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Abstract— We propose in this work a feature learning approach using
deep bidirectional recurrent neural networks (RNNs) with attention
mechanism for single-channel automatic sleep stage classification. We
firstly decompose an EEG epoch into multiple small frames and
subsequently transform them into a sequence of frame-wise feature
vectors. Given the training sequences, the attention-based RNN is
trained in a sequence-to-label fashion for sleep stage classification.
Due to discriminative training, the network is expected to encode
information of an input sequence into a high-level feature vector after
the attention layer. We, therefore, treat the trained network as a
feature extractor and extract these feature vectors for classification
which is accomplished by a linear SVM classifier. We also propose
a discriminative method to learn a filter bank with a DNN for
preprocessing purpose. Filtering the frame-wise feature vectors with
the learned filter bank beforehand leads to further improvement on
the classification performance. The proposed approach demonstrates
good performance on the Sleep-EDF dataset.

I. INTRODUCTION

Various methods have been proposed for automatic sleep staging.
Majority of them relied on hand-crafted features and conventional
machine learning methods, such as Support Vector Machine (SVM)
(c.f. [1] for a comprehensive review). With the rapid advance of
deep learning methods, they have been recently pursued for the
task, like deep autoencoders [2], deep neural networks (DNNs)
[3], convolutional neural networks (CNNs) [4], [5], [6]. Despite
significant improvements on different benchmark datasets have been
reported by these network variants, they are incapable of modelling
sequences and therefore arguably suboptimal in capturing sequential
dynamics of EEG signals. It is well established that recurrent neural
networks (RNNs), e.g. Long Short-Term Memory (LTSM) [7], are
highly capable of sequential modelling. However, they have been
often used in combination with DNNs [3] or CNNs [4] to benefit
from their feature learning power. Given the sequential nature of
EEG signals, to our knowledge, there is no prior work succeeding
in training standalone RNNs for sequential feature learning with
better or even on par performance than those learned by CNNs on
the same benchmarks.

This work presents an approach that successfully learns sequen-
tial features from single-channel EEG signals for automatic sleep
stage classification using a deep RNN with attention mechanism. A
30-second EEG epoch is firstly decomposed into small frames and
transformed into a sequence of frame-wise feature vectors. Log-
power spectral coefficients are used for frame-wise representation.
An attention-based deep bidirectional RNN, as illustrated in Fig.
1, is then trained for sequence-to-label classification. Due to the
discriminative training, the high-level feature vector after the atten-
tion layer of the network is expected to encode information of an
entire input sequence. The feature vector are subsequently extracted
and used as representation of the input sequence. The sleep stage
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Fig. 1: Attention-based bidirectional recurrent neural network.

classification is finally carried out using a linear SVM classifier.
As an improvement, we propose a preprocessing step which makes
use of a frequency-domain filter bank learned by a DNN to process
the frame-wise feature vectors beforehand, i.e. frequency smoothing
and dimension reduction. The DNN is discriminatively trained on
frame-wise feature vectors to encourage the learned filter bank
to emphasize the frequency subbands important for the task and
attenuate those less important.

We show in the experiments that the proposed approach achieve
good performance on the Sleep-EDF dataset using the single
channel Fpz-Cz. The obtained results outperform the best results
on the dataset reported in previous works, including those based on
deep CNNs and deep CNNs combined with RNN layers.

II. ATTENTION-BASED DEEP RECURRENT NEURAL
NETWORK FOR EEG SEQUENCE MODELLING

A. Time-Frequency Features
As an input to the proposed RNN, a 30-second EEG epoch is

necessary to be represented as a sequence of local features. To
accomplish this, we decompose the EEG signal into interleaved
frames of two seconds long with an overlap of 50%. This results in
T = 29 such frames in total. Each frame is then transformed into
frequency domain via 256-point discrete Fourier transform (DFT)
with Hamming window, followed by logarithm scaling to obtain a
log-power feature vector of size F = 129. Afterwards, dimension
reduction and frequency smoothing are performed by filtering the
log-power feature vectors with a frequency-domain triangular filter
bank with M = 20 filters. The filters are equally spaced with
an overlap of 50% as illustrated in Fig. 3 (a). Alternative to the
triangular filter bank, a filter bank discriminatively learned by a
DNN (c.f. Section III), can also be used for this purpose. As a
result, a log-power feature vector is reduced into a M -dimensional
feature vector. Eventually, we obtain a sequence of frame-wise
feature vectors X = (x1, . . . ,xT ), where x ∈ RM , to represent
the original EEG epoch.



B. Deep Bidirectional RNN

Given a sequence X = (x1, . . . ,xT ) of T feature vectors, where
x ∈ RM , we aim at learning a fixed-length representation which
encodes the entire input sequence using the proposed attention-
based bidirectional RNN.

The proposed RNN architecture is illustrated in Fig. 1. At
each recurrent layer, the network maintains two hidden layers,
forward and backward. These two layers iterate over individual
feature vectors of the input sequence in opposite directions and
computes forward and backward sequences of hidden state vectors
Hf = (hf

1, . . . ,h
f
T ) and Hb = (hb

1, . . . ,h
b
T ), respectively, where

hf
t = H(x ,hf

t−1), (1)

hb
t = H(x ,hb

t+1), 1 ≤ t ≤ T. (2)

In (1) and (2), H denotes the hidden layer function. We employ the
Gated Recurrent Unit (GRU) cell [8] for both forward and backward
layers mainly due to its lower computational cost compared to Long
Short-Term Memory (LSTM) [7]. The GRU cell is implemented by
the compound of following functions:

rt = sigm (Wsrst +Whrht−1 + br) , (3)

zt = sigm (Wszst +Whzht−1 + bz) , (4)

h̃t = tanh (Wshst +Whh (rt � ht−1) + bh) , (5)

ht = zt � ht−1 + (1− zt)� h̃t. (6)

In above equations, the W variables denote the weight matrices and
the b variables are the biases. The r, z, and h̃ variables represent
the reset gate vector, the update gate vector, and the new hidden
state vector candidate, respectively. The � operator denotes the
element-wise multiplication.

The network output at a time t is computed as

ot = Who[h
b
t ⊕ hf

t] + bo, (7)

where the ⊕ represents vector concatenation.
In order to construct a deep bidirectional RNN, we stack multiple

RNN hidden layers on top of each other as in [9]. The forward and
backward hidden state sequences of a lower recurrent layer are
treated as the forward and backward input sequences for the upper
layer. Assume that the network has L layers in total, the equations
(1), (2), and (7) can be re-written as

hf
t,` = H(hf

t,`−1 ,h
f
t−1,,`), (8)

hb
t,` = H(hb

t,`−1 ,h
b
t+1,`), (9)

ot = Who[h
b
t,L ⊕ hf

t,L] + bo, (10)

respectively, where 1 ≤ ` ≤ L. Note that Hf
0 ≡ Hb

0 ≡ X for the
first layer.

C. Attention Weights
In general, for the sequence-to-label setting, only the output

vector at the last time step oT is retained for classification, e.g. via
a softmax layer [9]. However, it is reasonable to somehow combine
the output vectors at different time steps via some weighting
schemes. Intuitively, those parts of the input sequence which are dis-
criminative for the classification task at hand should be associated
with strong weights and vice versa. Ideally, these weights should
be automatically learned by the network. This can be accomplished
with an attention layer [10].

Formally, the attention weight αt for the output vector ot at the
time step t is computed as

αt =
exp (f(ot))∑T
i=1 exp (f(oi))

. (11)

In (11), f denotes the scoring function of the attention layer:

f(o) = oTWatt, (12)

where Watt is the trainable weight matrix of the attention layer.
The attentive output feature vector is obtained as a weighting
combination of the output vectors at individual time steps:

oatt =

T∑
i=1

αioi. (13)

oatt is now considered as the high-level representation of the whole
original input sequence. Finally, oatt is presented to a softmax layer
for classification. The network is trained to minimize the cross-
entropy error over N training samples:

E(θ) = − 1

N

N∑
i=1

yi log(ŷi(θ)) +
λ

2
‖θ‖22. (14)

In (14), θ, ŷ, y denote the network parameters, the predicted poste-
rior distribution, and the one-hot encoded groundtruth distribution,
respectively. λ denotes the hyper-parameter that trades off the error
terms and the `2-norm regularization term. Dropout [11] is also
applied to the GRU cells’ input and output. The network training
is performed using the Adam optimizer [12].

D. Classification with Linear SVM
After training the network, instead of using it for classification,

we treat it as a feature extractor as in [9] to extract the attentive
feature vector oatt for each EEG epoch. Linear SVM is employed for
classification in replacement of the softmax layer of the network. In
general, SVM usually leads to better generalization in comparison
to the softmax, thanks to its maximum margin property [13]. The
feature vectors extracted for the training examples are used to train
the SVM classifier which is subsequently employed to classify those
feature vectors extracted for the test examples.

III. DNN FOR FILTER-BANK LEARNING

As an alternative to the regular triangular filter bank used for
preprocessing in Section II-A, we train a tailored DNN to learn a
filter bank discriminatively for this purpose. The learned filter bank
is expected to emphasize the subbands that are more important for
the task and attenuate those less important rather than considering
them equally as in the regular triangular filter bank.

The DNN architecture proposed for filter-bank learning consists
of one filter-bank layer, three fully-connected (FC) layers, and
one softmax layer, as illustrated in Fig. 2. The filter-bank layer
is actually a fully-connected layer which are enforced various
constraints for filter-bank learning purpose as in [14]. The FC layers
are the common nonlinear ones with ReLU activation [15].

Assume that we want to learn a filter bank with M filters. Note
that M is also the number of hidden units of the filter bank layer.
Given an input x ∈ RF , the output of the filter-bank layer reads

h1 = xWfb, (15)

where Wfb ∈ RF×M in (15) plays the role of the filter-bank weight
matrix. Furthermore, for the learned filter bank to have the char-
acteristics of a normal filter bank, i.e. non-negative, band limited
and ordered by frequency, it is necessary to enforce constraints and
re-write Wfb as

Wfb = f+(W)� S, (16)

where W ∈ RF×M is weight matrix that will be learned by the
DNN in practice. f+ denotes a non-negative function to make
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Fig. 2: Illustration of the DNN architecture for filter-bank learning.

the elements of W non-negative. S ∈ RF×M
+ is the constant

non-negative matrix to enforce the filters to have limited band,
regulated shape and ordered by frequency. We employ sigmoid for
the function f+(x) = 1

1+exp(−x)
and a linear-frequency triangular

filter bank matrix for S, as illustrated in Fig. 3 (b).
Opposing to the attention-based RNN which operates on entire

sequences of frame-wise feature vectors, the DNN receives the raw
(i.e. without frequency smoothing and dimension reduction) frame-
wise log-power feature vectors as input. The DNN is trained to
minimize the cross-entropy given in (14) (the regularization term
excluded) over the training set. For training purpose, a two-second
frame is labelled by the label of the 30-second epoch from which
it is stemmed. Dropout is also applied to the FC layers. Fig. 3 (c)
shows one of the filter banks learned in the experiments (cf. Section
IV for further details).

IV. EXPERIMENTS
A. Sleep-EDF Dataset

We conducted experiments on PhysioNet’s Sleep-EDF Expanded
dataset [16], [17]. The dataset consists of 20 subjects in total,
each of which has two PSG recordings in two subsequent date-
night periods, except for subject 13. The recordings were manually
scored according to the R&K standard [18], i.e. each 30-second
epoch was labelled with one of eight labels {W, N1, N2, N3, N4,
REM, MOVEMENT, UNKNOWN}. Two different experimental
settings on this dataset has been explored by previous works. The
first one (Setting 1) only considered in-bed parts of the recordings
[5], [2]. The second one included both in-bed parts and 30-minute
periods before and after sleep periods (Setting 2) [4]. For a proper
comparison, the experiments were conducted with both settings.
Moreover, as in [5], [2], [4], we merged N3 and N4 into a single
stage N3 and excluded MOVEMENT and UKNOWN. Only the
single channel Fpz-Cz was used in the experiments.

B. Experimental Setup
Leave-one-subject-out cross validation was performed. At each

iteration, data of all 19 training subjects was used to train the filter-
bank-learning DNN. Differently, for the RNN, 4 out of 19 training
subjects were left out for validation while the remaining 15 subjects
were used for training. During training the RNN network yielding
the best overall accuracy on the validation set was retained for
testing. The evaluation is based on average performance in terms
of overall accuracy, macro F1-score (MF), and kappa index (κ).
F1-scores of individual classes will also be reported.

C. Parameters
The parameters of the attention-based RNN and the filter-bank-

learning DNN are shown in Tables I (a) and (b), respectively. The
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Fig. 3: (a) A linear-frequency triangular filter bank with M = 20
filters, (b) the corresponding shape matrix S, (c) a DNN-learned
filter bank with M = 20 filters.

networks were implemented using the Tensorflow framework. Both
of them were trained for 200 epochs with a batch size of 200.
During training, we sampled a training batch so that there is always
an equal number of samples for all classes. The learning rate was
commonly fixed to 10−4.

The linear SVMs were trained using the LIBLINEAR library [19].
The features were normalized to the range of [−1, 1] beforehand
and the hyper-parameter C of the SVMs was fixed to 10−3.

D. Experimental Results
We show in Table II the performances obtained by our systems

as well as those results reported in previous works which are
based on deep networks [2], [5], [4]. When the attention-based
RNNs are used directly for classification (i.e. with their softmax
layers), we denote them as ARNN1 and ARNN2 where the number
indicates whether the regular triangular filter bank or the one
learned with the DNN are used for preprocessing, respectively.
Moreover, when linear SVMs are employed for classification, we
denote the corresponding systems as ARNN1-SVM and ARNN2-
SVM. Regarding the previous works, the best performances on
the dataset were reported in [2] and [4] for Setting 1 and 2,
respectively. The former (i.e. Autoencoder in Table II) relies on
deep autoencoders with a handful of hand-crafted features. The
later (i.e. DeepSleepNet in Table II) makes use of a deep residual
network in which RNN layers are stacked on top of convolutional
layers to leverage both their sequential modelling capability and
feature learning power. Note that two different EEG channels were
exploited for this system, Pz-Oz in DeepSleepNet1 and Fpz-Cz in
DeepSleepNet2.

On one hand, the benefits of the DNN-learned filter bank on the

TABLE I: Parameters of the proposed networks: (a) attention-based
deep RNN, (b) filter-bank-learning DNN.

(a)

Parameter Value
The number of layers L 2
Size of hidden state vector 256
Size of the attention weights 96
Dropout rate 0.2
Regularization parameter λ 10−4

(b)

Layer Size Dropout
FC 1 512 0.2
FC 2 256 0.2
FC 3 512 0.2



TABLE II: Performances obtained by different approaches on the
Sleep-EDF dataset.

Overall metrics Per-class F1-score

Acc MF1 κ W N1 N2 N3 REM

Se
tti

ng
1

Deep CNN [5] 74.8 69.8 − 65.4 43.7 80.6 84.9 74.5
Autoencoder [2] 78.9 73.7 − 71.6 47.0 84.6 84.0 81.4
ARNN1 76.3 69.5 0.67 75.2 34.2 83.1 81.3 74.0
ARNN1-SVM 78.3 69.1 0.69 76.2 27.6 84.9 81.6 75.2
ARNN2 77.3 70.1 0.68 75.1 32.0 84.4 85.0 74.0
ARNN2-SVM 79.1 69.8 0.70 75.5 27.3 86.0 85.6 74.8

Se
tti

ng
2

DeepSleepNet1 [4] 79.8 73.1 0.72 88.1 37.0 82.7 77.3 80.3
DeepSleepNet2 [4] 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
ARNN1 75.3 67.3 0.67 87.5 31.8 78.5 68.6 70.0
ARNN1-SVM 77.6 66.6 0.69 88.0 23.3 81.6 68.8 71.4
ARNN2 80.7 73.2 0.74 89.9 33.6 84.8 84.8 72.7
ARNN2-SVM 82.5 72.0 0.76 91.5 23.8 86.1 85.3 73.5

performances can be clearly seen from Table II. On Setting 1, using
the DNN-learned filter bank leads to absolute improvements of
1.0%, 0.6%, and 0.01 in overall accuracy, MF1, and κ, respectively.
The corresponding gains on Setting 2 reach 5.4%, 6.3%, and 0.07.
Note that we utilized the filter banks learned in Setting 1 for the
experiments in Setting 2 rather than training them from scratch.
We expect that training them from scratch would result in filter
banks with similar impulse responses. On another hand, the positive
effects of using SVM in replacement of softmax can also be seen.
Improvements are obtained by ARNN1-SVM and ARNN2-SVM over
ARNN1 and ARNN2 on both Setting 1 and 2. For instance, using
ARNN2-SVM results in absolute gains of 1.7% and 1.8% in overall
accuracy over ARNN2 in Setting 1 and 2, respectively.

Moreover, the performances achieved by the proposed approach
are better than the best results reported by other counterparts.
Specifically, ARNN2-SVM outperforms Autoencoder [2] in Setting
1 with an absolute gain of 0.2% and surpasses DeepSleepNet2 [4]
in Setting 2 with a margin of 0.5%. Improvements on individual
classes, i.e. W, N2, and N3, can also be seen. However, ARNN2-
SVM produces a lower MF1 compared to Autoencoder and Deep-
SleepNet2 due to its inferior accuracy on other two stages, espe-
cially N1 which is in general hard to recognize, due to similarities
with other stages and generally infrequent. The imbalance of the
data is also likely a cause which provides an opportunity for further
study to mitigate its effect. The confusion matrices in Table III gives
insight into the classification details. Nevertheless, these results
indicate that the RNNs with their sequence modelling capability
are promising in capturing the sequential nature of sleep recorded
from EEG signals for automatic sleep staging. Furthermore, they
can work standalone rather than in conjunction with other network
variants, such as CNNs [4].

V. CONCLUSIONS
We propose an attention-based RNN to learn sequential features

from EEG signals for automatic sleep staging. An EEG signal is
transformed into a sequence of frame-wise feature vectors which
are then preprocessed with either a regular triangular filter bank or a
filter bank learned with a DNN. The temporal patterns of the input
sequence are then encoded by two GRU-based bidirectional layers
combined with an attention layer to form the high-level feature
vector which represents the input sequence. The classification
is finally accomplished by linear SVMs using these high-level
feature vectors. We demonstrate good performance obtained by
the proposed approach on the Sleep-EDF dataset. This implies that
the strong sequential modelling capability of RNNs is potential in
describing the sequential nature of sleep, as demonstrated by this
application in automatic sleep stage classification.

TABLE III: Confusion matrices of ARNN2-SVM on two experimen-
tal settings of the EDF-Sleep dataset.

Prediction

W N1 N2 N3 REM

Se
tti

ng
1

G
ro

un
dt

ru
th W 3585 280 168 48 428

N1 532 555 674 9 992
N2 438 182 15159 704 1094
N3 98 0 703 4753 37

REM 332 282 966 7 6124

Se
tti

ng
2

G
ro

un
dt

ru
th W 11583 227 168 67 473

N1 635 461 674 12 997
N2 262 137 15260 641 1299
N3 114 4 742 4728 41

REM 330 269 991 5 6116
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