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Highlights 

 Agriculture reduces community diversity and evenness, while increases dominance.  

 Forests and vicinity to water increase species occupancy; pastures decrease it.  

 Forest areas are crucial for pumas, ocelots, raccoons, pacas, and agoutis.  

 Wetlands are important for jaguars, the apex predator.  

 Key to maintain forests and wetlands and target future crop expansion on pastures. 
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Abstract 1 

As human-modified landscapes are increasing in the tropics, it becomes critical to understand 2 

how they affect mammal communities to reconcile conservation and development. We 3 

combined land cover information and camera-trapping data to explore the effects of 4 

agricultural expansion on mammals in the Magdalena river valley of Colombia. We estimated 5 

species diversity, evenness, and dominance across two agricultural landscapes, modified by 6 

cattle ranching and oil palm cultivation. We further assessed which variables influence species- 7 

and community-level occupancy using multi-species occupancy models. Results highlight that 8 

modified landscapes display lower species richness, diversity and evenness, and higher 9 

dominance than more pristine sites. Residual forest cover and distance to water had significant 10 

effect on community occupancy (positive and negative respectively). Forests were particularly 11 

important for pumas, ocelots, lowland pacas, Central American agoutis, and crab-eating 12 

raccoons while wetlands had a positive effect on jaguars, the apex predator in the region. The 13 

influence of anthropogenic pressure was not clearly evident, though pastures were not valuable 14 

habitats for any mammal species, as they had a negative, yet not robust, effect on species and 15 

community occupancy. In light of rapidly expanding agriculture across the tropics, our findings 16 

highlight species-specific responses to disturbance that can inform land use planning and 17 

conservation policies. We stress the conservation value of forest and wetland habitat to 18 

mammal occupancy in heterogeneous ecosystems. Moreover, our results demonstrate that oil 19 

palm and crop expansion should target existing pastures, which displayed limited conservation 20 

value for Neotropical mammals but occupy vast swathes of land across Latin America.  21 

Keywords: Panthera onca; camera trap; Bayesian statistics; land-use change; oil palm; pasture. 22 
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1. Introduction 23 

Agricultural expansion is driving severe habitat loss and degradation, threatening biodiversity 24 

worldwide (Foley et al., 2005; Green et al., 2005; Tscharntke et al., 2012; Maxwell et al., 25 

2016). This is particularly concerning across tropical countries, which are extremely rich in 26 

biodiversity but experiencing unprecedented land cover change (Gibbs et al., 2010; Laurance et 27 

al., 2014). Therefore, there is an urgent need to understand how  species respond to different 28 

land cover types across modified landscapes to reconcile  biodiversity conservation and 29 

agricultural expansion across the tropics  (Crooks et al., 2011; Rondinini et al., 2011).  30 

Amongst agricultural sector, oil palm cultivation is of particular concern. These plantations 31 

have a negative effect on biodiversity, including mammals, and are expanding rapidly across 32 

the tropics (Fitzherbert et al., 2008; Yue et al., 2015; Wearn et al., 2017; Pardo et al., 2018a).  33 

Tropical mammals are a conservation priority because they are declining due to land-use 34 

change and hunting (Schipper et al., 2008; Visconti et al., 2011; Barlow et al., 2016) with 35 

important consequences for ecosystem health and resilience. Mammals make significant 36 

contributions to ecosystem functioning including trophic regulation, nutrient cycling, carbon 37 

storage, seed dispersal and ultimately maintenance of forest structure (Brodie et al., 2009; 38 

Jansen et al., 2010; Estes et al., 2011; Sobral et al., 2017). Amongst mammals, large-bodied 39 

carnivores like jaguars Panthera onca are acutely threatened with extinction due to their slow 40 

population growth rates and extensive area and dietary requirements (Crooks, 2002; Cardillo et 41 

al., 2005; Carbone et al., 2011).   42 

Conservation and management have largely moved away from single-species approaches to  43 

sustaining ecosystems and communities (Balmford et al. 2005; Santini et al., 2017).  However, 44 

developing interventions to safeguard forest-dwelling mammals is hindered by their cryptic 45 

nature. Statistical approaches, like occupancy modelling, that account and correct for imperfect 46 
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detection are, therefore, essential to provide a reliable evidence-base to support environmental 47 

policies (MacKenzie et al. 2002; Brodie et al. 2014; Guillera-Arroita 2017). Multi-species 48 

occupancy models (Dorazio & Royle 2005) go a step further as they enable us to 49 

simultaneously explore habitat and anthropogenic variables that influence both community and 50 

single species distribution, while providing robust inference for species infrequently detected 51 

during ecological surveys (Ahumada et al., 2011; Ahumada et al., 2013; Tobler et al., 2015; 52 

Rich et al. 2016; Wearn et al. 2017; Deere et al., 2017).  53 

Colombia is the 4th largest palm oil producer (Ocampo-Penuela et al., 2018), but it is also a 54 

megadiverse country, covering 0.7% of the planet and hosting 10% of known biodiversity 55 

(Mittermeier et al., 1997). Yet the country’s biodiversity is understudied due to a sustained 56 

period of conflict that rendered much of the region inaccessible. To our knowledge, this 57 

research is the first to study terrestrial mammals across agricultural landscapes in Colombia 58 

using multi-species occupancy models. We combine high-resolution land cover maps and 59 

camera trap data to achieve the following objectives: (1) assess how habitat availability and 60 

anthropogenic pressure (pastures, oil palm cultivation, and human settlements) influence 61 

community and species occupancy; (2) estimate Shannon diversity and  evenness, and Berger-62 

Parker dominance across two agricultural landscapes in the Magdalena river-valley of 63 

Colombia. We hypothesized that mammalian occupancy would respond positively to bottom-64 

up resources (i.e. habitat availability)   and negatively to top-down anthropogenic pressures, 65 

depending on species-specific habitat preferences and sensitivity to disturbance. The study sites 66 

comprised the dominant land use in Latin America, cattle ranching, (Grau & Aide, 2008) and 67 

oil palm cultivation. In face of a rapid land use change in the tropics, this study provides 68 

valuable information to inform management, land use planning and policies that reconcile 69 

agricultural expansion and mammal conservation.   70 
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2. Methods 71 

2.1 Study sites 72 
We conducted the study at two sites in the central region of the Magdalena River valley, 73 

Department of Santander, Colombia (Site-1 (7.3752N -73.8842E to 7.5404N -73.7118E; Site-74 

2: 5.3450N -72.8471E to 5.4365N -72.7607E) (Fig. 1). Both sites are situated in the central 75 

part of the Magdalena river valley, in between the Central and Eastern Andes, in the 76 

Department of Santander, Colombia. The  Euclidean distance between the two study sites is 93 77 

km. The overall region is part of the tropical forest biome and is rich in wetlands with no 78 

altitudinal gradient (IDEAM et al., 2007). Mean annual temperature is 27C, and annual 79 

precipitation ranges between 2100-2600 mm (IDEAM et al., 2007). Land tenure is primarily 80 

private (different owners) and there are no national protected areas.  81 

The region is considered important for several species, including keystone mammals such as 82 

the jaguar (Payan-Garrido et al., 2013; Boron et al., 2016b) and endangered endemics like the 83 

brown spider monkey (Ateles hybridus ssp. brunneus) and white-footed tamarin (Sanguinos 84 

leucopus). However, most of the region’s historical forest cover has been lost due to the 85 

expansion of cattle ranching and oil-palm agro-industries, while the remaining natural areas 86 

facing a high risk of conversion (Etter et al., 2006; Castiblanco et al., 2013; Link et al., 2013).  87 

We chose these two sites because they are modified, to a large degree, by agriculture but still  88 

retained top predators like jaguars and pumas Puma concolor as well as other declining species 89 

of conservation importance. The dominant land cover classes across our study sites 90 

include:pastures (Site 1: 312 km2/35%; Site 2: 244 km2/36%), wetlands (Site-1: 182 km2 Site-91 

1/20% ; Site-2: 233 km2/34% at Site-2), secondary forest (Site-1: 112 km2/12%; Site-2: 129 92 

km2/19%), oil-palm plantations (Site-1:172 km2/19% , Site-2: 17 km2/2%) , water (Site-93 

1:190km2/10%;Site-2:Site-2: 43km2/6%)), bare ground (Site-1: 24km2/3%; Site-2: 13 94 
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km2/2%), settlements <0.4%, and roads <0.6% (Fig. 1) (Boron et al., 2018). We identified 95 

these land cover types and their amounts across the study sites, which we defined by adding a 96 

buffer of 9.2 km around the camera stations. This reflects the maximum distance moved by the 97 

species with the largest home range in the study region, (jaguars; Nowell & Jackson, 1996).  98 

2.2 Camera trapping 99 
We deployed 47 camera stations between April and August 2014 at Site-1 and 26 stations 100 

between September and December 2014 at Site-2 using a blocked design. This included dry 101 

and wet seasons at both sites (April, May, October, November, December: wet months; June, 102 

July, August, September: dry months). The minimum convex polygons connecting camera 103 

stations were 154.8 km2 at Site-1 and 85.4 km2 at Site-2. We set-up the cameras following 104 

standardized survey techniques for terrestrial mammals (Ahumada et al., 2011, 2013; Rovero et 105 

al., 2014), in a grid at intervals of 1.6±0.3 km, and across the main land cover types of the 106 

region: forests (N=35), wetlands (N=8), pastures (N=11), and oil palm plantations (N=13). The 107 

remaining cameras (N=6) were located  in transitional habitat between wetland and oil palm 108 

“Edge” (Fig. 1).  To optimize detection, we placed the cameras so that their field of view 109 

would be facing low resistance travel routes such as wildlife trails (Cusack et al., 2015). 110 

Twenty-eight (60%) and 19 (73%) stations were placed on roads/trails at Site-1 and Site-2 111 

respectively and we took this into account in our modelling approach. Camera traps are 112 

consistently able to detect terrestrial mammals ≥ 0.5 kg, which are what we refer to in this 113 

manuscript (Rovero et al., 2010). We deployed Cuddeback Attack (model 1149) and Ambush 114 

(model 1170) camera traps and secured them to a tree at a height of 35 cm from the forest 115 

floor.  Both camera models have an identical trigger speed (0.25 seconds) and a detection zone 116 

of 3-4 m due to the high temperatures characteristic of the region. 117 

2.3 Species richness, diversity, and evenness  118 
For each study site we produced species accumulation curves using EstimateS (Colwell, 2013). 119 



 8 

Accumulation curves reach an asymptote once all detectable species have been recorded and 120 

were produced using the rarefaction method with 1000 randomizations (Magurran, 2004; 121 

Ahumada et al., 2011).We also calculated a) Shannon diversity index (DShannon= -Σpi ln pi where 122 

pi is the proportion of abundance for species i, Ni relative to the total abundance N); b) 123 

evenness index (EShannon = DShannon/ln (S), where S in the number of species observed)and c) the 124 

Berger–Parker dominance index (D = Ni/N where Ni is the abundance of the most abundant 125 

species relative to the total abundance N) (Shannon, 1948; Berger & Parker, 1970; McCune et 126 

al., 2002).  127 

We defined species abundances as integer capture rates, and calculated them using the total 128 

number of independent capture events of that species divided by the number of trap-nights 129 

(TN) and expressed as integer records per 100 trap nights (Carbone et al., 2001; O’Brien et al., 130 

2003). Independent capture events were defined as consecutive photographs of individuals of 131 

the same species taken more than 30 min apart (O’Brien et al., 2003). Capture rates may not 132 

reflect real abundance, however they still provide more information than just incidence records 133 

(Carbone et al., 2001; Sollmann et al., 2013).  134 

2.4 Multi-species occupancy modelling 135 

We performed statistical analysis at the scale of the camera trap station (e.g. Rovero et al., 136 

2014; Rich et al., 2016), and defined a sampling unit as the circular area with a radius of 800m 137 

around each camera station, corresponding to half the average distance between neighboring 138 

stations (Sollmann et al., 2012). Prior to analysis, we discarded species with fewer than five 139 

detections (i.e. eastern cottontail Sylvilagus floridanus and grison Galictis victata). To reduce 140 

zero inflation in the dataset, we constructed detection histories for each species grouping seven 141 

consecutive camera trap nights into one sampling occasion (Alexander et al., 2016; Everatt et 142 

al., 2014). This resulted in 12 sampling occasion at Site-1 and 14 at Site-2. 143 
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We implemented a hierarchical Bayesian multi-species model formulation (Dorazio & Royle, 144 

2005) to estimate species and community occupancy while accounting for imperfect detection 145 

(MacKenzie et al., 2006) (see Appendix 1 for model code). This class of model is composed of 146 

two components: the state process, describing the ecological system, and the observation 147 

process, defining the sampling protocol. Relative to occupancy, this distinction differentiates 148 

between non-detection and true absence. 149 

We modelled the occurrence (z) of species i at site j as a realization of a Bernoulli process, zi,j 150 

~ Bern(ψi,j), where ψi,j represents the latent occupancy state. To account for imperfect detection 151 

of true occupancy, detection probability was estimated as a function of temporal replicate k at 152 

site j. We denoted detection as a second Bernoulli process, xi,j,k ~ Bern(pi,j,k* zi,j), where xi,j,k 153 

represents the observed detection histories, and pi,j,k is the detection probability of species i for 154 

temporal replicate k at site j, conditional on species presence (zi,j=1) (Zipkin et al., 2010). 155 

We connected occurrence and detection models of observed taxa through an additional 156 

hierarchical component that modeled coefficients from a community-level distribution 157 

governed by hyper-parameters. This protocol assumes similarity in community responses to 158 

covariates. Consequently, species-specific parameter estimates are a function of individual 159 

detection histories and average community-level responses, which provides more robust 160 

estimation precision for infrequently observed species (Pacifici et al. 2014). Hyper-parameters 161 

provide insights into community level responses to covariates of interest and among species 162 

variability (Kery and Royle, 2008). We defined the linear predictor for the state process (ψ) 163 

and observation process (p) models as:  164 

logit(ψi,j) = µ(i) Site(j) + α1i Distance Settlementj + α2i Distance Waterj + α3i % Forest Coverj + 165 
α4i % Pasture Coverj + α5i % Wetland Coverj +  α6i % Oil Palm Coverj  +  α7i Seasonj  166 
 167 
logit(pi,j,k) = υ(i) Habitat(j) + β1i Roadj + β2i  Seasonj 168 
 169 
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Occupancy and detection probabilities were defined on the logit scale, with site- and habitat-170 

specific intercepts on the state and observation processes respectively. We specify intercepts 171 

and slopes as a function of individual taxa. Intercepts were specific to site (1 or 2) for 172 

occupancy and land cover class for detection (i.e. forest, pasture, oil palm, wetland, and edge 173 

between oil palm and wetland). We derived covariates from Landsat 8 satellite imagery using 174 

Object Oriented Image Analysis (Bock et al., 2005) and eCognition Developer 9 software (see 175 

Boron et al. 2018 for more details). Dominant land cover types (specified as % 176 

Forest/Pasture/Wetland/Oil Palm Cover) were extracted as proportions across each sampling 177 

unit  with ArcMap 10.3. We measured the Euclidean distances of each camera station to water 178 

and settlements, which averaged 0.60 ± 0.07 km and 4.85 ± 0.29 km respectively. We tested 179 

for collinearity amongst covariates using a  threshold value of |r| = 0.7 (Dormann et al., 2013) 180 

and no covariate was highly correlated to others. As mammals can use roads and trails to 181 

facilitate their movement (Cusack et al., 2015) we included a categorical covariate on detection 182 

probability (0/1 representing on/off roads/trails respectively). We grouped roads and trails 183 

together because the roads we refer to are not paved, ≤ 3 metres wide, not open to the public 184 

(inside private lands), not used regularly and thus not very different to trails. We also tested the 185 

effect of season (wet vs. dry) on both occupancy and probability of detection. To improve 186 

model convergence and place covariates on a comparable scale, we centered and standardized 187 

(by subtracting the mean and dividing by the standard deviation of all the sites) all continuous 188 

predictor covariates prior to analysis.   189 

Parameter posterior distributions were estimated using Markov chain Monte Carlo (MCMC) 190 

simulation and conducted in WinBUGS version 1.4.3, called through R version 3.3.0 using the 191 

package “R2WinBUGS” (Sturtz et al. 2005). Hierarchical models were constructed using 192 

uninformative priors for all parameters. Unless stated otherwise, we present parameter 193 

estimates as mean values of the posterior distribution, accompanied by 95% Bayesian Credible 194 
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Intervals (BCI) to express uncertainty. Parameters were considered significantly influential if 195 

their 95% BCI did not overlap zero and weakly influential if their 90% BCI did not overlap 196 

zero. We ran three parallel MCMC chains for 75,000 iterations each, discarding the first 25,000 197 

iterations during the burn-in process and thinning posterior samples by a value of 10. To assess 198 

convergence, trace plots were visually inspected for satisfactory mixing and the Gelman-Ruben 199 

statistic (Gelman and Hill, 2007) was observed to ensure a value of <1.1 for all parameters. We 200 

implemented a posterior predictive check to assess model fit compared to a simulated dataset, 201 

extracting Bayesian P-values as a numerical overview of the predictive distribution (~0.5 202 

indicative of good model fit; 0.05<P>0.95 indicative of poor model fit).   203 

 204 

3. Results 205 

The total sampling effort resulted in 3069 and 1903 trap nights at Site-1 and Site-2 206 

respectively. Cameras were active for an average of 66 trap nights at Site-1 and 73 at Site-2. 207 

On average camera stations detected 5 species at both sites (Site 1: 5, range 0-12; Site 2: 5, 208 

range 0-10). We recorded a total of 17 terrestrial mammal species at each site consisting of 209 

different guilds and threat categories (Table 1) and three arboreal species (varied capuchins 210 

Cebus versicolor, howler monkey Alouatta seniculus and red-tailed squirrel Sciurus 211 

granatensis) that we excluded from analysis. Species accumulation curves indicate that we 212 

likely recorded most species at Site-1, whereas a larger sampling effort would have been 213 

required to characterise the mammal community at Site-2, as the curve does not reach an 214 

asymptote (Fig. 2).  Overall sites displayed identical Shannon species diversity (Site 2: 2.01 vs. 215 

Site 1: 2.02) and species evenness (Site 2: 0.71 vs. Site 1: 0.71) and similar species dominance 216 

(Site 2: 0.32 vs. Site 1: 0.40).  217 

Species occupancy varied from 0.54 (ocelot Leopardus pardalis) to 0.09 (Spiny rat Proechymis 218 
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chrysaeolus) at Site-1 and from 0.31 (ocelot) to 0.12 (nine-banded armadillo Dasypus 219 

novemcinctus) at Site-2 (Table 1). Bayesian p values detailing model adequacy fit for single 220 

species (0.08-0.78) and the full model (0.51) indicated good to optimal fit (Table A2A1). 221 

Proportion of forest cover and distance to water were found to have significantly  positive and 222 

negative influences respectively on community-level mammalian occupancy (Fig. 3 and Table 223 

2). Pumas (0.985; 95% BCI: 0.185-1.876), ocelots (0.811; 95% BCI: 0.032 - 1.618), Central 224 

American agoutis Dasyprocta punctuata (1.008; 95% BCI: 0.222 - 1.884), lowland pacas 225 

Cuniculus paca (0.825; 95% BCI: 0.014 - 1.668), and crab-eating racoons Procyon 226 

cancrivorus (0.771; 95% BCI: 0.012 - 1.538) (Fig. 3 and Table A2 ) demonstrated a strong 227 

preference for areas dominated by forest cover. A further nine species were positively 228 

influenced by forest cover, though to a lesser extent (90% BCI non-overlapping zero) (Fig. 3 229 

and Table A2).  Consistent negative impacts of pasture cover on occupancy was documented 230 

for all species, though this trend was not significant at the community level t (Fig. 3 and Table 231 

2). The negative effect of pasture was weakly influentialfor lowland pacas (-0.644; 90% BCI: -232 

1.301 - -0.025), Central American agouti (-0.693; 90% BCI: -1.325 - -0.092), and jaguarundis 233 

(Herpailurus yagouaroundi) (-0.696; 90% BCI: -1.378 - -0.045) (Fig. 3 and Table A2 ). 234 

Wetlands increased jaguar occupancy (0.787; 90% BCI: 0.112 – 1.497); however, oil palm, 235 

distance to settlements, and season had unclear effects on community occupancy driven by 236 

high species variability (Tables 2 and A2, and Fig. 3).  237 

Probability of detection across the community was not significantly affected by any of the 238 

covariates (land cover types, season, and camera placement on roads) (Table 2), although 239 

placing cameras on roads/trails significantly improved detection for jaguars (1.054; 95% BCI: 240 

0.152-1.939), ocelots (0.869; 95% BCI: 0.171-1.612), crab-eating foxes Cerdocyon thous 241 

(1.024; 95% BCI: 0.297 - 1.753) and jaguarundi detection ( 0.723; 90%BCI: 0.148-1.296) 242 

(Table A3). We document species-specific covariate effects on occupancy and detection in 243 
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Tables A2-A4.  244 

 245 

4. Discussion 246 

As agricultural and human-modified landscapes are increasing across the tropics it becomes 247 

crucial to understand how they affect species and communities to inform evidence-based 248 

conservation interventions for species vulnerable to land-use change. Mammals are a key 249 

component of tropical forest ecosystems yet their populations continue to decline (Schipper et 250 

al., 2008; Visconti et al., 2011).  We synthesized land cover information, and camera trapping 251 

data using multi-species occupancy models to produce an assessment of Neotropical mammal 252 

persistence in landscapes dominated by agriculture. Our results demonstrate that: a) modified 253 

landscapes display lower species diversity and evenness, and higher dominance  compared to 254 

non-modified landscapes in the Neotropics in the literature; b) remaining forest areas and 255 

distance to water significantly influenced community level occupancy confirming our 256 

hypothesis; c) the effect of anthropogenic pressures was not clearly evident , although pastures 257 

were not valuable habitats for any mammal species and could therefore be targeted for future 258 

crop expansion.   259 

4.1 Species richness and community structure 260 
Species detection was commensurate with survey effort. At Site-2 the survey effort (26 261 

stations) was not sufficient to detect all mammal species. At Site 1, where sampling effort was 262 

higher (47 stations), the number of terrestrial mammal species (17) was similar to what 263 

recorded with comparable survey efforts in an oil palm landscape in the Colombian Llanos (16 264 

sp.)  (Pardo & Payan, 2015) and in the Volcan Barva Transect in Costa Rica (15 sp.), which is 265 

situated in a highly fragmented landscape (Ahumada et al., 2011), while lower than in pristine 266 
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areas such as the Peruvian Amazon (Tobler et al., 2008; Tobler et al., 2015), suggesting 267 

declining mammal richness with increasing habitat modification.  However, richness may not 268 

be the most informative metric. The effect of habitat modification on species richness may not 269 

be immediately apparent because generalist species spread and/or colonise modified 270 

landscapes, as suitable niches become available  (Ewers & Disham, 2006; Bogoni et al., 2016). 271 

Despite detecting different guilds (e.g. carnivores, herbivores, omnivores, insectivores) we 272 

recorded fewer species classified as threatened on the IUCN Red List (Vulnerable, Endangered 273 

and Critically Endangered) than other studies focussing on Neotropical mammals (e.g. Tobler 274 

et al. 2008; Payan, 2009; Ahumada et al. 2011), alluding to the sensitivity of vulnerable species 275 

to human modification. The complete absence of browsing herbivores like tapirs Tapirus 276 

terrestris and deer Mazama and Odocoileus sp. suggests that historical land transformation and 277 

overhunting could have been drivers of mammal decline and local extinction (Rodriguez-278 

Mahecha et al., 2006). Deer and tapir have been the preferred quarry of hunters for centuries as 279 

their significant body size yields more bushmeat per unit of hunting effort  (Redford & 280 

Robinson n.d.; Jerozolimski & Peres, 2003).  281 

Both sites displayed lower diversity and evenness, and higher dominance than the equivalent 282 

values reported by Ahumada et al. (2011) for  Neotropical mammal communities (Diversity: 283 

2.5-3.0; Evenness: 0.91-0.93; Dominance: 0.09-0.14). Our results discussed so far confirm that 284 

while agricultural landscapes with remaining natural habitat cover still hold some potential for 285 

medium-large mammal conservation (Daily et al., 2003; Cassano et al., 2012; Magioli et al., 286 

2016), habitat loss changes mammal communities, decreasing diversity and increasing 287 

dominance (Ahumada et al., 2011; Bogoni et al., 2016). Top predators like jaguars and pumas 288 

were still present in both study areas, however, their prey community seems impoverished as 289 

armadillos, pacas, peccaries (Pecari tajacu), capybaras, and deer were absent or rare across 290 

both sites. Therefore it is likely that puma survival depends on smaller prey such as widespread 291 
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agoutis, while jaguars rely on aquatic prey like caimans Caiman crocodilus and turtles 292 

Podocnemis and Trachemys sp. (Da Silveira et al., 2010).  293 

4.2 Factors influencing species and community occupancy and detection probability 294 
In accordance with our hypotheses, the proportion of forest cover in each sampling unit had a 295 

robust effect on mammalian occupancy, confirming that maintaining connectivity and forest 296 

cover in agricultural regions is crucial to preserve functional assemblages (Magioli et al., 2016; 297 

Zimbres et al., 2017; Pardo et al., 2018a;b), and wider biodiversity (Prescott et al., 2016). The 298 

effect of forest cover was particularly strong for pumas, ocelots, lowland pacas, raccoons, and 299 

Central American agoutis. Pumas’ and ocelots’ preference for forest is well documented (e.g. 300 

Paviolo et al., 2009;  Davis et al., 2011; Massara et al. 2015), reflecting higher prey occupancy 301 

(e.g. agoutis and pacas)  coupled with lower human presence  and disturbance. Proximity to 302 

water was also a strong determinant of community occupancy (distance to water had a 303 

significantly negative effect meaning community occupancy increases nearer to water). Water 304 

is a fundamental need of all species. Positive associations with water likely reflect the use of 305 

riparian forests for movement and dispersal as thanks to legislation these forests tend to be the 306 

only ones to remain in modified landscapes like our study sites (Nunez-Regueiro et al., 2015).  307 

Contrary to expectation, anthropogenic pressures did not show a significant effect on 308 

community or species occupancy. The presence of oil palm, for example, did not have a 309 

significant effect on species, but this is likely because it only occupies a small percentage of 310 

the study sites. For example, Pardo et al. (2018b) report that Neotropical mammal communities 311 

drastically change when oil palm cover reaches 45–75%.  Considering the documented 312 

negative effect of oil palm on mammals (Fitzherbert et al., 2008; Yue et al., 2015; Wearn et al., 313 

2017; Pardo & Payan, 2015; Pardo et al., 2018a;b), the expansion of this crop in the Neotropics 314 

remains a concern. Recent estimates suggest that 21.1 million hectares of land is potentially 315 

suitable for oil palm expansion in Colombia (Pirker et al. 2016). Ensuring that this expansion is 316 
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not met at the expense of tropical forest habitat should represent a regional conservation 317 

priority. 318 

When unavoidable, new plantations should be established on already modified areas like 319 

pastures, which displayed limited conservation value for most mammal species. We found a 320 

negative (although not significant) effect of pasture on community occupancy. This was more 321 

evident for jaguarundis,  lowland pacas, and agoutis. The negative effect of pasture on pacas 322 

and agouti could be due to lack of habitat cover and food resources. Our findings add to a 323 

growing body of literature demonstrating the low conservation value of pastures for a range of 324 

taxa (e.g. birds, beetles, and herpetofauna) (Gilroy et al., 2015; Prescott et al., 2016).  Pastures 325 

account for a large proportion of agricultural land in Latin America and generally have low 326 

productivity (Grau & Aide, 2008). Thus directing oil palm expansion on pastures, albeit 327 

intensifying use of land, would additionally enable to maximise food security, carbon storage, 328 

and natural habitat cover (Garcia-Ulloa et al., 2012).  329 

Finally, wetlands were important for jaguars, the apex predators, in agreement with previous 330 

evidence ( Soisalo & Cavalcanti, 2006; Quigley et al. 2017). Jaguar conservation in the study 331 

region will ultimately depend on the preservation of wetlands and the aquatic prey they host 332 

(Da Silveira et al., 2010).  333 

In interpreting these outputs, it is important to note that covariate influences on rare species 334 

occupancy may be underestimated due to the effects of shrinkage on parameter estimates. 335 

Given the prevalence of generalist species, community averages are driven by the response of 336 

these dominant species, thus, when statistical strength is borrowed for rare species, parameter 337 

estimates are drawn towards the community mean. At the same time shrinkage allows us to 338 

estimate occupancy for species that we would otherwise not be able to make reliable inferences 339 

for due to data limitations. In this respect, slight bias in parameter estimates is a fair trade-off 340 

(Pacifici et al., 2014). 341 
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Placing cameras on roads/established trails did not have an effect on community-level 342 

detection. However, it was important to improve detection of jaguars, ocelots, crab-eating 343 

foxes, and jaguarundis without affecting the detection of other species. Thus placing cameras 344 

on trails remains the preferred option to detect multiple mammal species including carnivores, 345 

which are known to use trails (Cusack et al., 2015).  346 

4.3 Conclusions and management implications 347 
Unprotected and increasingly human-modified areas can play a vital for species long-term 348 

survival and connectivity and thus it is important to further investigate how their composition 349 

and structure can affect species persistence and community composition. Furthermore, multi-350 

species approaches are particularly valuable for informing conservation strategies as they 351 

enable us to move beyond single species to community impact assessments. Data on how 352 

mammal assemblages respond differentially to agricultural habitats represents key information 353 

to understand disturbance. Thus, similar studies to the one presented in this paper can add 354 

empirical evidence to environmental decision making. More specifically this study shows that 355 

species diversity tends to be low in human modified landscapes while species dominance 356 

increases. We can expect similar patterns in agricultural areas around the tropics. These effects 357 

may take time to unfold due to extinction debts owed to a legacy of human disturbance 358 

(Tilman et al., 1994).  There is clear evidence that some species were more associated with 359 

natural habitats (e.g.  pumas, ocelots, jaguars, pacas) than others. Therefore they   are more 360 

likely to decline rapidly in modified landscapes with ramifications on their historical ranges 361 

and thus Red List categories (Ewers & Didham, 2006; Bogoni et al., 2016).  362 

 363 
Overall, planning for agricultural activity needs to factor in displacement and absence of 364 

species vulnerable to land-use change in areas where they naturally occur. As oil palm 365 

expansion and agriculture continues across the tropics, including Colombia, it is critical to 366 

minimize its negative impact on biodiversity. This study helps refine conservation strategies 367 
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and policy, having demonstrated that to reconcile agricultural expansion with mammal 368 

conservation, it is crucial to maintain natural forest cover, since it had a robust impact on 369 

community occupancy and is irreplaceable, as well as wetlands specifically for jaguars, the 370 

apex predators. Furthermore, it is important to conserve natural habitat cover across 371 

agricultural landscapes because no mammals displayed strong affiliation for oil palm and 372 

pasture. These findings can also inform land use planning and highlight that in order to avoid 373 

further negative impacts on biodiversity,  future oil palm and crop expansion could be directed 374 

towards existing pastures, which have low productivity (Grau & Aide, 2008), and, as we 375 

attested, hold limited value for terrestrial mammals, and biodiversity in general (Gilroy et al., 376 

2015; Prescott et al., 2016). Under these conditions, oil palm has the potential to expand 377 

without posing severe threat to vertebrate species in Colombia (Ocampo Penuela et al., 2018). 378 

However, this presuppose the existence of both, stronger regulatory approaches (e.g. land use 379 

planning that takes into account High Conservation Value forests and zero deforestation), as 380 

well as incentives that could help retain vital natural habitats and thus promote mixed 381 

landscapes (Lambin et al., 2014; Boron et al., 2016a).  382 

 383 

 384 

 385 

 386 

 387 
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 690 

 691 

 692 

Fig. 1 Study map of the two agricultural study sites (Site-1 and Site-2) in the Magdalena river 693 
valley of Colombia, including land cover types and camera trap stations (Site-1: N=47; Site-2: 694 
N=26). 695 

 696 

Fig. 2 Species accumulation curves across two study sites (Site-1 and Site-2) in the Magdalena 697 
river valley of Colombia.  698 

 699 

Fig. 3 Caterpillar plots delineating effects of covariates on single species and community-level 700 
occupancy across two sites in the Magdalena river valley of Colombia. Mean hyper-parameter 701 
values and 95% Bayesian Credible Interval (BCI) values are presented in the grey background 702 
to each plot, providing an insight to community level responses to covariates. Species-specific 703 
mean posterior summaries are denoted with points, while horizontal lines represent the 704 
associated 95% BCI. Significant species-specific associations are in blue (95% BCIs do not 705 
overlap zero). Other relevant associations are in light blue (90% BCIs do not overlap zero).   706 

 707 
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 718 
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Tables 719 

Table 1.  Terrestrial mammal species recorded across two study sites (Site-1 and Site-2) in the 720 
Magdalena river valley of Colombia, their IUCN (2015) and Regional Red List (Rodriguez-721 

Mahecha et al. 2006) categories, occupancy (ψ) estimates and 95% Bayesian Credible Intervals 722 

(95% BCIs). Site-specific estimates assume covariates are held at their average values DD= Data 723 
Deficient, LC= Least Concern, NT= Near Threatened, VU= Vulnerable, EN= Endangered. The 724 
greater grison and eastern cotton tail were excluded from the occupancy modelling due to the 725 
low number of records.  726 

Scientific name Common name 

IUCN  

Red 

List 

Regional  

Red List  

Site-1 

ψ  (95% 

BCI) 

Site-2 

ψ  (95% 

BCI) 

Apex carnivores      

      Panthera onca Jaguar NT VU 
0.47     

(0.24-0.77) 

0.13   

(0.03-0.33) 

      Puma concolor Puma LC NT 
0.32     

(0.15-0.55) 

0.16   

(0.05-0.39) 

Meso carnivores      

      Cerdocyon thous Crab-eating fox LC / 
0.26     

(0.08-0.61) 

0.13    

(0.02-0.36) 

      Galictis victata Greater grison LC / Not recorded 
Recorded 

once 

      Herpailurus yagouaroundi Jaguarundi LC / 
0.37     

(0.17-0.66) 

0.13    

(0.02-0.35) 

      Leopardus pardalis Ocelot LC NT 
0.54     

(0.33-0.76) 

0.31    

(0.12-0.66) 

Omnivores      

      Didelphis marsupialis Common opossum LC / 
0.24     

(0.09-0.53) 

0.14    

(0.03-0.38) 

      Eira barbara Tayra LC / 
0.28     

(0.12-0.57) 

0.28    

(0.11-0.66) 

      Pecari tajacu Collared peccary LC / 
0.14     

(0.03-0.38) 

0.20    

(0.05-0.55) 

      Proechymis chrysaeolus Spiny rat DD / 
0.09     

(0.02-0.28) 

0.16    

(0.04-0.43) 

      Procyon cancrivorus Crab-eating raccoon LC / 
0.39     

(0.20-0.63) 

0.20    

(0.08-0.45) 

Grazing herbivores      

     Sylvilagus floridanus Eastern cottontail LC / 
Recorded 

once 

Not 

recorded 

      Hydrochoerus isthmius Lesser capybara DD / 
0.26     

(0.08-0.61) 

0.13    

(0.02-0.36) 

Frugivores      

      Cuniculus paca Lowland paca LC / 
0.17     

(0.05-0.40) 

0.17    

(0.05-0.41) 

      Dasyprocta punctata 
Central American 

agouti 
LC / 

0.20     

(0.08-0.41) 

0.19    

(0.06-0.43) 
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 727 

 728 

 729 

Table 2. Hyper-parameter posterior summaries denoting community-level responses to 730 
covariates hypothesized to influence occupancy (ψ) and detection (p) of 16 mammal species at 731 
two study sites in the Magdalena river valley, Colombia. We present mean predicted posterior 732 
summary values and 95% Bayesian Credible Interval (95% BCI). Bold denotes covariates with 733 
significant effects on community occupancy.  734 

 
Mean Sigma 95% BCI 

Intercept_ψ Site-1 -1.02 0.92 -1.71 -0.36 

Intercept_ψ Site-2 -1.56 0.71 -2.40 -0.76 

ψ_Distance settlements  -0.11 0.38 -0.43 0.22 

ψ_Distance water * -0.39 0.32 -0.77 -0.03 

ψ_Forest * 0.72 0.37 0.09 1.34 

ψ_Pasture -0.42 0.42 -1.14 0.25 

ψ_Wetland 0.18 0.45 -0.51 0.86 

ψ_Oil Palm 0.36 0.44 -0.33 1.07 

ψ_Season 0.23 0.50 -0.45 0.89 

Intercept_P_Forest -1.66 1.07 -2.42 -0.93 

Intercept_P_Wetland -1.36 0.68 -2.17 -0.65 

Intercept_P_Edge -1.19 0.56 -1.88 -0.54 

Intercept_P_Pasture -1.29 0.68 -2.08 -0.60 

Intercept_P_Oil Palm  -1.64 1.68 -2.77 -0.59 

P_Roads/Trails 0.15 0.75 -0.50 0.73 

P_Season 0.09 0.42 -0.29 0.47 

 735 

 736 

Supplementary information 737 

 738 
Appendix 1. Model code used in the analysis. 739 
 740 
### Hierarchical community occupancy model to assess response of neotropical mammals to  741 

Insectivores      

     Dasypus novemcinctus 
Nine-banded 

armadillo 
LC / 

0.19     

(0.07-0.45) 

0.12    

(0.02-0.32) 

      Myrmecophaga tridactyla Giant anteater VU VU 
0.21     

(0.06-0.51) 

0.14    

(0.03-0.39) 

      Tamandua tetradactyla Lesser anteater LC / 
0.16     

(0.05-0.38) 

0.19    

(0.06-0.47) 

Total N. of species     17 17 
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### habitat and anthropogenic covariates (written in BUGS language). 742 
### Based on the Dorazio-Royle Community Model (2005; J. Am. Stat. Assoc., 100, 389-398). 743 
### Implemented using code adapted from Zipkin et al. (2010; Biol. Conserv., 143, 479-484). 744 
### Species-specific slopes and intercepts. 745 
### Random intercepts on the process/occupancy model to account for sampling at 746 
geographically 747 
### distinct sites (N=2). 748 
### Random intercepts on the observation model to account for variability in detectability 749 
relative ### to habitat type (N=5).   750 
 751 
sink("OM_Colombia_M1.txt") 752 
cat(" 753 
    model{ 754 
     755 
    ### Hyperparameters for site-specific intercepts 756 
    ###===================================== 757 
    for (s in 1:2) { 758 
           a1.mean[s] ~ dunif(0,1) 759 
           mu.a1[s] <- log(a1.mean[s]) - log(1-a1.mean[s]) 760 
           tau.a1[s] ~ dgamma(0.1,0.1) 761 
           sigma.a1[s] <- 1/sqrt(tau.a1[s]) 762 
           } 763 
    ### Hyperparameters for habitat-specific intercepts 764 
    ###======================================== 765 
    for (h in 1:5) { 766 
           a2.mean[h] ~ dunif(0,1) 767 
           mu.a2[h] <- log(a2.mean[h]) - log(1-a2.mean[h]) 768 
           tau.a2[h] ~ dgamma(0.1,0.1) 769 
           sigma.a2[h] <- 1/sqrt(tau.a2[h]) 770 
    } 771 
 772 
    ### Hyperparameters for fixed effects on the process/occupancy model 773 
    ###======================================================== 774 
    mu.b1 ~ dnorm(0,0.001) 775 
    mu.b2 ~ dnorm(0,0.001) 776 
    mu.b3 ~ dnorm(0,0.001) 777 
    mu.b4 ~ dnorm(0,0.001) 778 
    mu.b5 ~ dnorm(0,0.001) 779 
    mu.b6 ~ dnorm(0,0.001) 780 
    mu.b7 ~ dnorm(0,0.001) 781 
    tau.b1 ~ dgamma(0.1,0.1) 782 
    tau.b2 ~ dgamma(0.1,0.1) 783 
    tau.b3 ~ dgamma(0.1,0.1) 784 
    tau.b4 ~ dgamma(0.1,0.1) 785 
    tau.b5 ~ dgamma(0.1,0.1) 786 
    tau.b6 ~ dgamma(0.1,0.1) 787 
    tau.b7 ~ dgamma(0.1,0.1) 788 
    sigma.b1 <- 1/sqrt(tau.b1) 789 
    sigma.b2 <- 1/sqrt(tau.b2) 790 
    sigma.b3 <- 1/sqrt(tau.b3) 791 
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    sigma.b4 <- 1/sqrt(tau.b4)                                                    792 
    sigma.b5 <- 1/sqrt(tau.b5) 793 
    sigma.b6 <- 1/sqrt(tau.b6) 794 
    sigma.b7 <- 1/sqrt(tau.b7) 795 
 796 
    ### Hyperparameters for fixed effects on the observation/detection model 797 
    ###=========================================================== 798 
    mu.p1 ~ dnorm(0,0.001) 799 
    mu.p2 ~ dnorm(0,0.001) 800 
    tau.p1 ~ dgamma(0.1,0.1) 801 
    tau.p2 ~ dgamma(0.1,0.1) 802 
    sigma.p1 <- 1/sqrt(tau.p1) 803 
    sigma.p2 <- 1/sqrt(tau.p2) 804 
      805 
    ### Create priors for species i from the hyperparameters 806 
    ###=========================================== 807 
    for (i in 1:(n+nzeroes)) { 808 
 809 
    ### Species and site-specific intercepts for occupancy and detection 810 
    ###===================================================== 811 
           for(s in 1:2) { 812 
                  a1[s,i] ~ dnorm(mu.a1[s], tau.a1[s]) 813 
                  } 814 
     815 
           for(h in 1:5) { 816 
                 a2[h,i] ~ dnorm(mu.a2[h], tau.a2[h]) 817 
                 } 818 
     819 
    ### Species-specific occupancy and detection fixed effects drawn from a normal distribution  820 
    ### governed by community-level hyperparameters 821 
    ###======================================== 822 
           b1[i] ~ dnorm(mu.b1, tau.b1) 823 
           b2[i] ~ dnorm(mu.b2, tau.b2) 824 
           b3[i] ~ dnorm(mu.b3, tau.b3) 825 
           b4[i] ~ dnorm(mu.b4, tau.b4) 826 
           b5[i] ~ dnorm(mu.b5, tau.b5) 827 
           b6[i] ~ dnorm(mu.b6, tau.b6) 828 
           b7[i] ~ dnorm(mu.b7, tau.b7) 829 
     830 
           p1[i] ~ dnorm(mu.p1, tau.p1) 831 
           p2[i] ~ dnorm(mu.p2, tau.p2) 832 
 833 
    ### Process model of true occurrence 834 
    ###============================   835 
           for (j in 1:J) { 836 
                  logit(psi[j,i]) <- a1[Site[j],i] + b1[i]*dist.sett[j] + b2[i]*dist.water[j] +           837 
                                            b3[i]*forest[j] + b4[i]*pasture[j] + b5[i]*wetland[j] + b6[i]*OP[j] +    838 
                                            b7[i]*Season.psi[j] 839 
                  Z[j,i] ~ dbern(mu.psi[j,i]) 840 
     841 
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       ### Observation model for replicated detections  842 
    ###=====================================       843 
                  for (k in 1:K[j]) {   844 
                          logit(p[j,k,i]) <-  a2[habitat[j],i] + p1[i]*road[j] + p2*season.det[j] 845 
                              mu.p[j,k,i] <- p[j,k,i]*Z[j,i] 846 
                              y[j,k,i] ~ dbern(mu.p[j,k,i]) 847 
     848 
    # Calculate Pearson's chi-squared residuals to assess goodness of fit 849 
    # Based on Kery and Royle: Applied hierarchical modelling in ecology, pp. 235 850 
    # Calculate the observed and expected residuals 851 
    # Add small value to prevent division by zero 852 
    #============================================                              853 
                             y.sim[j,k,i] ~ dbern(mu.p[j,k,i])                                                 854 
                            chi2.actual[j,k,i] <- pow(y[j,k,i] - mu.p[j,k,i], 2)/ (mu.p[j,k,i] + 0.0001)  855 
                            chi2.sim[j,k,i] <- pow(y.sim[j,k,i] - mu.p[j,k,i], 2)/ (mu.p[j,k,i] + 0.0001) 856 
                           }    857 
     858 
                 chi2.actual.sum[j,i] <- sum(chi2.actual[j,1:n.reps[j],i]) 859 
                 chi2.sim.sum[j,i] <- sum(chi2.sim[j,1:n.reps[j],i])       860 
                 } 861 
    # Calculate chi-squared discrepency for each species 862 
    #=================================================== 863 
             fit.sp.actual[i] <- sum(chi2.actual.sum[,i])                        864 
             fit.sp.sim[i] <- sum(chi2.sim.sum[,i]) 865 
             c.hat.sp[i] <- fit.sp.actual[i]/fit.sp.sim[i] 866 
             bpv.sp[i] <- step(fit.sp.sim[i] - fit.sp.actual[i]) 867 
            } 868 
     869 
    # Calculate overall chi-squared discrepency measure 870 
    #================================================== 871 
    fit.actual <- sum(chi2.actual.sum[1:n.sites, 1:n.sp]) 872 
    fit.sim <- sum(chi2.sim.sum[1:n.sites, 1:n.sp]) 873 
    c.hat <- fit.actual/fit.sim 874 
    bpv <- step(fit.sim - fit.actual) 875 
     876 
    # Derived quantities 877 
    # Difference in occupancy between Sites 1 and 2 878 
    #============= 879 
    for(i in 1:n.sp){ 880 
         effect1[i] <- a1[2,i] - a1[1,i] 881 
         } 882 
     883 
    # Number of occupied sites 884 
    #========================= 885 
    for(i in 1:n.sp) { 886 
         Nocc.fs[i] <- sum(Z[,i]) 887 
    } 888 
     889 
    # Number of species occurring at each site 890 
    #========================================= 891 
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    for(j in 1:n.sites) { 892 
    Nsite[j] <- sum(Z[j,]) 893 
    } 894 
    } 895 
    ",fill=TRUE) 896 
sink() 897 
 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

Table A1. Bayesian P values detailing model adequacy fit for single species and the full 919 
model. Values between 0.025 and 0.975 indicate good fit, 0.5 is deemed optimal fit. 920 

 921 
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Species Bayesian P Value 

Central American agouti 0.60 

Nine-banded armadillo 0.46 

Capybara 0.62 

Crab-eating fox 0.08 

Giant anteater 0.52 

Jaguar 0.53 

Jaguarundi 0.59 

Lesser  anteater 0.46 

Ocelot 0.39 

Opossum 0.53 

Lownland paca 0.33 

Collared peccary 0.78 

Puma 0.42 

Crab-eating racoon 0.44 

Spiny rat 0.49 

Tayra 0.38 

Full Model 0.51 

 922 

 923 
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Table A2. Posterior means and 95% Bayesian Credible Intervals (95% BCI) detailing the effect of habitat cover (Forest, Pasture, Wetland, Oil 

Palm), proximity covariates (Dist Settl., Dist Water) and seasonality (Season) on Neotropical mammal occupancy. Covariates are considered 

significant if their 95% BCIs do not overlap zero and presented here in bold with an asterisk. We additionally present in bold covariates with a 

weak influence (90% BCI do not overlap zero).  

  

Forest  

(95% BCI) 

Pasture  

(95% BCI) 

Dist. settl.     

(95% BCI) 

Dist. Water   

(95% BCI) 

Wetland  

(95% BCI) 

Oil palm  

(95% BCI) 

Season 

 (95% BCI) 

Capybara 
0.469 

(-0.580 - 1.372) 

-0.347 

(-1.360 - 0.629) 

-0.354 

(-1.211 - 0.33) 
-0.596 

(-1.427 - 0.071) 

0.483 

(-0.464 - 1.581) 

-0.004 

(-1.281 - 1.054) 

0.283 

(-0.808 - 1.405) 

Central American 

agouti 
1.008* 

(0.222 - 1.884) 

-0.693 

(-1.735 - 0.177) 

0.259 

(-0.263 - 0.862) 
-0.484 

(-1.114 - 0.083) 

-0.023 

(-0.912 - 0.823) 

0.626 

(-0.269 - 1.614) 

0.395 

(-0.513 - 1.351) 

Collared peccary 
0.820                        

(-0.088 - 1.780) 

-0.523                

(-1.627 - 0.435) 

-0.068                   

(-0.816 - 0.702) 

-0.354                

(-1.049 - 0.366) 

0.207                

(-0.787 - 1.254) 

0.366                

(-0.612 - 1.37) 

0.260                

(-0.838 - 1.351) 

Crab-eating fox 
0.656                        

(-0.104 - 1.411) 

-0.276                

(-1.104 - 0.517) 

-0.141                   

(-0.643 - 0.351) 

-0.213                

(-0.721 - 0.335) 

0.005                

(-0.806 - 0.775) 

0.355                

(-0.466 - 1.188) 

0.432                

(-0.448 - 1.372) 

Crab-eating racoon 
0.771*               

(0.012 - 1.538) 

-0.075                

(-0.906 - 0.774) 

-0.306                   

(-0.865 - 0.200) 
-0.355                

(-0.882 - 0.178) 

0.207                

(-0.626 - 1.043) 

0.040                

(-0.951 - 0.934) 

0.447                

(-0.448 - 1.433) 

Giant anteater 
0.638                        

(-0.275 - 1.546) 

-0.335                

(-1.339 - 0.641) 

0.019                    

(-0.674 - 0.776) 

-0.288                

(-0.948 - 0.423) 

0.338                

(-0.623 - 1.440) 

0.341                

(-0.679 - 1.384) 

-0.122               

(-1.483 - 0.972) 

Jaguar 
0.522                         

(-0.364 - 1.360) 

-0.599                

(-1.682 - 0.332) 

0.197                         

(-0.396 - 0.912) 
-0.529                

(-1.234 - 0.098) 

0.787                

(-0.206 - 1.969) 

0.269                

(-0.757 - 1.267) 

-0.130               

(-1.322 - 0.879) 

Jaguarundi 
0.732                         

(-0.116 - 1.591) 

-0.696                

(-1.827 - 0.255) 

-0.245                   

(-0.958 - 0.397) 

-0.341                

(-0.984 - 0.316) 

0.230                

(-0.670 - 1.137) 

0.768                

(-0.241 - 2.071) 

-0.196               

(-1.458 - 0.83) 

Lesser anteater 
0.681                 

(-0.155 - 1.515) 

-0.186                

(-1.087 - 0.749) 

-0.278                   

(-0.952 - 0.336) 
-0.462                

(-1.123 - 0.157) 

-0.191               

(-1.233 - 0.725) 

0.532                

(-0.374 - 1.545) 

0.167                

(-0.872 - 1.177) 
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Lowland paca 
0.825 *        

(0.014 - 1.668) 

-0.644                

(-1.743 - 0.278) 

0.220                    

(-0.380 - 0.977) 

-0.307                

(-0.917 - 0.340) 

0.279                

(-0.635 - 1.237) 

0.480                

(-0.453 - 1.468) 

0.284                

(-0.695 - 1.268) 

Nine-banded 

armadillo 
0.629                 

(-0.238 - 1.467) 

-0.120                

(-0.993 - 0.795) 

-0.203                   

(-0.880 - 0.425) 
-0.405                

(-1.051 - 0.216) 

-0.270               

(-1.361 - 0.657) 

0.130                

(-0.898 - 1.101) 

0.101                

(-0.982 - 1.109) 

Ocelot 
0.811 *       

(0.032 - 1.618) 

-0.532                

(-1.452 - 0.300) 

-0.098                   

(-0.624 - 0.427) 

-0.350                

(-0.929 - 0.222) 

0.135                

(-0.693 - 0.949) 

0.370                

(-0.49 - 1.243) 

0.504                

(-0.452 - 1.581) 

Opossum 
0.707                 

(-0.149 - 1.555) 

-0.317                

(-1.264 - 0.598) 

-0.105                   

(-0.786 - 0.559) 
-0.457                

(-1.140 - 0.171) 

0.144                

(-0.812 - 1.103) 

0.412                

(-0.521 - 1.395) 

0.081                

(-1.040 - 1.107) 

Puma 
0.985 *         

(0.185 - 1.876) 

-0.512                

(-1.450 - 0.349) 

-0.182                   

(-0.745 - 0.340) 

-0.300                

(-0.842 - 0.252) 

0.183                

(-0.691 - 1.062) 

0.143                

(-0.759 - 0.983) 

0.577                

(-0.335 - 1.623) 

Spiny rat 
0.615                 

(-0.291 - 1.475) 

-0.344                

(-1.354 - 0.620) 

-0.319                   

(-1.094 - 0.329) 

-0.399                

(-1.079 - 0.263) 

0.225                

(-0.734 - 1.218) 

0.376                

(-0.580 - 1.351) 

0.148                

(-0.960 - 1.173) 

Tayra 
0.712                 

(-0.160 - 1.621) 

-0.498                

(-1.505 - 0.415) 

-0.100                   

(-0.711 - 0.556) 
-0.468                 

(-1.139 - 0.142) 

0.092                

(-0.848 - 1.027) 

0.534                

(-0.374 - 1.535) 

0.430                  

(-0.565 - 1.517) 
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Table A3. Posterior means and 95% Bayesian Credible Intervals (95% BCI) detailing 

the effect of camera trap placement (Roads) and seasonality (Season) on Neotropical 

mammal detection probability. Covariates are considered significant if their 95% BCIs 

do not overlap zero and presented here in bold with an asterisk. We additionally present 

in bold covariates with a weak  influence (90% BCIs do not overlap zero). 

 

 Roads (95% BCI) Season (95% BCI) 

Capybara -0.369 (-1.486 – 0.649) 0.022 (-0.784 - 0.778) 

Central American agouti 0.177 (-0.741-1.070) 0.637 (-0.008 - 1.374) 

Collared peccary -0.562 (-2.039 - 0.708) 0.017 (-0.853 - 0.810) 

Crab-eating fox 1.024* (0.297 - 1.753) 0.266 (-0.244 - 0.795) 

Crab-eating racoon 0.286 (-0.518 - 1.083) 0.465 (-0.081 - 1.065) 

Giant anteater -0.195 (-1.578 - 1.096) -0.114 (-1.020 - 0.677) 

Jaguar 1.054 * (0.152 - 1.939) -0.086 (-0.789 - 0.563) 

Jaguarundi 0.723 (-0.159 - 1.634) -0.031 (-0.811 - 0.698) 

Lesser  anteater 0.030 (-1.386 -1.346) 0.023 (-0.754 - 0.733) 

Lowland paca -0.042 (-1.117 - 0.942) 0.194 (-0.498 - 0.912) 

Nine-banded armadillo -0.071 (-1.450 - 1.185) 0.082 (-0.700 - 0.844) 

Ocelot 0.869 * (0.171 - 1.612) -0.053 (-0.599 - 0.468) 

Opossum -0.427 (-1.550 - 0.592) 0.080 (-0.711 - 0.858) 

Puma 0.350 (-0.468 - 1.181) -0.018 (-0.664 - 0.608) 

Spiny rat -0.439 (-2.034 - 0.853) 0.085 (-0.744 - 0.891) 

Tayra -0.047 (-1.044 - 0.912) -0.203 (-0.953 - 0.445) 
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Table A4. Average detection probability, including 95% Bayesian Credible Interval, for Neotropical mammals in five reference habitat classes. 

 

 Forest 

(95% BCI) 

Pasture 

(95% BCI) 

Edge          

(95% BCI) 

Wetland 

(95% BCI) 

Oil palm 

(95% BCI) 

Capybara 
0.053        

(0.009 - 0.218) 

0.214        

(0.052 -  0.535) 

0.175       

(0.041 - 0.402) 

0.252       

(0.109 - 0.487) 

0.045        

(0.001 -  0.582) 

Central American agouti 
0.555        

(0.313 -  0.779) 

0.192        

(0.030 -  0.540) 

0.287       

(0.141 - 0.516) 

0.156       

(0.020 - 0.490) 

0.154        

(0.043 -0.435) 

Collared peccary 
0.038        

(0.004 - 0.199) 

0.171        

(0.042 -  0.392) 

0.197       

(0.040 - 0.482) 

0.178       

(0.043 - 0.436) 

0.388        

(0.108 - 0.778) 

Crab-eating fox 
0.308        

(0.162 - 0.514) 

0.349        

(0.206 - 0.537) 

0.324       

(0.165 - 0.572) 

0.300       

(0.136 - 0.567) 

0.281        

(0.127 - 0.499) 

Crab-eating racoon 
0.302        

(0.144 - 0.530) 

0.265        

(0.134 - 0.458) 

0.224       

(0.100 - 0.409) 

0.157       

(0.047 - 0.348) 

0.075        

(0.012 - 0.362) 

Giant anteater 
0.105        

(0.024 -0.358) 

0.227        

(0.075 -  0.489) 

0.199       

(0.055 - 0.433) 

0.214       

(0.064 - 0.506) 

0.048        

(0.001 - 0.591) 

Jaguar 
0.086        

(0.030 -  0.212) 

0.239        

(0.072 -  0.571) 

0.285       

(0.136 - 0.527) 

0.334       

(0.160 - 0.598) 

0.026        

(0.001 - 0.400) 

Jaguarundi 
0.077        

(0.025 - 0.210) 

0.194        

(0.032 -  0.549) 

0.263       

(0.120 - 0.488) 

0.210        

(0.074 - 0.449) 

0.057        

(0.010 -  0.224) 

Lesser anteater 
0.174        

(0.050 -  0.491) 

0.170        

(0.052 - 0.365) 

0.204       

(0.044 - 0.503) 

0.177       

(0.027 - 0.514) 

0.099        

(0.019 - 0.343) 
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Lowland paca 
0.180        

(0.066 -  0.400) 

0.320         

(0.134 - 0.635) 

0.215       

(0.077 - 0.430) 

0.159       

(0.035 - 0.401) 

0.152        

(0.023 - 0.612) 

Nine-banded armadillo 
0.137        

(0.041 -  0.366) 

0.186        

(0.054 - 0.407) 

0.207       

(0.043 - 0.503) 

0.172       

(0.025 - 0.505) 

0.318        

(0.046 - 0.864) 

Ocelot 
0.179        

(0.094 - 0.313) 

0.166        

(0.048 - 0.363) 

0.305       

(0.146 - 0.566) 

0.190       

(0.085 - 0.358) 

0.285        

(0.156 -  0.456) 

Opossum 
0.190        

(0.072 - 0.413) 

0.187        

(0.031 - 0.525) 

0.194       

(0.051 - 0.431) 

0.265       

(0.103 - 0.561) 

0.035        

(0.001 -  0.397) 

Puma 
0.192        

(0.091 - 0.357) 

0.174        

(0.027 - 0.496) 

0.197       

(0.079 - 0.381) 

0.188       

(0.054 - 0.438) 

0.488        

(0.193 -  0.790) 

Spiny rat 
0.105        

(0.020 - 0.392) 

0.191         

(0.032 - 0.545) 

0.240       

(0.092 - 0.471) 

0.176       

(0.029 - 0.506) 

0.688        

(0.273 -  0.950) 

Tayra 
0.181        

(0.072 -  0.398) 

0.205        

(0.077 -  0.406) 

0.226        

(0.085 - 0.450) 

0.148       

(0.031 - 0.375) 

0.133        

(0.032 -  0.409) 
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