University of

"1l Kent Academic Repository

Fan, Wenjun (2019) HoneyDOC: An Efficient Honeypot Architecture Enabling
All-Round Design. IEEE Journal on Selected Areas in Communications,
37 (3). 683 -697. ISSN 0733-8716.

Downloaded from
https://kar.kent.ac.uk/72626/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/JSAC.2019.2894307

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/72626/
https://doi.org/10.1109/JSAC.2019.2894307
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

HoneyDOC: An Efficient Honeypot Architecture
Enabling All-Round Design

Wenjun Fan, Zhihui Du, Senior Member, IEEE, Max Smith-Creasey, and David Fernandez

Abstract—Honeypots are designed to trap the attacker
with the purpose of investigating its malicious behavior.
Owing to the increasing variety and sophistication of cyber
attacks, how to capture high-quality attack data has become
a challenge in the context of honeypot area. All-round
honeypots, which mean significant improvement in sensibility,
countermeasure and stealth, are necessary to tackle the
problem. In this paper, we propose a novel honeypot
architecture termed HoneyDOC to support all-round honeypot
design and implementation. Our HoneyDOC architecture
clearly identifies three essential independent and collaborative
modules, Decoy, Captor and Orchestrator. Based on the
efficient architecture, a Software-Defined Networking (SDN)
enabled honeypot system is designed, which supplies high
programmability for technically sustaining the features for
capturing high-quality data. A proof-of-concept system is
implemented to validate its feasibility and effectiveness. The
experimental results show the benefits by using the proposed
architecture comparing to the previous honeypot solutions.

Index Terms—Honeypot, Cyber Security, Network
Softwarization, Traffic Redirection, Intrusion Response, Cyber
Deception

I. Introduction

OMPUTER systems across the globe are faced

with various security threats due to programming
flaws and configuration errors. The consequences can
affect individuals and organizations at critical levels from
privacy exposures to financial losses [1]. Also, the hard
to detect zero-day attacks are becoming increasingly
numerous and sophisticated, e.g. there was an increase
of 7 percent in the number of zero-day vulnerabilities
recorded in 2017, and 27 percent of the 140 targeted attack

Manuscript received October 7, 2018; revised January 6,
2019; accepted January 11, 2019. This research is supported
in part by Key Research and Development Program of China
(No0.2016YFB1000602), “the Key Laboratory of Space Astronomy
and Technology, National Astronomical Observatories, Chinese
Academy of Sciences, Beijing, 100012, China” National Natural
Science Foundation of China (Nos. 61440057, 61272087, 61363019
and 61073008, 11690023). This research is also partially supported
by the Spanish Ministry of Economy and Competitiveness in the
context of GREDOS project (TEC2015-67834-R). (Corresponding
author: Zhihui Du)

W. Fan is with the School of Computing, University of Kent, CT2
7NF, Canterbury, UK. (e-mail: w.fan@kent.ac.uk).

Z. Du is with the Department of Computer
Technology, Tsinghua University, 100084, Beijing,
(e-mail: duzh@tsinghua.edu.cn).

M. Smith-Creasey is with the School of Mathematics, Computer
Science and Engineering, City, University of London, EC1V 0HB,
London, UK. (e-mail: max.smith-creasey@city.ac.uk).

D. Fernandez is with the Department of Telematics Engineering,
Technical University of Madrid, 28040, Madrid, Spain. (e-mail:
david@dit.upm.es).

Science and
P.R.China.

groups that Symantec tracks have been known to use
zero-day vulnerabilities at any point, which were shown by
Symantec 2018’s ISTR report [2]. Moreover, cyber threats
are often accompanied with malicious motives: hack into
government and private systems to cripple the military,
force political progress, influence the financial markets,
and damage the service sectors of economics [3]. Such
cyber espionage, warfare and terrorism have provoked
considerable alarm [4].

To reduce the risk, a variety of security measures are
given, e.g. firewall, intrusion detection system (IDS), and
intrusion prevention system (IPS). Unlike these tools
mainly being used to prevent attacking, a honeypot
is a specific security facility that aims to allow being
attacked for the purpose of studying the creation of the
hacker community by means of advertising/exposing its
information systems resource to lure unauthorized and
illicit access [5]. Besides the captured data quantity, the
data quality is an even more significant aspect, which will
greatly impact the attack investigation. With regard to the
variety of attack types [6] and the complexity of attack
scenarios [7], the multi-dimensional criteria based attack
profiling and forensics are appealing [8]. For example, a
typical DDoS attack takes a lot of compromised hosts to
launch concurrent access to the target server that will
result in a Denial of Service; a port-scan attack can use
only one attack host but can involve a large number of
victim hosts, however, it does little harm to the victims; a
kind of buffer overflow attack can allow the adversary to
break into the victim host by exploiting the vulnerabilities,
which will be harmful because the attacker can access
the victim’s data and even can control the victim to
carry out further attack; a malware can spread on the
Internet and infect all the victims, which may cause
a catastrophe globally, e.g. the WannaCry ransomware
[9]. So the challenge is that a honeypot system should
be capable of efficiently feeding the adversary with the
appropriate resource depending on the attack type for the
purpose of capturing high quality data.

However, most honeypots are only passively receiving
attack data [10], and more precisely, they lack a sensibility
for fully identifying and distinguishing the various attack
data and scenarios. Despite a number of proposals
providing some data control (honeywall [11], honeybrid
gateway [12], honeyproxy [13]) and resource hierarchy
(hybrid honeypots [14]-[16]) in order to address the
problem, they are merely case-by-case and one-sided
solutions. Furthermore, some countermeasures, e.g.

dynamic deployment [17], interesting traffic redirection
[18], uninteresting traffic reduction [19] etc., are very
useful to enhance the data quality. But current honeypots
often either ignore providing countermeasures or barely
offer simple ones. Besides, the manipulation on the attack
flow and the honeypot resources should be stealthy and
undetectable to the adversary, otherwise the further data
capture will fail [20], [21].

Therefore, a type of efficient honeypot system, whereby
the attack activities can be sensitively classified and
processed in fine-grained ways, and then consumed by
the unperceived honeypot resource with appropriate
countermeasures is highly needed [22]. Nevertheless, the
existing honeypot systems are not able to provide this
kind of comprehensiveness, because there is a lack of
architecture that can facilitate the all-round honeypot
design. In [23], the authors identified the two kernel
honeypot elements: decoy and captor, which can compose
the honeypot infrastructure resource essentially, but the
existing honeypot architectures often pay less attention
on the captor, which greatly restricts the possibility of
enhancing the high-quality data capture (see the following
case 1).

Take the fishing trap as a metaphor of honeypots:

e Case 1: the hook with bait can catch naive and greedy
fish (like script kiddies), but probably will fail to
capture sophisticated fish (like advanced hackers);

o Case 2: separate the bait from the hook, and put it
into a net, which will be more covert, and also will
have higher fish capture efficiency.

Once the honeypot infrastructure is divided, the
architecture often needs an orchestrator to enable them to
cooperate. So, this research work’s objective is to propose
an efficient honeypot architecture that can orchestrate
the two essential infrastructures so as to enable the
all-round honeypot system design to satisfy the sensibility,
countermeasure and stealth for various requirements with
the purpose of capturing high-quality attack data. The
contributions of this paper can be summarized as follows:

e An efficient honeypot architecture, namely
HoneyDOC, consisting of three modules, i.e.
Decoy, Orchestrator and Captor, is proposed to
coordinate them so as to enable all-round design for
the purpose of high-quality attack data capture.

e A SDN-enabled honeypot system is designed upon
the proposed architecture. SDN’s programmability
and separated planes fully satisfies the requirement
of facilitating the three significant features, i.e.
sensibility, countermeasure and stealth, and makes
the system extendable as well so that it is facile to
develop new functions and integrate external third
party components.

e A Proof-of-Concept system is implemented in terms
of the SDN-enabled honeypot design, which is used
to validate the proposed honeypot architecture, and
also, some experiments are conducted for evaluating
the features of the prototype.

The organization of this paper is as follows:
Section 2 reviews related work; Section 3 presents the
conceptual honeypot architecture; Section 4 proposes
the SDN-enabled honeypot system architecture; Section
5 describes a proof-of-concept implementation of the
honeypot system; Section 6 demonstrates the system
evaluation and the experimental results; Section 7 makes
a conclusion and suggests some future work.

II. Related Work

This section reviews the conventional and SDN-enabled
honeypot architectures. In the following content, the
acronyms, LIH, MIH and HIH (refer to subsection III-A for
definitions), stand for low-interaction, medium-interaction
and high-interaction honeypot respectively.

A. Conventional honeypot architectures

The Honeynet Project proposed a series of physical
honeynet architectures [24] including Gen I, II, III, which
were widely used by organizations. For example, Georgia
Tech applied the Gen I honeynet architecture to manage
compromised computers across the campus networks [25].
Thereafter, the virtualization technology was introduced
to facilitate the virtual honeynet deployment, which
makes one physical host running multiple guests [26]-[28].
However, this traditional honeynet architecture lacks the
capability of large-scale deployment. In 2006, a hybrid
honeypot framework was proposed [14], which integrated
the famous low-interaction virtual honeypot framework
Honeyd [29] with the Gen III honeynet architecture for
improving IDSs to protect local production networks.
Meanwhile, a number of hybrid honeypots emerged [15],
[18], [30] since they can collect datasets on both of detailed
attack processes and large network space coverage.

Among these hybrid honeypot architectures, the traffic
redirection mechanism is aimed to connect the frontends
and the backends. It is used to filter and redirect the
interesting traffic into the HIH for in-depth analysis.
The hybrid honeypot framework [14] simply used the
Honeyd’s built-in non-transparent proxy to redirect the
traffic into HIHs. Due to the fact that this approach
lacks a traffic filtering mechanism, the backends can be
flooded by invalid data easily. Also, the non-transparent
proxy approach has the identical-fingerprint problem
since the frontends and backends assigned with different
IP addresses. Some other hybrid honeypots [30], [31]
used GRE tunnel to redirect the traffic, but the
identical-fingerprint problem between the frontends and
backends was still unsolved, and all traffic was merely
treated by the frontend with two coarse-grained modes:
discard or forward. Instead, in [12], [18], the TCP
connection replay approach was applied for facilitating the
connection migration from LIHs to HIHs. In particular,
the transparent Honeybrid proxy/gateway was proposed
n [12], where the author used the libnetfilter queue [32]
to process packets, so that security researchers can gain

insight into the technical detail. However, they didn’t
address the identical-fingerprint problem.

Later, some solutions were presented to address the
identical-fingerprint problem based on the transparent
Honeybrid gateway. Lengyel et al. proposed a hybrid
honeynets architecture namely VMI-Honeymon [33]. It
used separate network bridges to isolate the original
VM and its clones that retains the identical MAC
and IP address. The authors believed this method can
avoid the MAC and IP collision, even though the
clones assigned with the same fingerprints are placed
on the same network. Fan et al. [34], [35] proposed a
dynamic hybrid honeypot system intending to address
the identical-fingerprint problem, however this needs the
honeypots to be frequently switched on and off.

B. SDN-enabled honeypot architectures

Software defined networking (SDN) aims to separate
the system that determines the direction of traffic (control
plane) from the underlying systems that forward traffic to
the selected destination (data plane). Hence, the capability
of flow control is the innate advantage of SDN. The
programmable SDN-based network can allow the system
administrator to dynamically configure the data plane
according to the requirements [36]. The SDN technology
are already widely used in the field of network security of
distributed systems [37]-[39].

In recent years, several SDN-enabled honeypot systems
have been proposed. HogMap [40] is a collaberative
honeypot system essentially. It adopts SDN technology
to simplify marketplace coordination across different
domains to participate in HogMap, various providers with
diverse network architectures only need to be equipped
with an OpenFlow switch and the HogMap-certified SDN
applications, which enable the provider to participate
in various services and perform just-in-time actions to
forward traffic without manual configuration. HogMap
uses a packet replay based session migration mechanism.
But it did not describe how to provide stealth, i.e. how
to solve the identical-fingerprint problem.

HoneyMix [41] is another interesting SDN-based
intelligent honeynet, which wused to simultaneously
establish multiple connections with a set of honeypots
and select the most desirable connection to inspire
attackers to remain connected. The confusion is whether
the honeypots containing the same services use the the
identical fingerprint. Unless the system addressed this
issue, or else it may fail to pipe the connection between the
honeypot and the switch to the one between the switch
and the attacker.

HoneyProxy [13] proposed the essential component used
in HoneyMix. The proxy module distributes the requests
and selects the most appropriate response for the attacker
to interact with. In order to deliver malicious traffic to
relevant honeypots and select the most appropriate reply
from multiple responses of the honeypots, the authors
designed three modes: Transparent Mode (T-Mode) to

forward the scanning or login attempts to an IDS equiped
LIH; Multicast Mode (M-Mode) to delivery the payload
packet to all associated honeypots and determine the
best reply responding the attacker in order to counteract
fingerprinting attacks; Relay Mode (R-Mode) to maintain
an exclusive connection between the attacker and the HIH.
This approach can effectively manage the connection and
provide appropriate reply. However, because HoneyProxy
represents the whole honeynet as a blackbox that runs
many vulernable services, the major drawback is that
the HoneyProxy is a non-transparent proxy hiding all its
inner individual small honeypots other than exposes them
directly. One system involving many vulnerable services
probably will cause the adversary’s suspension, thereby it
disobeys the principle of wide data capture and stealthy
data control.

In [42], an intelligent honeynet architecture based on
the SDS framework [43] is proposed, enabling flexible
deployment and dynamic provisioning over Network
Function Virtualization Infrastructure (NFVI). This paper
focuses on migrating resources according to the workloads
of each honeypot and power off unused modules, which is
a kind of countermeasure that increases the cost-efficiency
of the honeypot resource. However, that is not the
essential issue in honeypot research context. The design
of the traffic forwarding component is unclear: if it is
non-transparent, then it has the similar problem with
HoneyProxy when dynamically dispatching the traffic; If it
is transparent, then it lacks the way of providing stealthy
traffic and resource migration.

ITI. HoneyDOC Architecture

The HoneyDOC decouples the Captor and the Decoy
from the architectural point of view, and by using the
Orchestrator to coordinate them, it can efficiently enable
all-round honeypot design. We already noticed that the
difference between a honeypot and a vulnerable system
is that a honeypot must be trusted but a vulnerable
system is untrusted. So, honeypot must have some
security program to make it trusted. In [22], the author
showed that the security level should be enhanced along
with the interaction level in context of honeypot. The
paper [23] separated the captor from the decoy, and
the captor actually represents the security program in
context of honeypot. However, during the past years
of honeypot development, the captor has not received
enough attention, and the proposals were often fat decoy
and thin captor solutions, and in most cases, they were
not decoupled and the importance of the captor is often
overlooked (see case 1 of the metaphor in the Introduction
section). But the fact is that the captor is playing an
increasingly important role in (high-quality) data capture.
Previously, there was no honeypot architecture proposal
endorsing the captor to have a peer status with the decoy,
which inevitably resulted in the weak or limited captor
functionality in the honeypot.

Therefore, the decoupled Decoy and Captor can unleash
the power of the captor for serving the high-quality data

capture, meanwhile, the decoupling brings benefits to the
Decoy as well, since it can be more flexible and diverse
once it leaves the constraints of the Captor. Also, the
decoupling is the basis for flexibly combining the Decoy
and Captor to perform a powerful honeypot system (see
case 2 of the metaphor in the Introduction section). Now
that the Captor and Decoy are decoupled, on one hand,
they can be developed respectively and their capability
can be updated independently. On the other hand, they
can be combined together in different ways so as to carry
out more powerful functionalities. However, to facilitate
the combination is not an easy task, which involves
job dispatch, function interaction, etc. so then a new
significant module named Orchestrator is highly needed
for the purpose of coordinating the two modules to run
as a whole honeypot system.

Legend

—/

Decoy

System call >
Manager

Orchestrator ! Captor
Core — Manager

— ——— &

System event

Honeypot log -

Attack data

e

Router R

LIH(s)

Data Capture
Data Control
Data Analysis

Captor Infrastructure

MIH(s)

HIH(s)

Decoy Infrastructure

Decoy Module Captor Module

Fig. 1. An overview of the HoneyDOC architecture

So, we propose a novel honeypot system architecture
(see Fig. 1) that decouples the Decoy and Captor into
two separate modules, where they will have an equally
important status, and they are coordinated by the
Orchestrator module so as to work them together in a more
efficient way. In the following subsections, each module is
described in detail respectively.

A. The Decoy module

The Decoy module is responsible for provisioning
and deploying the honeypots/honeynet over the decoy
infrastructure. The decoy infrastructure should be able to
host the deployment of different types of decoy. Also, it
needs to expose its API that the Orchestrator module can
call. As the conventional honeypots often do not decouple
the decoy and the captor, we use “decoy” and “honeypot”
interchangeably in this subsection.

At present, a great number of dedicated honeypot
softwares have been developed [10], which can be roughly
classified into three categories in terms of the interaction
levels. A low-interaction honeypot (LIH) is a program that
emulates the protocols of an operating system (OS), but
with a limited subset of the full functionality. For example,
Honeyd [29] can emulate multiple decoys simultaneously
to monitor the unauthorized traffic. A medium-interaction
honeypot (MIH) can provide much more interaction. It

can often emulate a variety of vulnerable services based
on the TCP/IP network stacks that are implemented
and managed by the underlying OS. However, the MIHs,
e.g. Dionaea [44], only emulate well-known vulnerabilities
and capture malicious traffic accessing to them. A
genuine computer system running as a honeypot is called
high-interaction honeypot (HIH), since it can provide a
fully functional OS for attacking. Using HIHs, security
researchers can capture not only the network activity, but
also the system activity. The limitation of HIHs is the
resource consumption for large-scale deployment. Though
the dedicated honeypots are effective for meeting single
criterion, they are difficult to satisfy multiple criteria, since
they are either expensive in scalability (HIHs) or hard in
collecting the detailed attacking data (MIHs and LIHs).

Therefore, our Decoy module aims to host three types of
decoys. As multiple decoys can be deployed as a honeynet
by following a certain network topology, this module
should also allow to deploy arbitrary honeynet. The attack
data flow goes through the decoy infrastructure, and the
attack data should be captured so as to yield the honeypot
log which then will be transferred to the Captor module.
Some attack data will cause system event that will be sent
to the Orchestrator module.

B. The Captor module

The Captor module is in charge of providing the
functionalities that can be applied to the attack data. This
module comprises three basic submodules: data capture,
data control, and data analysis. Nevertheless, the goal is
to have an extendable module, so the submodule is not
limited to the above three ones.

1) Data Capture: The purpose of data capture is to log
all the intrusion events and malicious behaviors for later
investigation. It is a compulsory functionality, so any type
of honeypot system must have this functionality. Three
critical layers of Data Capture were identified: firewall
logs (inbound and outbound connections), network traffic
(every packet and its payload as it enters or leaves the
honeypot), system activity (attacker keystroke, system
call, modified files, etc.). The more data and the higher
quality of the data which the honeypot can capture, the
better the honeypot system is.

2) Data Control: The data control functionality is
aimed to conduct the attack flow according to the
honeypot’s intention instead of the attacker’s. So, it often
needs to be stealthy and transparent to the attacker.
The data control actually provides the countermeasures
against the intrusion. For the inbound attack flow, it can
discard the uninteresting data, forward the interesting
data, and even redirect the most interesting data to
dedicated decoy resource. For outbound attack flow, it
is used to mitigate the risk that the adversary uses
the compromised honeypot to attack other non-Honeypot
systems. Any HIH must have this functionality. Also, it
is necessary to minimize the attacker or malicious code
chance of detecting it. The outgoing data can be simply

dropped, but the challenge is how to set the threshold:
the more you allow the attacker to do, the more you can
learn; however, the more you allow the attacker to do, the
more harm they can potentially produce. At present, there
are several other solutions to control the outgoing traffic
such as transparently redirect the outbound connection to
another honeypot that emulates the target system.

3) Data Analysis: The entire purpose of data analysis
is to analyze the collected data in order to get the
information of the attack. For example, through data
analysis the technique of attack and the adversaries
motivation could be revealed. Thus, if the data cannot be
analyzed, the value of honeypot system will be reduced.
This submodule can employ and integrate the third
party analysis service. In practice, some data analysis
process, e.g. comprehensive forensics, could be performed
by security experts or by automated programs.

C. The Orchestrator module

The Orchestrator module takes the responsibility of
coordinating the other two modules to work together
efficiently. It consists of Decoy Manager (DM), Captor
Manager (CM) and Orchestrator Core (OC).

The DM can actively call the decoy infrastructure API
in order to provision and deploy the needed decoy or
a network of decoys. So, if the decoy infrastructure is
dynamic, the DM can request redeploying the decoy(s) on
demand even in real-time. This will be useful to facilitate
a type of countermeasure - dynamic deployment.

On the other hand, the CM is used to integrate the
captor infrastructure by calling its API. The CM can
call the captor to process the system event as well
as the honeypot log. Different captors have different
functionality, so the CM is responsible to execute the right
call based on the decision from the OC.

The OC is the kernel of the Orchestrator module.
Firstly, all the system events will be handled by the
OC. The system events from the decoy infrastructure
and the captor infrastructure can be directly sent to
the OC, which can dispatch the inbound events to
the appropriate component for process, and it can also
generate outbound events as reaction or countermeasure.
Secondly, it will conduct the interaction between the DM
and CM, scheduling the call to their APIs in order to
perform the needed operations.

One note is that the honeypot log sending from
the Decoy module to the Captor module should not
rely on the Orchestrator module. That means even
there is no orchestrator, the basic honeypot function -
data capture - is still working, but then the honeypot
system’s functionality will be very simple. So, without
the orchestrator, is will be very hard to apply the captors
to the attack data in order to improve the data quality.

IV. SDN-enabled HoneyDOC Design

In this section, we first define the three advanced
honeypot features as our requirements, then we will

introduce the SDN to sustain our all-round honeypot
design, and afterwards we will present the SDN-enabled
HoneyDOC design and explain how it facilitates these
three features. Finally, we will highlight the novelty of
our work by comparing it with the literature in terms of
the contribution into the three features.

A. Three Key Features

As aforementioned, the features named sensibility,
countermeasure and stealth are vitally important to the
honeypot for the purpose of catching high quality attack
data. In this part, we provide their definitions in the
context of honeypot system as follows:

o Sensibility: the honeypot system has a keen
consciousness to detect various attacks, and also
is able to classify and process the attack data in
fine-grained ways. It represents an advanced detection
capability instead of merely alerting malicious
activity.

o Countermeasure: the honeypot system can provide
response to the attack with the purpose of capturing
high-quality attack data instead of being a victim.

o Stealth: the honeypot system’s functions and
operations against the attack behaviours keep in
stealthy in order to prevent them being detected
by the adversary. This feature can guarantee the
effectiveness of honeypot.

According to the definitions, we can say that Sensibility
and Countermeasure are two functional features, while
Stealth is a non-functional feature. Nevertheless, the
stealth feature must be reflected in the former two
functional features, otherwise the other two will be
worthless. So, the importance of Stealth is not more than
enough. In this work, we will mainly address the problem
related to the stealth requirement for honeypot system.

B. The SDN Technology for Honeypot

A traditional SDN architecture has three planes:
application, control and data plane. The application
plane is separated from the control plane by the SDN
Northbound Interfaces (NBI). They are not so decoupled
like the control plane and the data plane, because
the applications are often developed upon the specific
SDN controller software. In the data plane, the network
elements (NE), e.g. switches and routers, can be linked
by arbitrary topology, and the end points (e.g. PC,
laptop, etc.) can be integrated into the network by linking
any NE. All the conversations over the data plane are
controlled by the programmable control plane through the
Control-Data-Plane Interfaces (CDPI). So, SDN has the
advantages of ease of management, efficient flow control
and extendable integration.

Thereby, upon the current technique background, SDN
is a very competitive sustaining technology to facilitate
HoneyDOC system design. The SDN’s features, especially
the decoupling and programmability, can satisfy the
requirement of sensibility, countermeasure and stealth.

Indeed, the SDN technology can tailor HoneyDOC
system’s one-stop solution. The data plane takes the
responsibility of directing the traffic to the heterogeneous
decoys with user-defined network topologies deployed
by the system. The control plane can use a specific
SDN controller software to provide the network services
for supervising and managing the data communication
over the data plane. The application plane can include
various captors upon the SDN controller’s framework.
In contrast, HoneyDOC unleashes the power of SDN’s
programmability for enforcing the vitally significant
function -data control- in the context of honeypots as
well. Table I summarizes the mapping of the HoneyDOC
modules to SDN planes for the purpose of clarifying how
this architecture can be cohesively represented in SDN.

TABLE I
Mapping of HoneyDOC architecture to SDN Framework

| SDN Framework | HoneyDOC |

Application Plane	Captor
Control Plane	Orchestrator
Data Plane	Decoy

C. SDN-enabled HoneyDOC System

The SDN-enabled HoneyDOC system includes
an application (i.e. Captor) plane, a control (i.e.
Orchestrator) plane and an infrastracture/data (i.e.
Decoy) plane. The captor plane consists of various captors,
the control plane needs to adopt a specific SDN controller
software and the decoy plane deploys heterogeneous
honeynets. The captors are developed/integrated based
on the adopted SDN controller’s APIs, i.e., the Network
Data Control Application is designed, which consists of
a Decision Engine (DE) and a Redirection Engine (RE):
the DE is in charge of the action of processing the traffic
and the RE enforces the action. Figure 2 shows the
SDN-enabled HoneyDOC system design.

Legend Captor (Application Plane)

Link Network Data Network Data Control Application System Data CTI Data
Capt " :
— IS (i P o pﬁc:{; n Decision Redirection Capture Analysis
Engine Engine Application Application
= SDN NBI

SDN CDPI
e=fp Decision sent
Alert sent

— — > System data transfer

Attacker

HoneyDOC SDN-enabled |
System

Fig. 2. An overview of HoneyDOC SDN-enabled System Desgin

This system is set up to receive traffic destined to
decoys. The incoming traffic is firstly classified, the
uninteresting traffic will be filtered or forwarded to LIHs,

and the remainder is treated as interesting data being
redirected to appropriate HIHs by the out ports of the
SDN switch. Any malicious behavior in HIHs will be
captured, and the outbound traffic from them will be
controlled to avoid attacking the non-honeypot systems.

The network data capture and control applications
work collaboratively to facilitate the traffic classification
and redirection, which are used to process and control
the network data flow forwarding to the decoys. That is
sensitivity relevant, so will be described in more detail in
subsection IV-C1. The virtual decoy deployer is in charge
of configuring, creating and managing heterogeneous
decoys for data capture. It should be flexible enough to
deploy different single dedicated decoys in terms of the
interaction levels, and also should be able to handle a
complete honeynet including various decoys. Furthermore,
the system data capture application is responsible for
catching the system activity in the HIHs. Also, the cyber
threat information (CTI) data analysis application is
aimed to investigate the logged CTI data in order to reveal
further cyber threats, whereby appropriate reaction can
be carried out in advance. These countermeasure related
components will be described in more detail in subsection
IV-C2. Basically, all the components should work in
stealth against adversary’s suspicion. In this paper, we
mainly focus on the stealthy TCP connection migration
for redirecting the attack flow, which will be described in
subsection IV-C3.

1) Sensibility: Sensibility can greatly increase the
efficiency of data capture by the measure of classifying
and filtering the inbound network traffic.

a) Multiple classification criteria: The Network Data
Capture Application works with the DE to provide
a customizable traffic classification approach, which
allows the user to set arbitrary rules and associate
actions (i.e. Drop, Forward, or Redirect). There are
several ways to make traffic classification: signature-based
(i.e. payload-based) and source-destination based (i.e.
addresses-based). Due to the fact that the answer to
which traffic is worth being investigated is subjective
and depends on the security researcher’s intention, the
system should allow the user to customize the traffic
classification policy. In order to support multiple traffic
classification criteria, we apply a rule-based way to provide
the customizable traffic classification. The user can set the
“action” field in the rule for processing the matched traffic.
We consider integrating an NIDS to facilitate the Network
Data Capture Application to evaluate the traffic with the
purpose of sending the alert message to the DE so as to
make corresponding decision on the traffic.

b) Fine-grained process method against the classified
data: The RE will carry out according to the “action”
field of the alert message. If that is “DROP”, the RE
will discard the traffic, ending the connection. If the alert
message indicates that the traffic has to be forwarded to
either an MIH or an HIH, the RE will continue processing
the flow, selecting the corresponding SDN switch’s (FCF,
see detail in Fig. 3) out port that links the the target

honeypot and forwarding the packet to it. Meanwhile,
the required SDN flow entries will be installed in the
corresponding SDN (SPF, see detail in Fig. 3) to do
the TCP sequence number synchronization. Consequently,
once the TCP connection has been transferred to the
target honeypot, the NIDS does not need to inspect the
subsequent packets of that connection any more.

2) Countermeasure: Countermeasure provides the
response against the attack behavior with the purpose
of enhancing the efficiency of data capture. In [37],
several countermeasures against intrusion were presented.
Likewise, regarding to the honeynet scenario, the
countermeasures can be divided into three categories:
attack flow control, decoy dynamic deployment, data
analysis and vulnerability fix.

a) Attack flow control: This type of countermeasure
is the main one with regard to the Data Control described
in subsection ITI-B2. The traffic can be blocked, discarded,
redirected or isolated, upon SDN technique, all these flow
manipulations can be facilitated by the Network Data
Control Application aforementioned.

b) Decoy dynamic deployment: Decoy dynamic
deployment is with regard to the decoy timely revolution.
Apparently, it is a tedious task to configure and deploy a
honeynet manually. The virtual decoy deployer is designed
to dynamically deploy and manage the honeynet. It
supports some concrete countermeasures. For instance,
dynamically deploy a decoy to receive the migrated
interesting traffic; emulate the non-honeypot system to
contain the back-scatter/outbound traffic; reconfigure the
decoy’s fingerprints and the honeynet topology to reduce
the possibility of being detected.

¢) Vulnerability fix: Vulnerability fix rides on the
CTI data analysis, and they often result in a joint
countermeasure. CTI data analysis is the concrete
reflection to the Data Analysis (subsection III-B3). The
HoneyDOC system enables the third party analysis
framework to be integrated, e.g. the user can integrate
the C3ISP framework’s gateway for the purpose of sharing
the CTI data to consume the analytic services [45].
Consequently, the system needs to fix the vulnerabilities,
which can be achieved by patching the OS and software,
or setting the flow filtering rules.

3) Stealth: Stealth aims to deceive the adversary to
behave as in its self-righteous network environment so
that it can show off its attacking ability, which then can be
fully observed by the honeypot system. Basically, both the
Decoy and Captor should be stealthy: (1) Decoy’s stealth
relies on its fidelity, apparently, the virtual honeypot
with lower interaction or worse performance often has
the higher probability to be detected, however, the rapid
improvement of virtualization techniques can be used to
address this problem efficiently; (2) Captor’s stealth issue
often comes up with the data capture and data control
functions. Concerning the system data captor, that must
be careful whether it is able to catch the activity but is not
detectable. It is a complex issue (referring to subsection
V-D for some detail) which this paper does not focus on.

On the other hand, for the data control, in particular,
the network traffic redirection needs to be stealthy and
transparent to the adversary, which is a significant issue.
We will present a solution based on the SDN to address
this problem in the following content.

As stated, the traditional traffic redirection solutions
have the identical-fingerprint problem, which means that
the server receiving the transferred flow has a different
fingerprints, i.e. MAC and IP addresses, from the previous
server that established the original connection. In common
network service environments, that is not a problem.
However, in a honeynet scenario, the different fingerprints
will lead to the attacker’s suspicion. Furthermore,
concerning the traffic redirection, the header information
of three protocols -Ethernet, IP and TCP- needs to
be handled. Ethernet and IP protocols are stateless so
that only the destination fields of the packets’ headers
need to be modified. Regarding the transport layer
protocols, UDP is stateless as well, however, TCP is
stateful whereby multiple fields need to be updated
for migrating the connection. The TCP mechanism
includes two sequence (Seq) numbers randomly generated
by the source endpoint and the destination endpoint
separately, then acknowledged and incremented by each
end-point’s network stack to guarantee that all the
packets are transmitted correctly. So, when transferring
a TCP connection, the endpoint receiving the migrated
connection normally will create a different Seq from
the the original endpoint’s. Thereby, to facilitate the
transparent TCP connection handover, the main issue is to
synchronize the Seq and Ack values related to the sequence
numbers chosen by the different endpoints.

Hence, two technical challenges have to be addressed
to facilitate the stealthy traffic redirection: 1)
identical-fingerprints of different decoys; 2) sequence
number synchronization for connection transfer. For
solving the first problem, we will use the distinct out
ports of the SDN switch to identify the end-points with
the identical IPv4 and MAC addresses. For addressing
the second problem, we use the TCP replay approach [21]
to transfer the connection, which updates the Seq number
on-the-fly by the SDN controller. Figure 3 illustrates
the design of the approach, which has the advantage
of reducing the computational burden of the controller.
In order to make the approach feasible, two different

SDN
Controller

Fig. 3. The approach for synchronizing Seq and Ack numbers

functions have to be performed: 1) the Flow Classifying
Forwarder (FCF) is used to identify and isolate the
end-points; 2) the Session Processing Forwarder (SPF) is

responsible for enforcing synchronization. Each honeypot
designed to receive the redirected connection must be
equipped a SPF in front of it for the purpose of adapting
the TCP sequence numbers.

Based on this design, two SDN-based TCP redirection
mechanisms are proposed: the first mechanism uses the
controller as the frontend to establish the first TCP
connection with the attacker, while the second mechanism
applies a VM as the frontend to respond the TCP
connection request. They are graphically illustrated in
Figure 4 and Figure 5 separately. These two mechanisms
have the similar working phases of traffic redirection such
as the diagrams show. We take the mechanism 1 as the
example to describe the three phases:

Attacker Forwarder Controller Honeypot
SYN
Seq=X. Ack: mvalid Packet I
- Store the SYN pkt
SYN. ACK Respond with SYN_ACK plt
Seq=T1. Ack=X+H Save controller's initial Seq (¥)
- Packet_Out
ACK
Phase | E -
SeqrHl Ak A3 Packet_In—»
PSH, ACK
Seq=X+1, Ack=Y+1
Lm = ‘\ Packet [
i Store the payload plt
Ilake redirection decision
SetFCF out port
Send SYN pkt to Honeypot
e Packet Out !
SYN
Seq =X, Ack: invalid
-
SYN.ACK
E Seq =7, Ack = X+1
- Packet In——
ot 3 Save honevpot's initial Seq (Z)
Phase 2 Respond with ACK pit
Packet_O: :
ACK
Seq=X+1, Ack = Z#1
»
Install flow entries in SPF
(for ACK_ SEQ) modification)
le——Flow_Mod- o ——
L Packet Out R Send payload plkt to Honeypot
PSH. ACK
Seq = X+1, Ack = Y+1+HZ-Y)
Len=N
i ACK =
e Seq=Z+1HY-Z), ACK
Ack =X+1+N Seq=2Z+1, Ack=X+1+N
Len=M Len=M
v v v v

Fig. 4. TCP Migration Mechanism 1: using the controller as the
frontend.

1) Phase 1: The session between the attacker and the
controller is established. The attacker sends the TCP
connection request to the honeypot. The controller
answers the request on behalf of the honeypot.

2) Phase 2: If the controller decides (see subsection
4.1.2) to redirect the connection, it selects a suitable
honeypot based on the decision process and instructs
the FCF to send the session segments to the
honeypot port. The TCP session is transferred
from the controller to the honeypot by replaying
the initial session segments. The flow entries with
synchronization functions are installed into the SPF.

3) Phase 3: The TCP session has been transferred
to honeypot and Seq and Ack numbers are
synchronized. After phase 2 changes, the system
is configured to send the session traffic directly

Attacker Forwarder Controller Honeypot

SYN Frontend
b Packet —p————
Store the SYN pht
Forward SYN pkt to Frontend
j¢—— Packet_out——— % :

SYN
Seq=X, Ack: invalid

T = - o=
Phase 1 SYN_ACK b Forward SYN_ACK pht to Aftacker
Seq=Y, Ack=X+1 = Save Frontend SYN Seq (¥)
Packet_In : 1
Forward ACK pi to Frontend
H+ Packet_out— o 2
ACE_PSH ACK
Seq=X+1, Ack =Y+l Seq=13+1 Ack=T+]
Len=N -
» Packet_In
- Made redirection decision
S e --§=="-1fdo not neadl redirect-]———= == ——— s emsinaes =
[t
Tostall flow entry in FCF
[+ Flow_Mod- 4 !
1
Faorward payload pkt 1o Frontend
= Packet_out- —
ACE_PSH
Seq=X+1 Ack=TY+]
Lex=N
S e R e e e [P need reidmecic =S = s e S :—’——
- 1 Backend
Store the paylead pkt
FCF out port
Send the SYN pkt to Backend
e Packet out: 4 "n
Phase 2 Seq=3, Ack: invalid
—
SYM_ACE
Seq=Z, Ack =H+1
Packet |
Save Backend SYN pkt Seq (Z)
Pespond with ACK
4 Packet_out- I .
ACK

Seq=30+1, Ack = Z+1

Tnstal flow entry in SPF
(for Ack, Seq synchronization)

j+—Flow_Mod

Send payload pkt to Backend
b——Packet out———f4¢——'
ACK_PSH
Seq=30+1, Ack=Y+1+Z-Y)
ACK Len=N
Phase 3 Seq=Z+1+Y-I), ACE
Adk=X+1+N Seq=7+1, Ack = X+1+N
Len=M L Len=M

Fig. 5. TCP Migration Mechanism 2: using the VM as the frontend.

between the attacker and the honeypot, having the
SPF doing the synchronization.

We use the red boxes to highlight the important steps
and difference between the two mechanisms. Mechanism
1 always needs to store the payload pkt and create a
new TCP connection to the honeypot; Mechanism 2 acts
relying on the decision, if it does not need redirection,
the payload pkt will forward to the original VM, but if it
needs redirection, the payload pkt will be stored, and a
new TCP connection to the new VM will be established.
The technical detail of the SDN-based TCP connection
handover as well as the sequence number synchronization
based on the second mechanism has been presented in
[21]. Besides, the process to establish connections that we
have discussed above focuses on the inbound traffic, but
can also be applied to the outbound traffic, deciding to
redirect or discard honeypot outbound connections as part
of the containment mechanisms of the system.

D. Literature Comparison

In this subsection, we summarise the significant
advancement of our work by comparing it with the
literature work in terms of the three features proposed

in this work. Table II presents the comparison, which
illustrates the improvement created by HoneyDOC over
the Sensibility, Countermeasure and Stealth.

TABLE II
Literature Comparison in terms of the three features

Work	Sensibility	Countermeasure	Stealth
HoneyBrid	Low	Low	Low
VMI-Honeymon	Low	Low	Medium
HogMap	Low	Medium	Medium
HomeyMix	Low	Medium	Medium
HoneyProxy	Medium	Medium	Low
SDS-based Honeynet	Medium	Medium	Low
HoneyDOC	High	High	High

V. Proof-of-Concept Implementation

In this section, a proof-of-concept system is presented
in order to conduct the validation experiments. We
implement the whole system on one physical machine as
Figure 6 shows (it uses the traffic redirection mechanism
1, to enforce mechanism 2, the SPF in front of the
LIH/MIH is removed). All components of the system

1. Previous work: a) Configure the honeypot scenario; b) Configure the traffic
control rules of Snort; c) Configure the Ryu SDN controller

3. Run Deep

5. Launch the controller B
Security Manager

4. Start Snort 2. Start Honeyvers

Deep Security
Manager

Snort Honeyvers

| HIHs (based on Xen, Qemu,
KVM, LXC, etc.)

LIHs and MIHs (could be
based on LXC)

Janlas [eaisAyd DoagAsuoH

Fig. 6.
machine

An implementation of proof-of-concept by one physical

are implemented by using specialized tools (see following
subsections), which are not limited to those used in this
prototype. The workflow can be summarized as follows:

1) The user prepares the configuration of the honeypot
scenario based on TTHDL [46], configures the NIDS
Snort! for setting the traffic classification rules, and
configures the SDN controller Ryu?.

2) The Honeyvers is invoked to create the honeypot
scenario according to the configuration.

3) The Deep Security Manager? is turned on to monitor
the HIHs and log the CTI data.

Thttps://www.snort.org/
2https://osrg.github.io/ryu/
3https://help.deepsecurity.trendmicro.com/software.html

4) Snort starts to listen on the corresponding interface
linking the out port of the Open vSwitch (OVS).

5) The Ryu controller launches to receive connections
and control the network flow.

A. Rule-based NIDS

The well-known open-source NIDS Snort is used to
facilitate the Network Data Capture Application. Snort
is a rule-based NIDS aimed at detecting malicious traffic
patterns that match the well-known signatures. We use
the rule format of Snort as the basis to set our own traffic
classification rules. A typical “alert” rule format of snort
can be shown as follows:

alert protocol source-ip source-port — destination-ip
destination-port (msg: “alert message”; sid: an
integer; priority: an integer; content: “malicious
pattern”;)

The text using bold font are the key words, and the
text using italics font needs to be replaced by the values.
The signature includes not only the IP header information
but also malicious payload pattern. Snort checks on both
of them in the captured packet. If there is more than one
rule, we can set the “priority” field for each rule and use
the “sid” field to set the alert ordering.

Therefore, based on the “alert” rule format of Snort, we
can set reaction message into the “msg” field. For our own
rule, we define three actions: DROP, MIH, HIH. “DROP”
refers to discard the packet, while “MIH” and “HIH”
indicates the packet forwarding destination. To implement
the traffic classification approach, we apply the Snort rules
by two steps to carry out both the source-destination
based and content based traffic filtering. In the first
step, Ryu controller will read and parse the Snort rules,
translate them into SDN flow entries, and install them
into the main OVS switch during the system initialization
phase. This step aims to set a data reduction measure
to improve the data capture efficiency. Only the rules
associating with a “DROP” action and having blank
“content” field will be translated into “drop” flow entries.
Consequently, any traffic that matches these flow entries
will be efficiently discarded in the data plane to avoid them
reaching the controller. The other rules will be translated
into “allow” flow entries, and the traffic that matches them
will be forwarded as a PacketIn event to the Ryu controller
for processing. In the second step, the Ryu controller will
cooperate with Snort to perform the content-based traffic
classification (see Figure 7).

Snort works in the NIDS mode so that it can utilize
its intrusion detection and alert raising functionality. We
use the snortlib, which can be accessed from the Ryu
SDN framework, to integrate the Snort alert function into
the Network Data Capture Application. The controller
application will send the first payload packet of each
connection to the Snort port. Snort thereafter inspects
the payload packet, raises an alert, and sends the

3) Alert event
4(_)

(2) PacketOut
to Snort port
(1) Packetin
event
(4) PacketOut
—

OpenFlow switch

Fig. 7. Integrating Snort into Ryu framework for decision making

corresponding action message as the alert event back to
the application through a Unix socket.

B. SDN controller and switches

The Network Data Control Application is the most
important component in the HoneyDOC SDN-enabled
system. An SDN controller can satisfy both the system
requirements and the ease of development is the needed
one for proof-of-concept. The Ryu SDN framework is an
open-source software and supports OpenFlow 1.3, which
is well documented and provides easy to learn interfaces
for application development. Thereby, the Ryu based
prototype was implemented. For the traffic redirection
mechanism 1, the controller application only provides the
function of simulating open ports, but lacks the simulation
of OS and fake service fingerprints, which would need more
effort on developments. The adversary using scanning
tools such as Nmap* will not be able to guess the exact
OS, as we demonstrate in the experiment section.

The OpenFlow based switches are the most important
facilities in the data plane. As Figure 3 shown, the FCF
could be a physical or a software switch that supports
OpenFlow. OVS is chosen as the main switch of the system
because it is a pure software implementation that runs
over standard Linux systems and it is implemented inside
the Linux kernel, which makes it efficient when processing
packets. Indeed, any Openflow compliant switch can
stand in for OVS. On the other hand, due to the
specific requirement of implementing the Seq and Ack
numbers synchronization function in the SPF, we have
adopted a different software switch, Ofsoftswitch13,
since it is implemented in the user space that results
in the ease of modifying the implementation code.
Additionally, Ofsoftswitch13 is open source and can
be freely forked from the Github project. We have
modified the Ofsoftswitch13 to include the additional Seq
and Ack synchronization functions. The synchronization
functions are achieved through adding a new action
based on the SET_FIELD defined by the OpenFlow 1.3
standard. These two actions are SET TCP_ACK DIFF
and SET_TCP_SEQ_DIFF that are used to modify the
Ack and Seq numbers respectively.

4https://nmap.org/
Shttps://github.com/CPqD /ofsoftswitch13

10

C. Virtualized deployment tools

Owing to the advantages of easy management
and resource efficiency, virtual honeypots have been
widely used instead of physical ones [47]. The use
of the virtual decoy deployer results in the need of
integrating virtualized tools to deploy virtual decoys.
Every specialized tool has its own specification to define
the topology, addresses, types of systems, etc. Most MIHs
can only emulate stand-alone decoy, e.g. Dionaea [44] and
Amun [48], which often rely on some scalable deployment
tool. Also, a virtual HTH decoy needs guest virtual machine
as the carrier to contain it.

In order to hide the technical dependent complexity
of the wunderlying tools, a generic virtual decoy
deployer called Honeyvers [49] with a technical
independent honeynet description language (TIHDL)
[46] was proposed. It offers the versatility to manage
heterogeneous decoys by the means of integrating the
corresponding virtualized deployment tools, whereby the
decoy states described by TIHDL can be translated to the
corresponding states sustained by the concrete deployment
tools.

D. System activity monitoring and capture tool

The traditional kernel modification based tool
Sebek/Qebek [50] had been proved easy to be detected.
In contrast, the “out-of-the-box” method based system
behavior monitoring tools often have the platform
dependency and function limitation [23].

In this implementation, the Deep Security Manager
(DSM) of TrendMicro is applied. The DSM is an
off-the-shelf production supporting all popular platforms
(i.e. Windows, Linux, etc.). The DSM includes six security
modules (firewall, anti-malware, web reputation, intrusion
prevention, integrity monitoring, log inspection) to fully
monitor and capture the activities occurred in the target
HIH. The DSM agent needs to be installed into the HIH.
The malicious behavior occurred in the HIH will trigger
the DSM agent, which thereafter can create CTI data
(log) and automatically send back the data to DSM server.
Further, the CTI data sharing for collaborative analysis
can refer to this paper [45].

VI. Experiments

As the prototype has been developed, we deployed a
testing scenario to validate our proposal (see Figure 8,
which is in regard to the traffic redirection mechanism
2). Tt includes one internal network 10.1.1.1/24 where the
honeynet is deployed and one external network 10.1.0.1/24
where the attacker locates. A router stands in the middle
of these two networks. The same TP and MAC addresses
were assigned for both of the MIH and HIH so that they
have the identical fingerprint. In the following content, we
will present the validations of sensibility, countermeasure
and stealth.

External Network Internal Network

10.1.1.2/24

10.1.0.3/24

10.1.0.1/24 10.1.1.1/24

Fig. 8 The testing scenario: the dotted lines indicate the
communication between the SDN controller and switches

A. Validation of sensibility

The user can customize arbitrary detection rules with
specific actions for classifying the traffic. For instance:

alert tcp any any — any 21 (msg:“MIH”;

sid:1000002; priority:2;)

alert tcp any any — any 25 (msg:“HIH”; sid:1000005;
priority:2;)

alert tcp any any — any any (msg:“DROP?;
sid:1000008; priority:0;)

As the system has several open ports, any traffic
requires to access to these ports will be processed by the
controller, and then the controller will forward the traffic
to the destination according to the Snort alert message.
Any other uninteresting traffic (that matches the “drop”
rule) will be filtered by the OVS, which can prevent the
controller from traffic congestion. After the initialization
of the controller application, the corresponding flow
entries in the OVS are created as follows:

OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=90.798s, table=0,
n_ packets=0, n_ bytes=0, priority=2,tcp,tp_ dst=21
actions=CONTROLLER:65535

cookie=0x0, duration=90.798s, table=0,
n_ packets=0, n_ bytes=0, priority=2,tcp,tp_ dst=25
actions=CONTROLLER:65535

duration=90.798s,
n_ bytes=0,

table=0,
priority=0,tcp

cookie=0x0,
n__packets=0,
actions=drop

So then after starting the system with a rule setup as
aforementioned, only the requests associating to the open
ports (e.g. port 21 and 25 shown above) can pass through
the corresponding entries, the rest will match the last drop
entry and be denied.

11

B. Validation of countermeasure and stealth

This part will validate the traffic redirection that
covers both the countermeasure and stealth. The proposed
TCP connection migration aims at transferring the
interesting traffic from the LIH/MIH (frontend) to the
HIH (backend), which must be stealthy to deceive the
adversary keep attacking. Figure 9 shows a flow control
use case, where if the MIH and HIH uses different IP
addresses, the attacker can easily realise the redirection
after compromising the HIH by typing the simple
“ifconfig” command.

MIH
—v 10.1.1.2
Flow -~
% 2 Controller
Attacker HIH
10.1.1.2

Fig. 9. Traffic redirection use case: the red dotted line indicates that
the intended connection is redirected

For wvalidating the TCP connection handover
mechanism, we use the SSH to establish the TCP
connection and apply Wireshark to observe the connection
changes occurred between the frontend and the backend.
Figure 10 shows the observation.

Time 10.1.0.2 10.1.1.2 Comment
4.941079 36093 SH 22 Seq = 0
4.941111 36003 STCACT 22 Seq = 0 Ack = 1
4.943263 36003 acK 22 Seq = 1 Ack = 1
4.947688 36093 ESEMACKESNen X1 22 Seq = 1 Ack = 1
5.149874 36093 ESEACRESA o 43 22 Seq = 1 Ack = 1
5. 353871 36003 ESICMACI Ao I 2 Seq = 1 Ack = 1
5.761863 36093 Lt L6 = g S 22 Seq = 1 Ack = 1

Time 10.1.0.2 10.1.1.2 Comment
4, 944849 36093 4] 22 Seq = 0
4. 944876 36093 STMACK 22 Seq = 0 Ack = 1
4.951328 36093 it 22 Seq = 1 Ack = 1
4. 951409 36093 ESEMACREA loiiIEL: 22 Seq = 1 Ack = 1
4. 951420 36093 ML 22 Seq = 1 Ack = 44
4.956216 36093 ALK 22 Seq = 44 Ack = 1
4. 956278 36003 ML 22 Seq = 44 Ack = 1
4.957416 36093 Leith (5 = liong &) 2 Seq =1 Aok = 44
4.957858 36093 LEE = Ny o) 22 Seq = 44 Ack = 44
4. 958339 36093 AR 22 Seq = 44 Ack = 44

Fig. 10. The Wireshark flow graphs of the SSH redirection testing

The upper flow graph shows the initial TCP connection
established between the attacker and the frontend.
Thereafter, the ACK_PSH segment from the attacker is
stopped sending to the frontend, since the Snort makes an
alert indicating the controller to redirect the traffic to the
backend. Thus, the controller starts to replay the TCP
three-way handshake as the bottom graph of Figure 10
shows. After finishing the new TCP establishment between
the attacker and the backend, the remaining segments
are exchanged fluently between them. Meanwhile, the
segments retransmitted from the frontend to the attacker
are dropped by the controller, and finally the old TCP

connection is terminated. Here we should note that the
time displayed by Wireshark is relative to the first packet
it captures by the network interface, so the time has
no the reference meaning. Once the attacking connection
is redirected to a HIH, the attacker can check on the
destination address, but no change will draw his attention.

C. Performance tests

For the performance evaluation, we design a test based
on the SMTP protocol to monitor the latency of the first
push packets arriving at the honeypot under concurrent
inbound connections. An SMTP server (Postfix) was
installed in honeypots. An SMTP client script was
installed on the remote attacker. The script consists of
the following sequence of five SMTP commands:

HELO test \n

MAIL FROM: <test@test.test> \n
RCPT TO: <root@localhost> \n
DATA. \n

test. \n

The experiment consisted of running the automated
SMTP client script at the rate of 10 connections per
second. We recorded the duration for the first push packet
of each connection arriving at the honeypot. The results
under different scenarios are shown in Fig 11.

mforward mhoneybrid musing controller as the frontend ® using vm as the frontend

RN
i1l

5 6 7 8 9 10

Latency of the first payload pkt arriving at honepit(s)

Sttt
| 1 M 1

Concurrent smtp connection requests in one second

Fig. 11. Connection latency under different scenarios

The first push packet including payload arriving at the
honeypot means the TCP connection between the attacker
and honeypot has been established. So the timestamp of
the first push packet arriving at the network interface
of the honeypot can be used to calculate the duration
for establishing TCP connection. The experimental results
show that the connections processed by the Honeybrid
gateway and the traffic redirection mechanism 2 can cause
much more latency than the normal forward connections,
while the connections processed by the traffic redirection
mechanism 1 have short latency that close to the normal
forward connections. Mechanism 1 uses the controller to
play the role of frontend to answer the TCP connection
request, which loses some fidelity and reality. Mechanism 2
uses the VM (a honeypot) as the frontend, it can respond

12

to the attacker’s request with real fingerprints. Hence,
mechanism 1 has less latency, so it is more suitable for the
case of capturing automatic attacks, while the mechanism
2 is more realistic, so it is more suitable for the case of
capturing manual attacks.

Fig. 12 shows the packet I/O graph by using different
mechanisms. The adopted interval is 100ms, so the
diagram refers to the number of packets is processed by
the honeypot in each 100ms. Within this interval, we can

e fOrward === honeybrid
70

using contoller as the frontend === using vm as the frontend

60

50

40 |

30

20

10 +

0

THe number of packets processed per second

1 3 57 9 111315171921232527293133353739414345474951

Interval (x100ms)

Fig. 12. Packet I/O graph of honeypot under different mechanisms

observe the packet I/O is more equal-distributed when
using the traffic redirection mechanism 2 or never using
any redirection. The packet I/O distribution of the traffic
redirection mechanism 1 and Honeybrid is quite similar.

These two experimental results show that the added
traffic control mechanisms provide more sophisticated
functions than the state-of-the-art but do not cause
performance loss.

D. Live attack capture

In order to capture real attack data, we deployed
the system including multiple decoys with two identical
fingerprints in a low security production network of
Universidad Politécnica de Madrid (UPM) (see Figure 13).
On one hand, owing to the security requirements, we set

Production network ()

HoneyDuet Server

.‘]|| IP: 138.4.0.102
MAC: d:00:00:00:00:01

MIH-1: Dionaca

]|i 1P: 138.4.0.102
Q7

Gl i MAC: £d:00:00:00:00:01

HIH-1: Ubuntu

.]|| 1P: 138.4.0.103
MAC: £d:00:00:00:00:02

MIH-2: Amun

Qll 1P: 138.4.0.103
MAC: £d:00:00:00:00:02

ofsoftswitch13

HIH-2: Ubuntu

Fig. 13. Schematic diagram of system deployment in real scenario

the flow control rule to forward all the traffic to the MIHs;
on the other hand, in order to capture as many attacks
as possible, we set the flow classification rule to allow
any connection attempt. We used the traffic redirection
mechanism 2 to deploy the virtual decoys, the well-known

open-source MIH softwares, Dionaea [44] and Amun [48],
were deployed in the virtual machines, and the assigned
IP addresses were registered in DNS so that they can
be found by attackers. Thanks to the well-developed log
statistic approaches of Dionaea, the captured data can be
graphically shown in Fig. 14, i.e. the accepted requests
and the remote attacking hosts.

=@ accept-without data reduction accept-with data reduction

10000
1000 a s ;S
100

10

Count

1

Jan-16 Jan-16 Jan-16 Feb-16

Date

Feb-16 Feb-16 Feb-16 = Mar-16

remote hosts-without data reduction remote hosts-with data reduction

1000

100

Count

1

Jan-16 Jan-16 Jan-16 Feb-16

Date

Feb-16 Feb-16 Feb-16 = Mar-16

Fig. 14. Live data captured compared to the results of data reduction

During the period of live attack capture, 28099 attacking
incidents were observed, and among them 169 counts hit
the vulnerabilities emulated by Dionaea. The port attack
frequency of these hit counts are shown in Table III.

TABLE III
Dionaea: emulated open ports and attack hit counts

| Port | 21 |42 135|445 | 1433 | 5060 | 40950 | 42737 | 53360

| Hitcounts | 11528 12 | 2 | 2 | 7 | 1 | 1 | 1

1) Sensibility utility - useless network data reduction:
In order to catch data as much as possible, we did not set
data filtering rules. However, we can observe the statistics
presented above (Table III) that show only a small part
of the data can be identified by Dionaea. Hence, if the
researchers desire to get a more fine-grained traffic, a
set of traffic filtering rules can be configured in order
to undertake the data reduction. We set the Snort rules
blocking all ports except the ones shown in Table III.
Later, in order to perform the comparative experiment,
we replayed the attacks in a testbed scenario with the
same configuration, but the OVS is configured by the
new Snort rules. After completing the attack replay, the
new attack statistics of Dionaea are presented by the data
reduction lines (the ”accept-with data reduction” and the

13

“remote hosts-with data reduction” lines) of Figure 14.
It shows that the attack frequency decreases from several
hundred times per day to several times per day. Therefore,
the proposed customizable traffic classification can enforce
effective data reduction.

2) Stealth utility - interesting system data capture: The
data captured by the MIH is limited to conduct attack
profiling and analysis, since there is no system activity
left by the adversary to be used for investigation. For
example, we captured a brute force attacker (with IP
address 62.210.207.107) by Amun, and the recorded data
can be shown as follows:

2015-12-26 04:38:08,031 INFO [vuln_ ftpd] Attacker:
62.210.207.107 Message: [USER anonymous \r \n’|
Bytes: 16 Stage: FTPD_STAGE1

2015-12-26 04:38:08,066 INFO [vuln_ftpd] Attacker:
62.210.207.107 Message: [[PASS anonymous@
\r \n’] Bytes: 17 Stage: FTPD_STAGE1l
2015-12-26 04:38:08,101 INFO [vuln_ ftpd] Attacker:
62.210.207.107 Message: [CWD / \r \n'| Bytes: 7
Stage: FTPD__STAGE2

2015-12-26 04:38:08,135 INFO [vuln_ftpd] Attacker:
62.210.207.107 Message: [TYPE A \r \n’| Bytes: 8
Stage: FTPD_STAGE2

Due to the limited interaction between the attacker
and the decoy (created by Amun), we observed that
the captured data is readable but it provided little
information. It is not like a HIH that can be compromised
and allow the attacker to have a full interaction so that
more attacking information can be obtained.

Hence, if we redirect the interesting traffic into the
HIH, we are able to get more data about the adversary’s
activity for investigating the intrusion event. We emulated
a real attack by using msfconsole® to exploit the distcc”
vulnerability on the honeypot. In order to launch attack
again the MIH, we set the redirection rule as follows:

alert tcp any any — any 3632 (msg:“MIH";)

The manually attack launched by msfconsole failed to
compromise the MIH and only a TCP connection request
on port 3632 was recorded. Thereby, comparing to the
first redirection rule, we set to redirect the traffic to the
HIH:

alert tcp any any — any 3632 (msg:“HIH”;)

Thereafter, we undertook the identical attack against
the distcc vulnerability on the Metasploitable2® honeypot
again. The msfconsole successfully gained the online
access. Later, we downloaded a privileged escalation
exploit distcc to escalate the privilege from user daemon
to root, and used the netcat send back the root shell

to the attacker’s side. The emulated intrusion was

Shttps://www.metasploit.com/

"https:/ /www.rapid7.com/db/modules/exploit/unix/misc/distcc__exec
8https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

completed by the adversary gaining the root privilege of
the compromised honeypot. Consequently, the security
researcher can use the Volatility® scan to enforce the
memory forensics over the compromised system for the
purpose of attack profiling. Some forensic results can be
seen in Table IV.

TABLE IV
The Volatility forensic results

| Action | Results |

linux_ netstat

New distcc Process ID
New netcat Process ID

| linux_psaux | New socket created by the metasploit payload |

‘ linux_ pstree

Standard output file during the distcc exploit
New PID that executed the shell by netcat

VII. Conclusion

A honeypot system is a vitally important security
facility created to be probed, attacked and compromised,
in order to trap the adversaries as well as investigate
the well-known, and especially, the unknown attacks.
The innovation of this paper is the compact honeypot
architecture - HoneyDOC, which differs from the
traditional honeypot architectures by using the novel
Decoy-Orchestrator-Captor perspective to dissect and
decouple the honeypot, enabling all-round honeypot
design, which has been demonstrated by the powerful
SDN-enabled architecture. By taking advantage of the
SDN technology, the heterogeneous decoys supported
by the SDN switches can be integrated into the
versatile honeypot system flexibly, the diverse security
applications can be developed and integrated upon the
SDN controller’s APIs, particularly, the traffic control can
be adaptively and transparently conducted by the SDN
controller applications according to the requirements.

A proof-of-concept system has been implemented
for wvalidating the proposal. The sensibility test
shows the arbitrary traffic classification rules and the
fine-grained actions. The countermeasure and stealth tests
demonstrate that a much stealthier traffic migration
function is added but the performance does not decrease
compared to existing solutions (i.e. Honeybrid). Also,
we conducted the system deploying virtual honeypots in
real production network for capturing live attacks. The
real data based validation shows the efficiency of data
reduction and the effectiveness of the traffic redirection
for data analysis. The experimental results show the
feasibility and efficiency of the proposed architecture.

In the future, we will improve the whole system and
use it to conduct research by long-term live data capture.
We consider proposing a network functions virtualization
(NFV) [51] based general honeypot deployer, to create and
manage the decoys in cloud, so as to capture and analyze
cyber threat data from different sources. We also take

9http:/ /www.volatilityfoundation.org/

14

steps to enhance the anomaly-based detection, facilitate
the adaptive decoy deployment to deter the advanced
persistent threat (APT), and perhaps, cooperate with Al
techniques to help forensics and intrusion prediction.

Acknowledgment

The skills, knowledge and experience W.Fan gained
from the C3ISP project (the European Union’s Horizon
2020 research and innovation programme under grant
agreement No 700294) he participated in are very helpful
to complete the work.

References

[1] R. Richardson, “Csi survey 2007: The 12th annual computer
crime and security survey. 2007,” Computer Security Institute:
San Francisco, CA.

[2] “Internet security threat report,” Symantec, Technical Report,
2018.

[3] S. W. Brenner, “Cyberterrorism: How real is the threat?” Media
Asia, vol. 29, no. 3, pp. 149-154, 2002.

[4] L. Janczewski, Cyber warfare and cyber terrorism. IGI Global,
2007.

[5] L. Spitzner, “Honeypots: catching the insider threat,” in
Computer Security Applications Conference, 2003. Proceedings.
19th Annual, Dec 2003, pp. 170-179.

6] S. Hansman and R. Hunt, “A taxonomy of network and
computer attacks,” Computers & Security, vol. 24, no. 1, pp.
31 — 43, 2005.

[7] R.P. van Heerden, B. Irwin, and I. Burke, “Classifying network
attack scenarios using an ontology,” in Proceedings of the 7th
International Conference on Information Warfare and Security.
Academic Conferences Limited, 2012, pp. 331-324.

8] R. McGrew and R. B. Vaughn JR, ¢“Experiences with
honeypot systems: Development, deployment, and analysis,” in
Proceedings of the 39th Annual Hawaii International Conference
on System Sciences (HICSS’06), vol. 9, Jan 2006, p. 220a.

[9] D. O’Brien, “Istr ransomware 2017,” Symantec, An ISTR
Special Report, 2017.

[10] M. Nawrocki, M. Wahlisch, C. Schmidt, T. C. andKeil, and
J. Schonfelder, “A survey on honeypot software and data
analysis,” ArXiv e-prints, Aug. 2016.

[11] “Know your enemy: Honeynets,” May 2006. [Online|. Available:
http://old.honeynet.org/papers/honeynet/

[12] R. Berthier and M. Cukier, “Honeybrid: A hybrid honeypot
architecture,” in USENIX Security Symposium, 2008.

[13] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas,
Z. Zhao, A. Doup”|, and G. J. Ahn, “Honeyproxy: Design and
implementation of next-generation honeynet via sdn,” in 2017
IEEE Conference on Communications and Network Security
(CNS), Oct 2017, pp. 1-9.

[14] H. Artail, H. Safa, M. Sraj, I. Kuwatly, and Z. Al-Masri, “A
hybrid honeypot framework for improving intrusion detection

systems in protecting organizational networks,” Comput.
Secur., vol. 25, no. 4, pp. 274-288, Jun. 2006.
[15] G. Portokalidis and H. Bos, “Sweetbait: Zero-hour worm

detection and containment using low-and high-interaction
honeypots,” Computer Networks, vol. 51, no. 5, pp. 12561274,
2007.

[16] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and
A. Kiayias, “Virtual machine introspection in a hybrid honeypot
architecture,” in Presented as part of the 5th Workshop on
Cyber Security Experimentation and Test. Berkeley, CA:
USENIX, 2012.

[17] H. Wang and Q. Chen, “Dynamic deploying distributed
low-interaction honeynet,” Journal of Computers, vol. 7, no. 3,
2012.

[18] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos, “A
hybrid honeypot architecture for scalable network monitoring,”
Technical Report CSE-TR-499-04, University of Michigan, 2004.

(19]

20]

(21]

(22]

23]

(24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

M. Bailey, E. Cooke, F. Jahanian, N. Provos, K. Rosaen, and
D. Watson, “Data reduction for the scalable automated analysis
of distributed darknet traffic,” in Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement. USENIX
Association, 2005, pp. 21-21.

N. Krawetz, “Anti-honeypot technology,” Security Privacy,
IEEE, vol. 2, no. 1, pp. 76-79, Jan 2004.

W. Fan and D. Ferndndez, “A novel sdn based stealthy tcp
connection handover mechanism for hybrid honeypot systems,”
in 2017 IEEE Conference on Network Softwarization (NetSoft),
July 2017, pp. 1-9.

W. Fan, “Contribution to the design of a flexible and adaptive
solution for the management of heterogeneous honeypot
systems,” Ph.D. dissertation, ETSI Telecomunicacion, Technical
University of Madrid, Spain, 2017.

W. Fan, Z. Du, D. Fernandez, and V. A. Villagra, “Enabling
an anatomic view to investigate honeypot systems: A survey,”
IEEE Systems Journal, vol. 12, no. 4, pp. 3906-3919, Dec 2018.
L. Spitzner, “The honeynet project: trapping the hackers,” IEEE
Security Privacy, vol. 1, no. 2, pp. 15-23, Mar 2003.

J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver,
“The use of honeynets to detect exploited systems across
large enterprise networks,” in Information Assurance Workshop,
2003. IEEE Systems, Man and Cybernetics Society, June 2003,
pp. 92-99.

L. K. Yan, “Virtual honeynets revisited,” in Information
Assurance Workshop, 2005. IAW ’05. Proceedings from the
Sixth Annual IEEE SMC, June 2005, pp. 232—-239.

F. Stumpf, A. Gorlach, F. Homann, and L. Brickner,
“Nose-building virtual honeynets made easy,” in Proc.
of the 12th Intj”] Linux System Technology Conference
(Linux-Kongressj~ 05), GUUG, 2005, pp. 1664-1669.

F. Abbasi and R. Harris, “Experiences with a generation
iii virtual honeynet,” in Telecommunication Networks and
Applications Conference (ATNAC), 2009 Australasian, Nov
2009, pp. 1-6.

N. Provos, “A virtual honeypot framework,” in Proceedings
of the 13th Conference on USENIX Security Symposium
(SSYM’04), Berkeley, CA, USA, 2004, pp. 1-14.

X. Jiang and D. Xu, “Collapsar: A vm-based architecture
for network attack detention center.” in USENIX Security
Symposium, 2004, pp. 15-28.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren,
G. Voelker, and S. Savage, “Scalability, fidelity and containment
in the potemkin virtual honeyfarm,” ACM Symposium on
Operating System Principles (SOSP), vol. 39, no. 5, pp.
148-162, Oct 2005.

H. Welte and P. N. Ayuso, “The
libnetfilter queue project,” 2014. [Online]. Available:
http://www.netfilter.org/projects/libnetfilter queue/

T. Lengyel, J. Neumann, S. Maresca, and A. Kiayias,
“Towards hybrid honeynets via virtual machine introspection
and cloning,” in Network and System Security, ser. Lecture
Notes in Computer Science, J. Lopez, X. Huang, and R. Sandhu,
Eds. Springer Berlin Heidelberg, 2013, vol. 7873, pp. 164-177.
W. Fan, D. Fernandez, and Z. Du, “Adaptive and flexible virtual
honeynet,” in International Conference on Mobile, Secure, and
Programmable Networking, vol. 9395, Paris, France, June 2015,
pp. 1-17.

W. Fan, Z. Du, D. Fernandez, and X. Hui, “Dynamic
hybrid honeypot system based transparent traffic redirection
mechanism,” in 17th International Conference on Information
and Communications Security (ICICS2015), Beijing, China,
Dec.9-11 2015, pp. 311-319.

D. L. C. Dutra, M. Bagaa, T. Taleb, and K. Samdanis,
“Ensuring end-to-end qos based on multi-paths routing using
sdn technology,” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Dec 2017, pp. 1-6.

C. J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice:
Network intrusion detection and countermeasure selection in
virtual network systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 10, no. 4, pp. 198-211, July 2013.
T. Xing, Z. Xiong, D. Huang, and D. Medhi, “Sdnips: Enabling
software-defined networking based intrusion prevention system
in clouds,” in 10th International Conference on Network and
Service Management (CNSM) and Workshop, Nov 2014, pp.
308-311.

(39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

15

P. K. Shanmugam, N. D. Subramanyam, J. Breen, C. Roach,
and J. Van der Merwe, “Deidtect: Towards distributed
elastic intrusion detection,” in Proceedings of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud Computing, ser.
DCC ’14. New York, NY, USA: ACM, 2014, pp. 17-24.

X. Pan, V. Yegneswaran, Y. Chen, P. Porras, and S. Shin,
“Hogmap: Using sdns to incentivize collaborative security
monitoring,” in Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network
Function Virtualization. New York, NY, USA: ACM, 2016, pp.
7-12.

W. Han, Z. Zhao, A. Doupé, and G.-J. Ahn, “Honeymix: Toward
sdn-based intelligent honeynet,” in Proceedings of the 2016
ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization. New York, NY,
USA: ACM, 2016, pp. 1-6.

X. Meng, Z. Zhao, R. Li, and H. Zhang, “An intelligent
honeynet architecture based on software defined security,” in
2017 9th International Conference on Wireless Communications
and Signal Processing (WCSP), Oct 2017, pp. 1-6.

L. Yanbing, L. Xingyu, J. Yi, and X. Yunpeng, “Sdsa: A
framework of a software-defined security architecture,” China
Communications, vol. 13, no. 2, pp. 178-188, Feb 2016.
“Dionaea - catched bugs,” Nov. 2011. [Online]. Available:
http://dionaea.carnivore.it/

F. Giubilo, A. Sajjad, M. Shackleton, D. W. Chadwick, W. Fan,
and R. de Lemos, “An architecture for privacy-preserving
sharing of cti with 3rdparty analysis services,” in 2017 12th
International Conference for Internet Technology and Secured
Transactions (ICITST), Dec 2017, pp. 293-297.

W. Fan, D. Fernidndez, and V. A. Villagrd, “Technology
independent honeynet description language,” in 2015 3rd
International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), Feb 2015, pp.
303-311.

N. Provos and T. Holz, Virtual honeypots: from botnet tracking
to intrusion detection, 1st ed. Addison Wesley, Jul. 2007.

J. Gobel, “Amun: A python honeypot,” Technical report
University of Mannheim, Mannheim, Germany, Tech. Rep.
TR-2009-008, 2009.

W. Fan, D. Ferniidez, and Z. Du, “Versatile virtual honeynet
management framework,” IET Information Security, vol. 11,
no. 1, pp. 38-45, 2016.

“Know your tools: Qebek -
monitoring,” nov 2010. [Online].
http://www.honeynet.org/papers/KYT__qebek
A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge
slicing: Vnf placement algorithms for a dynamic realistic edge
cloud environment,” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Dec 2017, pp. 1-6.

conceal the
Available:

