biometric system. 

Table ‎5.4 Population coverage of the three skin purity assessment schemes 

Purity 

scheme 

No. of individuals (purity threshold = 98%) 

Forehead Right cheek Left cheek Chin 

Scheme 1 155 203 198 203 

Scheme 2 104 158 145 222 

Scheme 3 167 206 201 229 

As all these numbers of individuals identified in the database as having 4 adequate ROI 

images, Scheme 3 improved the population coverage compared to the other two 

schemes. Individuals identified by Scheme 3 could be the optimal choice to investigate 

the stability and robustness of the proposed skin-based biometric system. 

5.6.2 Biometric Performance Analysis 

As demonstrated in Table 5.4, all individuals identified by the purity assessment 

schemes as having 4 ROI regions of acceptable purity were then inputted to the 

biometric system. The threshold of acceptable skin regions is derived from the statistical 

measures (HTER) and is set to 98% which is expected to be more noise-free. 

Identification task has been investigated in this set of experiment. Of the 4 available 

images for each individual, 3 images were used for enrolment, and the fourth was used 

for testing. The process was repeated several times; average recognition rates are 

reported in Tables 5.5, 5.6, 5.7, and 5.8. The process used LBP and Gabor wavelet 
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features. The LBP feature vector had a dimension of 1024, derived from four sub-

regions (256×4) and the Gabor wavelets had a dimension of 512 (128×4). 

Three classifiers has been used in this set of experiments for biometric identification 

based on skin texture: k-Nearest Neighbour (k-NN) (k = 1); Sparse Representation 

Classifier (SRC); and Support Vector Machine (SVM). By testing different kernels, the 

polynomial function was selected as the optimal kernel for SVM. 

The experiments investigate the effect of all three skin purity assessment schemes. 

Considering the results shown in Tables 5.5, 5.6, 5.7, and 5.8, it is found that while 

Scheme 1 and scheme 2 achieved relatively better performance, they enrolled fewer 

individuals for biometric processing.  

In comparison, the scheme 3 has not only enrolled a big number of individuals 

compared to the other two schemes but also achieved a comparable recognition rates.  

Experimentally, it can be seen that Scheme 3 has several advantages such as enlarging 

user population coverage and reducing enrolment failure. It is also observed that small 

fraction of the population may be unstable for automatic identification.  

Table ‎5.5 Rank-one recognition rates for forehead region using different skin purity 

assessment schemes (purity threshold = 98%) 

Purity 

scheme 

No. of 

users 

LBP Gabor wavelets 

1NN SRC SVM 1NN SRC SVM 

Scheme 1 155 0.68 0.73 0.85 0.24 0.45 0.62 

Scheme 2 104 0.69 0.83 0.86 0.26 0.36 0.66 

Scheme 3 167 0.65 0.70 0.83 0.24 0.48 0.61 

 

Table ‎5.6 Rank-one recognition rates for right cheek region using different skin purity 

assessment schemes (purity threshold = 98%) 

Purity 

scheme 

No. of 

users 

LBP Gabor wavelets 

1NN SRC SVM 1NN SRC SVM 

Scheme 1 203 0.41 0.39 0.58 0.23 0.40 0.52 

Scheme 2 158 0.46 0.47 0.61 0.23 0.33 0.51 

Scheme 3 206 0.41 0.38 0.57 0.23 0.40 0.52 
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While rank-one recognition rate is used to represent the identification performance, 

several conclusions can be drawn from the results in Tables 5.5, 5.6, 5.7, and 5.8. 

Table ‎5.7 Rank-one recognition rates for left cheek region using different skin purity 

assessment schemes (purity threshold = 98%) 

Purity 

scheme 

No. of 

users 

LBP Gabor wavelets 

1NN SRC SVM 1NN SRC SVM 

Scheme 1  198 0.38 0.37 0.52 0.22 0.35 0.47 

Scheme 2 145 0.43 0.48 0.58 0.20 0.25 0.49 

Scheme 3 201 0.38 0.36 0.52 0.21 0.36 0.46 

 

Table ‎5.8 Rank-one recognition rates for chin region using different skin purity 

assessment schemes (purity threshold = 98%) 

Purity 

scheme 

No. of 

users 

LBP Gabor wavelets 

1NN SRC SVM 1NN SRC SVM 

Scheme 1 203 0.54 0.49 0.79 0.23 0.77 0.71 

Scheme 2 222 0.52 0.43 0.78 0.21 0.77 0.71 

Scheme 3 229 0.52 0.42 0.78 0.22 0.78 0.71 

 

First, LBP descriptor based on skin features has performed generally better than Gabor 

wavelets for most facial skin regions. Gabor wavelets features achieved lower 

performance in some regions such as forehead, and right and left skin regions. This 

observation suggests that LBP descriptor is more convenient for skin feature extraction. 

Second, generally, it can be found that forehead region achieved that highest 

performance compared to other facial skin regions. A possible reason is that forehead 

region is less likely to be affected by facial expression. The available information is also 

able to be captured as this region is bigger than the three facial regions’ sizes. 

Third, comparing the two cheeks regions, it can be found that cheeks regions are less 

accurate in biometric identification. Although the performance remains stable for both 

regions, it is found that, skin information extracted from right cheek achieved higher 

performance with larger population coverage compared to the left cheek. Based on these 
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observations, cheek regions are highly affected by heaver noise such as head pose, 

facial expression, and illuminations. 

Forth, it is very interesting that, chin region covers the largest populations among other 

facial skin regions. Considering the results of both methods of feature extraction (i.e. 

LBP descriptor and Gabor wavelets), this region achieved a generally more stable 

performance in comparison to other skin regions. Specifically, Gabor wavelets features 

achieved more stable performance across all skin purity assessment techniques. This 

only expectation is that Gabor wavelets work with dark skin-tone or those skin images 

whose appearance affected by hair roots more than bright skin-tone. 

Fifth, given different classifiers, focusing only on LBP skin features, SVM classifier 

achieved the highest performance compared to the two other classifiers. However, SRC 

achieved better performances when skin information extracted by Gabor wavelet filters 

for only chin region. 

Finally, Scheme 3 is recommended for skin purity assessment technique. The reason is 

that besides improving population coverage, the proposed scheme is able to achieve 

comparable performance to other schemes. This finding tends to support the 

introduction of skin purity assessment in the proposed skin-based biometric system. 

However, there is clearly a trade-off between the successes of the biometric stage and 

the failure-to-enrol rate as a result of skin purity assessment filtering. 

Considering the best achievement of identification scenario, and using only Scheme 3, 

Figure 5.13 shows the CMC curves (rank-n recognition rates) for skin feature extraction 

methods (LBP-based features and Gabor-based features) with the SVM classifier. 

There are two observations from Figure 5.13. First, for Figure 5.13 (a), it can be seen 

from the CMC curves that using LBP-based skin features, the performances of forehead 

region outperformed the other facial skin regions. However, Chin region achieved a 

satisfactory performance at rank-five or above compared to forehead performances. The 

performances of both cheeks are relatively lower which indicates that the identification 

performances based on skin features extracted from the two cheek regions are closely-

related to the noise level of captures. Both suffer from the influence of noise and are 
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also highly affected by head pose, expressions and illumination leading to degraded 

performances. 

Second, from Figure 5.12 (b), it can be seen that, the chin region achieved the highest 

performance by using Gabor-based features in comparison to other skin regions. The 

possible reason is that since the chin region is darker and its skin affected by hair roots 

especially with men, Gabor wavelet method performed better with this type of skin. 

This observation may suggest that Gabor-based features are preferable for darker skin 

images. 

 

(a)                                                              (b) 

Figure ‎5.13 CMC curves when using (a) the LBP descriptor and (b) Gabor wavelets 

with the SVM classifier  

5.6.3 Comparative Analysis 

For comparison purpose, facial skin regions investigated in this work are extracted from 

XM2VTS database to be compatible with those in the literature. As Table 5.9 shows the 

comparative study, the comparison to the competition results is not fully fair. The 

reason is two-fold. Firstly, the number of individuals used in the evaluation for those in 

the literature is inaccessible. Secondly, the number of individuals for the proposed 

system is chosen automatically based skin purity assessment. Thus, it is reasonable to 

make the comparison because the mechanism used in the present work is closer to the 

completions. 

The analysis in the previous sub-section (Sub-section 5.7.2) is based on the 

experimental setting in Section 5.6.  
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Table ‎5.9 Comparison with other published schemes using the XM2VTS database 

Publication Skin ROI 
Skin pixel 

detection 

No. of 

users 

Feature 

extraction 
Classifier 

Recognition 

rate 

Lin et al. [5] 
Cheeks + 

Forehead 
NA NA 

Regularised 

LDA 

Adaptive 

metric fusion 
0.67 

Al-Qarni et al. [184] Forehead Manual 84 
Gabor 

wavelets 
1NN 0.68 

Alsufyani et al.[64]  Forehead Automatic 98 LBP 
1NN 0.76 

SVM 0.91 

Proposed technique Forehead Automatic 167 LBP 

1NN 0.65 

SRC 0.70 

SVM 0.83 
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However, in this comparison, only the skin biometric performances achieved when 

Scheme 3 was used for skin purity assessment are compared with the state-of-the-art 

counterparts. One region is chosen for comparison (forehead region).  

As LBP operator is more robust to extract distinct features from the ROI, SVM 

achieved better performances with this kind of features. According to these 

observations, the improvement mechanism of proposed skin-based biometric system is 

compared to existing methods using the same database for evaluation. Table ‎5.9 shows 

the rank-one recognition rates for different techniques when using the XM2VTS 

database.  

As compared to other facial skin biometric recognition systems reported in the 

literature, the improvement of the proposed system covered a larger number of 

individuals than others with superior rates of recognition accuracy. The only higher 

recognition rate (0.91) obtained in previous work [64] was only based on 98 

individuals; as the proposed system’s performance after improving the skin purity 

assessment scheme 3 was based on 167 individuals, the proposed system correctly 

identified more people (+49) from the XMT2VTS database despite its slightly lower 

accuracy. 

5.7 Summary  

This chapter has proposed a technique for the use in skin-based biometric information 

for identification. The chapter covered two main set of evaluations. 

First, using only the proposed skin pixel detection technique developed in this research, 

termed Scheme 2 as outlined in (Section 4.5), a novel automated technique is proposed 

for the biometric recognition of individuals, based on features extracted from the skin. 

The threshold setting of skin purity assessment was adjusted based on the targeted ROI. 

Second, skin purity assessment technique was developed to mitigate the limitation of 

Scheme 2. Such developed technique (termed Scheme 3) was exploited to improve 

population coverage besides improving the stability of the skin-based biometric 

performance. The results of skin purity analysis demonstrate that since Scheme 2 
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performed better in detecting noisy skin regions, Scheme 3 is preferable for biometric 

process because of the population coverage. 

The proposed automated skin-based biometric system was evaluated to investigate four 

regions of the facial image and to also establish the most promising region for 

extraction of identity information. These four regions (forehead, left and right cheek, 

and chin) were demarcated on the basis of automatically detecting facial landmarks. 

LBP descriptor and Gabor wavelet method were used to extract skin features, and 

different classifiers were utilised for classification. Such a technique would be very 

useful in covert and overt surveillance applications, where full facial images may not be 

available. Experiments were conducted on the XMT2VTS database with varying noise 

level .The results suggest that skin texture can provide a rich source of biometric 

information. The forehead and chin regions were found to provide the most accurate 

information, probably because these regions are less affected by changes in expression 

and illumination, and accessories such as spectacles. Comparisons with state-of-the-art 

algorithms demonstrate the superior performance of the proposed system. Besides 

enlarging user population coverage and reducing enrolment failure, the proposed system 

has a competitive, more stable, and maintaining a higher identification performance. 
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Chapter 6  

Usability of Skin Texture Biometrics for Low-

Resolution Images 

 

 

 

Given the growing demand for biometric technologies that can recognise individuals 

from skin images at different resolutions (e.g. camera at different distance), this chapter 

explores the usability of low-resolution facial skin images for biometric purposes. The 

four facial skin regions investigated here (forehead, right cheek, left cheek, and chin) 

were selected because at least one of these can usually be captured in real-world 

scenarios even when part of the face may be occluded. The proposed framework 

automatically localises and assesses the validity of the region of interest (ROI) for skin-

based biometric recognition. Skin features were then extracted using the LBP descriptor 

because of its effectiveness in extracting skin information. The experiments have been 

conducted using XM2VTS database. Here, all skin images were resized at different 

scales to evaluate their utility. The results suggest that skin texture can provide adequate 

biometric information even when the resolution varies drastically. 

For the sake of clarity, it is helpful to distinguish three terms in relation to skin image 

processing in this chapter: resolution, scale, and distance. The resolution of a digital 

image is generally expressed as the total number of pixels in the horizontal and vertical 

dimensions. Image scaling refers to changes of image size using geometric 
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transformations. When an image is scaled, the number of pixels changes. This technique 

is often used to simulate the distance between the captured image and the imaging 

device. Distance affects image resolution; the closer object to the camera, the greater its 

resolution. 

The chapter is organised as follows. Section 6.1 summarises the motivation and the 

importance of skin image resolution. The experimental setup is described in Section 6.2, 

and Section 6.3 reports the results. The chapter concludes with a summary in Section 

6.4. 

6.1 Motivation 

This chapter details the use and effectiveness of skin resolution in skin biometric 

systems. In forensic applications, there is increasing demand for robust face recognition 

systems ranging from partial to whole face verification. As a standalone source of skin 

biometric information, a high-resolution face image can be acquired at close range. 

However, some issues may degrade skin image resolution. For example, if the face is 

not close enough to the camera or the sensor is of low quality, the image will be small in 

size, resulting in a low-resolution image that makes recognition difficult. Use of such 

low-resolution images may cause the system performance be significantly degraded. 

Matching two partial facial images of the same subject captured from different 

distances/resolutions may also be challenging. Because the resolution drop decreases 

the amount of information available for identifying or verifying individuals [185]. 

While template images may be high-resolution, a query image is likely to be of low 

resolution, making matching difficult. With growing numbers of smartphone users and 

surveillance cameras, partial views of a face can be easily captured at different 

resolutions. As only a small area of skin may be available, it is therefore very important 

to be able to exploit this for identification purposes. As explained in Section 3.3, skin 

texture is the surface texture pattern of any exposed human body part (e.g. face, hand, 

palm). It has already been demonstrated that skin texture patterns can be utilised for 

person recognition, especially when using detailed high-resolution images to identify 

individuals. This chapter investigates both the effect of low-resolution skin images and 

the possibility of matching these skin images when captured at multiple resolutions. 



Chapter 6 Usability Skin Texture Biometrics for Low Resolution Images 

101 

 

6.2 Experimental Setup 

As partial face recognition at different resolutions has not been adequately addressed to 

date, the work presented in this chapter investigates the impact of low-resolution images 

of facial skin texture and scale invariance, and whether such images can be successfully 

used for biometric recognition/applications. To automatically extract useable skin-based 

biometric information, the following steps were applied to the ROI: (i) pre-processing, 

including image normalisation, facial landmark detection and ROI localisation; (ii) skin 

purity assessment; (iii) feature extraction, and (iv) classification. Each of these steps is 

elaborated in more detail below and elsewhere in the thesis. For example, the pre-

processing stage includes landmark detection (described in Sub-section 5.2.1), region of 

interest localisation (described in Sub-section 5.2.2), and skin purity assessment 

technique (described in Sub-section 5.2.3). 

LBP histogram has been used for feature extraction as it provided more reliable skin 

features. In order to match LBP feature vectors provided by multiple operators with 

different (P, R) values and different skin image resolutions, all feature sets were 

normalised using the following formula: 

𝑓𝑖
, = 

𝑓𝑖
∑ 𝑓𝑖
𝑛
𝑖=1

                                                                                           (6.1) 

where 𝑓𝑖 is the feature component before normalising; 𝑓𝑖
′ is the normalised feature 

vector; and n is the dimension of the feature vector. 

A k-Nearest-Neighbours (k-NN) classifier (with k=1) has been used as a common 

platform for classification. 

6.2.1 Generation of Multi Scale Dataste 

To simulate the effect of the distance between subject and camera, all facial images in 

the XM2VTS database were scaled to different resolutions, using interpolation methods. 

Commonly used methods of interpolation include nearest neighbour, bilinear 

interpolation, spline interpolation [186], and bicubic interpolation [187] [188]. Although 

nearest neighbour and bilinear interpolation seem computationally simple, serious 
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blurring remains a problem for these methods. It is not obvious which interpolation 

method is best in terms of skin scale, but bicubic interpolation method is generally 

considered to achieve better results [172]. 

To investigate the impact of low-resolution imaging on skin texture information, all 

facial skin regions were scaled down using bicubic interpolation technique, which 

essentially involves estimating the values of a pixel at a new position intermediate to the 

original pixels. 

The bicubic method using 16 pixels in the nearest 4x4 neighbours of the original was 

applied here for scaling of all facial skin images. For all individuals in XM2VTS 

database, images were then resized to different scales to generate varying resolution 

images. Specifically, to assess the efficiency of the proposed technique, two datasets 

(Dataset B and Dataset C) were created by scaling the original images (Dataset A) by a 

factor of 0.75 and 0.50 respectively. The 0.50 was chosen as the lowest due to the 

restriction imposed by the LBP parameters (P, R). It also ensures that the ROI would 

contain sufficient pixels for the LBP operator in both neighbourhoods (P) and radius 

(R). Figure 6.1 shows some examples of scaled skin images of the forehead region. 

 

Figure ‎6.1 Examples of facial skin images and skin regions of interest at different 

scales 

ROI

Facial image

Dataset A Dataset B Dataset C
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These three datasets were then utilised for biometric processing of each ROI (forehead, 

right cheek, left cheek, and chin). Table 6.1 shows the size range of the original ROIs 

and their scales using bicubic interpolation. 

The forehead region is larger in size than other skin regions. Both cheek region sizes are 

smaller, causing feature extraction methods to limit parameters during processing. For 

example, the cheek region becomes too small (12 × 12) when resized using scaling 

factor 0.5. 

 

Table ‎6.1 ROI size ranges after bicubic interpolation using different scaling factors 

ROI 

Range size ( in pixels) 

Dataset A Dataset B Dataset C 

Original size 

(from–to) 

0.75-scale 

(from – to) 

0.50-scale 

(from – to) 

Forehead 49 x 122–79 x 197 37 x 92–59 x 148 25 x 61–40 x 99 

Right Cheek 24 x 24–56 x 57 18 x 18–42 x 43 12 x 12–28 x 29 

Left Cheek 24 x 24–56 x 57 18 x 18–42 x 43 12 x 12–28 x 29 

Chin 23 x 41–67 x 120 17 x 31–50 x 90 12 x 21–34 x 60 

 

6.3 Experimental Results and Discussion 

The rationale of these experiments is based on the fact that facial images are not always 

of the same resolution when captured at different scales. Variations in resolution may 

owe to factors such as camera specifications or distance from the camera. For present 

purposes, ROI was automatically localised in relation to facial landmarks, using Chehra 

software [20], [177]. In the XM2VTS database, the software could detect landmarks in 

only 1,128 of the available images, marking all four images for 274 of the 295 available 

individuals. 

The skin purity assessment technique (Scheme 3 as described in Section 4.5) was then 

applied to each subset to determine the purity of skin images. The number of individuals 

used here is based on those who passed this scheme (i.e. 167 users as shown in the last 

row in Table 5.4). Each image that reached the skin purity threshold (see Sections 4.6 
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and 4.7) was divided into N non-overlapping regions (here, N = 4) to extract skin 

features separately from each of those sub-regions. Finally, all sub-regional features 

were concatenated to form a single feature vector. Here, skin features were extracted 

using LBP; as indicated by previous experimental results (see Section 5.7) and also 

confirmed in many empirical studies, LBP is a powerful and attractive texture 

descriptor, with excellent results in terms of accuracy and computational complexity 

[113]. The LBP-based feature vectors were then input to the classifier to be trained, and 

1NN classifier was applied to skin texture features. 

In the comprehensive set of experiments conducted throughout this thesis to evaluate 

the performance of the proposed framework, the number of neighbourhoods (P) of LBP 

parameters was found experimentally to have less influence on biometric performance, 

but the changes in in number of radius (R) clearly affected performance. Each 

experiment reported in this chapter explored 8 neighbourhoods (P = 8) while differing 

in radius (R). To match image histograms for different scales, all LBP feature vectors 

were normalised using Eq. 6.1. The R parameter was adapted to determine the best 

value of each image scale. The different protocols used for these evaluations are 

described in the following section. 

6.3.1 Experiment 1: The Effect of Resolution 

The first experiment had two objectives: (i) to investigate the use of low-resolution skin 

images to extract biometric information and (ii) to explore the effect of low-resolution 

images on overall skin-based biometric performance. As outlined in Figure ‎6.2, in both 

training and test sets, all images were of the same resolution. 

The LBP descriptor extracts skin features from ROI with parameters P = 8 and R = n, 

where n varied between 1 and 5. LBP parameters were extracted at different resolutions, 

and feature vectors were normalised. The experimental protocol used three skin images 

from each person as a training set; the remaining images were used for testing, with the 

same R value for both training and test sets.  

Table 6.2 shows recognition rates for all facial skin regions at different resolutions, with 

multiple values of R. For the forehead skin region, 5 was the optimal value of R for the 
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Dataset A and the Dataset B. The optimal value of R was 3 for the Dataset C indicating 

that for low-resolution skin images, it is preferable to extract LBP features using a small 

R value. 

 
Figure ‎6.2 Schematic of image scaling framework 

 

Table ‎6.2 Recognition rates for facial skin regions at different resolutions 

ROI 
No. of 

users 
Resolution 

Recognition rates using LBP(8,R), 1NN 

R 

1 2 3 4 5 

F
o
re

h
ea

d
 

167 

A 0.49 0.53 0.59 0.61 0.63 

B 0.49 0.57 0.63 0.63 0.63 

C 0.50 0.58 0.60 0.55 0.48 

R
ig

h
t 

ch
ee

k
 

206 

A 0.33 0.39 0.40 0.39 0.40 

B 0.30 0.38 0.38 0.37 0.29 

C 0.30 0.36 0.27 0.18 - 

L
ef

t 
ch

ee
k

 

201 

A 0.30 0.35 0.35 0.35 0.35 

B 0.31 0.39 0.36 0.32 0.27 

C 0.30 0.33 0.24 0.14 - 

C
h
in

 

229 

A 0.33 0.40 0.44 0.49 0.48 

B 0.32 0.43 0.45 0.48 0.47 

C 0.33 0.41 0.42 0.40 - 

Image scaling

Decision

Training 

image Feature extraction

Test 

image
Feature extraction

Classification

Image scaling

Template 

database

Scale 

factor
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Owing to the size of skin cheek regions, LBP with R = 2 delivered the best performance 

for both. For the cheeks and chin regions, images resized to 0.50-scale (Dataset C) were 

too small (see Table 6.1), and the R value was set to 2. For the chin region, R was set to 

4, as this yielded the best performance for features extracted from Dataset A and 

Dataset B. These results confirm that LBP parameters play a vital role in extracting 

discriminant skin information for people recognition, regardless of skin image 

resolution. Looking more closely, these results indicate that biometric skin information 

can be obtained using an appropriate feature extraction method even at low resolutions. 

A planar skin surfaces such as the forehead and chin regions achieved significantly 

better recognition performance than the less-planar cheek regions. 

While recognition rates for the cheek regions were below 0.40, the forehead region 

achieved a recognition rate of almost 0.60 with different skin image resolutions. This 

difference of almost 0.20 in recognition rates confirms the utility of the forehead skin 

region for biometric purposes. 

6.3.2 Experiment 2: The Effect of Mismatched Resolution between the 

Enrolment and Verification  

The objective of experiment 2 was to investigate recognition of individuals from skin 

images at different resolutions. Results for the four facial skin regions are presented at 

different LBP descriptor parameters. 

In real-world scenarios, resolutions of the partial face images captured from different 

distances or by different devices may often differ from template samples. In this 

experiment, the training and test sets are examined at different resolutions. Each skin 

image was assumed to contain distinct skin texture information, as this information was 

extracted at different scales. To optimise the value of R, different values were analysed.  

Figures 6.3 to 6.5 show the recognition accuracy rates achieved using different 

parameter settings with different evaluation techniques for forehead region. These 

results suggest that the system performed somewhat better for high-resolution training 

images (in this experiment, Dataset A or Dataset B) and low-resolution for test images 

(Dataset C).  
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(a)                                                                  (b) 

Figure ‎6.3 Recognition rates with different training and test set R values for matching 

different resolutions of forehead skin images. The protocol was to train Dataset A and 

test (a) Dataset B and (b) Dataset C 

 

(a)                                                                  (b) 

Figure ‎6.4 Recognition rates with different training and test set R values for matching 

different resolutions of forehead skin images. The protocol was to train Dataset B and 

test (a) Dataset A and (b) Dataset C 

 

(a)                                                                  (b) 

Figure ‎6.5 Recognition rates with different training and test set R values for matching 

different resolutions of forehead skin images. The protocol was to train Dataset C and 

test (a) Dataset A and (b) Dataset B 
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However, when low-resolution images were used in enrolment and trained (Dataset C), 

performances deteriorated dramatically. This is possibly because of the lack of 

discriminatory skin information. In addition, images that were close in resolution 

(Dataset A vs Dataset B or Dataset B vs Dataset C) yielded better recognition rates. It 

should also be noted that optimisation of LBP parameters was very important in 

securing high recognition rates. For example, for the forehead region, high-resolution 

skin images favour larger values of R (e.g. R = 4 or R = 5) while low-resolution images 

favour small values of R (e.g. R = 2). These results also suggest that high-resolution 

images are preferable for enrolment and training for individual recognition. 

The three regions (right cheek, left cheek and chin) were also investigated. Each facial 

skin region of these regions is analysed using a set of experiments of which their results 

are summarised by extracting the optimal R values. It is clear that the feature extraction 

is critical in developing a skin-based biometric system for different resolutions. 

Extracting skin features using only one value of R may not capture sufficient biometric 

information when the training and test images differ in resolution/distance. In general, it 

is advisable to extract multiple features to represent skin ROI. For example, to 

determine the optimal parameters and to capture meaningful features at different 

resolutions in the training set, it can be argued that, for forehead region, 4 and 5 are the 

best R values for Dataset A; 3 and 4 are the best for Dataset B; and 2 and 3 are the best 

for Dataset C. Table 6.3 shows the best R values applied to extract forehead skin 

features to attain best recognition rates for different resolutions. 

Table ‎6.3 Best recognition rates with different R values for training and test sets when 

matching images at different scales 

ROI 

Experimental protocol  R values 
Recognition rates 

Training images  Test images (Rtraining, Rtest) 
 Avg. 

F
o
re

h
ea

d
 

Dataset A 
Dataset B (4,3) 0.66 

0.64 
Dataset C (5,2) 0.61 

Dataset B 
Dataset A (3,5) 0.60 

0.62 
Dataset C (4,3) 0.63 

Dataset C 
Dataset A (2,5) 0.49 

0.53 
Dataset B (3,5) 0.57 
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In the preliminary experiments using the forehead skin region to optimise the LBP 

descriptor parameter, the results suggest that the best approach for the three different 

resolutions is to extract multiple features (i.e. at least two), using different parameters 

for each resolution. For example, the Dataset A, R = 4, 5; the Dataset B, R = 3, 4; the 

Dataset C, R = 2, 3. By training Dataset A, and averaging the accuracies across different 

test datasets, it achieved higher rank-one recognition accuracies compared to other 

datasets. Training low-resolution images (Dataset C) achieved a lower identification 

performance. These parameters were investigated for both cheeks and chin regions and 

their recognition rates shown in Tables 6.4 - 6.9. 

Table ‎6.4 Recognition rates with different training and test set R values for matching 

different right cheek resolutions 

R
O

I 

Protocol LBP(8, R) using 1NN classifier 

Training images Test images 
 Rtest 

Rtraining 3 4 

R
ig

h
t 

C
h

ee
k

 

Dataset A 

Dataset B 
4 0.41 0.31 

5 0.29 0.41 

Dataset C 

Rtraining 2 3 

4 0.36 0.20 

5 0.35 0.32 

Dataset B 

Dataset A 

Rtraining 4 5 

3 0.34 0.37 

4 0.15 0.32 

Dataset C 

Rtraining 2 3 

3 0.37 0.25 

4 0.28 0.37 

Dataset C 

Dataset A 

Rtrain 4 5 

2 0.21 0.30 

3 0.04 0.12 

Dataset B 

Rtraining 3 4 

2 0.24 0.30 

3 0.06 0.21 

 

Table 6.4 shows that the accuracy rate for the right cheek region is still around 0.30 for 

the lowest-resolution images (Dataset C), indicating that most of the skin information 
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was lost. The best accuracy was achieved when Dataset A was used for training (0.41). 

The optimal R values are thus listed in Table 6.5. Again, for better recognition, high-

resolution skin images are recommended for training. However, despite the varying 

performance, it can be seen that when Dataset A was trained (original resolution), the 

performance was more stable compared to other datasets. The rank-one recognition 

accuracy of right cheek is in the average of 0.41 and 0.37 for testing Dataset B and 

Dataset C respectively. 

Table ‎6.5 Best recognition rates with different training and test set R values for 

matching right cheek skin images of different scales (summarised from Table 6.4) 

ROI 

Experimental protocol  R values 
Recognition rate 

Training images  Test images 
(Rtraining, Rtest) 

 Avg. 

R
ig

h
t 

C
h
ee

k
 

Dataset A 
Dataset B (5,4) 0.41 

0.38 
Dataset C (4,2) 0.36 

Dataset B 
Dataset A (3,5) 0.37 

0.37 
Dataset C (3,2) 0.37 

Dataset C 
Dataset A (2,5) 0.30 

0.30 
Dataset B (2,4) 0.30 

 

The accuracy of the left cheek region is similar to right cheek indicating that either right 

or left cheek provided lower accuracy among other facial skin regions. Under such 

scenarios, the two regions were less applicable for biometric identification, since they 

were highly affected by pose, light, and expression. The results of evaluation for the left 

cheek were presented in Table 6.6. The best parameters of LBP were also surmised in 

Table 6.7. 
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Table ‎6.6 Recognition rates with different training and test set R values for matching 

left cheek skin images of different resolutions 

R
O

I 

Protocol LBP(8, R) using 1NN classifier 

Training images Test images 
 Rtest 

Rtraining 3 4 

L
ef

t 
C

h
ee

k
 

Dataset A 

Dataset B 
4 0.40 0.33 

5 0.26 0.36 

Dataset C 

Rtraining 2 3 

4 0.37 0.22 

5 0.32 0.31 

Dataset B 

Dataset A 

Rtraining 4 5 

3 0.32 0.34 

4 0.14 0.29 

Dataset C 

Rtraining 2 3 

3 0.36 0.22 

4 0.26 0.29 

Dataset C 

Dataset A 

Rtraining 4 5 

2 0.20 0.28 

3 0.04 0.12 

Dataset B 

Rtraining 3 4 

2 0.24 0.29 

3 0.06 0.17 

 

Table ‎6.7 Best recognition rates with different training and test set R values for 

matching left cheek images of different scales (summarised from Table 6.6) 

ROI 

Experimental protocol R values 
Recognition rate 

Training 

images  

Test 

images 

(Rtraining, Rtest) 

 Avg. 

L
ef

t 
C

h
ee

k
 

Dataset A 
Dataset B (4,3) 0.40 

0.39 
Dataset C (4,2) 0.37 

Dataset B 
Dataset A (3,5) 0.34 

0.35 
Dataset C (3,2) 0.36 

Dataset C 
Dataset A (2,5) 0.28 

0.28 
Dataset B (2,4) 0.28 
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Table ‎6.8 Recognition rates with different training and test set R values for matching 

chin skin images of different resolutions 

R
O

I 

Protocol LBP(8, R) using 1NN classifier 

Training 

images 
Test images 

 Rtest 

Rtraining 3 4 

C
h

in
 

Dataset A 

Dataset B 
4 0.47 0.40 

5 0.37 0.48 

Dataset C 

Rtraining 2 3 

4 0.43 0.27 

5 0.44 0.42 

Dataset B 

Dataset A 

Rtraining 4 5 

3 0.44 0.45 

4 0.22 0.41 

Dataset C 

Rtraining 2 3 

3 0.44 0.29 

4 0.35 0.45 

Dataset C 

Dataset A 

Rtraining 4 5 

1 0.25 0.21 

2 0.26 0.39 

Dataset B 

Rtraining 4 5 

2 0.39 0.30 

3 0.30 0.42 

 

Table ‎6.9 Best recognition rates with different training and test set R values for 

matching chin images at different scales (summarised from Table 6.8) 

ROI 

Experimental protocol  R values 

Recognition rate 
Training 

images  
Test images (Rtraining, Rtest) 

 Avg. 

C
h

in
 

Dataset A 
Dataset B (5,4) 0.48 

0.46 
Dataset C (5,2) 0.44 

Dataset B 
Dataset A (3,5) 0.45 

0.45 
Dataset C (4,3) 0.45 

Dataset C 
Dataset A (2,5) 0.39 

0.41 
Dataset B (3,5) 0.42 
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It is very interesting that chin region has provided better recognition accuracies 

compared to cheek regions. For the optimal R value, the recognition is almost over 0.40 

for all cross dataset resolutions. It can be therefore seen that low-resolution skin images 

(e.g. Dataset C) is less applicable for training. The best choice for training data is to 

train Dataset A since it achieved the best recognition rates. Table 6.8 shows the 

recognition rates with different protocol in terms of training and test data. The summary 

of the best parameters for this region is presented in Table 6.9. 

Finally, it is found that considering all facial skin regions, training multi LBP features is 

a parameter controlling the trade-off between different resolutions. The features 

extracted from each LBP parameters mitigate the effect of cross matching resolution 

error. High resolution images are recommended for training the facial skin features. 

6.3.3 Experiment 3: Incorporating Rejections in the Decision Process  

In practice, in some cases such as medical diagnosis, or high security organisation, it is 

often desirable to avoid a wrong decision made by classifiers. If a test sample is 

wrongly classified, the misclassification could be harmful. Therefore, asking users to 

present another sample will even cost less than a wrong decision. Classifiers usually 

assign test samples to a certain class based on its confidence but the classification with a 

rejection option can abstain the decision due to low classifier confidence. Figure 6.6 

shows a common block diagram of rejection technique. 

 

Figure ‎6.6 Flowchart of error-rejection technique  

 

Rejection option can be incorporated with classifiers to not only improve the robustness 

of classifiers but also to reduce the error rate. In this experiment, error-rejection curves 

were analysed for all skin regions investigated in this research. A rejection threshold 

was applied to the best recognition rates obtained from the best parameters of LBP 
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descriptor for the four facial skin regions. All these results were presented in Tables 6.4, 

6.6, 6.8, and 6.10. Classification error rate is usually defined as the ratio of the number 

of misclassified test images to the total number of test images. The lower the 

classification error rate, the better the performance. Error rates of four facial skin 

regions are shown in Figure 6.7. For better visualisation, in each case, there are six 

different combinations for evaluation of different skin resolutions. Using the 

unit interval [0,1] for rejection threshold, error rates are grouped based on facial skin 

regions where Figure 6.7 (a) shows the error rates for forehead region, Figure 6.7 (b) 

and (c) show the error rates for both cheek regions and Figure 6.7 (d) shows the error 

for chin region. As noted above, training set and test set are of different resolutions. The 

results indicate that using high-resolution skin images for training yielded lower error 

rates than training with lower-resolution images. 

 

                                 (a)                                                             (b) 

 

                                (c)                                                               (d) 

Figure ‎6.7 Rejection rates for (a) forehead, (b) right cheek, (c) left cheek, and (d) chin 

region at different resolutions 
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The performance of high-resolution skin images (Dataset A) is significantly better than 

the other two datasets on all facial skin regions. It is possible that skin features obtained 

from high-resolution skin images have more usable and more effective information, 

leading to less error rates. As low-resolution images (Dataset C) provided higher error 

rates, more training samples may be needed to train suitable classifiers to improve the 

performance. 

It can be also observed that forehead skin region images have the lowest error rates 

regardless the resolution of training images. The error rates for both cheek regions are 

higher than others. Moreover, it is observed that chin region did not only have the large 

population coverage, but also achieved a promising identification performance. 

6.3.4 Experiment 4: Effect of Multi-scale Enrolment using Multiple 

Parameters  

In real scenarios, training and test skin images are unlikely to share the same resolution. 

This experiment investigated the effectiveness of multi-resolution enrolment with multi-

parameters strategy to deal with test images at unknown resolutions. Therefore, multiple 

templates were created at different scales and different features using multi parameters 

of LBP-based features. All these set of features are used as a template database during 

the training phase. 

 To simulate different skin image resolutions at test phase, the image is down-sampled 

by a factor of X on XM2VTS database at run time where:  

 

0.50 ≤ X ≤‎1 

 

Figure ‎6.8 shows the flowchart of the proposed technique for this experiment. The 

trained features stored in the template were constructed by either a specific resolution 

obtained by any scale factor (i.e. this factor used to create Dataset A, B or C) or by 

combination of more than scale factor (see Table 6.10 as example of these protocols).  
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Figure ‎6.8 Flowchart of the proposed technique for matching different image scales 

 

Different combinations were evaluated to optimise R values for both training and test 

sets. Tables 6.10, 6.11, 6.12, 6.13 show rank-one recognition rates for different 

combinations of LBP parameter R in the training and test images used in this protocol. 

LBP descriptor R values were chosen on the basis of results obtained in the experiment 

1. Two main techniques investigated here for training skin features which are: (i) 

several feature sets extracted at the same resolution but with different R values and (ii) 

several feature sets are extracted at different skin image resolutions with different R 

values. Feature sets are then pooled for training so that each test subject may be 

matched to any of these features as the most similar candidate. 

These scenarios were constructed where the training set on the several resolutions 

(Dataset A, Dataset B, or Dataset C) or a combination of these datasets. The skin 

features were extracted at multiple LBP parameters R. each of these enrolment 

scenarios are represented in different columns in Tables 6.10, 6.11, 6.12, and 6.13. For 

the test images of unknown resolutions, features extracted at different R values are 

compared with the template database. Each row in Tables 6.10, 6.11, 6.12, and 6.13 

shows the identification performances for particular R value(s) used for feature 

extractions. 

Results of identification performances reported in Tables 6.10, 6.11, 6.12, and 6.13 

show the effect of different mechanisms for representing skin features. For example, 

representing two feature vectors obtained from the same skin image resolution or 

representing multiple feature vectors obtained from different skin image resolutions. 

The results indicate that capturing multiple image resolution is more robust for the 

proposed system.  

Test image

Scaled imageTraining image Feature extraction
Template 

database

Scale 

factor 

A,B,C

Classifier

Scaled image Feature extractionScale 

factor X

Decision



Chapter 6 Usability Skin Texture Biometrics for Low Resolution Images 

117 

 

Table ‎6.10 Forehead region recognition rates (rank-one) for test set images of unknown 

size based on different combination techniques for training and test sets 

Forehead region 

Different combinations (+) of training set 

Several features obtained from 

the same resolution 

Several features obtained from 

different resolutions 

Dataset Dataset 

A B C  A +B A +B A +B+C 

R values: 

training set 
4,5 3,4 2,3 4,5+3,4 4,5+2,3 4,5 +3,4+2,3 

R
 v

al
u
e(

s)
: 

te
st

 s
et

 

2 0.53 0.43 0.53 0.47 0.47 0.47 

3 0.60 0.57 0.42 0.60 0.60 0.60 

4 0.57 0.58 0.52 0.59 0.59 0.60 

5 0.49 0.53 0.52 0.53 0.52 0.55 

2,3 0.53 0.49 0.36 0.54 0.54 0.54 

3,4 0.59 0.57 0.47 0.60 0.60 0.60 

4,5 0.53 0.56 0.53 0.56 0.56 0.57 

3,5 0.55 0.54 0.48 0.57 0.56 0.58 

2,3,4 0.55 0.52 0.42 0.56 0.55 0.56 

3,4,5 0.55 0.56 0.49 0.57 0.57 0.58 

2,3,4,5 0.53 0.53 0.44 0.55 0.55 0.56 

 

Therefore, training multiple skin features extracted from multiple image resolutions is 

more robust and effective which leads to better trained classifier and hence better 

performance. 

For the test image of unknown resolution, the optimal value of R is 4 because the 

overall performance for different combination skin resolutions remains more stable 

compared to other values of R for all facial skin regions. Looking more closely at test 

images, extracting skin features with a single value of R = 4 or multiple values of R = 3 

and R= 4 achieved superior performance. 
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Comparing the results achieved when the forehead skin features of unknown resolution 

extracted using R=4 and R=3, 4, it can be seen from Table 6.10 that training several 

features obtained from several resolutions achieved the highest performance. This 

observation indicates that training multi-resolution skin images includes sufficient and 

more distinctive information than single resolution. The performance is more stable by 

training combination strategies used for template database (i.e. the recognition rates 

were around 0.60). 

Table ‎6.11 Right cheek recognition rates (rank-one) for test set images of unknown size 

based on different combination techniques for training and test set 

Right cheek 

region 

Different combinations (+) of training set 

Several features 

obtained from the same 

resolution 

Several features obtained from 

different resolutions 

Dataset  Dataset  

A B C A +B  A +C A+B+C 

R values: 

training set 
4,5 3,4 2,3 4,5+3,4 4,5+2,3 4,5 +3,4+2,3 

R
 v

al
u
e(

s)
: 

te
st

 s
et

 

2 0.25 0.21 0.13 0.25 0.25 0.25 

3 0.37 0.33 0.23 0.37 0.37 0.37 

4 0.35 0.34 0.28 0.36 0.35 0.37 

2,3 0.30 0.27 0.18 0.31 0.31 0.31 

3,4 0.36 0.34 0.25 0.37 0.36 0.37 

2,3,4 0.32 0.30 0.26 0.33 0.32 0.33 

 

Tables 6.11 and 6.12 show the identification performances for the two cheek regions. 

The information extracted from these regions is most likely affected by noise such as 

facial expression, pose, or other artefacts. These factors lead to a drop of performances. 

Again, the values of R=4 and R=3, 4 achieved more stable performances compared to 

other values for unknown test images. 

As shown in Table 6.13, chin skin region achieved a better rank-one recognition 

accuracy compared to the two cheeks. It can also be found that training a mulita-

resolution image is able to achieve more stable performance. This observation is 

consistent with the above analysis gained from the other facial skin regions. 
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Table ‎6.12 Left cheek recognition rates (rank-one) for test set images of unknown size 

based on different combination techniques for training and test set 

Left cheek 

region 

Different combinations (+) of training set 

Several features obtained 

from the same resolution 

Several features obtained from 

different resolutions 

Dataset Dataset  

 A B C A +B A +C A+B+C 

R values: 

training set 
4,5 3,4 2,3 4,5+3,4 4,5+2,3 4,5 +3,4+2,3 

R
 v

al
u
e(

s)
: 

te
st

 s
et

 

2 0.23 0.21 0.14 0.23 0.23 0.23 

3 0.33 0.31 0.23 0.34 0.34 0.34 

4 0.33 0.32 0.28 0.34 0.34 0.34 

2,3 0.28 0.26 0.18 0.29 0.28 0.28 

3,4 0.33 0.32 0.25 0.34 0.34 0.34 

2,3,4 0.30 0.32 0.21 0.30 0.30 0.30 

 

Table ‎6.13 Chin recognition rates (rank-one) for test set images of unknown size based 

on different combination techniques for training and test set 

Chin region 

Different combinations (+) of training set 

Several features obtained 

from the same resolution 

Several features obtained from different 

resolutions 

Dataset Dataset  

A B C A +B A +C A+B+C 

R values: 

training set 
4,5 3,4 2,3 4,5+3,4 4,5+2,3 4,5 +3,4+2,3 

R
 v

al
u
e(

s)
: 

te
st

 s
e
t 2 0.30 0.25 0.17 0.28 0.30 0.31 

3 0.45 0.40 0.30 0.46 0.45 0.46 

4 0.44 0.44 0.38 0.46 0.46 0.47 

2,3 0.36 0.30 0.23 0.36 0.37 0.38 

3,4 0.44 0.33 0.34 0.45 0.45 0.47 

2,3,4 0.39 0.36 0.28 0.41 0.40 0.41 

 

In conclusion, considering the stability of identification performance, Figure 6.9 shows 

the CMC curves for the best LBP parameters (i.e. R values) for extracting skin features. 

Rank-n recognition rates of the combination of the three datasets (A, B and C) with the 

R = 4 is presented in that figure. Note that rank-one recognition accuracy is shown in 

the last column in Tables 6.10, 6.11, 6.12, and 6.13. 
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Figure ‎6.9 CMC curves for the three training set combinations (A, B, and C) with all 

facial skin regions with R= 4 

6.3.5 Experiment 5: Analysis of Fusion-based Scheme 

This experiment explored a multi-classifier fusion approach. Figure ‎6.10 shows the 

block diagram for the proposed score fusion technique. Skin features are extracted from 

the three different skin resolution datasets (A, B, and C) using multiple R values for 

each resolution. For example, features of Dataset A were extracted with R = 4, 5 and 

feature sets of Dataset B were extracted with R = 3, 4. Finally, features of Dataset C 

were extracted with R = 2, 3. Note that these values were chosen based on the 

experimental results presented above. The outputs of classifiers are fused to a certain 

way to achieve the final decision. While k-NN is used as a classifier, all scores at match 

score level were fused to enhance the skin biometric system’s performance. 

The test image was of random resolution (i.e. scaled by a scale factor X). The chosen R 

values were R = 3, 4 as these values achieved the more stable and the most robust 

performance in experiment 3. The experiment investigated and applied different score 

fusion rules in arriving at a final decision. All results are shown in Table 6.14. 
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Figure ‎6.10 Schematic of system framework for score fusion technique 

 

Table ‎6.14 Recognition rates (rank-one) for test set images of unknown size based on 

score fusion techniques using k-NN classifier 

Score technique 
Recognition rates (rank-one) 

Forehead Right cheek Left cheek Chin 

max 0.61 0.37 0.34 0.46 

prod 0.59 0.36 0.33 0.46 

sum 0.58 0.37 0.34 0.46 

min 0.53 0.36 0.33 0.44 

median 0.58 0.37 0.34 0.46 

vote 0.59 0.37 0.33 0.46 

 

Although all score fusion rules were close to each other and were more stable in 

identification performance, the max rule delivered slightly better and more stable 

recognition performance than other fusion rules for all the four facial skin regions. The 

CMC curve in Figure ‎6.11 shows rank-n recognition rates for the max rule. From CMC 

curves, it can be observed that forehead region achieved a superior performances 

compared to other facial skin regions. Cheek regions had excessively much lower 

identification performances. It is clear that fusion technique does not always lead to an 

improved performance. 
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Figure ‎6.11 CMC curve for the proposed system’s recognition rate using max rule 

6.3.6 The Performance Comparison between Experiments 

To validate the advantages of exploring different techniques for the effect of resolution 

on skin images for identification performance, a comparison is performed to study the 

performances between these techniques. Specifically, for experiment 1 and experiment 

2, matching different resolutions (experiment 2) does not change much when matching 

skin images from the same resolution (experiment 1). The other observation is that the 

training data for experiment 2 is larger than trained data in experiment 1. However, for 

the experiment 2, the performance was dropped rapidly when Dataset C is trained. 

Table ‎6.15 shows the comparative analysis between Experiment 1 and Experiment 2. 

Experiment 3 and experiment 4 simulate the scenario where both template database and 

test images are capture in less constrained environment, and the resolutions of skin 

images are also different. 

Specifically, the technique applied in these experiments simulates the case that skin 

images in probe can be captured at any resolution. In this case, in skin matching phase, 

the captured skin image can be different at each time of matching for each individual. 
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Table ‎6.15 Results of comparison between Experiment 1 and Experiment 2 for 

recognition rates 

 Experiment 1 Experiment 2 

ROI 

Experimental protocol 
Recognition 

rates 

Experimental protocol Recognition 

rates Training 

images 

Test 

images 

Training 

images 

Test 

images  Avg. 

F
o

re
h

ea
d
 

Dataset A Dataset A 0.63 Dataset A 
Dataset B 0.66 

0.64 
Dataset C 0.61 

Dataset B Dataset B 0.63 Dataset B 
Dataset A 0.60 

0.62 
Dataset C 0.63 

Dataset C Dataset C 0.60 Dataset C 
Dataset A 0.49 

0.53 
Dataset B 0.57 

R
ig

h
t 

C
h

ee
k

 

Dataset A Dataset A 0.40 Dataset A 
Dataset B 0.41 

0.39 
Dataset C 0.36 

Dataset B Dataset B 0.38 Dataset B 
Dataset A 0.37 

0.37 
Dataset C 0.37 

Dataset C Dataset C 0.36 Dataset C 
Dataset A 0.30 

0.30 
Dataset B 0.30 

L
ef

t 
C

h
ee

k
 

Dataset A Dataset A 0.35 Dataset A 
Dataset B 0.40 

0.39 
Dataset C 0.37 

Dataset B Dataset B 0.39 Dataset B 
Dataset A 0.34 

0.35 
Dataset C 0.36 

Dataset C Dataset C 0.33 Dataset C 
Dataset A 0.28 

0.28 
Dataset B 0.28 

C
h

in
 

Dataset A Dataset A 0.49 Dataset A 
Dataset B 0.48 

0.46 
Dataset C 0.44 

Dataset B Dataset B 0.48 Dataset B 
Dataset A 0.45 

0.45 
Dataset C 0.45 

Dataset C Dataset C 0.42 Dataset C 
Dataset A 0.39 

0.41 
Dataset B 0.42 

 

As shown in Tables 6.10, 6.11, 6.12, and 6.13 of experiments 3, the best performances 

were achieved by training different skin resolution images. In experiment 4, the 

technique is similar but the difference is that score fusion technique was used at score-

level fusion to make the final decision. By comparing the results of both experiments, 
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score-level fusion is less effective in enhancing recognition performance. A possible 

reason is that in experiment 3 skin images were already trained by extracting features at 

different resolutions. 

6.4 Summary 

This chapter investigated the effects of resolution on skin images in different aspects. 

To that end, all test images were digitally scaled from the original image, using methods 

such as bicubic interpolation. A set of experiments was evaluated, and results and 

analyses were reported. The influence of resolution on the skin images was investigated. 

The results suggest that skin images remain usable as a source of biometric information 

at lower resolutions. One notable finding was that LBP based on a fixed value of R is 

not always the best option for multiresolution skin images and scale changes. It can be 

concluded that multiple skin LBP features are likely to deliver better recognition 

performance.  
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Chapter 7  

Adaptive Skin Extraction Features Using Biometric 

Information 

 

 

 

7.1 Introduction 

The experimental results presented throughout this thesis have demonstrated that the 

developed skin-based biometric system is capable of providing sufficient biometric 

information for person recognition. In Chapter 5 and Chapter 6, The ROI was divided 

into sub-regions to extract skin features from each sub-region. Skin features extracted 

from these sub-regions were concatenated to form a single feature vector to be classified 

to identify individuals. This chapter, however, investigates the possibility of classifying 

skin image using small part of skin region of interest (e.g. identifying individuals from 

one or more sub-region). 

7.2 The Concept and the Motivation 

Designing a system for scale-adaptive skin texture features that can exploit the available 

information from the ROI regardless of the noise this region has is also investigated. In 

real scenarios, it is difficult to have the same resolution of skin image for both a probe 
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image and target image. It is also worth to study the use of skin image region of interest 

at random resolution and at arbitrary location for person identification. 

The crucial issue is to extract effective skin texture features from small region of skin 

image. In this thesis, it has been demonstrated that LBP is an efficient descriptor to 

describe the local structure of skin texture image with low computational complexity. 

Therefore, LBP descriptor was only used, in this chapter, for skin features extracted 

from the facial images of XM2VTS database and classified using several classifiers. 

The objectives of the experiments presented here were three-fold. First, assessing the 

performance of the proposed skin biometric system framework with associated issues 

such as occlusion of the ROI where the individual’s recognition based only on a small 

portion of available skin information (e.g. the ROI may have one sub-region available 

for feature extraction). Second, adapting the proposed system framework to deal with 

what available information from the ROI. Third, investigating the characteristics of the 

skin image being used at random resolutions and arbitrary locations from the ROI for 

the implementation for person recognition. 

Note that, as the forehead yielded the highest accuracy as compared to other facial skin 

regions, the chapter reports only further experiments on the forehead skin region. 

7.3 Experiments 

This section presents set of experiments proposed in this chapter for adaptive skin 

features. Three experiments were mainly conducted on XM2VTS database. The section 

begins with skin systematic technique when only part of the ROI (only one-sub-region 

recognition) is used for identification. Then, it describes the method of adaptation of 

skin features based on extracting available information of ROI. Finally, it introduces a 

novel technique for recognising individuals using part of facial skin ROI at random 

resolution from arbitrary locations. 
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7.3.1 Experiment 1: Skin-based Biometric using Information from each 

Sub-region 

An adaptive skin texture features technique proposed here is based on extracting the 

LBP features from each sub-region of the entire ROI skin image to identify individuals 

from that sub-region. At some cases, the ROI might be occluded and only small part of 

skin image is available. The visible part of skin image could be therefore exploited for 

person recognition. For this reason, all skin images are partitioned into small equal sizes 

introducing different number of sub-regions of each skin image. Each sub-region is 

independently treated (pre-processed) for feature extraction and fed into classifier for 

identification. In general, the strategy for building the proposed system framework is 

described as follows: 

i. All ROIs in the database were divided into non-overlapping sub-regions (of 

equal sizes) 

ii. Each sub-region is passed to skin purity assessment phase ( Section 4.5) 

iii. In the training phase, a region is identified as acceptable, it will be submitted to 

feature extraction stage 

iv. All submitted sub-regions skin images were separately treated to LBP descriptor 

to extract features from each 

v.  Feature vectors extracted from all acceptable sub-regions are accumulated to 

train the 1NN classifier 

vi. In the test phase, an acceptable sub-region is submitted to feature extraction 

stage to be matched with the template database 

vii. For identification scenario, all sub-regions obtained from three images were 

chosen as a reference gallery set and all sub-regions obtained from the remaining 

are used as a probe set 

Based on the above simulated scenario, the gallery and probe sets are constructed as 

follows: for each candidate, one sub-region at least was trained of available images. If 

any candidate has less than one sub-region, they will be excluded to inform that all 

candidates were enrolled in the template database. Therefore, the number of sub-regions 

is varied between candidates. For the probe set, the number of sub-images of each 

candidate was also varied. 
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The motivation of this experiment is to recognise a person from only one sub-region 

regardless how many sub-regions are available. The idea is to exploit skin information 

extracted from small size of the skin image by introducing different numbers of sub-

regions of each image. As it has been used throughout this thesis, the skin image was 

divided into various small non-overlapping sub-regions and each sub-region is 

independently treated for feature extraction resulting set of feature vectors from the 

ROI. The number of individuals who passed skin purity assessment has at least one sub-

region of its entire available skin image. Table 7.1 shows the number of individuals 

based on their forehead skin sub-regions which differs of each one and accuracies of the 

system. 

Table ‎7.1 Recognition rates of single patch obtained from XM2VTS database 

Forehead skin region (Total users = 266) Accuracy 

No. of users per 

available sub-region 

No. of an acceptable 

sub-regions at least 

No. of 

users 

LBP with 

1NN 

`10 1 266 - 

6 2 256 0.27 

3 3 250 0.27 

2 4 247 0.28 

7 5 245 0.28 

2 6 238 0.28 

4 7 236 0.28 

1 8 232 0.28 

7 9 231 0.28 

8 10 224 0.29 

10 11 216 0.29 

13 12 206 0.30 

17 13 193 0.31 

9 14 176 0.32 

33 15 167 0.33 

134 16 134 0.37 

The first column shows the number of users who have the number of acceptable sub-

region(s) presented in the second column at least from the images available in the 

database. For example, the total number of individuals who have at least one sub-region 

is equal to 266 and 10 users have only one an acceptable sub-region. Those who have 
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16 sub-regions (i.e. the four skin ROIs are accepted as pure skin) are only 134. For 

those who have at least one sub-region, they did not have enough number of sub-regions 

to be trained as they were excluded from the subsequent analysis. In this case, all 

individuals were enrolled in the template database. Note that as each person has only 

four available images in the database, all sub-regions extracted from the three facial 

images were trained and the remaining sub-regions come from the fourth image were 

used for testing. 

Since the performance of the proposed system is still low, the number of sub-regions 

being trained has affected the recognition performance. The results also indicate that 

small sub-regions do not carry much discriminative information. More sub-regions 

should be trained to improve skin biometric performance. Moreover, it is observed 

experimentally that the distribution for small size of skin image was overwhelmingly 

sparse. Figure 7.1 shows the relationship between the number of sub-regions and the 

recognition rates obtained from this experiment. 

 
Figure ‎7.1 Recognition rates for a single sub-region (patch) obtained from forehead 

skin 

7.3.2 Experiment 2: Adaptation of Skin Features based on Extracting 

Available Information of ROI 

The motivation of this experiment is to exploit what available skin information from the 

region of interest as much as possible. 
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The experiments carried out through the previous chapters have also rejected any skin 

region that included a certain noise such as hair. The proposed technique assesses the 

purity of each skin sub-region from the region of interest (ROI) to be exploited for skin 

biometric information. 

The general systematic diagram of this technique is shown in Figure ‎7.2. The figure 

shows the strategy for exploiting the available skin information without excluding the 

whole skin image if it has a certain amount of noise. The skin region of interest was first 

divided into m non-overlapping sub-regions with equal sizes. Once each sub-region is 

assessed, regions, k, passed skin purity assessment scheme were rearranged by 

concatenating skin sub-regions images to form a new skin region of interest. The new 

region of interest, I, is then partitioned into m new sub-regions. In this case, as each 

person has different samples in the database, each image for the same person may differ 

from the other due to the fact that the reconstructed ROI, I, is based on available sub-

regions’ locations within original ROI. Thus, it is expected that the texture of the 

reconstructed region is slightly changed from the original region. 

 

Figure ‎7.2 Schematic diagram for adaptive skin biometric system 
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To extract features, the optimal parameters of the LBP descriptor is based on how many 

sub-regions, k, were classified as an acceptable using skin purity assessment scheme. 

As presented in Figure 7.2, the parameters (P, R) of LBP descriptor are determined 

based on the number of pure skin sub-regions passed the skin purity assessment stage. 

The experiment was carried out using XM2VTS database to evaluate the proposed 

system. As demonstrated before, the reconstructed region of interest is divided into four 

sub-regions irrespective of the number of sub-regions passed the skin purity assessment 

phase. The LBP was applied with different parameter settings (see Figure 7.2). 

Depending on the number of sub-regions that had been concatenated, if the skin region 

of interest only has one sub-region, the radius is set to R = 2. The R = 3 with two sub-

regions, R = 4 with three sub-regions, and R=5 with greater than or equal four skin sub-

regions. In this case, it is important in the present context to note that the training and 

the test set may vary in the sense that skin features may be extracted by different 

parameters using LBP descriptor. To put it simply, while features of one subject in the 

training set may be extracted from one sub-region with one value of R, the test set may 

be extracted from two or three sub-regions with different values of R (and vice versa). 

The recognition rates were presented in Table 7.2 for the reconstructed forehead region 

of interest. The number of individuals who have at least one sub-region available from 

each sample in the database (XM2VTS) is 238.  

Table ‎7.2 Recognition rates (rank-one) for forehead region based on LBP descriptor 

using 1NN and SVM classifiers 

No. of sub-regions at least 

in each image 
No. of users 

LBP 

1nn SVM 

Accuracy 

1 238 0.39 0.53 

2 218 0.41 0.58 

3 184 0.45 0.62 

4 134 0.53 0.70 
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Considering the LBP performance and the recognition rates are 0.39 and 0.53 using 

1NN and SVM classifiers respectively. If the system is more restrict accepting only 

those who have at least 3 sub-regions, 54 users out of 238 users were rejected and the 

identification performances are improved to 0.45 and 0.62 for both classifiers 1NN and 

SVM respectively. SVM provided a significant performance compared to 1NN 

classifier which is consistent with the results reported in Chapters 5 and 6. As expected, 

the highest performance was achieved when all sub regions were adequate for biometric 

process. Considering the performance when applying SVM, it leads to an improvement 

of 0.17 compared to performance with one-sub-region trained. Figure ‎7.3 shows CMC 

curves with rank-n recognition rates being obtained from original LBP using two 

classifiers, 1NN, and SVM. These results indicate that although texture of skin was 

reconstructed and its shape is slightly changed due to sub-region movements, skin 

texture still provides useful biometric information. It can be also seen from Figure 7.3 

that the proposed system achieved top performance when the system accepts only those 

who have four acceptable sub-regions. SVM achieved better performance compared to 

1NN. 

 
Figure ‎7.3 CMC curves of rank-n recognition rates of different sub-regions available 

for feature extraction 
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7.3.3 Experiment 3: Adaptive Skin Feature Scheme at Arbitrary 

Scenarios for Skin-based Recognition System 

The lack of resolution of imaging systems impacts the performance of biometric 

systems, especially in the case of surveillance. In real-life applications, the variation in 

imaging devices may also generate low-resolution image versions of the scene of 

interest. It is common to search in the gallery and probe for images containing the same 

person in a cross-camera mode, leading in differing of the resolution for both an 

enrolment image and a test image. Therefore, the main objective of this experiment is to 

investigate the ability of matching arbitrary part of skin images of the same ROI in 

different resolutions in both the template database and the test image. 

In order to achieve skin image resolution invariance, multiple features were extracted 

from each ROI image during the training phase. Note that while the entire ROI is 

enrolled, the training images can be one of the three different resolutions (Dataset A, 

Dataset B, Dataset C as explained in Section 6.2) or combination of these datasets. The 

test images were scaled using an arbitrary scale factor (i.e. the technique was described 

in Sub-section 6.3.4). Then, part of this image was segmented at arbitrary location of 

the ROI. The extracted part was used for comparison with those in the gallery set. 

The experiment explores the possibility of identifying a person from: (i) unspecified 

image resolution, and (ii) arbitrary location of the region of interest. The technique was 

to train single or/and multiple resolution skin images by extracting skin features using 

multiple LBP parameters. Skin images for training were always selected from single or 

set of resolution images. The test skin image was, however, randomly scaled and 

segmented from arbitrary location of ROI for classification. To randomise the test 

image resolution, the scale factors selected were in the range between 0.5 and 1 of the 

original skin image size (Dataset A). This ensured occurrence of all possible skin 

resolutions in the test dataset. A scale factor smaller than 0.5 were not used; otherwise 

the resulting ROI images would be too small for any viable features extraction using 

LBP-based method. It should be noted that Dataset C is already of 50% scale showing 

that when the test image is from this dataset, the effective scale factor can be as low as 

0.25 of the Dataset A. 
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Three different techniques were investigated to train features which were as follows: 

first, training features extracted from a single dataset (e.g. Dataset A, B, or C). Second, 

training features extracted from any two datasets and pooled for template database. 

Third, training features extracted from the three datasets (i.e. Dataset A, Dataset B and 

Dataset C) and stored in the template database for matching. The justification for 

applying these settings is that in such scenarios, it is most likely to capture images of 

persons in less constrained environments. The absence of user’s cooperation may also 

affect the resolution of both training and test image which leads to variation in matching 

different image resolutions. 

Table  7.3 shows the recognition rates for the proposed techniques using different 

resolutions for training and test images. From this table, it can be seen that four 

scenarios were evaluated to assess the performance of arbitrary partial view of skin 

region of interest at random resolution. These scenarios are summarised as follows: the 

first and the second scenario were to segment randomly at least ¼ or ½ of the full size 

of the ROI from images in Dataset A (termed Scene 1 and Scene 2) respectively. The 

third scenario was to segment randomly at least ½ of the full size of the ROI from 

images in Dataset B (termed Scene 3) and the fourth scenario was to segment randomly 

at least ½ of the full size of the ROI from images in Dataset C (termed Scene 4). 

As the smallest scale factor was 0.5 (i.e. used to generate Dataset C), the scale skin 

images could not be further reduced because the LBP parameters do not accept smaller 

image sizes. Different R values were explored with each technique and P is set to the 

most common 8-neighbour form. 

The results in Table 7.3 indicate that it is crucial to choose an optimal value of R in such 

scenarios. It has been observed that in order to deal with different skin resolutions, skin 

features should be extracted with multiple R values. For example, if the test image is of 

low resolution, skin features should be extracted using a small R value (and vice versa). 

As reported in Section 6.3, features extracted from high-resolution images (Dataset A) 

were recommended to have R values of 4, and 5 while the best R value for the lower 

resolution (Dataset C) was equal to 2. It is clear that the recognition rates fell when 

quarter-sized test images were segmented (Scene 1) for matching with Dataset A. In this 

case, the recognition rates were ranged from 0.22 to 0.26. However, when segmenting 
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half-sized images (Scene 2) from images in Dataset A, the system performance 

improved rapidly to just under 0.45. The best recognition rate was achieved for R values 

of 4 and 5 for both training and test sets. Surprisingly, the proposed system’s 

performance remained constant, with recognition rates of almost 0.40s for the lowest 

skin resolution (Dataset C) of half-sized images (i.e. Scene 4). 

Table ‎7.3 Recognition rates using part of ROI available for feature extraction 
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Dataset A 

4 
4 0.25 4 0.44 3 0.42 

2 

0.41 
3,4,5 0.24 5 0.40 2,3 0.41 

5 
4,5 0.23 5 0.41 4 0.43 

0.40 
4 0.22 4,5 0.36 3,4 0.41 

4,5 
4,5 0.24 5 0.43 3 0.44 

0.41 
4 0.26 4,5 0.44 3,4 0.41 

Dataset B 

3 
4 0.23 5 0.39 3 0.43 

0.40 
5 0.24 4,5 0.39 3,4 0.38 

4 
5 0.18 4 0.26 4 0.40 

0.37 
4,5 0.17 5 0.35 3,4 0.33 

3,4 
4 0.24 4 0.40 4 0.41 

0.41 
5 0.23 4,3 0.40 3,4 0.40 

Dataset C 

2 
4 0.16 5 0.31 4 0.36 

0.39 
5 0.18 4,5 0.27 3,4 0.32 

3 
4 0.08 5 0.17 4 0.29 

0.38 
5 0.11 4,5 0.15 3,4 0.21 

2,3 
5 0.17 5 0.28 4 0.34 

0.39 
4,5 0.17 4,5 0.27 3,4 0.34 

Dataset A + B 4,5+3,4 
4 0.27 4 0.44 3 0.47 

0.43 
4,5 0.26 4,5 0.42 3,4 0.45 

Dataset A + C 4,5+2,3 
4 0.26 4 0.45 3 0.46 

0.44 
4,5 0.26 4,5 0.42 3,4 0.44 

Dataset A + B+ C 4,5+3,4+2,3 4 0.26 4 0.44 3 0.44 0.47 
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The best accuracy achieved was 0.47 when the three feature sets obtained from the three 

datasets (i.e. Dataset A, Dataset B and Dataset C) were trained. To conclude, as 

expected, extracting features from multiple image resolutions yielded the more stable 

performance across the four scenes which can be seen clearly in the last row in Table 

7.3. This observation is consistent with the demonstrations in previous results in 

Chapter 6. 

7.4 Summary 

This chapter investigates the possibility of extracting features from only a small portion 

of the skin image. The results suggest that discrimination decreases with a smaller 

amount of information. This chapter also describes a novel method for adaptive skin 

texture recognition. Using the XM2VTS database, experiments confirmed that the 

adaptive scheme achieved reasonable performance. This method can be used to exploit 

any available skin texture information for biometric recognition systems. The other 

advantage of such system is that enlarging user population coverage and reducing 

enrolment failure. Skin texture information also achieved reasonable performance when 

images at random resolutions were arbitrary segmented from the ROI. The proposed 

system proved capable of recognising individuals even when the skin image was of low 

resolution. 
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Chapter 8  

Conclusions and Future Work 

 

 

 

In this chapter, the conclusions that have been drawn from the research programme are 

summarised and the recommendations for future work in the field are presented. 

 

8.1 Conclusions 

The research work presented in this thesis is concerned with the development of a 

methodology for the automatic skin-based biometric recognition framework. A 

prototype of the proposed framework was designed and implemented for skin texture 

biometric information. Comprehensive experimental analyses were performed for skin-

based biometric system framework. The results demonstrate that the proposed system 

framework have achieved generally improved performance in comparison to state-of-

the-art as well as improving population coverage, increasing the degree-of-freedom and 

reducing the failure-to-enrol rates. 

8.2 Summary of Findings 

This thesis is concerned with the usability and practicality of facial skin-based biometric 

technology for wider application in forensic, surveillance, and security contexts where a 

system must be capable of identifying individuals in crowded scenes. In such scenarios, 
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the face image may be partly occluded by objects or accessories (sunglasses, hat, scarf, 

etc.), or by facial hair. As a composition of micro-patterns, skin feature information is a 

useful source of biometric information for person recognition in such cases. On that 

basis, the present thesis addresses the design of a robust framework to improve an 

automatic skin-based biometric system and explores the effect of skin resolution 

changes on recognition performance. 

An improved technique was developed for skin pixel detection. The system was 

developed to automate the entire process of skin-based biometric system. Several 

colour-based space techniques were investigated and compared with the state-of-the-art 

methods. The developed skin pixel detection scheme was evaluated and validated using 

different databases namely Skin Segmentation dataset and XM2VTS. The experimental 

results on these benchmark datasets demonstrate that the proposed system shows 

promise in terms of measures such as Recall and Precision. The technique outperformed 

all comparison methods in detecting noise with potential distortions in facial skin 

region. The developed system also promises to remove the need for human interaction 

and is likely to be more accurate. 

Next, a novel automated technique is proposed for skin-based biometric recognition. 

Four isolated facial skin regions were investigated using the proposed automated system 

to establish the most promising region for identity information. These four regions 

(forehead, left cheek, right cheek, and chin) were localised on the basis of automatically 

detected facial landmarks. As stated above, all skin images used to evaluate the system 

were assessed automatically for biometric purposes and the system performances using 

LBP-based and Gabor-based features methods were compared. The influences of 

optimising the parameters of these two methods are studied and analysed. Several 

machine learning algorithms for classifying skin texture features were applied including 

k-nearest neighbours (k-NN), sparse representation classifier (SRC), and support vector 

machine (SVM) and their results were compared. The comparison with the state-of-the-

art algorithms indicates that the proposed skin-based biometric system achieves a 

generally improved performance. 

These results demonstrated that skin texture features can provide a rich source of 

biometric information. As shown in Chapter 5, the forehead and the chin regions were 



Chapter 8 Conclusions and Future Work 

139 

 

found to yield the most accurate biometric information compare to other regions. The 

reason for providing better performance compared to other skin regions may be because 

their surfaces are more planer and probably these regions are most likely less affected 

by changes in expression and illumination. 

The previous work in the literature had used only high-resolution skin images. The 

proposed system was investigated not only using high-resolution skin images, but also 

using low-resolution skin images. Different techniques were employed including feature 

level fusion for feature extraction step, and score fusion for classification step. The low-

resolution skin results suggested that the training skin images are recommended to be of 

high-resolution. The training skin image features are also recommended to be extracted 

using multiple LBP features with different values of radius (R). 

Skin images at different resolutions were evaluated and classified with both arbitrary 

locations and arbitrary resolution of skin region of interest to show the robustness of the 

proposed system. The skin test samples were selected randomly from the set of 

available samples. The experimental results suggested that skin image can contribute 

some biometric information which may be useful in some cases. 

The key findings of this thesis which could lead to several novel directions to improve 

the performance of skin-based biometric systems may be summarised as follows: 

 Facial skin pixel detection techniques proposed in Chapter 4 are able to 

automate skin-based biometric systems. This significantly reduces the need for 

human interaction and provides the potential for automation of the skin-based 

biometric process resulting in greater accuracy. 

 

 Skin textural information can be used as a source of biometric information for 

person recognition. Forehead and chin region are more robust and achieved 

better performances compared to other facial skin regions. Either the forehead or 

the chin region is able to provide biometric information for a person in partially 

occluded facial images. This finding is demonstrated by the experimental results 

in Chapter 5. 
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 Low-resolution facial skin images are able to provide biometric information. 

The performance of low-resolution skin-based biometrics can be improved by 

extracting multiple features at different resolutions. For example, incorporating 

more information is able to extract more effective features for skin biometric 

systems. This is demonstrated by experimental results in Chapter 6. 

 

 Reconstructing available skin part in corrupted and heavier skin region of 

interest may be possible to identify individuals. This technique and experimental 

results are presented in Chapter 7. 

 

In conclusion, this thesis suggested a solution of partial view of facial image by using 

facial skin-based regions. Four facial skin regions were investigated namely Forehead, 

Right Cheek, Left Cheek and Chin. Each region was investigated independently for 

person identification. It is likely for some of these regions to be visible even when the 

entire facial image is not available and can be used on its own for establishing the 

identity of individuals. Skin texture features provided promising results for person 

identification Forehead and chin regions generally achieved better performance 

compared to cheek regions. 

 

8.3 Recommendations for Future Work 

 

The research work presented in this thesis has indicated the practicability and potential 

of skin texture features for person recognition. There are, however, a number of areas 

that could benefit further work. 

 

8.3.1 Skin Detection Improvement 

 

The automatic labelling (segmentation) of the components in skin region of interest 

presented in Chapter 4 does not reach 100% accuracy and can benefit from further 

improvement. The technique was built on using colour channels including SVH and 
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YCbCr colour space. A better performance may be achieved by using different features. 

A feature set at pixel level could be extracted including LBP, entropy, and Gabor filter 

components. The features could also be extracted using different window surrounds the 

pixel. All these features could be added to the skin image values investigated in this 

thesis. Features could be trained using machine learning technique. The technique 

should be tested under varying illumination condition using different datasets. 

 

8.3.2 Improvement of Localising Facial Skin Regions 

 

It has been realised that the skin-based biometric systems as discussed in Chapter 5 are 

based on frontal faces, i.e., all facial landmarks are assumed to be automatically 

determined using Chehra software. However, this software would fail in the case of 

non-frontal face captured. This is a limitation of the automatic localisation step which 

can be avoided by segmenting face boundary from the captured image using skin-based 

technique.  

 

8.3.3 Improvement of Feature Extraction Technique 

 

The size of the skin region of interest has played a vital role in optimising skin 

extraction methods. The parameters of LBP descriptor and Gabor wavelet filters were 

affected by the size of ROI which makes it difficult to generalise these parameters for 

different sizes. Algorithms may be designed to explicitly model the size of the skin 

region of interest by dividing the skin images into range of certain sizes, (for instance 

big, medium, small). This could help to optimise the parameters of feature extraction 

methods. Features extracted using Gabor wavelet filters may be enhanced by exploiting 

the whole feature vectors instead of using mean and standard deviation. The high 

dimensionality may be tackled by using principle component analysis (PCA) [189] or 

generalized discriminant analysis (GDA) [190]. 
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8.3.4 Improvement of Skin Biometric in Less Constrained Conditions 

One of the most promising areas of further research that seems encouraging is that skin-

based biometric system could be designed for less constrained environments. It is 

possible to seek to fuse the features from high-resolution images with large-scale skin 

features from low-resolution images. As presented in Chapters 5, skin images are of 

high resolutions and this may be less likely to be captured in real-world scenario. 

Experiments designed in Chapters 6 and 7 show that there is a possibility of using low-

resolution skin images to identify individuals. Evaluating the proposed algorithm to 

validate its performance could be conducted by using different datasets such as Labeled 

Face in the Wild (LFW) [191]. Cheek regions could be investigated with skin-texture 

rotation invariant features. It is obvious that the surface of the cheek regions are less-

planer and the recognition error may be caused by viewpoint changes, and large 

illumination variations. 

 

Skin information at low resolution may be exploited from multiple skin texture feature 

descriptors to recognise individuals. As shown in Chapters 6 and 7, the recognition rates 

could be improved by extracting different features from skin images. In order to 

continue development and advance unconstrained biometric recognition technology, 

researchers must have access to large amounts of relevant training and testing data with 

reliable ground truth information. Recently, the IARPA Janus Benchmark – 

Surveillance (IJB-S) dataset [192], [193] was collected including images at low 

resolutions which may help researchers to exploit data to improve skin-based biometric 

system. It is worth noting that IJB databases will be released in the public domain in 

summer 2018. 

 

The more robust approach that may be considered to achieve better performance is to 

use deep learning approach. Although it is generally believe that deep learning 

approaches need sufficient data to be trained, the access to a large amount of data are 

possible. Very Deep Convolutional Networks for Large-Scale Image Recognition 

(VGG16) [192] may be applied to validate the robustness of the proposed system 

framework.  
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