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THE p-CENTRE OF YANGIANS AND SHIFTED YANGIANS

JONATHAN BRUNDAN AND LEWIS TOPLEY

ABSTRACT. We study the Yangian Y, associated to the general linear Lie algebra gl,,
over a field of positive characteristic, as well as its shifted analog Y, (o). Our main result
gives a description of the centre of Y, (o): it is a polynomial algebra generated by its
Harish-Chandra centre (which lifts the centre in characteristic zero) together with a large
p-centre. Moreover, Yy, (o) is free as a module over its center. In future work, it will be
seen that every reduced enveloping algebra U, (gl,,) is Morita equivalent to a quotient
of an appropriate choice of shifted Yangian, and so our results will have applications in
classical representation theory.

1. INTRODUCTION

The Yangian Y,, associated to the Lie algebra gl,, over the complex numbers was intro-
duced by the St. Petersburg school around 1980, and is one of the fundamental examples
of quantum groups which can be defined using the RTT formalism of Faddeev, Reshetikhin
and Takhtadzhyan [FRT]. In [D], Drinfeld introduced another presentation, allowing him
to extend the notion of Yangian to all semisimple Lie algebras. In this paper, we initiate a
study of the Yangian of gl,,, and its shifted analog in the sense of [BK2], over an arbitrary
field k of positive characteristic p > 0.

Let us explain our motivation for doing this. In characteristic zero, the results of
[BK2] show that the shifted Yangians have some truncations which are isomorphic to
the finite W -algebras associated to nilpotent orbits in gl,, as defined for example by
Premet [P2]. Finite W-algebras had appeared earlier, in work of Kostant and subsequent
work by mathematical physicists, but Premet’s motivation came from the representation
theory of Lie algebras in positive characteristic: building on his work on the Kac-Weisfeiler
conjecture [P1], he also discovered some remarkable finite-dimensional reduced finite W -
algebras, which are Morita equivalent to reduced enveloping algebras of modular reductive
Lie algebras.

Recently, the second author jointly with Goodwin [GT] has introduced modular finite
W -algebras, which are the precise analog of finite W-algebras in characteristic p. For suf-
ficiently large p, the same algebras appeared already in Premet’s foundational work [P3],
where they were constructed by reducing the complex finite W-algebras modulo p. Mod-
ular finite W-algebras have a large p-centre, and Premet’s reduced finite W-algebras may
be recovered from modular finite W-algebras by specializing at a p-central character. As
in characteristic zero, for the Lie algebra gl,,, the modular finite W-algebra is a truncation
of the modular shifted Yangian introduced here. The reduced finite W-algebras for gl,,
can then be obtained from truncated modular shifted Yangians by specializing at some
p-central character. For this to be useful in practice, one needs precise information about
the structure of the centre of the shifted Yangian in positive characteristic. This is the
main purpose of the present article.
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In the remainder of the introduction, we focus on the special case of the Yangian Y;,,
rather than its shifted analog Y, (o), and give a quick outline of our main results in this
case. We define the Yangian Y, over any field k to be the associative k-algebra with

T

generators {Ti(J) ‘ 1<,5<n,r> O} subject to the relations

(740,19 - [2)

2 4,30

1) - 1T - 7y )
forall 1 < 1,5, k,l <n and r,s > 0, adopting the convention that TZ(?) := 0;;. When k
is of characteristic zero, this is the usual RTT presentation as found e.g. in [MNO], and
in this case it is well known that Y,, is a filtered deformation of the universal enveloping
algebra U(gl,[t]) of the polynomial current algebra gl,[¢] := gl, ® k[{]. In fact, the same
assertion is true when k is of positive characteristic, which the reader may regard as the
first evidence that this is a reasonable object to consider in the modular setting.

In characteristic zero, the centre Z(Y},) is generated freely by elements {C(T) ‘ r > 0};
see [MNO, Theorem 2.13]. Moreover, C"*1) is a lift of the obvious central element z, :=
(€11 + -+ + enn) ®t" in the centre Z(gl,[t]) of the associated graded algebra U(gl,,[t]).
The usual way to define these elements formally is to work with generating functions in
Y, [[u=1]] following [MNO], setting

Tij(w) = 3, 5w e Ya[[u™]) (1.2)
r=0
Then the central elements C") are the coefficients of the quantum determinant

C(u) = Z Cy" .= 2 sgn(g)Tg(l)J(u)Tg(Q)Q(u —1)--- Tg(n)m(u —n+1). (1.3)

r=0 geG,,

These definitions makes sense when chark > 0 too, yielding elements {C’(’") f r > 0}
which freely generate a subalgebra Zyc(Y;,) of Z(Y,), which we call the Harish-Chandra
centre. This corresponds at the level of the associated graded algebra to the subalgebra
of Z(gl,[t]) generated by {z | r = 0}.

In positive characteristic, the current algebra gl,[t] admits a natural structure of re-
stricted Lie algebra, with p-map = — z[P! which is defined on a basis of gl,,[t] by the rule
(ei7jt’”)[p] = 0;,je;,;t"P. Consequently, U(gl,[t]) also has a large p-centre generated by the
elements

{(6i7jtr)p — 5i7jei,jtrp | 1< i,j <n,r= 0}, (14)
and it is natural to look for lifts of these elements in Z(Y,,). We will show that such lifts
are provided by the coefficients {S’i(z-r) | 1<4,j<n,r> 0} of the power series

Sig(u) = Y Su™ = Ty j(w)Tij(u—1) - Tij(u—p +1). (1.5)
r=0

These coefficients freely generate another subalgebra Z,(Y,,) of Z(Y;) which we call the
p-centre of Y;,. Together, Zuc(Y,) and Z,(Y;,) generate the full centre Z(Y},). In fact, we
will show that Z(Y;,) is a free polynomial algebra generated by

{C’(T) |lr>0}u {Si(dr
Moreover, Znc(Yy) N Zp(Yy,) is freely generated by elements { BO®P") |7 > 0} defined from
BC(u) = > BCu™ := C(u)C(u—1)---Clu—p+1). (1.7)

r=0

11 <45 <nwith (i,5) # (1,1),r > 0}. (1.6)

Finally, Y;, is free (of infinite rank) as a module over its centre.
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To prove these statements, we found that it was easier to work initially with the Drinfeld
presentation rather than the RTT presentation of Y,,, exploiting a different choice of lifts
of the elements (1.4) adapted to the Drinfeld generators. There is also a similar family of
lifts which plays the analogous role for the shifted Yangians Y,,(0). We refer the reader to
Theorem 5.11 for the precise statement of our main result in the general setup.

The remainder of the article is organized as follows. In section 2, we make some auxiliary
calculations with the sorts of power series that will be used to define the central elements
of Y,,(0) later on. In particular, the results in this section are needed to compute images
of these central elements in the associated graded algebra. Then section 3 investigates
the centre of this associated graded algebra. The main result here, Theorem 3.4, provides
the key upper bound needed in our computation of the centre of Y, (o) later on. We
introduce the modular Yangians and shifted Yangians in section 4, extending some of
the fundamental results such as Drinfeld-type presentation from characteristic zero to
characteristic p. Section 5 contains our main results describing the centre of Y, (o) in
positive characteristic. Finally, in section 6, we define a modular version of the Yangian of
sl,, which is a certain subalgebra SY,, of Y,,. We give a presentation for SY,, valid in any
characteristic; see Theorem 6.3. As we explain in the subsequent remark, this presentation
is equivalent to the usual Drinfeld presentation for the Yangian of sl,, taken over the field k
whenever char k # 2; Drinfeld’s presentation does not even make sense in characteristic 2
since it involves some halves. We also show that Y, ~ SY,, ® Zyc(Y,) providing p 1 n, and
use this to deduce the results about Z(Y;,) in terms of the RTT generators as formulated
in this introduction.

General conventions. Let N denote the set of natural numbers {0,1,2,...}. Always,
k will be a ground field of characteristic p > 0 and ® denotes ®y. Let gl,, := gl, (k) for
some fixed n > 1. We denote its matrix units by {e; ; | 7,7 = 1,...,n} as usual.

By a filtration on a (unital) k-algebra A, we always mean an ascending chain of subspaces

FpAcFi1ACF,AC ..

with A = | J,5 FrA such that 1 € FoA and (F,A)(FsA) € F,;sA for all r,s € N. Setting
F_1A := {0} by convention, the associated graded algebra is the (unital) positively graded
k-algebra gr A = @, y(gr A), with (grA), := F,A/F,_1A. Let gr, : F,A — (grA), be
the canonical quotient map. Given a subalgebra B of A, we always give B the induced
filtration defined from F.B := B n F.A. Then the associated graded algebra gr B is
naturally identified with a graded subalgebra of gr A.

Given an n-tuple A = (A1,...,An) € N, let £(\) := |[{i = 1,...,n|X; # 0}] and
Al := >3 Ai. Then set

An,r) == {AeN" ||\ =r}, An,r):={XeAln,r) [\ =A== A}

Elements of A(n,r) and At(n,r) are n-part compositions and partitions of r, respectively.
The symmetric group &,, acts on the left on A(n,r) by place permutation, and Af(n,r)
gives a set of orbit representatives. Also let ) < &,, denote the stabilizer of A € Af(n,r),
which is a parabolic subgroup of &,,. Let < be the partial order on N defined from A € p
if \; <p;foreachi=1,...,n.

We will use the following elementary facts several times.

Lemma 1.1. For A € Af(p,r), |6,/6,| is non-zero in the field k if and only if p|r and
A ==X\, =1/p, in which case it equals 1.

Proof. Obvious. O

Lemma 1.2. In any associative k-algebra A, we have that (ad z)P = ad (zP) for x € A.
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Proof. We have that adz = A, — pg, where Ay,p, : A — A denote the commuting
operations of left and right multiplication by x, respectively. Hence (ad z)P = (A\; — py)P =
(Az)P — (pz)P = Agp — pgr = ad(2P) since we are in characteristic p. O

2. POWER SERIES

We often need to manipulate power series in A[[u~!]], where A is some k-algebra
(typically, some Yangian). When doing so, it is sometimes convenient to work in the
slightly larger ring A[[u~!]][u] of formal Laurent series in u~! with coefficients in A. In
this section, we make some general observations about some particular power series which
will be needed in several key places later on.

2.1. Series of type I. In this subsection, we assume that Ap is a filtered k-algebra and
that we are given elements { X e F,_1A; |r > 0} such that [gr, X1 gr, X(s+D] = 0
for all ,s > 0. Since F_; A1 = {0} by our general conventions, we necessarily have that
X(©) = 0. We refer to the following power series as a series of type I

P

Xi(u) = Y. X = (Z X<T)u—’”) e Ar[[u="]. (2.1)
r=0 r=0

Lemma 2.1. We have that XI(T) =0 forr <p and Xl(p) = (X(l))p € FoAr. If r > p and

p | r then XI(T) e F,_,A1 and XI(T) = (X"/P)YP (mod F,_,_141). Finally, if r > p and

p1ir then XI(T) eF,_p1A;5.

Proof. We obviously have that XI(T) = D reApr) X where XM ;= Xx() x(2) ... x (),
Since X(© = 0, the result follows at once when r < p. Now suppose that r > p. Then we
get that XI(T) € F,_,Ar. The commuting assumption on the elements gr,_; X (") gives that
X0 = XN (mod F,_, 1 A;)
for all A € A(p,r) and g € &,. As Af(p,r) is a set of orbit representatives, we deduce that
x=3 oo XEN = 3 6,/6, XN (mod Fr_p_i A).
AEA+(p7T) g6>\66p/6,\ )‘GAJr(p’T)
Now apply Lemma 1.1 to complete the proof. O

Remark 2.2. When we meet the series of type I later on, the elements X (") will satisfy the
additional relations

s—1
[X(T),X(S)] - Z X ®) x (r+s—1-1) (2.2)
t=r
for all 1 < r < s. Using this assumption, we will see indirectly that the elements XI(T)

can be expressed as polynomials in the commuting elements {(X ())p ’ 0 < s < |r/p]}; see
Remark 5.6 below. For example, when p = 2, we have from the original definition that

XI(S) = XWX 4 x@ x O which using (2.2) may be simplified to obtain XI(3) = (x(MH2,
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Here are some other examples when p = 2 under this assumption:
xO = xM =y,
x® = x® = x =

e e e
—
=
~

~— N~ ~—  ~—
[\

When p > 2 one can show that XI(pH) = 0 assuming (2.2).

2.2. Series of type II. Fixn > 1 and a sequence (d; ), of natural numbers with do = 0.
For p € N", define

dy =Y. dy,. (2.3)
=1

We say that r > 1 is optimal if d,, < d, for all € N such that either |u| <7, or |u| =7
and £(p) > 1. The sole observation we need about this notion is the following:

Lemma 2.3. Take m > 1 and suppose that the sequence (d,),=o is defined from d, := 0
forr <m and d, := m[.-] —m for r = m. Then mr is optimal for every r > 1.

Proof. Take r > 1. We must show that d,, < mr —m for y € N such that either |u| < mr,
or |u| = mr and ¢(u) > 1. Take any such composition pu. Write each u; as ma; + b; for
a; = 0 and 0 < b; <m. If a; = 0 for all 4, then d;, = 0 < mr — m. If there is only one ¢
such that a; > 0 then d,, = ma; —m for this 7. This is less than mr —m if |u| < mr since
ma; < |p|. It is also less than mr —m if |u| = mr since in that case ma; < |u| as p has at
least one other non-zero part besides ma; + b;. Finally, if a; > 0 for at least two different

i, then
d, = Z (mal-—m)<( Z mai>—m<m7“—m,

iwith a; >0 iwith a; >0
and we are done. OJ

For the remainder of the subsection, we assume in addition that A is some filtered
k-algebra, and that we are given commuting elements {X Z.(T) e Fy An ! 1<i<<n,r> 0}.

Setting Xi(o) := 1 for all ¢, which belongs to Fg, A1 as dg = 0, consider the power series of
type 11

Xu(u) = Y X{Pu" = ﬁ (Z X —i+ 1)5) e An[[u ). (2.4)
1=1

r=0 520

Lemma 2.4. We have that

where X (1) .= Xl(’“) LX),
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Proof. By the binomial expansion,

(w—i+1) " = w1+ (=i )= =Y <—:> (1 — i)t

It follows that

s=0 s=0t=s t—s
t
_ <t - 1> (Z )t sX(S) -
Soao NS
Now take the product of this over ¢ = 1,...,n then expand the n parentheses, using the

parts of A and p to index the t- and s-summations coming from each bracket, to deduce

Xaw =Y Y <H (A _M>(z’—1))‘i_’“) X0y~

AeN™ X\

It just remains to take the u~"-coefficient. O

Lemma 2.5. We always have that XI(Il) = Xfl) +oe Xﬁl) € Fgq, Air. Moreover, if r > 1
is optimal then X1 € Fq, Ay and X7 = X! 4 - 4+ X7 (mod Fy,_1Ap).

Proof. The formula for Xl(ll) follows immediately from Lemma 2.4. Now assume that r > 1
is optimal. We have that X®) e Fg, Amr. So by the definition of optimal and Lemma 2.4,
we get that XI(IT ) e Fg4, Arr. Moreover, the only terms in the summation from that lemma
which are not contained in Fg,_1 Ay arise when p = A and 4(\) = 1. O

2.3. Series of type III. The third type of power series we consider is defined similarly
to type II, however the resulting coefficients are slightly more complicated to describe
due to additional &,-symmetry; this symmetry arises because the series of type III can

be obtained from those of type II by setting n = p and identifying Xi(r) with its &,
-conjugates. Suppose that Ay is a filtered k-algebra containing commuting elements
{X(T) e Fr_1Am ’ r > 0}. Setting X (@ := 1 € FyAyqp, we define power series of type 11

XIII Z XHI u = 1_[ <Z X u—z + ) r) . (2.5)
=1

r=0 r=0
Like in previous subsections, our goal is to obtain information about the top degree com-
ponent of the elements XI(ITI). Henceforth, XM will denote X 1) ... X() for X\ € NP; this
is different to the usage in the previous subsection. Notice that XM e Fx—eon A

Lemma 2.6. We have that
P
r Po—1() T Vi — 1Y\ ,. Vi
SR VD V| (UM A B
5=0 peAt(p,s) veA(p,r—s) g6,€6,/6, \i=1 '
Proof. Let A be the tensor product over k of p copies of App, and define
XZ'(T) .— 1®6-1) ® x (™) ® 1®(—1) ¢ App.
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Applying Lemma 2.4 with n = p, we deduce that the power series

Xu(u) = Y X u™ :=H<2X (w—i+1)~ ) e An[[u]]
i=1

r=0 r=0

satisfies
Z Z (H (}\ >(z _ I)Ai—m) X)) g xh) ... @ X k),
AeA(pr) N T

Then we apply the linear map Ayp — Ajp defined by multiplying out the tensors. This

maps XI({ ) I(ITI), so we deduce that

si= 2% (10 amee) e

AeA(p,r) LEA

v v (fi(n e )

s=0 peA(p,s) veA(p,r—s) \i=1

where to get the second equation we switched the summations then replaced A by u + v.
Since X = X ) if ;4 and p/ are in the same S,-orbit, we can simplify this further to

get the final formula. O
We need to study the expression from Lemma 2.6 further. Let k[x1,...,7,] be the
algebra of symmetric polynomials over k. It is well known that this is freely generated by
€1,...,Ep, the elementary symmetric polynomials defined from
er = &p(@1,...,2p) 1= Z Tiy T,

1<ii<-<ir<p

We also have the power sums

T = (T1,...,Tp) 1= 2] + - R

These do not generate k[z,... ,xp]GP since we are in positive characteristic, but nev-
ertheless every homogeneous symmetric polynomial of degree < p can be written as a
polynomial in the power sums 71, ...,m,—1. This follows by a simple inductive argument
from Newton’s formula which holds over the integers and hence over k:

k .

k&k = Z(—l)l_lﬂié‘k_i. (2.6)

i=1

Lemma 2.7. If f(z1,...,2p) € k[x1,...,7,]% is homogeneous of degree 0 <1 < p — 1

then f(0,1,...,p—1) =0.

Proof. There is nothing to do if p = 2, so assume also that p > 2. By the remarks
preceeding the lemma, it suffices to prove the claim that m;(0,1,...,p — 1) = 0 for | =
1,2,...,p—2. To see this, we appeal to the following famous identity, valid over Z, which
is due to Pascal:

l
> <l+1>(1m+2m+~-+km):(k+1)l+1—1

m
m=0

for all k,1 € N. Pascal’s identity can be easily proven by induction on k: the case k =

1 is just 271 = ZlH (l:ll), and the inductive step follows quickly from the identity

m=0
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(k+ 1)+t = ZZH (l+1)k:m which is a special case of the binomial theorem. Substituting

m=0

k = p —1 and working over k we get that

Zl] (l;1>7rm(0,1,...,p—1)— zll (l;1>(1m+2m+...+<p_1)m)_0_

m=1 m=1
The claim follows easily from this by induction on [ = 1,...,p — 2; one needs to note that
(ZLI) isnon-zeroink for 1 <li<p—2andm=1,..., 1. ([l

Now take r = 0 and p € At(p, s) for some 0 < s < r, and define

’yff) (T1,...,@p) = Z Z (H </‘g‘1(i):; Vi — 1)95;/1) ‘ (2.7)

veA(p,r—|pl) 96,€6,/6, \i=1

This is relevant because by Lemma 2.6 we have that

x{) = 2 >oao,1,2,. . p - 1)X®, (2.8)
5=0 pueAt(p,s)
In fact, fyff) belongs to k[z1,...,x,]"
Lemma 2.8. (T) (x1,...,2p) is a homogeneous symmetric polynomial of degree r — |p|.

Proof. The claim about degree is clear. For h € &, we have that

p P
h - ,YI(LT)(xla cee 7xp) = Z Z (H (/ng(z):; Vi 1) ZZ(Z)>

veA(p,r—|ul) 96,€6,/6, \i=1

SIS N (CERARR Y

veA(p,r—|pl) 96,€6,/6, \i=1
(r)

which equals v, (1, ...,2p) because h permutes the coset space 6,/6,. Hence, it is a
symmetric polynomial. O

Now we can obtain our main result about the top degree component of Xl(ﬂ).
Lemma 2.9. We have X\ =1, XU =0 forr =1,...,p—1, and
Xl(ﬁ) = (xWy — xW e Fodn.

If r > pand p|r then XI(ITI) e Fr_pAm and

X{f = (X0 — X0+ (mod F,_p_1 Amn).
Finally, if r > p and p{r then XI(ITI) eF,_p1Am.
Proof. Putting Lemmas 2.7-2.8 together shows that

vl(f)(O,l,...,pfl):O whenever O<r—|u<p-1

Also from (2.7), it is clear that fy,([) = 0rp in case |u| = 0. The case |u| = r is also easy
to understand: we then have simply that ’y;(f) = |6,/6,|, which is 1 if all parts of u are
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equal and 0 otherwise, thanks to Lemma 1.1. So we can deduce from (2.8) that

1 if r =0,
r—p+1
- T/p) Z Z (T) 0, ,...,p—l)X(“) ifp|r>0,
Xt = 9 s=1 peAt(p.s) (2.9)
r—p+1
oY AR, p -1 X W ifptr>0.
s=1 pueAt(p,s)

The lemma follows immediately from this in case r < p. Now assume that » > p. For
1<s<r—p+1andpueAt(p,s), we have that XK e F|u—e(u)Am € Fr—pAmn, showing

that XI(ITI) e F,_p,Am. Moreover, XW e Fr_p—1Amg unless p = (r —p +1,0,...,0). To
complete the proof, we show for this p that

. r—1

which is 0if pfr and —1ifp | r
Sop=(r—p+1,0,...,0). A set of representatives for G,/&, is given by the p distinct
powers of the p-cycle (12 --- p). The product of binomial coefficients in the definition of

’y,(f) (0,1,...,p—1) is non-zero only when v has just one non-zero part, which is necessarily
equal to p — 1. Moreover, if this non-zero part is the jth part of v, we must have that
tg-1(j) =T —p+1too, ie. there is just one choice of g that gives a non-zero contribution.
We deduce that

. SN(r—p+l4+p—1-1Y\ _ r—1
0L =1 = 3 (TP G (T (o)

as claimed. i

Remark 2.10. We will show later on that the elements XI(ITI) for p { r can be expressed as

polynomials in {Xl(ﬁs) |0 < s < |r/pl}; see Remark 5.9. It seems to be hard to give a
direct proof of this. Here are some explicit examples which we computed by hand using
(2.9). When p = 2:

X1(121) = XI(fI) = X1(151) = (
X4 = (x@)2 4 xO 4 xOx@ 4 x@ 4 x2)
X = (x®2 4 x6) 4 xOxG) 1 xOx® 4 xOx® 4 x@ 4 x ).
When p = 3:
Xip = Xi7 = Xi5 = 0,
Xfi) = X = () — x,
X = (x@p - x4 xOx® _ (x0)2x@ 4 x@ _ (x@)2,

Also, for all p > 2, we have that Xl(ﬁﬂ) =0.
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2.4. Series of type IV. The fourth type is defined in almost the same way as type
ITI. So again we assume that Ay is a filtered k-algebra containing commuting elements
{X(’") eF,_1Awy ‘ r > O}. However now we set X(©) := 0, before defining power series of

type IV
Xy (u Z Xy =
r=0
by the same formula (2.5) which we used to define Xyr(u).
The elements XI(\T,) are given by the same formula that was derived in Lemma 2.6 for

the elements XI(ITI). However now for p € A(p, s) the monomial X = X (1) ... x () ig
zero unless ¢(u) = p. The following is an immediate consequence of Lemma 2.9 using this
observation.

Lemma 2.11. We have that XI(V =0 forr <p and X(p) (XY e FoApy. If r > p
and p | r then XI(C) e F,_, Ay and XI({;) = (X(T/p)) (mod Fy_p_1Ary). Finally, if r > p
and p1{r then XI(C) eF,_p_14v.

Remark 2.12. Like in Remark 2.10, we will see later that XI(\T,) for p { r can be expressed
as a polynomial in {Xﬁ'}s | 0<s<|r/p| } see Remark 6.10.

3. THE SHIFTED CURRENT ALGEBRA

The shifted Yangian is a filtered deformation of the universal enveloping algebra of a
Lie algebra we call the shifted current algebra. In this section, we discuss this Lie algebra,
describing the centre of its enveloping algebra. Our notation follows [BK3, ch. 2].

3.1. The shift matrix. A shift matriz is an n x n array o = (s; j)1<i,j<n of non-negative
integers satisfying

Sij + Sik = Sik (3.1)
whenever |i —j|+ |j — k| = |i — k|. It follows from the definition that s;; = 0 for 1 < i < n,
and so o is entirely determined by the super-diagonal entries s1 2,523, ..., 5,—1,, and the

sub-diagonal entries s, 5,1, Sn—1,n—2, .., 52,1. We keep a choice of shift matrix fixed for the
remainder of the section.

3.2. The shifted current algebra. The current algebra is the Lie algebra gl,,[t] := g[,,®
k[t]. We will always denote this Lie algebra by g and write U(g) for its enveloping algebra
and S(g) for the symmetric algebra. When z € gl,, and f € k[t] we usually abbreviate
r® f =uxf €g. As a vector space, g is spanned by elements {e; jt" |1 < i,j < n,r > 0},
and the Lie bracket is given by

[ei,jtr, 6k,lt8] = (5k7]~ei’ltr+ 51 16k’]tr+s (32)

where 1 < 1,7, k,l <nand r,s = 0.
For our fixed shift matrix o, the shifted current algebra is g, < g spanned by
{eijt" [1<i,j<n,r=s;}. (3.3)

Lemma 3.1. The shifted current algebra g, is a Lie subalgebra of g, and it is generated
as a Lie algebra by

{eit" |1 <i<n,r=0}u{eimt eiit® [ 1<i<nr=sii1,8= 8410 (34)
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Proof. First we show that the span of (3.3) is closed under the bracket. Let 1 <, j,k,1 <
n, r = s;; and s > sp;. By (3.2) we only need to check that j = k implies 7 + s > s;;.
When i < j < lorl < j < i this follows from (3.1) so it remains to check the case
I <i<j. Nowwehaver +s>s>s;;=s5sj;+8,;>5.

Now take ¢ < j and > s; j. The fact that e; jt" lies in the algebra generated by (3.4)
can be proven by induction on j — ¢. A similar argument treats the case that i > j,
completing the proof. ]

The adjoint action of g, on itself extends uniquely to actions of g, on U(g,) and S(g,)
by derivations. The invariant subalgebras are denoted U(g,)% and S(g,)%, and the
equality Z(gs) = U(gs)?% follows from general principles; e.g. see [Dix, 2.4.9(i)].

There is one obvious family of central elements in U(g,). For any r € N, we set

zri=epqt’ + -+ epnt’ € go. (3.5)
Then the set {z, | r = 0} forms a basis for the centre 3(g,) of gy, and k[z, | r = 0] is a
subalgebra of Z(g,). The elements z, also define symmetric invariants in S(g,)% .

3.3. Symmetric invariants. The current Lie algebra g has an obvious grading with e; ;jt"
in degree 7, and g, is a graded subalgebra. There is also a filtration

Ules) = | JFrU(50) (3.6)
r=0

of the universal enveloping algebra U (g, ), which is defined by placing e; ;t" in degree r+1,
i.e. F,.U(go) is the span of all monomials of the form e;, ;,t" - - e;,, j,.t"™ with total degree
(ri+1)+---+ (rm + 1) <r. The associated graded algebra grU(g,) is isomorphic (both
as a graded algebra and as a graded g,-module) to S(g,) graded so that e; ;t" is in degree
r + 1. We get induced an inclusion

grZ(go) < S(gs)%. (3.7)

In the remainder of the section, we are going to use this to compute Z(g,), revealing in
particular that equality holds in (3.7). First, we must describe S(gy)% explicitly.

Lemma 3.2. The invariant algebra S(g,)% is generated by {z | r = 0} together with
(go)P :={aP |z € g} < S(95). In fact, S(gs)% is freely generated by

{ze |r =0} U {(eijt")P |1 <i,j <nowith (i,§) # (1,1),r > si 5} (3.8)
Proof. Since we are in characteristic p > 0, we have that (g,)? < S(g,)% . Let I(g,) be
the subalgebra of S(g,)% generated by (g,)? and {z, | » = 0}. Let
B :={(i,j,r) |1 <i,j <nwith (4,7) # (1,1),7 = s; ;}

for short. Since the elements {z, |7 > 0} U {e; ;" ‘ r >0, (i,j,r) € B} give a basis for g,,
it follows that

S(g0) = k[z | r = 0] [es5t" | (4, 5,7) € B],
I(go) = K[z | r = 0] [(e5t")" | (4, 5,7) € B],
with both being free polynomial algebras. Hence, S(g,) is free as an I(gy)-module with

basis {]_[(m-’r)eB(ei7jtr)“’(i7j7r) we Q}, where
o ) 0 < w(i,j,r) <p forall (3,4,r) € B,
2= {w B=N w(i, j,r) = 0 for all but finitely many (¢,5,7) e B (°
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To complete the proof of the lemma, we must show that S(g,)% < I(gy). To do this, take

f € S(g,)% and write it as
f= Z Co H (e ;"))
weld  (ij,r)eB
for ¢, € I(g,), all but finitely many of which are zero. Also fix a non-zero function w € .
We must show that ¢, = 0.
Suppose first that w(i,j,r) > 0 for some (i,7,7) € B with i # j. Choose s € N that it

is bigger than all r' such that w(é’,j’,7") > 0 for (¢, j',r') € B. Using the Leibniz rule we
see that

g . / AT ’

ad(e t°)(f) = D cw Y, w(@, 5,7 (ewpt™ )T 1[6i,it8,€i',j’tr]
w'eQd (¢'.5'r"eB
(i 47)>0

y H (ei”’jut )w(z// ]// ,,,//)‘
(// ]Il ”)EB
(Z// 1 l/)$é(1/ -/ T,/)
It is crucial for this that the coefficients ¢, belong to I(g,) < S(gs)% . Thanks to the
choice of s, the coefficient of

(ei7jt7‘)w(i,j,7’)—1ei’jtr-i-s 1_[ (ei”,j”tru) w(@”,5" k")
(i",3" ,r")eB
(@",5" ") #(i,4,r)
in this expression is ¢,w(i, 7, 7). But also it must be zero since f € S(g,)% . Since w(i, j,7)
is non-zero in k, we deduce that ¢, = 0 as required.
A very similar line of reasoning treats the case that w(j, j,r) > 0 for some (j,7,7) € B.
This time, one picks i # j (possible as n > 1) and considers the coefficient of

(ejvjtr)w(j7j7r)_1ei7jtr+s H (ei”7j/’t )W(ZN 3, ,r,//)
(i j" +")eB
(@.5" ") #(5,5,)

in ad(e; ;t°)(f) for s as before. O

3.4. The restricted structure. If v is any Lie algebra over k then a restricted structure
on t is given by defining a p-map = — !l on v such that the map

E:v—U(y), e —

satisfies two properties: (i) £(t) lies in the centre of U(t); (ii) & is p-semilinear. We remind
the reader that p-semilinearity means that {(Az) = A\P¢(x) and £(z + y) = £(z) +&(y), for
all x,y e v, A € k. It is readily seen that a p-semilinear map g — g is determined by its
effect on a basis, and so the same is true of a p-map.

Lemma 3.3. The current algebra g is a restricted Lie algebra with p-map defined on the
basis by the rule (zt")P) := lPltP where z[P) denotes the pth matriz power of = € gl,,.
Moreover, g, is a restricted Lie subalgebra.

Proof. Using Lemma 1.2, it is easy to see that when t is a restricted Lie algebra with
p-map z — 2Pl and C is any commutative k-algebra, the tensor product t ® C acquires
the structure of a restricted Lie algebra over k with multiplication and restricted structure
given by [z ® a,y ® b] := [z,y] ® ab and (z ®a)[p] = 2Pl ® aP for z,y € vand a,be C.
Since gl,, is restricted with p-map given by the pth power of matrices the first claim of
the lemma follows. Clearly z — 2P — z!? sends g, to U(gs), and so g, is a restricted
subalgebra. O
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3.5. The centre of U(gy,). Using the restricted structure, we can define the p-centre
Zp(9s) of U(gs) to be the subalgebra of Z(g,) generated by z? — z[?! for all z € g,. Since
the map ¢ : z +— 2P — z[P! is p-semilinear, we have that

Zp(ga) =k [(ethT)Z) — 5i7jei7jtrp ‘ 1 < i,j < n,r = Si,j] (39)

as a free polynomial algebra.
Theorem 3.4. The centre Z(gy,) of U(gs) is generated by {z,. | r = 0} and Zy(g,). In
fact, Z(gs) is freely generated by

{zr |7 =0} U {(eijt")? — bijeit"™ |1 <i,j <nwith (i,5) # (1,1),r = s;j}.  (3.10)
Proof. 1t suffices to prove the second statement. Let Z be the subalgebra of Z(g,) gener-
ated by (3.10). For r > 0 we have that z, € F, 11U (g,) and

gr.y12r = 2r € S(ga)'
For 1 <i,j <nand r > s; ; we have that (e; jt")P — 0; je; jt'P € Frpi1pU(gs) and
8rrpp [(€ig1")" = dijeit™] = (eit")" € S(go)-

So the elements (3.10) are lifts of the algebraically independent generators of S(g,)% from
(3.8). It follows that the elements (3.10) are themselves algebraically independent, and

moreover S(gs)% < grZ. Thanks to (3.7), we also have gr Z < gr Z(g,) < S(g,)%, so
equality must hold throughout: gr Z = gr Z(g,) = S(g,)% . This implies Z = Z(g,). O

Remark 3.5. If k is algebraically closed of characteristic p > 0 and g = Lie(G) for a
reductive algebraic k-group G satisfying standard hypotheses, then it is well known that
the centre of U(g) is generated by the p-centre and U(g)®. Theorem 3.4 can be seen as
an analogue of this classical result in the context of the current algebra gl [¢].

4. MODULAR YANGIANS AND SHIFTED YANGIANS

In this section, we define and study the Yangian Y;, and its shifted subalgebra Y, (o) in
positive characteristic. In particular, we prove that the RTT presentation for Y,, from the
introduction is equivalent to a slightly modified version of the Drinfeld presentation.

4.1. The RTT generators. We define the Yangian Y,, over k as in the introduction. So
it has generators {T@(;) ! 1<, <n,r> 0} subject just to the relations (1.1). Recall
also that Tl(g) := 0; ;. By the same proof as [MNO, Proposition 1.2], the following give an
equivalent set of defining relations:

min(r,s)—1
o () p(r+s—1—t) (r+s—1—t) (t)
] = ) (Tk,jTi,l — T Uy > (4.1)
t=0
for 1 <4,j,k,l <n and r,s > 0. Using this and induction on r + s, it is easy to see in
particular that

(r) (s)
|77

(r)p(s) _ () ()
1T = 11 (42

for all r,s = 0.

We often put the generators T@(Z) for all 7 > 0 together to form the power series T ;(u) as
in (1.2). Then these power series for all 1 < ¢,j < n can be collected together into a single
matrix T'(u) := (T ;(u))1<ij<n € Mn(Yn[[u™t]]). Using these matrices, the relations can
be expressed in an extremely compact form, known as the RTT presentation. Since this
presentation will play no role in our work, we do not bother going through the details,
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rather we refer the reader to [MNO, Proposition 1.8] where the calculations apply equally
well over k as they do over C.

It will not play a significant role in this paper, but we should mention that Y;, is a Hopf
algebra. Its comultiplication A and antipode S are given by

= > Tip(u) @ Ty (w), S(Tij(w) = Tij(w), (4.3)

where ﬁ](u) is the (i, j)-entry of the matrix T'(u)~!. The counit sends T} ;(u) — &; ;.

4.2. Filtrations and the PBW theorem. There are two distinguished filtrations on

Y,,. The first one, called the canonical filtration in [BK1, §2], places TZ(S) in degree r. The
associated graded algebra is commutative. Since this filtration will not play a significant
role in this article, we will not reserve any special notation for it. In fact, will never
mention it again after the proof of the following fundamental PBW theorem.

Theorem 4.1. Ordered monomials in the generators {T( | 1<4,5<n,r> 0} taken in
any fized order give a basis for Y.

Proof. 1t is easy to see that these monomials span, e.g. one can argue by induction on
degree in the canonical filtration. To show that they are linearly independent, we may
assume that k is algebraically closed. Then the proof given in characteristic zero in [BK1,
Theorem 3.1] works just as well in positive characteristic. O

The second filtration on Y;,, called the loop filtration in [BK1, §2], will be ubiquitous.
We denote it by
Yo = JF Yo (4.4)
r=0

(r)

It is defined by placing T;; in degree r — 1, i.e. F.Y,, is the span of all monomials of

the form Tl(lrx . TZ(:’;L with (r1 — 1) + -+ 4+ (r, — 1) < r. We warn the reader that the
notation F,Y, is often used elsewhere in the literature for the canonical filtration. Also
(4.4) should not be confused with the filtration on U(g) from (3.6); the latter will never
be used again.

To describe the associated graded algebra grY,,, recall that g = gl,[t] is generated by

{eijt" |1 < i,j < m,r = 0} subject to relations (3.2), and notice by the definition that
grY, is generated by elements {gr,_l Ti(;‘) | 1<4,5<n,r> 0}.

Lemma 4.2. There is an isomorphism x : U(g) — grY,, sending e; jt" — grrTZ;Jrl for
each 1 <i,5 <n andr = 0.

Proof. Relation (4.1) implies that

ler, T, er, T = [T, TTD) 4 Frpa Y

= 5k,jTi(?+S+1) — 4, T(WH) +Fris1Yy

7{r+s+1) 7{r+s+lx

= O G &Lrs 51'71 &lris Lk

Comparing with (3.2), we deduce that the map in the statement of the lemma is well
defined. To see that it is an isomorphism, one uses the PBW basis from Theorem 4.1 to
see that a basis for U(g) is sent to a basis for grY,,. O



YANGIANS AND SHIFTED YANGIANS 15

4.3. Drinfeld-type presentation. Since the leading minors of the n x n matrix T'(u)
are invertible, it possesses a Gauss factorization

T(u) = F(u)D(u)E(u) (4.5)
for unique matrices
D1 (u) 0 0
0 D2 u 0
0 0 -+ Dp(u)
1 ELQ(U) Elyn(u) 1 0 0
0 1 Egyn u FLQ u 1 0
() = (u) P = ‘()
0 0 1 Fl,n(u) Fz’n(u) 1
This defines power series
Di(u) = Y D, Eij(u) =Y B, Fij(w) =Y FDu
r=0 r=0 r=0
in Y [[u~']] with D) =1 and E) = FY = 0. Let
EZ(’LL) = Z Ei(T)u_T = Ei7i+1(u), FZ(U) = Z FZ-(T)’LL_T = i7i+1(u)
r=0 r=0

for short. Also let N N
Di(u) = Z Dz(r)u_T = Di(u)™".
r=0
We warn the reader that our 5Z(u) differs by a sign from one used in [BK1, BK2, BK3].
This accounts for several other sign differences in the exposition below compared to loc.
; 0) _
cit., e.g. we have that Dy’ = 1.

In terms of quasi-determinants of [GR], we have the following more explicit descriptions,
as noted already in [BK1, §5]:

Tia(uw) - Tiima(w)  Tyi(u)
Diw=| " 5 5 (4.6)
Ticaa(u) -+ Ti—1i-1(w) Tioqi(u)
Tia(u) - Tig-a(u)  Tig(w)
Eij(u) = Di(w)| * 5 o, (4.7)
’ Timia(u) - Tioim1(u) Tioiy(u)
Tia(u) - Tigoa(u) | Tig(w)
Tia(uw) - Tii—i(uw)  Tig(u)
Fyw=| = " 5 | Duw), (4.8)
! Timia(u) - Timpimi(u) Ti—r(w)
Tia(u) - Tjica(uw) | Thi(u)
Since Ej(i)l = Tj(i)l’ j and F ]-(Pl = Tj(;)fl, it follows easily that
(r) (r) 1) () 1) p(r)
Eij = [Ei,jfl’EjflL iy = [ijlvFi,jfl]' (4.9)

fori+1<j<n.
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Now we state the main theorem of the section, which is the modular analogue of [BK1,
Theorem 5.2]. Although not written explicitly there in this form, this presentation must
surely have been known to Drinfeld when writing [D].

Theorem 4.3. The algebra Y, is generated by the elements {DZ(T) ’ I<i<n,r> 0} and
{Ei(r), Fi(r) | 1<i<n,r> 0} subject only to the following relations:

[D§T)7DJ(S)] — 0’ (4.10)
r+s—1
(B FY) = 6 3 DIETOD (1)
r—1
(D, B = (31 — i51) Y, DBy, (4.12)
t=0
r—1
(D7, F] = (G52 — 0i) Y, B0 DY, (4.13)
t=0
s—1
BV, ED] = Y ORI ifr<s (4.14)
t=r
r—1
[ EO) = SR e (115)
t=s
[, B - [, B = B8, (419
[0, R [ E = LD (17
(ED, B =0 if i —j| > 1, (4.18)
[FD,FP] =0 if li—j| > 1, (4.19)
B [ED,EO]| + [EX [ED,EP]| =0 ifli—jl=1r#s, (4.20)
iFi(r)’ [Fi(s),F}(t)]: + Fi(S)’ [FZ-(T),F]-(t)]] =0 ifli—jl=1r#s (4.21)
Ei(r)’ [Ez(r)7E](t)]_ =0 if ”L — ]’ =1, (422)
Fi(r)7 [Fi(r)’F}'(t)]: -0 ifli—jl =1, (4.23)

0 _ pO._ 4
(t)f)(?“*t) .

for all admissible i j,r s,t. In these relations, we use the shorthands D;
and the elements D( for r > 0 are defined recursively by D — D1

Remark 4.4. The relations (4.10)—(4.19) are the same as relations (5.9)—-(5.18) of [BK1],
however relations (5.19)—(5.20) of loc. cit. are expressed here as the four relations (4.20)—
(4.23). This is essential in charactersitic 2.

Proof. This is very similar to the proof in the characteristic zero explained in [BK1]. We
just give a brief account in order to highlight the minor differences.

To start with, we need to check that the relations (4.10)—(4.23) do indeed hold in Y.
For all but the last two relations, this is carried out already in [BK1] over the ground field
C. The arguments there start from the power series form of the defining relation (1.1),
namely, that

(u = 0)[Ti;(u), Tea(v)] = T, (w)Tia(v) — Tie j (0)Tia(w) (4.24)
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in Y,,[[u=!,v™!]], then extract from this various relations satisfied by the power series
D;(u), E;(u) and F;(u); some of these are recorded in Lemma 4.6 below. Then the desired
relations follow by computing various coeflicients in these power series relations. These
calculations can be performed without any difference in positive characteristic, yielding
all of our relations except for (4.22)—(4.23). To establish (4.22), we use the power series
relation

[Ei(u), [Ei(u), Ej(v)]] = 0 (4.25)
for |i — j| = 1 which is proved by reducing first to the case {i,j} = {1,2} then arguing as
in [BK1, Lemma 5.6]. Taking the u~2"v~!-coefficient in this identity and using also (4.20)
gives (4.22). The proof of (4.23) is similar.

Now let }Afn be the algebra with generators {Dl(r), lNDlm ’ 1 <@v < nyr 2 O} and
{E N Er) ‘ 1<t <n,r> 0} subject to all of the relations recorded in the statement of
the theorem The previous paragraph 1mphes that there is a well-defined homomorphism
0 : Y — Y, taking the generators of Y to the elements of Y, with the same names.

(1) )

Define higher root elements E; L Fy € Yn forall 1 < ¢ < j <n and r > 0 by setting

EZ( z)+1 = E( ") and F; a1 = F-(T) then using the formula (4.9) inductively when |j—i| > 1.
This definition ensures that 6 sends E( ") F (7) € f/n to the elements of Y;, with the same

0,J 07 0]
names.

To complete the proof, we define a filtration }Afn = Ur=0 Frf/n by declaring that the
elements D( " E( ") and F( ") defined in the previous paragraph are of filtered degree r — 1.
We claim that there isa surjectlve graded algebra homomorphism
gr, DU if i = j,

v, BUYif i< g, (4.26)
gr, F .(7?+1)

b:U(g) = gr¥n, el = eijy =
if i > j,

for 1 <i,5 < nandr = 0. To see this, surjectivity is 1mmed1ate from the way the filtration
is defined, so it suffices to show that the image of the defining relation (3.2) for U holds in
gri}n, ie. [€ijir €hiis] = Ok i€itrts —0it€k jirts for 1 <i,j,k, 1 <nandr,s> 0. There are
six cases: (a) i =j, k=10 (b)i=jk<l;(c)i=7k>1(d)i<j,k<l;(e)i>jk>I;
(f) i < j,k > l. For these, (a) is immediate from (4.11), (c) is a similar argument to (b),
and (e) is a similar argument to (d). So we just prove (b), (d) and (f). The proof of (d) is
the same argument as in the proof of [BK1, Lemma 5.8] except when r = s and |i —j| = 1,
when one must replace the relation [€; 1., [€ii+1:5, € j+1:¢]] = —[€iit1:5 [€iit13ms €5 j+15¢]]
with [€;it1:r, [€5i+1:r €jj+1:5]] = 0, which follows straight from (4.22). Also (b) follows
when |k —[| = 1 using (4.12); then it may be deduced in general using (d) and induction
on k —[. The argument for (f) is similar: it follows when |i — j| = |k — | = 1 using (4.11);
then it follows in general using (d), (e) and induction.

Using (4.6)—(4.8), one sees that D( ) EZ(J), F(T) € F,_1Y,, so that 6 is a filtered homo-

morphism. Moreover, the following dlagram commutes:

/\

grY —> gry,.

We already showed that y is an isomorphism in Lemma 4.2. It follows that gré is one
too. Hence, # is an isomorphism as required. ]
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Henceforth, we will identify U(g) and grY,, via the isomorphism y from Lemma 4.2,
T(T-H)_

T,

DZ(TH), EZ-(Z.H) and Fi(;-H) all belong to F,.Y,,, and under our identification we have that

i.e. we identify e; ;jt" with gr The proof of Theorem 4.3 shows moreover that

gr, DIV if i = j,

eigt’ =1 e, BTV iti <, (4.27)
erj” if i > j.

Using this and the PBW theorem for U(g), we obtain the following giving a PBW basis
for Y,, in terms of the Drinfeld generators.

Theorem 4.5. Ordered monomials in the elements

(DI 1 <i<nr>0} U{EY) FD|1<i<j<nr>0} (4.28)
taken in any fized ordering form a basis forY,,.

We will need the power series forms of some of the relations from Theorem 4.3. We
record these and some consequences next.

Lemma 4.6. The following equalities hold in Y, [[u=t,v™1]]:

(u —v)[E;i(u), F;(v)] = Dit1(u)Di(u) — Dis1(v)Di(v), (4.29)
(u—v)[Ei(u), Ei(v)] = (Ei(v) — Ei(u))?, (4.30)
(u —v)[Ei(u), Di(v)] = Di(v)(Ei(u) — Ei(v)), (4.31)
(= v)[Ei(u), Dis1(0)] = (Ei(u) = Ei(v))Dij1(v), (4.32)
(= v)[Ei(u), Di(v)] = (Ei(v) — Ei(u))D;(v), (4.33)
(u—v)[Ei(uw), Di+1(v)] = Dit1(v)(Ei(v) — Ei(u)). (4.34)

Proof. Equations (4.29)-(4.32) were proven over C in [BK1, Lemma 5.4]; the same proof

works here. Then (4.33)—(4.34) follow from (4.31)-(4.32) using Dj(v)f)j(v) = 1. O
Corollary 4.7. The following hold in Y,[[u=']]:

Ei(u —1)Di(u) = D;(u)E;i(u), D;i(u)Ei(u— 1) = E;(u)D;(u), (4.35)

Diy1(uw)Ei(u) = Ei(i + 1)Dyiyq(u), Ei(u)Diy1(u) = D1 (w)Ei(i +1).  (4.36)

Proof. These follow from the identities in the previous lemma by specializing v. For
example, to get the first relation in (4.35), set v := u + 1 in (4.31), simplify, then replace

wby u—1. 0
Lemma 4.8. The following relations hold in Yy, [[u=,v=1]] for all m = 0:

(u = )[Ei(u), (Bi(v) — Bi(u))™] = m(Bi(v) — By(u))"™ ™, (4.37)

(u—v)[Bi(u), Di(v)(Ei(v) — Ei(w)™] = (m — 1) Di(v)(Ei(v) — Ei(u)™ ",
(4.38)
(u—v)[Bi(u), Dis1(v)(Ei(v) = Ei(w))™] = (m + 1) Diy1(0) (Ei(v) — Ei(u))"™*,

(4.39)

(u = 0)[Ei(u), Dit1(v)(Ei(v) = Ei(w))" Di(v)] = (m + 2)Dit1(v )(Ei(v)—Ez(u))mH’iz( ))

Proof. The relation (4.37) follows from (4.30) and the Leibniz rule. Then (4.38)—(4.40)

follow from (4.37), (4.31), (4.33) and (4.34) using Leibniz again. O
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The following relations are closely related to the ones in Lemma 4.8, but it is easier to
prove them from scratch.

Lemma 4.9. Foranyi=1,...,n—1, m >0 and r,s > 0, we have that
ED Y BB =m Y B ), (4.41)
L 81,--,Sm 2T i 81400y Sm 12T
Ss1++sm= (m D(r—1)+s s1++Smy1=m(r—1)+s
BN, Y BB = om Y ERY L EP), (4.42)
815y SmST—1 i 81y sSm41r—1

C S1ttSm=(m—1)(r—1)+s s+ +8Smy1=m(r—1)+s

E", Y DYES . EF | =m-1) > DYEF.EEm ] (443)
815038 m 21,120 81538 m+12T,t20
s1+-+sm+t=m(r—1)+s s1++8m1+t=(m~+1)(r—1)+s

EY, Y DYES - EE =) Y DO B,

81,00y Sm =T,t=0 81y sSm121,120
s1+-+8m+t=m(r—1)+s 1+ +8my1+t=(m+1)(r—1)+s

(4.44)

D Y e ) ) ISR R e R S )

S1,eeeySm =T, t=0,u=0 ] S1yeeeySm127,t20,u=0
51+"'+Sm+t+u=m(r—1)+s s1+-+Sm1+t+u=(m+1)(r—1)+s

(4.45)
Proof. For (4.42), we note in the summation on the left that si,...,s, < r —1 and
S1+++8m = (m—1)(r—1)+s implies that r—1 = s1,..., 8, = s > 0, so the expression
makes sense. By (4.14), we have that

[Ez(r)’Ez(Sk)] _ Z E,L(Sk)E,L(Sk)
sk,skgr 1

sy 4st=sp+r—1

for 0 < s < r — 1. Using this and the Leibniz rule, we deduce that the left hand side of
(4.42) equals
D) ST B gl pOD R Bl o)

k=1 81,0,8m<T—1 s s%<r 1
s14Fsm=(m—1)(r— 1)+Ss' s =sp+r—1

- m Ei(Sl) . Ei(8m+l)7
&, 2

S1yeeeySm1Sr—1
s1+e+smip1=m(r—1)+s

which gives the right hand side of (4.42). The proof of (4.41) is similar. Then (4.43)—(4.44)
follow from (4.12) and (4.41) with one more application of Leibniz. Finally (4.45) follows
similarly from (4.44) together with

[E") DY) EE(” ST HO), (4.46)
t=0

This may be deduced from (4.33) by dividing by (u — v) then equating coefficients in
exactly the manner explained in the paragraph following [BK1, (5.23)]. O



20 JONATHAN BRUNDAN AND LEWIS TOPLEY

The relations in the next lemma involve the expressions
Diym(u) := Dij(u)Di(u — 1) -+ Dj(u — m + 1), (4.47)
In view of (4.10), the order of the products on the right hand sides here is irrelevant.

Lemma 4.10. The following relations hold for all m > 1

(u = 0)[Diym(u), Ei(v)] = mDiym(u)(Ei(v) — Ei(u)), (4.49)
(1= ) [Digon (), B (0)] = mDigon () (Eir (w) — Ey1(v)). (4.50)

Proof. For (4.49), we actually prove it in the following equivalent form:
(u—=v —m)D;m(u)E;(v) = (u —v)E;(v)Djjm (1) — mDj|m (uw) E;(u). (4.51)

This follows when m = 1 from (4.31). To prove (4.51) in general, proceed by induction:
given (4.51) for some m > 1, multiply both sides on the left by (v —v —m —1)D;(u —m)
then simplify using the m = 1 case already proved plus (4.35) to obtain the analogous
formula with m replaced by m + 1.

The proof of (4.50) is similar. One actually shows equivalently that

(u—v + m)Djyp(u)Ei—1(v) = (v — v)Ej—1(v) Diypm () + mDjgm (w) Ei—1(u). (4.52)

This follows when m = 1 from (4.34), then the general case follows by a similar induction

to the previous paragraph. O
For our final relations, we let
w) = Y Hu™" = —Diy1(u)Dj(u) (4.53)
r=0
assuming 1 < 7 < n. In particular, HZ.(O) = —1. It is straightforward to see from (4.27)
that H' Y € F,, and
er, Hi(rﬂ) = ejit" —eir1,i+1t". (4.54)
Note also by Corollary 4.7 that
Hi(u)E;i(u—1) = Ej(u+ 1)H;(u). (4.55)
Lemma 4.11. The following relations hold in Yy [[u=",v=1]]:
(u—v = 1)[Hi(u), Ei(v)] = 2H;(u)(Ei(u — 1) — Ei(v)), (4.56)
(u—v+1)[Hi(u), Ei(v)] = 2(E (U +1) = Ei(v)) Hi(u), (4.57)
(u—v)[Hi-1(u), Bi(v)] = —Hi—1(u)(Ei(u) — Ei(v)), (4.58)
(1= 0= D [His (), Eu(0)] = By — 1) — By(0) Hir (), (4.59)
(u—v)[Hit1(u), Bi(v)] = —(Ei(u) — Ei(v))Hiy1(u), (4.60)
(u— v+ D[Hisr (), Bi(v)] = —Hog (u) (Fi(u + 1) — Fi(v). (4.61)

Proof. We just go through (4.58), (4.61) and (4.56), since the other three are similar. The

identity (4.58) follows easily from (4.31) and Leibniz, using that D;_;(v) commutes with
E;(u) by (4.10). For (4.61), we have by (4.32) that

(u— v — 1) E: () Di1 (0) = (u— v)Dy1 (0) Bs ) — Ey(0) Dy (v)
Using also (4.36) gives that
(u—v—1D)[Ei(v), Dis1(v)] = Dis1(v)Ei(u) = Dit1(v)Ei(v + 1),
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Now multiply by D;i2(v) (which commutes with F;(u)) then interchange u and v to get
the conclusion. Finally, for (4.56), we have by (4.40) that

(u = 0)[Ei(u), Dip1(v) Di(v)] = 2Di41 (v)(Ei(v) — Ei(u)) Dy(v). (4.62)
From (4.33), we have that
(u— v+ 1)E;(u)Di(v) = (u — v)D;(v)Ei(u) + Di(v)Ei(v —1).
Then we multiply (4.62) by
(u—v)(u—v+1)

u—v + 1) and use these identities plus (4.35) to obtain
Ei(u), Hi(v)] = 2(u — v)Hi(v)(Ei(v — 1) = E;(u)).
Dividing through by (u — v) and interchanging u and v gives the result. O

Corollary 4.12. The following hold in Y, [[u=t,v=1]]:
(u—v)[Hi(u), B;(v)] = —H;(u)E;(v) — E;(v)H;(u) + 2H;(uw)Ej(u — 1),  (4.63)

(u=0)| Hica(u+ 1), Bi(0) | = 5 (Hia(u+ D Eiv) + Ei(o)Hi (u+ 3) )
— 3 (Him(w+ D) Ei(u
(u— U)[Hz‘+1(u - %),Ei(v)] = %(HM(“ - 3)

—3(Hin(w— ) E(u+3) + Bi(u— Y Hia(u—1)), (465)

assuming that chark # 2 for the last two (so that % makes sense).

—

Proof. When char k # 2, these follow by averaging the corresponding pairs identities from
Lemma 4.11, e.g. (4.64) is ((4.58)+(4.59))/2 with u replaced by u + 3. For (4.63), one
also needs to use (4.55). To establish (4.63) when chark = 2, we observe by (4.56) that

[H",E®] = 0 for all ,s > 0, which easily implies the desired identity. O

)

4.4. The modular shifted Yangian. Pick a shift matrix ¢ as in §3.1. The shifted
Yangian is the subalgebra Y, () € Y, generated by the following elements:

{DZ(T) | 1 <1< n,r > 0} U {E’i(r),FZ-(S) | 1 <i<mnr > 81,5 > SHM} (4.66)
Notice that when o is the zero matrix we have Y,,(c) = Y;,. Neither the PBW basis nor the
centre of Y,,(c0) can be described without introducing higher root elements, however the

elements E! j) € Y,, do not lie in the subalgebra Y;,(c) for a general shift matrix. Instead,
following [BKZ (2.18)—(2.19)], we recursively define

G'E(r) . [UEZ(Z Slj 1,5) E(SJ 1]+1)]7 UF(S) = [Ej(ijlj 1+1) UFZ(j "i]] 1):| (467)

for 1 <i<j<mnandr>s;;s>s;; Asalways, the filtration on Y,, induces a filtration
on its subalgebra Y,,(o) so that grY, (o) < grY,.

Lemma 4.13. For any shift matriz o, 1 <i<j<n, andr = s;,5 > s;;, we have that
"EZ.(ZH) eF,Y, and "FZ.(;H) € F,Y,,. Moreover, recalling that grY, is identified with U(g),
we have that

r, BT = et gr, FUT = et (4.68)
Hence, grY, (o) is identified with the subalgebra U(g,) of U(g).
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Proof. We just prove the statements about "EZ-(ZH). When j = ¢+1 the result is immediate

from (4.27). To deduce it in general, we proceed by induction on j —i. For the induction

step UE(T"‘l) _ I:UE(TJFl 85-1,5) E(s] 1,;+1)

i1 i) ] so by induction it lies in 5. | 15, , Yy as

requlred. Moreover7 by induction again, its image in the associated graded algebra is
[ei 18709 ej g 7] = e t"

using (3.2). O

From this and the PBW theorem for U(g,), we also get the following PBW theorem
for Y,,(0):
Theorem 4.14. Ordered monomials in the elements

(DI 1 <i<nr>0}u{E" F

taken in any fized ordering form a basis for Y, (o).

|1<2<] n,r > Sij, 8> 5} (4.69)

We have defined Y, (o) as a subalgebra of Y,,. It can also be defined by generators and
relations: the following theorem shows that it has its own Drinfeld presentation.

Theorem 4.15. The shifted Yangian Y, (o) is generated by the elements (4.66) subject to
the relations (4.10)—(4.23), interpreting “admissible i, j,r,s,t” so that the left hand sides
of these relations only involve generators of Y, (o).

Proof. Let }Afn (o) be the algebra defined by these generators and relations. Since all of the
relations hold in Y}, (o), there is a homomorphism 6 : Y,,(0) — Y,,(0) taking the generators
to the elements of Y, (o) with the same name. Introduce higher root elements UEl-(Z-) and
"Fi(;-) in Y, (o) by repeating (4.67), so that @ takes these to the elements of Y, (o) the same
name too. Then define a filtration on l?n(a) by placing DZ(T), "EZ.(Z) and "Fi(;.) into filtered

degree r —1. Arguing in the same way as the paragraph following (4.26), we see that there
is a surjective graded algebra homomorphism

V:U(gs) > gr¥alo), et 3 ar, BT ifi<j,

0,
F“”“) if i > 7,
for 1 <i,j <nandr > s;;. Finally, we observe that 0 is filtered, and

(gr 0) o U(go) — gr Yn(o-)
is the identity by Lemma 4.13. This implies that gr 6 is an isomorphism, hence, sois §.

4.5. Automorphisms. In the next section, we will also need to exploit various automor-
phisms/isomorphisms of Yangians and shifted Yangians. We briefly list the ones that we
need below. In all cases, existence follows easily from the defining relations; see also [BK1,
§2] and [BK2, (2.16)—(2.17)].

(1) (“Translation”) For ¢ € k, there is an automorphism 7. : Y;, — Y,, defined from

ne(Ti,5(uw)) = T; j(u — ¢), ie. nc(Tl(;)) => (- 1) a ST(S) In terms of Drinfeld
generators, 7. sends D;(u) — D;(u — c), E; j(u) — Ew (u —¢) and Fj (u) —
F; j(u — ¢), from which one sees that 7. does not leave Y, (o) invariant in general.
(2) (“Multiplication by a power series”) For any power series f(u) € 1 + u~'k[[u"']],

there is an automorphism Mf Y, — Y, defined from ps(T;;(u)) = f(u)T;;(u),
ie. Mf(Ti(;)) = Do as (; <) if f(u) = X ,spasu™*. On Drinfeld generators, we
have that uf(Di(u)) = f(u)Di(u), py(Ei(u)) = Ei(u) and pg(Fi(u)) = Fi(u). So
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this time ji¢ restricts to an automorphism of each shifted Yangian Y;,(o) fixing the
off-diagonal generators (4.67).

(3) (“Transposition”) Let 7 : Y,, — Y,, be the anti-automorphism defined by T(TZ(;)) =
Tj(;.) or, on Drinfeld generators, T(D§T)> = Dz(r),T(EZ-(;)) = Fi(’;),T(FZE;)) = Ez(j;)
This restricts to define an anti-isomorphism 7 : Y;,(¢) — Y, (¢7) between shifted
Yangians, where o7 is the transposed shift matrix.

(4) (“Change of shift matrix”) Suppose that o is a shift matrix as usual and ¢ =
(8i)1<i,j<n is another shift matrix satisfying s; 11 + Si+1,; = $ii+1 + Si+1,; for all
1 < i < n. Then, as a consequence of Theorem 4.15, there is an isomorphism

L Yo(o) 5 Ya(6), D) s DI, oBY) o op(sa ) Lopl) L op(imsiit i),
(5) (“Permutation”) For each w € &,,, there is an automorphism w : Y,, — Y,, sending
0] w(i),w(j)
subalgebra Y,,(0) invariant in general.

. This is clear from the RTT presentation. It does not leave the

Lemma 4.16. For any 1 < ¢ < j < n, the permutation automorphism of Y, defined by
the transposition (i + 1 j) maps E;j(u) — E; j(u) and F;(u) — Fj j(u).

Proof. Since E;(u) = E;;1+1(u) and Fj(u) = Fji4+1(u), this follows from (4.6)—(4.8). O
5. CENTRES OF Y,, AND Y, (o)

In this section, we describe the centre of the modular shifted Yangian, giving precise
formulas for the generators. Unlike the previous section, most of the results presented here
are not analogues of statements regarding the shifted Yangian defined over the complex
numbers.

5.1. Harish—Chandra centre. We define a power series by the rule

C(u) = > Cu™ 1= Dy(u)Dy(u— 1)+ Dyp(u—n+ 1) € Y [[u™]]. (5.1)
r=0
The algebra generated by the coefficients {C(T) ‘ r > 0} will be denoted Zyc(Y,). We

call it the Harish-Chandra centre of Y,. The following theorem shows that the associated
graded algebra gr Zpc(Y,,) is identified with k[z, | 7 = 0] < Z(g).

Theorem 5.1. The elements C") lie in the centre of Y,. Furthermore, we have that
CUr+) e F.Y,, and

gr, C+Y) — 2 e U(g). (5.2)
Hence, C) C®?) CB) . are algebraically independent.

Proof. To prove that C") is central, using (4.10) and the anti-automorphism 7 from §4.5,
we are reduced to checking that [EZ-(T), C(S)] = 0 for all 4,7, s. This can be proven in the
same manner as [BK1, Theorem 7.2] using the power series relations (4.31) and (4.34).
The second claim is noted in the proof of [BK1, Theorem 7.2]. It can also be deduced
using Lemma 2.5, taking A := Y, and Xi(r) = Dlm so that d, = r — 1 for r > 0, and
noting that every r > 1 is optimal in this situation by Lemma 2.3 with m = 1. The final
assertion follows because zg, 21, ... are algebraically independent in grY,,. ([

Notice also that Zuc(Yy) € Z(Yn(0)) for any choice of shift matrix and so we may also
denote it Zpc(Yn(o)) and call it the Harish-Chandra centre of Yy (o).
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5.2. Off-diagonal p-central elements. We are ready to exhibit our first p-central el-
ements. In this subsection, we investigate the ones that lie in the ° root subalgebras”

Y c Y, for 1 <i < j < n, that is, the subalgebras generated by {E |r > 0} and

2,7
{F (T | r > O} respectively. In fact, we will give two different expressions for central

elements in Y in the first two lemmas. The first of these involving power series produces
more comphcated central elements, but this form often seems to be useful in practice.

Lemma 5.2. For 1 < i < j < n, all coefficients in the power series (E;;(u))P and
(Fjj(u))P belong to Z(Yy).

Proof. Using Lemma 4.16 plus the anti-automorphism 7, the proof of this reduces to
checking that the coefficients of (E;(u))? are central in Y, for each i = 1,...,n — 1. To
prove this, using Lemma 1.2, it suffices to establish the following identities in Yy, [[u~!, v™]]
for all admissible j:

(ad E;(u))"(E;(v)) =0, (5.3)
(ad E;i(u))?(D;(v)) = 0, (5.4)
~ 0. (5.5)

(ad E;(u))" (Fj(v))
¢

In this paragraph we check (5.3). To show that [E;(u)?, E;(v)] = 0, we use (4.30) and
(4.37) repeatedly:

(u—v)P(ad Ei(w))P~ ([Ei(w), Ei(v)]) = (u —0)P " (ad E;(u) P~ ((Ei(v) — Ei(u))?)
= (u—v)P(ad Ei(u))P~*(2(Ei(v) — Ei(w))?)
=+ = p(Ei(v) = Ey(u))" = 0.
Dividing by (u — v)P (which we may do since Y,[[u~!,v™!]][u,v] has no zero divisors)
gives the desired identity. To see that (ad E;(u))P(E;(v )) = 0 when |i—j| = 1, we actually
already have that (ad E;(u))?(E;(v)) = 0 by (4.25). When |i —j| > 1, the identity is clear
because [E;(u), Ej(v)] = 0 by (4.18).

For (5.4), it is immediate from (4.12) if j < i or j > ¢ + 1. For the case j = i, we have
by (4.31) and (4.38) with k = 1 that (u — v)?(ad E;(u))?(D;(v)) = 0. Hence, on dividing
by (u —v)?, we get that (ad E;(u))P(D;(v)) = 0. Finally, when j = i + 1, we use (4.34)
and (4.39) repeatedly:

(u—v)P(ad Ei(w))?(Dis1(v)) = (u —0)P " (ad EBi(w) )P~ (D1 (v)(Ei(v) — Ei(u)))
= (u—v)P"*(ad Ei(u))P*(2(Ei(v) — Ei(w))?)
== p(E) — Bi(w))? = 0.
Dividing by (u — v)?P completes the proof of (5.4).

Finally, for (5.5), it follows when ¢ # j immediately from (4.11). When i = j, we

observe using (4.40) repeatedly that

(u—v)P~* (ad E;(u))P 7 (Di1(v) Di(v))
= (u —v)?"%(ad E;(u))P~2(2D;41 (v)(E; (v) — Bi(u))D;(v))
= o = PIDi (0)(Ei(v) — Ei(w))PLDi(v) = 0.

Hence, (ad E;(u))?~1(Diz1(v)D;(v)) = 0. We can also set v = u in this identity to see
that (ad E;(u))P~1(D;11(u)D;(u
(Fi(v)) =

(u —v)(ad Ej(u))?(Fi(v)

ad F;(u)
ad F;(u)

)) = 0. Then using (4.29) we get the conclusion:
(ad E;(w))P N (Djz1(w) D (u) — Dis1(v)Ds(v)) = 0.
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Lemma 5.3. For 1 <i<j<mn andr >0, we have that (E, E" ))p, (Fi(;))p € Z(Y,).
Proof. Using Lemmas 4.16 and 1.2, this reduces to checking

(ad B (E1) =0, (5.6)
(ad E)” (D) =0, (5.7)
(ad E)” (F) = 0. (5.8)

These may all be proved in a very similar way to (5.3)—(5.5), using the identities from
Lemma 4.9 in place of the ones from Lemma 4.8 used before, and also (4.11) and (4.22).
For example, to prove (5.6) when i = j, we use (4.41) if s > r or (4.42) if s < r —1, taking

m =1,2,...,p in turn. Here is the calculation in the latter case:
(@ BD) (BY) = @By | EEY
S1,52<r—1

S1+s2=r—1+s

= 2(ad E/)P 2 D EeD ) gl

i )
$1,82,83<r—1
s1+s2+s3=2(r—1)+s

= ... = (_1)pp| 2 E~(81) . E(5p+l) = 0.

7 )
81,eSp+1ST—1
s1+-+spr1=p(r—1)+s

For use in the next theorem, we let

Pytu) = Y POu = By, Qigw) = Y. QUu = Fy(wP.  (5.9)

r=p r=p
Theorem 5.4. For 1 <i < j < n, the algebras Z(Y,) N Y+ and Z(Y,) N Y, are infinite
rank polynomial algebras freely generated by the central elements {( (T)) ’r > 0} and

i.j
{(Fi(;))p ‘ r > O}, respectively. We have that (E( )) , (FZ(;))p e F,p_pY, and
&lrp—p (E(,?) (esgt™™)", &lrp—p (Fz(;))p = (eat"™)". (5.10)
For r = p we have that
r p .
! (%) ifptr,
where (%) € Fr_,_1Y,, is a polynomial in the elements <Ei(’sj)>p for 1 <s < |r/p|. Hence,

the central elements {Pi(;p) ‘r > 0} give another algebraically independent set of generators
for Z(Y,) n + lifting the central elements {(eZJtT_l)p ‘ r > O} of grY,. Analogous

statements wzth Y E.P and eivjtr_l replaced by Y., F,@Q and e; t"~ L also hold.

1,57 .37

Proof. 1t suffices to prove all of the statements for YZJ;, then they follow for Y, using the
anti-automorphism 7 from §4.5. Let g;fj be the commutative subalgebra of g spanned by
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{e”tr | r= 0} By Theorem 3.4, it is easy to see that
Z(g) " U(g};) = Ik[(ei,jtr) ‘ r> 0]. (5.12)

Note that gr(Z(Y,) mYlJ;) < Z(g)n U(gm) By Lemma 5.3, we know that (E; E" )) belongs
to Z(Yn) N Y+. Moreover, by (4.27), it is clear that (EZ(?) is of filtered degree rp — p
(E(T)) = (e;;t"1)". Tt follows that gr(Z(Y,) N Yﬁ]) =Z(g)n U(g;rj) and the
elements {(Ez( j)) ’ r> 0} are algebraically independent generators for Z(Y,,) n Y+..

Now consider (5.11). By Lemma 5.2, each PZ(;) belongs to Z(Y,,) N Y;;, hence, it is a

polynomial in the elements {(E(Sj))p ‘ 5 > O}. It remains to show that Pz'(,j) eF,_p1Y, if

with gr,,,_,

p 1 r, or that PZ(;) = (EZ(Z/ P) ) (mod F,_,Y},) if v | p. This follows by an application of

Lemma 2.1, taking A := Y:; and X () .= EZ(Z) so that Xi(u) = E; ;(u). O

Corollary 5.5. For any o, the elements {("Ei(j"j))p ’ r> si,j} and {("Fiﬁg))p ‘ r > Sm-} are
central in Y, (c). Moreover, they belong to ¥, Y, (0) and

@y (CB) = (st )0 gy (R = (eat™)" (5.13)
Proof. The assertion (5.13) is immediate from (4.68), so we just need to establish the

centrality. In case o is upper triangular, we have that "Ei(’r) EZ(?, which is central in
) .

Y,, by Lemma 5.3 so certainly central in the subalgebra Y;,(c). The centrality of C’E(T
general then follows using the change of shift matrix isomorphism from §4.5. The centrahty

of "Fi( j) is proved similarly. O

Remark 5.6. The algebra Y”Jrl is generated by {E | r > 0} subject just to the re-
lations (4.14); these give enough relations because they suffice to establish that the or-

dered monomials in the generators span YH 4+1- Thus, we are in the situation of Re-

mark 2.2 with X() := EZ»(T) € Fr_lYijj'-. Theorem 5.4 shows that Pz(ll

{(E )P 0<s< [r/pj} This establishes the claim made in Remark 2.2.

1 is a polynomial in

5.3. Diagonal p-central elements. Next we introduce the p-central elements that be-
long to the diagonal subalgebras

Y2 = x[D" | r > 0] (5.14)
of Y,,. Note Y is also a subalgebra of Y,,(0) for any shift matrix o. Fori =1,...,n, we
define

_ (r), —r ._ . (0 (o orr,,—1
u) = > B;"u™" := Di(u)Di(u—1)--- Di(u—p+1) € Y2 [[u™']]. (5.15)

r=0

Lemma 5.7. Foralli=1,...,n and r > 0, the element Bi(r) belongs to Z(Y,,).
Proof. In view of (4.10), it suffices to check for 1 < j < n that

[Bi(u), Ej(v)] = 0 = [Bi(u), F;(v)]
in Y,,[[u=!,v~!]]. By applying the anti-automorphism 7 from §4.5, it actually suffices to
check just the first equality. This is clear when j ¢ {i — 1,4} by (4.12). When j =i —1
or j = i, it follows from the identities (4.49)—(4.50) taking m := p, noting that B;(u) =
D; p(u) = Dirp(u) by (4.10). u
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Theorem 5.8. Assume that n > 2. For 1 <i < n, the algebra Z(Y, ) N Y? is an infinite
rank polynomial algebra freely generated by the central elements {Birp |7” > O}. This
statement also describes the algebras Z(Y,(c)) n Y for any shift matriz o. We have that
B e F,, Y, and

gty B = (et ™Y — eyt (5.16)
For 0 < r < p, we have that B(T) = 0. Forr = p with p{r, we have that Bi(r) eF,_,1Y,
and it is a polynomial in the elements {B( ) |0 <s<|r/pl}.

Proof. Let g? be the abelian subalgebra of g spanned by {em-tT ! r = 0}. By Theorem 3.4
and the assumption n > 2, one sees that

Z(g) nU(gy) = k[(ei,itr)p — e t"P

We have that gr(Z(Y,)nY?) € Z(g)nU(g?). By Lemma 5.7, we know that Brete) belongs

()

to Z(Yy,)nY . Moreover, applying Lemma 2.9 with Ay;; = Y;° and X = Dm, we see that

(2

Bi(errp) e F,,Y? and 8Ty Bz.(Terp) = (€;it")P — e; ;t"P. We deduce that gr(Z(Y,) n YY) =

)

r> o]. (5.17)

Z(g) nU(g?) and the elements {BZ»(TP ) | r > O} are algebraically independent generators
for it. The same argument works in any Y, (o).

Lemma 2.9 also implies that BZ.(T) =0 for 0 < r < p and that Bi(r) € Fr_p_lY;O ifr=p
with p 7. In this case, since it is central by Lemma 5.7, it must be a polynomial in the
elements {Bi(Sp) 10 <s<|r/pl}. O

Remark 5.9. By Theorem 4.14, Yio is a free polynomial algebra generated by the elements
D(l), D(2), .... S0 Theorem 5.8 also establishes the claim made in Remark 2.10.

K3 2

5.4. Main Theorem. Now we can state and prove our main results. Let o be any shift
matrix. We have already defined the Harish-Chandra centre Zyc (Y, (o)) at the end of
§5.1. Also define the p-centre Z,(Y,(0)) of Y,,(0) to be the subalgebra generated by

{B(Tp‘l nr>0} {(JEz()) (F ‘1<Z<] n7">s”,s>sﬂ} (5.18)

We have shown that both Zpc (Y, (o)) and Z,(Y,(c)) are subalgebras of Z(Y,,(0)); see
Corollary 5.5 and Lemma 5.7. Note also by (4.68) and (5.16) that gr Z,(Y,(c)) may be
identified with the p-centre Z,(g,) of U(gy) from (3.9).

We also need one more family of elements: recalling (5.1) and (5.15), we let

u) = Z BC"y™ := By(u)By(u—1) - -- Bp(u—n+1) = C(u)C(u—1)--- Clu—p+1).
>
= (5.19)
From this definition, it follows that each BC") can be expressed as a polynomial in the
elements {Bi(s) |1 < i < n,s > 0}, so that it belongs to Z,(Y,(c)) by Theorem 5.8.
Moreover, it is also a polynomial in the elements {C (s) | 5 > 0}7 so that it belongs to
Znc(Yy(o)). We have just shown that BC(") € Zyc(Y,,(0)) N Zy(Yo(0)).

Lemma 5.10. For r > 0, we have that BC'P) € F,,_,Y,,(c) and
8Ty BCUP =P (5.20)

Proof. Let d, := 0 for r < p and d, := p|r/p] — p for r = p. Theorem 5.8 implies
that B(T) € Fd w(0) for every r > 0. Now apply Lemma 2.5 with Ay = Y,,(0) and
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X ™ _ l( ), noting that pr is optimal for every r > 1 by Lemma 2.3, to deduce that
BCUD ¢ € Frp_pYn(o) and

BC(TP) = Birp) R B,(LTP) (mOd Frp—p—lyn(o-))’

We are now done thanks to (5.16) once again. O
Theorem 5.11. The centre Z (Y, (o)) is generated by Zuc(Yn(0)) and Z,(Y,(0)). More-
over:

(1) Znc(Yy(0)) is the free polynomial algebra generated by {C(r) | r> O};
(2) Zp(Yn(0)) is the free polynomial algebra generated by

{B(rp ’ 1<i<n,r> O} {( (T))p, ("Fi(s.) P ’ I1<i<j<n,r>sj;s> Sj,i}§ (5.21)
(3) Z(Yyn(0)) is the free polynomial algebra genemted by

(B, 2 <i<nr>0b o {(EY), (F \ 1<i<j<nr>sis> sﬂ},
(5.22)
(4) Zuc(Yn(o))nZy(Yn(0)) is the free polynomial algebra generated by {BC(TP) [r > 0}.

Proof. (1) This is Theorem 5.1.

(2) The given elements generate Z,(Y,,(c)) by the definition. We just need to observe
that they are algebraically independent. This follows because by (5.13) and (5.16) they are
lifts of the algebraically independent generators of the p-centre of the associated graded
algebra from (3.9).

(3) Let Z be the subalgebra of Z(Y;,(c)) generated by the given elements. We have that

grz < gr Z(Yn(a)) < Z(grYn(a)) = Z(90)- (5.23)

We have seen already that generators of Z are lifts of the algebraically independent gener-
ators of Z(g,) from (3.10). Hence, they are algebraically independent and equality holds
everywhere in (5.23). This implies that Z = Z(Y,,(0)).

(4) We have already observed that all BC(") belong to Zuc(Y(0)) N Zy(You(0)). Also
they are algebraically independent as they are lifts of algebraically independent elements
of U(gy) by (5.20). We claim that Z,(Y;,(0)) is freely generated by the elements

{BC(TP),BZ(TP)|2<i<n,r>0}u{(”Eﬁ) (ch ‘1<z<] n r>5”,8>8]2}

The result follows from the claim since we know already from (3) that all of these elements
different from BCUP) are algebraically independent of anything in Zuc(Yy(0)).
To prove the claim, we use (5.13) (5.16) and (5.20) to pass to the associated graded
algebra, thereby reducing to showing that
{Zf — Zrp, (em't?q)p — emtrp ’ 2<i<n,r > 0} ) {(€i7jtT)p ‘ 1<i#j5<nr= Si,j}

freely generate Z,(g,). This is easily seen by comparing them to the algebraically inde-
pendent generators from (3.9). O

Corollary 5.12. The shifted Yangian Y, (o) is free as a module over its centre, with basis
given by the ordered monomials in

{D |2 nr>0} {UE”, |1<z<] n,r>si7j,s>5j,i} (5.24)

in which no exponent is p or more.



YANGIANS AND SHIFTED YANGIANS 29

Proof. It suffices to show that the set consisting of ordered monomials in (5.22) multiplied
by ordered monomials in (5.24) with all exponents < p gives a basis for Y,,(c). To see
this, we pass to the associated graded algebra using (4.27), (4.68), (5.2), (5.13) and (5.16)
to reduce to showing that the monomials

Hzﬁtm,r 1_[ ((ei’it’r‘)p_ei’itrp)ai,i;r H (ei7jt7‘)pai,j,r H (ei7it7")bi,i;r H (eiyjtr)bi,j,r

=0 2<i<n 1<itj<n 2<i<n 1<ij<n
r=0 r>8; j r=0 >S5 5

for a; j.,» = 0 and 0 < b; j, < p form a basis for U(g,). This is quite straightforward: these
monomials are related to a PBW basis by a uni-triangular transition matrix. U

Corollary 5.13. The shifted Yangian Y, (o) is free as a module over Z, (Y, (o)) with basis
given by the ordered monomials in

{Dlm ! 1<i<n,r> 0} U {”EZ(Z),UFi(;) | I1<i<j<sn,r>s;;,s> sjyi}
in which no exponent is p or more.

Proof. Similar to the previous corollary. O

Remark 5.14. Assume in this remark that n = 2 and p = 2. Recalling (4.53), we denote
EY),Fl(T) and Hl(T) simply by E(), F() and H"). Since H(u) = —By(u)C(u)~!, the
clements H() are all central; this also follows from (4.56). Consider Yo := Y5/I where T
is the two-sided ideal generated by the central elements (E()? and (F()? for all r > 0.
An induction exercise using (4.14)—(4.15) shows that the following relations hold in Ys:
[EM),E®)] = [F) F®)] = 0 for r,s > 0. Comparing with the presentation obtained in
[G, Theorem 3], we see that Y5 may be identified with the Yangian of the Lie superalgebra
gly); in characteristic 2.

6. MODULAR YANGIAN OF sl,

In this section, we define a subalgebra SY,, < Y,, which we call the special Yangian, and
show that this may be viewed as the modular version of the Yangian for the Lie algebra
s, rather than gl,,. Then we use this connection to establish the results about Z(Y;,)
formulated in terms of the RT'T generators in the introduction.

6.1. The special Yangian. We would like to mimic Drinfeld’s definition of SY;, in char-
acteristic zero from [MNO]; see [MNO, §2.24] for its history. Unfortunately, the approach
in loc. cit. only works verbatim when the ground field is infinite. Rather than insisting
on that here, we will modify the definition slightly by incorporating base change. For any
field extension K 2 k, we can define the Yangian over K by generators and relations in
the same way as Y,, was defined over k. The resulting K-algebra may be identified with
Y, ® K in an obvious way. Then the automorphisms j; defined as in §4.5 can be viewed
as K-linear automorphisms of ¥;, ® K for all f(u) € 1 + v 'K[[u~!]]. Define the special
Yangian to be

prr®1)=2®1in Y, ® KK
SY, =< xzeY,| forall fu)el+u 'K[[u"']] }. (6.1)
and all field extensions K 2 k
In fact, as is clear from the proof of the next theorem, it is enough just to take one infinite

field K here.
Our first task is to identify the associated graded algebra gr SY,, < grY,, = U(g) with

U(g'), where g’ := sl,[t] is the current algebra associated to sl,,. Recall the elements HZ-(T)
from (4.53).
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Theorem 6.1. The algebra SY,, has a basis consisting of ordered monomials in

(H”|1<i<nr>0}u{ED F7)1<i<j<nr>0} (6.2)
taken in any fized order. Hence, gr SY,, = U(g'), and multiplication defines a vector space
isomorphism

SY, @Y1 > Y, (6.3)

where Y1 is identified with the subalgebra of Y, generated by the elements DY) i the
obvious way. If we assume in addition that p 1 n then multiplication defines an algebra
isomorphism

SY, ® Zuc(Y,) > Y. (6.4)

Proof. For any K 2 k and f(u) € 1 + uflK[[ 1], we have that pp(Di(u) ® 1) =
f(uw)D;(u) ® 1 by deﬁnltlon hence, Nf( J(w) ®1) = f(u) ™ Di(u) @ 1. It follows that

Hi(r) € SY,,, and of course all E( ") and F;; ™) lie in SY,, too. Hence, ordered monomials

in the elements (6.2) span a subbpace SY of SY,,. We are shortly going to prove that
SY, = SY,, so that SY,, is a subalgebra; one could also prove this right away using
Lemma 4.11 but actually we do not need it for the proof below.

The filtration on Y;, induces a vector space filtration on SY,, so that gr SY, is a graded
subspace of U(g). It is easy to see from (4.27) and (4.54) that this subspace is the
subalgebra U(g'). In particular, this implies that the ordered monomials that span SY,
are linearly independent too. Furthermore, multiplying them by ordered monomials in

{DY) | r > 0} gives a basis for Y,,. This shows that the linear map
STn ®Ik[l’1,l‘2, . ] i Yn,
A(ml,...,ajn)=2Ai®ai(m1,...,xn)HA(DEI),..., ZACM ,... gn))

is a vector space isomorphism.

Now we can show that SY,, € SY,. Take any B € SY,. By the previous paragraph,
we can write it as A(Dgl), ce D(n)) for a unique A(x1,...,z,) € SY,,®k[z1,...,7,] and
n > 1. Taking f(u) := 1+ cu™" for ¢ € K and an infinite field K 2 k, we have that

AP, o)y @1 =y (A, D) @1) = A(D,.... DI DI + @ 1.

This implies that A(zq,...,2,) = A(x1,...,Tp—1,2Tn + ¢) for infinitely many c. Hence,
A(z1,...,xy,) is independent of x,. Similarly, it is independent of x,_1,...,21. This
shows B € SY, as required.

We have now shown that the ordered monomials in the elements (6.2) give a basis for
SY,,, that gr SY,, = U(¢'), and that the map (6.3) is a vector space isomorphism. Finally,
we must prove (6.4) assuming p f n. The vector space SY;,, ® Zuc(Y;,) has a basis given
by the ordered monomials in (6.2) tensored with ordered monomials in {C (r) ‘ r > O}. It
suffices to show that the images of these give a basis for Y;,. By passing to the associated
graded algebra as usual, this reduces to the observation that

{em-t’" —eit1,it1t" ! i=1,...,.n—1,r> O} {e”t ‘ I1<i#j<n,r= O} U {z |r =0}
is a basis for g’. O
Remark 6.2. Recall that ﬁj(u) = S(T;;(u)). Since uf(ﬁ](u)) = f(u)*lﬁvj (u), the

definition (6.1) implies that all coefficients of Tj ; (u)f’kl(u) belong to SY,,. By passing to
grY, and using Theorem 6.1, one sees that these coefficients also generate SY,. Using
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this and (4.3), it follows that A(SY,,) < SY;,, ® SY,,, so that SY,, is a Hopf subalgebra of
Y,; cf. [MNO, Proposition 2.21].

Theorem 6.3. The algebra SY,, is generated by the elements

{HT)E( T)fl <i<n,r>0} (6.5)

subject only to the relations (4.14)-(4.23) plus the following:
(2", 5] =0, (6.6)
(ED, F) = 6,17, (6.7)
(2", E] =0 if |i —j| > 1, (6.8)
(2, FP] =0 if li — j| > 1, (6.9)
[Hz(lerl)’Ei(S)] _ [H;i)l,E(SH)] =D EY, (6.10)
[Hz(i)l,ﬂ(sﬂ)] _ [Hz(i-{l)7Fi(S)] _ E(S)Hz(i)p (6.11)
[Hz'(TJrl)’Ez’(S)] _ [Hi(r)’Ei(s-‘rl)] _ _HZ(T)Ei(s) _ Ez'(S)Hi(r)7 (6.12)
[Hi(r),Fi(sH)] _ [Hz(Hl)sz‘(S)] - _ .(S)H,(T) _ Hi(r)ﬂ(s)a (6.13)
(1Y, ES] - (1, BE Y] = P, (6.14)
[HO) F ) = (G0 RO = B, R, (6.15)

for all admissible i, j,r, s, t including r = 0 in (6.10)-(6.15); remember also HZ-(O) =—1.

Proof. In view of (4.9), Theorem 6.1 implies that SY,, is generated by the elements (6.5).
Let us also show that all of the relations in the theorem are satisfied. Of course (4.14)—
(4.23) hold, and the relations (6.6)—(6.7) follow from (4.10)—(4.11). For the remaining
relations, (6.10), (6.12) and (6.14) follow by equating u~"v~*-coefficients in (4.58), (4.63)
and (4.61) respectively, taking » = 0 and s > 0. Then (6.11), (6.13) and (6.15) follow by
applying thg\antl automorphism 7.

Now let SY,, be the algebra defined by the generators and relations from the theorem.
The previous paragraph shows that there is an algebra homomorphism §}7n — SY,, taking

generators to generators. To show that it is an isomorphism, define elements El( J), F; ") ¢

§1\/n by (4.9). Using the basis for SY,, constructed in Theorem 6.1, it suffices to show that
ordered monomials in the elements (6.2) span SY,,. Moreover, we can choose the order so

that the elements FZ(;) come first, followed by the elements HZ.(T, followed by the elements

EZ(? Of course, §1\/n is spanned by unordered monomials in ﬂ(r),HZ-(T) and EZ-(T). The

relations allow us to inductively commute all F,L-(r) to the beginning, all Hi(r) to the middle
and in the chosen order due to (6.6), and all Ei(r) to the end. Then we get done because, in

the subalgebras generated by just the FZ-(T) or the Ei(r), we have available exactly the same
relations as in Y},, and there we have already established that the given ordered monomials
span these subalgebras using the relations (4.14)—(4.23) and (4.9). O

Remark 6.4. Assume chark # 2. Then there is an even more efficient presentation for
SY,,, namely, the usual Drinfeld presentation for the Yangian of sl,, from [D] naively taken
over the field k rather than over the complex numbers; actually, we use the “opposite”
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presentation like in [BK1, Remark 5.12]. In more detail, we define new elements

Ki(u) = Z ﬁi,kufkfl =1+ ni—1)2(Hi(u)), (6.16)
k=0
25 = Ni—1)2(Ei(w)), (6.17)
k=0
Z gz ku B =1 z l)/2( ( ))7 (618)
k=0

where 7. is the automorphism from §4.5 (which leaves SY,, invariant). Then, the algebra
SY,, is generated by {’{z}ka Qik [1<i<n, k> 0} subject only to the Drinfeld relations:

[Kiks 53] =0, (6.19)

[§Z ]g7€] l] =0; g k41 (620)

[ki0: 5] = +am it (6.21)

[Rik: &5 0] = [Rike1:€5] = k), (6.22)

[gzkz’ ]l—i—l] ¢ zk+1’§g o= f +§ ) (6.23)

[Q‘i,klv 5% ji,_l]] + [fz N [SSs ] =0 if Iz —Jjl =1, k1 # ko, (6.24)
|:zk7 fzkvé-]l]_()lfh_.ﬂ_l (6.25)

[ﬁi,kfj,l] =0if i —j| > 1, (6.26)

for a; j := 20; j — 6; j+1 — 0i j—1 (the Cartan matrix of type A,_1). This assertion is just a
rephrasing of Theorem 6.3 for these modified generators. For example, the relation (6.23)
is deduced in [BK1, Remark 5.12]; the relations (6.21)-(6.22) follow from (4.64)—(4.65)
suitably shifted.

Remark 6.5. There is a shifted analogue SY, (o) of SY,. This may be realized as a
subalgebra of Y;,(o) via a similar definition to (6.1). The presentation in Theorem 6.3 can
also be modified to give a presentation for SY;, (o), in just the same way that Theorem 4.15
modifies Theorem 4.3; we leave the details of this to the reader. The Drinfeld presentation
from the previous remark does not immediately make sense for SY;, (o), but see [WWY]
for a closely related result (in characteristic zero).

6.2. The p-centre of SY,,. Let
w) = Y AT = Hy(w)Hi(u— 1) Hy(u —p + 1)
r=0
— —B1(u)Bi(u) "t e SY,[[u™1]]. (6.27)

In view of Theorem 5.8, each AET) belongs to Z(SY,,). We define the p-centre of SY,, to
be the subalgebra Z,(SY,,) of Z(SY,,) generated by

{AZ(TP) | 1<i<n,r> 0} U {(E.(TA))p, (F.(T»))p ‘ I1<i<j<n,r> O} (6.28)

17] 17]
Also let Z,(g') be the p-centre of U(g’), i.e. the subalgebra of Z(g') generated by 2 — x!?]
forall z € ¢'.

Theorem 6.6. The generators (6.28) of Z,(SY,) are algebraically independent, and we
have that gr Z,(SY,,) = Zy(g'). Moreover, SY,, is free as a module over Z,(SYy,) with basis
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given by the ordered monomials in

(H”|1<i<nr>0}u{ED F7)1<i<j<nr>0} (6.29)
in which no exponent is p or more.
Proof. From the formula A;(u) = —B;;1(u)B;(u)~!, we get that Al(-r) = Bi(r) - BZ-(:)l plus
a linear combination of monomials Bi(“) e BZ.(Tk)Bl.(ill) e Bl(il% with 71 + -+ +rp + 51 +
-+ s; = r. Combined with (5.16), it follows that A" € F,,_,¥,, and
grr‘p—p Az(rp) = (6@,’757171 - €i+1,i+1tr71)17 - (em'trpip - 6i+17i+1t71p7p) . (630)

Then from (6.30) and (5.10), we see that the generators (6.28) of Z,(SY,) are lifts of gen-
erators for Z,(g’) coming from a basis for g’. This establishes the algebraic independence
and that gr Z,(SY,,) = Z,(g’). The final part of the theorem follows by similar argument
to the proof of Corollary 5.13, using the PBW basis for SY,, from Theorem 6.1. O

In fact, when p t n, the p-center of SY,, is the full center, thanks to the following
theorem. This is the positive characteristic counterpart of the observation that Z(SY;,) is
trivial in characteristic zero from [MNO, Proposition 2.16].

Theorem 6.7. If p{n then Z,(SY,) = Z(SY,).

Proof. We have that Z,(SY,,) < Z(SY,), hence, gr Z,(SY,,) < gr Z(SY,,) < Z(g'). In the
next paragraph, we show that Z,(g") = Z(g’). We also know that gr Z,(SY,,) = Z,(¢')
from the previous theorem. Then we get that gr Z,(SY,) = grZ(SY,) implying that
Zy(SY,) = Z(SY,).

To show that Z,(g') = Z(g’), the assumption p { n implies that g = g’ @ 3(g). Hence,
Z(g) = Z(g ) ® k[z, | 7 = 0]. It remains to observe that the elements {2z — z[P! | z €
g’} U {z | r = 0} generate Z(g). This follows from Theorem 3.4 using the assumption
p1n. O

6.3. Another description of the p-centre of Y,,. Recall by the definition (5.18) and
Theorems 5.4 and 5.8 that the p-centre Z,(Y},) is the subalgebra of Z(Y},) generated by
the coefficients of the power series B;(u), P j(u) and Q; j(u). Let

Z S 7”) - T ( )E,j(u _ ]_) .. .’]’7;7j(u —p+ 1) € Yn[[uil]] (631)
r=0

In view of (4.2), the order of the product on the right hand side here is irrelevant.

Lemma 6.8. All of the elements SA(T,) belong to the p-centre Z,(Yy,).

Proof. First we show that each S( ") belongs to Z(Y,,). To see this, using the conjugation
automorphism from §4.5 which Sends Sij(u) to Sy (i)w(j)(w), we reduce to proving that all
coefficients of S71(u) and of Sy 2(u) are central. The latter assertions follow because

5’171(u) = Bl(u), (632)
5’172(u) = Bl(u)PLQ(u). (633)

The first identity (6.32) here is immediate as 771(u) = Di(u). To prove (6.33), we set
v =u—m in (4.51) to deduce that

Ei(u—m)Di(u—m+1)---Dij(u—1)D;(u) = Di(u—m + 1)+ Dij(u— 1)D;(u)E;(u)
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for each m = 1,...,p — 1. The (1,2)-entry of (4.5) gives that T 2(u) = Di(u)E;(u).
Hence, we get that
S12(w) = Tia(u—p+1)---Tia(u—1)T12(u)
= Dl(u —p+ 1)E1(u —-p+ 1) ce Dl(u — 1)E1(u - 1)D1(U)E1(u)
=Di(u—p+1)---Di(u—1)Dy(u)Er(u)’ = Bi(u)Pi2(u).
This establishes (6.33).

The delicate point now is to show that SZ»(Z-) actually lies in Z,(Y},) not just Z(Y},). By
Theorem 5.11(2), we have that Z,(Y,) = Y, n Z, (Y1), where we are implicitly using the
natural embedding Y,, — Y}, 11, Tl(;) — Tl(;) Hence, in order to prove that Si(’rj) € Zy(Yn),
we may assume that p { n.

So finally we assume p { n and show that S; ;(u) € Z,(Y,)[[u™*]]. This is immediate
by (6.32) in case i = j = 1. In general, we show equivalently that S; j(u)S11(u)™! €
Zp(Yn)[[u™t]]. Using the definition (6.1), we get that S; ;(u)S11(u)~t € SY,[[u™!]]. Since
we have shown its coefficients are central already, it therefore lies in Z(SY;,)[[u~!]], which

by Theorem 6.7 and the definitions is Z,(SY,)[[u™!]] € Z,(Ya)[[u"1]]- O

Theorem 6.9. The p-centre Z,(Y,,) is freely generated by {SZ-(ZP) ‘ 1 <i,j<n,r>0}
We have that Si(;p) e F,p_pY, and

Erp—p Sz'(;p) = (eigt"™")" = digeit"" P, (6.34)

For 0 < r < p, we have that Si(j"j) = 0. Forr = p with p t r, the central element SZ-(Z)
belongs to Frp—p—1Y, and it may be expressed as a polynomial in the elements {SZ-(Z-S) {0 <
s < [r/p]}.

Proof. When n = 1, the first statement follows immediately from the definition of Z,(Y},),
remembering (6.32). The remaining statements follow too if we can prove them for larger
n. So we assume from now on that n > 2. To prove (6.34), we apply Lemma 2.9 if i = j

or Lemma 2.11 if ¢ # j, taking X(") := Ti(g). These lemmas also show that S’i(? = 0 for
0 < r < p and that SZ.(S-) €eFrpp_1Y, when pfr > p.

Let Y;; be the subalgebra of Y,, generated by the elements {TZ(;) ’ r > 0} and g; ; be
the subalgebra of g spanned by {e; ;t" | r = 0}. We have that grY; ; = U(g;;) and

Z(g) nUl(gij) =k [(ei,jtr)p — 8 jei it ‘ r> 0] (6.35)
just like in (5.12) and (5.17). Combined with (6.34), it follows that Z(Y},) nY; ; is freely

generated by {SZ-(ZP ) | r > 0}; this is exactly the same argument as used in the proofs of
Theorems 5.4 and 5.8. The last assertion in the statement of the theorem follows.
Finally, we must prove the first assertion. Lemma 6.8 shows that Si(g-p ) lies in Zp(Yn).

To show that {Si(gp ) | 1 <45 <nr> 0} are algebraically independent and generate

Zy(Y,,), we pass to the associated graded algebra using (6.34), to see that they are lifts of
the generators of gr Z,(Y,,) = Z,(g) from (3.9). O

Remark 6.10. Similar to Remark 5.9, Theorem 6.9 justifies Remark 2.12.

When combined with Theorem 5.11 and Corollary 5.12, Theorem 6.9 finally establishes
all of the statements about Z(Y;,) that we formulated in the introduction. We should also
note for this that the central elements C") defined by the quantum determinant in the
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introduction are the same as the ones arising from (5.1). This is a non-trivial observation
which is proved in characteristic zero in [BK1, Theorem 8.6]; the argument there works

over 7,

hence, also in positive characteristic.
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