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ABSTRACT
Some control design schemes need system states to develop controllers. In real applica-

tions, it might not be possible to measure all system states due to the cost of sensors or

any technical issues. Therefore, Observers are needed to estimate unavailable states and

then use the estimated states in control design schemes.

This thesis focuses on the development of robust observers for nonlinear large-scale

interconnected systems. System structures of nonlinear interconnected systems have

been considered in the design to reduce conservatism and different techniques have been

utilised in observer design to enhance the robustness. The main developments in this

thesis include:

• A robust observer is designed for nonlinear interconnected systems with uncertain-

ties where both the nominal isolated subsystems and interconnections are nonlinear.

A novel variable structure dynamic system is designed to estimate the state variables

of the interconnected systems asymptotically.

• Sliding mode techniques have been utilised to design observers for a class of inter-

connected systems with both structured and unstructured uncertainties. For struc-

tured uncertainties, a robust sliding mode observer is designed using the distribution

matrix of the uncertainties to guarantee that the error dynamics are asymptotically

stable. For unstructured uncertainties, an ultimately bounded approximate observer

is proposed to estimate the system states.

• In the case that the interconnected systems have unknown time varying parame-

ters, adaptive observers are developed to estimate both the system states and the

unknown time varying parameters simultaneously. A variable structure control

technique is utilized to guarantee that the corresponding error dynamical system

is convergent asymptotically while the parameter estimation error is uniformly ulti-

mately bounded. Moreover, adaptive sliding mode observer is proposed to estimate

the inaccessible states in presence of unknown time varying parameters.

This thesis also provides case studies on applications of the proposed methods. A

case study of a coupled inverted pendulum system shows the practicality of the variable
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structure observer. The designed sliding mode observer is applied to a multi-machine

power system, and the simulation is provided to demonstrate the validity and effectiveness

of the designed observer. A coupled inverted pendulum system and a quarter-car suspen-

sion system are employed to explain the designed observation scheme and to demonstrate

that the designed adaptive observers can be applied to practical systems effectively.
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NOTATION AND SYMBLOS
≡ Identically equal

< (>) Less (greater) than

≤ (≥) Less (greater) than or equal to

∀ For all

∈ Belongs to

→ Tends to

⇒ Implies

⇔ Equivalent to, if and only if

∅ The empty set

R The set of real numbers

R+ The set of nonnegative real numbers

Rn The n dimensional Euclidean space

Rn×m The set of n×m matrices with elements in R

a The absolute value of a scaler a

‖ · ‖ The Euclidean norm or its induced norm

In The unit matrix with dimension n

Im(A) The range space of matrix A

Br The ball {x|‖x‖ < r} with radius r where r ∈ (0,+∞)

AT The transpose of matrix A

A > 0 A is a symmetric positive definite matrix

A < 0 A is a symmetric negative definite matrix

λmin The minimum eigenvalue of the squar matrix A

λmax The maximum eigenvalue of the squar matrix A

Lf The Lipschitz constant of the function f(·)

Lfh Derivative of the mapping h(x) : Rn 7→ Rp, along the vec-

tor field f(x, u) : Rn×Rm 7→ Rn defined byLf(x,u)h(x) :=

∂h
∂x
f(x, u)
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Jf (x) or ∂f(x)
∂x

The Jacobian matrix of the function f(x)

[f, g] Lie bracket (product) of the vector fields f(x) and g(x),

defined by [f, g](x) = Jg(x)f(x)− Jf (x)g(x)

Lrfh The rth order Lie derivative of the mapping h(x) : Rn 7→

Rp, along vector field f(x, u) : Rn ×Rm 7→ Rn

f(x, u) f(x1, x2, · · · , xn1 , y1, y2, · · · , yn2) where x =

[x1, x2, · · · , xn1 ]
T ∈ Rn1 and y = [y1, y2, · · · , yn2 ]

T ∈ Rn2

ẏ The first derivative of y with respect to time
∂f(x,y)
∂x)

Jacobian matrix of function f(x, y) relating the variable x

where x ∈ Rn1 and y =∈ Rn2

col(x1, x2, · · · , xn) The coordinates [x1, x2, · · · , xn]T where xi ∈ R for i =

1, 2, · · · , n

col(x1, x2) The coordinates [x11, x12, · · · , x1n, x21, x22, · · · , x2n]T

where x1 = [x11, x12, · · · , x1n]T ∈ Rn1 and

x2 = [x21, x22, · · · , x2n]T ∈ Rn2

A := B A is defined by B

A⇒ B A implies B

A⇔ B A is equivalent to B

sgn(·) The signum function
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CHAPTER. 1

INTRODUCTION

Control theory which mainly focuses on control systems, has become an important topic

in a modern technical society since the beginning of the twentieth century. Control sys-

tem is a system that could improve a behaviour of a particular process to achieve the

desired performance. An automatic control system is a system which is made to be self-

regulating. World War II was the main motivation behind the significant developments in

the automatic control field [2]. Then, the needs of modern life, such as power systems,

water treatment, industry applications and space technologies etc, required accuracy and

reliability of automatic control systems. Since then, control techniques have been sig-

nificantly developed to tackle control and estimation problems. In some designed robust

feedback control strategies, the information of all system states is required for design.

However, in reality, only a subset of the system state variables are available for design.

This provides a requirement to estimate all the system states to form a feedback control

system if possible. In this thesis, studies on designing observers/estimators for nonlin-

ear interconnected systems have been carried out with detailed analysis and background

description.

1



1.1. BACKGROUND AND MOTIVATION 2

1.1. BACKGROUND AND MOTIVATION

Large-scale interconnected systems widely exist in the real world, for example, power

networks, ecological systems, transportation networks, biological systems and informa-

tion technology networks [3, 4]. A large-scale system is composed of several subsystems

with interconnections, whereby the dynamics interact with each other [5]. The appli-

cation of centralised control [6] to prescribe stability of an interconnected system may

require additional costs for implementation and careful consideration of the required in-

formation sharing between subsystems particularly when the system is spread over a wide

geographical area. This motivates the design of decentralized control strategies whereby

each subsystem has a local controller which is based only upon local available informa-

tion.

Increasing requirements for system performance have resulted in increasing com-

plexity within system modelling and it becomes of interest to consider nonlinear large-

scale interconnected systems. Such models are then used for controller design to sort out

the practical problems. Early work focused on linear systems [7, 8]. However, due to

the uncertainties and disturbances present in large-scale interconnected systems, study of

such systems is a very challenging task [9]. Series of results have been developed using

decentralised control framework for nonlinear large-scale interconnected systems. The

study of such decentralised controllers has stimulated a wide literature (e.g. [10, 11]) and

recently [12, 13].

In much of this work, however, it is assumed that all the system state variables are

available and the system parameters are known for control design. [14, 3, 15, 16]. How-

ever, this assumption can limit practical application as usually only a subset of state vari-

ables is available/measurable [17]. It becomes of interest to establish observers to estimate

the system states and then use the estimated states to replace the true system states in or-

der to implement state feedback decentralised controllers. Moreover, in many physical

systems, unforeseen changes in the plant may occur such as changing stator and rotor re-

sistance in an electric drive/motor due to the temperature rising or load changes. In order

to avoid poor control performance and even instability caused by parametric uncertain-

CHAPTER 1. INTRODUCTION



1.1. BACKGROUND AND MOTIVATION 3

ties, an adaptive observer is mostly needed to estimate the unknown constant/time varying

parameters and the system states simultaneously [2]. The two kinds of observers: Robust

Observers and Adaptive observers will be developed in this thesis.

1.1.1. OBSERVER

The concept of an observer was first introduced by Luenberger (1964, 1966) where

the difference between the output measurements from the actual plant and the output mea-

surements of a corresponding dynamical model was used to develop an injection signal

to force the resulting output error to be zero [18, 19]. Since then, observer theory attracts

a huge amount of attention to extend Luenberger observer to be applicable to a wide

range of different classes of systems. For nonlinear systems, many approaches have been

developed to design observers. Early results have been presented in [20, 21]. In these

studies, the techniques that used are based on Lyapunov theory, and the nonlinearities are

required to satisfy the well known Lipschitz condition. In [22, 23], the transformation of

the nonlinear system to observable canonical form is needed, and it is assumed that the

information of the nonlinearities exists which is not applicable in many cases. The tech-

nique of extended linearization has been used in [24] to design an observer such that the

family of linearized closed-loop systems have locally constant eigenvalues. The extended

Luenberger observer has been given in [25] using linearisation technique. Although the

algorithm proposed in [25] is easy to implement, the convergence of the observer is not

guaranteed. Sufficient Lyapunov-like conditions are presented in [26] for the existence of

a nonlinear observer which guarantees the convergence of the error system to zero. An

exponential observer for a nonlinear system has been presented in [27] where an appro-

priate Lyapunov-like equation is needed, and the existence of global Lipschitz change of

coordinates is required.

Variable structure control and sliding mode techniques have been used widely in lit-

erature to design observers for linear and nonlinear systems due to its robustness against

uncertainties and disturbances in input channels and the finite-time convergence [17, 28].

The main difference between sliding mode observers and linear Luenberger observers is

that the sliding mode observer includes a nonlinear discontinuous term. The discontinu-

CHAPTER 1. INTRODUCTION
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ous term is designed to drive the trajectory of the estimation error towards a surface and

remains on it thereafter. Most of the researchers design the sliding surface as the differ-

ence between the output of the observer and the output of the system and then force the er-

ror system to zero. The earliest contributions in this area are presented in [29, 30, 31, 32].

The authors in [29, 30] designed an observer which has the output error being fed back

in both a linear and a discontinuous manner for nonlinear systems. A variable structure

observer is developed in [32] and an asymptotic state observer for uncertain systems sat-

isfying the matching conditions was developed. Utkin designed an observer, with the

discontinuous term being fed back through an appropriate gain [33]. A sliding mode ob-

server based on a canonical form presented in [34] where specific conditions are imposed

on the invariant zeros of the system. The authors in [35] designed sliding mode observers

for a class of uncertain systems using linear matrix inequalities to exploit the degrees of

freedom available in the design to overcome the limitation in [34]. It is shown in [36] that

“The work in [32] was instrumental in defining the structural conditions for existence of

sliding mode observers for linear systems and laid important foundations for subsequent

contributions which formulated constructive design methodologies [28, 34]”.

Sliding mode techniques have been used to design observers for nonlinear inter-

connected power systems in [89]. In [90] state estimation and sliding mode control for

a special class of stochastic dynamic systems which is semi Markovian jump systems

is presented. The authors designed a state observer to generate the estimate of unmea-

sured state components, and then synthesize a sliding mode control law based on the state

estimates. The authors in [91] discussed the position regulation problem of permanent

magnet synchronous motor (PMSM) servo system based on adaptive fuzzy sliding mode

control (AFSMC) method. They used adaptive method to estimate the upper bound of

the approximation error between the equivalent control law and the fuzzy controller are

utilized in the paper.

Observer-based controller design has been studied extensively for power systems.

An observer-based controller proposed in [112] by combining a variable structure con-

trol with a reduced-order observer, which is then applied to a power system stabilizer.

However, the observer-based controller is designed for a linear system and the system

CHAPTER 1. INTRODUCTION



1.1. BACKGROUND AND MOTIVATION 5

considered incorporates one power system. In addition, there are no unstructured uncer-

tainties considered in the system. The research in [113] considers controller design for

nonlinear systems and a nonlinear observer is used to estimate the unmeasurable states.

This requires that the system can be represented in a Hamiltonian and triangular form.

The authors in [114] designed a decentralized controller, i.e., for each subsystem a lo-

cal controller is designed, using sliding mode techniques. This work does not involve

observer design. The authors in [115] develop a functional observer approach for load

frequency control of highly interconnected power networks. A quasi-decentralized func-

tional observer is used to generate the control signal rather than estimate all the system

states without considering any uncertainties. A load frequency control strategy based on

sliding mode techniques and a disturbance observer is proposed in [116]. Although the

authors consider uncertainties in the structure of the power system model, the observer

designed is just for a power system instead of a multimachine power system. In [117]

a controller which uses a nonlinear observer is developed for multimachine power sys-

tems to improve the transient stability. However, the authors did not consider the impact

of disturbances. In [118] an unknown-input observer is deployed which can estimate

the system states as well as perform fault detection and isolation. This is applied to a

three-bus power system with one generator and two loads. It should be pointed out that

the power system model considered in [118] is a differential algebraic model which is

called a singular system (see [119]). Moreover, from the point of view of observation,

observer based controller design imposes strong requirements on the considered system

as the designed observer is for a specific task. In addition, observer design in the pres-

ence of unknown signals is challenging. An extended Kalman filter is used in [120, 121]

to enhance frequency estimation of distorted power signals. However, in real time, it is

difficult to implement this Kalman filter due to the poor flexibility in dealing with higher

order systems. In addition, sliding mode techniques have advantages over Kalman filter

approaches for electric power systems. One of these advantages is that robustness of the

sliding-mode observer to parameter uncertainties and external noise can be guaranteed

[122, 123]. State estimation and sliding mode control for a special class of stochastic

dynamic systems, semi Markovian jump systems, is presented in [90]. The authors de-

signed a state observer to estimate unmeasured state components, and then synthesize a
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sliding mode control law based on the state estimates. The exact feedback linearization

technique is used to design a nonlinear observer in [124] when the power system can

be fully linearized. A sliding mode observer is presented in [125] to develop a robust

observer-based nonlinear controller. This is used to construct the state variables of the

system and estimate the perturbation. A sliding mode observer is designed in [86] where

the observation error dynamics are ultimately stable instead of asymptotically stable as

the structure of the uncertainties is not available. Moreover, results relating to sliding

mode observer design for multimachine power systems are limited. It should be noted

that when the structure of the interconnections is known and when the interconnections

have certain properties, it is possible to design an asymptotic observer to obtain estimates

with high accuracy. However, when the structure of the interconnections is not available,

to design an asymptotic observer is challenging. In this case an approximate observer for

large scale interconnected systems may satisfy the practical requirements.

In the 1970s, the problem of designing observers for estimating system states for

large-scale interconnected systems was addressed in [7]. Subsequently, many methods

have been developed to design observers for large-scale interconnected linear systems

[37, 38, 39, 40]. Observer schemes for interconnected systems are proposed in [92, 84,

93, 85] where the obtained results are unavoidably conservative as it is required that the

designed observer can be used for certain fault detection and isolation problems. For

example, it is required that the uncertainty can be decoupled with faults in [85] and the

considered system is not interconnected systems. Robust observer design is considered

in [94] for a class of linear large scale dynamical systems where it is required that the

interconnections satisfy quadratic constraints. In [95] a new decentralized control scheme

which uses estimated states from a decentralised observer within a feedback controller is

proposed. This uses a design framework based on linear matrix inequalities and is thus

applicable for linear systems. A robust observer for nonlinear interconnected systems

based on a constrained Lyapunov equation has been developed in [96].

A Proportional Integral observer is utilized for nonlinear interconnected systems for

disturbance attenuation in [97] and interconnected nonlinear dynamical systems are con-

sidered in [98] where the authors combine the advantages of input-to-state dynamical sta-
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bility and use reduced order observers to obtain quantitative information about the state

estimation error. This work does not, however, consider uncertainties. It should be noted

that in all the existing work relating to observer design for large scale interconnected sys-

tems, it is required that either the isolated subsystems are linear or the interconnections

are linear. Moreover, most of the designed observers are used for special purposes such

as fault detection or stabilization and thus they impose specific requirements on the class

of interconnected systems considered.

MOTIVATION 1

It should be noted that in all of the existing work relating to observer design for

large scale interconnected systems, it is required that either the isolated subsystems are

linear or the interconnections are linear. Moreover, most of the designed observers are

used for special purposes such as fault detection or stabilization and thus some specific

limitations are unavoidably required on the interconnected systems as a result of the prob-

lems considered. It should be noted that results concerning observer design for nonlinear

interconnected systems are very few when compared with the results available on ob-

server design for systems without interconnections. This is also the case for controller

design. The observer design for nonlinear interconnected systems with uncertainties is an

interesting but challenging topic for researchers.

1.1.2. ADAPTIVE OBSERVER

In the real world, many practical control systems involve unknown parameters due

to the mechanical wearing and modeling errors. Therefore the adaptive observer is de-

veloped to estimate the unavailable states and the unknown parameters simultaneously.

It is well known that adaptive technique is powerful for parameter estimation. Over

the last few decades, much literature has been devoted to the design of adaptive ob-

servers for linear and nonlinear systems. The early results are mainly for linear systems

[41, 42, 43, 44, 45] and later some results are presented in [46]. An adaptive observer

is designed for a class of interconnected systems in [87] in which it is required that the

isolated nominal subsystems are linear. Many results have been developed for nonlinear
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systems since the late of 1980s [47, 48, 49, 50, 51, 52, 53, 54]. The authors in [47] de-

signed an adaptive observer for a single input single output nonlinear system based on a

transformation of the system into a certain canonical form.

The work in [48] is a general class of nonlinear systems presented in [49] in which

the nonlinearities are assumed to be Lipschitz. In the presence of bounded disturbances,

robust adaptive observers are developed in [52]. The results for linear systems presented

in [44] are extended to the case of nonlinear systems in [54] and arbitrarily fast exponen-

tial convergence of both parameter and state estimates to their actual values respectively

is guaranteed. The parameter convergence is guaranteed under certain conditions of per-

sistent excitation in most of the previously mentioned works. Some results on design of

adaptive observers deal with nonlinear parameterization, see for example [55, 56, 57, 58].

Recently, much literature has devoted to design adaptive observers for nonlinear systems

and many different methods have been developed in order to obtain high estimation per-

formance in the presence of parametric uncertainty and/or unstructural uncertainty. Boizot

et al in [129] developed an adaptive observer by using extended Kalman filter to reduce

the effect of perturbations. However, in terms of the parameter estimation for nonlinear

systems, it is usually very difficult to analysis the stability of the extended Kalman filter.

Adaptive observers using different techniques have been proposed in (see e.g. [146,

147, 148]) where the unknown parameters are limited to be constant. Compared with

much existing work in adaptive observer design with unknown constant parameters, the

corresponding observation results for unknown time varying parameters (TVPs) are very

limited. The approach for nonlinear time varying systems proposed in [47] is based on

the fact that the nonlinear systems can be transformed to a particular observable canonical

form, and the unknown parameters are bounded. The authors in [58] proposed a sampled

output high gain observer for a class of uniformly observable nonlinear systems where the

unknown parameters are bounded. An adaptive estimator is proposed in [149] to estimate

TVPs for nonlinear systems. However, all the system states are assumed available. The

H−/H∞ fault detection observer in the finite frequency domain has been designed in

[150] for a class of linear parameter varying descriptor systems. In [151] an adaptive

observer for a class of nonlinear interconnected systems with uncertain TVPs has been
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developed. It is required to solve the well known constrained Lyapunov problem (CLP)

(see e.g. [100, 99]). The authors in [152] used an adaptive unscented Kalman filter

approach to estimate the time varying parameters and system states of a class of nonlinear

high-speed objects. This technique requires the assumption that the additive noise vectors

are Gaussian uncorrelated white noises. If the assumption is not satisfied, the estimation

process accuracy will be significantly affected [153, 154].

At the beginning of this century, sliding mode techniques have been successfully

combined with adaptive observer design. In the early work in [59], an adaptive sliding

mode observer was designed to reconstruct the state from the output measurements and

to estimate the uncertain part of dynamics by using the nonlinear adaptive gain. The au-

thors in [60] combined sliding mode techniques and adaptive techniques to identify the

unknown parameter and to estimate the system state variables. Then the designed ob-

server was used in a fault estimation scheme. Sliding mode techniques have been applied

in [130] to enhance the performance of the adaptive observer proposed by [60]. It should

be noted that unknown parameters considered in these papers are constant. An observer

for linear time-varying systems with known time-varying matrices affected by unknown

input is designed in [131] to estimate the systems states using high order sliding mode

techniques. Adaptive observer has been considered in [132] to estimate just the synthet-

ical perturbation with unknown bounds in order to achieve a fast and accurate reusable

launch vehicle attitude tracking with chattering attenuation in presence of knowing the

system states and its parameters. The authors in [133] designed a state observer and an

adaptive disturbance observer to estimate the system state and the disturbance, simultane-

ously. However, the unknown parameters and interconnected systems are not considered.

An adaptive redesign of reduced order nonlinear observers is presented in [134] where

the solution of a partial differential equation is required, which may not be possible in

most of cases. In order to improve the quality of the current drawn from the utility grid,

an adaptive nonlinear observer is designed in [135] to estimate the inductor current which

is required in the closed-loop control system of power factor correction as an essential

part of AC/DC converters. Adaptive sliding-mode observer-based approaches have been

widely applied to many real systems (see e.g. [61, 62, 63, 64, 65]).
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An adaptive observer is designed for a class of MIMO uniformly observable nonlin-

ear systems with linear and nonlinear parametrizations in [55] and the exponential con-

vergence of the error dynamics for both types of parametrization is guaranteed under the

persistent excitation condition. Tyukin et al in [57] considered the problem of asymptotic

reconstruction of the state and parameter. However, in both [55] and [57], it is required

that the unknown parameters are constant. The literature in [136] proposed an adaptive

state estimator for a class of multi-input and multi-output non-linear systems with un-

certainties in the state and the output equations, in which the systems considered are not

interconnected systems. The work in [137] proposed an adaptive observer which expands

the extended state observer to nonlinear disturbed systems. However, the adaptive ex-

tended state observer is linear and requires that the error dynamics can be transformed

into a canonical form.

Observer design for interconnected systems has been widely studied. Observers have

been proposed in [138] for linear large scale systems, where the unknown parameters are

not considered. Sliding mode observers have been presented for interconnected systems

in [139] where a few coordinates are required to obtain the regular form, and the parameter

uncertainty is not considered. Adaptive sliding mode observer based fault reconstruction

for nonlinear systems with parameters uncertainties is proposed in [140]. However, the

unknown parameters vector considered is constant. An adaptive interconnected observer

is proposed for sensorless control of a synchronous motor in [141] where the system

considered includes only two subsystems. In addition, the observer designed is mainly

used to implement a special control task. Therefore, strong limitation is unavoidably

imposed on the considered interconnected systems. Moreover, in most of the existing

work, it is required that either the unknown parameters are constant (see e.g [130, 52])

or the nominal values of the unknown parameters are known [142]. The corresponding

observation results for large scale nonlinear interconnected systems are very limited, par-

ticularly when uncertain time varying parameters are involved. Many adaptive observers

have been developed using sliding mode techniques for particular applications and for

particular purposes (see e.g. [157, 158, 159]) and thus corresponding specific conditions

need to be imposed on the systems considered. Sliding mode techniques with super twist-

ing algorithm are used in [160] to design adaptive observers for nonlinear systems where
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the unknown parameter vector is assumed to be constant. Sliding mode synchronization

method is combined with adaptive techniques in [161] to estimate the unknown parame-

ters for multiple chaotic systems where the system states are assumed to be known and

the unknown parameters are constant.

MOTIVATION 2

It should be noted that the vast majority of existing work related to the adaptive

observer design scheme assumed that the unknown parameters are constant. The problem

of designing an adaptive observer for nonlinear interconnected systems with time varying

parameters is full of challenge. To the best of my knowledge, this thesis provides the

first contribution where sliding mode techniques and adaptive technique are combined

together to design an adaptive sliding mode observer for nonlinear interconnected systems

with unknown time varying parameters.

Motivated by the existing work mentioned above, this thesis studies the issue of

observer design for nonlinear interconnected systems with uncertainties and adaptive ob-

server design for nonlinear interconnected systems with unknown time varying parame-

ters. Variable structure control and/or sliding mode techniques will be used to form these

observer design schemes. Novel approaches developed in this work have considered de-

signing observers to be applicable to a wide range of real interconnected systems. More-

over, the adaptive observer designed could estimate the unknown time varying parameters

and the unavailable states of the system simultaneously to certain accuracy.

1.2. CONTRIBUTIONS AND THESIS ORGANISA-

TION

This thesis contributes to the knowledge and research of observer design for non-

linear interconnected systems. The approaches established in this thesis are applied to

several practical systems through case studies which include inverted pendulum systems,

multi-machine power systems, and quarter-car suspension systems. The contribution of
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this thesis can be summarised as follows:

• A variable structure observer for nonlinear interconnected systems is proposed. Us-

ing the structure property of the interconnected systems, novel variable structure

dynamics are designed to estimate the state variables of the interconnected systems

asymptotically with low conservatism.

• A robust sliding mode observer has been developed to estimate states of a nonlinear

interconnected systems in the presence of both structured and unstructured uncer-

tainties. For structured uncertainties, a robust sliding mode observer is designed

using the distribution matrix of the uncertainties and a set of sufficient conditions is

developed to guarantee that the error dynamics are asymptotically stable. For un-

structured uncertainties, an ultimately bounded approximate observer is proposed

to estimate the system states.

• Unknown constant/time varying parameters exist in many practical systems. There-

fore, adaptive observers have been developed to estimate the unknown time varying

parameters and system states simultaneously. In addition, adaptive sliding mode

observer for nonlinear interconnected systems has been proposed for the first time

to estimate the unmeasurable states in the presence of the unknown time varying

parameters.

The rest of this thesis is structured as follows:

Chapter 2 gives some mathematical preliminaries required for the subsequent analysis

and design. Particularly, the necessary definitions and fundamental results of the Lya-

punov stability theory and elementary theory of nonlinear feedback for single input single

output systems required for the following chapters are provided in this chapter.

Chapter 3 states basic concepts and fundamental knowledge to help readers to understand

this thesis. Basic knowledge of the observability concept and the Luneburger observer are

presented. Definition and structure of interconnected systems are discussed in details and

supported by three paratactical examples. Then, theory of variable structure control in-

cluding sliding mode control methodology is introduced in details. After that, the concept
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of sliding mode observer and its history are explained clearly. Some adaptive theories and

techniques used in the observer design schemes are also provided in this chapter.

Chapter 4 represents a novel approach to design an observer for nonlinear interconnected

systems with disturbances using a variable structure control technique. A simulation ex-

ample and a case study are presented to demonstrated the effectiveness and the feasibility

of the developed results.

Chapter 5 is focused on observer design for nonlinear interconnected systems with struc-

tured and unstructured uncertainties using sliding mode techniques. The states of the

system converges to the states of the designed observer asymptotically in the case of

structured disturbances. An ultimately bounded converge is guaranteed for interconnected

systems with unstructured uncertainties. The results obtained are applied to a multima-

chine power system, and simulation results are presented to demonstrate the feasibility

and effectiveness of the developed methods.

Chapter 6 interests in designing adaptive observers for nonlinear interconnected systems

that have unknown time varying parameters. An adaptive variable structure observer has

been developed to estimate unknown time varying parameters and unmeasurable states

simultaneously. Two practical systems are employed for case studies to show the effec-

tiveness and the practicability of the obtained results.

Chapter 7 is focused on a class of systems that has unknown time varying parameters

and inaccessible states. An adaptive sliding mode observer is developed to estimate the

unmeasurable states in the presence of the unknown time varying parameters. The simu-

lation examples show that the developed results are effective.

Chapter 8 presents a summary of the main conclusions in this thesis. Discussion for the

potential future work is also provided in this chapter.

Finally, Appendix presents an explanation example of the Simulink software used in this

thesis to get simulation results for all practical examples as well as numerical examples.

CHAPTER 1. INTRODUCTION



CHAPTER. 2

FUNDAMENTAL KNOWLEDGE AND

BASIC CONCEPTS

Chapter 1 has briefly introduced the background and motivation of this research, which

includes the challenges of designing observers for nonlinear interconnected systems. In

order to establish a basic understanding of this work, a necessary background knowledge

and basic concepts related to this thesis are to be discussed in this chapter.

To be specific, a basic knowledge of Observability and Luenburger Observer is given

in Section 3.1. The definitions and the structure of interconnected systems with three

practical examples are introduced in Section 3.2. Variable structure control and sliding

mode technique will be explained in Section 3.3. The literature in the area of sliding mode

observer is then reviewed in Section 3.4. In Section 3.5. some relevant adaptive tools will

be presented.
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2.1. OBSERVABILITY AND LUENBURGER OB-

SERVER

2.1.1. OBSERVABILITY

A system is said to be completely observable if every initial state x(t0) can be exactly

determined from the measurements of the output y(t) over the finite interval of time t0 ≤

t ≤ tf . This implies that every state of x(t) affects the output y(t) [67].

Consider a linear system

ẋ = Ax (2.1)

y = Cx (2.2)

where x ∈ Rn and y ∈ Rp are system states and output respectively. A ∈ Rn×n and

C ∈ Rp×n are constant matrices.

The system (2.1) is observable if and only if the observability matrix O has full rank.

i.e. rank O = n.

Rank O = Rank



C

CA

CA2

...

CAn−1


= n (2.3)

2.1.2. LUENBURGER OBSERVER

The concept of observer was first introduced by Luenberger (1964) where the differ-

ence between the output measurements from the actual plant and the output measurements

of a corresponding dynamical model were used to develop an injection signal to force the

resulting output error to zero [18].
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Consider a linear system

ẋ = Ax+Bu (2.4)

y = Cx

where x ∈ Rn, y ∈ Rp and u ∈ Rm are system states, output and input respectively.

A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are constant matrices. The flow chart for the

system (2.4) is shown at the upper of Figure 2.1.

The observer that has been proposed by Luenberger is

˙̂x = Ax̂+Bu+ L(y − ŷ) (2.5)

˙̂x = (A− LC)x̂+ Bu + Ly

ŷ = Cx̂

Subtracting equation (2.5) from equation (2.4) yield the observer error state equation

ė = (A− LC)e

By an appropriate choice of the observer gain L, all of the eigenvalues of A− LC can be

assigned to the left side plane, so that the steady state value of e(t) for any initial condition

is zero.

lim
t→∞

e(t) = 0 (2.6)

2.2. INTERCONNECTED SYSTEMS

The advancement of modern technologies has produced many complex systems.

An important class of such systems, which is frequently called a system of systems or

large-scale system, can be expressed by sets of lower-order ordinary differential equations

which are linked through interconnections. Such models are typically called large-scale

interconnected systems [14, 3, 68, 69]. Large-scale interconnected systems have been

studied since the 1960s (see [70] and references therein) due to their close relevance with

a number of practical application areas and the availability of pertinent theoretical results.
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Figure 2.1: Plant with inaccessible states and an observer that estimates the unmeasurable

states.

2.2.1. STRUCTURE OF INTERCONNECTED SYSTEM

A large-scale interconnected system usually can be modelled by the following ordi-

nary differential equations

ẋi = fi(t, xi, ui) +
N∑
j=1

j 6=i

Hij(xj) (2.7)

where xi ∈ Rni and ui ∈ Rmi denote the state and input signal of ith subsystems. The

whole system state x := col(x1, x2, · · · , xN) denote the states of the whole system. Hij(·)

represent the interconnection linked with the j-th subsystems for i = 1, · · · , N and i 6= j.

The term
∑N

j=1

j 6=i
Hij(xj) is called the interconnection term. System

ẋi = fi(t, xi, ui) (2.8)

is called the ith isolated subsystem of system (2.7). In such systems, although each iso-

lated subsystem may exhibit desired performance, each interaction dynamic due to the

interconnections may significantly affect on the performance of the whole system plant.
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Consider the form of system (2.7) in

ẋi = fi(t, xi) + gi(t, xi)(ui + φi(t, xi)) +
N∑
j=1

j 6=i

Hij(xj) (2.9)

where φi(·) denote the matched uncertainties (uncertainties in input channels) for i =

1, 2, · · · , N . Then system

ẋi = fi(t, xi) + gi(t, xi)(ui + φi(, xi)) (2.10)

is called the ith nominal isolated subsystems of system (2.9) for i = 1, 2, · · · , N .

There are three main architectures, i.e. centralised structure, distributed structure and

decentralised structure which will be briefly introduced.

Centralised Structure

For a relative small-scale system, a system structure shown in Figure 2.2, in which

the control utilises all the state information to stabilise the overall system, is the so-called

centralised structure. The local controller with centralised structure is often in the form

ui = ui(t, x1, x2, · · · , xN) (2.11)

For small scale interconnected systems, a centralised strategy might provide better control

performance than a complete decentralised control strategy since the central coordinator

has much more information than a local controller to deal with the interactions. However,

as the system nowadays has become increasingly complicated, the system inevitably re-

quires computing units with much larger memory and much faster computation capability.

The extensive amount of information fed into the coordinator and the massive computing

tasks may make the centralised scheme difficult or even impossible to be implemented

[14].

Distributed Structure

In distributed control structure see Figure 2.3, it is assumed that some information

can be transmitted among those local regulators through a network so that regulators in

each subsystem can have some knowledge on the behaviour of the others [71]. This

system structure is widely used in power grid regulation [72], intelligent transportation
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Figure 2.2: Centralised system structure

system [73]. Since a subsystem may not need all the information of the system plant,

therefore, the information that is transmitted from the local regulators is usually fed in a

given subset of the others, which is also known as partially connected [74]. However,

the delay of the network is still an essential problem for the distributed control system.

Furthermore, the network failure may greatly degrade the control performance of a local

regulator or even devastate the stability of the subsystem.

Decentralised Structure In a decentralised control system shown in Figure 2.4, the

local controllers of each subsystem for system (2.7) are usually in the form

ui = ui(t, xi) (2.12)

in which only local state information xi is used for local controller in the ith subsystem.

Since the controller is based only on local information, the reliability of system perfor-

mance only depends on the control performance of the local controllers. This system

structure is also economical since the network for information transmitting is not required

and thus the cost of the implementation and complexity of the overall system is reduced.

However, due to the lack of information from the other subsystems, to maintain desired

control performance in the presence of unknown interconnection usually is full of chal-
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Figure 2.3: Distributed system structure

lenges. Furthermore, disturbances, modelling errors and parameter variations also widely

exist in most practical systems. Specifically, uncertainties experienced by one subsystem

not only affect its performance but affect the other subsystems’ performance as well due

to the interactions among subsystems [17]. In the real world, it is not safe to assume that

all state variables are available due to the cost of sensors or technical difficulties. More-

over, many practical systems have unknown constants/time varying parameters affecting

system performance. To over come such a problem, observers and adaptive observers

have been developed since 1960s. Therefore, observers/adaptive observers for nonlinear

interconnected systems will be considered in this thesis.

2.2.2. PRACTICAL EXAMPLES OF INTERCONNECTED SYSTEMS

Large-scale interconnected systems widely exist in the real world. In this section,

the models of several practical interconnected systems will be presented to show that the

system (2.7) can be well used to express practical interconnected systems.

Power Systems

Nowadays, electricity plays a crucial role in our daily lives. Apparently, with the

CHAPTER 2. FUNDAMENTAL KNOWLEDGE AND BASIC CONCEPTS



2.2. INTERCONNECTED SYSTEMS 21

Figure 2.4: Decentralised system structure

increasing complexity of power distribution systems and demands of users, it has become

ever more important to develop the automation of some tasks, such as generation, trans-

mission, and distribution etc. Among these tasks, a multi-machine power system with

N synchronous generators as shown in Figure 2.5 is a typical large-scale interconnected

system [17]. The interconnection between each local generator through a transmission

network greatly increases the system complexity

• The mechanical equation of the generator is described by

δ̇i = ωi (2.13)

ω̇i = − Di

2Hi

ωi +
ω0

2Hi

(Pmi0 − Pei) (2.14)

• The electrical dynamics of the generator are described by

Ė ′qi =
1

T ′doi
(Efi − Eqi) (2.15)
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• The electrical equations

Eqi = E ′qi − (xdi − x′di)Idi, (2.16)

Efi = Kciufi (2.17)

Pei =
N∑
j=1

E ′qiE
′
qjBij sin(δi − δj) (2.18)

Qei = −
N∑
j=1

E ′qiE
′
qjBij cos(δi − δj) (2.19)

Iqi =
N∑
j=1

E ′qjBij sin(δi − δj) (2.20)

Idi =
N∑
j=1

E ′qjBij cos(δi − δj) (2.21)

Eqi = xadiIfi (2.22)

Vti =
√

(E ′qi − x′diIdi)2 + (x′diIdi)
2 (2.23)

where δi is the ith generator power angle [rad], and ωi s the relative speed [rad/s],

E ′qi represents the transient EMF in the quadrature axis [p.u.], Qei and T ′doi denote

the reactive power and the direct axis trasient short circuit time constant respec-

tively. xdi and x′di represent the reactance and the transient reactance in direct axis

respectively, Idi and Iqi represent current in direct axis and quadrature axis respec-

tively. Kci and Bij denote the gain of the excitation amplifier and the i−th row

and j−th column element of nodal susceptance matrix at internal nodes respec-

tively. ufi is the input of the amplifier of ith generator for i = 1, 2, · · · , N . This

model has been widely used for the research of multi-machine power system (see

e.g. [75, 76, 77]).
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Figure 2.5: Over view of multi-machine power systems with an infinite busbar

δi generator power angle [rad]

Pei electrical power [p.u.]

wi relative speed [rad/s]

w0 synchronous machine speed [rad/s]

Di per unit damping constant

Hi inertia constant [s]

E ′qi transient EMF in the quadrature axis [p.u.]

T ′doi direct axis transient short circuit time constant [s]

xdi direct axis reactance [p.u.]

x′di direct axis transient reactance [p.u.]

Bij i-th row and j-th column element of nodal susceptance

matrix at internal nodes after eliminating all physical

buses[p.u.]

Iqi quadrature axis current [p.u.]

Kci gain of the excitation amplifier [p.u.]

ufi input of the SCR amplifier [p.u.]

Qei reactive power [p.u.]

Idi direct axis current [p.u.]

Pmi0 mechanical input power [p.u.]
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Coupled Inverted Pendula on Carts [17]

Consider a coupled inverted pendulum connected by a moving spring mounted on

two carts as shown in Figure 2.6. It is assumed that the pivot position of the moving

spring is a function of time which can change along the length l of pendula. The input

to each pendulum is the torque ui applied at the pivot which is produced by the external

forces F1 and F2 applied to the carts.

Figure 2.6: Two coupled inverted pendula on carts

Let

x1 = col(θ1, θ̇1)T and x2 = col(θ2, θ̇2)T (2.24)

Then the dynamical model for the coupled inverted pendulum systems is described by

(see [78]):

ẋ1 =

 0 1

g
cl
− ka(t)(a(t)−cl)

cml2
0

 x11

x12

+

 0

1
cml2

u1 +

 0 0

ka(t)(a(t)−cl)
cml2

0

 x21

x22


−

 0

m
M

(sin θ1)θ̇2
1 + ka(t)(a(t)−cl)

cml2
(s1 − s2)

 (2.25)

ẋ2 =

 0 1

g
cl
− ka(t)(a(t)−cl)

cml2
0

 x21

x22

+

 0

1
cml2

u2 +

 0 0

ka(t)(a(t)−cl)
cml2

0

 x11

x12


−

 0

m
M

(sin θ2)θ̇2
2 + ka(t)(a(t)−cl)

cml2
(s2 − s1)

 (2.26)
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where s1 and s2 are positions of the two carts,

c =
M

(M +m)
(2.27)

and k and g are the spring and gravity constants respectively.

The Model of the 2 DOF Robot Arm [1]

Consider the two degree of freedom robot arm moving in the vertical plane, see the

block scheme in Figure 2.7

Figure 2.7: The model of a 2 DOF robot moving in vertical plane [1]

Let the generalized coordinates are

q = (q1, q2)T := (ϕ1, ϕ2)T (2.28)

and the generalized forces are the driving torques

τ = (τ1, τ2)T (2.29)

The position vectors pointing from the origin of the fixed frame (coordinate system) K0
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into the origins of the moving frames K1 and K2 are respectively

p01 = (l1C1, l1S1, 0)T ,

p02 = (l1C1 + l2C12, l1S1 + l2S12, 0)T (2.30)

where the notations C1 := cos(q1), · · · , S12 = sin(q1 + q2) are used. The velocities in the

basis of fixed frame K0 can be obtained by formal differentiation of the position vectors:

Ov1 =


−l1S1

l1C1

0

 q̇1

Ov2 =


−l1S1 − l2S12 −l2S12

l1C1 + l2C12 l2C12

0 0


 q̇1

q̇2

 (2.31)

The inertia matrix is constant in the frame of the moving body but is nonconstant in the

fixed frame. Hence we transform the velocities into the basis of the moving frame:

v1 = v1
1


C1 S1 0

−S1 C1 0

0 0 1

 v0
1 =


c0

l1

0

 q̇1

v2 = v2
2


C12 S12 0

−S12 C12 0

0 0 1

 v0
2 =


l1S2 0

l1C2 + l2 l2

0 0


 q̇1

q̇2

 (2.32)

If each moving frame is parallelly transferred to the origin of the centre of mass, then

the velocity vc and the inertia matrix belonging to the centre of mass will have to be

used in the motion equation. In the block scheme, I1 and I2 are already the right lower

elements of the inertia matrices Ic1 and Ic2, respectively. The velocities vc1 and vc2 can be
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immediately written down using simple geometrical considerations:

vc1 =


0

lc1

0

 q̇1

vc2 =


l1S2 0

l1C2 + lc2 lc2

0 0


 q̇1

q̇2

 (2.33)

From the geometrical image, the angular velocities are simply given by

ω1 = (0, 0, q̇1)T ,

ω2 = (0, 0, q̇1 + q̇2)T

which can also be written in a matrix-vector form:

vc1 =


0

0

1

 q̇1

ω2 =


0 0

0 0

1 1


 q̇1

q̇2

 (2.34)

Hence, the kinetic and potential energy of the robot arm are respectively described by,

K =
1

2
(vc1 , vc1)m1 +

1

2
(I1ω1, ω1)

1

2
(vc2 , vc2)m2 +

1

2
(I2ω2, ω2)

P = m1glc1S1 +m2g(l1S1 + lc2S12) (2.35)

After simple algebraic manipulations, the kinetic energy can be formulated in the quadratic

form as

K =
1

2
(H(q)q̇, q̇) =

1

2

∑
j

∑
k

Djkq̇j q̇k, (2.36)
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where

H(q) =

 D11(q) D12(q)

D12(q) D22(q)


D11 = m1l

2
c1

+m2(l21 + l2c2 + 2l1lc2C2) + I1 + I2,

D12 = m2(l1C2 + lc2)lc2 + I2,

D22 = m2l
2
c2

+ I2 (2.37)

The dynamic model of the robot arm can be found using the Lagrange equations. Per-

forming the differentiations and introducing the notations

D112(q) = −m2l1lc2S2

D1(q) =
∂P

∂q1

= m1glc1C1 +m2g(l1C1 + lc2C12)

D1(q) =
∂P

∂q2

= m2glc2C12 (2.38)

The following dynamic model of the two degree of freedom robot arm is obtained:

D11(q)q̈1 +D12q̈2 +D112(q)(2q̇1q̇2 + q̇2
2) +D1(q) = τ1

D12(q)q̈1 +D22q̈2 −D112(q)q̇2
1 +D2(q) = τ2 (2.39)

where x := (q1, q2, q̇1, q̇2)T is system states and u = (τ1, τ2) is the control signal (the

input of the model).

2.3. THEORY OF VARIABLE STRUCTURE CON-

TROL SYSTEMS (VSCS)

Variable structure control systems (VSCS) evolved from the pioneering work in Rus-

sia of Emel’yanov and Barbashin in the early 1960s. The concepts of VSCS have appeared

in the mid of 1970s when a book by Itkis [79] and a survey paper by Utkin [80] were

published in English. VSC techniques have subsequently been extensively studied, and

widely applied to theoretical research and practical linear/nonlinear systems due to their

high robustness. Specifically, as one special case of variable structure controllers, sliding
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mode controllers are completely robust to matched uncertainties (uncertainties acting in

the input channels). For the purpose of illustration, consider a dynamical control system

expressed by the following differential equation

ẋ = f(t, x, u) (2.40)

where x ∈ Rn denotes the system state, u ∈ Rq represents the system input/control and

t ∈ R+ is time.

2.3.1. VARIABLE STRUCTURE CONTROL

Consider the control system (2.40) in the domain D ⊂ Rn [17]. A corresponding

variable structure control can be expressed as

u =



u1(t, x), (t, x) ∈ R+ ×D

u2(t, x), (t, x) ∈ R+ ×D
...

...

uq(t, x), (t, x) ∈ R+ ×D

(2.41)

where the functions ui(t, x) are continuous for i = 1, 2, · · · , q. The structures of the

functions ui(t, x) and uj(t, x) are different for i 6= j, j = 1, 2, · · · q (q ≥ 2). When

the variable structure control in (2.41) is applied to the system (2.40), the corresponding

closed-loop system becomes a variable structure system. Literally speaking, variable

structure control is a control whose structure is changed or keeps changing in order to

obtain and maintain the desired system performance during the control process.

For example, in real control design, when the response error/accuracy e(t) is over

the threshold, a proportional control is used to increase the response speed;

2.3.2. SLIDING MODE CONTROL METHODOLOGY

A typical Variable Structure Control which leads to a sliding motion, has under-

pinned the development of a systematic research methodology, which is the well-known

sliding mode control [17]. Sliding mode control changes the system dynamics by employ-

ing a discontinuous control signal. This approach has been well developed and extensively
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used in theoretical research and practical design. It has been successfully employed to

solve various control problems in combination with other control approaches.

The sliding mode control method consists of two steps:

• The design of sliding surface such that the system considered possesses the desired

performance when it is restricted to the surface;

• The design of a variable structure control which drives the system trajectory to the

sliding surface in finite time and maintain a sliding motion on it thereafter.

In view of these two steps, the system motion can be separated into two phases: the

reaching phase and the sliding phase. The former refers to the motion when the system

trajectory moves towards the sliding surface and the latter concerns the motion when the

system trajectory moves on the sliding surface.

3.3.2.1 Sliding Phase

Consider system (2.40). In order to design a proper switching/sliding function

s = s(x) (2.42)

such that the resulting sliding motion has the desired performance, one way is to find the

dynamical equations governing the sliding motion, which is called sliding mode. Then

the sliding surface based on the characteristics of the sliding mode dynamics or sliding

motion can be . It is assumed that the sliding motion exists. The following two approaches

are usually employed to find the sliding mode dynamics and in this way the stability of the

sliding motion is transformed to the problem of ensuring stability of an unforced system.

• Equivalent control: When the considered system (2.40) is limited to and moving

on the sliding surface

s(x) = 0, and ṡ(x) = 0. (2.43)

The time derivative of s(x) along the system (2.40) is given by

ṡ =
∂s

∂x
ẋ =

∂s

∂x
f(t, x, u) (2.44)
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In the sliding motion,

∂s

∂x
f(t, x, u) = 0 (2.45)

Suppose there is a solution for u to the Eq. (2.45) denoted by

ueq = ueq(t, x) (2.46)

which is the so-called equivalent control . Then, the sliding mode dynamics gov-

erning the sliding motion may be obtained by ẋ = f(t, x, ueq(t, x))

s(x) = 0

Now, assume that system (2.40) is in the following affine nonlinear form,

ẋ = F (t, x) +G(t, x)u (2.47)

Then, for the sliding surface s(x) = 0, it follows from ẋ = 0 that the corresponding

equivalent control is given by

ueq = −(s(x)G(x, t))−1s(x)F (t, x) (2.48)

where s(x) should be chosen such that s(x)G(t, x) is nonsingular for all x in the

considered domain and t ∈ R+. Substitute ueq in (2.48) into the system (2.40), it

follows that the corresponding sliding motion can be described by ẋ = F (t, x)−G(t, x)(s(x)G(x, t))−1s(x)F (t, x)

s(x) = 0

• Regular form: Another approach to find the sliding mode dynamics relating to the

sliding function s = s(x) for the system (2.40) is to employ the well-known regular

form. Suppose that there exists a coordinate transformation z = T (x) such that in

the new coordinate system z, the sliding surface s(x) = 0 can be described in the

form

z2 = σ(z1) (2.49)
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where z1 ∈ Rn−m, z2 ∈ Rm, z := col(z1, z2) and system (2.40) can be described by

ż1 = F1(t, z1, z2) (2.50)

ż2 = F2(t, z1, z2, u) (2.51)

where u ∈ Rm is the control. The Jacobian ∂F2(t,z1,z2,u)
∂u

is assumed to be non-

singular in the considered domain. Note the system (2.50) is independent of the

control signal and the dimension of z2 is the same as the dimension of the control

u. System (2.50)-(2.51) is the so-called regular form. Based on the regular form

in (2.50)-(2.51), it is clear to see that the corresponding sliding mode dynamics of

system (2.40) is described by

ż1 = F1(t, z1, σ(z1)) (2.52)

which is a reduced-order system when compared with system (2.40).

Note, if system (2.40) is in the form as given in (2.47), then the corresponding

regular form can be described by

ż1 = F1(t, z1, z2) (2.53)

ż2 = F2(t, z1, z2) +G2(t, z1, z2)u (2.54)

where the functions F1(·), F2(·) and G2(·) are dependent on the coordinate trans-

formation z = T (x) and the functions F (·) and G(·) respectively.

3.3.2.2 Reaching Phase In order to guarantee that the system trajectory can be driven

to the sliding surface s(x) = 0 in finite time and a sliding motion can be maintained on it

thereafter, a proper discontinuous control

u = u(t, x) (2.55)

needs to be designed such that the following condition is satisfied

sT (x)ṡ(x) ≤ −η‖s(x)‖ (2.56)

for some constant η > 0 which is called reachability constant. The inequality (2.56) is

the so-called reachability condition which guarantees that sliding motion occurs in finite

time.
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From eq. (2.40), it follows that

ṡ =
∂s

∂x
ẋ =

∂s

∂x
f(t, x, u) (2.57)

Therefore, from (2.56) and (2.57)

sT (x)
∂s

∂x
f(t, x, u) ≤ −η‖s(x)‖ (2.58)

which explicitly contains the variable u. The sliding mode controller guaranteeing reach-

ability can usually be synthesised from (2.58).

The following condition

sT (x)ṡ(x) < 0 (2.59)

is called a reachability condition but it cannot guarantee that a sliding motion takes place

in finite time and thus a sliding motion may not occur if (2.59) is satisfied.

It should be emphasised that, when the designed sliding/switching function is time

varying, for example,

s = s(t, x) (2.60)

it is straightforward to see that the condition (2.58) used to synthesis the sliding mode

control law should be updated to

sT (t, x)

(
∂s

∂t
+
∂s

∂x
f(t, x, u)

)
≤ −η‖s(t, x)‖ (2.61)

In this case, the study becomes more complex.

2.4. SLIDING MODE OBSERVER

Many of the theoretical developments in the area of sliding mode control systems

assume that the system state vector is available for use in the control design. This as-

sumption is not valid for real systems in many cases. Therefore, study of the observer

design to estimate system states becomes very important.
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Consider initially the linear system described by

ẋ(t) = Ax(t) +Bu(t) (2.62)

y(t) = Cx(t) (2.63)

where x ∈ Rn, y ∈ Rp and u ∈ Rm are system states, output and input respectively.

A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are constant matrices and p ≥ m. Assume that the

matrices B and C are full rank and the pair (A,C) is observable.

2.4.1. AN UTKIN OBSERVER

As the outputs are to be considered, it is logical to change of coordinates so that

the outputs appear as components of the states [28]. One possibility is to consider the

transformation x 7→ Tcx where

Tc =

 NT
c

C

 (2.64)

where the columns of Nc ∈ Rn×(n−p) span the null space of C. This transformation is

nonsingular, and with respect to this new coordinate system, the new output distribution

matrix is

Ci =
[

0 Ipi

]
(2.65)

Split the matrices A and B in a compatible way as

TcAT
−1
c =

 A11 A12

A21 A22

 , and TcB =

 B1

B2

 (2.66)

Then, the nominal system can be written as

ẋ1(t) = A11x1(t) + A12y(t) +B1u(t) (2.67)

ẏ(t) = A21x1(t) + A22y(t) +B2u(t) (2.68)

where

Tcx =

 x1

y


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and x1 ∈ Rn−p and y ∈ Rp. The observer proposed by Utkin (1981) has the form

˙̂x1(t) = A11x̂1(t) + A12ŷ(t) +B1u(t) + Lv (2.69)

˙̂y(t) = A21x̂1(t) + A22ŷ(t) +B2u(t)− v (2.70)

where (x̂1, ŷ) represent the estimation of (x1, y), L ∈ R(n−p)×p is a constant feedback gain

matrix and the discontinuous vector v is a discontinuous term defined component-wise by

vi = Msgn(ŷi − yi), i = 1, 2, · · · , p (2.71)

where M ∈ R+. If the errors between the estimates and the true states are written as

e1 = x̂1 − x1 and ey = ŷ − y then from equations (2.67) to (2.70) the following error

system is obtained

ė1(t) = A11e1(t) + A12ey(t) + Lv (2.72)

ėy(t) = A21e1(t) + A22ey(t)− v (2.73)

Since the pair (A,C) is observable, the pair (A11, A21) is observable (see Proposition 3.3

in [28]). As a consequence, L can be chosen to make the spectrum of A11 + LA21 has a

negative eigenvalues. Define a further change of coordinates, dependent on L, by

T̃ =

 In−p L

0 Ip

 (2.74)

and let ẽ1 = e1 +Ley. The error system with respect to the new coordinates can be written

as

˙̃e1(t) = Ã11ẽ1(t) + Ã12ey(t) (2.75)

ėy(t) = Ã21ẽ1(t) + Ã22ey(t)− v (2.76)

where Ã11 = A11 +LA21, Ã12 = A12 +LA22 − Ã11L and Ã22 = A22 −A21L. It follows

from (2.76) that in the domain

Ω = {(e1, ey) : ‖A21e1‖+
1

2
λmax(Ã22 + ÃT22)‖ey‖ < M − η} (2.77)

where η < M is some small positive scalar, the reachability condition

eTy ėy < −η‖ey‖ (2.78)
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is satisfied. Consequently, an ideal sliding motion will take place on the surface

So = {(e1, ey) : ey = 0} (2.79)

It follows that after some finite time ts, for all subseqent time ey = 0 and ė = 0. Equation

(2.75) then reduced to

˙̃e1(t) = Ã11ẽ1(t) (2.80)

which by choice of L, represents a stable system and ˙̃e1(t)→ 0 and consequently x̂→ x1

as t → ∞. Equation (2.80) represents the reduced order sliding mode error dynamics,

and thus the corresponding sliding motion is stable.

2.4.2. A DISCONTINUOUS OBSERVER FOR A SYSTEM WITH DIS-

TURBANCES

Consider the dynamical system [28]

ẋ(t) = Ax(t) +Bu(t) +Dξ(t, x, u) (2.81)

y(t) = Cx(t) (2.82)

where x ∈ Rn, y ∈ Rp and u ∈ Rm are system states, output and input respectively.

A ∈ Rn×n, B ∈ Rn×m, C ∈ RP×n andD ∈ Rn×q where p ≥ q. Assume that the matrices

B,C and D are full rank and the function ξ : R+ × Rn × Rm → Rq is unknown but

bounded so that

‖ξ(t, x, u)‖ ≤ r1‖u‖+ α(t, y) (2.83)

where r1 is a known scalar and α : R+ ×Rp → R+ is a known function.

• A Canonical Form for Observer Design

Suppose that there exists a linear change of coordinates To so that the system (2.81)-

(2.82) can be written as

ẋ1(t) = A11x1(t) + A12y(t) +B1u(t) (2.84)

ẏ(t) = A21x1(t) + A22y(t) +B2u(t) +Dξ (2.85)
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where x1 ∈ Rn−p, y ∈ Rp and the matrix A11 has stable eigenvalues. Consider an

observer of the form

˙̂x1(t) = A11x̂1(t) + A12ŷ(t) +B1u(t)− A12ey(t) (2.86)

˙̂y(t) = A21x̂1(t) + A22ŷ(t) +B2u(t)− (A22 − As22)ey + v (2.87)

where As22 is a stable design matrix and ey = ŷ − y. Let P2 ∈ Rp×p be symmetric

positive definite Lyapunov matrix for As22 then the discontinuous vector v is defined

by

v =

 −ρ(t, y, u)‖D2‖ P2ey
‖P2ey‖ if ey 6= 0

0 otherwise
(2.88)

where the scalar function ρ : R+ ×Rp ×Rm → R+ satisfies

ρ(t, y, u) ≥ r1‖u‖+ α(t, y) + γo (2.89)

and γo is a positive scalar. If the state estimation error e1 = x̂1 − x1, then it is

straightforward to show

ė1(t) = A11e1(t) (2.90)

ėy(t) = A21e1(t) + As22ey(t) + v −D2ξ (2.91)

The lower block triangular structure has been shown to occur quite naturally as a

result of the state space representation chosen and the output error feedback gains

employed.

Proposition 3.4.2.1 There exists a family of symmetric positive definite matrices

P2 such that the uncertain dynamical error system (2.90)-(2.91) is quadratically

stable.

Proof see [28].

2.5. ADAPTIVE CONTROL

The term adaptive system was first introduced in control theory by Drenick and Shah-

bender in 1957 [2, 81]. It is used to refer to control systems that monitor their own
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performance and adjust their parameters in the direction of improving that performance.

The authors in [82] introduced the Adaptive Control term as a set of techniques which

provide a systematic approach for automatic adjustment of controllers in real time, in or-

der to achieve, or to maintain, a desired level of control system performance when the

parameters of the plant dynamic model are unknown and/or change over time.

2.5.1. TOOLS FOR ADAPTIVE CONTROL

In this section, some tools for adaptive control are introduced which are used or

mentioned in this thesis, including the Barbalat’s Lemma, LaSalle-Yoshizawa Theorem,

persistent excitation criteria, and a parameter convergence lemma [83].

Lemma 3.5.1 (Barbalat’s Lemma ) Let α : [t0,∞) 7→ R be continuously differentiable

scalar function. If α(t) has a finite limit as t→∞, and α̇(t) is uniformly continuous over

[t0,∞), then

lim
t→∞

α̇(t) = 0 (2.92)

As an application of the Barbalat’s Lemma, the LaSalle-Yoshizawa Theorem has

been obtained

Theorem 3.5.1 (LaSalle-Yoshizawa Theorem). Consider

ẋ = f(x, d(t)) (2.93)

where d : [t0,∞) 7→ D ⊂ R with D a non-empty set represents external unpredictable

disturbance and/or internal parameter variation, and f(x, d(t)) is locally Lipschitz in x

uniformly in t. If there exists a continuously differentiable function V (x, t) : Rn ×

[t0,∞) 7→ R+ such that

W1(x) ≤ V (x, t) ≤ W2(x) (2.94)

V̇ (x, t) ≤ −α(x) ≤ 0 ∀ x ∈ Rn,∀t ≥ t0 (2.95)

where W1(x) and W2(x) are continuous positive definite and radially unbounded func-

tions and α(x) is a continuous positive semi definite function, then the state is bounded
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and satisfies

lim
t→∞

α(x(t)) = 0 (2.96)

Moreover, if α(x) is positive definite, then the equilibrium x = 0 is uniformly globally

asymptotically stable.

Remark 3.5.1. By stating that f(x, d(t)) is locally Lipschitz in x uniformly in t, it means

that, for any x? ∈ Rn,

‖f(x, d(t))− f(y, d(t))‖ ≤ L‖x− y‖ (2.97)

is satisfied for all x, y ∈ {x ∈ Rn | ‖x − x?‖ ≤ r} for some r > 0 and for all t ≥ 0.

The Lipschitz constant L depends on x?, but is independent of t. If f(x, d(t)) is locally

Lipschitz in x, and D is a compact set, then clearly, f(x, d(t)) is locally Lipschitz in x

uniformly in t.

Remark 3.5.2. Theorem 3.5.1 holds with W1(x) and W2(x) replaced by two class K∞
functions α(‖x‖) and ᾱ(‖x‖), respectively.

The following material is concerned with the so-called persistent exciting property of

a signal, which is widely used in the parameters convergence analysis in adaptive control,

and it has been mentioned for a few times in this thesis.

Definition 3.5.1 A bounded piecewise continuous function f : [0,∞) 7→ D ⊂ Rn is said

to be persistent exciting (PE) if there exist positive constants ε, t0 and T0 such that, for

any unit row vector c of dimension n

1

T0

∫ t+T0

t

|cf(s)|ds ≥ ε,∀t ≥ t0. (2.98)

Lemma 3.5.2 A bounded piecewise continuous function f : [0,∞) 7→ D ⊂ Rn is PE if

and only if there exist positive constants ε, t0 and T0 such that

1

T0

∫ t+T0

t

f(s)fT (s)ds ≥ ε2I, ∀t ≥ t0. (2.99)

Proof: By the Jensen’s inequality, i.e.,

(b− a)

∫ b

a

[g(s)]2ds ≥

(∫ b

a

g(s)ds

)2

, (2.100)
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for any integrable real valued function g, we have

c

[
1

T0

∫ t+T0

t

f(s)fT (s)ds

]
cT =

1

T0

∫ t+T0

t

[cf(s)]2ds ≥

(
1

T0

∫ t+T0

t

|cf(s)|ds

)2

(2.101)

for any unit vector c of dimension n. As f is PE, one has (2.98), and hence

c

[
1

T0

∫ t+T0

t

f(s)fT (s)ds

]
cT ≥ ε2 = c(ε2I)cT (2.102)

which implies (2.99).

“If”: From (2.99). one has

1

T0

∫ t+T0

t

cf(s)fT (s)cTds ≥ ε2 (2.103)

or ∫ t+T0

t

[cf(s)]2ds ≥ T0ε
2 (2.104)

for any unit row vector c of dimension n. Since the function f is bounded, so is cf(s),

i.e.,

|cf(s)| ≤ R, ∀s ≥ 0 (2.105)

for a constant R. Let R1 = ε√
2
, S1 = {s | |cf(s)|} ≥ R1, t ≤ s ≤ T + t0 and {S2 =

{s | |cf(s)|} ≥ R1, t ≤ s ≤ T + t0}. Then

S1 ∪ S2 = [t, t+ T0], S1 ∩ S2 = ∅ (2.106)

Moreover, since cf(s) is bounded and piecewise continuous in [0,∞), both S1 and S2 are

Lebesgue measurable. Denote the length of a Lebesgue measurable set S ⊂ [t, t+ T0] by

|S|. Then 0 ≤ |Si| ≤ T0, i = 1, 2, and |S1 ∪ S2| = T0. Furthermore,

T0ε
2 ≤

∫ t+T0

t

[cf(s)]2ds =

∫
S1

[cf(s)]2ds+

∫
S2

[cf(s)]2ds

≤
∫
S1

[cf(s)]2ds+R2
1|S2|. (2.107)

The above inequality implies

|S1|R2 ≥
∫
S1

[cf(s)]2ds ≥ T0ε
2 −R2

1|S2| = (T0 − |S2|/2)ε2 ≥ T0ε
2/2 > 0 (2.108)
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and

|S1| ≥ T0ε
2/(2R2) > 0 (2.109)

Then, we have

1

T0

∫ t+T0

t

|cf(s)|ds ≥ 1

T0

∫
S1

|cf(s)|ds ≥ |S1|R1

T0

≥ ε3

2
√

2R2
(2.110)

which is (2.98) with ε replaced by another constant ε3

2
√

2R2 . From the definition, f is PE.

The proof is thus completed. 4

2.6. SUMMARY

In this chapter, the basic knowledge of the observer concept has been provided. The

fundamental ideas of designing observers have been discussed. The structure of the in-

terconnected systems has been studies with support of a few practical systems. The basic

ideas of the techniques that used in this thesis which are Variable Structure Control and

Sliding Mode Control have been given in details in this chapter. Then, the literature and

the concept of the sliding mode observer has been provided. After that, adaptive tools

used or mentioned in this thesis have been presented in this chapter. As a result, Slid-

ing Mode Control and Variable Structure Control techniques are considered as the main

methodologies in designing observer schemes for nonlinear interconnected systems in the

following chapters.
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CHAPTER. 3

VARIABLE STRUCTURE OBSERVERS

FOR NONLINEAR INTERCONNECTED

SYSTEMS

In this chapter, a class of nonlinear interconnected systems with disturbances is consid-

ered where both the nominal isolated subsystems and interconnections are nonlinear. It

is not required that either the nominal isolated subsystems or the interconnections are

linearisable. A robust variable structure observer is established based on a simplified sys-

tem structure by using a Lyapunov analysis methodology. The structure of the internal

dynamics, the structure of uncertainties and the bounds on uncertainties are fully used

in the observer design to reduce conservatism. These bounds are allowed to have a gen-

eral nonlinear form. The observer states converge to the system states asymptotically.

A numerical simulation example is given to demonstrate the application of the proposed

approach. A case study of a coupled inverted pendulum system shows the practicality of

the designed observer.
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3.1. PRELIMINARIES

Consider the single-input-single-output nonlinear system

ẋ(t) = f(x) + g(x)u (3.1)

y(t) = h(x) (3.2)

where x ∈ Ω ⊂ Rn (Ω is a neighborhood of the origin), y ∈ R and u ∈ U ⊂ R (U is an

admissible control set) are the state, output and input respectively, f(x), g(x) ∈ Rn are

smooth vector fields defined in the domain Ω, and h(x) ∈ Rm is a smooth vector in the

domain Ω.

First, some key elements of the geometric approach in [66] are recalled. These will

be used in the later analysis.

Definition 4.1 ([66]) System (3.1)− (3.2) is said to have uniform relative degree r in the

domain Ω if for any x ∈ Ω,

(i) LgLkfh(x) = 0, for k = 1, 2, · · · , r − 2

(ii) LgL
r−1
f h(x) 6= 0

Now consider system (3.1) − (3.2). It is assumed that system (3.1) − (3.2) has

uniform relative degree r in the domain Ω. Construct a mapping φ : x→ z as follows:

φ(·) :



z1 = h(x)

z2 = Lfh(x)
...

zr = Lr−1
f h(x)

zr+1 = φr+1

...

zn = φn(x)

(3.3)

where φ(·) = col(φ1(x), φ2(x), · · · , φn(x)), φ1(x) = h(x), φ2(x) = Lfh(x), · · · ,

φr(x) = Lr−1
f h(x) and the functions φr+1(x), · · · , φn(x) need to be selected such that

Lgφi(x) = 0, i = r + 1, r + 2, · · · , n
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and the Jacobian matrix

Jφ :=
∂φ(x)

∂x

is nonsingular in the domain Ω.Then the mapping φ : x → z forms a diffeomorphism in

the domain Ω (see Proposition 4.1.3 in [66]). For the sake of simplicity, let

ζ =
[
ζ1 ζ2 · · · ζr

]T
:=
[
z1 z2 · · · zr

]T
η =

[
ζr+1 ζr+2 · · · ζn

]T
:=
[
zr+1 zr+2 · · · zn

]T
Then, from [66], it follows that in the new coordinates z, system (3.1)− (3.2) can be

described by

ζ̇1 = ζ2

ζ̇2 = ζ3

...

ζ̇r−1 = ζr

ζ̇r = a(ζ, η) + b(ζ, η)u

η̇ = q(ζ, η)

(3.4)

where

a(ζ, η) = Lrfh(φ−1(ζ, η))

b(ζ, η) = LgL
r−1
f h(φ−1(ζ, η))

and

q(ζ, η) =


qr+1(ζ, η)

qr+2(ζ, η)
...

qn(ζ, η)

 =


Lfφr+1(φ−1(ζ, η))

Lfφr+2(φ−1(ζ, η))
...

Lfφn(φ−1(ζ, η))


It should be noted that the coordinate transformation (3.3) will be available if φi(x)

are available for i = r + 1, · · · , n, and in this case, the system (3.4) can be obtained

directly.
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3.2. PROBLEM FORMULATION

Consider the set of nonlinear interconnected systems

ẋi(t) = fi(xi) + gi(xi)ui + ∆fi(xi) +
N∑
j=1

j 6=i

Dij(xj) (3.5)

yi(t) = hi(xi), i = 1, 2, · · · , N (3.6)

where xi ∈ Ωi ⊂ Rni (Ωi is a neighborhood of the origin), yi ∈ R and ui ∈ Ui ⊂

R (Ui is an admissible control set) are the state, output and input of the i-th subsystem

respectively, fi(xi) ∈ Rni and gi(xi) ∈ Rni are smooth vector fields defined in the

domain Ωi, and hi(xi) ∈ Rmi are smooth in the domain Ωi for i = 1, 2, · · · , N . The

term ∆fi(xi) includes all the uncertainties experienced by the i-th subsystem. The term∑N
j=1

j 6=i
Dij(xj) is the nonlinear interconnection of the i-th subsystem.

Definition 4.2 The systems

ẋi(t) = fi(xi) + gi(xi)ui + ∆fi(xi) (3.7)

yi(t) = hi(xi), i = 1, 2, · · · , N (3.8)

are called the isolated subsystems of the systems (3.5)-(3.6), and the systems

ẋi(t) = fi(xi) + gi(xi)ui (3.9)

yi(t) = hi(xi), i = 1, 2, · · · , N (3.10)

are called the nominal isolated subsystems of the systems (3.5)-(3.6).

In this chapter, under the assumption that the isolated subsystems (3.9)-(3.10) have

uniform relative degree ri in the considered domain Ωi, the interconnected systems (3.5)-

(3.6) are to be analysed. The objective is to explore the system structure based on a

geometric transformation to design a robust asymptotic observer for the interconnected

system (3.5)-(3.6).

It should be noted that the following results can be extended to the case where the

isolated subsystems are multi-input and multi-output using the corresponding framework

to Section 3.1 for the multi-input and multi-output case provided in [66].
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3.3. SYSTEM ANALYSIS AND ASSUMPTIONS

In this section, some assumptions are imposed on the system (3.5)–(3.6) to facilitate

the observer design.

Assumption 4.1. The nominal isolated subsystem (3.9)-(3.10) has uniform relative degree

ri in the domain xi ∈ Ωi for i = 1, 2, · · · , N .

The practical meaning of Assumption 4.1 is that the nominal isolated subsystem

(3.9)-(3.10) with well defined relative degree ri are exactly those for which input/output

feedback linearization is possible in the domain xi ∈ Ωi for i = 1, 2, · · · , N . The basic

approach of input-output linearization is simply to differentiate the output function yi

repeatedly until the input ui appears, and then design ui to cancel the nonlinearity. In

which case no relative degree can be defined at any point in the domain xi ∈ Ωi for

i = 1, 2, · · · , N , then the output of the system is not affected by the input. i.e. that y(t) is

a function depending only on the initial state and not on the input.

Under Assumption 4.1, it follows from Section 3.1 that there exists a coordinate

transformation

Ti : xi → col(ζi, ηi) (3.11)

where

ζi =


ζi1

ζi2
...

ζiri

 =


hi(xi)

Lfhi(xi)
...

Lri−1
f hi(xi)

 ∈ R
ri (3.12)

and ηi ∈ Rni−ri is defined by

ηi =


ηi1

ηi2
...

ηni−ri

 =


φi(ri+1)(xi)

φi(ri+2)(xi)
...

φini
(xi)

 ∈ R
ni−ri (3.13)

for i = 1, 2, · · · , N . The functions φi(ri+1)(xi), φi(ri+2)(xi), · · · , φini
(xi) can be obtained
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by solving the following partial differential equations:

Lgiφi(xi) = 0, xi ∈ Ωi, i = 1, 2, · · · , N. (3.14)

From Section 3.1, it follows that in the new coordinate system (ζi, ηi), the nominal isolated

subsystem (3.9)-(3.10) can be described by

ζ̇i = Aiζi + βi(ζi, ηi, ui) (3.15)

η̇i = qi(ζi, ηi) (3.16)

yi = Ciζi (3.17)

where

Ai =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

0 0 0 · · · 0


∈ Rri×ri , Ci =

[
1 0 · · · 0

]
∈ R1×ri (3.18)

βi(ζi, ηi, ui) =


0
...

0

Lrifihi(T
−1
i (ζi, ηi)) + LgiL

ri−1
fi

hi(T
−1
i (ζi, ηi))ui

 (3.19)

It is clear to see that the pair (Ai, Ci) is observable. Thus, there exists a matrix Li such that

Ai−LiCi is Hurwitz stable. This implies that, for any positive definite matrixQi ∈ Rri×ri ,

the Lyapunov equation

(Ai − LiCi)TPi + Pi(Ai − LiCi) = −Qi (3.20)

has a unique positive-definite solution Pi ∈ Rri×ri for i = 1, 2, · · · , N .

Assumption 4.2. The uncertainty ∆fi(xi) in (3.5) satisfies

∂Ti
∂xi

∆fi(xi) =

 Ei∆Ψi(xi)

0

 (3.21)
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where Ti(·) is defined in (3.11), Ei ∈ Rri×ri is a constant matrix satisfying

ET
i Pi = HiCi (3.22)

for some matrix Hi, with Pi satisfying (3.20), and ‖∆Ψi(xi)‖ ≤ κi(xi), where κi(xi) is

continuous and Lipschitz about xi in the domain Ωi for i = 1, 2, · · · , N .

Remark 4.1. Solving the Lyapunov equation (3.20) in the presence of the constraint

(3.22) constitutes the well known constrained Lyapunov problem [99]. Although there is

no general solution available for this problem, associated discussion and an algorithm can

be found in [100].

Remark 4.2. Assumption 4.2 is a limitation on the uncertainty ∆fi(xi), which is used

to guarantee the existence of asymptotic observers. Denote the nonlinear uncertain term

∆Ψi(xi) in (3.21) in the new coordinate frame (ζi, ηi) by ∆Φi(ζi, ηi) i.e.

∆Φi(ζi, ηi) = [∆Ψi(xi)]xi=T−1
i (ζi,ηi)

(3.23)

From Assumption 2, there exists a function ρi(ζi, ηi) such that

‖∆Φi(ζi, ηi)‖ ≤ ρi(ζi, ηi) (3.24)

and ρi(ζi, ηi) satisfies the Lipschitz condition in Ti(Ωi). Thus for any (ζi, ηi) and (ζ̂i, η̂i) ∈

Ti(Ωi),

‖ρi(ζi, ηi)− ρi(ζ̂i, η̂i)‖ ≤ lai ‖ζi − ζ̂i‖+ lbi‖ηi − η̂i‖ (3.25)

where both lai and lbi are nonnegative constants.

Consider the interconnections Dij(xj) in system (3.5). Partition ∂Ti
∂xi
Dij(xj) as fol-

lows

∂Ti
∂xi

Dij(xj)
∣∣
xj=T−1

j (ζj ,ηj)
=

 Γaij(ζj, ηj)

Γbij(ζj, ηj)

 (3.26)

where Γaij(ζj, ηj) ∈ Rri , Γbij(ζj, ηj) ∈ Rni−ri for i = 1, 2, · · · , N and i 6= j.

Assumption 4.3. The nonlinear terms Γaij(ζj, ηj) ∈ Rri and Γbij(ζj, ηj) ∈ Rni−ri in (3.26)

satisfy the Lipschitz condition in Ti(Ωi).
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Assumption 3 implies that there exist nonnegative constants αaij , αbij , µaij and µbij

such that

‖Γaij(ζi, ηi)− Γaij(ζ̂i, η̂i)‖ ≤ αaij‖ζj − ζ̂j‖+ αbij ‖ ηj − η̂j‖ (3.27)

‖Γbij(ζi, ηi)− Γbij(ζ̂i, η̂i)‖ ≤ µaij‖ζj − ζ̂j‖+ µbij ‖ ηj − η̂j‖ (3.28)

for i = 1, 2, · · · , N and i 6= j.

Remark 4.3. It should be noted that Assumption 4.2 and 4.3 have limitations to the co-

ordinate transformation Ti in (3.11). However, in local case, the corresponding limitation

is trivial and the Lipschitz conditions in Assumption 4.2 and 4.3 can be satisfied if all the

associated functions are smooth.

From (3.15)− (3.17) and the analysis above, it follows that under Assumption 2, in

the new coordinate system (ζi, ηi), the system (3.5)-(3.6) can be described by

ζ̇i = Aiζi + βi(ζi, ηi, ui) + Ei∆Ψi(ζi, ηi) +
N∑
j=1

j 6=i

Γaij(ζj, ηj) (3.29)

η̇i = qi(ζi, ηi) +
N∑
j=1

j 6=i

Γbij(ζj, ηj) (3.30)

yi = Ciζi (3.31)

where Ai and Ci are given in (3.18), βi(·) is defined in (3.19) and Γaij(·) and Γbij(·) are

defined in (3.26).

Remark 4.4. Since βi(·) is continuous in the domain Ti(Ωi), it is straightforward to see

that there exists a subset in the domain Ti(Ωi) such that the function βi(·) is Lipschitz in

the subset

‖ βi(ζi, ηi, ui)− βi(ζ̂i, η̂i, ui) ‖≤ vai (ui) ‖ ζi − ζ̂i ‖ +vbi (ui) ‖ ηi − η̂i ‖ (3.32)

where vai (ui) and vbi (ui) are known nonnegative functions of ui for i = 1, 2, · · · , N .

Assumption 4.4. The function qi(ζi, ηi) in equation (3.30) has the following decomposi-

tion

qi(ζi, ηi) = Miηi + θi(ζi, ηi) (3.33)

where Mi ∈ R(ni−ri)×(ni−ri) is a Hurwitz matrix and θi(ζi, ηi) are Lipschitz in the domain

Ti(Ωi).
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Under Assumption 4, there exist nonnegative constants τai and τ bi such that.

‖ θi(ζi, ηi)− θi(ζ̂i, η̂i) ‖≤ τai ‖ ζi − ζ̂i ‖ +τ bi ‖ ηi − η̂i ‖ (3.34)

for i = 1, 2, · · · , N.. Further, from the fact that Mi is Hurwitz stable for Λi > 0, the

following Lyapunov equation has a unique solution Πi > 0

MT
i Πi + ΠiMi = −Λi, i = 1, 2, · · · , N. (3.35)

3.4. NONLINEAR OBSERVER SYNTHESIS

In this section, an observer is designed for the transformed systems (3.29) − (3.31)

which provides asymptotic estimation of the states of the interconnected systems (3.29)−

(3.31). For the system (3.29)− (3.31), construct dynamical systems

˙̂
ζi = Aiζ̂i + Li(yi − Ciζ̂i) + βi(ζ̂i, η̂i, ui) +Ki(y, ζ̂i, η̂i)

+
N∑
j=1

j 6=i

Γaij(ζ̂j, η̂j) (3.36)

˙̂ηi = Miη̂i + θi(ζ̂i, η̂i) +
N∑
j=1

j 6=i

Γbij(ζ̂j, η̂j) (3.37)

where the term Ki(yi, ζ̂i, η̂i) is defined by

Ki(yi, ζ̂i, η̂i) =
{ P−1

i CT
i (yi−Ciζ̂i)

‖yi−Ciζ̂i‖
‖ Hi ‖ ρi(ζ̂i, η̂i), yi − Ciζ̂i 6= 0

0, yi − Ciζ̂i = 0
(3.38)

where Pi and Hi satisfy (3.20) and (3.22) respectively.

The following results are ready to be presented.

Theorem 4.1. Suppose Assumptions 1−4 hold. Then, the dynamical system (3.36)–

(3.37) is a robust asymptotic observer of system (3.29)-(3.31), if the function matrix

W T (·) + W (·) is positive definite in the domain T (Ω) × U := T (Ω1) × U1 × T (Ω2) ×

U2 × · · · × T (ΩN) × UN , where the matrix W (·) = [wij(·)]2N×2N , and its entries wij(·)

are defined by
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wij =



λmin(Qi)− 2λmax(Pi)v
a
i (·)− 2lai ‖Ci‖‖Hi‖, i = j, 1 ≤ i ≤ N

−2λmax(Pi)α
a
ij, i 6= j, 1 ≤ i ≤ N, 1 ≤ j ≤ N

λmin(Λi−N)− 2λmax(Πi−N)τ bi−N , i = j, N + 1 ≤ i ≤ 2N

−2λmax(Π(i−N))µ
b
(i−N)(j−N),

i 6= j, N + 1 ≤ i ≤ 2N,N + 1 ≤ j ≤ 2N

−2[λmax(Pi)v
b
i (·) + lbi‖Ci‖‖Hi‖+ λmax(Πi)τ

a
i ],

j − i = N, 1 ≤ i ≤ N,N + 1 ≤ j ≤ 2N

−2λmax(Pi)α
b
i(j−N), j − i 6= N, 1 ≤ i ≤ N,N + 1 ≤ j ≤ 2N

0, i− j = N, N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ N

−2λmax(Πi−N)µa(i−N)j, i− j 6= N, N + 1 ≤ i ≤ 2N, 1 ≤ j ≤ N

Proof. Let eζi = ζi − ζ̂i and eηi = ηi − η̂i for i = 1, 2, · · · , N . Compare systems

(3.29) − (3.30) and (3.36) − (3.37). It follows that the error dynamical systems are

described by

ėζi = (Ai − LiCi)eζi + βi(ζi, ηi, ui)− βi(ζ̂i, η̂i, ui) + Ei∆Ψi(ζi, ηi)

−Ki(yi, ζ̂i, η̂i) +
N∑
j=1

j 6=i

Γaij(ζj, ηj)−
N∑
j=1

j 6=i

Γaij(ζ̂j, η̂j) (3.39)

ėηi = Mieηi + θi(ζi, ηi)− θi(ζ̂i, η̂i) +
N∑
j=1

j 6=i

Γbij(ζj, ηj)

−
N∑
j=1

j 6=i

Γbij(ζ̂j, η̂j) (3.40)

Now, for the system (3.39) and (3.40) consider the following candidate Lyapunov

function

V =
N∑
i=1

eTζiPieζi +
N∑
i=1

eTηiΠieηi (3.41)

Then, the time derivative of the candidate Lyapunov function can be described by

V̇ =
N∑
i=1

[(ėTζiPieζi + eTζiPi ˙eζi) + (ėTηiΠieηi + eTηiΠiėηi)] (3.42)
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Substituting both ėζi in (3.39) and ėηi in (3.40) into equation (3.42), it follows by direct

computation that the time derivative of the function V in (3.41) can be described by

V̇ =
N∑
i=1

{
eTζi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]eζi + 2eTζiPi[βi(ζi, ηi, ui)

−βi(ζ̂i, η̂i, ui)] + 2[eTζiPiEi∆Ψi(ζi, ηi)− eTζiPiKi(yi, ζ̂i, η̂i)] + 2eTζiPi

×
N∑
j=1

j 6=i

[Γaij(ζj, ηj)− Γaij(ζ̂j, η̂j)] + eTηi(M
T
i Πi + ΠiMi)eηi + 2eTηiΠi

×[θi(ζi, ηi)− θi(ζ̂i, η̂i)] + 2eTηiΠi

N∑
j=1

j 6=i

[Γbij(ζj, ηj)− Γbij(ζ̂j, η̂j)]
}

(3.43)

From (3.22), (3.24), (3.25) and (3.38), it follows that:

(i) If yi − Ciζ̂i = 0, then from (3.22) and eTζiC
T
i = (yi − Ciζ̂i)T

eTζiPiEi∆Φi(ζi, ηi) − eTζiPiKi(yi, ζ̂i, η̂i) = eTζiC
T
i H

T
i ∆Φi(ζi, ηi) (3.44)

= (Hi(yi − Ciζ̂i))T∆Φi(ζi, ηi) = 0 (3.45)

(ii) If yi − Ciζ̂i 6= 0, then from (3.22), (3.24), (3.25) and (3.38)

eTζiPiEi∆Φi(ζi, ηi)− eTζiPiKi(yi, ζ̂i, η̂i)

= eTζiC
T
i H

T
i ∆Φi(ζi, ηi)− eTζiPi

P−1
i CT

i (yi − Ciζ̂i)
‖yi − Ciζ̂i‖

‖ Hi ‖ ρi(ζ̂i, η̂i)

= (Cieζi)
THT

i ∆Φi(ζi, ηi)−
eTζiC

T
i Cieζi

‖Cieζi‖
‖Hi‖ρi(ζ̂i, η̂i)

≤ ‖Cieζi‖‖Hi‖
{
ρi(ζi, ηi)− ρi(ζ̂i, η̂i)

}
≤ ‖Cieζi‖‖Hi‖

{
lai ‖ζi − ζ̂i‖+ lbi‖ηi − η̂i‖

}
Then, from (i) and (ii) above, it follows that

eTζiPiEi∆Φi(ζi, ηi) − eTζiPiKi(yi, ζ̂i, η̂i)

≤ ‖Cieζi‖‖Hi‖
(
lai ‖eζi‖+ lbi‖eηi‖

)
(3.46)
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Substituting (3.27), (3.28), (3.32), (3.34), and (3.46) into (3.43) yields

V̇ ≤
N∑
i=1

{
− eTζiQieζi + 2‖eζi‖‖Pi‖

[
vai ‖eζi‖+ vbi‖eηi‖

]
+ 2‖eζi‖‖Ci‖‖Hi‖

×
[
lai ‖eζi‖+ lbi‖eηi‖

]
+ 2‖eζi‖‖Pi‖

N∑
j=1

j 6=i

[
αaij‖eζj‖+ αbij‖eηj‖

]
− eTηiΛieηi

+ 2eTηi‖Πi‖
[
τai ‖eζi‖+ τ bi ‖eηi‖

]
+ 2eTηi‖Πi‖

N∑
j=1

j 6=i

[
µaij‖eζj‖+ µbij‖eηj‖

]}

≤
N∑
i=1

{
− eTζiQieζi + 2vai ‖eζi‖2‖Pi‖+ 2vbi‖eζi‖‖eηi‖‖Pi‖+ 2lai ‖eζi‖2‖Ci‖

×‖Hi‖+ 2lbi‖eζi‖‖eηi‖Ci‖‖Hi‖+
N∑
j=1

j 6=i

[
2αaij‖eζi‖‖eζj‖‖Pi‖+ 2αbij‖eζi‖

×‖eηj‖‖Pi‖
]
− eTηiΛieηi + 2τai ‖Πi‖‖eζi‖‖eηi‖+ 2τ bi ‖Πi‖‖eηi‖2

+
N∑
j=1

j 6=i

[
2µaij‖Πi‖‖eζj‖‖eηi‖+ 2µbij‖Πi‖‖eηi‖‖eηj‖

]}

≤
N∑
i=1

{
−
[
λmin(Qi)− 2λmax(Pi)v

a
i − 2lai ‖Ci‖‖Hi‖]‖eζi‖2

+
[ N∑

j=1

j 6=i

2λmax(Pi)α
a
ij]‖eζi‖‖eζj‖+

[
2λmax(Pi)v

b
i + 2lbi‖Ci‖‖Hi‖

+2λmax(Πi)τ
a
i ]‖eζi‖‖eηi‖+ 2

N∑
j=1

j 6=i

λmax(Pi)α
b
ij‖eζi‖‖eηj‖

+
N∑
j=1

j 6=i

2λmax(Πi)µ
a
ij‖eζj‖‖eηi‖ −

[
λmin(Λi)− 2λmax(Πi)τ

b
i ]‖eηi‖2

+
[ N∑

j=1

j 6=i

2λmax(Πi)µ
b
ij]‖eηi‖‖eηj‖

}
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≤ −
N∑
i=1

{[
λmin(Qi)− 2λmax(Pi)v

a
i − 2lai ‖Ci‖‖Hi‖

]
‖eζi‖2

−
[ N∑

j=1

j 6=i

2λmax(Pi)α
a
ij]‖eζi‖‖eζj‖ −

[
2λmax(Pi)v

b
i + 2lbi‖Ci‖‖Hi‖

+2λmax(Πi)τ
a
i ]‖eζi‖‖eηi

]
‖ − 2

N∑
j=1

j 6=i

λmax(Pi)α
b
ij‖eζi‖‖eηj‖]

−
N∑
j=1

j 6=i

2λmax(Πi)µ
a
ij‖eζj‖‖eηi‖+

[
λmin(Λi)− 2λmax(Πi)τ

b
i ]‖eηi‖2

−
[ N∑

j=1

j 6=i

2λmax(Πi)µ
b
ij

]
‖eηi‖‖eηj‖

}

Then, from the definition of the matrix W (·) and the inequality above, it follows that

V̇ ≤ −1

2
XT [W T (·) +W (·)]X

where X = [‖eζ1‖, ‖eζ2‖, · · · , ‖eζN‖, ‖eη1‖, ‖eη2‖, · · · , ‖eηN‖]T . Since W T (·) +W (·) is

positive definite in the domain T (Ω)×U , it is clear that V̇ |(3.36)−(3.37) is negative definite.

Therefore, the error system (3.39)− (3.40) is asymptotically stable, that is,

lim
t→∞
‖ζi(t)− ζ̂i(t)‖ = 0 and lim

t→∞
‖ηi(t)− η̂i(t)‖ = 0 (3.47)

Hence, the conclusion follows. 4

Remark 4.5. It is clear that the structure of system (3.36)-(3.37) is variable due to the

term in (3.38). Theorem 4.1 shows that system (3.36)-(3.37) is an asymptotic observer

of the interconnected system (3.29)-(3.31). Therefore, system (3.36)-(3.37) is called a

variable structure observer throughout this chapter.

Now, consider the interconnected system (3.5) − (3.6). Assume that ∂T−1
i (ζi,ηi)

∂(ζi,ηi)
is

bounded in Ti(Ωi) for i = 1, 2, · · · , N . There exists a positive constant γi such that∥∥∥∥∂T−1
i (ζi, ηi)

∂(ζi, ηi)

∥∥∥∥ ≤ γi, (ζi, ηi) ∈ Ti(Ωi), i = 1, 2, · · · , N

Define x̂i = T−1
i (ζ̂i, η̂i), i = 1, 2, · · · , N . Then,

‖xi − x̂i‖ = ‖T−1
i (ζi, ηi)− T−1

i (ζ̂i, η̂i)‖ ≤ γi(‖ζi − ζ̂i‖+ ‖ηi − η̂i‖) (3.48)
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From (3.47) and (3.48), it follows that

lim
t→∞
‖xi(t)− x̂i(t)‖ = 0

This implies that x̂i is an asymptotic estimate of xi for i = 1, 2, · · · , N . Therefore,

x̂i = T−1
i (ζ̂i, η̂i)

provides an asymptotic estimate of the states xi of the system (3.5)− (3.6), where ζ̂i and

η̂i are given by (3.36)-(3.37) for i = 1, 2, . . . , N .

Remark 4.6. From the analysis above, it is clear to see that, in this chapter, it is not re-

quired that either the nominal isolated subsystems or the interconnections are linearisable.

The uncertainties are bounded by nonlinear functions and are fully used in the observer

design in order to reject the effects of the uncertainties, and thus robustness is enhanced.

Although the designed observer is a local asymptotic observer, the developed results can

be extended to the global case if the associated conditions hold globally.

3.5. SIMULATION EXAMPLES

3.5.1. A NUMERICAL EXAMPLE

Consider the nonlinear interconnected systems:

ẋ1 =


x12

−0.1 sinx12

−3x2
11 − 3.25x13 − 2x12


︸ ︷︷ ︸

f1(x1)

+


0

1

0


︸ ︷︷ ︸
g1(x1)

u1 +


∆σ1

0.5∆σ1

−2∆σ1


︸ ︷︷ ︸

∆f1(x1)

+


0.2(x2

21 + x22)

0

0.1 sinx21


︸ ︷︷ ︸

D12(x2)

(3.49)

y1 = x11︸︷︷︸
h1(x1)

(3.50)
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ẋ2 =


−x21

−x2
21 − 3x22 + cos(x2

21 + x22)− 1

−2x23 + 0.2x2
21


︸ ︷︷ ︸

f2(x2)

+


1

−2x21

0


︸ ︷︷ ︸

g2(x2)

u2 +


−∆σ2

2x21∆σ2

0


︸ ︷︷ ︸

∆f2(x2)

+


0

0.1 sin(x13 + 2x11)

0


︸ ︷︷ ︸

D21(x1)

(3.51)

y2 = x21︸︷︷︸
h2(x2)

(3.52)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22, x23), h1(x1) and h2(x2), and

u1(t) and u2(t) are the system state, output and input respectively, D12(·) and D21(·) are

interconnected terms and ∆f1(x1) and ∆f2(x2) are the uncertainties experienced by the

system which satisfy

||∆f1(x1)|| = 0.1|x13 + 2x11| sin2 t (3.53)

||∆f2(x2)|| = 0.1x2
21| cos t| (3.54)

The domain considered is

Ω =
{

(x11, x12, x13, x21, x22, x23),
∣∣∣ |x11| < 3,

|x21| ≤ 1.3, x12, x13, x22, x23 ∈ R
}

(3.55)

By direct computation, it follows that the first subsystem has uniform relative degree

2, and the second subsystem has uniform relative degree 1. The corresponding transfor-

mations are obtained as follows:

T1 :


ζ11 = x11

ζ12 = x12

η1 = x13 + 2x11

, T2 :


ζ2 = x21

η21 = x2
21 + x22

η22 = x23
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In the new coordinates, the system (3.49)− (3.52) can be described by:

ζ̇1 =

 0 1

0 0


︸ ︷︷ ︸

A1

 ζ11

ζ12

+

 0

−0.1 sin ζ11 + u1


︸ ︷︷ ︸

β1

+

 ∆σ1(ζ1, η1)

0.5∆σ1(ζ1, η1)


︸ ︷︷ ︸

E1∆Ψ(ζ1,η1)

+

 0.2η21

0


︸ ︷︷ ︸

Γa
12

(3.56)

η̇1 = −3.25η1 + 0.25ζ2
11︸ ︷︷ ︸

q1(ζ1,η1)

+ 0.4η21 + 0.1 sin ζ2︸ ︷︷ ︸
Γb
12

(3.57)

y1 =
[

1 0
] ζ11

ζ12

 (3.58)

ζ̇2 = −︸︷︷︸
A2

ζ2 + u2︸︷︷︸
β2

−∆σ2(ζ2, η2)︸ ︷︷ ︸
E2∆Ψ(ζ2,η2)

(3.59)

η̇2 =

 −3 0

0 −2

 η21

η22

+

 cos η21 − 1

0.2ζ2
2


︸ ︷︷ ︸

q2(ζ2,η2)

+

 0.1 sin η1

0


︸ ︷︷ ︸

Γb
21

(3.60)

y2 = ζ2 (3.61)

where ζ1 = (ζ11, ζ12)T , η1 ∈ R, ζ2 ∈ R, and η2 = (η21, η22)T .

From (3.53) and (3.54)

‖∆Ψ1(ζ1, η1)‖ ≤ ||∆σ1(ζ1, η1)|| ≤ 0.1|η1|2 cos t︸ ︷︷ ︸
ρ1(·)

‖∆Ψ2(ζ2, η2)‖ ≤ ||∆σ2(ζ2, η2)|| ≤ 0.1ζ2| sin t|2︸ ︷︷ ︸
ρ2(·)

Then, for the first subsystem, choose L1 =
[

3 2
]T

and Q = I . It follows that the

Lyapunov equation (3.20) has a unique solution:

P1 =

 0.5 −0.5

−0.5 1


and the solution to equation (3.22) is H1 = 0.25. As M1 = −3.25, let Λ1 = 3.25. Thus

the solution of equation (3.35) is Π1 = 0.5. Now, for the second subsystem, choose
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L2 = 0 and Q2 = 2. It follows that the Lyapunov equation (3.20) has a unique solution

P2 = 1 and the solution to equation(3.22) is H2 = −1. As

M2 =

 −3 0

0 −2

 , let Λ2 =

 1 0

0 1


Then

Π2 =

 0.1667 0

0 0.25


By direct computation, it follows that the matrixW T+W is positive definite in the domain

Ω defined in (3.55). Thus, all the conditions of Theorem 4.1 are satisfied. This implies

that the dynamical system

˙̂
ζ1 =

 0 1

0 0

 ζ̂11

ζ̂12

+

 3

2

 (y1 − C1ζ̂1) +

 0

u1

+K1(·) +

 0.2η̂21

0

(3.62)

˙̂η1 = −3.25η̂1 + 0.25ζ̂2
11 + 0.4η̂21 + 0.1 sin ζ̂2 (3.63)

˙̂
ζ2 = −ζ̂2 + u2 +K2(·) (3.64)

˙̂η2 =

 −3 0

0 −2

 η̂21

η̂22

+

 cos η̂21 − 1

0.2ζ̂2
2

+

 0.1 sin η̂1

0

 (3.65)

is a robust observer of the system (3.56)−(3.61) where ζ̂1 = col(ζ̂11, ζ̂12), η̂2 = col(η̂21, η̂22),

and K1(·) and K2(·) defined in (3.38) are as follows

K1(y1, ζ̂1, η̂1) =
{  0.1

0.05

 (ζ11−ζ̂11)

‖ζ11−ζ̂11‖
|η1| sin2 t), ζ11 − ζ̂11 6= 0

0, ζ11 − ζ̂11 = 0

K2(y2, ζ̂2, η̂2) =
{ 0.1 (ζ2−ζ̂2)

‖ζ2−ζ̂2‖
ζ2

2 | cos t|, ζ2 − ζ̂2 6= 0

0, ζ2 − ζ̂2 = 0

Therefore,

x̂11 = ζ̂11

x̂12 = ζ̂12

x̂13 = η̂1 − 2ζ̂11

and

x̂21 = ζ̂2

x̂22 = η̂21 − ζ̂2
2

x̂23 = η̂22
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with ζ̂1 = col(ζ̂11, ζ̂12), η̂1, ζ̂2 and η̂2 = col(η̂21, η̂22) given by system (3.62) − (3.65),

provide an asymptotic estimate for x1 and x2 of system (3.49)–(3.52).

For simulation purposes, the controllers are chosen as:

u1 = −ζ11 − 2ζ12 and u2 = −ζ21 (3.66)

The simulation results in Figures 3.1 and 3.2 show that the designed observer esti-

mates the states of the interconnected system in (3.49) − (3.52), x1 = col(x11, x12, x13)

and x2 = col (x21, x22, x23) respectively, very well. Figure 3.3 shows the error between

the actual states and the estimated states in both subsystems.

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

Time [sec]

 

 

state x
11

estimation of x
11

0 5 10 15
−4

−2

0

2

4

6

Time [sec]

 

 
state x

12

estimation of x
12

0 5 10 15
−10

−5

0

5

Time [sec]

 

 

state x
13

estimation of x
13

Figure 3.1: The time responses of the states of the first subsystem, x1 = col (x11, x12, x13),

and their estimates x̂1 = col (x̂11, x̂12, x̂13)

3.5.2. CASE STUDY: OBSERVER DESIGN FOR COUPLED INVERTED

PENDULA

Consider the system given in Figure 3.4 formed by two identical inverted pendula

which are connected by a spring and subject to distinct inputs u1 and u2 (see, e.g [101]).
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Figure 3.2: The time responses of the states of the second subsystem, x2 =

col (x21, x22, x23), and their estimates x̂2 = col (x̂21, x̂22, x̂23)

A salient feature of the system is that the point of attachment of the spring can change

along the full length (l) of the pendulum. The input to each pendulum is the torque ui

applied at the pivot point. The pay-loads are assumed to be both known and equal to m.

Let xi = col(xi1, xi2) = col(θi, θi − ωi) for i = 1, 2 where ωi := θ̇i is the corresponding

angle velocity. From [101], the dynamic equations of the system can be described as

ẋ1 =

 1 −1

1− g
l
−1


︸ ︷︷ ︸

A1

 x11

x12

+

 0

−1
ml2

u1 +

 0

ka2

ml2
x11


︸ ︷︷ ︸

β1

+

 0

1.8033 ∆σ1(ζ1, η1)


︸ ︷︷ ︸

E1∆Ψ(x1)

+

 0 0

−ka2
ml2

0


︸ ︷︷ ︸

Γa
12

x2 (3.67)

y1 =
[

1 0
] x11

x12

 (3.68)
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Figure 3.3: The time response of the estimates errors

ẋ2 =

 1 −1

1− g
l
−1


︸ ︷︷ ︸

A2

 x21

x22

+

 0

−1
ml2

u1 +

 0

− ka2

ml2
x21


︸ ︷︷ ︸

β2

+

 0

1.8033 ∆σ2(ζ1, η1)


︸ ︷︷ ︸

E2∆Ψ(x1)

+

 0 0

ka2

ml2
0


︸ ︷︷ ︸

Γa
21

x1 (3.69)

y2 =
[

1 0
] x21

x22

 (3.70)

where k and g are the spring and gravity constants, and a is a parameter explained in

Figure 3.4. It is assumed the only measurable state is

yi =
[

1 0
]
xi, i = 1, 2 (3.71)

and the parameters are chosen as

g

l
= 9.8,

1

ml2
= 0.5,

ka2

ml2
= 2.268 (3.72)
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Figure 3.4: Coupled inverted pendula

‖∆Ψ1(x1)‖ ≤ ||∆σ1(x1)|| ≤ 0.5 cos(t)︸ ︷︷ ︸
ρ1(·)

‖∆Ψ2(x2)‖ ≤ ||∆σ2(x2)|| ≤ 0.1 sin(t)︸ ︷︷ ︸
ρ2(·)

Then, for both subsystems, choose Li = [11 − 8.8]T and Qi = I where i = 1, 2. It

follows that the Lyapunov equation (3.20) has unique solutions:

Pi =

 0.0545 −0.0455

−0.0455 0.5

 , i = 1, 2 (3.73)

and the solutions to equation (3.22) are Hi = [0 1]T for i = 1, 2.

By direct computation, it follows that the matrix W T + W is symmetric positive

definite. Thus, all the conditions of Theorem 4.1 are satisfied. This implies that the

dynamical system

˙̂x1 =

 1 −1

−8.81 −1

 x̂11

x̂12

+

 11

−8.8

 (y1 − C1x̂1) +

 0

−0.5

u1

+

 0

2.268x̂11

+K1(·) +

 0 0

−2.268 0

 x̂21

x̂22

 (3.74)
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˙̂x2 =

 1 −1

−8.81 −1

 x̂21

x̂22

+

 11

−8.8

 (y2 − C2x̂2) +

 0

−0.5

u2

+

 0

−2.268x̂21

+K2(·) +

 0 0

2.268 0

 x̂11

x̂12

 (3.75)

is a robust observer of the system (3.67) − (3.70) where x̂1 = col(x̂11, x̂12), x̂2 =

col(x̂21, x̂22), and the K1(·) and K2(·) defined in (3.38) are

K1(y1, x̂1) =
{  9.918

0.9016

 (x11−x̂11)
‖x11−x̂11‖ cos t), x11 − x̂11 6= 0

0, x11 − x̂11 = 0

K2(y2, x̂2) =
{  1.9836

0.1803

 (x21−x̂21)
‖x21−x̂21‖ sin t), x21 − x̂21 6= 0

0, x21 − x̂21 = 0

For simulation purposes, the controllers are chosen as:

ui = −61.6xi1 + 22xi2, i = 1, 2 (3.76)

The simulation results in Figures 3.5 and 3.6 show that the states x̂1 and x̂2 of the

designed dynamics approximate the states of the interconnected system (3.67)–(3.70),

x1 = col (x11, x12) and x2 = col (x21, x22) respectively, very well.

3.6. CONCLUSIONS

In this chapter, observer design for a class of nonlinear large scale interconnected

systems with uniform relative degree has been considered. An asymptotic observer has

been developed for nonlinear interconnected systems with uncertainties using the Lya-

punov approach together with a geometric transformation. It is not required that either

the isolated nominal subsystems or the interconnections are linearisable. Robustness to

uncertainties is enhanced by using the system structure and the structure of the uncertain-

ties within the design framework. The developed results are applicable to a wide class of

nonlinear interconnected systems.
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Figure 3.5: The time responses of the states of the first subsystem, x1 = col (x11, x12),

and their estimates x̂1 = col (x̂11, x̂12)
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Figure 3.6: The time responses of the states of the second subsystem, x2 = col (x21, x22),

and their estimates x̂2 = col (x̂21, x̂22)
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CHAPTER. 4

ROBUST SLIDING MODE OBSERVERS

FOR LARGE SCALE SYSTEMS WITH

APPLICATION TO A MULTIMACHINE

POWER SYSTEM

In this chapter, a class of interconnected systems with structured and unstructured uncer-

tainties is considered where the known interconnections and uncertain interconnections

are nonlinear. The bounds on the uncertainties are employed in the observer design to

enhance the robustness when the structure of the uncertainties is available for design. Un-

der the condition that the structure distribution matrices of the uncertainties are known, a

robust sliding mode observer is designed and a set of sufficient conditions is developed to

guarantee that the error dynamics are asymptotically stable. In the case that the structure

of uncertainties is unknown, an ultimately bounded approximate observer is developed to

estimate the system states using sliding mode techniques. The results obtained are ap-

plied to a multimachine power system, and simulation for a two machine power system is

65
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presented to demonstrate the feasibility and effectiveness of the developed methods.

4.1. SYSTEM DESCRIPTION AND PRELIMINAR-

IES

Consider a nonlinear interconnected system composed of N subsystems as follows

ẋi = Aixi +Biui + ∆φi(xi, ui) +Mi(x) + ∆Mi(x) (4.1)

yi = Cixi (4.2)

where xi ∈ Rni , ui ∈ U ∈ Rmi (U is the admissible control set) and yi ∈ Rpi with mi ≤

pi ≤ ni are the state variables, inputs and outputs of the i-th subsystem respectively. The

matrix triples (Ai, Bi, Ci) are constant with appropriate dimensions and Ci are full row

rank. The terms ∆φi(xi, ui) and ∆Mi(x) are the uncertainties in the i-th isolated subsys-

tems and interconnections respectively. The terms Mi(x) are the known interconnections

for i = 1, · · · , N .

The aim is to design a robust sliding mode observer for the above system to estimate

inaccessible states in the presence of both structured and unstructured uncertainties.

Assumption 5.1. The uncertainties ∆φi(xi, ui) and ∆Mi(x) have the decomposition

∆φi(xi, ui) = Ha
i ∆ξi(xi, ui), ∆Mi(x) = Hb

i∆Ei(x) (4.3)

where Ha
i ∈ Rni×ki and Hb

i ∈ Rni×ri are the distribution matrices of the uncertainties,

and

‖∆ξi(xi, ui)‖ ≤ ρi(xi, ui) and ‖∆Ei(x)‖ ≤ σi(x) (4.4)

where ρi(xi, ui) is known and Lipshitz about xi uniformly for ui ∈ U , and σi(x) is known

and Lipshitz about x.
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Since the Ci are full row rank, there exist nonsingular matrices Tci such that

Āi =

 Āi1 Āi2

Āi3 Āi4

 := TciAiT
−1
ci
, (4.5)

B̄i =

 B̄i1

B̄i2

 := TciBi, C̄i =
[

0 Ipi

]
:= CiT

−1
ci

(4.6)

where Āi1 ∈ R(ni−pi)×(ni−pi), B̄i1 ∈ R(ni−pi)×mi and B̄i2 ∈ Rpi×mi for i = 1, · · · , N .

Then in the new coordinates

x̄i = Tcixi (4.7)

system (4.1)-(4.2) can be rewritten as

˙̄xi1 = Āi1x̄i1 + Āi2x̄i2 + B̄i1ui + H̄a
i1∆φ̄i(x̄i, ui) + M̄i1(x̄) + H̄b

i1∆M̄i(x̄) (4.8)

˙̄xi2 = Āi3x̄i1 + Āi4x̄i2 + B̄i2ui + H̄a
i2∆φ̄i(x̄i, ui) + M̄i2(x̄) + H̄b

i2∆M̄i(x̄) (4.9)

yi = x̄i2 (4.10)

where x̄ = col(x̄1, x̄2, · · · , x̄N), x̄i = col(x̄i1, x̄i2), x̄i1 ∈ Rni−pi , x̄i2 ∈ Rpi , Āij and B̄il

are defined in (4.5)-(4.6) for j = 1, 2, 3, 4 , l = 1, 2, i = 1, 2, · · · , N , and

 H̄a
i1

H̄a
i2

 : = TciH
a
i ,

 H̄b
i1

H̄b
i2

 := TciH
b
i (4.11)

 M̄i1(x)

M̄i2(x)

 : = TciMi(x) (4.12)

∆φ̄i(x̄i, ui) = ∆ξi(T
−1
ci
x̄i, ui) (4.13)

∆M̄i(x̄) = ∆Ei(T
−1
ci
x̄) (4.14)

where H̄a
i1 ∈ R(ni−pi)×ki , H̄b

i1 ∈ R(ni−pi)×ri , and M̄i1(·) ∈ R(ni−pi) for i = 1, 2, · · · , N .

Assumption 5.2. The matrix pair (Āi, C̄i) in (4.5)-(4.6) is observable for i = 1, 2, · · · , N .

Under Assumption 5.2, there exists a matrix Li such that Āi − LiC̄i is stable, and

thus for any Qi > 0 the Lyapunov equation

(Āi − LiC̄i)TPi + Pi(Āi − LiC̄i) = −Qi (4.15)
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has an unique solution Pi > 0 for i = 1, 2, · · · , N .

Assumption 5.3. There exist matrices F a
i ∈ Rki×pi and F b

i ∈ Rri×pi such that the solution

Pi to the Lyapunov equation (4.15) satisfies the constraint

H̄aT
i Pi = F a

i C̄i (4.16)

H̄bT
i Pi = F b

i C̄i (4.17)

For further analysis, introduce partitions of Pi and Qi which are conformable with the

decomposition in (4.8)-(4.10) as follows

Pi =

 Pi1 Pi2

P T
i2 Pi3

 , Qi =

 Qi1 Qi2

QT
i2 Qi3

 (4.18)

where Pi1 ∈ R(ni−pi)×(ni−pi) and Qi1 ∈ R(ni−pi)×(ni−pi). Then, from Pi > 0 and Qi > 0,

it follows that Pi1 > 0, Pi3 > 0, Qi1 > 0 and Qi3 > 0.

The following results are required for further analysis.

Lemma 5.1. If Pi and Qi have the partition in (4.18), then under Assumption 5.3, the

following results hold

(i). P−1
i1 Pi2H̄

a
i2 + H̄a

i1 = 0 if (4.16) is satisfied.

(ii). P−1
i1 Pi2H̄

b
i2 + H̄b

i1 = 0 if (4.17) is satisfied.

(iii). The matrix Ai1 + P−1
i1 Pi2Ai3 is Hurwitz stable if the Lyapunov equation (4.15) is satisfied.

Proof. See Lemma 2.1 in [126].

4.2. SLIDING MODE OBSERVER DESIGN

Consider the system in (4.8)-(4.10). Introduce a linear coordinate transformation

zi =

 Ini−pi P−1
i1 Pi2

0 Ipi


︸ ︷︷ ︸

Ti

x̄i (4.19)

In the new coordinate system zi, system (4.8)-(4.10) has the following form
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żi1 = (Āi1 + P−1
i1 Pi2Āi3)zi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))zi2

+B̄i1ui + P−1
i1 Pi2B̄i2ui + M̄i1(T−1z) + P−1

i1 Pi2M̄i2(T−1z) (4.20)

żi2 = Āi3zi1 + (Āi4 − Āi3P−1
i1 Pi2)zi2 + B̄i2ui + H̄a

i2∆φ̄i(T
−1
i zi, ui)

+M̄i2(T−1z) + H̄b
i2∆M̄i(T

−1z) (4.21)

yi = zi2 (4.22)

where zi = col(zi1, zi2) with zi1 ∈ Rni−pi . From Assumption 5.1, (4.13) and (4.14)

‖∆φ̄i(T−1
i zi, ui)‖ ≤ ρi((TiTci)

−1zi, ui) :=ρ̄i(zi, ui) (4.23)

‖∆M̄i(T
−1z)‖ ≤ σi((TTc)

−1z) := σ̄i(z) (4.24)

and ρ̄i(zi, ui), σ̄i(z) satisfy the Lipschitz condition

‖ρ̄i(zi, ui)− ρ̄i(ẑi, ui)‖ ≤ `ρ̄i‖zi − ẑi‖ (4.25)

‖σ̄i(z)− σ̄i(ẑ)‖ ≤ `σ̄i‖z − ẑ‖ (4.26)

Here `ρ̄i may be a function of ui.

For system (4.20)-(4.22), consider a dynamical system

˙̂zi1 = (Āi1 + P−1
i1 Pi2Āi3)ẑi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))yi

+B̄i1ui + P−1
i1 Pi2B̄i2ui + M̄i1(T−1ẑ) + P−1

i1 Pi2M̄i2(T−1ẑ) (4.27)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3P−1
i1 Pi2)ẑi2 + B̄i2ui + M̄i2(T−1ẑ) + di(·) (4.28)

ŷi = ẑi2 (4.29)

where ẑ = col(ẑ1, y), and the injection term di(·) is defined by

di(·) = (‖H̄a
i2‖ρ̄i(ẑi, ui) + ‖H̄b

i2‖σ̄i(ẑ) + ‖Āi4 − Āi3P−1
i1 Pi2‖‖yi − ŷi‖

+ki)sgn(yi − ŷi) (4.30)

where ρ̄i(ẑi, ui) = ρ̄i(ẑi1, yi, ui) and σ̄i(ẑ) = σ̄i(ẑ11, y1, ẑ21, y2, · · · , ẑN1, yN).
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Let ei1 = zi1 − ẑi1 and eyi = yi − ŷi. Then from (4.20)-(4.22) and (4.27)-(4.29), the

error dynamics are described by

ėi1 =(Āi1 + P−1
i1 Pi2Āi3)ei1 + [M̄i1(T−1z)− M̄i1(T−1ẑ)]

+P−1
i1 Pi2[M̄i2(T−1z)− M̄i2(T−1ẑ)] (4.31)

ėyi = Āi3ei1 + (Āi4 − Āi3P−1
i1 Pi2)eyi + [M̄i2(T−1z)− M̄i2(T−1ẑ)]

+H̄a
i2∆φ̄i(T

−1
i zi, ui) + H̄b

i2∆M̄i(T
−1z)− di(·) (4.32)

where di(·) is given in (4.30) for i = 1, 2, · · · , N .

From the structure of the transformation matrix Ti in (4.19) and the fact that ẑi =

col(ẑi1, yi), it follows that

‖T−1
i zi − T−1

i ẑi‖ = ‖T−1
i (zi − ẑi)‖ =

∥∥∥∥∥∥T−1
i

 ei1

0

∥∥∥∥∥∥ = ‖ei1‖

From the analysis above, it is straightforward to see

‖T−1z − T−1ẑ‖ = ‖e1‖ (4.33)

where

e1 := col(e11, e21, · · · , eN1) (4.34)

Therefore,

‖M̄i1(T−1z)− M̄i1(T−1ẑ)‖ ≤ `M̄i1
‖e1‖ (4.35)

‖M̄i2(T−1z)−Mi2(T−1ẑ)‖ ≤ `M̄i2
‖e1‖ (4.36)

The following conclusion is ready to be presented:

Theorem 5.1. Under Assumptions 5.1 − 5.3, the error system (4.31) is asymptotically

stable if the matrix W T +W is positive definite, where the matrix W = [wij]N×N , and its

entries wij are defined by

wij=


λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i = j

−2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i 6= j

(4.37)
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where Pi1, Pi2 and Qi1 are given in (4.18).

Proof. For system (4.31), consider a Lyapunov function candidate

V =
N∑
i=1

eTi1Pi1ei1

Then, the time derivative of V along the trajectories of system (4.31) is given by

V̇ =
N∑
i=1

{
eTi1[Pi1(Āi1 + P−1

i1 Pi2Āi3)T + (Āi1 + P−1
i1 Pi2Āi3)Pi1]ei1

+2‖Pi1‖‖ei1‖
{[
`M̄i1

+ ‖P−1
i1 Pi2‖`M̄i2

]
‖e1‖

}}
≤

N∑
i=1

{
− eTi1Qi1ei1 + 2‖ei1‖

{[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖e1‖

}}
(4.38)

From the definition of e1 in (4.34)

‖e1‖ ≤
N∑
j=1

‖ej1‖ = ‖ei1‖+
N∑
j=1

j 6=i

‖ej1‖ (4.39)

Then, from (4.38) and (4.39)

V̇ ≤
N∑
i=1

{
− eTi1Qi1ei1 + 2‖ei1‖

{[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

][
‖ei1‖+

N∑
j=1

j 6=i

‖ej1‖
]}}

≤
N∑
i=1

{
− eTi1Qi1ei1 + 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`Mi2

]
‖ei1‖2

+
N∑
j=1

j 6=i

2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖ei1‖‖ej1‖

}

≤−
N∑
i=1

{{
λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]}
‖ei1‖2

−
N∑
j=1

j 6=i

2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖ei1‖‖ej1‖

}
(4.40)

Then, from the definition of the matrix W in (4.37) and the inequality above, it follows

that

V̇ ≤ −1

2
XT [W T +W ]X

where X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖]T . Hence, the conclusion follows from W T +W >

0. 4
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Remark 5.1. From the error dynamics (4.31)-(4.32), it is clear to see that the ei1 dynamics

interact with the dynamics eyi through the interconnection terms M̄i1(·) and M̄i2(·). From

the inequalities (4.35) and (4.36), it follows that the interconnections on the right-hand

side of equation (4.31) are bounded by functions of e1 only. The proof of Theorem 5.1

further shows that the stability of the error dynamics (4.31) are actually independent of

eyi . This fact will be used to show the stability of the sliding motion later.

Remark 5.2. From the stability of Theorem 1, it follows that e1 is bounded and thus there

exists a constant β > 0 such that

‖e1‖ ≤ β, (4.41)

where β can be estimated using the approach given in [126].

For system (4.31)-(4.32), consider a sliding surface

S = {(e11, ey1 , e21, ey2 , · · · , eN1, eyN )
∣∣ey1 = 0, ey2 = 0, · · · , eyN = 0} (4.42)

From the structure of the error dynamical system (4.31)-(4.32), it follows that the sliding

mode of the error system (4.31)-(4.32) with respect to the sliding surface (4.42) is the sys-

tem (4.31) when limited to the sliding surface (4.42). From Remark 5.1 and Theorem 5.1,

the sliding mode associated with the sliding surface S given in (4.42) is asymptotically

stable if the the conditions of Theorem 5.1 hold. All that remains is to determine the gains

ki in (4.30) such that the system (4.31)-(4.32) can be driven to the sliding surface S in

finite time and a sliding motion maintained thereafter.

Theorem 5.2. Under Assumptions 5.1-5.3, system (4.31)-(4.32) is driven to the sliding

surface (4.42) in finite time and remains on it if

ki ≥ (‖Āi3‖+ `M̄i2
+ ‖H̄a

i2‖`ρ̄ + ‖H̄b
i2‖`σ̄)β + η (4.43)

where β is determined by (4.41) and η is a positive constant.

Proof. From (4.32)

N∑
i=1

eTyi ėyi =
N∑
i=1

eTyi

{
Āi3ei1 + (Āi4 − Āi3P−1

i1 Pi2)eyi + [M̄i2 − ˆ̄Mi2]

+H̄a
i2∆φ̄i(T

−1
i zi, ui) + H̄b

i2∆M̄i(T
−1z)− di(·)

}
CHAPTER 4. ROBUST SLIDING MODE OBSERVERS FOR LARGE SCALE
SYSTEMS WITH APPLICATION TO A MULTIMACHINE POWER SYSTEM



4.2. SLIDING MODE OBSERVER DESIGN 73

≤
N∑
i=1

{
‖Āi3‖‖ei1‖‖eyi‖+ `M̄i2

‖eyi‖‖e1‖+ ‖H̄a
i2‖ρ̄i(zi, ui)‖eyi‖

+‖H̄b
i2‖σ̄i(z)‖eyi‖+ ‖(Āi4 − Āi3P−1

i1 Pi2)‖eyi‖2 − ‖eyi‖
{
‖H̄a

i2‖ρ̄i(ẑi1, yi, ui)

+‖H̄b
i2‖σ̄i(ẑ) + ‖Āi4 − Āi3P−1

i1 Pi2‖‖eyi‖+ ki)sgn(eyi)
}}

(4.44)

From (4.41), ‖ei1‖ ≤ β. Applying (4.41) to (4.44), it follows that

N∑
i=1

eTyi ėyi ≤
N∑
i=1

{{
(‖Āi3‖+ `M̄i2

+ ‖H̄a
i2‖`ρ̄i + ‖H̄b

i2‖`σ̄i)β − ki
}
‖eyi‖

}
(4.45)

Applying (4.43) to (4.45)

N∑
i=1

eTyi ėyi ≤ −η
N∑
i=1

‖eyi‖ (4.46)

which implies that

eTy ėy ≤ −η‖ey‖

where ey = col(ey1 , ey2 , · · · , eyN ) and the inequality ‖ey‖ ≤
∑N

i=1 ‖eyi‖ is applied to

obtain the inequality above. This shows that the reachability condition is satisfied. Hence

the conclusion follows. 4

The study above shows that (4.27)-(4.29) is an asymptotic observer of the system

(4.20)-(4.22).

If the structure of the uncertainties ∆φi(xi, ui) and ∆Mi(x) in the system (4.1)-

(4.2) are unknown, which implies that Assumption 5.1 does not hold, then an asymptotic

observer usually is not available. In this case, an ultimately bounded observer will be

designed. The following Assumption is required.

Assumption 5.4. The uncertainties ∆φi(xi, ui) and ∆Mi(x) in system (4.1)-(4.2) satisfy

‖∆φi(xi, ui)‖ ≤ εi (4.47)

‖∆M̄i(x)‖ ≤ Υi (4.48)

where εi and Υi are positive constants.

In this case, in the new coordinate z the system (4.1)-(4.2) is described by
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żi1 =(Āi1 + P−1
i1 Pi2Āi3)zi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))zi2

+B̄i1ui + P−1
i1 Pi2 × B̄i2ui + M̄i1(T−1z) + P−1

i1 Pi2M̄i2(T−1z)

+∆φ̃i1(T−1
i zi, ui) + ∆M̃i1(T−1z) (4.49)

żi2 = Āi3zi1 + (Āi4 − Āi3P−1
i1 Pi2)zi2 + B̄i2ui + M̄i2(T−1z)

+∆φ̃i2(T−1
i zi, ui) + ∆M̃i2(T−1z) (4.50)

yi = zi2 (4.51)

where  ∆φ̃i1(T−1
i zi, ui)

∆φ̃i2(T−1
i zi, ui)

=T−1
i

 ∆φi1(T−1
i zi, ui)

∆φi2(T−1
i zi, ui)

 (4.52)

 ∆M̃i1(T−1z)

∆M̃i2(T−1z)

=T−1
i

 ∆M̄i1(T−1z)

∆M̄i2(T−1z)

 (4.53)

and zi = col(zi1, zi2) with zi1 ∈ Rni−pi . From (4.47)-(4.48), there are constants εai , ε
b
i , Υa

i and Υb
i

such that

‖∆φ̃i1(T−1
i zi, ui)‖ ≤ εai (4.54)

‖∆φ̃i2(T−1
i zi, ui)‖ ≤ εbi (4.55)

‖∆M̃i1(T−1z)‖ ≤ Υa
i (4.56)

‖∆M̃i2(T−1z)‖ ≤ Υb
i (4.57)

Now consider the dynamical systems

˙̂zi1 = (Āi1 + P−1
i1 Pi2Āi3)ẑi1 + (Āi2 − Āi1P−1

i1 Pi2 + P−1
i1 Pi2(Āi4 − Āi3P−1

i1 Pi2))yi

+B̄i1ui + P−1
i1 Pi2B̄i2ui + M̄i1(T−1ẑ) + P−1

i1 Pi2M̄i2(T−1ẑ) (4.58)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3P−1
i1 Pi2)ẑi2 + B̄i2ui + M̄i2(T−1ẑ) + di(·) (4.59)

ŷi = ẑi2 (4.60)

where ẑ = col(ẑ1, y). The injection term di(·) is defined by

di(·) = (‖∆φ̃i2(T−1
i ẑi, ui)‖+ ‖∆M̃i2(T−1ẑ)‖

+‖Āi4− Āi3P−1
i1 Pi2‖‖yi − ŷi‖+ ki)sgn(yi − ŷi) (4.61)
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Let ei1 = zi1 − ẑi1 and eyi = yi − ŷi. Then from (4.49)-(4.51) and (4.58)-(4.60), the error

dynamical equation is described by

ėi1 =(Āi1 + P−1
i1 Pi2Āi3)ei1 + [M̄i1(T−1z)− M̄i1(T−1ẑ)] + P−1

i1 Pi2[M̄i2(T−1z)

−M̄i2(T−1ẑ)] + ∆φ̃i1(T−1
i zi, ui) + ∆M̃i1(T−1z) (4.62)

ėyi = Āi3e1 + (Āi4 − Āi3P−1
i1 Pi2)eyi + [M̄i2(T−1z)− M̄i2(T−1ẑ)]

+∆φ̃i2(T−1
i zi, ui) + ∆M̃i2(T−1z)− di(·) (4.63)

The following result is ready to be presented:

Theorem 5.3. Under Assumptions 5.2 and 5.4, the system (4.62) is ultimately bounded

stable if the function matrixW T+W is positive definite, where the matrixW = [wij]N×N ,

and its entries wij are defined by

wij=


λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i = j

−2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
, i 6= j

(4.64)

where Pi1, Pi2 and Qi1 are from (4.18).

Proof. Consider a Lyapunov function candidate for the system (4.62)

V =
N∑
i=1

eTi1Pi1ei1

where Pi1 is defined in (4.18).

Following a similar proof as in Theorem 1, it is obtained

V̇ ≤−
N∑
i=1

{{
λmin(Qi1)− 2

[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]}
‖ei1‖

−
N∑
j=1

j 6=i

2
[
‖Pi1‖`M̄i1

+ ‖Pi2‖`M̄i2

]
‖ej1‖

}
‖ei1‖+ 2

N∑
i=1

‖Pi1‖
[
εai + Υa

i

]
‖ei1‖(4.65)

Then, from the definition of the matrix W in Theorem 5.2 and the inequality above,

it follows that

V̇ ≤ −1

2
XT [W T +W ]X + µX

= −(
1

2
λmin(W T +W )‖X‖ − µ)‖X‖ (4.66)
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where µ = 2
√∑N

i=1(‖Pi1‖
[
εai + Υa

i

]
)2 and X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖]T . It is clear

to see that V̇ is negative definite if µ < 1
2
λmin(W T + W ). Therefore system (4.62) is

ultimately bounded. Hence the result follows. 4

For system (4.62)-(4.63), consider the same sliding surface S given in (4.42). It

is straightforward to see that Theorem 5.3 implies that the sliding mode of the system

(4.62)-(4.63) associated with the sliding surface S given in (4.42) is ultimately bounded.

The objective now is to determine the gains ki in (4.61) such that the system can be

driven to the sliding surface S in (4.42) in finite time and a sliding motion maintained

thereafter.

Theorem 5.4. Under Assumptions 5.2 and 5.4, the system (4.62)-(4.63) is driven to the

sliding surface (4.42) in finite time and remains on it if

ki ≥ (‖Āi3‖+ `M̄i2
+ `∆φ̃i2

+ `∆M̃i2
)β + η (4.67)

where β is determined by (4.41) and η is a positive constant.

Proof. The proof of Theorem 5.4 can be obtained directly by following the proof of The-

orem 5.2. It is omitted here.

Remark 5.3. The results above show that the sliding mode observers of the intercon-

nected system (4.1)-(4.2) in z coordinates are given by (4.27)-(4.29) or (4.58)-(4.60). Let

x̂i = (TiTci)
−1ẑi, i = 1, 2, . . . , N (4.68)

where Tci and Ti are given in (4.7) and (4.19) respectively and ẑi are given in (4.27)-

(4.29) or (4.58)-(4.60) for i = 1, 2, . . . , N . Therefore the varibles x̂i given in (4.68) are

the estimate of the states xi of the interconnected system (4.1)-(4.2) for i = 1, 2, . . . , N .

4.3. CASE STUDY: MULTIMACHINE POWER

SYSTEM

In this section, a case study on a multimachine power system is developed. In this

case, the state variable of each machine is given by xi = [xi1 xi2 xi3] = [δi−δi0 ωi ∆Pei]
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with ∆Pei ≡: Pei − Pmi0 where δi is the generator power angle [rad], Pei is electrical

power [p.u.], and ωi is relative speed [rad/s] for i = 1, 2, · · · , N . It is assumed that

Pmi = Pmi0 = constant. All the symbols and terms are the same as in [127]. Then

by using direct feedback linearsation compensation for the power system as in [77], the

multimachine power system can be described by the system (4.1)-(4.2) with

Ai =


0 1 0

0 − Di

2Hi
− ω0

2Hi

0 0 − 1
T ′doi

 , Bi =


0

0

T ′doi

 , Ci =

 1 0 0

0 0 1

 (4.69)

From the matrix Ci, it is clear to see that the measured states are the generator power

angle δi [rad] and the electrical power Pei [p.u.]. The objective is to mainly estimate the

relative speed ωi [rad/s] for i = 1, 2, · · · , N .

The known and uncertain interconnections are given by

M̄i(x) = 0, ∆M̄i(x) =


0

0

1


︸ ︷︷ ︸
Hb

i

Φi(x)

where

|Φi(x)| ≤
N∑
j=1

(γIij| sin δj|+ γIIij |ωj|)

with the constants γIij and γIIij defined by

γIij =
4

|T ′doj|min
|Pei|max

γIIij = |Qei|max

for i = 1, 2, · · · , N , and

‖∆M̄i(x)‖ = |Φi(x)| ≤
N∑
j=1

(γIij| sinxj1|+ γIIij |xj2|) (4.70)

The input control variables are

vfi = IqiKciufi − (xdi − x′di)IqiIdi − Pmi0 − T ′doiQeiωi
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Choose

Tci =


0 1 0

1 0 0

0 0 1

 for i =, 1, 2, · · · , N.

Following the transformation x̄i = Tcixi , the system matrices become

Āi = TcAiT
−1
c =


− Di

2Hi
0 − ω0

2Hi

1 0 0

0 0 − 1
T ′doi

 (4.71)

B̄i = TcBi =


0

0

1
T ′doi

 , C̄i =
[

0 Ipi

]
(4.72)

and

M̄i(x̄) = 0, ∆M̄i(x̄) = Tc∆M̄i(x) =


0

0

1


︸ ︷︷ ︸
Hb

i

Φi(x) (4.73)

Comparing (4.5)− (4.6), it follows that

Āi1 = − Di

2Hi

, Āi2 =
[

0 − ω0

2Hi

]
, Āi3 =

 1

0

 , Āi4 =

 0 0

0 − 1
T ′doi


B̄i1 = 0, B̄i2 =

 0

1
T ′doi

 , ∆M̄i1 = 0, ∆M̄i2 =

 0

1

Φi(x)

For simulation purposes, consider a two machine power system where all the pa-

rameters are chosen as in [127]. In order to illustrate the obtained results, the following

uncertainties are added to the isolated subsystems
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∆φ1(x1, u1) =


0

0

0.5


︸ ︷︷ ︸

Ha
1

x11 sinu1︸ ︷︷ ︸
∆ξ1(x1,u1)

(4.74)

∆φ2(x2, u2) =


0

0

0.2


︸ ︷︷ ︸

Ha
2

sin2(x21 + x23)︸ ︷︷ ︸
∆ξ2(x2,u2)

(4.75)

It is straightforward to see

|∆ξ1(x1, u1)| ≤ |x11| | sinu1| := ρ1(x1, u1) (4.76)

|∆ξ2(x2, u2)| ≤ | sin2(x21 + x23)| := ρ2(x2, u2) (4.77)

Then, let Q1 = Q2 = I3. The solutions of Lyapunov equation (4.15) are given by

P1 =


0.5841 −0.135 0

−0.135 0.2304 0

0 0 0.5

 , P2 =


0.6799 −0.3 0

−0.3 0.3485 0

0 0 0.5

 ,
The transformation matrix Ti in the equation zi = Tix̄i is given by

T1=


1 −0.2311 0

0 1 0

0 0 1

 , T2=


1 −0.4412 0

0 1 0

0 0 1

 (4.78)

Therefore, under the transformation xi = (TiTci)
−1zi with Tci and Ti defined in (4.71)

and (4.78), the two machine power system can be described in z coordinates as follows

ż11 =−0.704z11 +
[
−0.0555 −39.27

]
z12 (4.79)

ż12 =

 1

0

 z11 +

 0.0788535 0

0 −0.1449

 z12 +

 0

0.1449

u1

CHAPTER 4. ROBUST SLIDING MODE OBSERVERS FOR LARGE SCALE
SYSTEMS WITH APPLICATION TO A MULTIMACHINE POWER SYSTEM



4.3. CASE STUDY: MULTIMACHINE POWER SYSTEM 80

+

 0

0.5

∆φ̄1(T−1z1, u1) + M̄12(T−1z) +

 0

1

∆M̄12(T−1z) (4.80)

y1 = z12 (4.81)

ż21 = −0.4941z21 +
[
−0.1 −30.8

]
z22 (4.82)

ż22 =

 1

0

 z21 +

 0.2 0

0 −0.1256

 z22 +

 0

0.1256

u2

+

 0

0.2

∆φ̄2(T−1z2, u2) + M̄22(T−1z) +

 0

1

∆M̄22(T−1z) (4.83)

y2 = z22 (4.84)

where zi1 ∈ R, zi2 := col(zi21, zi22) ∈ R2. From (4.74)− (4.75).

‖ρ̄1(z1, u1)‖ ≤ |z121|| sinu1| (4.85)

‖ρ̄2(z2, u2)‖ ≤ | sin2(z221 + z222)| (4.86)

By direct calculation `ρ̄1 = 1, `ρ̄2 = 2. From (4.24) and (4.70).

|σ̄1(z)| ≤ (γI11| sin z121|+ γII11 |(z11 + 0.2311z121|))

+(γI12| sin z221|+ γII12 |(z21 + 0.4412z221|)) (4.87)

|σ̄2(z)| ≤ (γI21| sin z121|+ γII21 |(z11 + 0.2311z121|))

+(γI22| sin z221|+ γII22 |(z21 + 0.4412z221|)) (4.88)

Therefore,

|σ̄1(z)− σ̄1(ẑ)| =

[
γII11 γI11 + 0.2311γII11 0 γII12 γI12 + 0.4412γII12 0

]

|z11 − ẑ11|

‖z12 − ẑ12‖

|z21 − ẑ21|

‖z22 − ẑ22‖


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|σ̄2(z)− σ̄2(ẑ)| =

[
γII21 γI21 + 0.2311γII21 0 γII22 γI22 + 0.4412γII22 0

]

|z11 − ẑ11|

‖z12 − ẑ12‖

|z21 − ẑ21|

‖z22 − ẑ22‖


where γI11 = 0.9, γI12 = 0.7355, γII11 = γII12 = 1.4 and γI21 = 0.966, γI22 = 0.788, γII21 =

γII22 = 1.5. Thus `σ̄1 = 2.69224 and `σ̄2 = 2.88532.

By direct computation, it follows that the matrix W T +W is positive definite. Thus,

all the conditions of Theorem 5.1 are satisfied. Therefore the following dynamical system

is an asymptotic observer of the system (4.79)-(4.84)

˙̂z11 = −0.704ẑ11 +
[
−0.0555 −39.27

]
ẑ12 (4.89)

˙̂z12 =

 1

0

 ẑ11 +

 0.0788535 0

0 −0.1449

 ẑ12 +

 0

0.1449

u1 + d1(·)(4.90)

ŷ1 = ẑ12 (4.91)

˙̂z21 = −0.4941ẑ21 +
[
−0.1 −30.8

]
ẑ22 (4.92)

˙̂z22 =

 1

0

 ẑ21 +

 0.2 0

0 −0.1256

 ẑ22 +

 0

0.1256

u2 + d2(·) (4.93)

ŷ2 = ẑ22 (4.94)

where the terms d1(·) and d1(·) are defined by

d1(·) = (

∥∥∥∥∥∥
 0

0.5

∥∥∥∥∥∥ ρ̄1(T−1ẑ1, u1) +

∥∥∥∥∥∥
 0

1

∥∥∥∥∥∥ σ̄1(T−1ẑ)

+

∥∥∥∥∥∥
 0.0788535 0

0 −0.1449

∥∥∥∥∥∥ ‖y1 − ŷ1‖+ k1)sgn(y1 − ŷ1) (4.95)

d2(·) = (

∥∥∥∥∥∥
 0

0.2

∥∥∥∥∥∥ ρ̄2(T−1ẑ2, u2) +

∥∥∥∥∥∥
 0

1

∥∥∥∥∥∥ σ̄2(T−1ẑ)

+

∥∥∥∥∥∥
 0.2 0

0 −0.1256

∥∥∥∥∥∥ ‖y2 − ŷ2‖+ k2)sgn(y2 − ŷ2) (4.96)
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k1 ≥ (

∥∥∥∥∥∥
 1

0

∥∥∥∥∥∥+ `M̄12
+

∥∥∥∥∥∥
 0

0.5

∥∥∥∥∥∥ `ρ̄1 +

∥∥∥∥∥∥
 0

1

∥∥∥∥∥∥ `σ̄1)β + η (4.97)

k2 ≥ (

∥∥∥∥∥∥
 1

0

∥∥∥∥∥∥+ `M̄22
+

∥∥∥∥∥∥
 0

0.2

∥∥∥∥∥∥ `ρ̄2 +

∥∥∥∥∥∥
 0

1

∥∥∥∥∥∥ `σ̄2)β + η (4.98)

Therefore, x̂i = (TiTci)
−1ẑi is an estimate of xi = [xi1 xi2 xi3] = [δi−δi0 ωi ∆Pei]

where Tci and Ti are defined in (4.71) and (4.78) respectively. The simulation results

presented in Figures 4.1 and 4.2 show the effectiveness of the designed observer. It should

be noted that the estimation process is implemented on-line.

Remark 5.4. As in existing work in [127, 110, 111, 117], both the multimachine power

system considered and the interconnections are nonlinear. However, most work focuses

on control design or observer-based control design. In this work, the observer can be

applied to the multimachine power system as shown in the example. Specifically the in-

terconnections are nonlinear and all the uncertainties are bounded by nonlinear functions

which encompasses a large class of disturbances.

4.4. CONCLUSION

In this chapter, robust sliding mode observers have been designed for a class of non-

linear interconnected systems with uncertainties. The known nonlinear interconnections

and uncertain nonlinear interconnections have been dealt with separately to reduce the

effects of the interconnections without introducing unnecessary conservatism. A set of

sufficient conditions has been provided such that the error dynamics are asymptotically

stable if the structure of the uncertainties is known. All the bounds on the uncertainties

involved are nonlinear and are employed in the observer design to reject/reduce the effect

of uncertainties. An ultimately bounded sliding mode observer is proposed to estimate

the states of the interconnected system if the structure of the uncertainties is not available.

A case study relating to a multimachine power system has been used to demonstrate the

proposed approach.
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Figure 4.1: The time responses of the 1st subsystem states x1 = col (x11, x12, x13) and their

estimation x̂1 = col (x̂11, x̂12, x̂13)
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Figure 4.2: The time responses of the 2nd subsystem states x2 = col (x21, x22, x23) and their

estimation x̂2 = col (x̂21, x̂22, x̂23)
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CHAPTER. 5

ADAPTIVE OBSERVER DESIGN FOR

NONLINEAR INTERCONNECTED

SYSTEMS

In this chapter, a class of nonlinear interconnected systems with uncertain time varying pa-

rameters (TVPs) is considered. Both the interconnections and the isolated subsystems are

nonlinear. The differences between the unknown TVPs and their corresponding nominal

values are assumed to be bounded where the nominal value is not required to be known.

A dynamical system is proposed and then, the error systems between the original inter-

connected system and the designed dynamical system are analysed. A set of conditions

is developed such that the augmented systems formed by the error dynamical systems

and the designed adaptive laws, are uniformly ultimately bounded. The state observation

errors are asymptotically convergent to zero based on the LaSalle’s Theorem while the

parameter estimation errors are uniformly ultimately bounded. Case study on a coupled

inverted pendulum system is presented to demonstrate the developed methodology, and

simulation shows that the proposed approach is effective and practicable.

84
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5.1. SYSTEM DESCRIPTION AND PROBLEM FOR-

MULATION

Consider a nonlinear interconnected system composed of N subsystems described

as follows

ẋi = Aixi + fi(xi, ui) +Biθi(t)ξi(t) +
N∑
j=1

j 6=i

Hij(xj) (5.1)

yi = Cixi (5.2)

where xi ∈ Rni , ui ∈ Ui ∈ Rmi (Ui are the admissible control set) and yi ∈ R are the

state variables, inputs and outputs of the i-th subsystem respectively. The functions fi(·)

are known continuous, the scalars θi(t) ∈ R are unknown time varying parameters and

ξi(t) ∈ R are known regressor signals. The matrices Ai ∈ Rni×ni , Bi ∈ Rni×mi and

Ci ∈ R1×ni are constants, and Ci are of full rank. The terms
N∑
j=1

j 6=i

Hij(xj)

are the known interconnections of the i-th subsystems for i = 1, · · · , N .

Assumption 6.1. The matrix pairs (Ai, Ci) are observable for i = 1, · · · , N .

From Assumption 1, there exist matrices Li such that Ai − LiCi are Hurwitz stable.

This implies that, for any positive-definite matrices Qi ∈ Rni×ni , the Lyapunov equations

(Ai − LiCi)TPi + Pi(Ai − LiCi) = −Qi (5.3)

have unique positive-definite solutions Pi ∈ Rni×ni .

Assumption 6.2. There exist matrices Fi ∈ Rmi×1 such that solutions Pi to the Lyapunov

equations (5.3) satisfy the constraints

BT
i Pi = FiCi (5.4)

where Bi and Ci are given in system (5.1)-(5.2) for i = 1, · · · , N .

Remark 6.1. To solve the Lyapunov equations (A.11) in the presence of the constraints

(A.14) is the well known constrained Lyapunov problem (CLP) [99]. Although there is
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no general solution available for this problem, associated discussion and an algorithm can

be found in [100] which may help to solve the CLP for a specific system.

Assumption 6.3. The uncertain time varying parameters θi(t) satisfy

|θi(t)− θ0i | ≤ ε0i (5.5)

where θ0i are unknown constant, and ε0i are known constant for i = 1, · · · , N .

Remark 6.2. Assumption 6.3 is to specify a class of uncertainties tolerated in the observer

design. The unknown constants θ0i given in (5.5) are called the nominal value of the

uncertain TVPs θi(t) throughout this work. Different from the existing work (see e.g.[60,

142]), the unknown parameters θi(t) are time varying and the nominal values θ0i are not

required to be known.

For further analysis, the terms Biθi(t)ξi(t) in system (5.1) are rewritten as

Biθi(t)ξi(t) = Bi[θ0i + εi(t)]ξi(t) (5.6)

where the scalers εi(t) = θi(t)− θ0i .

Assumption 6.4. The nonlinear terms fi(xi, ui) satisfy the Lipschitz condition with re-

spect to xi ∈ Rni , and uniformly for ui ∈ Ui ∈ Rmi , and Hij(xj) satisfy the Lipschitz

condition in xj ∈ Ωj for i = 1, 2, · · · , N and i 6= j.

Assumption 6.4 implies that there exist nonnegative function `fi and constant `Hij

such that

‖fi(x̂i, ui)− fi(xi, ui)‖ ≤ `fi(ui)‖x̂i − xi‖ (5.7)

‖Hij(x̂j)−Hij(xj)‖ ≤ `Hij
‖x̂j − xj‖ (5.8)

for i = 1, 2, · · · , N and i 6= j.

Remark 6.3. The Assumption 6.4 is the limitation to the nonlinear terms and the in-

terconnections which is necessary to achieve the asymptotic stability of the observation

error dynamics. It should be noted that in the Assumption 6.4, it is required that fi(xi, ui)

satisfy the Lipschitz condition with respect to the variable xi only.

For nonlinear interconnected system (5.1)–(5.2) satisfying Assumptions 6.1-6.4, the

objective of this work is to design an observer with appropriate adaptive laws such that
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the states of the system (5.1)–(5.2) can be estimated asymptotically, and the estimation

errors of the unknown parameters θi(t) in (5.1) are uniformly ultimately bounded.

5.2. ADAPTIVE OBSERVER DESIGN WITH PA-

RAMETERS ESTIMATION

In this section, an asymptotic observer is to be designed and the proposed adaptive

laws are to be presented.

From equation (5.6), system (5.1) can be rewritten as

ẋi = Aixi + fi(xi, ui) +Bi[θ0i + εi(t)]ξi(t) +
N∑
j=1

j 6=i

Hij(xj) (5.9)

yi = Cixi (5.10)

For system (A.30)-(A.31), construct dynamical systems

˙̂xi = Aix̂i + fi(x̂i, ui) + Li(yi − ŷi) +Biθ̂i(t)ξi(t)− 2P−1
i (FiCi)

T |ξi(t)| ε0iψi(ŷi, yi)

−Biε̂i(t)ξi(t) +
N∑
j=1

j 6=i

Hij(x̂j) (5.11)

ŷi = Cix̂i (5.12)

where Pi and Ci satisfy equations (5.3) and (5.4) and the known constant ε0i satisfies the

inequality in Assumption 6.3.

ψi(ŷi, yi) =
{ Fi(ŷi−yi)
‖Fi(ŷi−yi)‖ , Fi(ŷi − yi) 6= 0

0, Fi(ŷi − yi) = 0
(5.13)

for i = 1, 2, · · · , N , and θ̂i(t) is given by the adaptive law as follows

˙̂
θi(t) = −2δi(Fi(ŷi − yi))T ξi(t) (5.14)

where δi is a positive constant which is design parameter and ε̂i(t) is defined by

ε̂i(t) = − 1

δi
θ̂i(t) (5.15)
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for i = 1, 2, · · · , N .

Let exi = x̂i − xi. Then, from systems (5.9)-(5.10) and (5.11)-(5.12), the error

dynamical systems can be described by

ėxi = (Ai − LiCi)exi + [fi(x̂i, ui)− fi(xi, ui)] +
N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)] +Biθ̃i(t)ξi(t)

−Biε̂i(t)ξi(t)−Biεi(t)ξi(t)− 2P−1
i (FiCi)

T |ξi(t)|ε0iψi(ŷi, yi) (5.16)

where θ̃i(t) is defined by

θ̃i(t) = θ̂i(t)− θ0i (5.17)

for i = 1, 2, · · · , N .

For the convenience of further analysis , let

ε̃i(t) = ε̂i(t)− ε0i (5.18)

where the known constant ε0i satisfies the inequality (5.5) in Assumption 6.3 and ε̂i(t) is

defined in (5.15), for i = 1, 2, · · · , N .

The following result is ready to be presented:

Theorem 6.1. Under Assumptions 6.1−6.4, the error dynamical systems (5.16) with

adaptive law (5.14) are uniformly ultimately bounded if the matrix W T + W is positive

definite, where the matrix W = [wij]N×N and its entries wij are defined by

wij =


λmin(Qi)− 2`fi‖Pi‖, i = j

−2‖Pi‖`Hij
, i 6= j

(5.19)

where Pi and Qi satisfy Lyapunov equation in (5.3) and λmin(Qi) represents the mini-

mum eigenvalue of the matrixQi for i = 1, 2, . . . , N . Further, the error exi given in (5.16)

satisfies

lim
t→∞
‖exi(t)‖ = 0, i = 1, 2, . . . , N (5.20)

Proof. For system (5.14) and (5.16), consider the candidate Lyapunov function

V =
N∑
i=1

eTxiPiexi +
1

2

N∑
i=1

(
1

δi
θ̃2
i (t) + ε̃2i (t)) (5.21)
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where δi > 0 are design parameters given in (5.14) for i = 1, 2, · · · , N . Note that, in

(5.21) ε̃i(t) is dependent on θ̃i(t). From (5.15), (5.17) and (5.18) it can be seen that the

relationship between ε̃i(t) and θ̃i(t) is given by

ε̃i(t) = ε̂i(t)− ε0i

= − 1

δi
θ̂i(t)− ε0i

= − 1

δi
(θ̃i(t) + θ0i)− ε0i

Then, from (5.16)

V̇ =
N∑
i=1

(ėTxiPiexi + eTxiPiėxi) +
N∑
i=1

(
1

δi
θ̃i(t)

˙̃θi(t) + ε̃i(t) ˙̃εi(t))

=
N∑
i=1

{
eTxi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eTxiPi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxiPi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)] + 2eTxiPiBiθ̃i(t)ξi(t)− 2eTxiPiBiεi(t)ξi(t)

−2eTxiPiBiε̂i(t)ξi(t) +
1

δi
θ̃i(t)

˙̃θi(t) + ε̃i(t) ˙̃εi(t)

−4eTxiPiP
−1
i (FiCi)

T |ξi(t)|ε0iψi(ŷi, yi)
}

(5.22)

By using condition (A.14) and Ciexi = ŷi − yi,

eTxiPiBi = ((PiBi)
T exi)

T = (BT
i Piexi)

T

= (FiCiexi)
T = (Fi(ŷi − yi))T (5.23)

Substituting (5.23) into (5.22), it follows that

V̇ =
N∑
i=1

{
eTxi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eTxiPi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxiPi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)] + [2(Fi(ŷi − yi))T ξi(t) +
1

δi

˙̃θi(t)]θ̃i(t)

−2(Fi(ŷi − yi))T εi(t)ξi(t)− 2(Fi(ŷi − yi))T ε̂i(t)ξi(t)

+ε̃i(t) ˙̃εi(t)− 4(Fi(ŷi − yi))T |ξi(t)|ε0iψi(ŷi, yi)
}

(5.24)
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From (5.17), it can be seen that ˙̃θi(t) =
˙̂
θi(t) because θ0i is constant. Substituting

(5.13) and (5.14) into (2.47) gives

V̇ =
N∑
i=1

{
eTxi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eTxiPi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxiPi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]− 2(Fi(ŷi − yi))T εi(t)ξi(t)

−2(Fi(ŷi − yi))T ε̂i(t)ξi(t) + ε̃i(t)) ˙̃εi(t)− 4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i
}

From (5.18), it can be seen that ˙̃εi(t) = ˙̂εi(t).

V̇ =
N∑
i=1

{
eTxi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eTxiPi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxiPi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]− 2(Fi(ŷi − yi))T εi(t)ξi(t)

−[2(Fi(ŷi − yi))T ξi(t)− ˙̃εi(t)]ε̂i(t)− ε0i ˙̃εi(t)− 4‖Fi(ŷi − yi)‖ |ξi(t)|ε0i
}
(5.25)

Substituting (5.15) into (5.25) yields

V̇ =
N∑
i=1

{
eTxi [(Ai − LiCi)

TPi + Pi(Ai − LiCi)]exi + 2eTxiPi[fi(x̂i, ui)− fi(xi, ui)]

+2eTxiPi

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]− 2(Fi(ŷi − yi))T εi(t)ξi(t)

−2ε0i(Fi(ŷi − yi))T ξi(t)− 4‖Fi(ŷi − yi)‖‖ξi(t)‖ε0i
}
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It is clear from (5.3) that

V̇ ≤
N∑
i=1

{
− eTxiQiexi + 2‖exi‖‖Pi‖[fi(x̂i, ui)− fi(xi, ui)] + 2‖exi‖‖Pi‖

N∑
j=1

j 6=i

[Hij(x̂j)−Hij(xj)]

−2(Fi(ŷi − yi))T ξi(t)[εi(t) + ε0i ]− 4‖Fi(ŷi − yi)‖ ‖ξi(t)‖ε0i
}

≤
N∑
i=1

{
− eTxiQiexi + 2‖exi‖‖Pi‖[fi(x̂i, ui)− fi(xi, ui)] + 2‖exi‖‖Pi‖

N∑
j=1

j 6=i

[Hij(x̂j)

−Hij(xj)] + 4‖Fi(ŷi − yi)‖‖ξi(t)‖ε0i − 4‖Fi(ŷi − yi)‖‖ξi(t)‖ε0i}

≤
N∑
i=1

{
− eTxiQiexi + 2‖exi‖‖Pi‖[`fi‖x̂i − xi‖] + 2‖exi‖‖Pi‖

N∑
j=1

j 6=i

[`Hij
‖x̂j − xj‖]

}

≤ −
N∑
i=1

{
(λmin(Qi)− 2‖Pi‖`fi)‖exi‖2 −

N∑
j=1

j 6=i

(2‖Pi‖`Hij
‖exi‖‖exj‖)

}
(5.26)

Then, from the definition of the matrix W in (5.19) and the inequality above, it follows

that

V̇ ≤ −1

2
XT [W T +W ]X (5.27)

where X = [‖ex1‖, ‖ex2‖, · · · , ‖exN‖]T . From the LaSalle’s Theorem (see. e.g. [5]), all

the solutions of (5.16) are uniformly ultimately bounded and satisfy

lim
t→∞

XT [W T +W ]X = 0 (5.28)

Further, from the facts

λmin(W T +W )‖X‖2 ≤ XT (W T +W )X

and

‖X‖2 = ‖ex1‖2 + ‖ex2‖2 + · · ·+ ‖exN‖2

it is straightforward to see from (5.28) and the condition W T +W > 0 that

lim
t→∞
‖exi(t)‖ = 0, i = 1, 2, . . . , N

Hence the conclusion follows. 4

Remark 6.4. It should be noted that the constructed Lyapunov function (5.21) is a func-

tion of variables exi , θ̃i and ε̃i while the right hand side of inequality (5.27) is a function
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of variables exi only. Therefore, the condition W T +W is positive definite in Theorem 1

implies that V̇ is semi-positive definite instead of positive definite.

Remark 6.5. Theorem 6.1 shows that the augmented systems formed by (5.16) and the

adaptive law (5.14) are uniformly ultimately bounded. It should be noted that the es-

timated states x̂i given by the observer (5.11) converge to the system states xi in (5.1)

asymptotically although the estimate error for the parameters may not be asymptotically

convergent. As the uncertain parameters θi in system (5.1) are time-varying, the ap-

proaches developed in [60, 140] cannot be applied to the systems considered in this work.

Remark 6.6. The designed observer is a variable structure interconnected system but it

may not produce a sliding motion, which is different from the work in [60]. In addition,

the unknown parameters are considered as constants in [60] while in this work they are

TVPs.

5.3. CASE STUDY 1: A COUPLED INVERTED

PENDULUM

In order to illustrate the method developed in this work, case study on a coupled

pendulum system is carried out in this section.

Consider a system formed by two inverted pendulums connected by a spring as given

in Figure 5.1. There are two balls are attached at the end of the two rigid rods respectively.

The symbol u1 and u2 denote external torques imposed on the two pendulums respec-

tively which are the control inputs. The distance b between the two pendulum hinges are

assumed to be changeable with respect to time t.

Let ϕ1 = x11, ϕ2 = x21, ϕ̇1 = x12, and ϕ̇2 = x22. The coupled inverted pendulums

can be modelled as (see e.g. [143])
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Figure 5.1: Coupled inverted pendulums

ẋ1 =

 0 1

0 0

 x11

x12

+

 0

(m1gr
J1
− kr2

4J1
) sin(x11) + 1

J1
u1

+

 0

kr
2J1

 (l − b)

+

 0

kr2

4J1
sin(x21)

 (5.29)

y1 =
[

1 1
] x11

x12

 (5.30)

ẋ2 =

 0 1

0 0

 x21

x22

+

 0

(m2gr
J2
− kr2

4J2
) sin(x21) + 1

J2
u2

+

 0

kr
2J2

 (l − b)

+

 0

kr2

4J2
sin(x11)

 (5.31)

y2 =
[

1 1
] x21

x22

 (5.32)

The end masses of pendulums are m1 = 0.7 kg and m2 = 0.6 kg, the moments of inertia

are J1 = 5 kg and J2 = 4 kg, the constant of connecting spring is k = 90 N/m, the

pendulum height is r = 0.25 m, and the gravitational acceleration is g = 9.81 m/s2. In

order to illustrate the developed theoretical results, it is assumed that (l− b(t)) = θ1(t) =

θ2(t) is an unknown time varying parameter for i = 1, 2 where l is the natural length of

spring and b(t) is the distance between the two pendulum hinges.

In order to avoid system states going to infinity, and for simulation purposes, the
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following feedback transformation is introduced

ui = −kixi + vi, i = 1, 2 (5.33)

k1 =
[

10 15
]

(5.34)

k2 =
[

8 12
]

(5.35)

Then with the given parameters above, the system (5.29)-(5.32) can be rewritten as

ẋ1 =

 0 1

−2 −3


︸ ︷︷ ︸

A1

 x11

x12

+

 0

0.06215 sin(x11) + 1
5
v1


︸ ︷︷ ︸

f1(x1,u1)

+

 0

2.25


︸ ︷︷ ︸

B1

(l − b(t))︸ ︷︷ ︸
θ1(t)

+

 0

0.2813 sin(x21)


︸ ︷︷ ︸

H12(x2)

(5.36)

y1 =
[

1 1
]

︸ ︷︷ ︸
C1

 x11

x12

 (5.37)

ẋ2 =

 0 1

−2 −3


︸ ︷︷ ︸

A2

 x21

x22

+

 0

0.01632 sin(x21) + 1
4
v2


︸ ︷︷ ︸

f2(x2,u2)

+

 0

2.8125


︸ ︷︷ ︸

B2

(l − b(t))︸ ︷︷ ︸
θ2(t)

+

 0

0.352 sin(x11)


︸ ︷︷ ︸

H21(x1)

(5.38)

y2 =
[

1 1
]

︸ ︷︷ ︸
C2

 x21

x22

 (5.39)

Choose

Li = [0 0] and Qi = 4I

for i = 1, 2. It follows that the Lyapunov equations (5.3) have unique solutions:

Pi =

 5 1

1 1

 , i = 1, 2 (5.40)

satisfying the condition (5.4) with

F1 = 2.25, and F2 = 2.8125
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For simplicity, it is assumed that

ξi(t) = 1, ε0i = 1 and δi = 2

for i = 1, 2.

By direct computation, it follows that the matrix W T +W is positive definite. Thus,

all the conditions of Theorem 6.1 are satisfied. This implies that the following dynamical

systems are the asymptotic observer of the nonlinear interconnected system (5.36)–(5.39):

˙̂x1 =

 0 1

−2 −3

 x̂11

x̂12

+

 0

0.06215 sin(x̂11) + 1
5
v1

+

 0

2.25

 θ̂1(t)

−

 0

0.4

 (ŷ1 − y1)

‖ŷ1 − y1‖
−

 0

2.25

 ε̂1(t) +

 0

0.2813 sin(x̂21)

 (5.41)

ŷ1 =
[

1 1
] x̂11

x̂12

 (5.42)

˙̂x2 =

 0 1

−2 −3

 x̂21

x̂22

+

 0

0.01632 sin(x̂21) + 1
4
v2

+

 0

2.8125

 θ̂2(t)

−

 0

0.5

 (ŷ2 − y2)

‖ŷ2 − y2‖
−

 0

2.8125

 ε̂2(t) +

 0

0.352 sin(x̂11)

 (5.43)

ŷ2 =
[

1 1
] x̂21

x̂22

 (5.44)

The designed adaptive laws are given by

˙̂
θ1(t) = −4(2.25(ŷ1 − y1))T (5.45)

˙̂
θ2(t) = −4(2.8125(ŷ2 − y2))T (5.46)

For simulation purpose, the unknown parameters θ0i and θi(t) are chosen as θ0i = 0

and θi(t) = 0.6 sin t for i = 1, 2. Simulation in Figures 5.2 and 5.3 shows that the esti-

mation error between the states of the system (5.29)-(5.32) and the states of the observer

(5.41)-(5.44) converges to zero asymptotically. Figure 5.4 shows that the estimation of

the parameters is uniformly ultimately bounded with satisfactory accuracy.
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Figure 5.2: The time responses of the 1st subsystem states x1 = col (x11, x12) and their

estimation x̂1 = col (x̂11, x̂12).

5.4. CASE STUDY 2: A QUARTER-CAR SUS-

PENSION

Consider a vehicle (car, bus etc.) divided into 4 parts in case of 4 wheels, each part is

a composite mechanical spring-damper system consisting of the quarter part of the mass

of the body (together with passengers) and the mass of the wheel. The vertical positions

are described by upward directed x1 and x2, see Figure 5.5. The distance between the

road surface and the wheel’s contact point is the disturbance w varying together with the

road surface. The suspension is active which means that the actuator produces the force

F (control signal).

A good suspension system should have satisfactory road holding stability, while pro-

viding good traveling comfort when riding over bumps and holes in the roads.

Denote m1 and m2 the mass of the quarter body and the wheel respectively, while
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Figure 5.3: The time responses of the 2nd subsystem states x2 = col (x21, x22) and their

estimation x̂2 = col (x̂21, x̂22).

the flexible connections are described by the viscous damping factor b1 and the spring

constants (k1, k2). The motion equations can be described as follows (see e.g. [1]):

m1ẍ1 = F − b1(ẋ1 − ẋ2)− k1(x1 − x2) (5.47)

m2ẍ2 = −F + b1(ẋ1 − ẋ2) + k1(x1 − x2)− k2(x2 − w) (5.48)

The system can be described in a state space model
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Figure 5.4: Upper: the time responses of θ̂1(t) (dashed line) and θ1(t) (solid line); Bottom:

the time responses of θ̂2(t) (dashed line) and θ2(t) (solid line).

ẋ1 =

 0 1

−k1
m1

−b1
m1

 x11

x12

+

 0

1
m1
F

+

 0

1
m1

(k1x21 + b1x22)

 (5.49)

y1 =
[

1 1
] x11

x12

 (5.50)

ẋ2 =

 0 1

−k2
m2

−b1
m2

 x21

x22

+

 0

−k1
m2
x21 − 1

m2
F

+

 0

k2
m2

w
+

 0

1
m2

(k1x11 + b1x12)

 (5.51)

y2 =
[

1 1
] x21

x22

 (5.52)

where m1 = 500 kg, m2 = 300 kg, b1 = 900 N/m/s, k1 = 900 N/m and k2 =

600 N/m.
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Figure 5.5: A quarter-car suspension

In order to avoid system states going to infinity, and for simulation purposes, the

following feedback transformation is introduced

ui = −kixi, (5.53)

ki =
[

3.18 4.18
]
, i = 1, 2 (5.54)

Then with the given parameters, the system (5.49)-(5.52) can be rewritten as

ẋ1 =

 0 1

−1.8 −1.8


︸ ︷︷ ︸

A1

 x11

x12

+

 0

0.002 u


︸ ︷︷ ︸

f1(x1,u1)

+

 0

1.8(x21 + x22)


︸ ︷︷ ︸

H12(x2)

(5.55)

y1 =
[

3 3
]

︸ ︷︷ ︸
C1

 x11

x12

 (5.56)
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ẋ2 =

 0 1

−2 −3


︸ ︷︷ ︸

A2

 x21

x22

+

 0

−3x21 − 0.0033 u


︸ ︷︷ ︸

f2(x2,u2)

+

 0

2


︸ ︷︷ ︸
B2

w︸︷︷︸
θ(t)

+

 0

3(x11 + x12)


︸ ︷︷ ︸

H21(x1)

(5.57)

y2 =
[

1.8 1.8
]

︸ ︷︷ ︸
C2

 x21

x22

 (5.58)

In order to illustrate the developed theoretical results, it is assumed that all the system

states are available, and the aim is to estimate the distance between the road surface and

the wheel’s contact point w which is varying together with the road surface.

Choose

L = [0 0] and Q = 4I

. It follows that the Lyapunov equations (5.3) have unique solutions:

P =

 5 1

1 1

 , (5.59)

satisfying the condition (5.4) with

F = 0.667

For simplicity, it is assumed that

ξ(t) = 1, ε0 = 1 and δ = 5

The following dynamical systems are the observer of the nonlinear interconnected

system (5.55)–(5.58):
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Figure 5.6: The time responses of θ̂(t) (dashed line) and θ(t) (solid line).

˙̂x1 =

 0 1

−1.8 −1.8

 x̂11

x̂12

+

 0

0.002 u

+

 0

1.8(x̂21 + x̂22)

 (5.60)

ŷ1 =
[

3 3
] x̂11

x̂12

 (5.61)

˙̂x2 =

 0 1

−2 −3

 x̂21

x̂22

+

 0

−3x̂21 − 0.0033 u

+

 0

2

 θ̂(t)−
 0

1.2

 (ŷ2 − y2)

‖ŷ2 − y2‖

−

 0

2

 ε̂2(t) +

 0

3(x̂11 + x̂12)

 (5.62)

ŷ2 =
[

1.8 1.8
] x̂21

x̂22

 (5.63)

The designed adaptive law is given by

˙̂
θ(t) = −10(0.667(ŷ2 − y2))T (5.64)

For simulation purpose, the unknown parameter θ0 and θ(t) are chosen as 0 and

0.5 sin t respectively. Figure 5.6 shows that the estimation of the parameter is uniformly

ultimately bounded with satisfactory accuracy.
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Remark 6.7. For a real system, the positions and/or the velocities are usually chosen

as system output. However, some times, the linear combination of the position and veloc-

ity are taken as system output. Physically, such an aggregation of the output might arise

in some real systems [31, 144], for example, certain remote-control applications where

the number of transmission and receive lines/frequencies are limited [31].

5.5. CONCLUSION

In this chapter, an adaptive observer design for a class of nonlinear large scale in-

terconnected systems with unknown time varying parameters has been proposed based

on Lyapunov direct method. The unknown parameters vary within a given range. A set

of sufficient conditions has been developed to guarantee that the observation error sys-

tem with the proposed adaptive laws is globally uniformly bounded. The states of the

designed observer are asymptotically convergent to the original system states. Therefore,

from the state estimation point of view, the designed observers are asymptotic observers.

Case study examples on a coupled inverted pendulum system and a quarter-car suspension

show the practicability of the developed observer scheme for nonlinear interconnected

systems.
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CHAPTER. 6

ADAPTIVE SLIDING MODE OBSERVER

FOR NONLINEAR INTERCONNECTED

SYSTEMS WITH TIME VARYING

PARAMETERS

In this chapter, a class of nonlinear interconnected systems with uncertain time varying

parameters (TVPs) is considered. Both the interconnections and the isolated subsystems

are nonlinear. Sliding mode control method and adaptive techniques are employed to-

gether to design an observer to estimate the state variables of the systems in presence

of unknown TVPs. The Lyapunov direct method is used to analysis the stability of the

sliding motion and it is not required to solve the so-called constrained Lyapunov problem

(CLP). A set of conditions is developed under which the augmented systems formed by

the error dynamical systems and the designed adaptive laws, are globally uniformly ulti-

mately bounded. A simulation example is presented and the results show that the method

proposed in this chapter is effective.
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6.1. SYSTEM DESCRIPTION AND PRELIMINAR-

IES

Consider a nonlinear interconnected system composed of N subsystems as follows

ẋi = Aixi + gi(xi, ui) + φi(yi, ui)Θi(t) +
N∑
j=1

j 6=i

Hij(xj) (6.1)

yi = Cixi (6.2)

where xi ∈ Ωi ⊂ Rni (Ωi are neighborhoods of the origin), ui ∈ Ui ∈ Rmi (Ui are the

admissible control sets) and yi ∈ Rpi with mi ≤ pi ≤ ni are the state variables, inputs

and outputs of the i-th subsystem respectively, gi(xi, ui) ∈ Rni are nonlinear known

functions, φi(yi, ui) ∈ Rni are known functions and Θi(t) ∈ R are unknown TVPs. The

matrix triples (Ai, Ci) are constant with appropriate dimensions and Ci are full rank. The

terms
∑N

j=1

j 6=i
Hij(xj) are the known interconnections for i = 1, · · · , N .

Since the Ci are full row rank, there exist nonsingular matrices Tci such that

Āi =

 Āi1 Āi2

Āi3 Āi4

 := TciAiT
−1
ci
, (6.3)

C̄i =
[

0 Ipi

]
:= CiT

−1
ci

(6.4)

where Āi1 ∈ R(ni−pi)×(ni−pi) for i = 1, · · · , N . Then in the new coordinates x̄i defined

by

x̄i = Tcixi (6.5)

The system (6.1)-(6.2) can be rewritten as

˙̄xi1 = Āi1x̄i1 + Āi2x̄i2 + ḡi1(x̄i, ui)

+φ̄i1(yi, ui)Θi(t) +
N∑
j=1

j 6=i

Ha
ij(x̄j) (6.6)

˙̄xi2 = Āi3x̄i1 + Āi4x̄i2 + ḡi2(x̄i, ui)

+φ̄i2(yi, ui)Θi(t) +
N∑
j=1

j 6=i

Hb
ij(x̄j) (6.7)

yi = x̄i2 (6.8)
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where x̄ = col(x̄1, x̄2, · · · , x̄N), x̄i = col(x̄i1, x̄i2), x̄i1 ∈ Rni−pi , x̄i2 ∈ Rpi , and ḡi1(x̄i, ui)

ḡi2(x̄i, ui)

:= ḡi(x̄i, ui)=Tci [gi(xi, ui)]xi=T−1
ci

x̄i
(6.9)

 φ̄i1(yi, ui)

φ̄i2(yi, ui)

 :=Tciφi(yi, ui), (6.10)

 Ha
ij(xj)

Hb
ij(xj)

 :=Tci [Hij(xj)]xj=T−1
cj

x̄j
(6.11)

Assumption 7.1. The uncertain TVPs Θi(t) satisfy

|Θ̇i(t)| ≤ µi (6.12)

where µi are known constants and µi > 0.

Assumption 7.1 means the bounds on the unknown TVPs are not required, but the

rate of changes of these parameters are required to be bounded.

Assumption 7.2. The matrix pairs (Āi, C̄i) in (6.3)-(6.4) are observable for i = 1, 2, · · · , N .

Under Assumption 7.2, there exist matrices Li such that Āi − LiC̄i are stable, and

thus for any Qi > 0 the Lyapunov equations

(Āi − LiC̄i)TPi + Pi(Āi − LiC̄i) = −Qi (6.13)

have unique solutions Pi > 0 for i = 1, 2, · · · , N .

For further analysis, introduce partitions of Pi and Qi which are conformable with

the decomposition in (6.6)-(6.8) as follows

Pi =

 Pi1 Pi2

P T
i2 Pi3

 , Qi =

 Qi1 Qi2

QT
i2 Qi3

 (6.14)

where Pi1 ∈ R(ni−pi)×(ni−pi), Qi1 ∈ R(ni−pi)×(ni−pi). Then, from Pi > 0 and Qi > 0, it

follows that Pi1 > 0, Pi3 > 0, Qi1 > 0 and Qi3 > 0. The following result is required for

further analysis.

Lemma 7.1. The matrices Āi1 + P−1
i1 Pi2Āi3 are Hurwitz stable, where Pi1 and Pi2 are

defined in (6.14) and Āi1 and Āi3 are defined in (6.3), if the Lyapunov equations (6.13)

are satisfied.
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Proof. See Lemma 2.1 in [126].

Assumption 7.3. The functions ḡi(x̄i, ui) defined in (6.9) satisfy the Lipschitz condition

with respect to x̄i ∈ Rni and uniformly for ui ∈ Ui ∈ Rmi for i = 1, 2, · · · , N .

Assumption 7.3 implies that there exist nonnegative functions `ḡi1 and `ḡi2 such that

‖ḡi1(x̄i, ui)− ḡi1(ˆ̄xi, ui)‖ ≤ `ḡi1(ui)‖x̄i − ˆ̄xi‖ (6.15)

‖ḡi2(x̄i, ui)− ḡi2(ˆ̄xi, ui)‖ ≤ `ḡi2(ui)‖x̄i − ˆ̄xi‖ (6.16)

for i = 1, 2, · · · , N .

Remark 7.1. Assumption 7.3 shows that the functions ḡi(x̄i, ui) defined in (6.9) satisfy

the Lipschitz condition with respect to only x̄i instead of (x̄i, ui). Such an Assumption is

reasonable because control inputs ui are usually known in observer design, and may relax

the limitation to the functions ḡi(x̄i, ui).

6.2. ADAPTIVE SLIDING MODE OBSERVER DE-

SIGN

Consider the system in (6.6)-(6.8). Introduce a linear coordinate transformation

zi =

 Ini−pi Ki

0 Ipi


︸ ︷︷ ︸

Ti

x̄i (6.17)

whereKi = P−1
i1 Pi2. In the new coordinate system zi, system (6.6)-(6.8) has the following

form
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żi1 = (Āi1 +KiĀi3)zi1 + (Āi2 − Āi1Ki +Ki(Āi4 − Āi3Ki)zi2 + ḡi1(T−1
i zi, ui)

+φ̄i1(yi, ui)Θi(t)+Kiḡi2(T−1
i zi, ui) +

N∑
j=1

j 6=i

Ha
ij(T

−1z)

+Kiφ̄i2(yi, ui)Θi(t) +Ki

N∑
j=1

j 6=i

Hb
ij(T

−1z) (6.18)

żi2 = Āi3zi1 + (Āi4 − Āi3Ki)zi2 + ḡi2(T−1
i zi, ui) + φ̄i2(yi, ui)Θi(t)

+
N∑
j=1

j 6=i

Hb
ij(T

−1z) (6.19)

yi = zi2 (6.20)

where zi = col(zi1, zi2) with zi1 ∈ Rni−pi .

For system (6.18)-(6.20), consider a dynamical system

˙̂zi1 = (Āi1 +KiĀi3)ẑi1 + (Āi2 − Āi1Ki +Ki(Āi4 − Āi3Ki))yi + ḡi1(T−1
i ẑi, ui)

+φ̄i1(yi, ui)Θ̂i(t) +
N∑
j=1

j 6=i

Ha
ij(T

−1ẑ) +Kiḡi2(T−1
i ẑi, ui)

+Kiφ̄i2(yi, ui)Θ̂i(t) +Ki

N∑
j=1

j 6=i

Hb
ij(T

−1ẑ) (6.21)

˙̂zi2 = Āi3ẑi1 + (Āi4 − Āi3Ki)yi + ḡi2(T−1
i ẑi, ui) + φ̄i2(yi, ui)Θ̂i(t)

+
N∑
j=1

j 6=i

Hb
ij(T

−1ẑ) + di(·) (6.22)

ŷi = ẑi2 (6.23)

where ẑ = col(ẑ1, y), and the injection term di(·) is defined by

di(·) = ρisgn(yi − ŷi) (6.24)

where ρi are positive constants for i = 1, 2, · · · , N , with adaptive laws

Γ̇i = −σi[ ˙̂yi − di(·)] (6.25)

Θ̂i(t) = Γi + σiyi (6.26)
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where di(·) is given in (6.24), and σi are positive constants.

Let ei1 = zi1 − ẑi1, eyi = yi − ŷi and eΘi
= Θi(t)− Θ̂i(t). Then from (6.18)-(6.20)

and (6.21)-(6.23), the error dynamics are described by

ėi1 = (Āi1 +KiĀi3)ei1 + [ḡi1(·)− ḡi1(̂·)] + φ̄i1(·)[Θi(t)− Θ̂i(t)]

+
N∑
j=1

j 6=i

[Ha
ij(·)−Ha

ij (̂·)] +Ki[ḡi2(·)− ḡi2(̂·)] +Kiφ̄i2(·)[Θi(t)− Θ̂i(t)]

+Ki

N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij (̂·)] (6.27)

ėyi = Āi3ei1 + [ḡi2(·)− ḡi2(̂·)] + φ̄i2(·)[Θi(t)− Θ̂i(t)]

+
N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij (̂·)]− di(·) (6.28)

where di(·) is given in (6.24) for i = 1, 2, · · · , N , and

ḡi1(T−1
i zi, ui) = ḡi1(·), ḡi1(T−1

i ẑi, ui) = ḡi1(̂·)

ḡi2(T−1
i zi, ui) = ḡi2(·), ḡi2(T−1

i ẑi, ui) = ḡi2(̂·)

Ha
ij(T

−1z) = Ha
ij(·), Ha

ij(T
−1ẑ) = Ha

ij (̂·)

Hb
ij(T

−1z) = Hb
ij(·), Hb

ij(T
−1ẑ) = Hb

ij (̂·)

From (6.25) and (6.26)

ėΘi
= Θ̇i(t)− ˙̂

Θi(t)

= Θ̇i(t)− {Γ̇i + σiẏi}

= Θ̇i(t)−
{
{−σi[Āi3ẑi1 + (Āi4 − Āi3Ki)yi + ḡi2(̂·)

+φ̄i2(yi, ui)Θ̂i(t) +
N∑
j=1

j 6=i

Hb
ij (̂·) + di(·)− di(·)]}+ {σi[Āi3zi1

+(Āi4 − Āi3Ki)zi2 + ḡi2(·) + φ̄i2(yi, ui)Θi(t) +
N∑
j=1

j 6=i

Hb
ij(·)]}

}
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= −σiĀi3ei1 − σi[ḡi2(·)− ḡi2(̂·)]− σiφ̄i2(yi, ui)eΘi
−

N∑
j=1

j 6=i

σi[H
b
ij(·)

−Hb
ij (̂·)] + Θ̇i(t) (6.29)

From the structure of the transformation matrix Ti in (6.17) and the fact that ẑi =

col(ẑi1, yi), it follows that

‖T−1
i zi − T−1

i ẑi‖ = ‖T−1
i (zi − ẑi)‖

=

∥∥∥∥∥∥T−1
i

 ei1

0

∥∥∥∥∥∥ = ‖ei1‖ (6.30)

From the analysis above, it is straightforward to see

‖T−1z − T−1ẑ‖ = ‖e1‖ (6.31)

where

e1 := col(e11, e21, · · · , eN1) (6.32)

Therefore, from (6.15), (6.16), (6.30) and (6.31)

‖ḡi1(T−1
i zi, ui)− ḡi1(T−1

i ẑi, ui)‖ ≤ `ḡi1(ui)‖ei1‖ (6.33)

‖ḡi2(T−1
i zi, ui)− ḡi2(T−1

i ẑi, ui)‖ ≤`ḡi2(ui)‖ei1‖ (6.34)

‖Ha
ij(T

−1z)−Ha
ij(T

−1ẑ)‖ ≤ `Ha‖e1‖ (6.35)

‖Hb
ij(T

−1z)−Hb
ij(T

−1ẑ)‖ ≤ `Hb‖e1‖ (6.36)

where `ḡi1(ui) and `ḡi2(ui) are nonnegative functions, and `Ha and `Hb are constants.

Remark 7.2. It is well known that sliding mode is a reduced order system. In this

chapter, the sliding motion governs by the error dynamical systems (6.27) with adaptive

laws (6.25) - (6.26) while the error dynamical systems (6.28) does not affect the sliding

motion, which makes the obtained results less conservative.
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6.3. STABILITY OF THE ERROR DYNAMICAL

SYSTEMS

The following result is ready to be presented:

Theorem 7.1. Under Assumptions 7.1-7.3, the error dynamical systems (6.27) with adap-

tive laws (6.25) - (6.26) are globally uniformly ultimately bounded if the matrix W T +W

is positive definite, where

W =

 wa wb

wc wd


2N×2N

(6.37)

where wa = (waij)N×N , w
b = (wbij)N×N , w

c = (wcij)N×N , wd = (wdij)N×N , and

waij =


{λmin(Qi1)− 2‖Pi1‖[`gi1 + ‖Ki‖`gi2 ]

−2‖Pi1‖[`Ha + ‖Ki‖`Hb ]}, i = j

−‖Pi1‖[`Ha + ‖Ki‖`Hb ], i 6= j

wbij = wcij =


−{‖Pi1‖αi1 + σi‖Āi3‖

+σi`gi2 + σi`Hb}, i = j

σi`Hb , i 6= j

wdij =


2σiαi2, i = j

0, i 6= j

where Pi1 and Qi1 are given in (6.14), and

‖φ̄i1(·) +Kiφ̄i2(·)‖ ≤ αi1 (6.38)

‖φ̄i2(·)‖ ≤ αi2 (6.39)

for i, j = 1, 2, · · · , N .

Proof. For systems (6.27) and (6.29), consider the candidate Lyapunov function

V =
N∑
i=1

eTi1Pi1ei1 +
N∑
i=1

eTΘi
eΘi

(6.40)
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The time derivative of V (·) along the trajectories of system (6.27) and (6.29) is given by

V̇ =
N∑
i=1

[ėTi1Pi1ei1 + eTi1Pi1ėi1 + ėTΘi
eΘi

+ eTΘi
ėΘi

]

=
N∑
i=1

{{
(Āi1 +KiĀi3)ei1 + [ḡi1(·)− ḡi1(̂·)]

+φ̄i1(·)[Θi(t)− Θ̂i(t)] +
N∑
j=1

j 6=i

[Ha
ij(·)−Ha

ij (̂·)]

+Ki[ḡi2(·)− ḡi2(̂·)] +Kiφ̄i2(·)[Θi(t)− Θ̂i(t)]

+Ki

N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij(·)]
}T
Pi1ei1

+eTi1Pi1
{

(Āi1 +KiĀi3)ei1 + [ḡi1(·)− ḡi1(̂·)]

+φ̄i1(·)[Θi(t)− Θ̂i(t)] +
N∑
j=1

j 6=i

[Ha
ij(·)−Ha

ij (̂·)]

+Ki[ḡi2(·)− ḡi2(̂·)] +Kiφ̄i2(·)[Θi(t)− Θ̂i(t)]

+Ki

N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij (̂·)]
}

+
{
− σiĀi3ei1 − σi[ḡi2(·)− ḡi2(̂·)]

−σiφ̄i2(·)eΘi
+

N∑
j=1

j 6=i

σi[H
b
ij(·)−Hb

ij (̂·)]

+Θ̇i(t)
}T
eΘi

+ eTΘi

{
− σiĀi3ei1

−σi[ḡi2(·)− ḡi2(̂·)]

−σiφ̄i2(·)eΘi
+

N∑
j=1

j 6=i

σi[H
b
ij(·)−Hb

ij (̂·)] + Θ̇i(t)
}}

=
N∑
i=1

{
eTi1[(Āi1 +KiĀi3)TPi1 + Pi1(Āi1

+KiĀi3)]ei1 + 2eTi1Pi1[ḡi1(·)− ḡi1(̂·)]

+2eTi1Pi1φ̄i1(·)eΘi
+ 2eTi1Pi1

N∑
j=1

j 6=i

[Ha
ij(·)−Ha

ij (̂·)]

+2eTi1Pi1Ki[ḡi2(·)− ḡi2(̂·)] + 2eTi1Pi1Kiφ̄i2(·)eΘi
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+2eTi1Pi1Ki

N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij (̂·)]

−2eTΘi
σiĀi3ei1 − 2eTΘi

σi[ḡi2(·)− ḡi2(̂·)]

−2eTΘi
σi

N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij (̂·)]

−2eTΘi
σiφ̄i2(·)eΘi

+ 2eTΘi
Θ̇i(t)

}
From (6.33)-(6.36),

V̇ ≤
N∑
i=1

{
− eTi1Qi1ei1

+2‖Pi1‖[`gi1 + ‖Ki‖`gi2 ]‖ei1‖2 + 2‖Pi1‖

×‖[φ̄i1(·) +Kiφ̄i2(·)]‖‖ei1‖‖eΘi
‖

+2‖ei1‖‖Pi1‖[`Ha + ‖Ki‖`Hb ]‖e1‖

−2‖eΘi
‖σi‖Āi3‖‖ei1‖ − 2‖eΘi

‖σi`gi2‖ei1‖

−2‖eΘi
‖σi`Hb‖e1‖ − 2‖eΘi

‖σi‖φ̄i2(·)‖‖eΘi
‖

+2‖eΘi
‖‖Θ̇i(t)‖

}
(6.41)

From the definition of e1 in (6.32)

‖e1‖ ≤
N∑
j=1

‖ej1‖ = ‖ei1‖+
N∑
j=1

j 6=i

‖ej1‖ (6.42)

Then, from (6.41) and (6.42)

V̇ ≤
N∑
i=1

{
− eTi1Qi1ei1

+2‖Pi1‖[`gi1 + ‖Ki‖`gi2 ]‖ei1‖2

+2‖Pi1‖‖[φ̄i1(·) +Kiφ̄i2(·)]‖‖ei1‖‖eΘi
‖

+2‖ei1‖‖Pi1‖[`Ha + ‖Ki‖`Hb ][‖ei1‖

+
N∑
j=1

j 6=i

‖ej1‖]− 2‖eΘi
‖σi‖Āi3‖‖ei1‖

−2‖eΘi
‖σi`gi2‖ei1‖ − 2‖eΘi

‖σi`Hb [‖ei1‖
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+
N∑
j=1

j 6=i

‖ej1‖]− 2σi‖φ̄i2(·)‖‖eΘi
‖2

+2‖eΘi
‖‖Θ̇i(t)‖

}
≤

N∑
i=1

{
− eTi1Qi1ei1

+2‖Pi1‖[`gi1 + ‖Ki‖`gi2 ]‖ei1‖2

+2‖Pi1‖‖[φ̄i1(·) +Kiφ̄i2(·)]‖‖ei1‖‖eΘi
‖

+2‖Pi1‖[`Ha + ‖Ki‖`Hb ]‖ei1‖2

+
N∑
j=1

j 6=i

[2‖Pi1‖[`Ha + ‖Ki‖`Hb ]‖ei1‖‖ej1‖]

−2σi‖Āi3‖‖ei1‖‖eΘi
‖ − 2σi`gi2‖ei1‖‖eΘi

‖

−2σi`Hb‖ei1‖‖eΘi
‖ −

N∑
j=1

j 6=i

2σi`Hb‖eΘi
‖‖ej1‖

−2σi‖φ̄i2(·)‖‖eΘi
‖2 + 2‖eΘi

‖‖Θ̇i(t)‖
}

(6.43)

From Assumption 1, (6.38) and (6.39)

V̇ ≤ −
N∑
i=1

{
{λmin(Qi1)− 2‖Pi1‖[`gi1 + ‖Ki‖`gi2 ]

−2‖Pi1‖[`Ha + ‖Ki‖`Hb ]}‖ei1‖2 − {2‖Pi1‖αi1

+2σi‖Āi3‖+ 2σi`gi2 + 2σi`Hb}‖ei1‖‖eΘi
‖

−
N∑
j=1

j 6=i

[2‖Pi1‖[`Ha + ‖Ki‖`Hb ]‖ei1‖‖ej1‖]

+
N∑
j=1

j 6=i

2σi`Hb‖eΘi
‖‖ej1‖+ 2σiαi2‖eΘi

‖2
}

+
N∑
i=1

2µi‖eΘi
‖ (6.44)

Then, from the definition of the matrix W in Theorem 7.1 and the inequality above,

it follows that
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V̇ ≤ −1

2
XT [W T +W ]X + γ‖X‖

≤ −1

2
λmin(W T +W )‖X‖2 + γ‖X‖

≤ −
(

1

2
λmin(W T +W )‖X‖ − γ

)
‖X‖ (6.45)

where γ = 2µi and X = [‖e11‖, ‖e21‖, · · · , ‖eN1‖, ‖eΘ1‖, ‖eΘ2‖, · · · , ‖eΘN
‖]T .

From the definition of Lyapunov function in (6.40), it is straightforward to see that

λmin(Pi1)‖X‖2 ≤ V ≤ λmax(Pi1)‖X‖2

where X = [‖e11‖, ‖e21‖, · · · · · · , ‖eN1‖, ‖eΘ1‖, ‖eΘ2‖, · · · , ‖eΘN
‖]T , for all X ∈ Rn. It

can been seen clearly that λmin(Pi1)‖X‖2 belongs to class K∞.

Therefore, from the condition that W T + W is positive definite, system (6.27) is

globally uniformly ultimately bounded. Hence the result follows. 4

Remark 3. From Theorem 1, it follows that e1 and eΘi
are bounded and thus there exist

constants β1 > 0 and β2 > 0 such that

‖e1‖ ≤ β1, ‖eΘi
‖ ≤ β2 (6.46)

where β1 can be estimated using the approach given in [126] by slightly modification.

For system (6.27)-(6.28), consider a sliding surface

Si = {(ei1, eyi , eΘi
)
∣∣eyi = 0} (6.47)

From the structure of the error dynamical system (6.27)-(6.28), it follows that the sliding

mode of the error system (6.27)-(6.28) with respect to the sliding surface (6.47) is the

system (6.27) when limited to the sliding surface (6.47). All that remains is to determine

the gains ρi in (6.24) such that the system (6.27)-(6.28) can be driven to the sliding surface

Si in finite time and a sliding motion maintained thereafter.

Theorem 7.2. Under Assumptions 7.1-7.3 and the inequality (6.39), system (6.27)-(6.28)

is driven to the sliding surface (6.47) in finite time and remains on it thereafter if

ρi ≥ (‖Āi3‖+ `ḡi2 + `Hb + αi2β2)β1 + η (6.48)
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where η > 0 is constant, β1 and β2 satisfy (6.46).

Proof. From (6.28)

N∑
i=1

eTyi ėyi =
N∑
i=1

eTyi

{
Āi3ei1 + [ḡi2(·)− ḡi2(̂·)]

+φ̄i2(·)[Θi(t)− Θ̂i(t)]

+
N∑
j=1

j 6=i

[Hb
ij(·)−Hb

ij(·)]− di(·)
}

≤
N∑
i=1

{
‖Āi3‖‖ei1‖‖eyi‖+ `gi2‖ei1‖‖eyi‖

+`Hb‖e1‖‖eyi‖+ ‖φ̄i2(·)‖‖eΘi
‖‖eyi‖

−ρisgn(eyi)
}

≤
N∑
i=1

{{
(‖Āi3‖+ `ḡi2 + `Hb + αi2β2)β1

−ρi
}
‖eyi‖

}
(6.49)

Applying (6.48) into (6.49)

N∑
i=1

eTyi ėyi = −η
N∑
i=1

‖eyi‖ (6.50)

which implies that

eTy ėy ≤ −η‖ey‖

where ey = col(ey1 , ey2 , · · · , eyN ) and the inequality ‖ey‖ ≤
∑N

i=1 ‖eyi‖ is applied to

obtain the inequality above. This shows that the reachability condition is satisfied. Hence

the conclusion follows. 4

Remark 7.4. From sliding mode theory, Theorems 7.1 and 7.2 show that system (6.21)-

(6.23) is an approximate observer for the system (6.18)-(6.20) and the estimation error

enters a bounded domain in finite time.

Remark 7.5. It should be noted that Theorem 7.1 holds no matter whether the system

is on the sliding surface or not. It guarantees that the inequalities in (6.46) always hold.

Therefore, (6.46) can be used to obtain the results in Theorem 7.2.
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6.4. SIMULATION EXAMPLE

Consider a nonlinear interconnected system as follows:

ẋ1 =

 0 1

2 −3

 x11

x12

+

 u1

sinx12

+

 x11

0

 θ1(t) +

 0

0.1x2
21

 (6.51)

y1 =
[

1 0
] x11

x12

 (6.52)

ẋ2 =

 0 1

2 −3

 x21

x22

+

 u2

0.7 cosx22

+

 x21

0

 θ2(t) +

 0

0.7 sinx11

(6.53)

y2 =
[

1 0
] x21

x22

 (6.54)

where col(x1, x2) are the system states, y1 and y2 are the system outputs.

Let

Tci =

 0 1

1 0

 , i = 1, 2 (6.55)

From Section II, the system (6.51)-(6.54) can be transformed to

˙̄x1 =

 −3 2

1 0


︸ ︷︷ ︸

Ā1

 x̄11

x̄12

+

 sin x̄12

u1


︸ ︷︷ ︸

ḡ1(·)

+

 0

x̄11


︸ ︷︷ ︸

φ̄1(·)

θ1(t) +

 0.1x̄2
21

0


︸ ︷︷ ︸

H12(x̄2)

(6.56)

y1 =
[

0 1
]

︸ ︷︷ ︸
C̄1

 x̄11

x̄12

 (6.57)

˙̄x2 =

 −3 2

1 0


︸ ︷︷ ︸

Ā2

 x̄21

x̄22

+

 0.7 cos x̄22

u2


︸ ︷︷ ︸

ḡ2(·)

+

 0

x̄21


︸ ︷︷ ︸

φ̄2(·)

θ2(t) +

 0.7 sin x̄11

0


︸ ︷︷ ︸

H21(x̄1)

(6.58)

y2 =
[

0 1
]

︸ ︷︷ ︸
C̄2

 x̄21

x̄22

 (6.59)

Choose

Li = [1 1] and Qi = 8I
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for i = 1, 2. It follows that the Lyapunov equation (6.13) has unique solution:

Pi =

 1 0.2

0.2 4.2

 , i = 1, 2 (6.60)

and the matrix W defined in Theorem 7.1 is

W =


6.8 −0.1 −2.2 0

−0.1 6.8 0 −2.2

−2.2 0 2 0

0 −2.2 0 2

 (6.61)

Therefore, under the transformation xi = (TiTci)
−1zi with Tci defined in (6.55) and

Ti given by

Ti =

 1 0.2

0 1

 , i = 1, 2 (6.62)

The system can be described in z coordinates as follows

ż11 = −2.8z11 + 2.2z12 + sin z12 + 0.1(z21 − 0.2z22)2 (6.63)

ż12 = z11 − 0.2z12 + (z11 − 0.2z12)θ1(t) + u1 (6.64)

y1 = z12 (6.65)

ż21 = −2.8z21 + 2.2z22 + 0.7 cos z22 + 0.7 sin(z11 − 0.2z12) (6.66)

ż22 = z21 − 0.2z22 + (z21 − 0.2z22)θ2(t) + u2 (6.67)

y2 = z22 (6.68)

For simulation purposes, the controllers are chosen as:

ui = −kixi, i = 1, 2 (6.69)

ki =
[

8 2
]

(6.70)

By direct computation, it follows that the matrix W T + W is positive definite. Thus, all

the conditions of Theorem 7.1 are satisfied. Therefore the following dynamical system is

an asymptotic observer of the system (6.63)− (6.68)
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˙̂z11 = −2.8ẑ11 + 2.2y1 + sin ẑ12 + 0.1(ẑ21 − 0.2ẑ22)2 (6.71)

˙̂z12 = ẑ11 − 0.2ẑ12 + (ẑ11 − 0.2ẑ12)θ̂1(t) + u1 + d1(·) (6.72)

ŷ1 = ẑ12 (6.73)

˙̂z21 = −2.8ẑ21 + 2.2y2 + 0.7 cos ẑ22 + 0.7 sin(ẑ11 − 0.2ẑ12) (6.74)

˙̂z22 = ẑ21 − 0.2ẑ22 + (ẑ21 − 0.2ẑ22)θ̂2(t) + u2 + d2(·) (6.75)

ŷ2 = ẑ22 (6.76)

where the terms d1(·) and d2(·) are defined by

d1(·) = 9 sgn(y1 − ŷ1) (6.77)

d2(·) = 9 sgn(y2 − ŷ2) (6.78)

where ρ1 and ρ2 are defined in (6.48) and given by

ρ1 ≥ β1 + η (6.79)

ρ2 ≥ β1 + η (6.80)

where β1 = 6.5, and the design parameter η is chosen as η = 2.5. From (6.25) and

(6.26) with σ1 = σ2 = 1, the designed adaptive laws are given by

Γ̇1 = −[ ˙̂y1 − d1(·)] (6.81)

Θ̂1(t) = Γ1 + y1 (6.82)

Γ̇2 = −[ ˙̂y2 − d2(·)] (6.83)

Θ̂2(t) = Γ2 + y2 (6.84)

Simulation in Figures 6.1-6.4 shows the system state variables and their estimations

in presence of unknown time varying parameters Θ1(t) = Θ2(t) = 0.3t, and simulation in

Figures 6.5-6.6 shows that the system state variables and their estimations in presence of

unknown time varying parameters Θ1(t) = Θ2(t) = 0.6t. The estimation error between

the states of the system (6.63)-(6.68) and the states of the observer (6.71)-(6.76) converges

to zero globally ultimately bounded. Therefore, ẑi = col(ẑi1, ẑi2) in (6.71)-(6.76) is an

asymptotic estimation of zi = col(zi1, zi2) in (6.63)-(6.68).
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Figure 6.1: Upper: the time response of the z11 (solid line) and the time response of the

estimated ẑ11 (dashed line); Bottom: the time response of the error system z11 − ẑ11.

Remark 7.6. It should be noted that the states ẑi = col(ẑi1, ẑi2) in (6.71)-(6.76) give esti-

mations of the variable zi = col(zi1, zi2) in (6.63)-(6.68) for i = 1, 2. From the analysis in

Sections II and III, it is straightforward to see that x̂i = (TiTci)
−1ẑi are estimations of the

states xi = [xi1 xi2]T of the system (6.51)-(6.54) where Tci and Ti are defined in (6.55)

and (6.62) respectively for i = 1, 2.

Moreover, to validate the obtained results and to show that these results are applicable

to wide range of systems, Ai, i = 1, 2 have been changed.

Let

Ai =

 0 3

2 1

 , Then Ā =

 1 2

3 0

 , i = 1, 2 (6.85)

Choose

Li = [15 9] and Qi = 6I
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Figure 6.2: Upper: the time response of the z12 (solid line) and the time response of the

estimated ẑ12 (dashed line); Bottom: the time response of the error system z12 − ẑ12.
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Figure 6.3: Upper: the time response of the z21 (solid line) and the time response of the

estimated ẑ21 (dashed line); Bottom: the time response of the error system z21 − ẑ21.
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Figure 6.4: Upper: the time response of the z22 (solid line) and the time response of the

estimated ẑ22 (dashed line); Bottom: the time response of the error system z22 − ẑ22.
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Figure 6.5: Upper: the time response of the z11 (solid line) and the time response of the

estimated ẑ11 (dashed line); Bottom: the time response of the z12 (solid line) and the time

response of the estimated ẑ12.
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Figure 6.6: Upper: the time response of the z21 (solid line) and the time response of the

estimated ẑ21 (dashed line); Bottom: the time response of the z22 (solid line) and the time

response of the estimated ẑ22 (dashed line)

for i = 1, 2. It follows that the Lyapunov equation (6.13) has unique solution:

Pi =

 0.8647 −0.6529

−0.6529 0.8412

 , i = 1, 2 (6.86)

and the matrix W defined in Theorem 7.1 is

W =


4.9624 −0.0865 −2.6529 0

−0.0865 4.9624 0 −2.6529

−2.6529 0 2 0

0 −2.6529 0 2

 (6.87)

Therefore, under the transformation xi = (TiTci)
−1zi with Tci defined in (6.55) and

Ti given by

Ti =

 1 −0.76

0 1

 , i = 1, 2 (6.88)
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The system can be described in z coordinates as follows

ż11 = −1.1z11 − 1.47z12 + sin z12 + 0.1(z21 + 0.76z22)2 (6.89)

ż12 = 3z11 + 3.7z12 + (z11 + 0.76z12)θ1(t) + u1 (6.90)

y1 = z12 (6.91)

ż21 = −1.1z21 − 1.47z22 + 0.7 cos z22 + 0.7 sin(z11 + 0.76z12) (6.92)

ż22 = 3z21 + 3.7z22 + (z21 + 0.7z22)θ2(t) + u2 (6.93)

y2 = z22 (6.94)

For simulation purposes, the controllers are chosen as:

ui = −kixi, i = 1, 2 (6.95)

ki =
[

9 21
]

(6.96)

By direct computation, it follows that the matrix W T + W is positive definite. Thus, all

the conditions of Theorem 7.1 are satisfied. Therefore the following dynamical system is

an asymptotic observer of the system (6.89)− (6.94)

˙̂z11 = −1.1ẑ11 − 1.47y1 + sin ẑ12 + 0.1(ẑ21 + 0.76ẑ22)2 (6.97)

˙̂z12 = 3ẑ11 + 3.7ẑ12 + (ẑ11 + 0.76ẑ12)θ̂1(t) + u1 + d1(·) (6.98)

ŷ1 = ẑ12 (6.99)

˙̂z21 = −1.1ẑ21 − 1.47y2 + 0.7 cos ẑ22 + 0.7 sin(ẑ11 + 0.76ẑ12) (6.100)

˙̂z22 = 3ẑ213.7ẑ22 + (ẑ21 + 0.76ẑ22)θ̂2(t) + u2 + d2(·) (6.101)

ŷ2 = ẑ22 (6.102)

where the terms d1(·) and d2(·) are defined by

d1(·) = 9 sgn(y1 − ŷ1) (6.103)

d2(·) = 9 sgn(y2 − ŷ2) (6.104)

where ρ1 and ρ2 are defined in (6.48) and given by

ρ1 ≥ β1 + η (6.105)

ρ2 ≥ β1 + η (6.106)
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Figure 6.7: Upper: the time response of the z11 (solid line) and the time response of the

estimated ẑ11 (dashed line); Bottom: the time response of the z12 (solid line) and the time

response of the estimated ẑ12.

where β1 = 6.5, and the design parameter η is chosen as η = 2.5. From (6.25) and

(6.26) with σ1 = σ2 = 1, the designed adaptive laws are given by

Γ̇1 = −[ ˙̂y1 − d1(·)] (6.107)

Θ̂1(t) = Γ1 + y1 (6.108)

Γ̇2 = −[ ˙̂y2 − d2(·)] (6.109)

Θ̂2(t) = Γ2 + y2 (6.110)

Simulation in Figures 6.7-6.8 shows the system state variables and their estimations

in presence of unknown time varying parameters Θ1(t) = Θ2(t) = 0.6t. The estimation

error between the states of the system (6.89)-(6.94 and the states of the observer (6.97)-

(6.102) converges to zero globally ultimately bounded. Therefore, ẑi = col(ẑi1, ẑi2) in

(6.97)-(6.102) is an asymptotic estimation of zi = col(zi1, zi2) in (6.89)-(6.94).

Remark 7.7. It should be noted that the states ẑi = col(ẑi1, ẑi2) in (6.97)-(6.102) give es-

timations of the variable zi = col(zi1, zi2) in (6.89)-(6.94) for i = 1, 2. From the analysis

in Sections II and III, it is straightforward to see that x̂i = (TiTci)
−1ẑi are estimations of
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Figure 6.8: Upper: the time response of the z21 (solid line) and the time response of the

estimated ẑ21 (dashed line); Bottom: the time response of the z22 (solid line) and the time

response of the estimated ẑ22 (dashed line)

the states xi = [xi1 xi2]T of the system (6.51)-(6.54) with a new matrixAi for i = 1, 2 de-

fined in (6.85) where Tci and Ti are defined in (6.55) and (6.88) respectively for i = 1, 2.

6.5. CONCLUSION

In this chapter, an adaptive sliding mode observer for a class of nonlinear large scale

interconnected systems with unknown TVPs has been proposed based on Lyapunov direct

method. Although bounds on the unknown TVPs are not required, the rate of changes of

these parameters are bounded. The technique that used in this chapter is combined with

sliding mode and adaptive techniques, which is developed to estimate the states of the

system in presence of unknown TVPs and to guarantee the ultimate boundedness of the

estimation error of the designed observer. Two simulation examples with different pa-

rameters are presented to show the method used is effective and to show that the obtained

results are applicable to wide range of systems.
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It should be noted that there are some differences between the work in chapter 5 and

the work in chapter 6 in: the system structure, the technique used to design the observers,

and the dynamics of unknown TVPs.

The system structure, the term of the unknown TVPs considered in the chapter 5

is presented along side with known distribution matrix, while in chpter 6 is considered

along side with known function.

The technique used, the technique that used in chapter 6 is Sliding Mode Control

technique. This technique needs to design a sliding surface where the sliding motion will

take place. However, this is not the case with Variable Structure Control technique where

no sliding motion is needed.

The dynamics of unknown TVPs, It is assumed in chapter 5 that the unknown

TVPs vary within a specific range, and the nominal value is not required to be known,

while in the chapter 6, it is assumed that the unknown TVPs change with time, but the

rate of change is required to be bonded.
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CHAPTER. 7

CONCLUSIONS AND FUTURE WORK

7.1. SUMMARY AND CONCLUSIONS

In this thesis, a survey of the background and the history of observer and adaptive

observer for nonlinear interconnected systems have been presented. System structures

have been considered to reduce the conservatism and to guarantee the obtained results

to be applicable to a wide range of real physical systems. Novel approaches have been

developed to estimate the system states, and to estimate state variables and unknown time

varying parameters of the system.

The fundamental knowledge and the basic concept of Observability, Luenburger Ob-

server, Sliding Mode Observer and Adaptive tools have been given in Chapter 3 after

outline of mathematical preliminaries and basic stability theories in Chapter 2.

In Chapter 4, a novel approach to design an observer for a class of nonlinear large

scale interconnected systems with uniform relative degree has been developed. An asymp-

totic observer has been proposed for nonlinear interconnected systems with uncertainties

using the Lyapunov approach together with a geometric transformation. It is not required
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that either the isolated nominal subsystems or the interconnections are linearisable. Ro-

bustness to uncertainties is enhanced by using the system structure and the structure of

the uncertainties within the design framework. The developed results are applicable to a

wide class of nonlinear interconnected systems. A simulation example and a case study

have been given to show the effectiveness of the obtained results. A robust sliding mode

observer has been designed for a class of nonlinear interconnected systems with uncer-

tainties in Chapter 5. The known nonlinear interconnections and uncertain nonlinear in-

terconnections have been dealt with separately to reduce the effects of the interconnec-

tions without introducing unnecessary conservatism. A set of sufficient conditions has

been provided such that the error dynamics are asymptotically stable if the structure of

the uncertainties is known. All the bounds on the uncertainties involved are nonlinear

and are employed in the observer design to reject/reduce the effect of uncertainties. An

ultimately bounded sliding mode observer is proposed to estimate the states of the in-

terconnected system if the structure of the uncertainties is not available. A case study

relating to a multimachine power system has been presented to demonstrate the proposed

approach.

Chapters 6-7 focus on interconnected systems that have unknown time varying pa-

rameters as well as inaccessible system states. More specifically, in Chapter 6, an adaptive

observer design scheme has been proposed for a class of nonlinear large scale intercon-

nected systems with unknown time varying parameters. The unknown parameters vary

within a given range. A set of sufficient conditions has been developed to guarantee

that the observation error system with the proposed adaptive law is uniformly ultimately

bounded. The states of the designed observer are asymptotically convergent to the original

system states. Therefore, from the state estimation point of view, the designed observers

are asymptotic observers. Case study on a coupled inverted pendulum system shows the

practicability of the developed observer scheme for nonlinear interconnected systems. In

Chapter 7, an adaptive sliding mode observer for a class of nonlinear large scale inter-

connected systems with unknown time varying parameters has been proposed based on

Lyapunov direct method. Although bounds on the unknown time varying parameters are

not required, the rate of changes of these parameters are required to be bounded. The

technique used in this chapter is a harmonious combination of sliding mode techniques
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and adaptive techniques, which has been developed to estimate the system states in pres-

ence of unknown time varying parameters and to guarantee the ultimate boundedness of

the estimation error of the designed observer. Simulation examples with different param-

eters are presented to show that the developed method is effective and also to show that

the obtained results are applicable to a wide range of interconnected systems.

7.2. IDEAS FOR FUTURE RESEARCH

There are some possible interesting ideas for further research.

Although it has been shown that the observers effectively used to estimate the inac-

cessible states for nonlinear interconnected systems, how to design observers for systems

with unknown nonlinear interconnection functions are still challenging. As a possible

solution, it might use bounds on these unknown nonlinear functions and if the bounds are

known then based on Lipschitz condition, observers may be designed. However, to design

an asymptotic observer is a great challenge in this case. Moreover, many practical systems

include time varying parameters, it is still an open problem to design adaptive observers

for interconnected systems that have unknown time varying parameters if bounds on the

variation of the parameters are not available.

Nowadays, the fault diagnosis area of research including fault detection, fault isola-

tion, and fault identification, is a very interesting topic due to its importance for system

safety and reliability. It becomes interesting to use sliding mode and adaptive techniques

in fault detection for interconnected systems. In addition, it is well known that Supervi-

sory Control and Data Acquisition (SCADA) systems play a curial role in modern indus-

trial control systems. SCADA systems collect data from remote terminal units installed in

an industrial field and send them to the central control room. SCADA systems are vulner-

able to cyber attacks and as a result of these attacks, very serious results are expected on

the whole control systems. Recently, this issue attracts a huge amount of attention and the

main focus is to secure critical infrastructures that use SCADA systems in face of cyber

and cyber-physical attacks by design fault detection and reconstruction schemes. This is

a very interesting area to research in the future.
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APPENDIX. A

MATHEMATICAL PRELIMINARIES

In this chapter, some fundamental mathematical definitions and lemmas are given to out-

line the mathematical terms and results that will be used for analysis and design in the

thesis.

A.1. MATHEMATICAL REVIEW

A.1.1. EUCLIDEAN SPACE

The set of all n-dimensional vectors x = [x1, · · · , xn]T , where x1, · · · , xn are real

numbers, defines the n-dimensional Euclidean space denoted byRn. The one-dimensional

Euclidean space consists of all real numbers and is denoted by R. Vectors in Rn can be

added by adding their corresponding component by the scalar. They can be multiplied by

a scalar by multiplying each component by the scalar. The inner product of two vectors x

and y is defined by xTy =
∑n

i=1 xiyi, where x = [x1, · · · , xn]T and y = [y1, · · · , yn]T .
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A.1.2. VECTOR AND MATRIX NORMS

The norm ‖x‖ of a vector x is a real valued function with the following properties

• ‖x‖ ≥ 0 for all x ∈ Rn, with ‖x‖ = 0 if and only if x = 0.

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ Rn.

• ‖αx‖ = |α| ‖x‖, for all α ∈ R and x ∈ Rn.

For a vector x = [x1, · · · , xn]T , its p-norm can be defined by

‖x‖p = (|x1|p + · · ·+ |xn|p)
1
p , 1 ≤ p ≤ ∞ (A.1)

and

‖x‖∞ = maxi|xi| (A.2)

The Euclidean norm is defined by

‖x‖2 = (|x1|2 + · · ·+ |xn|2)
1
2 = (xTx)

1
2 (A.3)

A.1.3. DIFFERENTIABLE FUNCTIONS

A function f : R −→ R is said to be differentiable at x ∈ R if the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(A.4)

exists. The limit f ′(x) is called the derivative of f at x. A function f : Rn −→ Rm

is said to be continuously differentiable at a point x0 if the partial derivatives ∂fi
∂xj

exist

and continuous at x0 ∈ Rn for 1 ≤ i ≤ m, 1 ≤ j ≤ n. A function f is continuously

differentiable on a set S if it is continuously differentiable at every point of S.

A.2. LYAPUNOV STABILITY

Throughout the development of entire system theory, stability theory plays a signifi-

cant role in analysis and design. In this thesis, the stability of equilibrium points, which is
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usually characterised in the sense of Lyapunov named after a Russian mathematician and

engineer who laid the foundation of the enter theory [5], is recurrently discussed. There-

fore, some main results of stability of equilibrium points are provided in this section.

Consider the autonomous system

ẋ = f(x) (A.5)

where x ∈ D ⊂ Rn, and f : D −→ Rn is a locally Lipschitz map in domain D.

Definition 2.2.1 (Stability and Asymptotically Stability [5]). An equilibrium point x =

0 of system (A.5) is said to be

• stable if, for each ε > 0, there exists δ = δ(ε) > 0 such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀ t ≥ 0 (A.6)

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ =⇒ lim
x→∞

x(t) = 0 (A.7)

For non-autonomous systems

ẋ = f(t, x) (A.8)

firstly it is required to introduce some fundamental definitions. A system (A.8) satisfying

the inequality

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ (A.9)

for all (t, x) and (t, y) in some neighbourhood of (t0, x0), is said to be Lipschitz in x,

and the positive L is called a Lipschitz constant. Also the words locally Lipschitz and

globally Lipschitz have been widely used to indicate the domain over which the Lipschitz

condition holds. A function f(x) is said to be locally Lipschitz on a domain (open and

connected set) D ⊂ Rn if each point in D has a neighbourhood D0 such that f satisfies

Lipschitz condition (A.9) for all points in D0 with some Lipschitz constant L0. We say
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that f is Lipschitz on a set W if it satisfies (A.9) for all points in W , with the same

Lipschitz constant L. A function f(x) is said to be globally Lipschitz if it is Lipschitz on

Rn.

Now consider the system in (A.8), where f : [0,∞) × D −→ Rn is piecewise

continuous in t and locally Lipschitz in x on f : [0,∞) × D ⊂ Rn is a domain that

contains the origin x = 0 is an equilibrium point for (A.8) at t = 0 if

f(t, 0) = 0, ∀ t ≥ 0 (A.10)

Definition 2.2.2 (Stability and Asymptotically Stability [5]). An equilibrium point x =

0 of system (A.8) is said to be

• stable if, for each ε > 0, there exists δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀ t ≥ t0 ≥ 0 (A.11)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent of t0 such

that (A.11) is satisfied .

• unstable if it is not stable.

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such

that x(t) −→ 0 as t −→∞, for all ‖x(t0)‖ < c.

• uniformly asymptotically stable if it is uniformly stable and there is a positive con-

stant c independent of t0 such that for all ‖x(t0)‖ < c, x(t) −→ 0 as t −→ ∞,

uniformly in t0 ; that is, for each η > 0, there is T = T (η) such that

‖x(t)‖ < η, ∀ t ≥ t0 + T (η), ∀ ‖x(t)‖ < c (A.12)

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can be chosen

to satisfy limε→∞ δ(ε) =∞, and for each pair of positive numbers η and c, there is

T = T (η, c) > 0 such that

‖x(t)‖ < η, ∀ t ≥ t0 + T (η, c), ∀ ‖x(t)‖ < c (A.13)
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Then, without loss of generality, consider a linear autonomous system

ẋ = Ax (A.14)

where x ∈ Rn.

Lemma 2.2.1 (Stability of Linear System [5]). An equilibrium point x0 of system (A.14)

is said to be stable if and only if all eigenvalues λi of A satisfy Reλi ≤ 0 and for every

eigenvalue with Reλi = 0 and algebraic multiplicity qi ≥ 0, rank(A − λiI) = n − qi,

where n is the dimension of x. The equilibrium point is said to be asymptotically stable if

and only if all eigenvalues of A satisfy Reλi < 0.

Definition 2.2.3 (Hurwitz Matrix and Lyapunov Equation [5]). A matrix A ∈ Rn×n of

system (A.14) is said to be Hurwitz if and only if for any given positive definite symmetric

matrix Q there exists a positive definite symmetric matrix P satisfies

PA+ ATP = −Q (A.15)

Moreover, if A is Hurwitz, then P is the unique solution of (A.15) which is called the

Lyapunov equation.

For a nonlinear system (A.5), the following theorem is usually used to determine the

stability of the system.

Lemma 2.2.2 (Lyapunov Stability Theorem [5]). Let x = 0 be an equilibrium point

for system (A.5) and D ⊂ Rn be a domain containing x = 0. Let V : D −→ R be a

continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − 0 (A.16)

V̇ (x) ≤ 0 in D (A.17)

then, x = 0 is stable. Moreover, if

V (0) = 0 and V (x) > 0 in D − 0 (A.18)

V̇ (x) < 0 in D (A.19)

then, x = 0 is asymptotically stable.

A function V (x) satisfying condition (A.16), that is V (0) = 0 and V (x) > 0 for

x 6= 0 is said to be positive definite . If V (x) ≥ 0 for x 6= 0 is said to be positive
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semidefinite. With this terminology, roughly speaking, the origin is stable if there is

a continuously differentiable positive definite function V (x) such that V̇ (x) is negative

semidefinite, and it is asymptotically stable if V̇ (x) is negative definite.

Whether a function is positive or negative can be easily checked if the function is in

a quadratic form as

V (x) = xTPx =
n∑

i=1

n∑
j=1

pijxixj (A.20)

where P = (pij)n×n is a real symmetric matrix. In this case, V (x) is positive definite

(positive semidefinite) if and only if all the eigenvalues of P are positive (nonnegative).

Definition 2.2.4 (Class K functions [5]). A continuous function α : [0, a) −→ [0,∞) is

said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to

class K∞ if a =∞ and α(r) −→∞ as r −→∞.

Definition 2.2.5 (ClassKL functions [5]). A continuous function β : [0, a)× [0,∞) −→

[0,∞) is said to belong to class KL if, for each fixed s ∈ [0,∞), the mapping β(r, s)

belongs to classKwith respect to r and, for each fixed r, the mapping β(r, s) is decreasing

with respective to s and β(r, s) −→∞ as s −→∞.

Lemma 2.2.3 (Expanded Lyapunov Asymptotically Stability Theorem [5]). Let x = 0

be an equilibrium point of system (A.8) and D ⊂ Rn be a domain containing x = 0. Let

V : [0,∞)×D −→ R be a continuously differentiable function such that

W1(x) ≤ V (t, x) ≤ W2(x) (A.21)
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x) (A.22)

∀t ≥ 0 and ∀x ∈ D, whereWi(x) for i = 1, 2, 3 are continuous positive definite functions

on D. Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are chosen

such that Br = {‖x‖ ≤ r} ⊂ D and c < min‖x‖=rW1(x), then every trajectory staring

in {x ∈ Br|W2(x) ≤ c} satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0 (A.23)

for some class KL function β. Finally, if D = Rn and W1(x) is radially unbounded, then

x = 0 is globally uniformly asymptoticly stable.
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Lemma 2.2.4 (Converse Lyapunov Function [5]). Let x = 0 be an equilibrium point of

system

ẋ = f(t, x) (A.24)

where f : [0,∞) × D −→ Rn is continuously differentiable, D = {x ∈ Rn|‖x‖ < r},

and the Jacobian matrix [∂f/∂x] is bounded on D, uniformly in t. Let k, λ and r0 be

postive constants with r0 < r/k. Let D0 = {x ∈ Rn|‖x‖ < r0}. Assume that the

trajectories of the system satisfy

‖x(t)‖ ≤ k‖x(t0)‖ exp−λ(t−t0), ∀x(t0) ∈ D, ∀t ≥ t0 ≥ 0 (A.25)

Then, there exists a function V : [0,∞)×D0 −→ R such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (A.26)
∂V

∂t
+
∂V

∂t
f(t, x) ≤ −α3(‖x‖) (A.27)

‖∂V
∂x
‖ ≤ α4(‖x‖) (A.28)

where αi(·) for i = 1, 2, 3, 4 are class K functions defined on [0, r0]. If the system is

autonomous, the function V can be chosen independent of t.

Lemma 2.2.5 (Lyapunov-Like Theorem [5]). Let D ⊂ Rn be a domain that contains

the origin and V : [0,∞)×D −→ R be a continuously differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (A.29)
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x), ∀‖x‖ ≥ µ ≥ 0 (A.30)

∀ t ≥ 0 and ∀ x ∈ D, where α1 and α2 are class K functions and W3(x) is a continuous

positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−1
2 (α1(r)) (A.31)

Then, there exists a class KL function β and for every initial state x(t0), satisfying

‖x(t0)‖ ≤ α−1
2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and µ ) such that the so-

lution of ẋ = f(t, x) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t0 ≤ t ≤ t0 + T (A.32)

‖x(t)‖ ≤ α−1
2 (α1(µ)), ∀ t ≥ t0 + T (A.33)
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Moreover, if D = Rn and α1 belongs to class K∞, then (A.32) and (A.33) hold for any

initial state x(t0), with no restriction on how large µ is.

Inequalities (A.32) and (A.33) show that x(t) is uniformly bounded for all t ≥ t0 and

uniformly ultimately bounded with the ultimate bound α−1
2 (α1(µ)). The ultimate bound

is a classK function of µ ; hence, from the fact that the functions α1(·) and α2(·) are class

K functions, it follows that the smaller the value of µ, the smaller the ultimate bound. As

µ −→ 0, the ultimate bound approaches zero.

Lemma 2.2.6 (LaSalle’s Theorem [5]). Let Ω ⊂ D be a compact set that is positively

invariant with respect to (A.5). Let V : D → R be a continuously differentiable function

such that V̇ ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ = 0. Let M be the

largest invariant set in E. Then every solution starting in Ω approaches M as t→∞.

Proof: Let x(t) be a solution of (A.5) starting in Ω. Since V̇ ≤ 0 in Ω, V (x(t)) is a

decreasing function of t. Since V (x) is continuous on the compact set Ω, it is bounded

from below on Ω. Therefore, V (x(t)) has a limit a as t → ∞, where a is a positive

value. Note also that the positive limit set L+ is in Ω because Ω is a closed set. For any

p ∈ L+, there is a seqence tn with tn → ∞ and x(tn) → p as n → ∞. By continuity of

V (x), V (p) = limn→∞ V (x(tn)) = a. Hence, V (x) = a on L+. Since (by Lemma 4.1 in

[5]) L+is an invariant set, V̇ (x = 0) on L+. Thus,

L+ ⊂M ⊂ E ⊂ Ω (A.34)

Since x(t) is bounded, x(t) approaches L+ as t→∞ (by Lemma 4.1 in [5]). Hence, x(t)

approaches M as t→∞.

Unlike the Lyapunov’s theorem, LaSalle’s theorem does not require the function

V (x) to be positive definite.

A.3. ELEMENTARY THEORY OF NONLINEAR SIN-

GLE INPUT SINGLE OUTPUT SYSTEMS

Definition 2.3.1 (Relative Degree [66]).
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The single input single output nonlinear system

ẋ = f(x) + g(x)u (A.35)

y = h(x) (A.36)

is said to have relative degree r at a ponit x◦ if

• LgLkfh(x) = 0 for all x in a neighborhood of x◦ and all k < r − 1.

• LgLr−1
f h(x◦) = 0

Assume that x(t◦) = x◦ and suppose we wish to calculate the value of the output y(t) and

its k-th derivatives y(k)(t) with respect to time , for k = 1, 2, · · · at t = t◦. The process

can be explained as follows:

y(t◦) = h(x(t◦)) = h(x◦) (A.37)

y(1)(t) =
∂h

∂x

∂x

∂t
=
∂h

∂x
(f(x) + g(x)u(t) (A.38)

= Lfh(x(t)) + Lgh(x(t))u(t) (A.39)

If the relative degree r is larger than 1, for all t such that x(t) is near x◦, i.e. for all t near

t◦, we have Lgh(x(t)) = 0 and therefore

y(1)(t) = Lfh(x(t)) (A.40)

This yields

y(2)(t) =
∂Lfh

∂x

∂x

∂t
=

∂Lfh

∂x
(f(x) + g(x)u(t)) (A.41)

= L2
fh(x(t)) + LgLfh(x(t))u(t) (A.42)

Again, if the relative degree r is larger than 2, for all t near t◦, then LgLfh(x(t)) = 0 and

y(2)(t) = L2
fh(x(t)) (A.43)

Continuing in this way, it follows that

y(k)(t) = Lkfh(x(t)), for all k < r and all t near t◦ (A.44)

y(r)(t) = Lrfh(x◦) + LgL
r−1
f h(x◦)u(t◦) (A.45)
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Thus, the relative degree r is exactly equal to the number of times one has to differentiate

the output y(t) at time t = t◦ in order to have the value u(t◦) of the input explicitly

appearing.

Proposition 2.3.1 Suppose the system has relative degree r at x◦ (x◦ is a point where

LgL
r−1
f h(x◦) 6= 0). Then r ≤ n. Set

φ1(x) = h(x)

φ2(x) = Lfh(x)

...

φr(x) = Lr−1
f h(x)

If r is strictly less than n, it is always possible to find n−r more functions φr+1(x), · · · , φn(x)

such that the mapping

φ(x) =


φ1(x)

φ2(x)
...

φn(x)

 (A.46)

has the Jacobian matrix which is nonsingular at x◦ and therefore qualifies as a local

coordinates transformation in a neighbourhood of x◦. The value at x◦ of these addi-

tional functions can be find in different ways. However, it is always possible to choose

φr+1(x), · · · , φn(x) in such a way that

Lgφi(x) = 0, for all r + 1 ≤ i ≤ n, and all x around x◦ (A.47)

Proof. By definition of relative degree, the vector g(x◦) is nonzero, and thus the distri-

bution G = span{g} is nonsingular around x◦. Being 1-dimensional this distribution is

also involutive. Therefore, by the Frobenius’ Theorem, we deduce the existence of n− 1

real-valued functions, λ1(x), · · · , λn−1(x), defined in a neighbourhood of x◦, such that

span{dλ1, · · · , dλn−1} = G⊥ (A.48)

It is easy to show that

dim(G⊥ + span{dh, dLfh, · · · , dLr−1
f h}) = n (A.49)
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at x◦. Suppose this is false. Then

G(x◦) ∩ (span{dh, dLfh, · · · , dLr−1
f h})⊥(x◦) 6= {0} (A.50)

i.e. the vector g(x◦) annihilates all the covectors in

span{dh, dLfh, · · · , dLr−1
f h}(x◦) (A.51)

But this is a contradiction, because by definition 〈dLr−1
f h(x◦), g(x◦)〉 is nonzero.

From (A.48), (A.49) and from the fact that span{dh, dLfh, · · · , dLr−1
f h} has dimen-

sion r, by Lemma 4.1.1 in [66], it is concluded that in the set {λ1, · · · , λn−1} it is possible

to find n − r functions: without loss of generality, λ1, · · · , λn−1 with the property that

the n differentials dh, dLfh, · · · , dLr−1
f h, dλ1, · · · , dλn−r are linearly independent at x◦.

Since by construction the functions λ1, · · · , λn−r are such that

〈dLr−1
f h(x), g(x)〉 = Lgλi(x) = 0 for all x near x◦and all 1 ≤ i ≤ n− r (A.52)

This establishes the required result. Note that any other set of functions of the form

λ′i(x) = λi(x) + ci where ci is a constant, satisfies the same conditions, thus showing that

the value of these functions at the point x◦ can be chosen arbitrarily.

The description of the system in the new coordinates zi = φi(x), 1 ≤ i ≤ n, is found

very easily. Looking at the calculations already carried out at the begining, it follows that

for z1, · · · , zr
dz1

dt
=

∂φ1

∂x

dx

dt
=
∂h

∂x

dx

dt
= Lfh(x(t)) = φ2(x(t)) = z2(t)

...
dzr−1

dt
=

∂φr−1

∂x

dx

dt
=
∂(Lr−2

f h)

∂x

dx

dt
= Lr−1

f h(x(t)) = φr(x(t)) = zr(t)

For zr

dzr
dt

= Lrfh(x(t)) + LgL
r−1
f h(x(t))u(t) (A.53)

On the right hand side of this equation, it needs to replace x(t) with its expression as a

function of z(t) i.e. x(t) = φ−1(z(t)). Thus, setting

a(z) = LgL
r−1
f h(φ−1(z))

b(z) = Lrfh(φ−1(z))
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The equation can be rewritten as

dzr
dt

= b(z(t)) + a(z(t))u(t)

Note that at the point z◦ = φ(x◦), a(z◦) 6= 0 by definition. Thus, the coefficient a(z)

is nonzero for all z in a neighborhood of z◦.

As far as the other new coordinates are concerned, any special structure can not be

expected for the corresponding equations, if nothing else has been specified. However, if

φr+1(x), · · · , φn(x) have been chosen in such a way that Lgφi(x) = 0, then

dzi
dt

=
∂φi
∂x

(f(x(t)) + g(x(t))u(t)) = Lfφi(x(t)) + Lgφi(x(t))u(t) = Lfφi(x(t))

Setting

qi(z) = Lfφi(φ
−1(z)) for allr + 1 ≤ i ≤ n

The latter can be rewritten as

dzi
dt

= qi(z(t))

Thus, in summary, the state-space description of the system in the new coordinates

is given as follows

ż1 = z2

ż2 = z3

...

żr−1 = zr

żr = b(z) + a(z)u

żr+1 = qr+1(z)

...

żn = qn(z) (A.54)

In addition to these equations one has to specify how the output of the system is related

to the new state variables. From y = h(x), it is immediately seen that

y = z1 (A.55)
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The following example shows how to find a coordinate transformation z = T (x)

such that the system considered in new coordinates can be transformed to system (A.54)

Example: Consider the system

ẋ =


−x1

x1x2

x2

+


exp(x2)

1

0

u (A.56)

y = h(x) = x3 (A.57)

By direct calculation,

∂h

∂x
=
[

0 0 1
]
, Lgh(x) = 0, Lfh(x) = x2

∂(Lfh)

∂x
=
[

0 1 0
]
, LgLfh(x) = 1 (A.58)

In order to find the normal form, let

z1 = φ1(x) = h(x) = x3

z2 = φ2(x) = Lfh(x) = x2 (A.59)

Now, it is required to find a function φ3(x) such that

∂φ3

∂x
g(x) =

∂φ3

∂x1

exp(x2) +
∂φ3

∂x2

= 0 (A.60)

It is easily to see that the function

φ3(x) = 1 + x1 − exp(x2) (A.61)

satisfies condition (A.60). This and the previous two functions in (A.59) define a trans-

formation z = φ whose Jacobian matrix

∂φ

∂x
=


0 0 1

0 1 0

1 −exp(x2) 0

 (A.62)

is nonsingular for all x. The inverse transformation is given by

x1 = −1 + z3 + exp(z2)

x2 = z2

x3 = z1

APPENDIX A. MATHEMATICAL PRELIMINARIES



A.3. ELEMENTARY THEORY OF NONLINEAR SINGLE INPUT SINGLE
OUTPUT SYSTEMS 144

Note also that φ(0) = 0. In the new coordinates the system is described by

ż1 = z2

ż2 = (−1 + z3 + exp(z2))z2 + u

ż3 = (1− z3 − exp(z2))(1 + z2exp(z2))

These equations are globally valid because the transformation we considered was a global

coordinates transformation.
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APPENDIX: EXPLANATION EXAMPLE

OF SOFTWARE USED IN THE THESIS

MATLAB/SIMULINK software are mainly used to the design observers/adaptive ob-

servers for nonlinear interconnected systems which are considered in this thesis. To il-

lustrate how the simulation was carried out, the example which is proposed in Chapter

7 is used to show the Simulink blocks as an example of all case studies and numerical

examples that presented in the thesis. The figure B.1 shows the structure of the whole

system which consists of the actual system and the observer designed. More details in the

figure B.2 shows the subsystems and their observers. More detailed information about the

Simulink block of the whole system is shown in the figure B.3.
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Figure B.1: The whole system representing the general interconnected system and it’s

observer
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Figure B.2: The whole system representing subsystems and their observers

APPENDIX B. APPENDIX: EXPLANATION EXAMPLE OF SOFTWARE USED IN
THE THESIS



148

Figure B.3: The interconnected systems in Simulink block diagram
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