
University of Kent

PhD Thesis

Entropy-Based Resource Management in
Complex Cloud Environment

Author:

Huankai Chen

Supervisor:

Prof F Z Wang

Supervision Team Members:

Prof Sally Fincher , Dr E A Boiten, Dr M Migliavacca

A thesis submitted by Huankai Chen to the University of Kent

for the degree of Doctor of Philosophy

in

Computer Science

October 2016

http://www.kent.ac.uk/
http://www.cs.kent.ac.uk/people/rpg/hc269/index.html
http://www.cs.kent.ac.uk/people/staff/fzw/
http://www.cs.kent.ac.uk/people/staff/eab2/
http://www.cs.kent.ac.uk/people/staff/eab2/
http://www.cs.kent.ac.uk/people/staff/mm53/

UNIVERSITY OF KENT

Abstract

Faculty of Sciences

School of Computing

Doctor of Philosophy

Entropy-Based Resource Management in Complex Cloud Environment

by Huankai Chen

Resource Management is an NP-complete problem, the complexity of which increases

substantially in the Cloud environment. The complexity of cloud resource management

can originate from many factors: the scale of the resources; the heterogeneity of the

resource types and the interdependencies of these; as well as the variability, dynamicity

and unpredictability of resource run-time performance.

Complexity has many negative effects in relation to satisfying the Quality of Service

(QoS) requirements of cloud applications, such as cost, performance, availability and

reliability. If an application cannot guarantee its QoS, it will be hard to populate. How-

ever, the vast majority of research efforts into cloud resource management implicitly

assume the Cloud to be a simplifying technology and that the cloud resource’s perfor-

mance is determined and predictable. These incorrect assumptions may significantly

affect the QoS of any cloud application developed under it, causing its resource man-

agement strategy to be less than robust.

In spite of there being extensive research into complexity issues in many diverse fields

ranging from computational biology to decision making in economies, the study of com-

plexity in cloud resource management systems is limited. In this thesis, I address the

complexity problems of Cloud Resource Management Systems by introducing the use

of Entropy Theory in relation to them. The main contributions of this thesis are as

follows:

1. A cloud simulation tool-kit, ComplexCloudSim, is implemented in order to help

tackle the research question: what is the role of complexity in QoS-aware cloud

resource management?

http://www.kent.ac.uk/
http://www.kent.ac.uk/stms/
http://www.cs.kent.ac.uk/

ii

2. The uncovering of Chaotic Behaviour in Cloud Resource Management Systems

by using the Damage Spreading Analysis method.

3. The comprehensive definition of complexity in the Cloud Resource Management

Systems; such can be primarily classified into two categories: Global System

Complexity and Local Resource Complexity.

4. An Entropy Theory based resource management model is proposed for the pur-

poses of identifying, measuring, analysing and controlling (i.e., reducing and avoid-

ing) complexity.

5. An Cellular Automata Entropy based methodology is proposed as a solution

to the Cloud resource allocation problem; this methodology is capable of managing

Global System Complexity.

6. Once the root cause of the complexity has been identified using the Local Activity

Principle, a Resource Entropy Based Local Activity Ranking system can be

proposed which solves the job scheduling problem by managing Local Resource

Complexity. Finally, on this latter basis, I implement a system which I have

termed an Entropy Scheduler within a popular real-world cloud analysis en-

gine, Apache Spark. Experiments demonstrate that the new Entropy Scheduler

significantly reduces the average query response time by 15% - 20% and standard

deviation by 30% - 45% compare with the native Fair Scheduler for running CPU

intensive applications in Apache Spark, when the Spark server is not overloaded.

Copyright c© University of Kent ii

Acknowledgements

The study for PhD is intense and full of challenges. I could not have achieved anything

without help from many people.

First and foremost, I offer my sincerest gratitude to my supervisor, Professor Frank

Wang, who supported me throughout my thesis with his patience and guidance whilst

allowing me the room to work in my own way. For me, he was not only a respectable

scientist who led me on the way to do research, but also an attentive tutor who trained

me to be a good professor in my future career. I really appreciate everything he has

done in the past years.

I am also grateful to my supervision team members, Professor Sally Fincher, Dr E A

Boiten and Dr M Migliavacca, for their valuable comments on my thesis.

Special thanks should be given to Professor Leon O. Chua who joined School of Comput-

ing, University of Kent, as an EC Marie Curie Fellow on 1 August 2013. His professional

abilities and knowledge are always admired. When I encountered the obstacles in re-

search, the discussion with him often inspired me, theoretically or practically. I greatly

thank him for all the kindness and support.

Discussions with fellow students and researchers in the Future Computing Group, es-

pecially Xiao Yang, Wanlong Chen, Mian-Guan Lim, Gbola Akanmu, Saad Alshahrani

and Chen Hu, were stimulating and entertaining. I’m thankful for their friendship and

help.

And I wish to express my gratitude to Dr Na Helian for her support and for being there

whenever I needed her help and feedback.

Last but not least, I would like to dedicate this thesis to my parents, families and

the people I love and who love me. And most importantly, I would like to thank my

beloved wife Jia Jia. I would not have been able to go through this without her support.

Together, we have made a great journey so far. I am sure that it will be even greater

from now on.

iii

Contents

Abstract i

Acknowledgements iii

List of Publications vii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivations and Challenges . 2

1.2 Problem Statement and Contribution . 5

1.3 Thesis Organization . 6

2 Literature Review: Cloud Resource Management System 8

2.1 Background . 8

2.1.1 Cloud Applications Consists of MapReduce Jobs 10

2.1.2 Resource Management System for Cloud Applications 10

2.2 Related Works . 11

2.2.1 Resource Allocation . 11

2.2.1.1 QoS (e.g. Budget, Deadline, Reliability) Based 12

2.2.1.2 Resource Based . 13

2.2.1.3 Bargaining Based . 13

2.2.1.4 Prediction Based . 14

2.2.1.5 Nature-inspired / Bio-inspired Based 14

2.2.2 Job Scheduling . 14

2.2.2.1 Static Heuristics . 15

2.2.2.2 Dynamic Heuristics . 16

2.2.2.3 More Heuristics Based On Objectives For Job Scheduling 17

2.2.3 Resource Management Systems in Industry 18

2.2.3.1 Apache Hadoop NextGen MapReduce (YARN) 19

2.2.3.2 Apache Mesos . 20

2.2.3.3 Apache Spark Standalone Mode 20

2.2.4 Cloud Simulation Tools for Resource Management Research 21

2.2.4.1 CloudSim . 22

2.2.4.2 GreenCloud . 22

iv

Contents v

2.2.4.3 ICanCloud . 22

2.2.4.4 Yarn Scheduler Load Simulator (SLS) 22

2.3 Complexities In Cloud Resource Management System 23

2.4 Conclusion . 24

3 Implementation: ComplexCloudSim 26

3.1 CloudSim : A Toolkit For Modelling And Simulation Of Cloud Environ-
ments . 27

3.2 ComplexCloudSim : Modelling And Simulate The Complexity In The Cloud 28

3.2.1 Cloud Scheduling Algorithms . 29

3.2.2 Motivational Example . 30

3.2.3 The Implementation For Introducing Complexity 33

3.2.3.1 Cloud Error Produced by the Heterogeneity of
VMs Provision . 34

3.2.3.2 Cloud Error Produced by the Dynamic Changes
of VM performance at Runtime 34

3.2.3.3 Cloud Error Produced by the Uncertainty of VM
Performance Estimation with Incomplete Infor-
mation . 35

3.3 Complexity Simulation: Comparison of Four Heuristics Cloud Scheduling
Algorithms . 36

3.3.1 Experiment Setup . 36

3.3.2 Experiment Result . 36

3.4 Damage Spreading Evaluation: Chaotic Behaviour in Cloud Scheduling . 38

3.5 Conclusion . 42

4 Complexity Management: Entropy-Based Cloud Resource Allocation
and Job Scheduling 43

4.1 Complexity In Cloud Resource Management System 43

4.1.1 Definition And Classification . 43

4.1.2 Characteristic Of Complexity . 45

4.1.3 On the Relationship Between Complexity And Entropy For Cloud
Resource Management . 47

4.2 Complexity Management Based On Entropy Measurement 48

4.2.1 Identifying . 48

4.2.1.1 Local Activity Principle 48

4.2.1.2 Origin Of Complexity: Local Active Resource 50

4.2.2 Measuring . 50

4.2.2.1 Entropy Theory . 50

4.2.3 Analysis . 51

4.2.3.1 Degree Of Local Activity 52

4.2.3.2 Cellular Automata . 52

4.2.4 Controlling . 53

4.3 Conclusion . 54

5 Cellular Automata Entropy: A New Cloud Resource Allocation Method-
ology 55

5.1 Basics of Cellular Automata . 56

Copyright c© University of Kent v

Contents vi

5.1.1 One-dimensional Cellular Automata 56

5.1.2 Cellular Automata Behaviour Classes 58

5.2 Project Scheduling and Cloud Resource Allocation 59

5.3 The Application of CA Entropy for Reliability Evaluation on Cloud Schedul-
ing Systems . 60

5.4 Cellular Automata Entropy-Based Cloud Resource Allocation Methodol-
ogy (CAE-CRA) . 64

5.5 Experiment and Result . 67

5.5.1 User Case 1 - Simple Project Consisting of 10 Random Tasks . . . 67

5.5.2 User Case 2 - Complicated Project Consists of 100 Random Tasks 71

5.6 Conclusion . 75

6 Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 76

6.1 Degree of Local Activity Measured By Resource Entropy 76

6.1.1 The Emergence of Complex Patterns in Cloud Scheduling: Order,
Edge Of Chaos And Chaos . 77

6.1.2 Entropy Measurement : Degree of Resource Local Activity 78

6.2 Spark Entropy Scheduler : Scheduling Jobs by Resource Local Activity
Ranking . 79

6.2.1 Scheduling Challenge In Spark . 80

6.2.2 Entropy Scheduler : A More Reliable and Efficient Solution 81

6.3 Empirical Evaluation Of Entropy Scheduler 82

6.3.1 Experiment 1: Performance under Different Concurrent Level of
HTTP Request Workload . 83

6.3.2 Experiment 2: Load Testing with 100,000 Query Requests at the
Concurrent Level of 10 . 85

6.4 Conclusion . 87

7 Conclusion and Future Research Directions 89

7.1 Main Contributions . 89

7.2 Future Research Directions . 90

Bibliography 93

Copyright c© University of Kent vi

List of Publications

1. Huankai Chen, Frank Z. Wang, Na Helian and Gbola Akanmu. “User-priority

guided Min-Min scheduling algorithm for load balancing in cloud comput-

ing.” Parallel Computing Technologies (PARCOMPTECH), 2013 National Confer-

ence on. IEEE, 2013.

2. Huankai Chen, Frank Z. Wang, and Na Helian. “A Cost-Efficient and Re-

liable Resource Allocation Model Based on Cellular Automata Entropy

for Cloud Project Scheduling.” International Journal of Advanced Computer

Science and Applications. 05/2013; 4(4):7-14.

3. Huankai Chen, and Frank Z. Wang. “Spark on entropy: A reliable &

efficient scheduler for low-latency parallel jobs in heterogeneous cloud.”

Local Computer Networks Conference Workshops (LCN Workshops), 2015 IEEE

40th. IEEE, 2015.

4. Huankai Chen, Frank Z. Wang, Matteo Migliavacca, Leon O. Chua, and Na

Helian. “Complexity Reduction: Local Activity Ranking By Resource En-

tropy For QoS-aware Cloud Scheduling.” 13th IEEE International Conference

on Services Computing. IEEE, 2016.

5. Huankai Chen, and Frank Z. Wang. “ComplexCloudSim: Towards Under-

standing Complexity in QoS-aware Cloud Scheduling.” International Jour-

nal of Advanced Computer Science and Applications. 03/2017; 8(3):9-16.

6. Huankai Chen, Frank Z. Wang and Na Helian. “Entropy4Cloud: Using

Entropy-Based Complexity to Optimize Cloud Service Resource Man-

agement.” IEEE Transactions on Emerging Topics in Computational Intelligence.

02/2018; 2(1):13-24.

vii

List of Figures

1.1 Cloud Usage Scenario. 3

2.1 Logical View of MapReduce Job . 10

2.2 Apache YARN architecture [Vavilapalli et al., 2013] 19

2.3 Apache MESOS architecture [Hindman et al., 2011] 21

2.4 Apache Spark Standalone Mode architecture 21

3.1 CloudSim : Simulation Flow Chart . 28

3.2 Motivational Example : Estimated Scheduling Plan 32

3.3 Motivational Example : Actual Scheduling Plan 32

3.4 Complexity Simulation: Average Workflow Runtime 37

3.5 Complexity Simulation: Standard Deviation of Workflow Runtime 38

3.6 Damage Spreading Evaluation: Daverage 39

3.7 Damage Spreading Evaluation: : Dstd . 40

4.1 Locally-Active Resource Vs. Locally-Passive Resource 49

5.1 Examples of evolution of an one-dimensional Cellular Automata. 58

5.2 Scheduling Reliability: Cellular Automata Grid and Average Resource
Entropy (ARE) . 63

5.3 Scheduling Reliability Simulation: Project Makespan 64

5.4 Flow Diagram of CAE-CRA Methodology. 65

5.5 Performance Benchmark for All Resources Allocation Solutions (10 Tasks). 68

5.6 Cost Benchmark for All Resources Allocation Solutions (10 Tasks). 69

5.7 Reliability Benchmark for All Resources Allocation Solutions (10 Tasks). . 69

5.8 CERR Benchmark for All Resources Allocation Solutions (10 Tasks). . . . 70

5.9 Performance Benchmarks for All Resources Allocation Solutions (100
Tasks). 72

5.10 Cost Benchmarks for All Resources Allocation Solutions (100 Tasks). . . . 73

5.11 Reliability Benchmarks For All Resources Allocation Solutions (100 Tasks). 73

5.12 CERR Benchmark for All Resources Allocation Solution (100 Tasks). . . . 74

6.1 Complexity Reduction & Chaos Control: Resource Entropy Based Local
Activity Ranking . 77

6.2 Cloud engines can run parallel analysis jobs with ever lower latency . . . 79

6.3 Apache Spark : Cloud Analysis as A Service 80

6.4 Experiment 1: Spark analysis server throughput result 83

6.5 Experiment 1: Response time statistics result 84

6.6 Experiment 1: HTTP request failure rate result 84

viii

List of Figures ix

6.7 t-test result for the failure rate with Fair Scheduler and Entropy Scheduler 85

6.8 Experiment: Percentage of the requests served within a certain time (Mil-
lion Seconds) . 86

6.9 t-test result for the average response time with Fair Scheduler and Entropy
Scheduler . 87

Copyright c© University of Kent ix

List of Tables

3.1 Terminology For Scheduling In Cloud Computing 29

3.2 Jobs Specifications . 30

3.3 VMs Specifications . 31

3.4 Jobs Completion Details . 33

3.5 Baseline Simulation Result with Original CloudSim 36

3.6 Relation Between Number of VMs and Daverage 41

3.7 Relation Between Number of VMs and Dstd 41

5.1 Eight Cellular Automata Rules For The Cell 57

5.2 CASE 1: PROJECT TASK SPECIFICATION 67

5.3 CASE 1: CLOUD RESOURCE TYPE SPECIFICATION 67

5.4 CASE 1: PROJECT REQUIREMENTS 68

5.5 OPTIMIZE RESOURCE ALLOCATION SOLUTIONS (10 TASKS) . . . 70

5.6 CASE 2 : PROJECT TASK SPECIFICATION 71

5.7 CASE 2 : CLOUD RESOURCE TYPE SPECIFICATION 71

5.8 CASE 2 : PROJECT REQUIREMENTS 72

5.9 OPTIMIZE RESOURCE ALLOCATION SOLUTIONS (100 TASKS) . . 74

6.1 Experimental Platform: Resource specification 83

6.2 Experiment: Load testing with 100,000 query requests at the concurrent
level of 10 . 86

x

Chapter 1

Introduction

Cloud computing is everywhere. When we look at any IT related magazine, website, or

TV programme, the word “Cloud” will almost certainly catch our eye. All of today’s

most popular social networking, email, document-sharing and on-line gaming sites are

hosted on a cloud. Even the U.K. government intends to transform the public sector

ICT estate into one that is agile, cost effective and environmentally sustainable by

exploiting innovations in Cloud computing [GOV.UK, 2011]. Cloud computing can

make a software system more attractive as a service, and shapes the way in which IT

hardware is purchased. It is possible to predict that it will spark a revolution in the way

organizations provide and consume information and computing.

Cloud computing has reached into our daily lives and has led to a broad range of in-

novations. Built on a number of older IT technologies, cloud computing is actually a

revolutionary approach that completely changes how computing services are produced,

priced and delivered. It allows users to access services that reside at a distant data

centre, rather than on local computers or on other Internet-connected devices. Cloud

services are charged according to the amount consumed by users. The idea of computing

services as easily accessible utilities has been a long-held dream in the computer indus-

try, but the idea is still not mature, and will not become so until the advent of low-cost

and reliable data centres.

Data centres behaving as “cloud providers” are computing infrastructures which provide

many kinds of flexible and effective services to customers. A wide range of IT companies,

including Amazon, Cisco, Yahoo, Salesforce, Facebook, Microsoft and Google have their

own data centres and provide pay-as-you-go cloud services. Two different but related

types of cloud service should be distinguished from each other first: the on-demand

computing instance, and the on-demand computing capacity. Equipped with similar

1

Chapter 1. Introduction 2

machines, data centres can scale out by providing additional computing instances, or

they can support data- or compute-intensive applications via scaling capacity.

Windows Azure, Amazon Web Services, the Google App Engine and Force.com are

examples of the first category; they provide computing instances according to needs.

The data centres instantly create virtualized instances and provide a response. The

virtualized instance might consist of processors running at different speeds that span

different storage systems at different locations. Therefore, virtualization is an essential

characteristic of Cloud computing; through virtualization applications can be executed

independently without regard to any particular configuration.

Google and Yahoo belong to the second category. At these data centres, the need to

process large amounts of raw data is primarily met by distributed and parallel comput-

ing, and the data can be moved from place to place and assigned changing attributes

based on its life-cycle, requirements and usefulness. One core technology is MapReduce,

a style of parallel programming model supported by capacity-on-demand clouds. It can

deal with massive data in parallel on a cloud.

The above two types of cloud services classify cloud computing into two distinct deploy-

ment models: public and private. A public cloud is designed to provide cloud services to

a variety of third-party clients who use the same cloud resources. Public cloud services

such as Googles App Engine are open to anyone at any time and anywhere. On the

contrary, a private cloud is devoted to a single organization’s internal use. Google, for

example, uses GFS, MapReduce, and BigTable within its private cloud services, so the

services provided by these systems are only available inside the enterprise. It’s impor-

tant to note that Google uses its private cloud to provide its public cloud services, such

as those related to productive applications, media delivery, and social interaction.

1.1 Motivations and Challenges

Cloud computing is still in its infancy, but it has presented new opportunities to users

and developers who can benefit from economies of scales, commoditization of assets and

conformance to programming standards. Its attributes, such as scalability, elasticity, low

barrier to entry and a utility type of delivery make this new paradigm readily marketable.

At the same time, the cloud market poses a number of challenges. Resource management

is one of theses and is a topic very worthy of investigation; it is a key issue in the

determination of whether the new computing paradigm will be adopted more widely

and will meet with even greater business success.

Copyright c© University of Kent 2

Chapter 1. Introduction 3

Figure 1.1: Cloud Usage Scenario.

In most cases, the interaction between cloud users and cloud providers occurs as shown in

1.1. First, a user sends a request for resources to a provider. When the provider receives

the request, it looks for resources to satisfy the request and assigns the resources to the

requesting user, typically in the form of virtual machines (VMs). Then the user uses

the assigned resources in order to run projects and pays for the resources that are used.

When the user no longer needs the resources, they are returned to the provider. One

interesting aspect of the resource management problem which concerns the cloud market

is that the two players, cloud users and cloud providers, are often different parties with

their own divergent interests.

• From the cloud user’s resource management perspective, the goal is to deliver user’s

projects within deadline and cost budget. In other words, the cloud user seeks

to maximize their cost performance with reliable resource management solutions.

This involves renting the proper quantity of cloud resources to suit the project

requirements and utilize the resources effectively. Also, unpredictable resources

production/performance has to be taken into account when projects are scheduled

and resources are requested.

• From the cloud provider’s resource management perspective, the focus is more

on system performance and the revenue of the . In this case, improvement from

resource management mainly relates to technical issues. For example, it is im-

portant to optimize the scheduling schemes in order to reduce project completion

Copyright c© University of Kent 3

Chapter 1. Introduction 4

time and to improve resource utilization - when many users’ projects are running

in parallel. To generate as much revenue as possible with minimum investment,

a cloud provider might try to put a strain on their computing resources by, for

example, hosting as many VMs as possible on each machine. However, placing

too many VMs on a single machine will cause VMs to interfere with each other,

resource-wise, and may result in degraded and/or unpredictable production per-

formance, and this, in turn, may frustrate the users. Thus, the provider could

evict existing VMs or reject resource requests in order to maintain service quality,

but this might make the cloud environment even more unpredictable.

However, these two parties are generally not able to share information with each other

efficiently, which makes optimal resource allocation and scheduling more difficult. For

example, how many of what kind of machines the providers have and how these are

connected is information which is hidden from the users. Similarly, providers cannot

allocate resources in a manner most suitable to users’ projects, since there is no in-

formation available to them about the workload pattern these will exhibit. It is also

difficult for providers to multiplex their resources effectively when they have to assign

resources to projects with heterogeneous (and unknown) types of workload pattern.

In addition, data centres are becoming increasingly heterogeneous and may consist of

various generations of equipment, as the technology advances. For example, processors

with more cores and greater cache memory are continuously being introduced onto the

market.

Moreover, due to its increasing complexity, the cloud environment is highly unpre-

dictable. Sometimes, cloud providers even voluntarily offer more unpredictable resource

containers at a lower cost. For example, Amazon’s EC2 offers spot instances for which

users make a bid that is much lower than the price of regular instances. If the load

to EC2 surges and the price of spot instances spikes higher than the bid, then these

instance become liable to be evicted at any time. Thus, there are no guarantees for

users running projects on spot instances.

Hence, we must take these properties of the cloud environment into account to make

cloud services efficient. By efficient, from the cloud providers’ point of view, we mean

that appropriate resources are allocated at the right time to the right project, so that

the users’ projects can utilize the available resources effectively. From the cloud user’s

point of view, we want to minimize the amount of resources needed for a project to

maintain a desirable level of service quality that meets the project’s QoS requirements,

such as its deadline, cost budget and reliability requirements. However, we argue that

Copyright c© University of Kent 4

Chapter 1. Introduction 5

many current cloud resource management solutions are inefficient due to the following

reasons:

• The lack of information sharing

• The assumption of homogeneous cloud environments

• Highly dynamic cloud resource performance

• The complexity of cloud resource management increased due to QoS constraints

1.2 Problem Statement and Contribution

In Cloud computing, a cloud service’s resource management system usually contains two

levels of processes: resource allocation and job scheduling.

• Resource Allocation is the process of finding a suitable quantity of resources

for the Cloud application while meeting the application’s QoS requirements. At

this level, it is very difficult to quantify the performance of an allocation policy

on cloud infrastructures for applications exhibiting varying workloads and resource

usages. The simulation based approaches provide significant benefits, as they allow

researchers to test their proposed algorithms and protocols in a repeatable and

controlled environment in order to find solutions to any performance bottlenecks

associated with these, before deploying in the real Cloud. However, most of the

current cloud simulators lack an accurate perspective on the actual nature of the

Cloud environment, complexity, and this makes them incapable of modelling

real-world complex cloud scenarios. Inaccurate simulations may result in the over-

provisioning or under-provisioning of resources for Cloud applications.

• Job Scheduling focuses on the mapping of application jobs onto the available

resources. In the cloud environment, the computational complexity of finding

an optimum resource mapping is exponential since cloud resources’ performances

can be highly dynamic and uncertain during run-time. Thus, most of the current

research solutions ignore the complexity factors involved with cloud resources since

their performances are nearly entirely unpredictable. Such studies assume cloud

resources performance to be unchanging during the run-time of the application

and only focus on the static information available (e.g., the number of CPU cores)

when developing new scheduling strategies. Such incorrect assumptions make their

scheduling strategies less robust when running on the complex, real world Cloud.

Copyright c© University of Kent 5

Chapter 1. Introduction 6

This thesis studies the above resource management problems related to complex Cloud

environments and tries to tackle these problems by introducing the use of the concept

of Entropy Theory into this area. The major contributions of this thesis are as follows.

• A survey of current trends and research opportunities in Cloud computing.

• A simulator for modelling complexity in Cloud environments, to facilitate the study

of the impacts of complexity on cloud resource management systems.

• The introduction of Entropy Theory as concept to assist the understanding of

resource management in the complex cloud environment

• The proposal of a cloud resource allocation methodology based on Cellular Au-

tomata Entropy

• The proposal of a cloud job scheduling strategy guided by Local Activity Ranking

as measured by Resource Entropy

1.3 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 provides a comprehensive survey of resource management research in

respect of the Cloud. The state-of-the-art efforts on cloud resource management

systems are investigated from both industry and academic standpoints. Here I

also identify previous work that is related to my work and highlight the resource

management issues that deserve further substantial research and development.

• Chapter 3 evaluates the impact of complexity in cloud resource management

systems. I present ComplexCloudSim, which extends the popular simulation

tool-kit CloudSim with the ability to model the complexity factors involved in

the Cloud including heterogeneity of resources, dynamic changes of resource run-

time performance and uncertainty of task execution time. Furthermore, damage

spreading analysis is applied to the area of cloud resource management systems.

The simulations show that cloud systems reveal sensitivity to initial conditions

in some parameter regions. Such findings of “Chaotic Behaviour” explain why

most cloud resource management systems work less robustly in the real world

production environment; this is a problem which cannot be ignored.

• Chapter 4 firstly tries to define the complexity involved with the cloud resource

management systems. This is classified into two general types: Global System

Copyright c© University of Kent 6

Chapter 1. Introduction 7

Complexity and Local Resource Complexity. Entropy Theory is then introduced

as a concept which will assist in the managing of the complexity of cloud resource

management system and their issues - this covers identifying, measuring, analysing

and controlling.

• Chapter 5 proposes solutions to the resource allocation problem based on man-

aging Global System Complexity. First, I present a short tutorial on Cellular

Automata, covering the different behaviour classes of Cellular Automata and also

Entropy as a quantitative measurement which can be used to identify such classes.

Next, Cellular Automata Entropy based resource allocation (CAE-CRA),

a methodology, is proposed to better satisfy the QoS requirements of cloud projects.

Finally, the proposed methodology is implemented under the Matlab environment

and verified in relation to four basic resource allocation strategies, the First Come

First Served Algorithm (FCFS), the Round Robin Algorithm (RR), the Min-Min

Algorithm and the Max-Min Algorithm. The experimental results show that the

proposed methodology leads to the attainment of more cost-efficient and reliable

cloud resource allocation solutions.

• Chapter 6 proposes solutions to the Cloud job scheduling problem based on

managing Local Resource Complexity. We first study the concept of the Local Ac-

tivity Principle and also several complexity factors caused by the locally-active

Cloud resource. And then I propose Local Activity Ranking by Resource

Entropy as a methodology to control the Chaos in QoS-aware cloud job schedul-

ing. Finally, this concept, Entropy Scheduler, is implemented in a widely-used

real-world cloud analysis engine Apache Spark. Experiments demonstrate that

the new Entropy Scheduler can gain significant improvements on the satisfaction

of QoS requirement comparing with the native Spark Fair Scheduler.

• Chapter 7 concludes the whole thesis.

Copyright c© University of Kent 7

Chapter 2

Literature Review: Cloud

Resource Management System

This chapter begins with a general introduction to Cloud computing and Cloud appli-

cations which are concerned with MapReduce-like jobs. After that, I investigate related

works, both from industry and research perspectives, regarding the resource allocation

and job scheduling problem. Finally, the challenges and opportunities in this domain

are captured.

2.1 Background

Over the past decade, Cloud computing has profoundly changed the way people use

resources and services. Below is the definition of Cloud computing given by the National

Institute of Science and Technology (NIST) [Liu et al., 2011a]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service

provider interaction.”

Cloud computing encompasses both: a) the provision of resources to consumers on a

pay-per-use or charge-per-use basis, and b) the private infrastructures maintained and

utilized by individual consumers. The former case is referred to as the Public Cloud and

the latter as a Private Cloud. The scenario wherein a consumer extends the capacity of

their private Cloud infrastructure by renting out spare public Cloud resources is referred

8

Chapter 2. Literature Review: Cloud Resource Management System 9

to as Hybrid Cloud. Another emerging category is Community Cloud, where the Cloud

resources are contributed by many individuals/organisations and where governance is

decentralised.

Cloud environments are typically classified into the following service models [Liu et al.,

2011a]:

• Infrastructure as a Service (IaaS). The capability provided to the consumer is

to provision processing, storage, networks, and other fundamental computing re-

sources using which the consumer is able to deploy and run arbitrary software,

including operating systems and applications. The consumer does not manage

or control the underlying cloud infrastructure but has control over their operat-

ing systems, storage, and deployed applications - and possibly limited control of

selected networking components (e.g., host firewalls).

• Platform as a Service (PaaS). The capability provided to the consumer is to deploy

onto the cloud infrastructure consumer-created or consumer-acquired applications

created using programming languages, libraries, services, and tools supported by

the provider. The consumer does not manage or control the underlying cloud

infrastructure, including network, servers, operating systems, and storage, but has

control over the deployed applications and possibly configuration settings for the

application-hosting environment.

• Software as a Service (SaaS). The capability provided to the consumer is to use

the provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through either a thin client interface, such

as a web browser (e.g., web-based email), or a program interface. The consumer

does not manage or control the underlying cloud infrastructure, including network,

servers, operating systems, storage, or even individual application capabilities with

the possible exception of limited user-specific application configuration settings.

Throughout this thesis, I refer to IaaS as “the Cloud environments” or “the Cloud”

unless otherwise specified. SaaS and PaaS are also important service models of Cloud

computing, but they are not within the focus of this thesis.

The last few years have seen a dramatic growth in the availability of, and the demand

for, the Cloud. Nowadays, a wide range of IT companies, including Amazon, Microsoft,

Google, IBM, HP and Rackspace, provide Infrastructure as a Service (IaaS). The IaaS

provider owns and maintains the data centre while the consumers rent out the specific

physical/virtual resources they need for deploying their cloud applications - usually on a

“pay as you go” basis. With advanced virtualization technologies, a single physical host

Copyright c© University of Kent 9

Chapter 2. Literature Review: Cloud Resource Management System 10

can run multiple virtual machines (VMs) simultaneously. Nevertheless, this virtualiza-

tion also brings about new challenges to resource management for Cloud applications

due to the fact that multiple VMs can share the hardware resources (e.g. CPU, memory,

I/O, network, etc.) of a physical machine. In such situations, it is difficult to accurately

measure the actual performance of rented VMs. For example, in Amazon EC2, the

provisioning of resources to virtual machines is based on compute units instead of fixed

performance measures. Different host machines provide a different amount of computing

power per provisioned compute unit, effectuating heterogeneity among VM performance.

2.1.1 Cloud Applications Consists of MapReduce Jobs

MapReduce is a programming model for processing parallelizable computing across huge

amounts of data using a number of resources - collectively referred to as the Cloud.

Typically, the data is broken down into smaller pieces (called blocks) and distributively

stored across a distributed file system: e.g. the Hadoop Distributed File System (HDFS).

MapReduce allows for the distributed processing of the map and reduction operation on

the data, which provides the scalability which is needed for big data processing in Cloud

applications.

A MapReduce job centres around two functions: a map function and a reduce function.

Fig. 2.1 briefly describes the workflow in a MapReduce job. Each Map function loads a

block of input data and generates corresponding intermediate data that is grouped by

keys. Then the intermediate data is sent to the corresponding reduce function which is

responsible for a range of the key space and produces the final output.

Figure 2.1: Logical View of MapReduce Job

2.1.2 Resource Management System for Cloud Applications

In Cloud applications consisting of MapReduce jobs, there is a single Master node that

manages the whole Cloud. A number of Worker nodes subscribe to the Master node

Copyright c© University of Kent 10

Chapter 2. Literature Review: Cloud Resource Management System 11

in order to join the cloud. Each Worker may have one or more slots, depending on the

number of allocated CPU cores, and each slot runs one map or reduce function at a

time.

The Master node contains a Resource Management System (RMS), either internal (e.g.

Spark Standalone) or external (e.g. Yarn, Mesos). The RMS typically contains three

major functionalities to manage the cloud as follows:

• The Resource Allocation function is responsible for allocating resources (Phys-

ical/Virtual machines) to the cloud application subject to the familiar constraints

of capacities, queues etc. and deploying the Worker nodes on the allocated re-

sources. For this function, the user needs to make a decision on choosing a suitable

number of resources, according to the application’s requirement in a-priori.

• The Job Scheduling function is responsible for scheduling MapReduce jobs in

the deployed Workers’ slots. When the scheduler receives a MapReduce job, it will

first check whether there are enough qualified slots to run the job. If the scheduler

finds that the number of available slots meets the job’s requirement, it assigns the

job’s Map/Reduce tasks to the slots; such slots will become unavailable until all

the tasks assigned are finished.

• Resource & Job Monitoring is responsible for monitoring the resource usage

(cpu, memory, disk and network) and the progress of running jobs.

2.2 Related Works

In this section, I describe in greater detail the two major functions of a RMS in relation

to a cloud application: Resource Allocation and Job Scheduling. We also highlight the

previous research, the current status of research and future directions in these domains.

2.2.1 Resource Allocation

The objective of resource allocation is to find and allocate the appropriate resources to

the cloud applications on time, so that applications can utilize these resources effectively.

Moreover, the amount of resources should be the minimum for a cloud application to

maintain its desired level of service quality, including performance, availability, scalabil-

ity, cost budget, security, etc. Typically, allocating resources to an application is a static

process which occurs prior to the running of the application. To maximize revenues and

Copyright c© University of Kent 11

Chapter 2. Literature Review: Cloud Resource Management System 12

improve user satisfaction, an effective allocation of resources to cloud applications is

necessary.

The functionality of resource allocation can be divided into two main components:

1. determine both the amount of resources a cloud application needs, and the specific

details of the resources required,

2. make and enforce resource allocation decisions in a way that satisfies the resource

requirements of the cloud application.

For both components there is a wide spectrum of designs and implementations. The

fundamental kind of resource allocation found from the existing literature can, in the

main, be divided into the following categories: QoS based, resource based, bargaining

based, prediction based and nature-inspired/bio-inspired.

2.2.1.1 QoS (e.g. Budget, Deadline, Reliability) Based

Isard et al. [2009] formulates resource assignment as a graph optimization problem,

accounting for fairness and the placement constraints applications may have. A formu-

lation that supports a mix of QoS scenarios with precisely defined objective function,

promotes performance, fairness, and CPU utilization is proposed for static workloads

with multiple types of resources by Stillwell et al. [2010]. Byun et al. [2011] propose

an architecture to automatically execute large-scale workflow-based applications on dy-

namically and elastically provisioned cloud resources. Sharma et al. [2011] present a

cost-aware resource allocation system that optimize the selection of virtual server con-

figuration to minimizes the cost. Hwang and Kim [2012] propose a cost-effective resource

provisioning methodology for deadline constrained cloud applications. A approach that

operates fine-gained resource level scaling as well as VM level scaling (CPUs, Memory,

I/O) is proposed to support cost-effective elasticity for cloud services by Han et al.

[2012]. Mao and Humphrey [2011] present an approach to ensure all jobs are finished

within deadlines at lowest financial cost, where takes the virtual machine of various

sizes/costs as the basic computing units and which (soft) deadlines of jobs can be spec-

ified according to the performance requirements. A deadline-driven resource provision

mechanism was presented to support QoS-aware execution of scientific workloads in het-

erogeneous cloud environment by Vecchiola et al. [2012]. Malawski et al. [2012] address

a resource management problem concerning IaaS project with cost budget and deadline

constraints. The problem of minimizing the cloud operation cost by maximizing its en-

ergy efficiency while ensuring the application’s QoS requirements is addresses by Gao

Copyright c© University of Kent 12

Chapter 2. Literature Review: Cloud Resource Management System 13

et al. [2013] later. Yang et al. [2013] apply a dynamic interference sensitivity detection

methodology to preserve the performance of batch-analysis applications for collocation

scenarios. Han et al. [2014] try to reduces the costs incurred by cloud users that using

IaaS by utilizing adaptive scaling algorithms for cloud resources, which enable them to

scale their applications only meets bottleneck. Poola et al. [2014] presented a robust

scheduling algorithm with resource allocation policies that schedules workflow tasks on

heterogeneous cloud resources while trying to minimize the total elapsed time (make

span) and the cost. Singh and Chana [2015] categorize the cloud application work-

load on the basis of common patterns and then allocating the resource according to

the generalized patterns before actual scheduling. Fernandez et al. [2014] proposed a

system which selects a resource scaling plan according to both workload and customer

requirements.

2.2.1.2 Resource Based

A theoretical problem formulation is developed for allocating multiple heterogeneous

types of resources to competing cloud services and the proposed algorithms are com-

pared through simulation experiments based on the Google Cluster Workload [Stillwell

et al., 2012]. Xiao et al. [2013] introduce a new concept, “Skewness”, to measure the un-

evenness in the multi-dimensional cloud resource utilization. They proposed a system to

combine different types of workloads and improve the overall cloud resource utilization

by minimizing Skewness [Mars and Tang, 2013]. Klein et al. [2014] introduce Brownout

that uses a self-adaptation programming paradigm based on Control Theory to develop

applications that can robustly withstand unpredictable resource performance without

over-provisioning.

2.2.1.3 Bargaining Based

Lai et al. [2005] develop a cloud resource allocation system based on bargaining, which

allows applications to differentiate the values of its jobs. While An et al. [2010] pro-

pose an alternative approach where applications are allowed to automatically negotiate

resource leasing contracts with cloud providers. Similarly, Dastjerdi and Buyya [2012]

propose a solution to automate the negotiation process in cloud environment. Zhang

et al. [2011] try to address the question how to best match applications QoS require-

ment in order to maximize cloud provider revenue and cloud users satisfactions while

minimizing energy cost in a single cloud provider scenario. Zaman and Grosu [2013]

attempt to formulate the problem of resource allocation in clouds as a on-line auction

problem.

Copyright c© University of Kent 13

Chapter 2. Literature Review: Cloud Resource Management System 14

2.2.1.4 Prediction Based

A resource allocation methodology is presented by Gmach et al. [2007], which relies on

the ability to predict the cloud application’s behaviour a priori while Gong et al. [2010]

propose an alternative schema based on predictions of dynamic cloud resource run-time

performance. Watson et al. [2010] study the probabilistic relationships between resource

and application and apply basic laws of probability to their proposed model to investigate

whether and how CPU utilization affects application performance. Shen et al. [2011]

use on-line workload demand prediction without a priori assumptions on application

behaviour to identifies the application’s resource requirement, which attempt to avoid

over-provisioning or over-loading of cloud resources. An algorithm is proposed by Li et al.

[2012] to adjust the number of resource allocated to applications based on the updated

information of their actual task executions. Islam et al. [2012] present a new resource

measurement and provisioning solution based on prediction using Neural Network and

Linear Regression to meet future workload demands while Vasic et al. [2012] serves a

similar goal by classifying workload and reuses previous resource allocations decisions

to minimize reallocation overheads. In Jiang et al. [2013]’s work, they attempt to make

a trade-off between resource demand and service latency by automatically predict the

number of application query requests .

2.2.1.5 Nature-inspired / Bio-inspired Based

Hegazy [1999] use the Genetic Algorithms (GAs) technique to search for near-optimum

solution by taking both resource allocation and leveling heuristics into consideration.

Hua et al. [2010] proposed an Ant Colony Optimization (ACO) based resource alloca-

tion algorithm to satisfy the property of cloud computing. A novel parallel Q-learning

approach is presented by Barrett et al. [2013] to reduce the overhead introduced by

determine optimal policies while learning on-line. Recently, a self-tuning fuzzy control

(STFC) approach is extended to enable qualitative specification of elasticity rules for

applications running on the cloud [Rao et al., 2013].

2.2.2 Job Scheduling

Once the resources are allocated to the cloud application, the RMS will perform schedul-

ing decisions on the incoming jobs. Ideally, the job scheduler should have three desirable

properties:

1. each job should receive sufficient resources to enable it to achieve high and pre-

dictable performance;

Copyright c© University of Kent 14

Chapter 2. Literature Review: Cloud Resource Management System 15

2. jobs should be tightly scheduled on available resources to achieve high resource

utilization; and

3. scheduling overheads should be minimal to allow the scheduler to scale to large

clouds and high job arrival rates.

With these three objectives in mind, job schedulers follow a diverse set of designs, which

can be examined via their properties of throughput, latency, predictability, efficiency,

overhead and failure rate. As mentioned in the former section, the optimal matching

of jobs to suitable resources is an optimization problem, generally with NP-complete

complexity. Heuristics are often applied as suboptimal algorithms to obtain relatively

good solutions. Generally, one of two main strategies is pursued in heuristic solutions,

static or dynamic. Static heuristics are suitable for the situation where the complete

set of tasks is known prior to execution, while dynamic heuristics assess and perform

the scheduling required when a task arrives. Comparative studies show that static

heuristics outperform dynamic heuristics in most cases and from different perspectives

[Blythe et al., 2005; Braun et al., 2001; Lopez et al., 2006; Wieczorek et al., 2005].

2.2.2.1 Static Heuristics

In static heuristics, jobs arrive simultaneously and the available resource schedules are

updated after each task is scheduled. This scheduling assumes a precise knowledge of

the timing information concerning the jobs which is difficult to obtain, but less runtime

overhead is incurred when such is available.

Opportunistic Load Balancing (OLB) assigns each job, in arbitrary order, to the

next resource that is expected to be available, regardless of the job’s expected execution

time on that resource [Freund and Siegel, 1993]. OLB tries to keep all resources as busy

as possible. The main advantage of OLB is its simplicity. However, OLB results in very

poor overall project completion time since it does not consider expected job execution

times.

Minimum Execution Time (MET) assigns each job, in arbitrary order, to the re-

source with the shortest expected execution time for that job, regardless of that re-

source’s availability [Freund and Siegel, 1993]. MET tries to schedule the job to the

fastest/best resource for it - which can cause load imbalances across resources.

Minimum Completion Time (MCT) assigns each job, in arbitrary order, to the

resource with the minimum expected completion time for that job [Freund and Siegel,

1993]. MCT tries to avoid the circumstances in which OLB and MET perform poorly.

Copyright c© University of Kent 15

Chapter 2. Literature Review: Cloud Resource Management System 16

Min-Min begins with the set U of all unscheduled jobs. The matrix of minimum

completion times for each job in the set U is calculated. The job with the minimum

completion time, overall, is selected and assigned to the corresponding resource. Finally,

the scheduled job is removed from U, and the process repeats until all jobs are scheduled

[Freund et al., 1998].

Max-Min is similar, but opposite, to the Min-Min heuristic. The job with the maximum

completion time, overall, is scheduled to its corresponding resource [Freund et al., 1998].

Duplex is literally a combination of the Min-Min and Max-Min heuristics [Freund

et al., 1998]. Duplex tries to switch between these schemes according to conditions

which indicate which of them will perform well in present circumstances - but with

negligible overhead.

Genetic Algorithm (GA) is a technique used for searching large solution spaces [Wang

et al., 1997]. The characteristics of GA heuristics (in this context) include: a separation

of the matching and the scheduling representations, independence of the chromosome

structure from the details of the communication subsystem, and consideration of overlaps

among all computations and communications tasks that are subject to job precedence

constraints.

Simulated Annealing (SA) uses the same chromosomal representation as is used in

GA [Coli and Palazzari, 1996] but considers only one possible solution for each job at

a time. Since SA may accept a worse makespan, based on a probability, it finds poorer

solutions than GA.

A* is a tree-based search heuristic beginning at a root node that is a null solution [Chow

and Liu, 1991]. When the tree is grown, the nodes will represent partial scheduling (a

subset of jobs is assigned to resources), and the leaves will represent final scheduling (all

jobs are assigned to resources). A* aims at producing a schedule of minimum execution

time when a leaf (complete scheduling) is reached.

2.2.2.2 Dynamic Heuristics

With dynamic heuristics, it is assumed that the timing information concerning the jobs

and the resources is not known at runtime. For example, not all jobs arrive simultane-

ously and some resources go off-line at intervals. Dynamic heuristics can be used in two

ways: in real-time mode and in batch mode.

In real-time mode, each job is scheduled only once and the scheduling result cannot

be changed. This is suitable for the cases in which job arrival rate is low [Maheswaran

Copyright c© University of Kent 16

Chapter 2. Literature Review: Cloud Resource Management System 17

et al., 1999]. Some real-time scheduling algorithms are as follows: Opportunistic Load

Balancing (OLB), Minimum Execution Time (MET), Minimum Completion

Time (MCT), Simulated Annealing (SA) and K-Percent Best (KPB). KPB

considers only a subset of resources while scheduling a job. The subset is formed by

picking the k best resources, based on the execution times for the task. The purpose

is to avoid allocating the current job a resource which might be more suitable for some

yet-to-arrive jobs, so it outperforms others in most scenarios. The results of MCT are

good, only slightly worse than those of KPB, owing to the lack of prediction for job

heterogeneity [Maheswaran et al., 1999].

In batch mode, jobs are not scheduled as they arrive, instead they are collected and

scheduled only at some predefined instances in time. Both Min-Min and Max-Min

are batch scheduling algorithms.

2.2.2.3 More Heuristics Based On Objectives For Job Scheduling

Budget is the expected cost which the users will have to pay to rent the cloud re-

sources. The goal of budget-based job scheduling is to finish all jobs as fast as possible

at a given budget. The Heterogeneous Earliest-Finish-Time (HEFT) heuristic,

proposed by Topcuoglu et al. [2002], selects the job with the highest upward rank value

at each step and schedules the selected job to the resource, which minimizes its earliest

finish time,using an insertion-based approach. Lin and Wu [2013] formulated the job

scheduling problem in such a way as to minimize the workflow end-to-end delay under

a user-specified budget constraint.The Genetic Algorithm (GA) approach presented

by Yu and Buyya [2006] can be applied to search for time optimal solutions within

budgetary constraints.

Deadline is the time limit for the execution of the jobs submitted to the user’s cloud

applications. The simplest solution to deadline-based job scheduling is the minimum

critical path methodology. This only selects cheaper resources for non-critical jobs when

the execution of critical jobs is not thereby influenced. If the makespan would terminate

before the deadline, then there is a potential to further reduce cost by delaying the

start of the makespan so that it finishes, at latest, at the deadline. In the Deadline

Early Tree (DET) heuristic, all jobs are partitioned into different paths of an Early

Tree [Yuan et al., 2009]. For critical jobs, the whole deadline period is segmented into

time windows. For non-critical jobs, an iterative procedure is may be used to determine

the time windows while keeping to the precedence constraints among the current jobs.

Then a dynamic programming strategy is adopted to search for local optimal resources

for jobs.

Copyright c© University of Kent 17

Chapter 2. Literature Review: Cloud Resource Management System 18

Reliability is the probability that the job can be completed as expected, which is a

major performance issue in the presence of resource performance fluctuations. Lee and

Zomaya [2010] investigated the effectiveness of rescheduling jobs in the cloud to increase

the reliability of job completion time. Zhao et al. [2013] examined the problem of reliable

jobs scheduling with less resource redundancy. Algorithms are proposed to avoid the

“Chain effect” caused by uncertainties in relation to job execution time estimates, and

relieve the impact of inaccuracy caused by poor estimations.

Load Balancing optimizes the resource usage in order to avoid overloading. Whenever

certain resources are overloaded and remaining resources are under-loaded with jobs for

processing, the load is balanced in order to achieve optimal resource utilization. Load

Balanced Improved Min-Min (LBIMM) presented by Chen et al. [2013b] modified

the basic Min-Min heuristic by improving the load balance to effectively reduce the

execution time on each resource. LD and Krishna [2013] proposed an algorithm named

Honey Bee Behaviour inspired load balancing (HBB-LB), which aims to achieve

well balanced load across virtual machines for maximizing throughput.

Multi-Objectives heuristics consider more than one objective in making scheduling

decisions. Yu et al. [2005] proposed Deadline-MDP that minimizes execution cost

while meeting the deadline for cost-based workflow. Wu et al. [2013] proposed a market-

oriented hierarchical job scheduling strategy in the cloud based on users functional and

non-functional QoS requirements. Liu et al. [2011b] adopts the use of the Ant Colony

Optimization (ACO) algorithm to optimize cloud job scheduling with respect to var-

ious quality of service (QoS) requirements. Service Level Agreements (SLA) are intro-

duced in their model and a SLA monitoring module is also implemented in order to

monitor the operational state of cloud services.

2.2.3 Resource Management Systems in Industry

The outstanding performance of the current Apache Hadoop system [White, 2012] in big

data processing scenarios has received the regard of many from the industry. The most

popular resource management system for running Hadoop MapReduce applications on

the cloud are YARN [Vavilapalli et al., 2013] and MESOS [Hindman et al., 2011].

In recent years, Apache Spark [Zaharia et al., 2010] has continued to attract attention

in the big data world; it claims to run, when in memory only, up to 100x faster than

Hadoop MapReduce, and 10x faster when on disk. Spark applications can run on the

cloud under its own Spark Standalone mode [Zaharia et al., 2010], or connect with

either YARN or MESOS. We will discuss these RMSs in more detail, in the following.

Copyright c© University of Kent 18

Chapter 2. Literature Review: Cloud Resource Management System 19

2.2.3.1 Apache Hadoop NextGen MapReduce (YARN)

Figure 2.2: Apache YARN architecture [Vavilapalli et al., 2013]

YARN (Yet Another Resource Negotiator) re-architects the original MapReduce by

splitting up resource management and job scheduling/monitoring into separate mod-

ules. A typical YARN cloud consists of a single resource-manager and multiple node-

managers, as shown in Fig. 2.2. Applications submitted to YARN are run on contain-

ers, which are process abstractions that can run any user application. These containers

are monitored by local node-managers and allocated by the resource-manager. The

node-manager is responsible for reporting its containers’ capacities (Memory and CPU

Core limits) and the progress status of running applications to the resource-manager, pe-

riodically. The resource-manager is responsible for allocating containers to the various

running applications subject to the familiar constraints of capacities, queues etc. After

the resource-manager assigns containers to the applications, it performs its scheduling

function based on the resource requirements of the application’s map and reduce jobs. In

the current YARN version, only Memory and the number of CPU Cores are considered

as constraints during the job scheduling process. The default YARN schedulers include

the FIFO Scheduler, the Fair Scheduler and the Capacity Scheduler [Zaharia,

2009].

FIFO Scheduler: The default Hadoop scheduler operates using a FIFO queue. After

a job is partitioned into individual tasks (Map tasks and Reduce tasks), it is loaded

into the queue and assigned to free cores as they become available on the containers.

Typically, each job uses all the containers that are allocated to it, so jobs have to wait

for their turn, which means the application can only run one job at a time.

Copyright c© University of Kent 19

Chapter 2. Literature Review: Cloud Resource Management System 20

Fair Scheduler: The Fair Scheduler [Zaharia, 2010] aims to give every job a fair share

of cores over time. Applications may assign jobs to pools and each pool is allocated a

guaranteed minimum number of CPU cores. Free cores in idle pools may be consumed

by jobs in other active pools, while excess capacity within a pool is shared among jobs.

The Fair Scheduler supports preemption, so if a pool has not received its fair share for

a certain period of time, then the scheduler will kill jobs in pools having over capacity

in order to give the CPU cores to the pool having under capacity. In addition, users

may enforce the priority setting of certain pools. Jobs are therefore scheduled in an

interleaved manner, based on their priority within their pools, the capacity of all the

containers and the usage of other pools. In such a situation, shorter jobs are able to

finish quickly while longer jobs are run at the same time.

Capacity Scheduler: The Capacity Scheduler [Raj et al., 2012] addresses a usage

scenario where the number of applications is large, and there is a need to ensure fair

allocation of resources among applications. The Capacity Scheduler allocates jobs, based

on its application, to queues with configurable numbers of containers. Queues which

contain jobs are given their configured capacity, while free capacity in a queue is shared

among other queues. Overall, in this approach, all the containers are enforced to be

shared among all the applications, rather than among jobs, as was the case in the Fair

Scheduler.

2.2.3.2 Apache Mesos

Apache Mesos is another popular cloud resource manager which is capable of running

MapReduce applications. Its architecture is quite similar to that of YARN, as shown in

Fig. 2.3. In contrast to YARN, however, MESOS can run any kind of application rather

than just MapReduce applications - which are specifically targeted by YARN. MESOS

consists of a master process that manages slave daemons running on each resource,

and schedules jobs on these slaves. Mesos delegates scheduling decisions to a pluggable

scheduler module, so that applications can tailor the scheduler to their needs. So far,

MESOS have implemented two scheduler modules: one performs fair sharing based on a

generalization of Max-Min fairness for multiple resources and another implements strict

priorities like YARN.

2.2.3.3 Apache Spark Standalone Mode

In addition to running on YARN and MESOS, Spark also provides a simple standalone

mode. In standalone mode, each application is assigned a Spark driver, which is the

process running the Spark context. This driver is responsible for converting the jobs

Copyright c© University of Kent 20

Chapter 2. Literature Review: Cloud Resource Management System 21

Figure 2.3: Apache MESOS architecture [Hindman et al., 2011]

to a directed graph of individual tasks to be executed on the executors. In the current

version, Spark Standalone Mode has been implemented with two schedulers, a FIFO

Scheduler and Fair Scheduler; this is similar to the scheduling policy used in YARN.

Figure 2.4: Apache Spark Standalone Mode architecture

2.2.4 Cloud Simulation Tools for Resource Management Research

To simulate the cloud environment in order to test resource allocation and job scheduling

in different contexts, some prominent simulations tools are available. Among these, the

most widely-used simulation tool is the CloudSim tool-kit which tests the execution

time, costs and energy consumption involved in a cloud scenario by extending existing

classes according to the requirements of an algorithm [Calheiros et al., 2009]. The

CloudSim tool-kit can also provide important functionalities like application services,

storage services, resource provisioning, simulate federated clouds, etc. The prominent

simulation tools used for cloud resource management are as follows.

Copyright c© University of Kent 21

Chapter 2. Literature Review: Cloud Resource Management System 22

2.2.4.1 CloudSim

The primary objective of this CloudSim system is to provide a generalized, and exten-

sible simulation framework that enables seamless modeling, simulation, and experimen-

tation with emerging cloud computing infrastructures and application services [Buyya

et al., 2009; Calheiros et al., 2009, 2011]. By using CloudSim, researchers and industry-

based developers can focus on specific system design issues that they want to investigate,

without getting embroiled in low level details related to Cloud-based infrastructures and

services. In the past, there have been projects concerned with extending the power of

CloudSim via different focuses, such as CloudAnalyst [Wickremasinghe et al., 2009],

RealCloudSim [Agostinho et al., 2011], WorkflowSim [Chen and Deelman, 2012],

Cloud2Sim [Kathiravelu and Veiga, 2014], DynamicCloudSim [Bux and Leser, 2015]

etc.

2.2.4.2 GreenCloud

GreenCloud is a sophisticated packet-level simulator for energy-aware cloud computing

data centres, with a focus on cloud communications [Liu et al., 2009]. It offers a detailed

fine-grained modeling of the energy consumed by the data centre IT equipment, such as

computing servers, network switches, and communication links.

2.2.4.3 ICanCloud

ICanCloud is a simulation platform aimed at modelling and simulating cloud com-

puting systems, which is targeted at those users who deal closely with these kinds of

systems [Núñez et al., 2012]. The main objective of ICanCloud is to predict the trade-

offs between cost and performance of a given set of applications executed on a specific

hardware configuration, and then to provide useful information about these costs.

2.2.4.4 Yarn Scheduler Load Simulator (SLS)

SLS can simulate large-scale Yarn clusters and application loads in a single machine

[Apache Hadoop, 2013]. This simulator is invaluable in furthering Yarn systems by pro-

viding a tool by which researchers and developers can prototype new scheduler features

and predict their behavior and performance with a reasonable amount of confidence,

thereby aiding rapid innovation.

Copyright c© University of Kent 22

Chapter 2. Literature Review: Cloud Resource Management System 23

2.3 Complexities In Cloud Resource Management System

Resource management is the core functionality required for cloud systems. It affects

the three basic criteria for system evaluation: performance, functionality, and cost.

Inefficient resource management has a direct negative impact on performance and cost.

It can also indirectly affect system functionality. Some features provided by the system

may become overly expensive or ineffective due to poor performance.

A cloud computing infrastructure is a complex system with a large pool of shared re-

sources, which run-time performance is highly dynamic and may be affected by external

events beyond your control. Cloud resource management requires complex policies and

decisions for multi-objective optimization. This is very challenging due to the complexity

of the system, which makes it impossible to have accurate global status information. It

is also subject to incessant and unpredictable interactions with the environment. In the

cloud, where changes are frequent and unpredictable, considering complexity in resource

management is of great interest due to the scale of the system, the large number of ser-

vice requests, the large user population and the unpredictability of the load. However,

many techniques are concentrated on static characteristics in terms of number of CPU

cores, which rarely include QoS guarantees. Some techniques are based on unrealistic

assumptions. For example, capacity allocation is viewed as an optimization problem, but

under the assumption that cloud resources are running with unchanged performance.

Controlling the resources in cloud computing must take the complexity factors into

account, rather than the static characteristics. Some of these complexity factors are as

follows:

• Heterogeneity: Current cloud infrastructures are not yet very versatile, but het-

erogeneity is among the most important features which must be taken into account

in any cloud system. With the development of virtualization technology, a single

physical host can run multiple virtual machines (VMs) simultaneously. Neverthe-

less, this virtualization also brings about new challenges to resource scheduling in

clouds due to the existence of multiple VMs which share the hardware resources

(e.g. CPU, memory, I/O, network, etc.) of a physical machine. In such situa-

tions, it is difficult to accurately measure the actual performance of rented VMs.

For example, in Amazon EC2, the provisioning of resources to virtual machines

is based on compute units instead of fixed performance measures. Different host

machines provide a different amount of computing power per provisioned compute

unit, effectuating a heterogeneity among VM performance [Iosup et al., 2011].

This means, in the real world, that the cloud is never homogeneous but always

heterogeneous.

Copyright c© University of Kent 23

Chapter 2. Literature Review: Cloud Resource Management System 24

• Dynamicity: Dynamic changes of resource performance at runtime is another

important complexity factor inherent to cloud computing [Schad et al., 2010]. In

the real world scenario, such dynamicity of resource performance may be caused

by hardware/software failures, resource CPU overload, resource over- or under-

provisioning, or application misbehaviours. A cloud resource is also affected by

the amount of running jobs that are assigned to it and exhibited local activity; this

is the origin of the complexity. Furthermore, sharing common underlying hardware

infrastructures with other VMs will also increase the complexity level relating to

resource dynamicity.

• Uncertainty: The vast majority of research efforts related to scheduling assume

complete information about the state of cloud resources. However, in cloud com-

puting, the ready time and the computing capacity of a resource are subject to

considerable uncertainty during provisioning [Herroelen and Leus, 2005]. We ar-

gue that such uncertainty is the main difficulty with cloud computing, bringing

additional challenges in terms of predicting the execution time of tasks, which is

a crucial point for many scheduling algorithms. Resource states in cloud environ-

ments can change dramatically. Most of the time, it is impossible to get exact

knowledge about a resource. It is hard to estimate the runtime of tasks accurately,

improve prediction by historical data, perform prediction correction, undertake

prediction fallback, etc. Imprecise execution prediction times leave the associated

scheduling performance under considerable uncertainty.

2.4 Conclusion

In this chapter, I have discussed the related works on resource management when run-

ning MapReduce cloud-based applications. Cloud-based resource management has been

a common area for research by many research communities over the past few years.

However, much of the past research work has not considered the complex nature of the

cloud environment and all the solutions used in the industry treat the cloud environment

as something which is relatively simple. Effective cloud resource management helps to

improve the utilization of resources and so reduce execution cost, execution time and

execution variance and so has an effect on other QoS parameters like reliability, security,

availability and scalability. To make optimal resource allocations, we need to take the

complexity of cloud resources into account. However, the lack of information sharing

between the cloud user and the cloud provider regarding cloud resources makes this

problem more challenging.

Copyright c© University of Kent 24

Chapter 2. Literature Review: Cloud Resource Management System 25

As it stands, the challenges of resource allocation, such as the complexity of resources

(e.g. heterogeneity, dynamicity and uncertainty) have not been resolved using the es-

tablished RMSs which exist in the cloud environment. Thus, there is a need to make

cloud applications efficient by dealing with these properties of the cloud environment.

Recently, some of the research in the field has started to tackle the complexity problem

in order to make their resource management solutions in the cloud environment more

robust; most of this research has focused on the simulation approach. However, to our

knowledge, none of the current cloud simulators are capable of modeling the run-time

complexity of the cloud environment. To resolve this problem, in the next chapter, I

present ComplexCloudSim (a cloud simulator extending the popular CloudSim toolkit)

which is a tool intended to assist in the understanding of the role of complexity in cloud

resource management systems.

Copyright c© University of Kent 25

Chapter 3

Implementation:

ComplexCloudSim

The vast majority of the research efforts on cloud resource management assume the

cloud to be homogeneous and that the cloud resource’s performance is determined and

predictable. However, in the real world, there are numerous types of complexity asso-

ciated with cloud resources, etc.: heterogeneity, dynamicity and uncertainty. For het-

erogeneous cloud resources with highly dynamic changes in performance, the expected

execution times in regard to different cloud resources play a critical role in making man-

agement decisions, and differences between the actual execution time and the estimated

execution time may significantly affect the performance of the cloud and cause resource

management systems to be less robust.

In spite of extensive research into complexity issues in different fields, ranging from com-

putational biology to decision making in economics, the study of complexity in cloud

resource management systems is limited. In this chapter, I tackle the research question:

what is the role of complexity in QoS-aware cloud resource management systems? Com-

plexCloudSim is presented. This extends the popular simulation tool-kit, CloudSim,

by modelling the complexity factors in the cloud, including heterogeneity of resource,

dynamic changes of run-time performance and the uncertainty of task execution times.

The comparison of four widely used heuristic cloud scheduling algorithms when given

inaccurate execution time information is used to evaluate the impacts of complexity

on performance within cloud environments. Furthermore, I apply a damage spreading

analysis, which is one of the available complex system analysis methods, to the system

and to the simulations to show that the system reveals sensitivity to initial conditions

in some parameter regions. Finally, I will discuss how small damage spreads throughout

26

Chapter 3. Implementation: ComplexCloudSim 27

the system in the region and discuss also research into the potential ways to avoid such

chaotic behaviour and make the system more robust.

3.1 CloudSim : A Toolkit For Modelling And Simulation

Of Cloud Environments

CloudSim is a popular framework for simulating resource scheduling on Cloud Comput-

ing infrastructures. When introducing CloudSim, it is important to mention the main

entities/concepts it is based on, in terms of terminology:

• Data centre acts as Cloud Provider which contains a set of physical hosts that can

either be homogeneous or heterogeneous with respect to their hardware configura-

tions (CPUs, Memory, Bandwidth and Storage). This is responsible for resource

provision to the cloud users.

• Host is a physical machine characterized by a list of CPUs (and their types), also

the amount of memory they have, their storage and allocated bandwidth. A host

is responsible for VMs management according to a specified VM allocation policy.

• VM stands for Virtual Machine. A VM is managed and hosted by a Cloud Host

component.

• Cloudlet represents a job that is submitted by the Cloud User to run on the

cloud. A job is characterized by length (millions of instructions), resource require-

ment (the number of cores and the amount of memory required for the job to be

performed), dependencies and type (MapReduce-like jobs contain map tasks and

reduce tasks).

• Broker is responsible for mediating negotiations between Cloud Users and Cloud

Providers. A broker acts on behalf of the Cloud User to discover suitable resources

which can be obtained from the Cloud Provider and undertakes online negotiations

for the allocation of resources that can meet the user application’s QoS needs. It

then sends the cloudlets for scheduling to the available resources under specified

scheduling policies.

• CloudletScheduler is responsible for determining the share of processing power

among Cloudlets on available resources; This scheduler can be implemented with

different scheduling policies.

Copyright c© University of Kent 27

Chapter 3. Implementation: ComplexCloudSim 28

Figure 3.1: CloudSim : Simulation Flow Chart

In CloudSim and most of its extensions [Bux and Leser, 2013; Chen and Deelman, 2012;

Garg and Buyya, 2011], the computational capabilities of hosts and VMs are measured

by MIPS (million instructions per second per core). The MIPS measurement plays a

major role throughout a CloudSim simulation. CloudSim assumes provisioned virtual

machines to be predictable and stable in their performance. VMs are provided with

guaranteed performance which is characterised as a fixed amount of MIPS and such

performance is never changed during a simulation, as shown in Fig. 3.1. On actual

cloud environments like Amazon EC2, these assumptions do not hold. Although most

Cloud Providers guarantee a certain core speed for each provisioned VM, the actual

performance of a given VM is subject to the underlying physical hardware as well as

to the runtime CPU utilization of the host that the VM is assigned to. Thus, such

incorrect assumptions mean that CloudSim fails to simulate well the complexity of the

cloud environment.

3.2 ComplexCloudSim : Modelling And Simulate The Com-

plexity In The Cloud

We explain in this section how complexity can affect cloud simulations through a study of

four popular cloud scheduling algorithms and a motivational example. Then we present

the proposed ComplexCloudSim that incorporates cloud complexity into the original

CloudSim.

Copyright c© University of Kent 28

Chapter 3. Implementation: ComplexCloudSim 29

3.2.1 Cloud Scheduling Algorithms

In general, a scheduling algorithm is implemented in a cloud scheduler that will be

permanently running as follows: receive new incoming jobs, check for available resources,

select the appropriate resources according to feasibility (jobs’ requirements to resources)

and performance (estimated time to be completed) criteria and produce a planning of

jobs (making the decision about job ordering and priorities) to selected resources.

Usually the following terminology - in Table 3.1 - is employed in relation to scheduling

in clouds.

Table 3.1: Terminology For Scheduling In Cloud Computing

Name Description

QoS Quality of the service

MIPS Million instructions per second (CPU processing speed)

Lt Length of task measured in million of instructions

ETC Estimated time to compute

ERT Estimated ready time of resource

MCT Minimum completion time matrix

Makespan Project completion time

Me Estimated makespan

Ma Actual makespan

Four widely utilised heuristic scheduling algorithms are used for performance evaluation

purposes in relation to simulations of cloud-based complexity in this thesis. Definitions

of these four heuristics are provided below.

• FCFS (First Come, First Served): Tasks are executed according to the se-

quence in which they were submitted. The task which arrives first will be scheduled

on the available resource first, as soon as it is submitted; it will then be removed

from the queue.

• Round Robin: Schedules the first task on the first resource, the second task on

the second resource and so on, cycling through all the available resources.

• MinMin: All the tasks in a job will first be ordered according to their length

(of execution). The task with the shortest length will be scheduled first on the

Copyright c© University of Kent 29

Chapter 3. Implementation: ComplexCloudSim 30

available resource for which the completion time will be minimum - and then

removed from the queue.

• MaxMin: All the tasks in a job will first be ordered according to their length (of

execution time). The task with the minimum length will be scheduled first on the

available resource - for which the completion time is maximum - and then removed

from the queue.

3.2.2 Motivational Example

In this section, I will demonstrate how the complexity of resources impacts the robustness

of a scheduler. Consider the case of ten independent jobs that need to be scheduled in a

homogeneous cloud with three VMs, with specifications as shown in Table 3.2 and Table

3.3. To simplify the complexity of scheduling, we assume the length of jobs, measured

by million instructions (MIs), is known and fixed and other performance related features

of the cloud have no impact on the actual completion time of the jobs - such as memory

consumption, network bandwidth, disk I/O.

Table 3.2: Jobs Specifications

Job Number Number of Tasks Task Length (MIs)

1 3 100

2 2 80

3 8 70

4 4 100

5 3 80

6 3 20

7 2 50

8 6 60

9 2 90

10 4 150

Copyright c© University of Kent 30

Chapter 3. Implementation: ComplexCloudSim 31

Table 3.3: VMs Specifications

VMs Core# MIPSrequest MIPSprovision

VM1 (4 Cores) 1 10 9

2 10 9

3 10 9

4 10 9

VM2 (4 Cores) 5 10 10

6 10 10

7 10 10

8 10 10

VM3 (4 Cores) 9 10 11

10 10 11

11 10 11

12 10 11

Total 3 VMs 12 Cores 120 120

In this example, I use the Min-Min heuristic to schedule these independent jobs; this is

a simple and efficient algorithm that produces, often, a better schedule (that minimizes

the total completion time of jobs) than other algorithms in the literature. The pseudo

code of the Min-Min algorithm is shown in Algorithm 1.

Algorithm 1 Min-Min Scheduling algorithm

1: Require: A set of jobs with n tasks, m different cores, MCT matrix
2: procedure MinMin Scheduling Algorithm
3: A list of jobs Lj in queue
4: A list of available cores Lc

5: while (List Lj is not empty) do
6: {For each job in the list Lj

7: if (The number of avaliable cores meets the job’s requirement) then
8: {find the core that gives the minimum ETC
9: and Update MCT matrix}

10: From the MCT matrix, find the job with the minimum ETC
11: Remove the job from the job list Lj

12: Schedule the job’s tasks to the match cores
13: Remove the number of match cores from available cores list Lc}

Copyright c© University of Kent 31

Chapter 3. Implementation: ComplexCloudSim 32

Figure 3.2: Motivational Example : Estimated Scheduling Plan

Figure 3.3: Motivational Example : Actual Scheduling Plan

As we can see from the difference between the estimated scheduling plan in Fig. 3.2 and

the actual scheduling plan in Fig. 3.3, the complexity of resources have a great impact

on the job’s QoS. In this simple example, the complexity factor of resources is shown

to degrade the robustness of scheduling algorithms, i.e. the average job makespan and

the total workload runtime in this example, as shown on Table 3.4. Therefore, in the

following sections, we will investigate how different degrees of complexity impact such

robustness and how different scheduling heuristics perform under the complex cloud

environment.

Copyright c© University of Kent 32

Chapter 3. Implementation: ComplexCloudSim 33

Table 3.4: Jobs Completion Details

Job Number Me Ma Makespan Degradation

1 23s 24.89s 1.89s

2 10s 11.11s 1.11s

3 13s 13.78s 0.78s

4 23s 23.78s 0.78s

5 19s 21.11s 2.11s

6 2s 2.22s 0.22s

7 5s 5.56s 0.56s

8 6s 6s 0s

9 11s 12.22s 1.22s

10 34s 37.78s 3.78s (11%)

3.2.3 The Implementation For Introducing Complexity

Although the simulator provides an approximation, faster and simpler simulation of

application execution in the cloud, there are still many researchers who believe that

these results cannot always be generalized for complex cloud environments. As I have

discussed at the previous section 2, the performance of cloud scheduling is subject to

different complexity factors relating to cloud resources: heterogeneity, dynamicity and

uncertainty. However, existing simulators fall short in their modelling of such com-

plexity factors common in the cloud environment. Although some simulators, such as

DynamicCloudSim [Bux and Leser, 2015], offer users the capability to simulate the Cloud

heterogeneity by introduce noisiness in dozens parameters. Still, it is difficult, or some-

times even impossible to determine appropriate values for all these parameters because

they are usually Cloud or application-dependent. In ComplexCloudSim, we propose a

new model that simplifies the simulation setup and reduces the bias between the be-

haviour of simulation and real Cloud environments based on only one parameter, Cloud

errors. It represents the errors produced by inaccurate estimation of the cloud or appli-

cation states. The injected Cloud error causes instability in job’s execution time, which

improves the accuracy, represented the trueness (i.e. closeness of the true mean value)

and the precision (i.e. closeness of corresponding standard deviation) of the simulation,

as defined in ISO-5725 standard [ISO, 1994].

In the remainder of this section, I will describe, in detail, how ComplexCloudSim at-

tempts to capture the three common complexity factors (heterogeneity, dynamicity and

uncertainty) by injecting Cloud errors in the simulation.

Copyright c© University of Kent 33

Chapter 3. Implementation: ComplexCloudSim 34

3.2.3.1 Cloud Error Produced by the Heterogeneity of VMs Provision

Algorithm 2 Heterogeneity Ratio for VMs Provision

1: Require: VMs MIPS configuration, MIPSrequest

2: Require: Heterogeneity Ratio, 0 ≤ Ratioheterogeneity ≤ 1

3: Require: Cloud Error, randomly generated by a Mean Error of 0 and Standard

Deviation of the value of heterogeneity ratio under normal distribution

4: procedure VMCreate(MIPSrequest,Ratioheterogeneity)

5: if (Ratioheterogeneity > 0) then

6: {MIPSprovision = MIPSrequest ∗ (1± CloudError)}
7: else{MIPSprovision = MIPSrequest}

8: VM Provision(MIPSprovision)

In a similar way to the situation with a real-world Cloud Provider, the performance of

the provisioning VMs is not guaranteed in ComplexCloudSim. Hence, VMs of equal

configuration are likely to have different core performances characterised by the random

changes of request MIPS during provision - unlike the guaranteed fixed MIPS provision of

CloudSim. In ComplexCloudSim, we allocate MIPS to the VMs when they are created,

with an injection of random cloud error by setting the Heterogeneity Ratio, as we can

see from Algorithm 2. In this case, the heterogeneity ratio is the standard deviation for

random generated cloud errors caused by the heterogeneity performance of provisioning

VM.

3.2.3.2 Cloud Error Produced by the Dynamic Changes of VM performance

at Runtime

The idea that there are dynamic changes to performance at runtime, due to the sharing

of common resources with other VMs and users, is also an important concept relating to

the complexity inherent to Cloud scheduling. In CloudSim, the VM performance is kept

to a fixed number of MIPS during simulation. In ComplexCloudSim, we periodically,

every second, change the VM’s runtime MIPS by injecting random cloud errors by setting

the Dynamicity Ratio and the host’s current CPU utilization, as shown in Algorithm

3. In this case, the dynamic ratio is the standard deviation for random generated cloud

errors caused by dynamic Changes of VM performance at runtime.

Copyright c© University of Kent 34

Chapter 3. Implementation: ComplexCloudSim 35

Algorithm 3 Dynamicity Ratio for Changes of VM performance at Runtime

1: Require: Host’s CPU Utilization, Uhost

2: Require: Dynamicity Ratio, 0 ≤ Ratiodynamicity ≤ 1

3: Require: Cloud Error, randomly generated by a Mean Error of 0 and Standard

Deviation of the value of Dynamicity Ratio under normal distribution

4: procedure UpdateMIPS(Uhost,Ratiodynamicity) every second

5: if (Ratiodynamicity > 0) then

6: {MIPSruntime = MIPSprovision ∗ (1− Uhost) ∗ (1± CloudError)}
7: else MIPSruntime = MIPSprovision

3.2.3.3 Cloud Error Produced by the Uncertainty of VM Performance Es-

timation with Incomplete Information

Accurate resource performance prediction is hard or even impossible to achieve in actual

complex cloud environments. CloudSim assumes that full information can be obtained

and that such information is always correct for the purposes of performance prediction;

this is not feasible in real world scenarios. Thus, we introduce the cloud error, by setting

the Uncertainty Ratio, to reflect the estimation error of prediction due to incomplete

information, which is used by several scheduling algorithms when making scheduling

decisions (e.g. MinMin, MaxMin). In ComplexCloudSim, we inject the random cloud

error into all the processes which need to perform performance prediction, according to

the algorithm 4. In this case, the uncertainty ratio represents the standard deviation of

random generated cloud errors in the uncertain prediction under incomplete information.

Algorithm 4 Uncertainty Ratio for VM Performance Estimation with Inaccurate In-
formation in Scheduling

1: Require: Estimated VM performance, MIPSestimate

2: Require: Uncertainty Ratio, 0 ≤ RatioUncertainty ≤ 1

3: Require: Cloud Error, randomly generated by a Mean Error of 0 and Standard

Deviation of the value of Uncertainty Ratio under normal distribution

4: procedure PredictMIPS(MIPSestimate,RatioUncertainty)

5: if (RatioUncertainty > 0) then

6: {MIPSactual = MIPSestimate ∗ (1± CloudError)}
7: else MIPSactual = MIPSestimate

Copyright c© University of Kent 35

Chapter 3. Implementation: ComplexCloudSim 36

3.3 Complexity Simulation: Comparison of Four Heuris-

tics Cloud Scheduling Algorithms

To showcase a possible application of ComplexCloudSim, we simulated the execution of a

computationally intensive workload (the Montage workflow) using four different heuristic

cloud scheduling algorithms and various degrees of complexity in the Cloud resources.

We expected the schedulers to differ in their robustness in relation to complexity, and

that this should be reflected in diverging workflow execution times. In this section,

we outline the experimental setup and evaluate the impacts of resource complexity on

Cloud scheduling systems.

3.3.1 Experiment Setup

To evaluate the robustness degradation caused by resource complexity, the following

approach was used to simulate the scheduling system. For this experiment, we used a

Montage workflow which comes with CloudSim; this consists of 1000 jobs with groups

of random numbers of sub-tasks. For simplicity, we used a global variable, the degree of

complexity, to configure the ratios of Heterogeneity, Dynamicity and Uncertainty all at

the same time. For each configuration, the Montage workflow was executed 100 times

on five virtual machines and the statistical results in terms of workflow runtimes were

generated. In the course of the experiments, we incrementally raised the degree of com-

plexity imposed by ComplexCloudSim, and by this means we measured the complexity’s

impacts on the QoS performance of cloud scheduling systems. For a comparison of Com-

plexCloudSim to the original Cloudsim, we conducted a baseline simulation which ran

without taking into account any complexity factors; this was executed 100 times as well.

As we expected, the workflow runtime for the same workflow under four scheduling al-

gorithms was determined with zero variance in the original CloudSim, which is shown

in Table 3.5.

Table 3.5: Baseline Simulation Result with Original CloudSim

Scheduling Algorithms FCFS RR MinMin MaxMin

Average Runtime (Minutes) 2862 2865 2864 2862

3.3.2 Experiment Result

Here, we compare the impacts on robustness which come about when using different

scheduling algorithms and different degrees of resource complexity. The results of the

experiment outlined above are displayed in Fig. 3.4 and 3.5. For all the experiments,

Copyright c© University of Kent 36

Chapter 3. Implementation: ComplexCloudSim 37

average runtimes of the Montage workflow between 3,220 and 3,505 minutes were ob-

served and have been displayed in Fig. 3.4. This shows around 13% - 23% runtime

degradation compared with the performance baseline. Apparently, the complexity fac-

tors provided by ComplexCloudSim have a considerable impact on the QoS of cloud

scheduling system.

We also find that the average runtime degradation does not change directly in line with

the increase in the degree of complexity. However, the increase in the standard deviation

for workflow runtime is proportional to the increase in the degree of complexity with

range from 20% to 120%, as shown on Fig. 3.5. Obviously, the growth in the standard

deviation leads to less reliable scheduling performances. Thus, the reliability of the cloud

scheduling system depends on the complexity of the resources.

In regard to both the average and the standard deviation of workflow runtime, the

experimental results show that the MinMin scheduling algorithm is least impacted by

the complexity factor. This means that MinMin generates more robust schedules in a

complex cloud environment. So the overall performance of MinMin is better than other

three heuristics, which confirm similar findings in earlier research.

Evidently, ComplexCloudSim can simulate the effect of complex resources. Since com-

plexity is commonly encountered in cloud environments, this is very desirable property

which will continue to be important going forward and has not been sufficiently sup-

ported by other cloud simulators.

Figure 3.4: Complexity Simulation: Average Workflow Runtime

Copyright c© University of Kent 37

Chapter 3. Implementation: ComplexCloudSim 38

Figure 3.5: Complexity Simulation: Standard Deviation of Workflow Runtime

3.4 Damage Spreading Evaluation: Chaotic Behaviour in

Cloud Scheduling

Damage Spreading [Kauffman, 1969] is a tool originally developed to study biologically

motivated complex systems, and it appears in the literature on various research areas, in-

cluding complex network models, as a way to observe the complex behaviour of systems.

It investigates the evolution of slightly different configurations of variables in complex

systems which are subjected to the same number sequence. Knowledge of whether or

not a small perturbation (“damage” to the conditions) added to the variables spreads

or stays at the same level (even disappears) can help us to investigate the robustness of

a system in relation to disturbance [Ikeda, 2012].

“Initial damage” here is defined as a slight change in the degree of resource complexity,

Ccomplexity, and the number of VMs, Cvm, to run the same workload. We added small

changes, Ccomplexity = 0.1 and Cvm = 1, to a simulation step by step - the simulation

is one which was executed 100 times with the same workload. Then we investigated

whether the changes had spread or not in relation to two important QoS determinants

of the scheduling processes - the average and standard deviation of workflow runtime.

Copyright c© University of Kent 38

Chapter 3. Implementation: ComplexCloudSim 39

To evaluate the spread of the damage, we defined damage as Daverage (difference in

average workflow runtime Raverage) and Dstd (difference in workflow runtime Standard

Deviation Rstd) existing between two simulation results; these were calculated as shown

in Formula 3.1 and 3.2, where i ∈ [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] refers to the number

of VMs and j ∈ [0.1, 0.2, 0.3, 0.4, 0.5] refers to the degree of complexity.

Daverage(i, j) = Raverage(i + Cvm, j) − Raverage(i, j) (3.1)

Dstd(i, j) = Rstd(i, j + Ccomplexity) − Rstd(i, j) (3.2)

The results of Daverage and Dstd are shown in Fig. 3.6 and 3.7 respectively.

As we can see from Fig. 3.6, for a number of VMs of i < 10, the changes in Daverage

for different degrees of complexity is relatively small; in this region, the damage is not

spread and the damage stays at the low, initial, level.

Figure 3.6: Damage Spreading Evaluation: Daverage

Copyright c© University of Kent 39

Chapter 3. Implementation: ComplexCloudSim 40

From Fig. 3.7, for a number of VMs of i < 9, the changes in Dstd for different degrees of

complexity become highly unstable, but the situation becomes relatively better as the

number of VMs is increased, when i > 9.

Figure 3.7: Damage Spreading Evaluation: : Dstd

Then, we analysed the relation between number of increased VMs i and the spreading

damage, using the standard deviation of Daverage and Dstd. We defined the standard

deviation of Daverage(i) as σaverage(i), and the standard deviation of Dstd(i) as σstd(i).

Hence we calculated the mean value Mean(σaverage) and the Mean(σstd) of all σaverage

and σstd, as shown on Table 3.6 and 3.7.

Now, we classify the state of the region loosely using such mean values. We understand

the region that σaverage(i) ≤Mean(σaverage) or σstd ≤Mean(σstd) as “Stable Regions”.

In this region, a stable correlation between initial damage and spreading damage is

maintained; the increase in the number of VMs will result in reliable improvements

to QoS, which means the scheduling system is running relatively robustly against the

changes in degree of complexity. We also understand that σaverage(i) > Mean(σaverage)

or σstd > Mean(σstd) as “Chaotic Regions” [Boccaletti et al., 2000], as highlighted by

the red colouring in Table 3.6 and 3.7 . In this region, small disturbances may spread

throughout the scheduling system and the performance may readily be changed totally in

response to the degree of complexity experienced, which means it is hard to guarantee

QoS to an increased of number of VMs. The understanding of when the scheduling

Copyright c© University of Kent 40

Chapter 3. Implementation: ComplexCloudSim 41

Table 3.6: Relation Between Number of VMs and Daverage

Daverage(i)

Degree of Complexity Mean(σaverage)=23

(i) VMs 0.1 0.2 0.3 0.4 0.5 σaverage(i)

5 456 489 481 514 469 22

6 320 322 344 363 377 25

7 258 271 237 282 248 18

8 193 174 196 178 231 23

9 148 168 180 169 171 12

10 124 117 122 149 94 19

11 198 101 108 64 135 50

12 -1 96 98 104 86 44

13 80 81 65 83 86 8

14 69 68 67 83 71 7

Table 3.7: Relation Between Number of VMs and Dstd

Dstd(i)

Degree of Complexity Mean(σstd)=24

(i) VMs 0.1 0.2 0.3 0.4 0.5 σstd(i)

5 58 69 94 73 80 49

6 48 37 79 63 61 38

7 42 43 39 71 48 31

8 78 23 60 34 40 30

9 46 9 41 44 32 21

10 32 23 39 20 34 18

11 42 25 31 24 26 18

12 41 26 26 28 24 17

13 19 32 15 26 22 13

14 0 37 15 24 20 11

14 21 18 22 11 22 11

system is in a “stable region” and a “chaotic region” provides us an important guideline

for making the decisions necessary to achieve more robust scheduling. For example,

because of the results obtained by the simulation with ComplexCloudSim, in a real

world situation we might run a similar workload with more than 9 VMs but we could

avoid choosing 11 or 12 VMs in order to satisfy the QoS requirement.

Copyright c© University of Kent 41

Chapter 3. Implementation: ComplexCloudSim 42

3.5 Conclusion

To obtain the results presented in this section, ComplexCloudSim was implemented as

an extension to CloudSim which evaluates scheduling under complex cloud environment.

The resource complexity module (Heterogeneity, Dynamicity and Uncertainty) has been

designed and implemented with the primary goal of providing a useful tool for validating

and testing the robustness of cloud scheduling algorithms. The evaluation results of

four cloud scheduling algorithms show that ComplexCloudSim is capable of simulating

various complexity factors for cloud scheduling systems and was able to replicate the

known strengths and shortcoming of these algorithms. Then, through the simulation, a

region in the complex cloud scheduling situation was found in which small damage was

converged, a “stable region”, and another region was found in which the damage spread,

a “chaotic region”. I have a keen interest in finding “chaotic behaviour” within cloud

scheduling systems because the presence of regions with chaotic behaviours means that

we cannot, even in principle, predict the future as it relates to job scheduling within the

cloud. Such findings may explain why most of the scheduling algorithms mooted that

depend on prediction are difficult to implement effectively in the real world production

environment, where complexity exists everywhere. In a complex production system like

the Cloud, we usually will not know what the precise completion time of tasks will be

even where we do know their precise theoretical processing time in advance. Hence,

if a scheduling system wants to plan the production schedule more robustly, it has to

judge whether it is in “Stable Region” or “Chaotic Region” first. Then, if the system

is in chaos, it has to, for example, try to find VMs with sufficient resources to meet the

application’s QoS requirement.

Even through ComplexCloudSim is able to model some kinds of complexity factors,

still, it is not able to cover all the situations which can happen in real world clouds.

However, the finding there is “chaotic behaviour” in Cloud scheduling systems motivates

new efforts to develop robust QoS-aware scheduling algorithms. For further work, more

detailed analysis is needed to understand “chaotic behaviour” related to cloud scheduling

systems and the mechanisms of damage spreading which come with it. Such chaotic

behaviour should also be studied as it exists in real world cloud systems. Indeed, I

believe that my work here represents a step towards many fruitful research topics.

Copyright c© University of Kent 42

Chapter 4

Complexity Management:

Entropy-Based Cloud Resource

Allocation and Job Scheduling

In cloud resource management systems, complexity limits the system’s ability to ade-

quately satisfy the QoS requirements of applications such as cost budgets, average job

runtimes and reliability. Uncertainty, variety, diversity, numerousness etc. are some of

the complexity factors which lead to the variation between the expected performance

and the actual running performance of applications. In this chapter, after defining the

complexity involved clearly, we classify this complexity into two general types: Global

System Complexity and Local Resource Complexity. In order to manage complexity, an

Entropy-based model is proposed which covers the identifying, measuring, analysing and

controlling (reducing and avoiding) of complexity.

4.1 Complexity In Cloud Resource Management System

4.1.1 Definition And Classification

At the present time, the notion of complex systems has not been precisely delineated.

However, although the idea of complexity is somewhat fuzzy and differs from author to

author, there are some typical properties that can be seen to be shared by many complex

systems.

• Complex systems are made up of several non-linear components

43

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 44

A cloud resource management system’s resources serve as the cloud’s basic com-

ponents. These resources are non-linear. During run-time, the performance of the

resource is highly dynamic and is influenced by the running jobs. Non-linearity is

a condition that is needed for chaos. Furthermore, almost every system having a

phase space with three or more dimensions can be considered chaotic in a certain

part of that phase space [Larsen-Freeman, 1997].

• A complex system’s components are interdependent

The cloud’s resources indirectly interact with each other via the resource manage-

ment system. The state of the resources depends on other resources and is affected

by the state of the other resources as well.

• A complex system possesses a structure spanning several scales

Take the example of a typical cloud resource management system:

– Scale 1: applications; resource management; resources ...

– Scale 2: jobs, sub-tasks; resource allocation, job scheduling; hardware, soft-

ware ...

– Scale 3: functions, parameters, variables, requirements; constraints, objects;

CPU, memory, storage, operating system ...

– More scales : ...

At every scale we find a structure. This is an essential and radically new (as in,

newly discovered) aspect of complex systems and it leads to a fourth property...

• A complex system can handle emerging behaviour

Emergence takes place when the focus of attention is shifted from one scale to

another coarser scale above it. Observed at a specific scale, a certain behaviour is

considered emergent if one cannot understand it after studying it separately and

one by one. Each of this scale’s components may also be a complex system that

comprises finer scale. Therefore, the emerging behaviour is a novel phenomenon

that is special to the scale being studied. Moreover, it is a result of the global in-

teraction between that scale’s components [Larsen-Freeman, 1997]. For instance,

a computer has the ability to run a program, which is the highest scale’s emerging

behaviour. If the study is only focused on lower scale components like the transis-

tor, wire, or power, one will never get an understanding of how the computer runs

the program.

• Complexity involves an interaction between chaos and order

Copyright c© University of Kent 44

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 45

It has been said that many complex systems do not always display chaos at all

times. In other words, they display chaos for some of the control parameter’s

values, but also display order for others. Furthermore, there is the edge of chaos,

i.e. the control’s precise value when the system’s state switches between chaos and

order.

• Complexity involves an interaction between competition and cooperation

Within the cloud, resources work together to complete the job. However, they also

compete for the job’s sub-tasks according to their states.

From a global point of view, cloud resource management systems are concerned with

many resources which collaborate directly or indirectly in order to fulfill application

requirements. These resources and their interrelationships are significant in terms of the

complexity occurring in such a system. From a local viewpoint, a resource in its own

right may exhibit different degrees of complexity as well, which originate from internal

sources (CPU, memory, disk, etc.) and/or external sources (the Jobs running on it).

Therefore, the complexity presented in this study is classified into two general types:

Global System Complexity and Local Resource Complexity.

4.1.2 Characteristic Of Complexity

The complexity found in cloud resource management systems has some key character-

istics. It is important to understand how these characteristics affect the occurrence

of complexity, either from the local resources it manages or the global system itself.

However, these characteristics can act on one another or on each other. Therefore, ex-

planations of these characteristics do not only represent the actual characteristic itself.

Instead, it also emphasises the interaction and relationship among themselves.

• Numerousness refers to the number of cloud resources that have to be managed

by the system. A large number and a high level of the resources contribute to

the system’s increased complexity. Changes in the number of resources that are

managed by the system under any consideration directly relate to any changes

in the level of complexity. In the cloud resource management problem, simply

counting the number of CPU cores was sufficient for an adequate estimation of job’s

completion time for running jobs on a single resource. However, as the number

of resources increase, it is not enough to just calculate the number of CPU cores

for making resource management decision. We need to address other complexity

characteristics as well in an adequate way, as we discussed in the previous chapter

3.

Copyright c© University of Kent 45

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 46

• Diversity is related to the cloud’s homogeneity or heterogeneity. The resource’s

high/low diversity level can lead to heterogeneous/homogeneity and produces a

high/low degree of complexity. Current cloud infrastructures are not yet very

versatile, but heterogeneity is among the most important features which must be

taken into account in making cloud management decisions. However, due to the

number of factors that need to be considered (eg, CPU, memory, I/O, network-

ing, etc.) and the use of virtualization technology, it is difficult to accurately

measure heterogeneity. In this case, most current resource management solutions

explicitly assume that the cloud is homogeneous, which will easily lead to poor job

completion time and overall unstable cloud performance.

• Variability refers to the changeability state, where an event leads to possible

various outcomes in the local resource or global system. In terms of the global

system, the resource state changes over time (e.g. performance, availability) and

leads to a change in the capacity of the system. Seen from a local resource point of

view, the change in its underlying components’ states (e.g. memory consumption,

CPU utilisation) leads to a change in its performance. Increasing the variability

leads to a higher complexity level.

• Uncertainty refers to all the difficulties experienced during the production of a

clear picture of the resource or the system. This is caused by the lack of infor-

mation. Uncertainty and complexity have a close relationship with one another.

More complexity occurs when there is more uncertainty within the cloud resource

management system. The uncertainty is the major difficulty in cloud computing

and presents additional challenges in predicting job’s completion time, which is a

crucial point in many cloud resource management solutions. In most cases, the

exact knowledge about the resource is not available. Therefore, it is difficult to

accurately estimate the completion time of jobs, improve prediction by historical

data, perform prediction correction, undertake prediction fall-back, etc.

• Interdependency refers to the intended or unintended relationship among cloud

resource. This may lead to complexity within the management system. For in-

stance, data required for a specific job can be partitioned or replicated onto mul-

tiple resources. These interdependent resources will not be able to perform the

job without each other or without being influenced by each other. The increase of

interdependence directly increases and affects complexity.

• Variety is related to the state of being various. In making management deci-

sions, the states of the system (e.g. under-provision/over-provision, number of

resources, order/edge of chaos/chaos, under-loaded/over-loaded) and the state of

resource (e.g. high/low CPU utilisation, number of free cores, high/low memory

Copyright c© University of Kent 46

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 47

consumption ...) may have to be considered. This state variety represents the

system or resource’s dynamic behaviour. The more the states involved during

decision making, the more the complexity that is introduced.

The complexity characteristics mentioned above can have close relationships with each

other. In other words, one can influence the others or one can lead to the occurrence

of the others. For instance, variability in the system may be created by a high level of

variety or uncertainty can be caused by high density of diversity. However, the charac-

teristics do not affect (more or less) the system with or without any interrelationships

or interactions between them. Thus, generally, if these characteristics’ level is reduced,

the complexity will be reduced too.

4.1.3 On the Relationship Between Complexity And Entropy For Cloud

Resource Management

In the previous section, we listed some of the characteristics of a complex system, eval-

uated the difficulty of measuring each characteristic in a cloud resource management

problem and described how one characteristic will affect another. Finding a good metric

with which one can measure the complexity of a system is not a trivial task. Today, most

cloud resource management solutions are focused on measuring a particularly complexity

characteristic while ignoring others. We argue that a good complexity measure should

not solely depend on a measurement of particularly characteristic, but it must take into

consideration the topological state of the complex system: from the most ordered to the

most disordered.

Among many possible measures which can be used to define the state of a complex

system, entropy has been by far the most popular choice. Entropy measurement is

more robust, less dependent on a specific complexity characteristic, and better aligned

with humans’ intuitive understanding of complexity [Bonchev and Buck, 2005]. Some

authors speculate that the typical relationship between complexity and entropy is uni-

modal: complexity values are small for small and large entropy values, but large for

intermediate entropy values [Arnheim, 1974; Crutchfield and Young, 1989; Grassberger,

1986; Langton, 1990].

Entropy has many definitions and is generally divided into three categories: thermo-

dynamic entropy, statistical entropy, and information theory entropy. In the field of

computer science, information theory entropy is the most common. As the first attempt

to introduce entropy measurement in a cloud resource management system, in this work,

we do not introduce new complexity metrics or propose new information functions, on

Copyright c© University of Kent 47

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 48

which an entropy-based complexity measure could be defined. Rather, we follow the

general entropy measurement and use the entropy criticism as a guiding principle of

complexity measurement construction.

4.2 Complexity Management Based On Entropy Measure-

ment

Being able to manage the increasing complexity within the cloud service resource man-

agement system is needed to better satisfy the cloud applications’ QoS requirements. In

order to efficiently and effectively manage complexity, it is recommended that one need

to identify, measure, analyse and control complexity first. Every one of the steps men-

tioned above is vital to complexity management. Measuring is the most important stage

since it allows for the other stages to be performed effectively [Modrak and Semanco,

2011].

4.2.1 Identifying

Identification is the first step in the process of beginning to manage the complexity in

cloud resource management systems efficiently and effectively. The purpose of this step

is to identify the origin of the complexity in a system and the characteristics that are

related to it.

4.2.1.1 Local Activity Principle

The local activity principle was originally from electronic circuits. However, it could

be mathematically formulated in an axiomatic manner without having to mention any

circuit models. For a spatially-extended dynamical system that is made up of more than

one identical cell, changes in the state of the cell are dictated by a specific reaction-

diffusion equation and the kinetic equations related to them. In other words, changes in

the local cell state are influenced by some/all of the system’s other cell states and by the

cell’s local diffusion in some cases. Since the role of the diffusion term in the reaction-

diffusion equations is only a dissipative and stabilising one, the complex phenomenon

observed in the system can only originate from the cell kinetic equations [Chua, 1999].

It can be proven rigorously that if there are no locally active cell kinetic equations,

complexity cannot be exhibited by the reaction-diffusion equation. A cell that possesses

a local-active kinetic equation can display complex dynamics like chaos or limit cycles,

even if the cells are not couple to each other. Therefore, it is no surprise that coupling

Copyright c© University of Kent 48

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 49

such cells could lead to an emerging pattern within the system. Thus, the cell that has

a local-active kinetic equation is indeed the complexity’s origin [Chua, 2005].

Definition of Local Activity : A cell is said to be locally active at a cell equilibrium

point if, and only if, there exists a continuous input time function, such that at some

time point there is a net energy flow out of the cell (whose initial energy was zero).

Definition of Local Passivity: A cell is said to be locally passive at a cell equilibrium

point if, and only if, for all continuous input time functions, the cell remains at its initial

state with zero energy.

The transistor is an typical example of a locally-active device. For the transistor, a

low-power input signal can be turned into a high-power output signal. However, it is at

the expense of an energy supply. Televisions, radios, or computers will not be able to

function if they don’t use locally-active devices like transistors. Moreover, any system

that is made up of locally-active devices is considered locally active too.

Figure 4.1: Locally-Active Resource Vs. Locally-Passive Resource

The Local Activity Principle can be easily transferred into other, non-electrical,

homogeneous/heterogeneous arenas. In cloud computing, the resources are examples

of locally-active devices, in which a “small” input signal (the estimated runtime of an

allocated task) can convert into a “large” output signal (the actual processing time

to finish the assigned task) at the expense of an energy supply (the cost of resource),

as shown in Fig. 4.1. By definition, a resource is locally passive if it is not locally

active, in the sense that a resource with fixed costs is guaranteed to provide an invariant

performance during runtime. However, in real-world cloud systems, resources are seldom

in passive in this way, but always exhibit differing degrees of local activity. For example,

Copyright c© University of Kent 49

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 50

on average, a physical resource is less active than a virtual resource with the same

configuration and the degree of activity of a resource varies during runtime.

4.2.1.2 Origin Of Complexity: Local Active Resource

As the origin of the complexity in the system, the locally active resources have a direct

impact on the complexity level of cloud resource management systems. In electronic

circuits with homogeneous media, the locally active cells will put the system in a state

of being at the “Edge of Chaos” [Chua, 2014] in some parameter regions, and these

stand a chance of transiting to a completely chaotic state. In cloud environments,

such complexity effects, caused by locally active resources, will appear more frequently.

When the cloud resource management system is in a chaotic state, its performance

is degraded and becomes harder to predict; it will fail to satisfactorily fulfil the QoS

requirements of the application. However, in the literature, when constructing new

management strategies, most of the researchers ignore the impacts of this local activity

of resources on cloud resource management systems and assume the resources to be

locally passive instead. So their research solutions always fail to provide satisfactory QoS

when running on real world cloud environments. Some of the complexity characteristics

related to the locally-active resources are as follows: Heterogeneity, Dynamicity and

Uncertainty. More details about these characteristics can be found in the previous

Chapter 2.

4.2.2 Measuring

Having identified the origin of complexity in resource management systems, the locally

active resources, it is recommended, then, to provide a measurement which can determine

how these resources are behaving (in relation to complexity). In fact, entropy will be

used as this measurement, and, further, will be used as the measure of complexity (in

relation to the definition of complexity used in this study).

4.2.2.1 Entropy Theory

Entropy is an important statistical quantity which measures the degree of disorder and

the amount of wasted energy inherent to the transformation from one state to another

in a system [Boltzmann, 1974]. Although the concept of entropy was originally a ther-

modynamic construct, it has been adapted in many other fields of study, including infor-

mation theory, production planning, resource management and computer modelling and

simulation [Christodoulou et al., 2009; Gan and Wirth, 2005; Hermenier et al., 2009;

Copyright c© University of Kent 50

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 51

Langton, 1990; Liu et al., 2008]. We will use this measure to quantify the degree of

reliability which can be associated with a scheduling system under different resource

allocation strategies. First, we introduce this measure in relation to a general, universal

context. Given a dynamic system X with a finite mutually exclusive state variable set

S = s1, s2, s3, . . . , sn with probabilities p1, p2, p3, . . . , pn respectively, entropy H(X) is

defined as:

H(X) = −
n∑

i=1

pi ∗ log pi (4.1)

For any two mutually independent dynamic systems, A and B, with n and m states

respectively, the probability of the simultaneous occurrence of the states Ai and Bj is

piqj where pi is the probability of state i occurring in system A and qj is the probability

of state j occurring in system B - where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let the sets of states

AiBj represent another finite system designated by AB. It is easy to see that:

H(AB) = H(A) +H(B) (4.2)

where H(AB), H(A) and H(B) are the corresponding entropies of systems AB, A

and B. This expression can easily be extended for an arbitrary number of mutually

independent finite systems. For a system M consisting of s mutually independent sub-

systems N1, N2, N3, . . . , Nk, the entropy is given by:

H(M) = −
k∑

i=1

H(Ni) (4.3)

And the average sub-system entropy [Langton, 1990] is easily obtained by:

H =
H(M)

k
(4.4)

4.2.3 Analysis

Once a relevant measurement has been identified and made, the results of the complexity

measure must be analysed. Analysing complexity values is relative to the purpose of

the measurement made. A measurement can be analysed from many perspectives. For

example, a complexity measure can be implemented for the purposes of :

Copyright c© University of Kent 51

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 52

• analysing the local activity level of resources and performing comparison among

them; or

• analysing the global system to judge whether it is in a state of order or a state of

chaos.

4.2.3.1 Degree Of Local Activity

The presence of local activity is the cause of breakdowns in the symmetry of homoge-

neous media; this insight offers a rigorous and effective tool for identifying the states of

resources involved in a system. An increment in resources local activity will lead to an

increment in the global system’s complexity, which means the system will have a higher

chance of falling into chaos.

Therefore, we introduce entropy as the quantitative measurement which can be used to

compare the degree of local activity among cloud resources. The aim of measuring local

activity is that of obtaining a numerical scale by which the degree of such activity of

different resources can be measured. In practice, the degree of local activity is difficult

to measure directly at runtime, since the cloud resources are not identical and the cloud

cannot be modeled as a particular reaction-diffusion equation. However, we can judge

how active a resource is through the study of its performance history in respect of

CPU utilization. Generally speaking, if a resource’s CPU utilization history exhibits

unstable oscillations (disorder), then it has relatively high local activity and vice versa.

Therefore, Entropy, as the measurement of the degree of disorder in a system, can be

used to provide a quantitative measurement of the local activity degree associated with

the cloud resources.

4.2.3.2 Cellular Automata

Cellular Automata (CA) can be used in modelling and simulating complex systems.

The signature feature of the theory of cellular automata is the realization that “simple

rules can give rise to complex behaviour”. The theory was originally used to study the

emergent complex behaviours of discrete dynamical networks that consist of homoge-

neous, local, short range interacting cells. Since the 1980s, cellular automata theory has

been researched in-depth and is now widely applied in many overlapping areas, such as

physical, chemical and biological systems.

A standard cellular automata scenario usually consists of four elements: cells, the state

of the cells, the cells’ neighbours (i.e., the relationship between the cells) and a rule for

updating cells’ states. In this work, we model the cloud resource management system

Copyright c© University of Kent 52

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 53

as a cellular automata system. In this way, the collection of cells that comprise the

cellular automata consists of a number of cloud resources. The cellular automata rule

that changes the resource states is defined to be the strategy we use to manage the

resources (Resource allocation and Job Scheduling).

The behaviours that emerge from a Cellular Automata can be categorised into four

classes:

• Spatially homogeneous state

• Sequence of simple stable or periodic structures

• Chaotic aperiodic behaviour

• Complicated localized structures, some propagating

The degree of complexity in each class can be quantitatively measured by the entropy

of the global system [Langton, 1990]. In this work, we extend this Cellular Automata

Entropy measurement to Cloud Resource Management Systems in order to study the

complex behaviours emergent from the locally active cloud resources.

4.2.4 Controlling

Control is fundamental to management and is related to the task of taking complexity

under control. Complexity not only needs to be reduced, but also, in fact, it needs to be

avoided so as to prevent its existence in the future. Therefore, this step, of controlling

complexity, consists of two parts: namely, reduce and avoid.

Complexity is not always easy to remove completely from a system. Thus, what needs to

be considered is how to reduce complexity as much as possible. Reducing complexity is a

cost-based strategy for the realisation of effective cloud resource management. Improve

information sharing between cloud providers and cloud users can mitigate the existence

of high complexity and help reduce costs. However, the aim of an efficient complexity

management system is not only to reduce complexity levels by taking corrective actions,

but also to avoid complexity by taking preventive actions for the future. Hence, the

effective and efficient use of resource monitoring tools and analysis methods can help in

controlling complexity in resource management.

Copyright c© University of Kent 53

Chapter 4. Complexity Reduction : Entropy-Based Cloud Resource Management 54

4.3 Conclusion

Managing increasing complexity in cloud resource management systems is absolutely

necessary to adequately satisfy the QoS requirements of cloud applications. In order to

manage complexity effectively and efficiently, it is recommended that complexity must

be defined, measured, analysed and controlled. Each of these steps is very significant to

complexity management. Among these stages, measuring is the key since it facilitates

the effective realisation of the other stages. In the next two chapters, I present all of

these management strategies and especially concentrate on facilitating the measurability

of complexity by using Entropy Theory.

Copyright c© University of Kent 54

Chapter 5

Cellular Automata Entropy: A

New Cloud Resource Allocation

Methodology

The content of this chapter is an extended version of the paper “A Cost-Efficient and

Reliable Resource Allocation Model Based on Cellular Automata Entropy

for Cloud Project Scheduling.” [Chen et al., 2013a] published by the International

Journal of Advanced Computer Science & Applications.

In this chapter, the cellular automata concept is used for modelling complex multiple

QoS-constrained resource management systems. Additionally, a method is presented by

which the reliability of allocated cloud resources can be analysed by measuring the aver-

age resource entropy(ARE) involved. Furthermore, a Cellular Automata Entropy-

based Cloud Resource Allocation (CAE-CRA) methodology for scheduling mul-

tiple QoS-constrained projects is proposed in order to assist in the construction, eval-

uation and comparison of cloud resource management strategies. Finally, the proposed

methodology is implemented within the Matlab environment and verified in relation to

four basic cloud resource allocation strategies, the First-Come-First-Served Algorithm

(FCFS), the Round-Robin Algorithm (RR), the Min-Min Algorithm and the Max-Min

Algorithm. The experimental results show that the proposed methodology can provide

correct evaluations and comparisons of different resource allocation strategies and lead

to the construction of more cost-efficient and reliable solutions.

55

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology56

5.1 Basics of Cellular Automata

We introduce a discrete lattice of cells, L, which is the state space upon which the dy-

namics of the CA unfolds. The discrete lattice of cells, L, is assumed to be homogeneous

in that all cells bear the same properties. Further, in a one-dimensional cellular state

space, the state at the discrete time t of the cell i is described by the state variable si(t).

Each cell of L is a finite automata which can assume one of a finite number of discrete

values in a local value space S ≡ {0, 1, 2, . . . , k − 1}.

The generic cell, i, interacts only with a fixed number n of cells that belong to its

predefined local neighbourhood Ni. At the next discrete time t + 1, cell i updates its

state, si(t + 1), according to a transition rule, φ : Sn → S, which is a function of the

state variables at the time, t, of the cell n in Ni, viz:

si(t+ 1) = φ[sn(t), n ∈ Ni] (5.1)

Note that the functional form of the rule is assumed to be the same everywhere in the

cellular state space, i.e. there is no space index attached to φ. Differences between

what is happening at different locations are due only to differences in the values of the

state variables of the local neighbourhood, not to the update rule. The rule is also

homogeneous in time. One ‘iteration step’ of the dynamical evolution of the CA is

achieved after the simultaneous application of the rule φ to each cell in the lattice, L.

5.1.1 One-dimensional Cellular Automata

Consider a generic cell i of a one-dimensional lattice. The size of the neighbourhood,

Ni, is defined by the radius, r, viz:

Ni = {i− r, i− r + 1, . . . , i− 1, i, i+ 1, . . . , i+ r − 1, i+ r} (5.2)

The dynamics of the system are governed by an arbitrary transition rule, φ : S2r+1 → S,

si(t+ 1) = φ[si−r(t), . . . , si(t), . . . , si+r(t)] (5.3)

Since cells can take any one of k values in the local value space, S ≡ {0, 1, 2, . . . , k − 1},
to completely define f one must assign a value in S to si(t + 1) for each of the k2r+1

Copyright c© University of Kent 56

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology57

possible (2r+ 1)− tuple configurations which can occur in the radius− r neighborhood

Ni of the generic cell i.

Since in correspondence to each of the k2r+1 possible configurations of the radius − r
neighborhood, Ni, any one of the k values in S can be assigned to si(t + 1), there are

k2r+1 possible rules.

For example, let k = 2, so that S ≡ {0, 1}, and r = 1. To define a rule one must

specify the values of the generic cell i corresponding to the eight possible triplets of the

neighborhood, Ni ≡ {i− 1, i, i+ 1}. Assume an array of cells with an initial distribution

of live and dead cells. Cells in the next generation of the array are calculated based on

the value of the cell and the values of its left and right nearest neighbors in the current

generation. If, in the following table, a live cell is represented by 1 and a dead cell by 0,

then to generate the value of the cell at a particular index in the array of cellular values,

you use the following Table 5.1.

Table 5.1: Eight Cellular Automata Rules For The Cell

Current State
[si−1(t), si(t), si+1(t)]

Next Generation State

si(t+ 1) Description

[0, 0, 0] 0

[0, 0, 1] 0

[0, 1, 0] 0 Dies without enough neighbours

[0, 1, 1] 1 Needs one neighbour to survive

[1, 0, 0] 0

[1, 0, 1] 1 Two neighbours giving birth

[1, 1, 0] 1 Needs one neighbour to survive

[1, 1, 1] 0 Starved to death

The temporal evolution of this CA is obtained by:

• Specify the finite size of the array

• Specify the boundary conditions

• Specify initial distribution of live and dead cells

• Simultaneously applying the 8 CA rules to each cell of the array, in an iterative

manner

Copyright c© University of Kent 57

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology58

Figure 5.1: Examples of evolution of an one-dimensional Cellular Automata.

Fig. 5.1 shows the evolution obtained by an array of 12 cells with periodic boundary

conditions (e.g. s13 = s1) and initial condition −→s (o) = [1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0] under

the rules shown in Table 5.1. Following the exhibiting of sequences of states very different

from each other, all the cells in this CA eventually die out after the 4th generations.

5.1.2 Cellular Automata Behaviour Classes

Cellular Automata may be classified with respect to the nature of their limiting be-

haviours. There is extensive empirical evidence that all CA rules evolving from disor-

dered initial states fall into one of the following four basic qualitative behavioral classes

[Wolfram, 1984].

• Class 1: Fixed points (the CA evolution reaches a fixed homogeneous lattice con-

figuration in which each attains the same state value)

• Class 2: Inhomogeneous configuration or cycles (the CA evolution leads to simple

stable configurations or to the emergence of periodic and separated structures)

• Class 3: Chaotic, aperiodic patterns

• Class 4: Complex, localised, propagating structures

All CA within a given class yield a qualitatively similar behaviour, regardless of the spe-

cific underlying transition rule. The behaviours of the first three classes bear a strong

resemblance to those observed in continuous dynamical systems. The homogeneous final

configurations occurring for the CA in class 1, for example, are essentially the same as

Copyright c© University of Kent 58

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology59

fixed point’s attractors. Class 2 automata usually create patterns that repeat period-

ically, similarly to continuous limit cycles. The aperiodic, chaotic patterns emerging

from class 3 automata are analogous to the strange attractors appearing in continuous

dynamical systems. The statistical properties of the limit patterns and of the starting

patterns are almost identical, giving rise to a kind of self-similar fractal curve. The more

complicated localised structures emerging from class 4 CA do not appear to have any

obvious continuous analogue. This last class of CA is capable of performing universal

computation and shows a high invariability in their time development.

5.2 Project Scheduling and Cloud Resource Allocation

In this chapter, the proposed methodology has been developed under a set of assump-

tions:

• A project consists of a collection of tasks that have no dependencies among each

other. Each task requires an amount of computing resource that is known before

the task is submitted for execution, or at the time it is submitted.

• Projects needs to be completed within deadline and within a specified cost budget

• A number of cloud resources are rented in order to run a project. These resources

provide a quantity of computing capacity. In this paper, computing capacities are

expressed in EC2 compute units (ECU) [Amazon, 2010], which for experimental

purposes were defined as 1 EC2 compute unit = 1,000,000 million instructions (per

second). Hourly cost rates for one ECU were expressed in USD and were based

on the EC2 pricing mode [Amazon, 2010].

• Selections of one or more scheduling strategies are available when planning the

project for cloud implementation.

In static heuristics, the computing demand of each task is known prior to execution

and, here, measured in ECUs. Thus, the expected execution time of a task running on

a resource can be calculated by dividing the task computing demand by the resources

computing capacity.

The main aim of cloud scheduling strategies is to minimize a project’s completion time

and cost with respect to renting a number of resources within the constraint represented

by the deadline. In relation to such scheduling situations, the resource allocation problem

can be defined as follows:

Copyright c© University of Kent 59

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology60

Let task set T = t1, t2, t3, . . . , tn be the collection of tasks in a project that is submit-

ted to be executed on the cloud. Each task requires amounts of computing demand

cd1, cd2, cd3, . . . , cdn, measured in ECUs.

Let resources set R = r1, r2, r3, . . . , rm be the set of resources that are rented for schedul-

ing the tasks. Each resource has its computing capacity which is also measured by

ECU, cc1, cc2, cc3, . . . , ccn. Resources are defined to be of different types according to

their computing capacity [Amazon, 2010], resources type set RT = rt1, rt2, rt3, . . . , rtk.

The resource cost price rates for different types are cp1, cp2, cp3, . . . , cpk. The project’s

completion time, Makespan, can be calculated as follows:

Makespan = max(CTij) (5.4)

CTij = RTj + ETij , 1 < i < n, 1 < j < m (5.5)

Where CTij refers to the completion time of task i executing on resource j, ETij refers

to the expected execution time of task i on resource j, and RTj refers to the ready time

of a resource j after completing the previously assigned tasks. The methodology we

propose has been developed to aid decision makers to solve the following problems:

• How many of what types of resources should we rent?

• How should we schedule the multiple QoS constrained project on the rented re-

sources?

This is so that they can achieve a cost-efficient and reliable resource allocation strategy

for running the project on the cloud within deadline and within cost budget.

5.3 The Application of CA Entropy for Reliability Evalu-

ation on Cloud Scheduling Systems

A cellular automata model can produce complex phenomenon via simple cells with

simple rules; such a model has the ability to model and simulate complex systems

[Von Neumann et al., 1966]. Since the 1980s, as the evolution of computer technology

has progressed, cellular automata theory has attracted in-depth research and is widely

applied in economics, transportation, physics, chemistry, artificial life simulations and

other complex systems [Langton, 1990; Toffoli and Margolus, 1987; Wolfram, 1984].

Copyright c© University of Kent 60

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology61

A cellular automata consists of a regular grid of cells, each of which exists in one of

a finite number of states (for instance black or white; A B, or C; 1,2,3, or 4). The

grid can be in any finite number of dimensions. For each cell, a set of cells called its

neighbours (usually including the cell itself) is defined relative to that specific cell. An

initial state (time t = 0) is selected for each cell. A new generation is created according

to some fixed rules that determine the new state of each cell in terms of the current

state of the cell and the states of the cells in its neighbourhood. In this work, we model

a cloud scheduling system’s behaviour as a cellular automata (CA), specifically as a

one-dimensional CA network, and then calculate the CA entropy in order to measure

the degree of reliability of such a system under different scheduling rules and resource

allocation strategies. For these purposes, the collection of cells that comprises the CA

consists of a number of cloud resources that are rented for the running of the project

(each cell of the CA corresponds to a cloud resource). The CA rules in our work are

described in relation to the selected scheduling algorithm, as follows:

• First-Come-First-Served (FCFS): Tasks are executed according to the sequence in

which the tasks are submitted. The first task to arrive will be scheduled on the

first available resource as soon as it is submitted - and then it is removed from the

queue.

• Round-Robin (RR): Schedules the first task on the first resource, the second task

on the second resource, and so on, cycling through all the available resources.

• Min-Min: All the tasks in a project will be ordered by their computing demands

first. The task with the minimum computing demand will be scheduled first and

on the first available resource on which the completion time will be minimum -

and then removed from the queue.

• Max-Min: All the tasks in a project will be ordered by their computing demands

first. The task with the maximum computing demand will be scheduled first and

on the first available resource on which the completion time will be minimum -

and then removed from the queue.

Each resource will be in one of two performance states: Low Productivity (LP) or High

Productivity (HP), which are respectively shown as Black and White on the correspond-

ing CA grid map. The state of a resource is determined by its performance ratio under

specific scheduling rules. The performance ratio of a resource (RPR) is calculated as

follows:

RPR =
Completion time for all its assigned tasks

Completion time of the project(Makespan)
(5.6)

Copyright c© University of Kent 61

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology62

If the RPR of a resource is over 50%, then it is considered to be in a High Productivity

state, otherwise it is considered to be in a Low Productivity state.

The Average Resource Entropy for a CA in this context can be calculated by:

ARE =
n∑

i=1

−PLPi ∗ logPLPi − PHPi ∗ logPHPi

n
(5.7)

where n refers to the number of resources that are rented in order to run the project,

and PLPi and PHPi refer to the probabilities of resources i being in the low productivity

state and the high productivity state, respectively.

Reliability/unreliability is one of the basic characteristics of complex systems, and this

changes with system evolution. For cloud scheduling systems, when one resource of

the system suffers a loss of computing power (such losses may be caused by internal

local activities or by external factors), it will fall into a low productivity state or in

the worst case break down; this is called resource collapse. Such a resource collapse

will influence the productivity state of all the other resources and may cause them to

collapse as well, leading the scheduling system as whole to move away from an ordered

condition and into a disordered/chaos condition. Along with an increase in the number

of resource collapses, hierarchical up-propagation will eventually lead to the collapse of

the whole scheduling system. Thus, the scheduling system will fail to deliver the project

as originally planned.

Copyright c© University of Kent 62

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology63

Figure 5.2: Scheduling Reliability: Cellular Automata Grid and Average Resource
Entropy (ARE)

To evaluate the reliability of a scheduling system represented as a CA, we decrease the

computing capacity of one resource by 1% at each time step, up to a total of 100 time

steps; this simulates the situation where a resource degrades from full computing capac-

ity to break down. The whole scheduling system’s evolution pattern is generated and

represented by CA grids. Fig. 5.2 shows some examples of grid patterns generated by

a CA scheduling system using the FCFS algorithm to run a project consisting of 100

random tasks on different numbers of allocated resources. In each time step, the state of

Copyright c© University of Kent 63

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology64

the resource is marked in either black (High Productivity State) or white (Low Produc-

tivity State) according to the formulae 5.6. And the Average Resource Entropy(ARE)

of the CA grid is calculated by formulae 5.7.

Figure 5.3: Scheduling Reliability Simulation: Project Makespan

From Fig. 5.3 we can see that as more resources are allocated for running jobs, the

scheduling system will be more reliable, with project completion times (Makespan) more

tolerant of performance degradation of individual resources, reflecting lower average

resource entropy. We conclude that:

If a system is in an ordered condition, it is more reliable, and vice versa. Therefore, a

systems reliability can be measured; its degree of disorder, thus the Average Resource

Entropy (ARE) of a system, is a measure of its reliability.

5.4 Cellular Automata Entropy-Based Cloud Resource Al-

location Methodology (CAE-CRA)

In this section, a multiple QoS-constrained Cloud Resource Allocation (CAE-CRA)

methodology for scheduling projects on the cloud is proposed based on CA Entropy.

The proposed methodology can be used to achieve an optimal resource allocation strat-

egy which considers both cost-efficiency and reliability for project running in a cloud

environment within deadline and cost budget constraints. The main components and

the control flow of the CAE-CRA model are shown in Fig. 5.4.

Copyright c© University of Kent 64

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology65

Figure 5.4: Flow Diagram of CAE-CRA Methodology.

The optimal resource allocation solution selected by the CAE-CRA methodology will,

perforce, meet the following criteria:

• the project’s multiple QoS constraints will be met: deadline, cost budget and

reliability threshold; and

• an optimal Cost-Efficiency and Reliability Rate (CERR) will be maintained.

Decisions under risk assessment involve dealing with uncertainty issues, especially in

areas such as cloud resource allocation issues. The classical risk assessment model in

the project is R = P ∗C, which considers only the possible consequences of event which

consists of the probability P and the consequence C of the event. However, the risk issue

in cloud resource allocation is closely related to the uncertainty of the risk event itself.

When faced with high levels of uncertainty and insufficient information, we may first

consider the effect of collecting information before making a decision. Recently, Dong

et al. [2016] proposed a new decision-making model for risk assessment based on entropy.

They argued that risk control should include not only measures to reduce the possible

consequences of the risk event, but also exploration measures to reduce uncertainty. In

their approach, the risk consists of three part: probability P , consequence C and entropy

H. Probability and consequence represents the hazard of risk and entropy represents

the uncertainty of risk. The purpose of risk assessment is to provide a basis for risk

control measures, including pre-control measures to reduce potential risk hazards and

exploration measures to reduce uncertainty.

Copyright c© University of Kent 65

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology66

In this thesis, we use the entropy-based risk assessment model proposed by Dong et al.

[2016] to guide the decision-making of cloud resource allocation problem. Motivated by

the simulation results (Fig. 5.2 and Fig. 5.3) in the previous section, reducing average

resource entropy should be one part of risk control and the hazard is presented by the

possibility of performance degradation of a single resource. The risk assessment model

considering uncertainty should obey the following principles:

• When the hazard is relatively large, we should pay the price to improve the relia-

bility of the system, thus reduce the average resource entropy

• No matter how high the average resource entropy is, we would not take measures

to improve the reliability when the hazard is small

• If the hazard and resource average entropy can be reduced to the same degree at

the same cost, we would prefer choosing to reduce the hazard.

Based on the above principles, the risk level of an resource allocation strategy can be

calculated by

R = Entropy ∗Hazard = AREn ∗ (MSn−1 −MSn) (5.8)

where n refers to the number of resources are allocated to run the project, AREn refers

to the average resource entropy and (MSn−1 −MSn) refers to the hazard of increased

project makespan due to the performance degradation of one single resource.

The risk assessment involving uncertainty can also be represented in economic terms.

The economic terms involve two costs. One is the Expected Cost CE that measures

cost of the project completed without any resource performance degradation as shown

in Equation 5.9, and the other is Tolerance Cost CT when the resource performance is

uncertain, as shown in Equation 5.10. Where MS refers to the project’s completion

time and cp refers to the cost price of a resource.

CE = ProjectMakespan ∗ TotalResourceCost = MSn ∗
n∑

i=1

cpi (5.9)

CT = RiskLevel ∗ TotalResourceCost = R ∗
n∑

i=1

cpi (5.10)

And finally, the Cost-Efficiency and Reliability Rate (CERR) can be calculated by:

Copyright c© University of Kent 66

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology67

CERR =
CE + CT

Cost Budget
(5.11)

which reflects the risk of meeting project deadlines in the face of declining resource

performance.

5.5 Experiment and Result

We implemented the proposed CAE-CRA methodology within the Matlab environment

and simulated, separately, using the four basic cloud scheduling algorithms, First-Come-

First-Served Algorithm (FCFS), Round-Robin Algorithm (RR), Min-Min Algorithm and

Max-Min Algorithm.

5.5.1 User Case 1 - Simple Project Consisting of 10 Random Tasks

This simulated project consisted of 10 tasks with random computing demands as listed

in Table 5.2. A maximum of 10 cloud resource units were available to be rented for

running this project. The type of the cloud resource units available was M1 Small

Instance - based on the Amazon EC2 instance types [Amazon, 2010]. The specification

of M1 Small Instance is shown in Table 5.3, and the project requirements are shown in

Table 5.4.

Table 5.2: CASE 1: PROJECT TASK SPECIFICATION

Task Specification
Task ID

1 2 3 4 5 6 7 8 9 10

Computing Demand
(Hours of 1 ECU)

12 3 7 9 15 24 10 1 2 4

Table 5.3: CASE 1: CLOUD RESOURCE TYPE SPECIFICATION

Resource Type
Resource Specification

Computing Capacity Price Available

M1 Small Instance 1 ECU $0.115/Hour 10 Units

The experimental results, in terms of the evaluation of the four selected scheduling

strategies (FCFS, RR, Min-Min, Max-Min) for all the possible resource allocations, are

shown in Fig. 5.5, Fig. 5.6 and Fig. 5.7.

Copyright c© University of Kent 67

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology68

Table 5.4: CASE 1: PROJECT REQUIREMENTS

Project QoS Constrains

Deadline Cost Budget Reliability

Makespan < 35 Hours Resource Cost < $20 ARE < 0.4

Figure 5.5: Performance Benchmark for All Resources Allocation Solutions (10
Tasks).

• Performance Benchmark:

In general, the Makespan of the four scheduling strategies for the project decreased

as more resources were rented. However, when the number of resources exceeded

a certain limit, an investment in more resources did not improve the systems

performance. It must be noted that this limit varied according to which scheduling

strategy was being used. This limit was 4 resources in the case of Max-Min and 6

resources in the cases of FCFS and RR. Renting more than 5 resources resulted in

limited improvement for all the scheduling strategies. However, in the case of the

RR strategy, renting 5 resources decreased performance dramatically. Generally

speaking, the Max-Min strategy performed better than FCFS, RR and Min-Min

in most solution scenarios. The solution scenarios where less than 4 resources were

rented have been discarded because of their failure to meet the deadline. The one

exception to this was the solution scenario whereby 3 resources were allocated and

the Max-Min scheduling strategy was used.

• Cost Benchmark:

In most cases, the cost of the project linearly increased as more resources were

rented. This was so except for the solutions which used the Max-Min strategy,

Copyright c© University of Kent 68

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology69

Figure 5.6: Cost Benchmark for All Resources Allocation Solutions (10 Tasks).

there, the costs involved when renting 2, 3 and 4 resources were similar. Under

the cost budget restriction, most of the solutions which involved renting more than

6 resources were discarded.

Figure 5.7: Reliability Benchmark for All Resources Allocation Solutions (10 Tasks).

• Reliability Benchmark:

In general, adding a resource can improve the reliability of a system regardless of

which of the three scheduling strategies has been selected. However, the reliability

improvements for different scheduling strategies vary a great deal. In the case

where the number of resources rented equals the number of tasks, the project gets

as many resource units as it requires and the Average Resource Entropy becomes

zero for all the scheduling strategies. In this case, the scheduling system has zero

Copyright c© University of Kent 69

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology70

entropy - indicating order and reliability. For this project, FCFS wins in relation

to the reliability benchmark in most situations. Most of the solutions where less

than 4 resources were rented exceeded the ARE threshold and so were discarded.

Finally, we calculate the Cost-Efficiency and Reliability Rates for all the resource allo-

cation solutions; the CERR benchmark is shown in Fig. 5.8. We compare the CERR of

all the remaining solutions which meet the project requirements as listed in Table 5.4.

With the minimum CERR principle in mind, the final result and detailed performance

of the optimal solution are shown in Table 5.5.

Figure 5.8: CERR Benchmark for All Resources Allocation Solutions (10 Tasks).

Table 5.5: OPTIMIZE RESOURCE ALLOCATION SOLUTIONS (10 TASKS)

Scheduling
Specification

Optimal Solutions

1st 2nd 3rd 4th

Strategy Max-Min RR FCFS Min-Min

Rented Resources 4 4 4 4

Makespan 24 Hours 31 Hours 31 Hours 35 Hours

Cost $11.4 $14.26 $14.26 $16.1

ARE 0.3914 0.2363 0.2550 0.3492

CERR 0.597 0.735 0.742 0.837

Copyright c© University of Kent 70

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology71

5.5.2 User Case 2 - Complicated Project Consists of 100 Random

Tasks

In order to evaluate the robustness of the proposed CAE-CRA methodology, a more

complex project consisting of 100 random tasks was simulated, and the results of this

are presented in Table 5.6. The type of cloud resources and the project requirements

are listed in Table 5.7 and Table 5.8. As the projects become more complicated, so it

becomes harder for a decision maker to seek out an optimal solution, and thus make the

project manageable. In this case, the reliability of the scheduling system is an important

factor that cannot be ignored and relates directly to the risk of failing to running the

project as originally planned. Thus, if the decision maker chooses an inappropriate

scheduling strategy or resource allocation solution for a project, this will lead to dramatic

increases in project costs, or in the worse case, a failure to complete the project within

the deadline. A suitable modelling technique and the ability to accurately measure the

reliability of a solution are needed for planning such large and complicated projects.

Table 5.6: CASE 2 : PROJECT TASK SPECIFICATION

Project Task Specification

Total Number of Tasks 100

Total Computing Demand
(Hours of 1 ECU)

5164

Maximum Computing Demand
(Hours of 1 ECU)

100

Minimum Computing Demand
(Hours of 1 ECU)

1

Probability distribution of
Randomly generated Tasks

.
Normal Distribution:
Many middle size tasks,
and fewer big and small
tasks were contained in
the project

Table 5.7: CASE 2 : CLOUD RESOURCE TYPE SPECIFICATION

Resource Type
Resource Specification

Computing Capacity Price Available

M1 Small Instance 1 ECU $0.115/Hour 100Units

Copyright c© University of Kent 71

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology72

Table 5.8: CASE 2 : PROJECT REQUIREMENTS

Project QoS Constraints

Deadline Cost Budget Reliability

Makespan < 200Hours Resource Cost < $800 ARE < 0.4

As Fig. 5.9 shows, the performances of the four scheduling strategies are quite similar

under different resource allocation solutions. However, the costs for different scheduling

strategies vary a lot, as shown in Fig. 5.10. The Max-Min scheduling strategy wins

in relation to the cost benchmark for most of the resource allocation solutions. The

performance of the RR scheduling strategy is poor and unpredictable in this case, which

means it is hard to manage and less reliable. The degree of unreliability of this strategy

is correctly reflected in, and measured by, the ARE as shown in Fig. 5.11. There is no

doubt that Max-Min is the optimal cost-efficient strategy for this project, and should

be the one selected.

Figure 5.9: Performance Benchmarks for All Resources Allocation Solutions (100
Tasks).

From Fig. 5.11 we can see that the reliability of the system under the Max-Min strategy

acts like a random walk as the number of allocated resources increases. At the point

where 30 resources are allocated, the reliability of the system is greatly improved. After

this point, the average resource entropy (ARE) of the system increases dramatically

and reaches its peak at the point where 42 resources are allocated, then falls back to

a more ordered state at the point of 45 resources. Overall, the ARE curve oscillates

significantly and irregularly until the point where 60 resources are allocated is reached.

Using most established methodologies, such fluctuating reliability in a scheduling system

Copyright c© University of Kent 72

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology73

Figure 5.10: Cost Benchmarks for All Resources Allocation Solutions (100 Tasks).

Figure 5.11: Reliability Benchmarks For All Resources Allocation Solutions (100
Tasks).

would difficult to model and measure, which would result in these fluctuations not being

considered by the decision maker. This is especially significant when planning large and

complicated projects. With our proposed CAE-CRA methodology, the above problem

can be solved by the quantitative measurement of average resource entropy in the system.

Fig. 5.12 shows the CERR benchmark for all the resource allocation solutions for the

project. Table 5.9 lists the comparisons of several near-optimal resource allocation so-

lutions for running the project under the same Max-Min strategy.

From Table 5.9, some observations were drawn.

Copyright c© University of Kent 73

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology74

Figure 5.12: CERR Benchmark for All Resources Allocation Solution (100 Tasks).

Table 5.9: OPTIMIZE RESOURCE ALLOCATION SOLUTIONS (100 TASKS)

Max-Min
Scheduling
Strategy

Optimal Solutions

1 2 3 4 5

Rented Resources 23 30 38 44 45

Makespan (Hour) 229 182 153 120 118

Cost ($) 606 628 669 607 611

ARE 0.40 0.18 0.38 0.54 0.34

CERR 0.768 0.787 0.844 0.779 0.767

• Observation 1: Using the minimum CERR principle, solution 5 can be seen to be,

and can be selected as, the optimal solution for running the project.

• Observation 2: Although solution 4 is discarded because its reliability degree (0.54)

is over the ARE threshold (ARE < 0.4), it is still a near-optimal solution that

performs almost as well as solution 5.

• Observation 3: Comparing solution 3 with solutions 2 and 4, we can see that the

solution with an allocation of 38 resources for the project results in disproportion-

ately good return on investment.

• Observation 4: The CERR value of solution 1 is close to that of solution 5, and this

solution (1) has a similar cost and degree of reliability but also suffers from a huge

performance difference. Since we measure the CERR strictly via the criterion of

just meeting the deadline, excluding the savings in costs which could be made by

savings in time (i.e., by completing before the deadline) the performance difference

Copyright c© University of Kent 74

Chapter 5. Cellular Automata Entropy: A New Cloud Resource Allocation Methodology75

is not reflected in our evaluation of the solution. In the future, this factor should

be considered in our CAE-CRA methodology.

In summary, the proposed CAE-CRA methodology is capable of providing useful in-

formation and quantitative measurements for aiding the decision maker to achieve an

optimal resource allocation and project scheduling solution while meeting the multiple

QoS constraints.

5.6 Conclusion

Resource allocation in cloud scheduling systems is a complex problem, the solution to

which requires suitable modelling and complex optimization calculations.

The experimental results show that the proposed model is able to identify both cost-

efficient and reliable resource allocation solutions for projects to be run on a cloud

environment, so answering the questions which someone planning to run such a project

needs to ask in order to make the necessary decisions:

• How many resources do I need?

• How should I schedule the project on the resources?

• Is such a solution cost-efficient and reliable?

• Given a number of solutions, which ones are best in relation to different QoS

requirements?

The CAE-CRA methodology proposed in this chapter puts forward an optimization

method that is different from the established approach. It is one that is based on Cellular

Automata Entropy, and, further, is based on minimizing the CERR of a scheduling

system. The CERR indicates both the level of cost-efficiency and the level of reliability

of the resource allocation solution - thus a low CERR will mean a more manageable

project. The proposed methodology has been applied to aid the decision maker in

planning multiple QoS constrained projects on a cloud environment. The experiments

helped demonstrate how the CAE-CRA methodology can be implemented, how the

results can be interpreted, and how a CA Entropy-based solution can be introduced into

a project manager’s decision-making process.

Copyright c© University of Kent 75

Chapter 6

Local Activity Ranking: Resource

Entropy for Cloud Job Scheduling

The content of this chapter is an extended version of the paper “Complexity Reduc-

tion: Local Activity Ranking by Resource Entropy for QoS-Aware Cloud

Scheduling” [Chen et al., 2016] published in the 2016 IEEE International Conference

on Services Computing (SCC).

In this chapter, I first extend the “Local Activity Principle” concept with a quantitative

measurement based on entropy theory. Then a new “Entropy Scheduler” for QoS-

aware cloud scheduling is proposed, for the purpose of controlling the chaos encountered

in such scheduling, based on resources Local Activity Ranking. The concept is then

implemented in Apache Spark, a widely-used cloud analysis engine. Finally, experiments

which demonstrate that the new “Entropy Scheduler” outperforms the native Spark

Fair Scheduler - with server cost reduced by 23%, average response time improved by

15% - 20% and the standard deviation of the response times minimized by 30% - 45%

when the Spark server is not overloaded.

6.1 Degree of Local Activity Measured By Resource En-

tropy

As the origin of complexity, the local activity of resources has a direct impact on the

complexity level of cloud scheduling system. In electronic circuits with homogeneous

media, the locally active cells will put the system in the state of being on the “Edge of

Chaos” [Chua, 2014] for some parameter regions; it is possible that these will transit to

a completely chaotic state. In the cloud environment, such complexity effects causied by

76

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 77

locally active resources appear more frequently. When the cloud scheduling system is in

a chaotic state, its performance is degraded and becomes harder to predict and it fails

to adequately fulfil the QoS requirements of the application. However, in the literature,

most of the researchers ignore the impacts of the local activity of resources on cloud

scheduling systems and assume the resources to be locally passive when constructing

new schedulers. So their research solutions always fail to provide adequate QoS when

running on real world cloud environments.

6.1.1 The Emergence of Complex Patterns in Cloud Scheduling: Or-

der, Edge Of Chaos And Chaos

The principle of local activity is the cause of symmetry breaking down in homogeneous

media. This offers a rigorous and effective tool to identify the states of a scheduling

system (See Fig. 6.1). This tool can also be used to fine tune such states into a relatively

small subset called the edge of chaos, where the emergence of complex phenomena is

most likely [Chua, 2005].

The increase of local activity by resources will lead to an increase in the global scheduling

system’s complexity, which means the system will have a higher chance of falling into

chaos. Thus, we propose the following solution to reduce the complexity and control the

chaos, as shown in Fig. 6.1:

“Avoid allocating tasks to resources with a high degree of local activity or

allocate tasks to a set of resources with similar degrees of local activity when

making scheduling decision.”

Figure 6.1: Complexity Reduction & Chaos Control: Resource Entropy Based Local
Activity Ranking

However, this brings up another challenging problem:

“How to provide a quantitative measurement of resource local activity during

runtime in an efficient and reliable way?”

Copyright c© University of Kent 77

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 78

Hence, to solve this latter problem, we introduce entropy as the quantitative measure-

ment which can be used to compare the degree of local activity among cloud resources.

6.1.2 Entropy Measurement : Degree of Resource Local Activity

The aim of local activity measurement is to be able to obtain a numerical scale by

which to compare the activity degree of different resources. In practice, the degree of

local activity is difficult to obtain directly at runtime. However, we can judge how

active a resource is through the study of its performance history in respect of CPU

utilization. General speaking, if the resource CPU utilization history exhibits unstable

oscillation (disorder), then this is the result of relatively high local activity and vice

versa. Therefore, entropy, as the measurement of the degree of disorder in a system, is

used to provide a quantitative measurement of the degree of local activity of different

the cloud resources.

This chapter focuses on calculating the entropy value based on the resources CPU uti-

lization history, which represents how efficiently the resource uses the CPU throughout

job executions. This is highly relevant for making scheduling decisions as it is directly

related to the resource’s performance during runtime. The resource entropy is calculated

according to the algorithms 5.

Algorithm 5 Calculate Resource Entropy

1: Require: CUV ← CPU Utilization Vector of resource
2: procedure CaculateEntropy(CUV)
3: 4cuV ← Vector for changes of CPU Utilization
4: Mean(4cu)← Average Changes of CPU Utilization
5:

6: if 4cu ≥Mean(4cu) then
7: Statea ← Above average state
8: else Stateb ← Below average state

9:

10: Pa ← Probability of 4cu in Statea
11: Pb ← Probability of 4cu in Stateb
12: Entropy H(4cu) = −(Pa ∗ log2Pa + Pb ∗ log2Pb)

The entropy measurement above has the following relationship with the degree of re-

source local activity:

• Entropy is a non-negative quantity: H(4cu) ≥ 0, since 0 ≤ Pa, Pb ≤ 1. The degree

of resource local activity is proportional to the resources entropy value.

• Entropy achieves its maximum value (H(4cu) = log2(2) = 1) when both Statea

and Stateb occur with the same probability (Pa = Pb = 1/2), so the resource

Copyright c© University of Kent 78

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 79

performance is in its most uncertain and unpredictable region, which means the

degree of resource local activity is at its maximum.

• Entropy attains its minimum value H(4cu) = 0 when only one state occurs with

probability 1 (Pa = 1 or Pb = 1), so the resource performance is known with

complete certainty, then the degree of resource local activity is at its minimum.

6.2 Spark Entropy Scheduler : Scheduling Jobs by Re-

source Local Activity Ranking

Figure 6.2: Cloud engines can run parallel analysis jobs with ever lower latency

Spurred by the demand for lower-latency distributed data analyses, efforts in research

and industry alike have produced engines such as MapReduce [Dean and Ghemawat,

2008], Hive [Thusoo et al., 2009], Dremel [Melnik et al., 2010], Impala [Kornacker et al.,

2015] and Spark [Zaharia et al., 2010] that run cloud analysis jobs across thousands of

resources in a short time, as shown in Fig. 6.2. Apache Spark is part of the Apache

Software Foundation’s offering and claims speed-ups of up to 100x faster than Hadoop

MapReduce in-memory, and 10 times faster on disk. The ability to bring response times

into the sub-second range has enabled powerful new application developments - Cloud

Analysis as a Service [Xu et al., 2015]. Apache Spark can provide cloud analysis query

requests and responses over the HTTP web service, and supports multi-threaded query-

ing. Fig. 6.3 illustrates the flow involved in sending an HTTP request. The Spark Web

server allocates a thread to route the HTTP request to a specific cloud analysis job. Jobs

are then processed with a long run global Spark Context and scheduled by the Spark

Master to run on the predefined amount of Spark Workers. In such cases, user-facing

Copyright c© University of Kent 79

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 80

services will be able to run sophisticated parallel computation, such as language trans-

lation, voice recognition, highly personalised searches and context recommendations, on

a per-query basis. However, when meeting with a high concurrency of service queries,

Spark performance becomes less reliable. Spark’s performance is closely tied to its job

scheduler. Most of the time, we need to deploy more resources to handle an increased

number of service queries, and this will cause an increase in complexity for the scheduling

system.

Figure 6.3: Apache Spark : Cloud Analysis as A Service

6.2.1 Scheduling Challenge In Spark

The Spark Context supports multi-threading and offers FIFO and FAIR scheduling

options for concurrent queries. Typically, the FAIR scheduler is used for processing

multiple parallel jobs simultaneously in order to minimize overall latency. The purpose

of the FAIR scheduler is to assign resources to queries such that all queries get an equal

share of resources over time on average. By default, the scheduler bases fairness decisions

only on the number of the resources cores and its amount of memory, and assigns jobs

to the resource offers via random sorting. The FAIR scheduler does not consider the

core speed or current CPU utilization of the resource; these have a direct impact on the

completion time of jobs. Thus, it is hard to guarantee QoS for an on-line query. If the

scheduling strategy cannot provide an optimal way to guarantee QoS, it will be difficult

to popularize this web service.

Scheduling low-latency parallel analysis jobs onto the heterogeneous Cloud is a chal-

lenging, multifaceted problem. Although motivated by, and designed for, the Cloud,

Spark engines have not yet addressed the problem of resource scheduling for highly con-

current jobs on the heterogeneous Cloud. Spark’s performance is closely tied to its job

scheduler, which implicitly assumes that cloud resources are homogeneous and resources

Copyright c© University of Kent 80

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 81

performances do not change during run-time; it uses these assumptions to decide how

to allocate jobs to resources. In practice, the homogeneity assumptions do not always

hold, and the performance of resources is highly dynamic. Although the current sched-

uler works well in homogeneous environments, we show here that it can suffer severe

performance degradation when its underlying assumptions become invalid: the perfor-

mance of resources exhibits potentially uncontrollable variance and the server collapses

when meeting high concurrent requests. Furthermore, we expect heterogeneous envi-

ronments to become the common case as organizations often use multiple generations

of hardware for building their private cloud.

6.2.2 Entropy Scheduler : A More Reliable and Efficient Solution

Optimized resource management and scheduling must take into consideration:

• The characteristics and activity of the individual resource.

• The reliability of information gain from the resource

Good job scheduling requires an awareness of resource characteristics. In the hetero-

geneous Cloud, the system’s performance has become more sensitive to the resources

which are at hand, and poor scheduling can lead to performance degradation. However,

the native Spark Fair Scheduler only considers the static characteristics of resources,

such as the number of available cores, while it ignores the dynamic characteristics like

core performance. In such situations, jobs are unfairly scheduled on cores with differ-

ing performance, which significantly impacts on the completion time of the jobs and

predictability of system performance.

In order to capture the relevant dynamic core performance characteristic, we introduce a

resource activity vector (RAV) and a resource entropy level vector (REL). In the current

implementation, we concentrate on the most important element of resource information,

CPU utilization, which represents how efficiently the operator thread uses the CPU

throughout the job’s execution. This is highly relevant for making scheduling decision

as it is directly related to the core’s performance during run-time. To obtain the RAV

values, we run a resource monitor on each worker node. The resource monitor captures

the worker’s CPU utilization and updates the RAV with the CPU utilization difference

every second. We calculate the average change of CPU utilization (Avg) for each time

period and divide the resource’s history into two states (above average or below average).

The REL is updated according to algorithm 6 at every heartbeat interval. Then the

worker node sends the heartbeat to the master node with its current CPU utilization

value and entropy level so that the latter can make informed job scheduling decisions.

Copyright c© University of Kent 81

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 82

Spark assumes that all the resource are homogeneous and, under Fair Schedular, ran-

domly assigns cores to jobs. However, even in a homogeneous cloud, resources with a

homogeneous setting will always running under with heterogeneous performance during

run-time. Especially in the heterogeneous Cloud, such an assumption will readily result

in poor job completion times and overall unstable cloud performance due to the following

reasons:

• Job completion time is decided by the completion time of the slowest task in the

job.

• Random core allocation will increase the chance of allocating cores with different

performances to tasks inside a single job.

• Cores are not released for scheduling other jobs until the currently running job

is completed. When a job is waiting for its slowest task to be completed, the

computing power of the other cores, with completed tasks, is wasted.

• Monitoring and re-scheduling slow tasks (performing the speculative execution of

tasks) is expensive.

In the proposed Entropy Scheduler, instead of randomly picking up resources, we first

calculate the local activity ranking of all offered resources (algorithm 6), and then sched-

ule tasks inside a job according to this ranking. Tasks are scheduled with similar ranking

resources so as to improve overall QoS satisfaction and the reliability of scheduling per-

formance.

Algorithm 6 Calculate Resource Local Activity Ranking

1: Require: Rcu ← Current Resource CPU Utilization
2: Require: Re ← Resource Entropy
3: Require: Ncpu ← Number of Available CPU cores
4: Require: Scpu ← CPU Core Clock Speed
5: procedure CaculateRanking(Rcu, Re, Ncpu, Scpu)
6: RANKresource ← Resource Local Activity Ranking
7: RANKresource = Ncpu ∗ Scpu ∗ (1−Rcu) ∗ (1−Re)

6.3 Empirical Evaluation Of Entropy Scheduler

In order to evaluate the proposed Entropy Scheduler, I conducted experiments on a pri-

vate cloud with 3 heterogeneous physical resources. The resource specifications and the

Spark configuration are shown on Table 6.1. A simple Spark application was deployed

on the server with the ability to accept user requests to calculate π using a predefined

Copyright c© University of Kent 82

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 83

number of CPU cores concurrently. We used Apache Bench for the load testing of the

Spark application under different schedulers (our Entropy Scheduler [Chen and Wang,

2015] and the Spark Fair Scheduler [Zaharia, 2009]). The load testing spawned a number

of threads which continuously executed the same query/request. Each thread remained

loaded and continued processing the query until all the threads had finished; the query

response times of all the requests from every thread were used for performance compar-

ison.

Table 6.1: Experimental Platform: Resource specification

Specification Node 1 Node 2 Node 3

Spark Role Master&Worker Worker Worker

CPU Xeon 3Ghz x 2 Xeon 2.8Ghz x 2 Xeon 1.8Ghz

Cores 8 8 4

RAM 16GB 12GB 12GB

6.3.1 Experiment 1: Performance under Different Concurrent Level

of HTTP Request Workload

This experiment is used to measure the average query response time and the extent to

which the Entropy Scheduler and the Fair Scheduler meet QoS requirements at different

concurrency levels for 100 HTTP requests workload. The results are shown in Fig. 6.5,

Fig. 6.4 and Fig. 6.6.

Figure 6.4: Experiment 1: Spark analysis server throughput result

As can be seen from Fig. 6.4, the overall performance of the two schedulers is similar.

However, when the concurrency level is as low as 10 (Fig. 6.5), Entropy Scheduler

performs slightly better than Fair Scheduler, where the Spark server is not overloaded.

Copyright c© University of Kent 83

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 84

Figure 6.5: Experiment 1: Response time statistics result

Increasing workload concurrency poses various challenges to both schedulers. The

Spark server experiences performance degradation with increasing workload concurrency.

There are two main reasons behind such unstable performance:

• The loss of cloud performance and stability is due to contention and load interac-

tion among concurrently executing queries. These effects will become worse with

more complex workloads.

• The cloud, due to its parallelism and heterogeneity, is a difficult target for achiev-

ing low-latency responses since poor deployments and/or scheduling lead to per-

formance penalties.

Figure 6.6: Experiment 1: HTTP request failure rate result

Copyright c© University of Kent 84

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 85

As shown in Fig. 6.6, the failure rate of the two schedulers increases as the concurrent

level of requests increases. However, Entropy Scheduler significantly reduces the number

of failed requests compared to the Fair Scheduler at higher concurrent level (15, 20 and

25). The t-testing (two-sample assuming unequal variances) results with 0.05 level of

significance is shown in Fig. 6.7.

• (H0 : uentropy − ufair = 0): At the 0.05 level of significance, the sample data show

there is sufficient evidence to conclude that the request failure rate that under

Entropy Scheduler and Fair Scheduler is different for all concurrent level (15, 20

and 25). H0 : uentropy − ufair = 0 is rejected.

• (Ha : uentropy − ufair > 0): At the 0.05 level of significance, the sample data

show there is sufficient evidence to conclude that the Entropy Scheduler reduces

request failure rate over Fair Scheduler for all concurrent level (15, 20 and 25).

Ha : uentropy − ufair >= 0 is rejected.

Figure 6.7: t-test result for the failure rate with Fair Scheduler and Entropy Scheduler

And Spark Server’s overload point is raised under Entropy Scheduler because the re-

quest failure starts at the concurrent level of 10 with Fair Scheduler. Therefore, the

experimental results show that when the Spark server is not overloaded, the Entropy

Scheduler can better meet the QoS requirements than the Fair Scheduler by reducing

request failure rate, thereby motivating further evaluation of larger sample workloads.

6.3.2 Experiment 2: Load Testing with 100,000 Query Requests at the

Concurrent Level of 10

In this experiment, the performance of Entropy Scheduler and Fair Scheduler is evaluated

under a large sample workload with a concurrency level of 10, where the Spark server is

not overloaded.

Copyright c© University of Kent 85

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 86

Table 6.2: Experiment: Load testing with 100,000 query requests at the concurrent
level of 10

Load Testing Result Fair Scheduler Entropy Scheduler

Testing Completion Time (Sec.) 951.52 732.15 (- 23%)

Throughput (Request/Sec.) 10.51 13.66 (+ 30%)

Number of failed request 75 0

Average Response Time (ms) 951 732 (- 23%)

Standard Deviation 298.9 194.7 (- 35%)

Table 6.2 compares the various aspects of load testing results produced by each scheduler.

On average, in this heterogeneous cluster experiment, the Entropy Scheduler was able to

shorten the load testing completion time by 23%, reduce the average response time by

23%, reduce the standard deviation of response times by 35% and improve the overall

server throughput by 30% compared with the native Fair Scheduler.

Figure 6.8: Experiment: Percentage of the requests served within a certain time
(Million Seconds)

Fig. 6.8 indicates that 90% of queries are completed within 1 second under the Entropy

Scheduler, while only 50% are completed within this time frame under the Fair Scheduler.

Such results show that the Entropy Scheduler is more capable of running Cloud Analysis

as a Service (CAaaS) that provide web services with a QoS guarantee.

The new Entropy Scheduler needs to be evaluated in order to compare its performance

to the other exiting scheduling policies, e.g. Fair Scheduler. Based on the previous

experiments, two hypotheses were investigated to determine if there was significant dif-

ference in the average response time between Entropy Scheduler and Fair Scheduler, and

whether Entropy Scheduler performs better than Fair Scheduler over average response

time when the Spark server is not overloaded. We set the alpha a = 0.05 (0.05 level of

Copyright c© University of Kent 86

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 87

significance) to generate the t-testing (two-Sample assuming unequal variances), which

result is shown in Fig. 6.9.

Figure 6.9: t-test result for the average response time with Fair Scheduler and Entropy
Scheduler

• (H0 : uentropy − ufair = 0): At the 0.05 level of significance, the sample data show

there is sufficient evidence to conclude that the average response time that under

Entropy Scheduler and Fair Scheduler is different. H0 : uentropy − ufair = 0 is

rejected.

• (Ha : uentropy − ufair > 0): At the 0.05 level of significance, the sample data

show there is sufficient evidence to conclude that the Entropy Scheduler improves

average response time over Fair Scheduler. Ha : uentropy − ufair >= 0 is rejected.

6.4 Conclusion

These experiments using only 3 resources with 20 cores are small-scale, but the ex-

perimental results provide insights for developing new schedulers based on entropy for

large-scale locally active resources. The results show that the overall performance of

Entropy Scheduler and Fair Scheduler is similar. However, the Entropy Scheduler per-

forms better than the Fair Scheduler for Cloud Analysis as a Service (CAaaS) in complex

cloud environments with lower concurrency level, and this may well be a starting point

for future work, in which we hope to run low-latency queries with better QoS guarantees.

Complexity is an important issue that affects QoS satisfaction and brings additional

challenges to the scheduling problem. In this chapter, the negative impact of complexity

on deterministic cloud scheduling systems was used to motivate the development of a

Copyright c© University of Kent 87

Chapter 6. Local Activity Ranking: Resource Entropy for Cloud Job Scheduling 88

new scheduler based on entropy theory to schedule tasks to resources in a real world

cloud which exhibit local activity. With the results from this chapter, I provide both a

concrete solution for a class of complex systems, as well as a number of ideas valuable

for the analysis of the conventional engines running on the cloud.

Research on complexity has just emerged in the area of cloud scheduling. The under-

standing of the origin of complexity (locally-active cloud resources) and the impact of

complexity (performance degradation, QoS guarantee violation and potential chaotic be-

haviour) offers useful insights for the discovery of the limitations of current scheduling

solutions and motivates new scheduler development for complex cloud environments.

Copyright c© University of Kent 88

Chapter 7

Conclusion and Future Research

Directions

The work presented in this PhD thesis address current research problems in Cloud

Resource Management Systems and proposes an Entropy Theory based methodology

for managing complexity in such systems. It satisfactorily fulfils the initial objectives

and verifies the hypothesis presented in Chapter 1, exceeding the original expectations

and producing results of scientific relevance.

7.1 Main Contributions

As shown in this thesis, it is possible to improve the performance of current Resource

Management Systems by introducing Entropy Theory as a tool to manage the com-

plexity present in cloud environments. The result of this work is the successful validation

of the proposed solutions for resource management in cloud computing. To the best of

my knowledge, this is the first work that addresses the complexity problems of cloud

resource management systems. The main contributions of this thesis can be summarized

as follows:

• Contribution 1 : A simulator, ComplexCloudSim, was designed and imple-

mented in order to simulate the complexity factors in cloud resource management

systems, including heterogeneity, dynamicity and uncertainty. The evaluation re-

sults show that ComplexCloudSim is capable of validating and testing the ro-

bustness of resource management strategies in complex cloud environments. It

helps us better understand the impact of complexity in real world cloud environ-

ments - which cannot be ignored when making resource management decisions.

89

Chapter 7. Conclusion and Future Research Directions 90

• Contribution 2 : Damage Spreading Analysis is used to study the complex

patterns emerging in cloud resource management systems. The simulations prove

the existence of “Chaotic Behaviour” in the system in some parameter regions,

which may explain why most of the current resource management solutions fail

to work well in real world cloud environments. Such findings motivate new ideas

concerning the development of more robust cloud resource management strategies.

• Contribution 3 : Complexity is clearly identified in cloud resource management

systems; this complexity can be classified into two general types: Global System

Complexity and Local Resource Complexity.

• Contribution 4 : Entropy is introduced as a means to manage the complexity of

cloud resource management systems, covering identification, measuring, analysing

and controlling. To manage the Global System Complexity, a Cellular Automata

Entropy based Resource Allocation (CAE-CRA) methodology is proposed

in order to better satisfy the QoS requirements of cloud applications. To manage

Local Resource Complexity, I firstly extend the concept of “Local Activity Prin-

ciple” by introducing the Local Activity Ranking measured by Resource

Entropy to control chaos in relation to QoS-aware cloud job scheduling. Then

I implemented the Entropy Scheduler in the real-world cloud analysis engine,

Apache Spark. Experiments showed that both of my proposed Entropy-base meth-

ods are able to improve the performance of cloud resource management systems.

7.2 Future Research Directions

Complexity is an important issue that affects QoS satisfaction, bringing additional chal-

lenges to cloud resource management system problems. In this thesis, the negative

impact of complexity was used to motivate new resource management strategy develop-

ments based on Entropy Theory. With the results presented in this thesis, I provide

both a concrete solution for a class of complex systems, as well as a number of ideas

valuable for the evaluation of conventional engines running on the Cloud.

Research on complexity has just emerged in the area of cloud resource management. The

understanding of the origin of complexity (locally-active cloud resource) and the impact

of complexity (performance degradation, QoS guarantee violation and potential chaotic

behaviour) offers useful insights into the limitations of current resource management

solutions and motivates the development of new strategies in response to complex cloud

environments.

Copyright c© University of Kent 90

Chapter 7. Conclusion and Future Research Directions 91

The approach, in this thesis, of introducing the Degree of Local Activity, as measured

by resource entropy, to monitor and so manage the complexity of cloud environments is

the first such attempt presented in the literature related to this topic. Many problems

may arise, and many issues remain open. A list of the most important ones is given in

the following.

• New Experimentation: The proposed ideas have to be more extensively vali-

dated in order to determine the extent to which they can improve the robustness

of resource management in the cloud. The validation of the ideas includes two

dimensions of experimentation:

1. The approach must be applied to more complex applications running in the

Cloud in order to analyse, thoroughly, its scope and usability.

2. The approach must be applied to more complex cloud environments by in-

volving larger amount of resources in order to analyse its scalability.

Such experimentation is worthy of interest because the final purpose is to integrate

the framework in the daily practices of resource management for cloud applications.

• Further Implementation: Although the new Entropy Scheduler reduces, by a

significant amount, the failure of jobs, compare to the native Spark Fair Scheduler,

its jobs failure rate is still far from satisfactory. This problem may be caused by its

centralized management approach. In the future, I would like to use the approach

of Omega [Schwarzkopf et al., 2013], Mesos [Hindman et al., 2011], and Sparrow

[Ousterhout et al., 2013] and transform the Entropy Scheduler from a centralized

to a decentralized management system in order to solve such bottleneck problems

when meeting with high concurrent workloads.

• Potential Improvement: We assume, here, that the resource management model

need only take into account the CPU-related factors; however,resource manage-

ment is usually influence by other factors as well, e.g. Memory, Disk I/O, Network,

etc. The model can be extended to consider these factors, and this may improve

it. Also the current model focuses on the resource-oriented complexity. In the

future, complexity arising from other sources(workload, links between resources,

the external environment) also needs to be studied.

• Extended Analysis: In this current work on complexity management, I focus

on reducing/avoiding the complexity in order to minimize its negative effects on

the cloud resource management system. However, both positive and negative

effects exist, arising from increases in complexity. There exists a completely new

application of the local activity principle at the so-called Edge of Chaos where

Copyright c© University of Kent 91

Chapter 7. Conclusion and Future Research Directions 92

most complex phenomena emerge. The region termed the Edge of Chaos can

mathematically rigorously be proven and confirmed to have different applications

in real world systems, and so it is worth undertaking an extended analysis to draw

on the advantages and avoid the disadvantage of increasing complexity.

• Cross-disciplinary Research : The concept of Entropy Theory and the Local

Activity Principle are really fundamental in science. The concept of ”Degree

of Local Activity measured by Entropy” introduced in this thesis may inspire

future applications in other domains of computer science. For example, in intrusion

detection systems, the degree of local activity maybe identified as the behaviour

pattern of a user and the emerging complexity pattern generated by such locally

active users may be detected as intrusions. Such ideas can be easily extended to

other disciplines as well, such as weather prediction, road traffic scheduling and

call centre routing. I believe my work represents a step towards many fruitful

research topics of the future.

Copyright c© University of Kent 92

Bibliography

Lucio Agostinho, Guilherme Feliciano, Leonardo Olivi, Eleri Cardozo, and Eliane

Guimaraes. A Bio-inspired Approach To Provisioning Of Virtual Resources In Feder-

ated Clouds. In IEEE 9th International Conference on Dependable, Autonomic and

Secure Computing, DASC’11, pages 598–604. IEEE, 2011.

EC Amazon. Amazon Elastic Compute Cloud (Amazon EC2), March 2010.

Bo An, Victor Lesser, David Irwin, and Michael Zink. Automated Negotiation With

Decommitment For Dynamic Resource Allocation In Cloud Computing. In 9th Inter-

national Conference on Autonomous Agents and Multiagent Systems, pages 981–988.

International Foundation for Autonomous Agents and Multiagent Systems, 2010.

YARN Apache Hadoop. Yet Another Resource Negotiator. ACM SoCC, 2013.

Rudolf Arnheim. Entropy And Art: An Essay On Disorder And Order. Univ of California

Press, 1974.

Enda Barrett, Enda Howley, and Jim Duggan. Applying Reinforcement Learning To-

wards Automating Resource Allocation And Application Scalability In The Cloud.

Concurrency and Computation: Practice and Experience, 25(12):1656–1674, 2013.

Jim Blythe, Sonal Jain, Ewa Deelman, Yolanda Gil, Karan Vahi, Anirban Mandal, and

Ken Kennedy. Task Scheduling Strategies For Workflow-based Applications In Grids.

In IEEE International Symposium on Cluster Computing and the Grid, CCGrid’05,

volume 2, pages 759–767. IEEE, 2005.

Stefanos Boccaletti, Celso Grebogi, Y-C Lai, H Mancini, and Diego Maza. The Control

Of Chaos: Theory And Applications. Physics Reports, 329(3):103–197, 2000.

Ludwig Boltzmann. The Second Law Of Thermodynamics. In Theoretical Physics and

Philosophical Problems, pages 13–32. Springer, 1974.

Danail Bonchev and Gregory A Buck. Quantitative Measures Of Network Complexity.

In Complexity in Chemistry, Biology, and Ecology, pages 191–235. Springer, 2005.

93

Bibliography 94

Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru Ma-

heswaran, Albert I Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra

Hensgen, et al. A Comparison Of Eleven Static Heuristics For Mapping A Class Of

Independent Tasks Onto Heterogeneous Distributed Computing Systems. Journal of

Parallel and Distributed Computing, 61(6):810–837, 2001.

Marc Bux and Ulf Leser. DynamicCloudSim: Simulating Heterogeneity In Compu-

tational Clouds. In 2nd ACM Sigmod Workshop on Scalable Workflow Execution

Engines and Technologies, page 1. ACM, 2013.

Marc Bux and Ulf Leser. DynamicCloudSim: Simulating Heterogeneity In Computa-

tional Clouds. Future Generation Computer Systems, 46:85–99, 2015.

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Modeling And Simulation

Of Scalable Cloud Computing Environments And The CloudSim Toolkit: Challenges

And Opportunities. In International Conference on High Performance Computing &

Simulation, HPCS’09, pages 1–11. IEEE, 2009.

Eun-Kyu Byun, Yang-Suk Kee, Jin-Soo Kim, and Seungryoul Maeng. Cost Optimized

Provisioning Of Elastic Resources For Application Workflows. Future Generation

Computer Systems, 27(8):1011–1026, 2011.

Rodrigo N Calheiros, Rajiv Ranjan, César AF De Rose, and Rajkumar Buyya.

CloudSim: A Novel Framework For Modeling And Simulation Of Cloud Computing

Infrastructures And Services. ArXiv Preprint ArXiv:0903.2525, 2009.

Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajku-

mar Buyya. CloudSim: A Toolkit For Modeling And Simulation Of Cloud Computing

Environments And Evaluation Of Resource Provisioning Algorithms. Software: Prac-

tice and Experience, 41(1):23–50, 2011.

Huankai Chen and Frank Z Wang. Spark On Entropy: A Reliable & Efficient Scheduler

For Low-latency Parallel Jobs In Heterogeneous Cloud. In IEEE 40th Local Computer

Networks Conference Workshops (LCN Workshops), pages 708–713. IEEE, 2015.

Huankai Chen, Frank Wang, and Na Helian. A Cost-Efficient And Reliable Resource Al-

location Model Based On Cellular Automaton Entropy For Cloud Project Scheduling.

International Journal of Advanced Computer Science and Applications (IJACSA), 4

(4), 2013a.

Huankai Chen, Frank Wang, Na Helian, and Gbola Akanmu. User-priority Guided

Min-Min Scheduling Algorithm For Load Balancing In Cloud Computing. In Na-

tional Conference on Parallel Computing Technologies, PARCOMPTECH’13, pages

1–8. IEEE, 2013b.

Copyright c© University of Kent 94

Bibliography 95

Huankai Chen, Frank Wang, Leon Chua, Matteo Migliavacca, and Na Helian. Complex-

ity Reduction: Local Activity Ranking By Resource Entropy For QoS-aware Cloud

Scheduling. In IEEE International Conference on Services Computing (SCC), pages

585–592. IEEE, 2016.

Weiwei Chen and Ewa Deelman. Workflowsim: A Toolkit For Simulating Scientific

Workflows In Distributed Environments. In IEEE 8th International Conference on

E-Science, pages 1–8. IEEE, 2012.

King-Wai Chow and Bede Liu. On Mapping Signal Processing Algorithms To A Het-

erogeneous Multiprocessor System. In International Conference on Acoustics, Speech,

and Signal Processing, ICASSP’91, pages 1585–1588. IEEE, 1991.

Symeon Christodoulou, Georgios Ellinas, and Pooyan Aslani. Entropy-based Scheduling

Of Resource-constrained Construction Projects. Automation in Construction, 18(7):

919–928, 2009.

Leon Chua. Memristor, Hodgkin-Huxley, And Edge Of Chaos. Springer, 2014.

Leon O Chua. Passivity And Complexity. IEEE Transactions on Circuits and Systems

I: Fundamental Theory and Applications, 46(1):71–82, 1999.

Leon O Chua. Local Activity Is The Origin Of Complexity. International Journal of

Bifurcation and Chaos, 15(11):3435–3456, 2005.

Moreno Coli and Paolo Palazzari. Real Time Pipelined System Design Through Simu-

lated Annealing. Journal of Systems Architecture, 42(6):465–475, 1996.

James P Crutchfield and Karl Young. Inferring Statistical Complexity. Physical Review

Letters, 63(2):105, 1989.

Amir Vahid Dastjerdi and Rajkumar Buyya. An Autonomous Reliability-aware Negotia-

tion Strategy For Cloud Computing Environments. In 12th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, CCGrid’12, pages 284–291. IEEE,

2012.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing On Large

Clusters. Communications of the ACM, 51(1):107–113, 2008.

Xin Dong, Hao Lu, Yuanpu Xia, and Ziming Xiong. Decision-making Model Under Risk

Assessment Based On Entropy. Entropy, 18(11):404, 2016.

Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. Autoscaling Web Applica-

tions In Heterogeneous Cloud Infrastructures. In IEEE International Conference on

Cloud Engineering, IC2E’14, pages 195–204. IEEE, 2014.

Copyright c© University of Kent 95

Bibliography 96

Richard F Freund and Howard Jay Siegel. Guest Editor’s Introduction: Heterogeneous

Processing. Computer, 26(6):13–17, 1993.

Richard F Freund, Michael Gherrity, Stephen Ambrosius, Mark Campbell, Mike Hal-

derman, Debra Hensgen, Elaine Keith, Taylor Kidd, Matt Kussow, John D Lima,

et al. Scheduling Resources In Multi-user, Heterogeneous, Computing Environments

With SmartNet. In 7th Heterogeneous Computing Workshop, HCW’98, pages 184–

199. IEEE, 1998.

H S Gan and A Wirth. Comparing Deterministic, Robust And Online Scheduling Using

Entropy. International Journal of Production Research, 43(10):2113–2134, 2005.

Yue Gao, Yanzhi Wang, Sandeep K Gupta, and Massoud Pedram. An Energy And

Deadline Aware Resource Provisioning, Scheduling And Optimization Framework For

Cloud Systems. In 9th IEEE/ACM/IFIP International Conference on Hardware/-

Software Codesign and System Synthesis, page 31. IEEE Press, 2013.

Saurabh Kumar Garg and Rajkumar Buyya. NetworkCloudSim: Modelling Parallel

Applications In Cloud Simulations. In 4th IEEE International Conference on Utility

and Cloud Computing, UCC’11, pages 105–113. IEEE, 2011.

Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Workload Anal-

ysis And Demand Prediction Of Enterprise Data Center Applications. In IEEE 10th

International Symposium on Workload Characterization, IISWC’07, pages 171–180.

IEEE, 2007.

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive Elastic Resource

Scaling For Cloud Systems. In International Conference on Network and Service

Management (CNSM), pages 9–16. IEEE, 2010.

GOV.UK. Government Cloud Strategy: A Sub Strategy Of The Government ICT Strat-

egy, March 2011.

Peter Grassberger. Toward A Quantitative Theory Of Self-generated Complexity. In-

ternational Journal of Theoretical Physics, 25(9):907–938, 1986.

Rui Han, Li Guo, Moustafa M Ghanem, and Yike Guo. Lightweight Resource Scaling

For Cloud Applications. In 12th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, CCGrid’12, pages 644–651. IEEE, 2012.

Rui Han, Moustafa M Ghanem, Li Guo, Yike Guo, and Michelle Osmond. Enabling Cost-

aware And Adaptive Elasticity Of Multi-tier Cloud Applications. Future Generation

Computer Systems, 32:82–98, 2014.

Copyright c© University of Kent 96

Bibliography 97

Tarek Hegazy. Optimization Of Resource Allocation And Leveling Using Genetic Algo-

rithms. Journal of construction engineering and management, 125(3):167–175, 1999.

Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall.

Entropy: A Consolidation Manager For Clusters. In ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environments, pages 41–50. ACM, 2009.

Willy Herroelen and Roel Leus. Project Scheduling Under Uncertainty: Survey And

Research Potentials. European Journal of Operational Research, 165(2):289–306, 2005.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph,

Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform For Fine-Grained

Resource Sharing In The Data Center. In 8th USENIX Symposium on Networked

Systems Design and Implementation, NSDI ’11, volume 11, pages 22–22, 2011.

Xia-yu Hua, Jun Zheng, and Wen-xin Hu. Ant Colony Optimization Algorithm For

Computing Resource Allocation Based On Cloud Computing Environment. Journal

of East China Normal University (Natural Science), 1(1):127–134, 2010.

Eunji Hwang and Kyong Hoon Kim. Minimizing Cost Of Virtual Machines For Deadline-

constrained Mapreduce Applications In The Cloud. In ACM/IEEE 13th International

Conference on Grid Computing, GRID’12, pages 130–138. IEEE, 2012.

Hideo Ikeda. Chaotic Behavior In Complex Shop Scheduling. In 13th International

Symposium on Advanced Intelligent Systems (ISIS) Joint 6th International Conference

on Soft Computing and Intelligent Systems (SCIS), pages 873–876. IEEE, 2012.

Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On The Performance Variability Of

Production Cloud Services. In 11th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, CCGrid’11, pages 104–113. IEEE, 2011.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and An-

drew Goldberg. Quincy: Fair Scheduling For Distributed Computing Clusters. In

22nd ACM symposium on Operating systems principles, SIGOPS’09, pages 261–276.

ACM, 2009.

Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical Prediction Models For

Adaptive Resource Provisioning In The Cloud. Future Generation Computer Systems,

28(1):155–162, 2012.

ISO. ISO 5725-1: 1994: Accuracy (Trueness and Precision) Of Measurement Methods

And Results-Part 1: General Principles And Definitions. International Organization

for Standardization Geneva, Switzerland, 1994.

Copyright c© University of Kent 97

Bibliography 98

Jing Jiang, Jie Lu, Guangquan Zhang, and Guodong Long. Optimal Cloud Resource

Auto-scaling For Web Applications. In 13th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, CCGrid’13, pages 58–65. IEEE, 2013.

Pradeeban Kathiravelu and Luis Veiga. An Adaptive Distributed Simulator For Cloud

And Mapreduce Algorithms And Architectures. In IEEE/ACM 7th International

Conference on Utility and Cloud Computing, UCC’14, pages 79–88. IEEE, 2014.

Stuart A Kauffman. Metabolic Stability And Epigenesis In Randomly Constructed

Genetic Nets. Journal of Theoretical Biology, 22(3):437–467, 1969.

Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez.

Brownout: Building More Robust Cloud Applications. In 36th International Confer-

ence on Software Engineering, pages 700–711. ACM, 2014.

Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey Ching,

Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs, et al.

Impala: A Modern, Open-Source SQL Engine For Hadoop. In 7th Biennial Conference

on Innovative Data Systems Research (CIDR), 2015.

Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A Huberman. Ty-

coon: An Implementation Of A Distributed, Market-based Resource Allocation Sys-

tem. Multiagent and Grid Systems, 1(3):169–182, 2005.

Chris G Langton. Computation At The Edge Of Chaos: Phase Transitions And Emer-

gent Computation. Physica D: Nonlinear Phenomena, 42(1):12–37, 1990.

Diane Larsen-Freeman. Chaos/Complexity Science And Second Language Acquisition.

Applied Linguistics, 18(2):141–165, 1997.

Dhinesh Babu LD and P Venkata Krishna. Honey Bee Behavior Inspired Load Balancing

Of Tasks In Cloud Computing Environments. Applied Soft Computing, 13(5):2292–

2303, 2013.

Young Choon Lee and Albert Y Zomaya. Rescheduling For Reliable Job Completion

With The Support Of Clouds. Future Generation Computer Systems, 26(8):1192–

1199, 2010.

Jiayin Li, Meikang Qiu, Zhong Ming, Gang Quan, Xiao Qin, and Zonghua Gu. Online

Optimization For Scheduling Preemptable Tasks On IaaS Cloud Systems. Journal of

Parallel and Distributed Computing, 72(5):666–677, 2012.

Xiangyu Lin and Chase Qishi Wu. On Scientific Workflow Scheduling In Clouds Un-

der Budget Constraint. In 42nd International Conference on Parallel Processing,

ICPP’13, pages 90–99. IEEE, 2013.

Copyright c© University of Kent 98

Bibliography 99

Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn

Leaf. NIST Cloud Computing Reference Architecture. NIST Special Publication, 500:

292, 2011a.

Hui Liu, Dong Xu, and HuaiKou Miao. Ant Colony Optimization Based Service Flow

Scheduling With Various QoS Requirements In Cloud Computing. In 1st ACIS Inter-

national Symposium on Software and Network Engineering, SSNE’11, pages 53–58.

IEEE, 2011b.

Jiansheng Liu, Haining Tu, Hua Zhang, Fangchen Xia, and Daoyuan Yu. Research

On Measurement Entropy-Based Of Equipment Management Complexity And Its

Application In Production Planning. In Intelligent Robotics and Applications, pages

604–611. Springer, 2008.

Liang Liu, Hao Wang, Xue Liu, Xing Jin, Wen Bo He, Qing Bo Wang, and Ying Chen.

GreenCloud: A New Architecture For Green Data Center. In 6th International Con-

ference Industry Session on Autonomic Computing and Communications, pages 29–38.

ACM, 2009.

Maria M Lopez, Elisa Heymann, and Miquel A Senar. Analysis Of Dynamic Heuris-

tics For Workflow Scheduling On Grid Systems. In 5th International Symposium on

Parallel and Distributed Computing, ISPDC’06., pages 199–207. IEEE, 2006.

Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and

Richard F Freund. Dynamic Mapping Of A Class Of Independent Tasks Onto Het-

erogeneous Computing Systems. Journal of Parallel and Distributed Computing, 59

(2):107–131, 1999.

Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. Cost-and Deadline-

constrained Provisioning For Scientific Workflow Ensembles In IaaS Clouds. In In-

ternational Conference on High Performance Computing, Networking, Storage and

Analysis, page 22. IEEE Computer Society Press, 2012.

Ming Mao and Marty Humphrey. Auto-scaling To Minimize Cost And Meet Application

Deadlines In Cloud Workflows. In International Conference for High Performance

Computing, Networking, Storage and Analysis, page 49. ACM, 2011.

Jason Mars and Lingjia Tang. Whare-map: Heterogeneity In Homogeneous Warehouse-

scale Computers. In ACM SIGARCH Computer Architecture News, number 3 in 41,

pages 619–630. ACM, 2013.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivaku-

mar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive Analysis Of Web-scale

Datasets. Proceedings of the VLDB Endowment, 3(1-2):330–339, 2010.

Copyright c© University of Kent 99

Bibliography 100

Vlaidmir Modrak and Pavol Semanco. Complexity Assessment Of Supply Chains Struc-

ture: A Comparative Study. Research Journal of Applied Sciences, 6(7):410–415,

2011.

Alberto Núñez, Jose L Vázquez-Poletti, Agustin C Caminero, Gabriel G Castañé, Je-

sus Carretero, and Ignacio M Llorente. ICanCloud: A Flexible And Scalable Cloud

Infrastructure Simulator. Journal of Grid Computing, 10(1):185–209, 2012.

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: Distributed,

Low Latency Scheduling. In 24th ACM Symposium on Operating Systems Principles,

pages 69–84. ACM, 2013.

Deepak Poola, Saurabh Kumar Garg, Rajkumar Buyya, Yun Yang, and Kotagiri Ra-

mamohanarao. Robust Scheduling Of Scientific Workflows With Deadline And Budget

Constraints In Clouds. In IEEE 28th International Conference on Advanced Informa-

tion Networking and Applications, AINA’14, pages 858–865. IEEE, 2014.

Ashish Raj, Kanwalpreet Kaur, Uddipan Dutta, V Venkat Sandeep, and Smitha Rao.

Enhancement Of Hadoop Clusters With Virtualization Using The Capacity Scheduler.

In 3rd International Conference on Services in Emerging Markets, ICSEM’12, pages

50–57. IEEE, 2012.

Jia Rao, Yudi Wei, Jiayu Gong, and Cheng-Zhong Xu. QoS Guarantees And Service

Differentiation For Dynamic Cloud Applications. IEEE Transactions on Network and

Service Management, 10(1):43–55, 2013.

Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime Measurements In

The Cloud: Observing, Analyzing, And Reducing Variance. VLDB Endowment, 3

(1-2):460–471, 2010.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:

Flexible, Scalable Schedulers For Large Compute Clusters. In 8th ACM European

Conference on Computer Systems, pages 351–364. ACM, 2013.

Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. A Cost-aware

Elasticity Provisioning System For The Cloud. In 31st International Conference on

Distributed Computing Systems (ICDCS), pages 559–570. IEEE, 2011.

Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale: Elastic

Resource Scaling For Multi-tenant Cloud Systems. In 2nd ACM Symposium on Cloud

Computing, page 5. ACM, 2011.

Sukhpal Singh and Inderveer Chana. Q-aware: Quality Of Service Based Cloud Resource

Provisioning. Computers & Electrical Engineering, 47:138–160, 2015.

Copyright c© University of Kent 100

Bibliography 101

Mark Stillwell, David Schanzenbach, Frédéric Vivien, and Henri Casanova. Resource

Allocation Algorithms For Virtualized Service Hosting Platforms. Journal of Parallel

and distributed Computing, 70(9):962–974, 2010.

Mark Stillwell, Frederic Vivien, and Henri Casanova. Virtual Machine Resource Allo-

cation For Service Hosting On Heterogeneous Distributed Platforms. In IEEE 26th

International Parallel & Distributed Processing Symposium (IPDPS), pages 786–797.

IEEE, 2012.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh

Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A Warehousing

Solution Over A Map-reduce Framework. Proceedings of the VLDB Endowment, 2(2):

1626–1629, 2009.

Tommaso Toffoli and Norman Margolus. Cellular Automata Machines. MIT press, 1987.

Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective And Low-

complexity Task Scheduling For Heterogeneous Computing. IEEE Transactions on

Parallel and Distributed Systems, 13(3):260–274, 2002.

Nedeljko Vasic, Dejan Novakovic, Dejan Kostic, Svetozar Miucin, and Ricardo Bian-

chini. Accelerating Resource Allocation In Virtualized Environments Using Workload

Classes And/Or Workload Signatures, March 2 2012. US Patent App. 13/411,491.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev

Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth,

et al. Apache Hadoop YARN: Yet Another Resource Negotiator. In 4th Annual

Symposium on Cloud Computing, page 5. ACM, 2013.

Christian Vecchiola, Rodrigo N Calheiros, Dileban Karunamoorthy, and Rajkumar

Buyya. Deadline-driven Provisioning Of Resources For Scientific Applications In Hy-

brid Dlouds With Aneka. Future Generation Computer Systems, 28(1):58–65, 2012.

John Von Neumann, Arthur Walter Burks, et al. Theory Of Self-reproducing Automata.

University of Illinois press Urbana, 1966.

Lee Wang, Howard Jay Siegel, Vwani P Roychowdhury, and Anthony A Maciejewski.

Task Matching And Scheduling In Heterogeneous Computing Environments Using A

Genetic-algorithm-based Approach. Journal of Parallel and Distributed Computing,

47(1):8–22, 1997.

Brian J Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin Arlitt, and Zhikui

Wang. Probabilistic Performance Modeling Of Virtualized Resource Allocation. In

7th International Conference on Autonomic Computing, pages 99–108. ACM, 2010.

Copyright c© University of Kent 101

Bibliography 102

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

Bhathiya Wickremasinghe et al. CloudAnalyst: A CloudSim-based Tool For Modelling

And Analysis Of Large Scale Cloud Computing Environments. MEDC Project Report,

22(6):433–659, 2009.

Marek Wieczorek, Radu Prodan, and Thomas Fahringer. Scheduling Of Scientific Work-

flows In The ASKALON Grid Environment. ACM SIGMOD Record, 34(3):56–62,

2005.

Stephen Wolfram. Universality And Complexity In Cellular Automata. Physica D:

Nonlinear Phenomena, 10(1):1–35, 1984.

Zhangjun Wu, Xiao Liu, Zhiwei Ni, Dong Yuan, and Yun Yang. A Market-oriented

Hierarchical Scheduling Strategy In Cloud Workflow Systems. The Journal of Super-

computing, 63(1):256–293, 2013.

Zhen Xiao, Weijia Song, and Qi Chen. Dynamic Resource Allocation Using Virtual

Machines For Cloud Computing Environment. IEEE Transactions on Parallel and

Distributed Systems, 24(6):1107–1117, 2013.

Donna Xu, Dongyao Wu, Xiwei Xu, Liming Zhu, and Len Bass. Making Real Time Data

Analytics Available As A Service. In 11th International ACM SIGSOFT Conference

on Quality of Software Architectures, QoSA’15, pages 73–82. IEEE, 2015.

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise Online

QoS Management For Increased Utilization In Warehouse Scale Computers. ACM

SIGARCH Computer Architecture News, 41(3):607–618, 2013.

Jia Yu and Rajkumar Buyya. A Budget Constrained Scheduling Of Workflow Appli-

cations On Utility Grids Using Genetic Algorithms. In Workshop on Workflows in

Support of Large-Scale Science, WORKS’06, pages 1–10. IEEE, 2006.

Jia Yu, Rajkumar Buyya, and Chen Khong Tham. Cost-based Scheduling Of Scientific

Workflow Applications On Utility Grids. In 1st International Conference on E-science

and Grid Computing, pages 8–pp. IEEE, 2005.

Yingchun Yuan, Xiaoping Li, Qian Wang, and Xia Zhu. Deadline Division-based Heuris-

tic For Cost Optimization In Workflow Scheduling. Information Sciences, 179(15):

2562–2575, 2009.

Matei Zaharia. Job Scheduling With The Fair And Capacity Schedulers. Hadoop Sum-

mit, 9, 2009.

Matei Zaharia. The Hadoop Fair Scheduler, 2010.

Copyright c© University of Kent 102

Bibliography 103

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster Computing With Working Sets. HotCloud, 10:10–10, 2010.

Sharrukh Zaman and Daniel Grosu. Combinatorial Auction-based Allocation Of Virtual

Machine Instances In Clouds. Journal of Parallel and Distributed Computing, 73(4):

495–508, 2013.

Qi Zhang, Quanyan Zhu, and Raouf Boutaba. Dynamic Resource Allocation For Spot

Markets In Cloud Computing Environments. In 4th IEEE International Conference

on Utility and Cloud Computing, UCC’11, pages 178–185. IEEE, 2011.

Laiping Zhao, Yizhi Ren, and Kouichi Sakurai. Reliable Workflow Scheduling With Less

Resource Redundancy. Parallel Computing, 39(10):567–585, 2013.

Copyright c© University of Kent 103

	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivations and Challenges
	1.2 Problem Statement and Contribution
	1.3 Thesis Organization

	2 Literature Review: Cloud Resource Management System
	2.1 Background
	2.1.1 Cloud Applications Consists of MapReduce Jobs
	2.1.2 Resource Management System for Cloud Applications

	2.2 Related Works
	2.2.1 Resource Allocation
	2.2.1.1 QoS (e.g. Budget, Deadline, Reliability) Based
	2.2.1.2 Resource Based
	2.2.1.3 Bargaining Based
	2.2.1.4 Prediction Based
	2.2.1.5 Nature-inspired / Bio-inspired Based

	2.2.2 Job Scheduling
	2.2.2.1 Static Heuristics
	2.2.2.2 Dynamic Heuristics
	2.2.2.3 More Heuristics Based On Objectives For Job Scheduling

	2.2.3 Resource Management Systems in Industry
	2.2.3.1 Apache Hadoop NextGen MapReduce (YARN)
	2.2.3.2 Apache Mesos
	2.2.3.3 Apache Spark Standalone Mode

	2.2.4 Cloud Simulation Tools for Resource Management Research
	2.2.4.1 CloudSim
	2.2.4.2 GreenCloud
	2.2.4.3 ICanCloud
	2.2.4.4 Yarn Scheduler Load Simulator (SLS)

	2.3 Complexities In Cloud Resource Management System
	2.4 Conclusion

	3 Implementation: ComplexCloudSim
	3.1 CloudSim : A Toolkit For Modelling And Simulation Of Cloud Environments
	3.2 ComplexCloudSim : Modelling And Simulate The Complexity In The Cloud
	3.2.1 Cloud Scheduling Algorithms
	3.2.2 Motivational Example
	3.2.3 The Implementation For Introducing Complexity
	3.2.3.1 Cloud Error Produced by the Heterogeneity of VMs Provision
	3.2.3.2 Cloud Error Produced by the Dynamic Changes of VM performance at Runtime
	3.2.3.3 Cloud Error Produced by the Uncertainty of VM Performance Estimation with Incomplete Information

	3.3 Complexity Simulation: Comparison of Four Heuristics Cloud Scheduling Algorithms
	3.3.1 Experiment Setup
	3.3.2 Experiment Result

	3.4 Damage Spreading Evaluation: Chaotic Behaviour in Cloud Scheduling
	3.5 Conclusion

	4 Complexity Management: Entropy-Based Cloud Resource Allocation and Job Scheduling
	4.1 Complexity In Cloud Resource Management System
	4.1.1 Definition And Classification
	4.1.2 Characteristic Of Complexity
	4.1.3 On the Relationship Between Complexity And Entropy For Cloud Resource Management

	4.2 Complexity Management Based On Entropy Measurement
	4.2.1 Identifying
	4.2.1.1 Local Activity Principle
	4.2.1.2 Origin Of Complexity: Local Active Resource

	4.2.2 Measuring
	4.2.2.1 Entropy Theory

	4.2.3 Analysis
	4.2.3.1 Degree Of Local Activity
	4.2.3.2 Cellular Automata

	4.2.4 Controlling

	4.3 Conclusion

	5 Cellular Automata Entropy: A New Cloud Resource Allocation Methodology
	5.1 Basics of Cellular Automata
	5.1.1 One-dimensional Cellular Automata
	5.1.2 Cellular Automata Behaviour Classes

	5.2 Project Scheduling and Cloud Resource Allocation
	5.3 The Application of CA Entropy for Reliability Evaluation on Cloud Scheduling Systems
	5.4 Cellular Automata Entropy-Based Cloud Resource Allocation Methodology (CAE-CRA)
	5.5 Experiment and Result
	5.5.1 User Case 1 - Simple Project Consisting of 10 Random Tasks
	5.5.2 User Case 2 - Complicated Project Consists of 100 Random Tasks

	5.6 Conclusion

	6 Local Activity Ranking: Resource Entropy for Cloud Job Scheduling
	6.1 Degree of Local Activity Measured By Resource Entropy
	6.1.1 The Emergence of Complex Patterns in Cloud Scheduling: Order, Edge Of Chaos And Chaos
	6.1.2 Entropy Measurement : Degree of Resource Local Activity

	6.2 Spark Entropy Scheduler : Scheduling Jobs by Resource Local Activity Ranking
	6.2.1 Scheduling Challenge In Spark
	6.2.2 Entropy Scheduler : A More Reliable and Efficient Solution

	6.3 Empirical Evaluation Of Entropy Scheduler
	6.3.1 Experiment 1: Performance under Different Concurrent Level of HTTP Request Workload
	6.3.2 Experiment 2: Load Testing with 100,000 Query Requests at the Concurrent Level of 10

	6.4 Conclusion

	7 Conclusion and Future Research Directions
	7.1 Main Contributions
	7.2 Future Research Directions

	Bibliography

