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Abstract

Estimation of sparse time-varying coefficients on the basis of time-dependent ob-

servations is one of the most challenging problems in statistics. Our study was

mainly motivated from magnetoencephalographic neuroimaging, where we want

to identify neural activities using the magnetoencephalographic sensor measure-

ments outside the brain. The problem is ill-posed since the observed magnetic

field could result from an infinite number of possible neuronal sources. The

so-called minimum-variance beamformer is one of data-adaptive nonparametric

feature filters to address the above problem in the literature. In this paper, we

propose a method of sure feature filtering for a high-dimensional time-varying

coefficient model. The new method assumes that the correlation structure of

the sensor measurements can be well represented by a set of non-orthogonal

variance-covariance components. We develop a theory on the sure screening

property of the proposed filters and on when the beamformer-based location

estimators are consistent or inconsistent with the true ones. We also derive the

lower and upper bounds for the mean filtering errors of the proposed method.

The new theory is further supported by simulations and a real data analysis.
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1. Introduction

Suppose that we observe an n-dimensional time-course Y(t) from the model

Y(t) =

∫

Ξ

x(r, η(r))β(r, t)dr + ε(t),

where Ξ is a bounded subset of R3, β(r, t) is a latent univariate time source of

interest at location r, x(r, η(r)) is a design vector with nuisance parameter η(r),

and ε(t) is a noise. Assume that β(r, t) is sparse, i.e., the temporal variability5

(called power or the marginal variance) var(β(r, .)) = 0 for all r ∈ B except a

few locations (i.e., non-null sources). We want to localize these non-null sources

among an infinite number of candidates. Given the limited number of time-

courses we observed, the problem is ill-posed and high-dimensional. To simplify

it, we discretize the integration, obtaining10

Y(t) =

p
∑

k=1

x(rk, η(rk))β(rk, t) + ε(t), (1)

where Ω = {r1, ..., rp} is a sieve (or grid) approximation to the source space. The

problem becomes a large-p-small-n problem. Several new methodologies have

been developed for addressing large-p-small-n problems in regression settings,

including least absolute shrinkage and selection operator (LASSO) (Tibshi-

rani,1996), smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), and15

correlation screening (SIS) (Fan and Lv, 2008). Many important theoretical re-

sults have also been established recently in selection consistency (e.g.,Meinshausen

and Bühmann, 2006; Zhao and Yu, 2006; Zhang, 2010). However, all these works

focused on finite dimensional features and are therefore not directly applicable

to neuroimaging studies, where features are time series.20

In this paper, we propose a nonparametric feature filtering procedure for

identifying the sparse coefficients. The proposed procedure is general but was

initially designed for magnetoencephalography (MEG) neuroimaging. MEG is a

technique for mapping brain activity by measuring magnetic fields produced by

electrical currents occurring in the brain, using arrays of superconducting quan-25

tum interference sensors (Hamalainen et al., 2010). The MEG neuroimaging
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can be employed to study perceptual and cognitive brain processes, to localize

regions affected by pathology, and to determine the function of various parts of

the brain. While MEG offers a direct measurement of neural activity with very

high temporal resolution, its spatial resolution is relatively low. Concerns over30

its spatial resolution have raised fundamental issues of methodology and theory.

In fact, improving its resolution by virtue of source reconstruction lies at the

heart of the entire MEG-based brain mapping enterprise.

In the MEG neuroimaging, Yi(tj) is the measurement recorded by the MEG

sensor i at time tj for 1 ≤ i ≤ n, 1 ≤ j ≤ J, where the time points tj = j/∆,35

the number of the time instants J = b∆ is determined by the time window

b and the sampling rate ∆ per second, and the number of the sensors n is

of order hundreds. Let Y(tj) denote the measurements from all the sensors

at time tj , which are assumed to be induced by potential sources at locations

rk, 1 ≤ k ≤ p along time-invariant orientations ηk ≡ η(rk, t), 1 ≤ k ≤ p in the40

brain respectively. Let β(tj) = (β(r1, tj), ..., β(rp, tj))
T be the source magnitude

vector of these sources at time tj and {β(rk, tj) : 1 ≤ j ≤ J} the source time-

course at rk, where the superscript T indicates the matrix transpose. Let xk be

the output vector of these sensors that would be induced by a unit-magnitude

source located at rk along orientation ηk and X = (x1, ...,xp). As a special case45

of model (1), the sensor measurements Y(tj) may be modeled as

Y(tj) =

p
∑

k=1

xkβ(rk, tj) + ε(tj), (2)

where xk = l(rk)ηk, l(rk) ∈ Rn×3 (called lead field matrix at location rk) is

derived from a forward physical model of the brain, and ε(tj) is the noise vector

of the n sensors at time tj (Sarvas, 1987). To search for unknown sources,

a neural activity index for each grid point in the sieve is calculated, creating50

a source map of brain activity. Important sources can be then identified by

filtering the source map. The accuracy of the filtering depends on the sieve size

p, and the spatial and temporal dimensions of the MEG measurements (i.e., the

number of sensors and the number of time instants). In practice, the sieve size

p is often set to a value much larger than n.55
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The minimum-variance beamforming, a data-adaptive filtering approach to

the above source localization problem has been widely used in neuroimaging. In

the approach, one scans the source space through a feature space with a series

of filters; each is tailored to a particular area of feature (called pass-band) and

resistant to confounding effects originating from other areas (called stop-band)60

(van Veen et al.,1997; Robinson and Vrba, 1998). The scalar minimum variance

beamforming aims to estimate the source power at the location rk by minimizing

the sample variance of the projected data wTY(tj), 1 ≤ j ≤ J with respect to

the weighting vector w, subject to the constraint wTxk = 1. In the scalar

minimum-variance beamformer, the pass-band is defined by linearly weighting65

sensor arrays with the constraint wTxk = 1, while the stop-band is realized via

minimizing the variance of the projected data. The estimated power can be

normalized to produce a power map over a given temporal window while the

beamformer projected data can provide time course information at each source.

We rank these candidate sources by their powers and filter out noisy ones by70

thresholding.

In recent years, a number of simulation studies and theoretical studies have

been conducted to evaluate the performance of a beamformer (e.g., Brookes et

al., 2008; Sekihara and Nagarajan, 2010). Despite of this, several issues re-

main to be addressed. Firstly, there is no rigorous statistical theory available75

to allow one to examine when the estimated source time-courses are consistent

with the true ones. In particular, when there are multiple sources, the accuracy

is compromised by confounding effects of multiple sources. It is natural to ask

when a beamformer will breakdown in presence of multiple sources and how this

effect is determined by the spatial and temporal dimensions of a beamformer.80

Secondly, it is largely unknown in the literature when the beamformer-based

filtering procedure can recover the true sources with an overwhelming probabil-

ity, although a sure filtering procedure for ordinary linear regression models has

been developed by Fan and Lv (2008).

To address these issues, we propose a beamformer filtering procedure which85

is based on the thresholded sensor covariance estimator. The objective of the
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procedure is to identify a set of sources from sparse source model (2), which

have nonzero powers or power increases relative to a reference. We develop a

sure filtering theory for the proposed procedure under certain conditions. We

show that if the true sources are not too close to each other and if n and J90

are large enough, then these sources can be recovered in a probability tending

to one. Furthermore, we provide mean error bounds for source localization,

power estimation and time-course estimation in the procedure. We conduct

simulation studies and a real data analysis to assess the performance of the

proposed procedure.95

The paper is organized as follows. The details of the new beamforming

methodology are provided in Sections 2 and 4. The asymptotic properties of

the proposed procedure are investigated in Section 3. The simulation results

and a real MEG data analysis are presented in Section 5. The conclusions are

made in Section 6. The proof of Theorem 1 is deferred to the Appendix. The100

part of numerical results and the proofs of the lemmas, the proposition and the

other theorems can be found in the on-line supplementary material.

2. Methodology

In this section we propose a new filtering procedure which uses the thresh-

olded sensor covariance estimator.105

2.1. Estimation of sensor covariance matrix

Suppose that (Y(tj) : 1 ≤ j ≤ J) and X = (x1, ...,xp) are randomly sampled

from the model (2). Namely,

Y(tj) = Xβ(tj) + ε(tj), 1 ≤ j ≤ J,

where xk = l(rk)ηk is the composite lead field vector at location rk along ori-

entation ηk, 1 ≤ k ≤ p.110

To make the above model identifiable, we assume the following condition.

Condition (A1): The source processes {β(t)} and the noise process {ε(t)}
are stationary with E[β(t)] = E[ε(t)] = 0. These two processes are uncorrelated
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with each other. The sources {βk(t)}, 1 ≤ k ≤ p are also uncorrelated with each

other.115

Under model (2) and condition (A1), if the noises are uncorrelated across

the sensors and white, then the sensor covariance matrix can be expressed as

C = Xcov(β(tj))X
T + cov(ε(tj)) =

p
∑

k=1

γkxkx
T
k + σ2

0In,

where γk denotes the marginal variance (i.e., power) of the k-th time-source, σ2
0

is the background noise level and In is an n× n identity matrix.

The sensor covariance is traditionally estimated by its sample version,120

Ĉ = (ĉij) =
1

J

J
∑

j=1

(Y(tj)− Ȳ)(Y(tj)− Ȳ)T ,

where Ȳ is the sample mean of {Y(tj)}. It is known that the sample covari-

ance is not a good estimator of the population covariance if its dimension n

is large or if the sample covariance is degenerate Bickel and Levina (2008). In

MEG neuroimaging, the sample covariance matrix can be nearly singular due to

collinearity between nearby voxels, which can have serious effects on estimating125

the precision matrix used in the source reconstruction. Here, we apply the pro-

cedure of Bickel and Levina (2008) to estimate the sensor covariance C, which

is given by

Ĉ(τnJ) = (ĉij(τnJ )),

where ĉij(τnJ ) = ĉijI(|ĉij | ≥ τnJ ) and τnJ is a constant changing in n and J.

Bickel and Levina (2008) showed that for independent and identically dis-130

tributed (IID) samples, if one chooses τnJ = O(
√

log(n)/J), then under cer-

tain regularity conditions the thresholded covariance estimator is consistent

with the true one, with the convergence rate of Op(mn

√

log(n)/J), where

mn = maxi
∑n
j=1 I(cij 6= 0). Zhang et al.(2014) extended the above result

to non IID samples.135

2.2. SAM index

Source localization can be realized in two steps: Step 1, we construct a sieve

Φ by partitioning the brain into a regular three dimensional grid and calculate
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the source power for each grid point. The size of the sieve is determined by the

resolution of the grid. In practice, one often set the resolution level at 1 cm140

or 1 mm. These powers generate a power distribution overlaid on a structural

image of the subject’s brain, creating a brain power map. The beamforming

method consider here is termed Synthetic Aperture Magnetometry (SAM) in

the literature (Robinson and Vrba, 1998). Step 2, we identify significant sources

by thresholding the map. The details are given as follows.145

For any grid point r and orientation η, we define the scaled lead field vec-

tor x = x(r, η) = l(r)η, where l(r) is the n × 3 lead field matrix. Given

η, we calculate the weighting vector w(r, η) by minimizing the variance of

wT Ĉ(τnJ )w with respect to w, subject to wTx = 1. This gives rise to w(r, η) =

Ĉ(τnJ )
−1x/xT Ĉ(τnJ )

−1x. The power γ̂(r) of the estimated source time-series150

{w(r, η)TY(tj) : 1 ≤ j ≤ J} at r is equal to 1/xT Ĉ(τnJ )
−1x. The orientation

is then estimated by maximizing the signal-to-noise ratio

w(r, η)T Ĉ(τnJ )w(r, η)

(σ2
0w(r, η)

Tw(r, η))

or equivalently by maximizing the normalized power

SAM(x(r, η)) =
w(r, η)T Ĉ(τnJ )w(r, η)

w(r, η)Tw(r, η)
=

(l(r)η)T Ĉ(τnJ )
−1l(r)η

(l(r)η)T Ĉ(τnJ )−2l(r)η
.

The above maximization can be done by solving a generalized eigenvalue prob-

lem: The optimal orientation η̂(r) is the eigenvector associated with the mini-155

mum non-zero eigenvalue of the matrix l(r)T Ĉ(τnJ )
−2l(r) relative to l(r)T Ĉ(τnJ )

−1l(r).

Denote x̂(r) = x(r, η̂(r)). We call SAM(r) = SAM(x̂(r)) the SAM index of neural

activity at r. When r is running over the grid points in the brain, SAM(r) creates

a neuronal power map that underlies measured magnetic fields. Zhang et al.

(2014) proved that when the underlying true sources are separable in a sense,160

the SAM index can consistently estimate their powers and therefore identify the

true sources from a large number of candidates.

By thresholding the above neuronal power map, we obtain an estimated

source set, namely

Dn = {r ∈ Ω : SAM(r) ≥ σ̂2
0(1 + hn)},
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where σ̂2
0 is the estimated background noise level based on a pre-stimulus dataset165

and 1+hn is a pre-selected positive constant or a value estimated from the data.

The estimated source time-courses and powers are given by

Θn = {x̂(r)T Ĉ(τnJ )−1Y(·)/x̂(r)T Ĉ(τnJ)−1x(r) : r ∈ Dn},

Γn = {γ̂(r) : r ∈ Dn},

respectively. In this paper, we often let hn increase to infinity with a rate slower

than n, i.e., hn/n = op(1). The local peaks of the SAM index over Dn give

location estimators of the underlying sources. In particular, we are interested170

in the global maximum of the SAM index, which produces a point estimator

called the maximum location estimator for one of the underlying sources.

In practice, the MEG imaging is often run on a subject first without stimulus

and then with stimulus. This allows us to calculate the sample covariance Ĉ

for the MEG data with stimulus as well as the sample covariance Ĉ0 for the175

background noises. The latter can provide an estimator of the background noise

level. To make the thresholded sample covariance to be convergent, Zhang et

al. (2014) chose τnJ = c0σ̂
2
0

√

log(n)/J with a tuning constant c0 and threshold

Ĉ by τnJ , where σ̂
2
0 is the minimum diagonal element in Ĉ0. The corresponding

SAM index is written as SAMc0(r). Note that, when c0 ≤ 0, the proposed SAM180

procedure reduces to the standard SAM implemented in the software FieldTrip.

For each value of c0, we can apply the proposed SAM procedure to the data

and obtain the maximum SAM index

SAMc0 = max{SAMc0(r) : r in the sieve}. (3)

In both simulations and a real data analysis, Zhang et al.(2014) showed that

c0 ∈ D0 = {0, 0.5, 1, 1.5, 2} had covered its useful range. The issue of how185

to choose the tuning constant c0 has been addressed in Zhang et al.(2014),

where they recommended choosing c0 so that SAMc0 in (3) attains the maximum.

Bickel and Levina (2008) proposed a cross-validation approach for choosing

thresholding level in context of covariance matrix estimation. Their method is

not directly applicable to the optimization of the SAM mapping as the latter190
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involves not only covariance estimation but also other steps. In general, an

optimal covariance estimator does not lead to an optimal power map. However,

as shown in the following sections, the tuning constant c0 has no effect on the

asymptotic theory. We will not discuss the issue further and suppress symbol

c0 in SAMc0(r) thereafter.195

3. Filter theory

We present an asymptotic analysis for the proposed procedure when both

n and J are tending to infinity. Throughout the paper, we denote by ||x|| the
Euclidean norm of vector x. For an n×n symmetric matrixM , we use λ1(M) ≥
· · · ≥ λn(M) for its eigenvalues. Define the operator norm for M = (mij)n×n200

by ||M || = max1≤j≤p |λj(M)|. It is well-known that ||M || ≤ maxi
∑n
j=1 |mij |.

3.1. Reparametrization

To simplify the derivation, assuming that l(rk)ηk 6= 0, 1 ≤ k ≤ p, we

reparametrize the model (2) as follows:

Y(tj) = (x̃1, ..., x̃n)











β̃1(tj)
...

β̃p(tj)











+ ε(tj),

where x̃k =
√
nl(rk)ηk/||l(rk)ηk|| and β̃k(tj) = ||l(rk)ηk||βk(tj)/

√
n. For the205

notation simplicity, we let xk and βk(tj) stand for x̃ and β̃k(tj) respectively,

that is, let

xk =
√
nl(rk)ηk/||l(rk)ηk||,

E[Y(tj)] = E[β(tj)] = E[ε(tj)] = 0, 1 ≤ j ≤ J, 1 ≤ k ≤ p

in the model (2). The original time-course and power can be recovered by mul-

tiplying β(rk, tj) by the scaling factor
√
n/||l(rk)ηk||. However, the normalized

power index SAM(r) is invariant under this reparametrization. Note that in210

practice we often see that ||l(rk)ηk||2/n =
∑n
i=1(li(rk)ηk)

2/n is tending to a

constant as n is large. See Zhang et al.(2014).
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Assume that the sensor processes are ergodic. Then, the underlying sensor

covariance matrix Cp can be written as Cp =
∑p
k=1 γkxkx

T
k + σ2

0In. To build

a brain map, we consider an arbitrary location and orientation (r, η) in the215

brain with l(r)η 6= 0. Let x = x(r, η)=
√
nl(r)η/||l(r)η|| denote the scaled lead

field vector at r along orientation η. For any two locations r and ry, the lead

field spatial coherence is defined by ρ(x(r, η),y) = x(r, η)Ty/n = 1− ||x(r, η)−
y||2/(2n). Note that ||x(r, η)|| = ||y|| = n. We define the so-called lead field

distance between x(r, η) and y by ||x(r, η) − y||n = ||x(r, η) − y||/√n. When220

ρ(x(r, η),y) ≥ 0, we have

1

2
||x(r, η)− y||2n = 1− ρ(x(r, η),y) ≤ 1− ρ(x(r, η),y)2

≤ 2(1− ρ(x(r, η),y)) = ||x(r, η)− y||2n.

When ρ(x(r, η),y) < 0, the above inequalities still hold if we replace y by −y.

So 1−ρ(x(r, η),y)2 shows how close (r, η) is to (ry, ηy) in terms of the lead field

distances ||x(r, η)− y||n and ||x(r, η) + y||n.

3.2. Identifiability225

The source identifiability is mainly determined by the lead field matrix. A

necessary condition for the source r1 being identifiable is that the columns in the

matrix are independent of each other (Zhang et al., 2014). That is, we assume

the following condition.

Condition (A2): For any three different locations r, r1 and r2 in the brain,230

the columns in the matrix (l(r), l(r1), l(r2)) are linearly independent.

3.3. Convergence of sensor covariance estimator

Following Bickel and Levina (2008), Zhang et al.(2014) established the con-

vergence rate of the thresholded sensor covariance estimator when both n and

J are tending to infinity under the following two additional conditions.235

Condition (A4): There exist positive constants κ1 and τ1 such that for any

u > 0 and t,

max
1≤i≤n

P (||yi(t)|| > u) ≤ exp(1− τ1u
κ1)
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and max1≤i≤nE||yi(t)||2 < +∞.

In the second one, we assume that the sensor processes are strong mixing.

Let F0
−∞ and F∞

k denote the σ-algebras generated by {y(t) : −∞ ≤ t ≤ 0} and240

{y(t) : t ≥ k} respectively. Define the mixing coefficient

α(k) = sup
A∈F0

−∞
,B∈F∞

k

|P (A)P (B)− P (AB)|.

The mixing coefficient α(k) quantifies the degree of the temporal dependence of

the process {y(t)} at lag k. We assume that α(k) is decreasing exponentially

fast as lag k is increasing.

Condition (A5): There exist positive constants κ2 and τ2 such that for k ≥ 0,245

α(k) ≤ exp(−τ2kκ2).

Write τnJ = A
√

log(n)/J , where A is a constant. Let ȳi be the sample mean

of the i-th sensor as before and

C = Cp = (cij), mn = max
1≤i≤n

n
∑

j=1

I(cij 6= 0),

ĉij =
1

J

J
∑

t=1

(yi(t)− ȳi)(yj(t)− ȳj),

Ĉ(τnJ ) = Ĉp(τnJ ) = (ĉijI(|ĉij | ≥ τnJ)),

where I(·) is the indicator. Let κ3 = max{2(2/κ1 + 1/κ2) − 1, (4/3)(1/κ1 +

1/κ2)− 1/3, 1}. We adopt the following result from Zhang et al.(2014).

Proposition 3.1. Under conditions (A1)∼(A5), if (log(n))κ3/J = o(1) and250

τnJmn = o(1) as n → ∞ and J → ∞, then ||Ĉ(τnJ )−1 − C−1|| = Op(mnτnJ )

and ||Ĉ(τnJ )−2 − C−2|| = Op(mnτnJ).

In practice, E[β(t)] = 0 may not be true even after a centralization. For

example, β(t) may have a nonlinear trend α(t), i.e., β(t) can be expressed as

α(t) plus a random process ζ(t) with E[ζ(t)] = 0. In this situation, we modify255

condition (A1) as follows.
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Condition (A1’): The process ζ(t) and the noise process ε(t) are stationary.

The noise process is temporally uncorrelated with α(t) and ζ(t). The compo-

nents of α(t) − ∑J
j=1 α(tj)/J are orthogonal when J is large enough. The

components of ζ(t)−∑J
j=1 ζ(tj)/J are asymptotically uncorrelated as J → ∞.260

Also α(t)−∑J
j=1 α(tj)/J and ζ(t)−∑J

j=1 ζ(tj)/J are asymptotically uncorre-

lated as J → ∞. The limit limJ→∞

∑J
j=1(αk(tj)− ᾱ)2/J exists, where αk(t) is

the k-th component of α(t).

We re-define the C matrix by letting γk = var(ζ(t))+limJ→∞

∑J
j=1(αk(tj)−

ᾱ)2/J , where αk(t) is the k-th component of α(t) and ᾱ =
∑J
j=1 α(tj)/J . Then,265

Proposition 3.1 still holds under conditions (A1’) and (A2)∼(A5).

3.4. Bounds for filtering errors

Under similar conditions to (A1)∼(A5), where the true sources are well

separated, Zhang et al. (2014) showed the following local consistency result for

the SAM index: For non-null true sources,270

1

xTj Ĉ(τnJ)
−1xj

= γj + op(1),
xTj Ĉ(τnJ )

−1xj

xTj Ĉ(τnJ )
−2xj

= σ2
0 (nγjv1j + 1 + 2γjv2j) + op(1),

where v1j and v2j are constants depending on the lead field vectors. In contrast,

for null sources,

1

xT Ĉ(τnJ)−1x
= op(1),

xT Ĉ(τnJ )
−1x

xT Ĉ(τnJ )−2x
= σ2

0 + op(1),

where σ2
0 is the background noise level. In the following, we will present a global

screening properties for the SAM index.

Suppose that there are only two non-null sources among p potential sources275

in model (2), which are located at r1 and r2 with orientations η1 and η2 respec-

tively. Let x1 = l(r1)η1, x2 = l(r2)η2, and ψn = n(1− ρ(x1,x2)
2). We assume

that the two underlying sources are apart away from each other by a lead field

distance of an order larger than O(1/n) (i.e., ψn → ∞ as n tends ∞). We

choose the two-latent-source model for our study because it is more amenable280

to theoretical analysis and sharper statements are possible. Although the above
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model is simple, it can provide insight into the more general setting when more

than two latent sources exist.

For the simplicity of notations, we let Ω denote a bounded region of interest

in the brain. Let x = x(r, η) denote the scaled lead field vector at location r285

along orientation η and let Φ = {x ∈ B : ||x|| = n}, where B is a set of all

the scaled lead field vectors. Let x̂(r) = x(r, η̂(r)) as before. We introduce the

following notations.

ρ12 = ρ(x1,x2), ψn = n(1− ρ212),

ρ(x,x1,x2) = ρ(x,x2)− ρ(x,x1)ρ12, ρ(x,x2,x1) = ρ(x,x1)− ρ(x,x2)ρ12,

δn(r|12) = nρ(x̂(r),x1,x2), δn(r|21) = nρ(x̂(r),x2,x1),

ζn(r|1) = n(1− ρ(x̂(r),x1)
2), ζn(r|2) = n(1− ρ(x̂(r),x2)

2)

κn(r|12) = ζn(r|1)− δn(r|12)2/ψn, κn(r|21) = ζn(r|2)− δn(r|21)2/ψn,

δn(x|12) = nρ(x,x1,x2), δn(x|21) = nρ(x,x2,x1),

ζn(x|1) = n(1− ρ(x,x1)
2), ζn(x|2) = n(1− ρ(x,x2)

2)

κn(x|12) = ζn(x|1)− δn(x|12)2/ψn, κn(x|21) = ζn(x|2)− δn(x|21)2/ψn.

Note that κn(r|12) gauges the closeness of x(r) to x1 adjusted by the inter-

ference from x2 and κn(r|21) gauges the closeness of x(r) to x2 adjusted by290

the interference from x1. By definition, κn(r|12) → 0 when r → r1 and

κn(r|21) → 0 when r → r2. By Lemma 6.1 in the Appendix, under condition

(A2), κn(r|12) ≥ 0 and κn(r|21) ≥ 0. Therefore, δn(r|12) ≤ (ζn(r|1) + ψn)/2

and δn(r|21) ≤ (ζn(r|2) +ψn)/2. Here, the following regularity condition is im-

posed on the lead field matrix, which states that the lead field distance ζn(r|1)295

(ζn(r|2)) and the adjusted lead field distance κn(r|12) (κn(r|21)) are of the same

rate of convergence as n→ ∞. For any constants an → ∞ and bn = O(1), let

Φ2 = {x ∈ Φ : ||x|| = n, ζn(x|k) ≥ an, k = 1, 2}.

Φ3|k = {x ∈ Φ : ||x|| = n, ψnζn(x|k) ≥ an, ζn(x|k) ≤ bn}, k = 1, 2.
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Condition (A6): If ψn → ∞, then there is a constant 0 < c12 < 1 such that

sup
x∈Φ3|1

κn(x|12)/ζn(x|1) ≥ c12.

If ψn → ∞, then there is a constant 0 < c21 < 1 such that

sup
x∈Φ3|2

κn(x|21)/ζn(x|2) ≥ c21.

If ψn → ∞, then300

sup
x∈Φ2

κn(x|12) → ∞, sup
x∈Φ2

κn(x|21) → ∞.

For any positive constants an → ∞ and bn = O(1) and for k = 1, 2, define

S1|k = {r ∈ Ω : ψnζn(r|k) ≤ an}, S2|k = {r ∈ Ω : ψnζn(r|k) ≤ bn},

which is an O(1/(nψn))-lead field neighborhood of the source rk. The fol-

lowing theorem implies that with an overwhelming probability, Dn includes

S2|k, k = 1, 2 as two sub-sets, while being hold within the O(an/(nψn))-lead

field neighborhoods of the true sources.305

Theorem 3.1. Under conditions (A1)∼(A6), if (log(n))κ3/J = o(1), n
√

log(n)/J =

o(1), hn/ψn = op(1), and ψn/(hnan) = op(1), then as n→ ∞ and J → ∞,

P
(

(S2|1 ∪ S2|2) ⊆ Dn ⊆ (S1|1 ∪ S1|2)
)

→ 1,

and

SAM(r) =







γ1ψn(1+O(1/ψn))
1+γ2

1(ψnζn(x|1)−δn(x|12)2)/σ4
0
, r ∈ S2|1,

γ2ψn(1+O(1/ψn))
1+γ2

2(ψnζn(x|2)−δn(x|21)2)/σ4
0
, r ∈ S2|2.

Remark 3.1. Theorem 3.1 suggests that by high enough thresholding (i.e., choos-

ing hn → ∞ in probability), we are able to detect two contiguous groups of310

active locations,S2|1 and S2|2, where the SAM index asymptotically attains the

local maximums at the true source locations. For all but a small set of r in

Dn, we have the following inequalities O (1/(nψn)) ≤ min{|1 − ρ(x̂(r),x1)
2|,

|1− ρ(x̂(r),x2)
2|} ≤ O (an/(nψn)) for the lead field distance from r to {r1, r2}.
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We define the mean errors of the power and the time-course estimation by315

MER(Γn) = supr∈Dn
min {|γ̂(r)− γ1| , |γ̂(r)− γ2|} and MER(Θn) = max{||θ −

β1|| ∧ ||θ − β2|| : θ ∈ Θn} respectively, where a ∧ b= min{a, b}, and

||θ − βk||2 =
1

J

J
∑

j=1

(θ(tj)− βk(tj))
2, k = 1, 2.

We have the following theorem on the mean errors.

Theorem 3.2. Under the conditions in Theorem 3.1, we have

MER(Γn) = Op

(

an/ψn + n
√

log(n)/J
)

,

MER(Θn) = Op

(

ψ−1/2
n + n

√

log(n)/J +
√

an/(nψn)
)

.

Remark 3.2. If two underlying sources are well separated from each other in320

the sense that 1 − ρ212 ≥ A/nα with 0 ≤ α < 1 and A > 0, and if let-

ting hn = Op(n
1−α/(log(log(n))) and an = nα(log(log(n)))2, then we have

hn/ψn = op(1) and ψn/(hnan) = op(1). The above mean errors are bounded by

Op

(

(log(log(n)))2/n1−2α + n
√

log(n)/J
)

and Op

(

1/n(1−α)/2 + n
√

log(n)/J
)

respectively.325

Remark 3.3. Note that the SAM index is asymptotically flat in the O(1/(nψn))

neighborhoods of the true source locations. This suggests that the sieve grid

points should be distributed with a spacing of order O(1/(nψn)).

We now turn to the case where two underlying sources are not well separated

in the sense that ψn = O(1). For any positive constants bn = O(1), define sets330

S4|k = {r ∈ Ω : ζn(r|k) ≤ bn} for k = 1, 2.

Theorem 3.3. If ψn → ψ0 and n
√

log(n)/J = o(1) as n and J tend to infinity,

then under the conditions in Theorem 3.1, uniformly for r ∈ S4|1∪S4|2, we have

γ̂(r) =































un(r|1)−1
(

γ1 + γ2
(

1 + ψnγ1/σ
2
0

))

×(1 + op(1)), when r ∈ S4|1,

un(r|2)−1
(

γ2 + γ1
(

1 + ψnγ2/σ
2
0

))

×(1 + op(1)), when r ∈ S4|2,
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SAM(r) =































vn(r|1)−1un(r|1)σ4
0

(

r1 + r2(1 + r1ψn/σ
2
0)
)

×(1 + op(1)), when r ∈ S4|1,

vn(r|2)−1un(r|2)σ4
0

(

r2 + r1(1 + r2ψn/σ
2
0)
)

×(1 + op(1)), when r ∈ S4|2,

where

un(r|1) = 1 +
γ1ζn(r|1)

σ2
0

+
γ2
σ2
0

(ζn(r|1) + ψn − 2δn(r|12))

+
γ1γ2
σ4
0

(ζn(r|1)ψn − δ2n(r|12)),

un(r|2) = 1 +
γ2ζn(r|2)

σ2
0

+
γ1
σ2
0

(ζn(r|2) + ψn − 2δn(r|21))

+
γ1γ2
σ4
0

(ζn(r|2)ψn − δ2n(r|21)).

vn(r|1) = ζn(r|1)
(

r1 + r2(1 + r1ψn/σ
2
0)
)2

+ r2(1 + r1δn(r|12)/σ2
0)

×
(

ψnr2 − δn(r|12)
(

2(r1 + r2) + r1r2ψn/σ
2
0

))

,

vn(r|2) = ζn(r|2)
(

r2 + r1(1 + r2ψn/σ
2
0)
)2

+ r1(1 + r2δn(r|21)/σ2
0)

×
(

ψnr1 − δn(r|21)
(

2(r1 + r2) + r1r2ψn/σ
2
0

))

.

For any positive constants an → ∞, define sets S5|k = {r ∈ Ω : ζn(r|k) ≤335

1/an}.

Corollary 3.1. If ψn → ψ0 and n
√

log(n)/J = o(1) as n and J tend to infinity,

then uniformly for r ∈ S5|1 ∪ S5|2, we have

γ̂(r) =







(

γ1 +
γ2

1+ψ0γ2/σ2
0

)

(1 + op(1)), r ∈ S5|1
(

γ2 +
γ1

1+ψ0γ1/σ2
0

)

(1 + op(1)), r ∈ S5|2.

SAM(r) =































σ2
0

γ2
2ψ0

(σ2
0 + γ2ψ0)(γ1 + γ2(1 + γ1ψ0/σ

2
0))

×(1 + op(1)), when r ∈ S5|1,

σ2
0

γ2
1ψ0

(σ2
0 + γ1ψ0)(γ2 + γ1(1 + γ2ψ0/σ

2
0))

×(1 + op(1)), when r ∈ S5|2.

Remark 3.4. Denote α2 = δ2n(r|12)/(ψnζn). In Figures 1 and 2 in the online340

supplemental material, we plotted the asymptotic SAM derived in Theorem 3.3
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against the asymptotic value of ζn(r|1) for various combinations of (ψ0, α
2),

where ψ0 ∈ {0, 0.5, 1, 2, 3, 4}, α2 ∈ {0, 0.0392, 0.1584, 0.3576, 0.4872, 0.6368,
0.8064, 0.9960}. We assumed that there were two nonzero underlying sources

with powers γ1 = 2 and γ2 = 3 respectively and that the noise level σ2
0 = 1.345

Note that ψ0 shows how close two underlying sources are to each other, while

α2 measures the degree of coherence of lead field vectors in the neighborhoods of

the underlying sources. Let r̂ denote a local peak location in the SAM curve. Let

ζ be the limit of ζn. If the asymptotic SAM attains the peak at ζ > 0, then r̂ is

asymptotically inconsistent with the true source location r1 in the sense that the350

lead field discrepancy n(1−ρ(x(r̂),x1)
2) is not close to zero. Figures 1 and 2 in

the online supplemental material indicate that the consistency of the SAM-based

localization depends on the degree of the separateness between the underlying

sources as well as the degree of the coherence among x(r̂),x1, and x2. For

example, Figures 1 and 2 show that the SAM peak can occur at nonzero ζ if355

ψ0 = 0.5 and α2 > 0.1584, or if ψ0 = 1, α2 > 0.3576, or if ψ0 = 2, α2 > 0.4872,

or if ψ0 = 3, α2 > 0.63668, or ψ0 = 4, α2 > 0.8064. In another word, if the

underlying sources are not well separated (i.e., ψn → ψ0 > 0), the local peaks

in the SAM map may not asymptotically occur at the true source locations.

Therefore, in these cases, we are unable to localize these sources even after360

reducing the threshold hn to a lower level. Furthermore, the above corollary

shows that if ψn → ψ0 > 0, then the power estimators are always inconsistent

with the true ones due to the signal cancellation between the sources, even when

their true positions and orientations are known.

Remark 3.5. Theorems 3.1∼3.3 still hold if we replace condition (A1) by con-365

dition (A1’).

4. Choice of threshold in mapping

The main product of the proposed screening procedure is the estimated

source set Dn, whose performance depends on the threshold 1 + hn. We choose

the threshold based on the idea of clustering as follows.370
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It follows from Theorem 3.1 and Lemma 6.4 in the Appendix that if the un-

derlying sources are well separated with moderate or large signal-to-noise ratios,

then the values of SAM(r)/σ̂2
0 at non-source locations are likely to be wander-

ing at around 1, whereas the values of SAM(r)/σ̂2
0 in neighborhoods of source

locations are typically much larger than 1. Therefore, the values of SAM(r)/σ̂2
0375

can be grouped into two general clusters, one of which is a noise cluster. The

positions of the peaks in the clusters give a clue to the source locations. The

lower bound of the SAM(r)/σ̂2
0 peaks in the non-noise clusters provides a nat-

ural estimate of the threshold value for the screening. In our implementation,

we refine the above idea by taking into account the following structure of the380

SAM mapping, i.e., the grouping of the SAM values often be affected by the

spatial coherence of grid points. In neuroimaging, it is a common practice to

reduce the complexity of the problem by first partitioning the grid points into

a number of transverse slices along the z-axis of the brain. Except the noise

slices, the SAM values in each of brain slices except noisy ones often peak to-385

ward a source location. Therefore, these peak values can be used as summary

statistics for the non-noise group. In practice, we need to calculate the peak

values s1, · · · , sk0 for these slices. Sorting these values in descending order, we

have order statistics s(1), · · · , s(k0). Plotting these ordered values against their

indices k = 1, · · · , k0 gives rise to a scree plot, where the peaks are decreasing390

as one moves to the right. When the dropping rate changes, the curve in the

plot has an elbow or a change-point. See Figure 3 in the online supplemental

material for a typical scree plot in our simulations conducted in the next section.

The peak values around the change-point can be used to estimate 1 + hn. For

simplicity, we estimate the change-point by searching for k at which s(k+1)−s(k)395

attains the maximum in our simulations. A more refined but time-consuming

way to determine the change-point would be to employ the gap-statistic based

procedure, where we could adjust for spatially varying baseline-effects by using

some reference distribution derived from multiple trial information (Tibshinari

et al., 2001). See the real data analysis in the next section for the details.400
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5. Numerical results

5.1. Simulation results

In this section, we examined the finite-sample performance of the proposed

beamformer procedure under various scenarios via simulations, where n
√

log(n)/J

is not small. We need more notations as follows. For any estimator r̂1 of source405

location r1, we denote by E|r̂1−r1| the mean localization bias, where |r̂1−r1| is
the L1-distance between r̂1 and r1. We denote by ρmax the maximum coherence

between two locations r1 and r2 with

ρmax(r1, r2) = max
||η1||=1,||η2||=1

(l(r1)η1)
T l(r2)η2

||l(r1)η1|| · ||l(r2)η2||
.

We assessed the behavior of the beamformer-based maximum location estima-

tor by its mean L1-distance to the underlying sources. Similarly, the accuracy410

of the estimated source set Dn derived from the proposed screening can be

measured by its closeness to the underlying sources, namely d(Dn, {r1, r2}) =
maxr0∈{r1,r2} minr∈Dn

|r − r0|, and by its size. Good Dn requires a trade-off

between the size and the closeness to the underlying sources. By using the simu-

lations, we attempt to answer the following questions: (1) How does the tuning415

constant c0 improve the performance of the SAM screening procedure? (2) Is

the screening procedure a valuable complement to the SAM-based maximum

location estimator? (3) To what extent will the performance of the proposed

procedure deteriorate by source cancellations and correlations? (4) What is

the performance of the proposed procedure when the assumptions we made in420

Theorems 3.1∼3 are invalid?

We simulated a 184-sensor MEG system (CTF/VSM) using a real adult

human subject head shape which was approximated by multiple local spheres

and downloaded at http://fieldtrip.fcdonders.nl/download. We constructed p =

2905 regular 3-D grid points of resolution 1 cm within the head. These candidate425

source positions were aligned with the axes of the head coordinate system. A

lead field matrix L (184 × 8715) between the n = 184 sensors and the 2905

grid points was then calculated by using the software FieldTrip. Note that
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the sieve size p is determined by the resolution. If we refine the sieve so that

it is of resolution 1 mm, we can obtain 10 times more grid points. Then, the430

computation in beamforming is too time-consuming to be realized in an ordinary

PC.

We assumed that there were two non-zero sources θ1(t) and θ2(t), which

were located at r1 = (5,−2, 8)T and r2 = (−5,−2, 8) in the auditory area with

the dumping cosine patterns θ1(t) = η1β1(t) and θ2(t) = η2β2(t) respectively.435

The L1 distance and the maximum coherence between the two sources are 10

cm and 0.3632 respectively. Here,

η1 =

(

10√
102

,
1√
102

,
1√
102

)T

, η2 = (1, 0, 0),

a1 =
√
102, a2 = 8,

βk(t)/ak = zk(t)

+















































exp

(

−
(

t− mk

m0
− π

)2
)

×
(

1− (t−mk/m0−m0/60000)
2

(1−1/m0+m0/60000)2

)

× cos
(

2πfk

(

t− mk

m0

)

− π
)

,

mk

m0
≤ t ≤ 1 + (mk−1)

m0

0, Otherwise,

where m0, mk and fk are two factors related to time-shifts and frequencies of

the cosine waves, and zk(t) ∼ AR(1), i.e., zk(t) = 0.2zk(t − 1) + e(t), {e(t)} is

a white noise process with mean 0 and variance 0.12. Note that E[βk(t)] 6= 0.440

Therefore, condition (A1) may not hold true. Let J = 2m0. We considered

three scenarios: (1) (m1,m2) = m0 × (1/10, 1/2) and (f1, f2) = (1, 1); (2)

(m1,m2) = m0× (1/8, 1/4) and (f1, f2) = (1, 3); (3) (m1,m2) = m0× (1/8, 1/8)

and (f1, f2) = (1, 1). We generated a pair of signals for each scenario with m0 =

240, 500, 1000, and 1500 respectively. As examples, the pairs of signal curves in445

these scenarios for m0 = 500 were plotted in Figure 3 in the online supplemental

material. The temporal correlation coefficients between these paired curves

are −0.462, 0.043, 0.706 respectively. These paired curves stand for the three

cases, where the paired sources are negatively correlated, positively and weak
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correlated, and positively and strong correlated respectively. As n
√

log(n)/J is450

not small in these scenarios, the conditions for Theorem 3.1 do not hold.

The sensor measurements at t follow the model

Y (t) = l(r1)η1β1(t) + l(r2)η2β2(t) + ε(t), 0 ≤ t ≤ 1, (4)

where ε(t) is the sensor noise vector. Let the time window width w = 2. That is,

the sensors were measured at the time instants tk = 2k/J, k = 0, 1, 2, ..., J − 1.

The signal strength (SS) in the sensor space was defined by455

SS =

√

√

√

√

J−1
∑

k=0

||l(r1)η1β1(tk)||2
J

.

For each k, we sampled Nnk from an n-dimensional standard Normal and set

ε(tk) = SS × Nnk/
√
SNR. Here, we considered three values of SNR, 1.5625,

1, and 0.01, standing for the cases with moderate signals and weak signals

respectively.

For each combination of SNR, (m1,m2) and (f1, f2), we independently gen-460

erated 50 datasets of {(Y (tk), 0 ≤ k ≤ J −1} paired with {ε(tk), 0 ≤ k ≤ J −1}
by (4). Here, we imitated the practical situation, where the MEG imaging was

run on a subject first without stimulus and then with stimulus. The former

provides an estimator of the background noise level. For each dataset, we calcu-

lated the sample covariance Ĉ of {(Y (tk), 0 ≤ k ≤ J−1} and the corresponding465

sample covariance Ĉ0 of the background noises. We set τnJ = c0σ̂
2
0

√

log(n)/J

with the tuning constant c0 and thresholded Ĉ by τnJ , where σ̂
2
0 is the min-

imum diagonal element in Ĉ0. We considered four values for c0: 0, 0.5, 1.5,

and 2. Note that, when c0 = 0, the proposed SAM procedure reduces to the

standard SAM implemented in the FieldTrip. For each value of c0, we applied470

the proposed SAM procedure to the 50 datasets, where the threshold 1 + hn is

determined by the scree algorithm described in the previous section. For each

dataset, we obtained the SAM-based maximum location estimate and selected

the source set Dn by thresholding. We calculated the average minimum local-

ization biases of the SAM-based maximum location estimates to r1 and r2 as475
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well as the standard errors over these 50 datasets. For each dataset, we also

calculated the maximum L1-distances from Dn to the two underlying sources

r1 and r2 as well as the size of Dn, where the distance from Dn to rk is defined

by d(Dn, rk) = min{|r − rk| : r ∈ Dn}. We calculated the averages and stan-

dard errors of these quantities over these 50 datasets respectively. Note that,480

when both the mean and variance of the maximum L1-distance from Dn to the

underlying sources are zero, Dn recovers all the true sources. By dividing the

average size of Dn by the total number of candidate sources, 2905, we obtain

the average proportion of the candidate sources being selected. The maximum

L1-distance from Dn to r1 and r2 measures the approximate coverage of the485

true sources, while the size of Dn implies the false discovery rate. So, given the

distance from Dn to the true sources, the smaller size the better Dn is.

The results, summarized in Table 1 and Tables 1 ∼ 2 in the online sup-

plemental material, show that: (1) Using the thresholded covariance, we can

improve the performances of the maximum location estimator and the esti-490

mated source set slightly in terms of localization bias when signals are weak. In

practice, the preferred values of c0 may be lying between 0.5 and 1.5 for weak

signals. (2) The performances were robust to the potential source correlations.

(3) For strong or moderately strong sources, the estimated source set contained

or was very close to the true sources most of the time as the maximum-minimum495

distances from the estimated source sets to the underlying two sources have an

mean 0 and a variance 0 approximately. For weak sources, the estimated source

set also had reasonable closeness to the true sources if choosing c0 properly. For

moderate source signals, the size of Dn is around 7, which is extremely tiny,

compared to the number of the grids, 2905, indicating that the screening result500

is very accurate. However, the size of the estimated source set may increase

to a few hundreds when the signal-to-noise ratio is low, reflecting that Dn con-

tained many false discoveries. In Scenario 3 with SNR= 0.01, the SAM-based

maximum location estimator has a L1-bias ranging from 2 to 5, suggesting that

it has missed the true sources on average. See Table 1 in the online supple-505

mental material. Therefore, the screening procedure may be better than the
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single-point estimator in identifying the underlying sources.

The results, displayed in Tables 3 ∼ 6 in the online supplemental material,

demonstrate that if there is only one source, say β2(t) in the data, we can esti-

mate the source very accurately either by using the maximum location estimator510

or by the screening. However, compared to the results in Table 1 and Tables

1 ∼ 2 in the online supplemental material, we can see that if we added another

source β1(t) to the model, then the coherence between the lead field vectors can

have a serious effect on the estimation of source β2(t). Sometimes, source β2(t)

can be completely masked by the interference from source β1(t).515

In summary, the simulation results suggest that:

• The source interference due to the lead field coherence has sever effects

on recovering sources. In fact, as demonstrated in Table 1 and Tables

1 ∼ 6 in the online supplemental material, without the interference, we can

accurately localize the source by using the SAM-based maximum location520

estimator or by using the screening. In particular, the size of the selected

set Dn can be substantially inflated by source interference. In general,

when the sample size J is larger than 1000, the screening procedure is

extremely good at detecting sources with moderate or strong signals.

• The proposed screening procedure offers a better source estimation than a525

point estimator such as the maximum location estimator in the presence of

multiple sources. Although the accuracy of the proposed source screening

can be affected by the signal-to-noise ratio and by the degree of source

interference, it is robust to the underlying source correlations. On average,

the accuracy can be improved by choosing the tuning constant c0 = 0.5,530

or 1, or 1.5, or 2 in the sensor covariance estimation when the SNR is low.

However, when the SNR is not low, it may be better to choose c0 = 0.

The results also imply that there is not a universal choice of c0. Rather

than choosing a universal one, we should choose c0 adaptive to the SAM

indices over a range of c0. Zhang et al.(2014) provided two of such selection535

procedures for the maximum location estimator.
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Table 1: Simulation results for the estimated source set Dn in the two-source setting. The average maximum L1-distance

from Dn to the underlying sources, max{d(Dn, rk) : k = 1, 2}, and the average size of Dn over 50 repetitions are

provided for Scenarios 1 to 3 when SNR= 0.01 and 1 respectively. The standard errors are given in the parentheses.

J Scen. c0 = 0 c0 = 0.5 c0 = 1 c0 = 1.5 c0 = 2

SNR=0.01

Average maxk d(Dn, rk) (Std. error)

480 1 1.76 (0.45) 2.56 (0.669) 2.12 (0.536) 6.04 (0.885) 11.6 (1.00 )

1000 1 0.46 (0.25) 0.18 (0.16) 1.34 (0.46) 5.66 (0.67) 10.9 (0.77 )

2000 1 0.04 (0.03) 0.02 (0.02) 3.3 (0.65) 9.04 (0.31) 9.26 (0.48 )

3000 1 0.74 (0.34) 0.2 (0.18) 1.5 (0.5) 7.5 (0.53) 8.8 (0.43)

480 2 2.02 (0.43) 1.88 (0.40) 0.40 (0.16) 6.1 (0.92) 10.3 (0.86 )

1000 2 1.06 (0.37) 0.66 (0.31) 2.14 (0.53) 4.2 (0.67) 10 (0.88 )

2000 2 0.8 (0.33) 0.32 (0.22) 1.26 (0.42) 6.3 (0.63) 9.1 (0.68 )

3000 2 0.36 (0.21) 0 (0) 1.14 (0.43) 7.3 (0.52) 9.02 (0.50 )

480 3 1.98 (0.32) 2.16 (0.33) 1.44 (0.30) 2.54 (0.61) 11.2 (0.89 )

1000 3 1.56 (0.26) 0.96 (0.17) 0.3 (0.11) 2.52 (0.48) 9.78 (0.87 )

2000 3 1.12 (0.17) 0.54 (0.13) 0.36 (0.09) 2.36 (0.46) 8.5 (0.79 )

3000 3 0.88 (0.13) 0.58 (0.12) 0.52 (0.17) 3.64 (0.54) 8.32 (0.76 )

Average size (Std. error)

480 1 351 (73.7) 414 (86) 559 (97) 309 (75) 141 (54 )

1000 1 281 (83) 449 (104) 305 (82) 138 (40) 62 (23 )

2000 1 269 (76) 276 (77) 35 (5.7) 13 (1.2) 48 (20 )

3000 1 197 (58) 235 (71) 53 (10) 19 (2.4) 21 (5 )

480 2 311 (78) 553 (103) 707 (95) 278 (64) 144 (52 )

1000 2 261 (72) 509 (109) 406 (90) 361 (76) 143 (51 )

2000 2 120 (34) 281 (77) 228 (73) 117 (43) 68 (27 )

3000 2 439 (100) 318 (87) 60 (10) 29 (7.5) 22 (5.3)

480 3 518 (91) 536 (95) 838 (130) 496 (82) 128 (40 )

1000 3 419 (94) 631 (120) 1008 (123) 414 (77) 143 (39 )

2000 3 303 (83) 574 (114) 490 (96) 260 (60) 134 (33 )

3000 3 432 (101) 522 (110) 387 (81) 234 (66) 82 (18 )

SNR=1

Average maxk d(Dn, rk) (Std. error)

480 1 0 (0) 0 (0) 0.04 (0.028) 0.18 (0.18) 0.3 (0.204 )

1000 1 0 (0) 0 (0) 0.02 (0.02) 0.04 (0.03) 0.18 (0.18 )

2000 1 0.02 (0.02) 0.02 (0.02) 0.04 (0.028) 0.02 (0.02) 0 (0)

3000 1 0 (0) 0.06 (0.03) 0 (0) 0.02 (0.02) 0.02 (0.02)

480 2 0.06 (0.03) 0 (0) 0.04 (0.03) 0 (0) 0.2 (0.2 )

1000 2 0.02 (0.02) 0 (0) 0 (0) 0 (0) 2 (0.53 )

2000 2 0.06 (0.03) 0 (0) 0.02 (0.02) 0.06 (0.03) 0 (0 )

3000 2 0.04 (0.03) 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 0 (0 )

480 3 0.02 (0.02) 0.06 (0.03) 0.3 (0.18) 0.94 (0.31) 0.26 (0.18 )

1000 3 0 (0) 0.02 (0.02) 0.08 (0.04) 0.08 (0.04) 0.48 (0.20 )

2000 3 0.06 (0.03) 0.06 (0.03) 0.02 (0.02) 0.08 (0.04) 0.1 (0.04 )

3000 3 0.02 (0.10) 0.10 (0.04) 0.02 (0.02) 0.06 (0.03) 0.02 (0.02 )

Average size (Std. error)

480 1 7.4 (0.09) 7.3 (0.10) 6.92 (0.06) 5.1 (0.10) 4.5 (0.26 )

1000 1 7.14 (0.08) 7.08 (0.08) 7 (0.06) 6.84 (0.05) 4.58 (0.15 )

2000 1 7.26 (0.07) 7.30 (0.09) 7 (0.09) 6.88 (0.05) 6.92 (0.04 )

3000 1 7.28 (0.08) 7.2 (0.09) 7.2 (0.09) 6.98 (0.05) 6.86 (0.05 )

480 2 6.84 (0.08) 7 (0.05) 6.88 (0.07) 5.16 (0.14) 4.7 (0.13 )

1000 2 6.96 (0.06) 6.98 (0.05) 6.94 (0.07) 6.9 (0.04) 4.58 (0.15 )

2000 2 6.82 (0.05) 6.86 (0.05) 6.90 (0.05) 6.82 (0.08) 6.86 (0.05 )

3000 2 6.82 (0.05) 6.82 (0.05) 6.86 (0.06) 6.82 (0.05) 6.9 (0.04)

480 3 6.62 (0.08) 6.72 (0.07) 6.36 (0.11) 17.38 (2.77) 8.3(1.18 )

1000 3 6.86 (0.05) 6.80 (0.06) 6.76 (0.07) 6.90 (0.63) 14.1 (2.75 )

2000 3 6.78 (0.08) 6.78 (0.06) 6.90 (0.05) 6.82 (0.06) 7.24 (1.17 )

3000 3 6.82 (0.05) 6.74 (0.07) 6.8 (0.06) 6.72 (0.06) 6.7 (0.07 )
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5.2. Source analysis on a real MEG dataset

We applied the proposed methodology to a human MEG dataset provided

by Professor Richard Henson from the MRC Cognition and Brain Sciences Unit

Volunteer Panel (Henson et al., 2011). The study subject, a healthy young540

adult underwent the following face perception test which includes two different

stimuli (faces and scrambled faces). A central fixation cross (presented for a

random duration of 400 to 600 ms) was followed by a face or scrambled face

(presented for a random duration of 800 to 1000 ms), followed by a central

circles for 1700 ms. As soon as he saw a face or a scrambled face, the subject545

used either their left or right index finger to report whether he thought it was

symmetrical or asymmetrical vertically through its center. There were 96 trials

labeled as Face and 50 labeled as Scrambled Face. The MEG data were collected

with a VectorView system, containing a magnetometer and two orthogonal,

planar gradiometers located at each of 102 positions within a hemispherical550

array situated in a light, magnetically shielded room. The sample rate was set

at 1100Hz. Here, we investigated the dataset recorded by the 102 magnetometer.

We want to identify voxels which showed power increases for the faces relative

to the scrambled faces.

We first created a grid system of 1 cm resolution with 1487 grid points,555

using the subject’s anatomical magnetic resonance imaging (MRI) data. Then,

we applied the neuroimaging software SPM8 to read and preprocess the recorded

data, and to epoch and average the data over the trials for the face stimulus

and the scrambled face stimulus respectively. This gives rise to 146 epochs of

700ms (770 time instants) with 200ms pre-stimulus and 500ms post-stimulus.560

For each of the two stimulus, we calculated the sample covariance Ĉ from the

post-stimulus data and the noise covariance Ĉ0 from pre-stimulus data. The

signal-to-noise ratios for both datasets are close to 1. We thresholded Ĉ by

c0σ̂
2
0

√

log(n)/J , where n = 102, J = 551, and σ̂2
0 is the minimum diagonal

element in Ĉ0. We only reported the results when setting c0 = 0.5, since the565

results are similar for other values of c0.

After the pre-processing above, we performed the proposed SAM procedure
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on the face dataset and the scrambled face dataset respectively and calculated

the logarithm of the SAM index ratio (i.e., the log-contrast) for each of 1487 grid

points. However, we decided not to apply our screening procedure directly to570

the above observed log-ratios, as we note that the baseline distribution at each

grid point can spatially vary. To adjust for such a spatial heterogeneity, we first

generated an empirical baseline distribution by randomly partitioning the 196

trials into two groups sized 96 and 50 respectively. We labeled the two groups

by the faces and by the scrambled faces respectively. The above operation was575

repeated 80 times, producing 80 paired datasets. We then calculated the SAM

log-ratios for these paired datasets respectively, which generated an empirical

baseline distribution for each grid. In Figure 1, we plotted the observed log-

contrasts against the baselines, suggesting a striking difference between them.

Finally, we adjusted the observed log-ratio for each grid by subtracting the580

corresponding empirical baseline mean. In Figure 1, we also plotted the adjusted

log-ratios on 20 traverse slices and on the three orthogonal slices through the

maximum location estimate. The plots suggest two regions of the SAM-index

increasing, which are around the grid points (0, 6, 6) and (−2, 6, 5) respectively.

In Figure 1, the scree plot in the top-left clearly suggests that a change-point585

might have occurred at the ordered slice 5. Therefore, we used the peak 0.0698

on this slice to estimate the threshold for screening. The screening provides a

source set containing 22 grid points, where the SAM index shows increases for

the faces relative to the scrambled faces. The estimated time-courses at (0,6,6)

and (-2,6,5) plotted in Figure 1 show large differential responses of the brain to590

the faces and the scrambled faces at these two positions. These results have not

been found by Henson et al.(2011) via a parametric Bayesian approach.

6. Discussion and conclusion

The beamformer-based screening has been widely used by neuron-scientists

for analyzing neuroimaging data in an ad hoc way (e.g., Quraan et al., 2011).595

In this paper, we have reformulated the problem as finding sparse coefficients
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in a time-varying coefficient model. Therefore, the proposed procedure is im-

mediately applicable to estimating sparse time-varying coefficient models. We

have improved the commonly used screening procedure by adding a data-driven

choice of threshold. We have proved the sure screening property for the proposed600

procedure under some regularity conditions. We have also provided asymptotic

bounds for screening errors in the two-source setting when both the number of

sensors and the sampling rate are tending to infinity. To assess the finite sample

performance of the proposed screening procedure, we have conducted simula-

tion studies. The simulation results have suggested that the proposed screening605

procedure is promising in detecting sources of moderate signal-to-noise ratios.

The aim of beamforming is to allow the neuronal signal of interest to pass

through in certain source location and orientation, while suppressing noise or un-

wanted signal in other source location or orientation. In practice, the unwanted

signals from other locations cannot be fully blocked. Therefore, the source in-610

terference may prevent one from localizing the underlying sources. The existing

theoretical analysis on the above issue was based on the unrealistic assumption

that the sensor population covariance matrix is known (e.g., Sekihara and Na-

garajan, 2010). In general, there is lack of a statistically sounding theory which

allows one to address: (1) how to conduct a sure screening on a beamformer615

map, (2) how the spatial and temporal dimensions determine the accuracy of the

estimated sources derived from the screening. Here, we have offered a theoreti-

cal analysis based on the estimated sensor covariance matrix in which we have

allowed both the number of sensors and the sampling rate to be varying. The

new analysis has drawn a clear picture on how the spatial and temporal dimen-620

sions are related to the accuracy of the beamformer-based screening. We have

illustrated the proposed procedure by using a real MEG neuroimage analysis.

Two interesting theoretical topics remain untouched: one is on the asymptotic

behavior of the proposed data-driven procedure for choosing the threshold and

the other is on determining the number of sources in a neuroimage. However,625

extending the theory to cover these two topics is beyond the scope of the paper.
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Appendix

In the Appendix, suppressing c0 in SAMc0(r), we let SAM(r) denote SAM(r).

Note that c0 will not affect the convergence rate of the index.630

Lemma 6.1. For any lead field vectors x,x1, and x2, we have

(ρ(x,x2)− ρ(x,x1)ρ(x1,x2))
2 ≤ (1− ρ(x,x1)

2)(1− ρ(x1,x2)
2).

The two sides are equal if and only if x is a linear combination of x1 and x2.

In the following lemmas, for simplicity, let Ĉ2 denote Ĉ(τnJ), where τnJ =

O(n
√

log(n)/J).

Lemma 6.2. Under conditions (A1)∼(A5), if (log(n))κ3/J = o(1) and n
√

log(n)/J =635

o(1), then we have

∣

∣

∣

∣

∣

xT Ĉ−1
2 x

xT Ĉ−2
2 x

− xTC−1
2 x

xTC−2
2 x

∣

∣

∣

∣

∣

= Op(n
√

log(n)/J),

n and J tend to infinity.

In the following lemma, for k = 1, 2, we investigate the behavior of the SAM

index in an O(n−1)-neighborhood of rk but not in an O(1/(nψn))-lead field

neighborhood of rk. For this purpose, for any positive constants an → ∞ and640

bn = O(1), define

Φ11|k = {x ∈ Φ : ψnζn(x|k) ≥ an, ζn(x|k) ≤ bn}, k = 1, 2.

Lemma 6.3. Under conditions (A1)∼(A6), if ψn → ∞, then

sup
x∈Φ11|k

xTC−1
2 x

xTC−2
2 x

≤ σ2
0

(

1 +
σ2
0

γkζn(x|k)

)

|O(1)|

as n and J tend to infinity.
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For any constant an → ∞, we consider a set outside neighborhoods of r1

and r2, defined by645

Φ2 = {x ∈ Φ : ζn(x|1) ≥ an, ζn(r|2) ≥ an}.

We have the following lemma.

Lemma 6.4. Under conditions (A1)∼(A6), if ψn → ∞, then uniformly for

x ∈ Φ2,

xTC−1
2 x

xTC−2
2 x

= σ2
0

(

1 +O

(

1 +O(
1

n
+

1

ψ2
n

)

))

,

as n and J tend to infinity.

To examine the behavior of the SAM index in the O(1/n2) neighborhood650

of rk, for any positive constant bn = O(1), we consider the neighborhood of rk

defined by

Φ3|k = {x ∈ Φ : ψnζn(x|k) ≤ bn}, k = 1, 2.

Lemma 6.5. Under conditions (A1)∼(A6), if ψn → ∞, then uniformly for

x ∈ Φ3|1,

xTC−1
2 x

xTC−2
2 x

=
γ1ψn(1 +O(1/ψn))

1 + γ21(ψnζn(x|1)− δn(x|12)2)/σ4
0

,

as n tends to infinity. The similar result holds uniformly for x ∈ Φ3|2.655

Proof of Theorem 3.1: Let

Sc11|1 = {r ∈ Ω : ψnζn(r|1) > an, ζn(r|1) = O(1)},

Sc12|1 = {r ∈ Ω : ψnζn(r|1) > an, ζn(r|1) → ∞},

Sc11|2 = {r ∈ Ω : ψnζn(r|2) > an, ζn(r|2) = O(1)},

Sc12|2 = {r ∈ Ω : ψnζn(r|1) > an, ζn(r|2) → ∞}.

Then

(S1|1 ∪ S1|2)
c = Sc1|1 ∩ Sc1|2 ⊆ Sc11|1 ∪ Sc11|2 ∪

(

Sc12|1 ∩ Sc12|2
)

.
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In the following, we show that

P (Dn ∩ Sc11|1 = ∅) → 1, P (Dn ∩ Sc11|2 = ∅) → 1,

P (Dn ∩ Sc12|1 ∩ Sc12|2 = ∅) → 1,

respectively.

By Lemmas 6.2 and 6.3, we have for any constant c, with a probability660

tending to one, uniformly for r ∈ Sc11|1,

SAM(r) ≤ σ2
0

(

1 +
σ2
0

γ1ζn(r)

)

|O(1)|+ c(n
√

log(n)/J)

≤ σ2
0

(

1 +
σ2
0n

γ1an

)

|O(1)|+ c(n
√

log(n)/J),

which is smaller than σ2
0(1 + hn) by the definition. Therefore, r 6∈ Dn when n

and J are large enough. This implies P (Dn ∩ Sc11|1 = ∅) → 1. Similarly, we can

show that P (Dn ∩ Sc11|2 = ∅) → 1.

By Lemmas 6.2 and 6.4, we have for any constant c, with a probability665

tending to one, uniformly for r ∈ Sc12|1 ∩ Sc12|2,

SAM(r) ≤ σ2
0(1 + o(1)) + c(n

√

log(n)/J)

< σ2
0(1 + hn),

as n and J tend to infinity. This yields

P (Dn ∩ Sc12|1 ∩ Sc12|2 = ∅) → 1.

For r ∈ S2|1, without loss of generality, we assume that ψnζn(r) = ζ + o(1)

and nδn(r) = δ + o(1). We have

|ρ(x̂,x2)− ρ12| ≤
√

2(1− ρ(x̂(r),x1)) = O(1/n).

By Lemmas 6.2 and 6.5, for any constant c > 0, with a probability tending to670

one, uniformly for r ∈ S2|1, we have

SAM(r) ≥ γ1ψn
1 + ζγ21/σ

4
0 + o(1)

+ c(n
√

log(n)/J)

which is larger than σ2
0(1 + hn) when hn/ψn = op(1). Therefore, r ∈ Dn. This

yields P (S2|1 ⊆ Dn) → 1. Similarly, we can show that P (S2|2 ⊆ Dn) → 1.

The proof is completed.
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Figure 1: The top row in the left two columns: The plot in the left is a scree plot for the peaks

of the adjusted SAM log-contrasts against the ordered slices, where the yellow-colored line

indicates the estimated threshold level. The plot in the right provides a comparison between

the observed log-contrasts and the baselines. The second row in the left two columns: The

plots from left to right show the estimated time-courses at the two estimated source locations,

where the face and the scrambled time-courses are colored by blue and green respectively.

The remaining plots are derived from the adjusted SAM log-ratio-based mapping for the faces

relative to the scrambled faces. The upright plots show the adjusted SAM log-ratios on 20

transverse slices evenly distributed from the top to bottom along the z-axis, where the upper,

middle and bottom panels show the map on the slices along the top-to-bottom direction of

the z-axis respectively. The (i, j, k) stands for the coordinates of grid point (rx, ry , rz) in the

CTF system of the brain. See the software FieldTrip for the definition. The bottom two rows:

The adjusted SAM log-ratio-based maximum-mapping for scrambled faces relative to faces.

The plots show the adjusted SAM log-ratios the three orthogonal slices through the locations

(0,6,6) cm and (-2,6,5)cm respectively. In the plots, the adjusted log-contrasts are increasing

in the color order from blue to light blue to green to light yellow to dark red.
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