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Metric Learning for Automatic Sleep Stage Classification

Huy Phan1, Quan Do2, The-Luan Do3, and Duc-Lung Vu4

Abstract— We introduce in this paper a metric learning
approach for automatic sleep stage classification based on
single-channel EEG data. We show that learning a global
metric from training data instead of using the default Euclidean
metric, the k-nearest neighbor classification rule outperforms
state-of-the-art methods on Sleep-EDF dataset with various
classification settings. The overall accuracy for Awake/Sleep
and 4-class classification setting are 98.32 % and 94.49 %
respectively. Furthermore, the superior accuracy is achieved
by performing classification on a low-dimensional feature space
derived from time and frequency domains and without the need
for artifact removal as a preprocessing step.

I. INTRODUCTION

The study of sleep is highly important in health care
since sleep disorders affect the well-being and productivity of
many individuals. The foundation of sleep classification was
first laid in 1953 [7], since then has remained an important
research topic. Sleep scoring based on polysomnography can
be visually performed by a human expert to classify every
30-second epochs of EEG data into different sleep stages,
following Rechtschaffen and Kales (R&K) rules [6] and
based on the structure of the signal. However, it is a very
time-consuming and labor-intensive task.

During the last decades, different approaches for automatic
sleep stage classification using EEG signal have been pro-
posed. Most of them are similar in the way that features
characterizing each EEG data epoch will be first extracted,
followed by a classification algorithm to assign class label to
each data epoch. Feature extraction usually relies on time-
domain analysis [14], spectral analysis [13], wavelet decom-
position [8] [12], and even unsupervised feature learning
[15]. Typical classification algorithms are neural networks
[8], hidden makov models [9], k-means clustering [10], k-
nearest neighbors (kNN) [11], support vector machines [12]
to name a few. Comparative study on performance of these
classifiers has also been conducted in [11]. Sleep stage
classification based EEG data also involves in using single-
channel EEG signal [8], multi-channel EEG signals [12] [13],
and multimodal combination with other signals such as EOG,
EMG and ECG signals [12].

In this paper, we re-visit the fundamental issue of machine
learning: how to measure dissimilarity/similarity between
samples. Without prior knowledge, Euclidean distance is
implicitly employed in most proposed classifiers to measure
the dissimilarities between examples represented as vector
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inputs. Although the Euclidean distance is convenient and
intuitive, it ignores the fact that the semantic meaning of
“similarity” is inherently task- and data-dependent [1]. Ide-
ally, the distance metric should be adapted to the particular
problem. Inspired by this, we show in this paper learning
a global distance metric from labeled examples and using
it in kNN classification significantly improve performance
for sleep staging although only a few features extracted
from single-channel EEG data. We also study the effects of
dimensionality reduction, which is implicit during learning
distance metric, on the classification accuracy.

II. EEG SIGNAL, SLEEP STAGES, AND SLEEP EEG
DATASET

A. EEG Signal

Based on electrical recordings taken on the scalp of a sub-
ject, the Electroencephalogram (EEG) signal measurements
are able to provide information about activities of the brain.
It is the most important signal in sleep stage classification
no matter manual scoring by human experts or automatic
classification systems. Analyzing the information obtained
from the EEG measurements can help carry out inference
and studies about sleep.

B. Sleep Stages

According to R&K sleep scoring standard [6], sleep are
divided into two major stages named rapid eye movement
(REM) and non-rapid eye movement (NREM). Further,
NREM is divided into four sub-stages: 1, 2, 3, and 4, making
up to totally 6 sleep stages (including awake).

Stage 1, usually lasting between 1-5 minutes and con-
tributing 4-5% of total sleep, is a transition stage between
wakefulness and sleep. It consists of a low-voltage EEG
tracing with well-defined alpha and theta activity, occasional
vertex spikes, and slow rolling eye movements (SEMs) [8].

Stage 2 is considered as the “baseline” of sleep and
comprises 45-55% of complete sleep duration. It is char-
acterized by a relatively low-voltage, mixed-frequency EEG
background burried in the occurrence of sleep spindles
[16] and K-complexes [17]. Alternatively, high-voltage delta
waves may appear up to 20% of Stage 2.

Stage 3 constitutes 4-6% of total sleep duration and usually
only appears in the first one-third of the sleep episode.
During at least 20% and at most 50% of this stage, EEG
signals exhibit strongly discriminative characteristics with
≤ 2 Hz frequencies and ≥ 75 V amplitudes (delta waves).

Stage 4 contributes 12-15% to the total sleep duration.
Characteristics of Stages 3 and 4 are quite similar and they
are known as slow wave sleep (SWS). The difference is that,
during Stage 4, delta waves cover ≥ 50% of the record.



REM, in which dreaming occurs, is characterized by rapid
eye movements under closed eyelids, motor atonia, and low
voltage EEG patterns. REM constitutes 20-25% of a normal
sleep night. During REM sleep, the brain activity is reversed
from Stage 4 to a pattern similar to Stage 1 [8].

C. Sleep EEG Dataset

The experiments presented in this paper are based on
the Sleep-EDF database [3] obtained from the PhysioBank
online resource. We only used four recordings: sc4002e0,
sc4012e0, sc4102e0, and sc4112e0 which were recorded in
1989 over the course of one full day from healthy male
and female pioneers between 21 and 35 years old. These
recordings include horizontal electrooculogram (EOG), Fpz-
Cz and Pz-O channels of EEG, submental-electromyogram
(EMG) envelope, oronasal airflow, and rectal body temper-
ature. Since we aimed at illustrating efficiency of learning
a metric for sleep staging with single EEG channel, we
only use Fpz-Oz EEG sampled at 100 Hz for analysis. The
hypnogram data accompanying with the dataset was used as
ground truth to evaluate performance of the classification
algorithm in the experiments. It was created by manual
scoring according to R&K using the two EEG channels.

III. SLEEP STAGE CLASSIFICATION MODEL
A. Feature Extraction

We derive the following features for each 30-second
single-channel EEG data epoch.

Statistical measures These include variance, skewness, and
kurtosis. The variance is to characterize the spread of the
data while the skewness represents the asymmetry around
the sample mean. The kurtosis measures how the distribution
is prone to outliers.

Spindle score Similar to the features used in [2], the overall
spindle score presents the percentage of the signal classified
as spindle activity. Spindle activity refers to segments of
the EEG signal with two peaks and two troughs created by
the difference between five consecutive points changes from
positive to negative in straight. In order to search for these
patterns at different frequencies, a lag parameter was used.
This parameter indicates the width in sample points of each
rise or fall. In this study, with data sampled at 100 Hz, the
lag parameter was set to 5 to allow for detection of spindles
in 8-12 Hz frequency range.

Permutation entropy (PE) The permutation entropy is to
measure the “uncertainty’ of the EEG signal. Similar to
the spindle score, it searches for patterns such as peaks,
troughs, and slopes in the signal but its values depends on
the distribution of these patterns. An equal distribution of all
patterns will produce a maximum value while a minimum
value will be induced when only a single pattern is present.
Here we consider two PE measures respective to two lag
parameter values of 1 and 2. As in [4], the threshold was set
at 1% of the interquartile range of the data.

Power in different frequency bands We computed the total
power in five frequency bands, including delta (up to 4 Hz),
theta (4-7.5 Hz), alpha (7.5-12 Hz), beta (12-26 Hz), and
gamma (above 26 Hz) [18], adding other five features.

Total power The total power in all five frequency bands
was also computed as used as a feature.

Properties of log power These features present charac-
teristics of the log of the power spectral density (PSD) on
delta and alpha bands [5]. First, we performed linear fitting
in delta (0.5-4 Hz) and alpha (8-17 Hz) frequency bands to
determine the slope and offset. After that, we could extract
the maximum values of the PSD above the linear estimate in
the delta and alpha frequency ranges. Generally, a prominent
peak will produce a large value. Two frequency values
correspond to these maximum values are also extracted.

Power fractions The low and high power fractions with
respect to low frequency ranges (delta and theta ranges) and
high frequency ranges (beta and gamma ranges) were also
computed by summing the power in the individual ranges
and dividing by the total power.

By this feature extraction, each 30-second EEG data
epoch is represented by a 17-dimensional vector inputs.
These inputs are then used in classification algorithm. To
motivate further research, the Matlab source code will be
made publicly available.

B. Metric Learning with Large Margin Nearest Neighbor

Given a training data set of instances labeled with their
true class labels, the kNN algorithm assigns the class label
to a new data instance. The class label is obtained from
the majority vote of the k closest instances in training data.
In order to measure the closeness, a distance metric needs
to be pre-defined. Without prior knowledge, a Euclidean
distance is implicitly employed. However, as discussed, the
distance metric should be adapted to the particular problem
and learned from the training data. Large Margin Nearest
Neighbors (LMNN) algorithm [1] can learn this global metric
in a supervised fashion to improve the classification accuracy
of the kNN rule.

Let the training data consist of a data set D =
(x1, y1), . . . , (xn, yn) ⊂ Rm × C, where the set of possible
classes is C = 1, . . . , c. LMNN learns a metric of type:

D(xi, xj) = (xi − xj)TM(xi − xj) = ||L(xi − xj)||2 (1)

The matrix M needs to be positive semi-definite for the
metric D(·, ·) to be well defined. In the special case of the
Euclidean metric, the matrix M is identity. For generalization,
the metric D(·, ·) is often referred as Mahalanobis metric.

LMNN optimizes the matrix M with two objectives:
minimize the distances between examples in the same class,
and in the meantime keep examples from different classes
far away. Fig. 1 show an example of such an optimization.

With the learned metric in Fig. 1, the input vector ~xi is
surrounded by training instances of the same class. If it was
a test sample, it would be classified correctly under k =
3 nearest neighbor rule. It leads to the final optimization
problem as in (2):
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Fig. 1. Illustration of 3-NN algorithm with Euclidean and Mahanalobis
metrics.

minimize
∑
ij

ηij(xi − xj)TM(xi − xj)

+ C
∑
ijl

ηij(1− yil)ξijl (2)

subject to


(i) (xi − xl)TM(xi − xl)
− (xi − xj)TM(xi − xj) ≥ 1− ξijl

(ii) ξijl ≥ 0

(iii) M � 0

where the binary value yij indicates whether samples
xi and xj are in the same class and the binary value ηij
indicating whether xj is a selected nearby neighbor of xi
with the same class, and ξijl are slack variables.

Intuitively, the first term in the objective function is to
minimize the distances between all training samples and
their selected neighbors. The second term is to maximize the
margin between same-class distances (xi to xj) and different-
class distances (xi to xl) of all training samples. The margin
is relaxed by slack variables and is of exactly one unit fixed
by the scale of the matrix M. Any alternative choice C > 0
would result in rescaling of M by a factor of 1/C. We use
the implementation of this algorithm provided by the authors
of [1], thanks for their efforts.

Furthermore, LMNN can be used as a supervised dimen-
sionality reduction by optimizing on matrix L rather than
matrix M = LTL and constrain L to be rectangular of size
r ×m, where r is the desired output dimensionality which
is presumed to be smaller than the input dimensionality, m.

IV. EXPERIMENT

A. 4-class Classification

For Stage 1 of NREM sleep and REM sleep, EEG signals
are similar and, thus, can be merged into one class. Hence,
we attempt to classify four sleep stages consisting of Awake,
Stage1 + REM, Stage 2 and Slow Wave Stage (SWS). In
addition, this partition is consistent with the previous work
in [8] using the same dataset, allow us properly comparing
performance. It is also considerable to notice that we neither
preprocess the data for artifact removal nor apply bootstrap-
ping to lessen affects of imbalanced data as in [8].

The number of data epochs of each class in the dataset is
tabulated in Table I. We randomly divide the data set into
training set (70 %) and test set (30 %). The features are

TABLE I
NUMBER OF DATA EPOCHS OF 4 CLASSES IN THE DATASET

Wake Stage 1 + REM Stage 2 SWS
7722 1027 2036 529
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Fig. 2. Training and testing accuracy (blue and red bars respectively)
according to different dimensionality reduction settings.

extracted from 30-second segments of Pz-Oz channel. The
transformation matrix is learned from the training data and
the test data is used to evaluate the classification accuracy.

Since dimensionality of the feature space is quite small
(17 dimensions), we investigate different dimensionality re-
duction by setting r to be running from 1 to 17 with a step of
1. The variation of overall training and testing classification
accuracy according to different dimensionality is illustrated
in the Fig. 2. The highest testing accuracy, 94.49 %, is
obtained at r = 8 with the learned Mahalanobis metric,
compared to 91.48 % by using the default Euclidean metric.
For the sake of comparison, this result outperforms not only
the work using Sleep-EDF dataset with similar setting [8]
with the average accuracy of 93 %, but also other works
using private multi-channel recorded data such as [12] with
the average accuracy of 93 %. For further detail, Fig.3
exhibits 4-class classification confusion matrix over the test
set with r = 8. Out of 4 classes, “Wake” and “S1 +
REM” classes are most and least discriminative with the
classification accuracy of 99.43 % and 75.83 % respectively.
The superior overall testing accuracy is owning to that the
“Wake” class’ contributes the strongest weight due to its
largest cardinality.
B. Awake/Sleep Classification

Considering Awake/sleep classification setting, similar ex-
perimental study is conducted. The whole dataset, out of
which the number of data epochs of “Awake” and “Sleep”
classes are 7722 and 3592 respectively, is divided into
training set (70 %) and test set (30 %). The features are
again extracted from 30-second segments of Pz-Oz channel.
The study of dimensionality reduction shows that the average
testing accuracy is up to 98.32 % with r = 11. This result
outperforms the classification accuracy of 95 % reported in
a recent study [12] which uses their own recorded multi-
channel EEG data.

C. Discussion

It is worth noting that artifact removal as having been
done in [8], which removed most artifact epochs, would
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Fig. 3. 4-class classification confusion matrix respective to r = 8.

further benefit the learning process. Artifact epochs which
are contaminated by eye movements, blinks, muscle, heart
and line noise [19] are semi-automatically removed to refine
the data. However, it would greatly degrade the automatic of
the classification system since we need to visually inspect
the data epochs before feeding to the system.

Other machine learning techniques may also benefit this
proposed metric learning approach. As can be seen from
Table I, the number of data epochs of the “Wake” class
is much larger than that of the “SWS” class. Boostrapping
[20] is a technique to generates more data from the original
dataset to reduce the skewness of the dataset when cardinality
of a class is much smaller comparing to other classes.
As a result, it facilitates the learning process. Exploring
other features which better represents the data is a general
technique to boost the performance of a classification system.
Higher feature space for sleep stage classification that has
been investigated in literature work such as [14] [8] can
be readily integrate into the metric learning framework. The
features can be also learned from the data itself instead of
feature engineering [15]. In addition, multi-channel EEG and
other signals like EOG, EMG and ECG have been proved
to be useful for not only visually sleep scoring [21] but
also automatic sleep stage classification [18]. By learning a
metric over multimodal data, we can increase accuracy and
reliability of the classification system.

V. CONCLUSIONS

A metric learning approach has been proposed to ad-
dress automatic sleep stage classification. By learning a
Mahalanobis distance metric from labeled samples, the kNN
classification rule empirically outperforms the classification
accuracy reported in other literature works using similar
settings. Furthermore, we do not perform any preprocessing
steps such as artifact removal or boostrapping. This excellent
result indicates the potential of metric learning in addressing
biomedical signal processing problems.
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