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Capsule: Chromosomal mosaicism in embryos can exist in a variety of forms, and 

different characteristics determine the clinical outcome of mosaic embryo transfers.      
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ABSTRACT 

Objective: To investigate the parameters of mosaicism and biological mechanisms 

leading to healthy pregnancies from mosaic embryo transfers. 

Design: Prospective study.  

Setting: IVF center and associated research laboratory.  

Patient(s): 59 patients. 

Interventions: Embryos underwent blastocyst-stage preimplantation genetic testing 

for aneuploidy (PGT-A) by next-generation sequencing (NGS). Trophectoderm (TE) 

biopsies containing 20-80% abnormal cells were deemed mosaic, and corresponding 

blastocysts were transferred. Mosaic embryos donated to research were examined 

for karyotype concordance in multiple biopsies, and assessed for cell proliferation 

and death by immunofluorescence and computational quantitation.  

Main Outcome Measure(s): Chemical start of pregnancy, implantation, fetal 

heartbeat, birth. 

Results: Globally, mosaic embryos showed inferior clinical outcomes than euploid 

embryos. Aneuploid cell percentage in TE biopsies did not correlate with outcomes, 

but type of mosaicism did, as embryos with single mosaic segmental aneuploidies 

fared better than all other types. Mosaic blastocysts generated from oocytes retrieved 

at young maternal ages (≤ 34 years) showed better outcomes than those retrieved at 

older maternal ages. Mosaic embryos displayed low rates of karyotype concordance 

between multiple biopsies, and showed significant elevation of cell proliferation and 

death compared to euploid embryos.  
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Conclusions: After euploid embryos, mosaic embryos can be considered for transfer 

prioritizing those of the single segmental mosaic type. If a patient has mosaic 

embryos available that were generated at different ages, preference should be given 

to those made at younger ages. Intra-blastocyst karyotype discordance and 

differential cell proliferation and death might be reasons by which embryos classified 

as mosaic can result in healthy pregnancies and babies. 

 

Keywords: Mosaic; PGT-A; Blastocyst; Aneuploidy; Next-generation sequencing 
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INTRODUCTION 

 

Chromosomal mosaicism, or the presence of two or more chromosomally distinct cell 

lines within an individual, has clinical implications both in naturally conceived and IVF 

pregnancies. Among natural pregnancies it is known to affect ~2% of all gestations in 

the form of confined placental mosaicism (CPM). This condition entails discordance 

of karyotypes between fetal and placental cells and can lead to adverse obstetric 

outcomes including intrauterine growth retardation or placental insufficiency (1, 2). 

Among IVF embryos, data from a flurry of recent studies suggests that, in general, 

mosaicism results in decreased pregnancy rates compared to normal embryos (3-7). 

However, numerous forms of mosaicism exist, and refinement of these 

interpretations is needed. The contemporary IVF clinic must grapple with the 

question: What should be done with mosaic embryos, should they be transferred, and 

if so, how should they be prioritized?  

Preimplantation genetic testing for aneuploidy (PGT-A) at the blastocyst stage 

is currently used in over 20% of all IVF treatments in the USA, and growing (3). It 

entails analysis of the chromosomal content of a representative 5-10 cell biopsy 

taken from the trophectoderm (TE) tissue and produces a readout estimating the 

copy number of each chromosome. For autosomes, a copy number two is indicative 

of a disomy (considered normal/euploid), while copy numbers of one and three are 

indicative monosomy and trisomy, respectively (considered abnormal/aneuploid). In 

such cases, the clinical decision to de-select aneuploid embryos for transfer is 

straightforward. A third classification category exists, namely samples with analysis 
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readouts producing values at intermediate levels between whole numbers. Such 

profiles are consistent with mosaicism, which would indicate the presence of both 

euploid and aneuploid cells in the source blastocyst. While previous technologies for 

PGT-A were limited in identifying this condition, next-generation sequencing (NGS) is 

now widely recognized as the most accurate platform for revealing and quantifying 

mosaicism (8). 

In order to better define the characteristics and genetic abnormalities affecting 

the clinical outcomes of mosaic embryos, we performed an analysis of the 

prospective transfer of 100 embryos classified as mosaic via NGS-based PGT-A in a 

single IVF center. Furthermore, we explore biological mechanisms that can lead a 

mosaic blastocyst to ultimately result in a healthy baby. 
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 MATERIALS AND METHODS 

 

Patients and Embryos 

Embryos derived from patients seeking infertility treatment at a private IVF center 

were generated by intracytoplasmic sperm injection (ICSI) and cultured to the 

blastocyst stage as previously described (9). Blastocysts were assessed with the 

Gardner evaluation system (10) and subjected to a 5-10 cell TE biopsy and vitrified 

until further use. Biopsies were processed for PGT-A (see details below). In cases 

where no euploid blastocysts were available, patients were counseled about the 

possibility of selecting blastocysts classified as mosaic for uterine transfer. All 

embryos described in this study were transferred in a prospective manner, meaning 

that prior knowledge of the mosaic status of the embryos was available in every case. 

In certain instances, more than one mosaic blastocyst was transferred at once, or 

one mosaic blastocyst was transferred along with a euploid blastocyst (generally of 

poorer quality), especially in patients with previous failed transfers.  

Clinical outcomes were defined and collected as follows: Beta human Chorionic 

Gonadotropin (Beta-hCG) was measured by blood test on day 10 after transfer, with 

values > 5.0 mIU/mL considered positive and indicative of start of pregnancy. 

Presence of a gestational sac observed by endovaginal ultrasound at 3-5 weeks after 

transfer was considered evidence of implantation. Fetal heartbeat (FHB) was 

confirmed by endovaginal ultrasound 6-8 weeks after transfer. Non-Invasive Prenatal 

Testing (NIPT), amniocentesis, and birth information were voluntarily reported by the 

patient. 
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The experiments of serial biopsy concordance and cell proliferation and death made 

use of supernumerary embryos donated to research by informed consent.  

This study was approved by the Zouves Foundation IRB (OHRP IRB00011505). 

   

PGT-A 

NGS-based PGT-A was performed in-house using VeriSeq kit (Illumina) on a MiSeq 

system (Illumina) following the manufacturer’s protocol, in 24 sample runs. Karyotype 

profiles were scored independently by two analysts using Bluefuse Multi Analysis 

Software (Illumina), which depicts the copy number for each chromosome in a 

sample. The platform is validated to detect segmental gains/losses of 20 Mb or larger 

by the manufacturer, but can occasionally detect regions smaller than 2 Mb (11). A 

molecular karyotype profile consistent with mosaicism was determined when a whole 

chromosome or sub-chromosomal segment resulted in intermediate copy number 

levels (in the range of 20-80% between whole numbers), following PGDIS guidelines 

(http://www.pgdis.org/docs/newsletter_071816.html) and as previously described (6). 

  

Mosaic Study of Cell and DNA Mixes 

For cell analysis, the following cell lines were used: Coriell GM00425 (+8) and 

GM04435 (+16, +21). Cells were cultured in RPMI 1640 (Thermo Fisher #12633-012) 

containing 10% FBS (Seradigm 1500-050), GlutaMAX-I (Gibco 35050-061) and Pen-

Strep (Gibco 15140-122). Cells were detached with TrypLE (Gibco 12604021) and 

re-suspended in culture medium. Single cells were collected and mixed in the 

indicated ratios totaling 10 cells per sample and stored at -80°C until chromosomal 
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analysis by NGS as above. Each cell ratio was performed in triplicate, and one 

representative karyotype profile is shown per tested ratio in the Fig. 1A. 

For DNA analysis, we obtained genomic DNA extracted from two aneuploid fibroblast 

cell lines. The first DNA sample (Coriell NA02948) was purified from cells trisomic for 

chr13. The second DNA sample (Coriell NA00072) was purified from a cell line 

advertised as containing a segmental loss in chr4p. We found additional 

chromosomal errors (-13, mos(-5q,-11p,-12p,+17q)) in the sub-clonal line used in this 

study (lot 1 with original extraction date 4/28/1997) and verified them in over 40 test 

runs. In the singlicate mixing experiments, DNA was diluted down to represent 

equivalent amounts contained in single diploid cells (6.6pg), such that a 50:50 mix of 

DNAs contained 33pg of DNA from each cell line for a total of 66pg, equivalent to 

DNA from 10 diploid cells per NGS reaction.  

 

Multiple Biopsy Experiment 

Mosaic blastocysts as determined from the original clinical TE biopsy were further 

processed to isolate an ICM biopsy and a second TE biopsy as described elsewhere 

(12). All biopsies underwent PGT-A as described above. DNA fingerprinting using a 

previously described method (12) was performed on every biopsy to confirm it 

originated from its intended blastocyst, thereby excluding the possibility of sample 

mislabeling or contamination.  

 

Immunofluorescence  
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Blastocysts were immersed in fixation buffer containing 4% paraformaldehyde (EMS 

#15710) and 10% fetal bovine serum (FBS) (Seradigm 1500-050) in phosphate 

buffered saline (PBS) (Corning MT21040CM) for 10 minutes (min) at room 

temperature (rt), followed by three 1 min washes at rt in stain buffer composed of 

0.1% Triton X-100 (TX-100) (Sigma X100-100ML) and 10% FBS in PBS. Samples 

were then immersed in permeabilization buffer (0.5% TX-100, 10% FBS in PBS) for 

30 min at rt, followed by three washes in stain buffer. Samples were then exposed to 

stain buffer containing both primary antibodies (abs) each in 1:200 concentrations 

over night at 4°C rocking on a nutator. Primary abs were rabbit anti-human phospho-

Histone H3 (Ser10) (pHH3) AlexaFluor555 conjugated monoclonal ab (Cell Signaling 

#3475), rabbit anti-human Cleaved Caspase-3 (Asp175) AlexaFluor647 conjugated 

monoclonal ab (Cell Signaling #9602), and mouse anti-human OCT-3/4 monoclonal 

ab (Santa Cruz sc-5279). The next day, after three washes in stain buffer, samples 

were immersed in stain buffer containing the secondary antibody goat anti-mouse 

IgG AlexaFluor488 (Thermo Fisher A11029) at 1:500 concentrations for 2-3 hours at 

rt. After three washes in stain buffer, samples were exposed to nuclear stain 

(Hoechst 33342, Thermo Fisher H3570) diluted at 1:1000 in stain buffer for 30 min at 

rt, followed by three more washes in stain buffer and subsequently imaged.  

 

Imaging and Computational Quantitation of Cell Proliferation and Death  

Stained blastocysts were placed in glass bottom dishes (MatTek P35G-1.5-20-C) in 

small drops of stain buffer overlaid with mineral oil (Sigma M5904), and imaged with 

a LSM 780 Confocal microscope (Zeiss). Image files in the .lsm format were 
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uploaded into the software package Imaris 8.4.1 (Bitplane), and fluorescent channels 

quantified for each blastocyst. The analysis was performed in a blinded fashion, as all 

samples were quantified computationally with a uniform set of parameters, 

independently of blastocyst classification. The parameters were:  

Nuclear channel: spots with estimated diameter = 8.00um, background subtraction = 

true, classify spots by quality above 13.6. OCT3/4 channel: spots with estimated 

diameter = 6.00um, background subtraction = true, classify spots by quality above 

11.0. pHH3 channel: spots with estimated diameter = 8.00um, background 

subtraction = true, classify spots by quality above 15.5. Caspase-3 channel: surfaces 

with enable smooth = true, surface grain size = 0.700um, enable eliminate 

background = true, diameter of largest sphere = 8.00um, manual threshold value = 

7.64, active threshold B = false, classify surfaces by number of voxels above 204. 

 

Statistics  

Analysis and graph preparation was done in Prism 6 (GraphPad). In Table 2, clinical 

outcome comparisons between groups (defined in the table footnotes) were 

performed with Fisher’s exact test. Note that for the analyses in Table 2, for double 

embryo transfer in which only one embryo was positive but its identity could not be 

resolved due to matching sexes, each embryo received a value of 0.5. When this 

scenario occurred in cases of triple embryo transfers, each embryo received a value 

of 0.33. Final numbers are shown rounded to the closest integer.  

In the mitosis/apoptosis quantitation experiment (Figure 1), differences between 

groups were assessed by unpaired, two-tailed Student’s t test with Welch’s 
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correction. For all analyses: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns (not 

significant), P ≥ 0.05. 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

FandS26828.R1 Style Revision  
 

13 

 

RESULTS 

 

Detection of chromosomal mosaicism with NGS-based PGT-A  

Previous reports elegantly demonstrated that mixes of cell lines with different 

karyotypes resulted in mosaic profiles during PGT-A (3, 6, 13, 14), and that NGS 

showed superior resolution and more accurate mosaic calling than other platforms, 

including array comprehensive chromosome hybridization (aCGH) (13). We sought to 

use similar spike-in experiments to confirm the ability to detect chromosomal 

mosaicism in our hands, using an in-house PGT-A platform. As a first pass test, we 

observed that mixes of individual cells from lines with different aneuploidies yielded 

expected profiles consistent with mosaicism (Figure 1A). Then, in order to better 

establish the resolution of the technology in detecting mosaicism we performed 

experiments with DNA purified from cell lines. This allowed for more refined mixing 

ratios than with whole cells. We took advantage of cell line-derived DNA that 

displayed a very distinct karyotypic profile: copy number 2 for some parts of the 

genome (consistent with disomy), copy number 1 for other regions (consistent with 

monosomy), and intermediate levels (consistent with mosaicism) for yet other regions 

(Figure 2B, See DNA Cell Line B). This particular profile was replicated in over 40 

sequencing runs, suggesting that at the time of DNA purification the cell line was not 

uniform and contained sub-clones resulting in mosaic profiles in some genomic 

regions. Mixing experiments with DNA from a different, uniformly aneuploid cell line 

showed superb resolution of mosaic profiles, with resolution of differences as small 
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as ~5% (Figure 2B). This was true for both whole chromosome and segmental (sub-

chromosomal) aneuploidies.  

Together, these experiments confirmed the capability to detect instances of 

chromosomal and segmental mosaicism with our in-house NGS-based PGT-A 

pipeline. 

 

Clinical outcome of prospective mosaic embryo transfers tested by NGS-based 

PGT-A  

Between October 2016 and June 2018, a total of 100 blastocysts classified as 

mosaic by NGS-based PGT-A were transferred in a prospective manner (with 

previous knowledge of their mosaic status) at a single IVF program as frozen embryo 

transfers (Table 1). 50 were replaced into patients as single embryo transfers (SET), 

26 as double embryo transfers (DET), and 6 as triple embryo transfers (TET). The 

remaining 18 were transferred alongside one euploid embryo often of poor 

morphological quality (Supplemental Table 1).  

Compared to euploid blastocysts across all medical indications and ages 

transferred in the same time period, the combined mosaic cohort had significantly 

lower implantation rates per embryo (as determined by the presence of a gestational 

sac)(49.6% vs 38.0%)(Table 2). Mosaic embryos also resulted in significantly lower 

chances of developing a fetal heartbeat (FHB)(47.1% vs 30.0%)(Table 2). Patients 

who had only a single euploid blastocyst available for transfer (without the possibility 

of further embryo selection) experienced clinical outcomes that were inferior to the 
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combined group of euploid blastocysts, but were appreciably superior to the mosaic 

blastocyst cohort (45.0% implantation, 42.2% FHB) (Table 2).  

Of the 30 mosaic embryos resulting in FHB in this study, 11 were ongoing 

pregnancies at the time of manuscript preparation and the remaining 19 have 

resulted in births. One patient who had two mosaic embryos transferred 

simultaneously went into labor at 23 weeks with spontaneous rupture of membranes 

(SRM) leading to death of both newborns, which showed no other physiological 

abnormalities upon examination. 

In 7 cases where NIPT information could be retrieved from patients, all results 

were normal. Amniocentesis was performed and data retrieved in 11 cases, 8 of 

which tested normal. One case contained a balanced translocation, and two cases 

showed microdeletions affecting segments smaller than the validated resolution of 

the PGT-A platform used (Table 1).  

Hence, the combined cohort of mosaic embryos showed overall decreased 

implantation rates compared to euploids. Of the 30 cases showing a FHB there were 

no instances of clinical miscarriage to date.  

 

Parameters of mosaicism affecting clinical outcome 

In our dataset, blastocysts showing mosaicism exclusively in a single segmental 

(sub-chromosomal) region resulted in considerably better clinical outcomes than 

blastocysts with other types of mosaicism (i.e. affecting multiple segments or any 

number of whole chromosomes) (Table 2).  
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The degree of mosaicism, which is an estimate of the percentage of aneuploid 

cells in the TE biopsy, did not correlate with clinical outcome in our dataset. We came 

to the same conclusion when analyzing the data using two different cutoffs for ‘low’ 

versus ‘high’ degree of mosaicism, and the differences between groups were 

statistically insignificant (Table 2).  

Interestingly, we observed a significant age effect on the success of mosaic 

embryo transfers. When oocytes were retrieved from patients 34 years old or 

younger, the clinical outcomes of their resulting mosaic blastocysts were 

considerably better than those retrieved from patients greater than 34 years old 

(Table 2). This was true for all types of mosaicism (Supplemental Table 2). In the 

control group, euploid blastocysts fared equally well regardless of age.  

Finally, we saw no difference in rates of implantation or FHB when the 

mosaicism affected chromosomal gains (trisomies) versus losses (monosomies) 

(Table 2).   

 

Mosaicism in the clinical TE biopsy is a poor predictor of chromosomal content 

in the remaining blastocyst 

We hypothesized that some mosaic blastocysts might lead to normal pregnancies 

because the clinical TE biopsy collected might not be representative of the entirety of 

the blastocyst and particularly the ICM, which could be euploid. To test this 

experimentally, we took an ICM biopsy and an additional TE biopsy from five 

blastocysts that were originally classified as mosaic (Table 2). In three blastocysts, 

the ICM biopsy was euploid, while in two blastocysts the ICM biopsy displayed 
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mosaicism that was reciprocal to that observed in the clinical TE biopsy. The 

reciprocal patterns suggested incidences of chromosomal non-disjunction as the root 

cause of mitotic error resulting in mosaicism (2). It has been suggested that a 

reciprocal gain/loss in different biopsies of the same blastocyst is the strongest 

evidence of true mosaicism (15). In regards to the second TE biopsies collected, 

such reciprocal patterns were observed in three of the five blastocysts, while the two 

other samples were euploid.  

We performed the same multi-biopsy experiment on three blastocysts with 

uniform aneuploidies as well as mosaic aneuploidies within their clinical TE biopsies 

(Table 2). The uniform aneuploidies were always present in the subsequent biopsies 

for all three embryos. The mosaic aneuploidies observed in the clinical TE biopsy 

were replicated in subsequent biopsies in only one blastocyst (see Blastocyst 8, 

Table 2). For that case, the degree of mosaicism varied greatly between biopsies 

(30% in the clinical TE biopsy, versus 65% in the ICM and 50% in the second TE 

biopsy).  

We performed DNA fingerprinting on all sequenced biopsies to confirm there 

were no sample mix-ups or contamination (Supplemental Figure 1). Notwithstanding 

the limited sample size, this experiment demonstrated that embryos classified as 

mosaic by PGT-A can be euploid in other regions of the blastocyst including the ICM, 

and that the degree of mosaicism observed in the clinical TE biopsy are not strongly 

correlated with the degree of mosaicism in subsequent biopsies.  
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Cell proliferation and death rates are elevated in mosaic blastocysts compared 

to euploid blastocysts  

It has been suggested that euploid cells of mosaic embryos outcompete aneuploid 

cells during development, possibly leading to chromosomally normal babies. 

Experimental evidence for such a mechanism comes from a mouse model, in which 

chimeras of euploid cells and aneuploid cells showed selective apoptosis of 

aneuploid cells in the ICM and proliferative defects in aneuploid cells of the TE, 

leading to a progressive depletion of aneuploid cells from the blastocyst stage 

onwards (16). 

If such a model were to apply in the context of human blastocysts generated 

by IVF, we reasoned that mosaic embryos might display different patterns of cell 

proliferation and death compared to euploid embryos. In order to test this hypothesis, 

we performed immunofluorescence experiments on human embryos with markers of 

mitosis (cell proliferation) and apoptosis (programmed cell death). Serine 10 on 

histone H3 becomes phosphorylated specifically during mitotic chromatic 

condensation, making phosphohistone 3 (pHH3) an oft-used marker of mitotic 

activity. Caspase-3 is the central executioner of apoptosis, and its active (cleaved) 

form is a validated marker of apoptotic cells. In addition, we stained all blastocysts in 

this experiment with the nuclear dye Hoechst in order to visualize the nuclei of all 

cells, as well as OCT-3/4 to be able to differentiate ICM cells from TE cells.  After 

staining euploid, mosaic, and aneuploid blastocysts, they were visualized by a 

confocal microscope, and fluorescent signals were quantified computationally (Figure 

2A and Supplemental Video 1).  
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In general, levels of mitosis were relatively low in euploid blastocysts (Figure 

2B); even though no actively dividing ICM cells were detected in all five euploid 

blastocysts used in our experiment, these findings do not suggest that cell 

proliferation does not occur in the ICM of euploid blastocysts (which would be 

impossible). Instead, it is important to note that immunofluorescent staining produces 

a static snapshot of development, and rates or levels of cell proliferation and death 

should be analyzed in a comparative fashion with other groups (i.e. mosaic and 

aneuploid). Euploid blastocysts displayed negligible levels of apoptosis in the TE as 

well as in the ICM (Figure 2B), agreeing with previous observations made in normal 

human blastocysts (17, 18).  

Interestingly, a large proportion of mosaic as well as aneuploid blastocysts 

displayed medium or high levels of mitosis and apoptosis in the TE compared to 

euploid blastocysts (Figure 2B). In the ICM, some mosaic and aneuploid blastocysts 

displayed minimal/low levels of mitosis and apoptosis, and others displayed medium 

or high levels of mitosis and apoptosis (Figure 2B). Together, this data suggest that 

levels of cell proliferation and death are considerably higher in mosaic and aneuploid 

blastocysts when compared to euploid blastocysts.   
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DISCUSSION 

 

PGT-A has undergone numerous technical advances since its inception. Compared 

to its initial form using FISH, which was limited to relatively few chromosomes, the 

most recent incarnation based on NGS permits the analysis of all chromosomes as 

well as detection of chromosomal mosaicism. What is more, mosaics can be further 

subdivided into categories by degree of mosaicism (low and high) and mosaic type 

(single or multiple segmental mosaics, whole chromosome mosaics, complex 

mosaics). This has undoubtedly added layers of complexity to the clinical 

interpretation of PGT-A results, and evidence-based guidelines are needed. 

Preimplantation Genetic Diagnosis International Society (PGDIS) (19) and 

Controversies in Preconception, Preimplantation, and Prenatal Genetic Diagnosis 

(CoGEN) (20) provide position statements concerning prioritization of mosaic 

embryos for transfer, but the rationale behind them remains mainly theoretical. An 

alternative set of recommendations have been proposed, based on risk levels 

deduced from mosaic patterns observed in chorionic villus sampling (CVS) of the 

placenta and in products of conception (POC) (21). Nonetheless, a direct link 

between types of mosaicism at the blastocyst stage and clinical outcomes will only 

become defined over time with studies such as this one.  

To date, all studies comparing euploid and mosaic embryo outcomes in IVF 

concur that embryos classified as mosaic can lead to babies that are healthy by 

routine examination, but with decreased success rates compared to euploids (3-7). 

Nonetheless, there is some disagreement between studies about which mosaic 
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parameters correlate with clinical outcome. For example, some have suggested that 

a high degree of mosaicism (i.e. high proportion of aneuploid cells in the TE biopsy) 

correlates with poorer outcomes. This relationship was described in a paper using a 

mix of PGT-A technologies to detect mosaicism (7) as well as a study analyzing NGS 

data in a retrospective manner, although in the latter report the trend was not 

statistically significant (6). To our knowledge, this is the first prospective study relying 

entirely on NGS, widely recognized as the most precise method to detect mosaicism 

in PGT-A (8, 13, 22). Our data suggests that the degree of mosaicism should not be 

used to prioritize mosaic embryos. This is contrary to current guidelines expressed by 

PGDIS or CoGEN to prioritize selection of embryos for transfer, which in our opinion 

should be amended. 

This interesting point warrants discussion from a conceptual standpoint. Few 

would dispute the notion that a mosaic blastocyst with a high percentage of 

aneuploid cells is less likely to succeed than one with low percentage of aneuploid 

cells, a concept first explored in an extensive manner by Verlinsky and colleagues 

(23) and convincingly demonstrated experimentally in a mouse model of chimeric 

blastocysts (16). It follows logically that if a clinical TE biopsy were a good 

representative of the proportion of aneuploid cells in the remaining blastocyst, 

embryos with high mosaicism in the TE biopsy should fare poorly. The salient point 

shown in our data is that mosaicism in the TE biopsy is a poor representative of the 

blastocyst. Mosaic blastocysts do not distribute aneuploid cells evenly, meaning there 

is an inherent sampling error when collecting the TE biopsy. Therefore, we conclude 

that the degree of mosaicism in the TE biopsy might be irrelevant to clinical outcome.  
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One parameter with a substantial effect on clinical outcome in our study was 

type of mosaicism: single segmental mosaics fared better than all other types, 

namely those affecting multiple segmental gains/losses, 1 or 2 whole chromosomes, 

or complex mosaics. This observation agreed with a previous retrospective study (3), 

although in our dataset the single segmental mosaic embryos did not fare quite as 

well as euploid embryos. It has been suggested that the better clinical outcomes in 

segmental mosaics might be due to the fact that segmental aneuploidies typically 

result from DNA double strand break events, which often activate checkpoint 

processes leading to cell cycle arrest or apoptosis (3). As a result, neighboring 

euploid cells could quickly and efficiently dilute out cells containing segmental gains 

or losses. Also, segmental aneuploidies resulting in acentric fragments do not contain 

a centromere and cannot attach to the spindle during mitosis, potentially leading to 

their loss during cell division (3). Therefore, our data supports the notion of prioritizing 

single segmental mosaics for transfer above other mosaic types.  

Another parameter to show a significant effect was age. Mosaic blastocysts 

derived from oocytes retrieved from patients 34 years old or younger fared 

significantly better than when derived from older patients. Interestingly, the ‘young’ 

mosaic group yielded comparable results to euploid embryos, which in itself did not 

display an age effect upon transfer. We can only speculate the biological reason for 

this. Could any of the self-correcting mechanisms that have been proposed in mosaic 

embryos (clonal depletion, preferential allocation, cell-endogenous rescue, see (24)) 

be more efficient in ‘younger’ blastocysts? It has been documented that, as opposed 

to meiotic errors and uniform aneuploidy, rates of mitotic error and consequently 
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mosaicism at the blastocyst stage remain relatively constant with increasing age (2, 

25). It is possible that ‘younger’ blastocysts manage to purge themselves of 

mosaicism, while older blastocysts more often retain their aneuploid cell load and 

accordingly become less likely to implant and reach birth. Another possibility is that 

an increasing proportion of mosaic blastocysts generated from older patients 

originated from trisomy rescue of uniformly aneuploid embryos, in turn possibly 

leading to negative outcomes. These concepts warrant further investigation and to 

our knowledge age has not been considered or analyzed as a mosaic parameter in 

previous studies. If confirmed, in cases where a patient has multiple mosaic 

blastocysts to choose from that were generated from different cycles at different 

ages, we would recommend prioritizing the ‘younger’ ones.  

We explored two concepts that might explain why embryos classified as 

mosaic in PGT-A might lead to ongoing pregnancies and healthy births. The first, as 

mentioned above, is that mosaicism in the TE biopsy is not a good predictor of 

karyotype elsewhere in the blastocyst. We observed examples where the 

corresponding ICM as well as a second TE biopsy were euploid. Other cases had 

reciprocal mosaic aneuploidies in subsequent biopsies. In yet another scenario, a 

blastocyst had the same mosaic aneuploidy in all three biopsies analyzed, but the 

degree of mosaicism was different (‘low’ in the clinical TE biopsy, and ‘high’ in the 

ICM and second TE biopsies The inherent degree of sampling error in isolating a 

biopsy from a mosaic blastocyst imposes a ‘biological’ source of false 

positive/negative calls for mosaicism in PGT-A. Ultimately, this poor predictive power 

of a mosaic TE biopsy vis-a-vis the remaining embryo might explain why embryos 
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classified as mosaic do occasionally implant and lead to healthy births but do so with 

lower success rates than euploid embryos. Sometimes the mosaic TE biopsy will pair 

with euploidy, other times with mosaicism, and yet other times with aneuploidy in the 

remaining blastocyst. This is not to say that a mosaic TE biopsy will correspond in 

equal rates to euploidy, mosaicism, and aneuploidy elsewhere. Only a larger and 

detailed investigation analyzing serial biopsies in embryos classified as mosaic will 

shed light into such ratios.  

It must be acknowledged that there also exists an inherent risk for technical 

error during PGT-A, which could produce profiles appearing mosaic when in fact the 

biopsy in question is uniformly euploid or aneuploid. The mixing experiments suggest 

that NGS-based PGT-A is excellent at identifying mosaicism when indeed present 

(manifested as intermediate levels of karyotype profiles), but the inverse it not 

necessarily true: an intermediate karyotype profile does not automatically mean that 

a TE biopsy contains mosaicism. Artifacts introduced during WGA or NGS could 

result in background noise that can produce such intermediate levels as well, falsely 

resulting in karyotype profiles interpretable as mosaic. Our cell mixing experiments, 

which were performed in biological triplicates, showed a false positive rate for 

mosaicism of 0% but the sample size was small and there are aspects of TE biopsy 

(resulting from laser use, biopsy isolation, handling etc.) that cannot be properly 

modeled in cell mixes. Hence, it has been proposed that rather than categorically 

diagnosing blastocysts as ‘mosaic’, PGT-A results should indicate a pattern 

‘consistent with possible mosaicism’ (15).  
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 The second concept we explored that could make mosaic blastocysts result in 

healthy births is self-correction. It is known that the incidence of mosaicism 

decreases through development (6), which could be explained by the out-competition 

of aneuploid cells by euploid cells by differential cell proliferation and death. Indeed, 

a chimeric mouse model for mosaicism has shown the progressive depletion of 

aneuploid cells in the preimplantation embryo (16). In those experiments, aneuploid 

cells in the fetal lineage (ICM) were largely eliminated by apoptosis, whereas those in 

the placental lineage (TE) displayed severe proliferative defects. Our findings confirm 

that in the human embryo, the dynamics of cell proliferation and death are different, 

on average, between euploid, mosaic, and aneuploid blastocysts. This could 

correspond to the proposed self-correction mechanism, as aneuploid cells might 

proliferate slower or undergo apoptosis, and euploid cells compensate by elevating 

their rates of proliferation. Unfortunately, existing tools and reagents do not allow us 

to individually visualize the aneuploid and euploid cells in a mosaic human embryo, 

which would be required to confirm this model. Yet, and notwithstanding the limited 

sample size of our experiment, analysis on the blastocyst level showed statistically 

significant differences between groups. Importantly, not all blastocysts classified as 

mosaic had elevated rates of cell proliferation and death; some showed similar levels 

to euploids. Presumably, those could be instances of blastocysts with mosaicism in 

the TE biopsy, but euploidy elsewhere.  

Centers using PGT-A have reported vastly different incidences of mosaic 

embryos, anywhere from less than 4% up to 90% (15). Without context, such 

comparisons are virtually meaningless. Equal thresholds, cutoffs, and technological 
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platforms need to be employed to make reasonable comparisons between groups. 

Regardless of methods used to identify mosaics, the existence of chromosomally 

mosaic embryos is an undisputed biological phenomenon. In our center, 18% of 

blastocysts analyzed by PGT-A (n=3138) are classified as ‘mosaic’ using the 

methods described in the manuscript. This is consistent with the 21% figure reported 

by a large reference lab using the same standards as described here (22). While 

biological and technical false positive/negative rates for mosaicism in PGT-A are 

being established, a preponderance of evidence now shows that the ‘mosaic’ 

category of blastocysts contains its own distinct set of clinical outcomes, different to 

the uniform euploid or aneuploid categories. Considering the importance of the 

mosaic group, evidence-based guidelines are vital to help prioritize them for transfer.  

In summary, our findings suggest that after euploids, embryos displaying 

single mosaic segmental gains and losses should be prioritized for transfer, along 

with mosaic blastocysts derived from oocytes retrieved at younger patient age. On 

the other hand, degree of mosaicism in the TE biopsy is not a relevant factor, and 

blastocysts harboring mosaic monosomies and trisomies result in similar clinical 

outcomes. Even though to our knowledge this is the largest single-center study of its 

kind to date, we note that the sample size is still relatively limited and future larger 

studies will need to corroborate or refute our findings. Finally, we provide 

experimental data for two possibly parallel/additive mechanisms that may explain 

why mosaic blastocysts can result in healthy babies, which has been a great concern 

when transferring embryos classified as mosaic by PGT-A.   
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TABLE LEGENDS 

 

Table 1. List of mosaic blastocyst transfers  

1 Estimated percentage of aneuploid cells in biopsy. When several chromosomes 

affected, highest value is indicated. 

* Only applies to one embryo in the double FET, due to equal genders it cannot be 

deduced which one. 

# Only applies to one embryo in the triple FET, due to equal genders it cannot be 

deduced which one. 

a Single ventricle congenital heart defect detected at 22 weeks, NIPT was normal for 

all whole chromosomes and microdeletions tested, including DiGeorge deletion 

(22q11.2).  

b Microdeletion of one copy comprising 84.11 Kb at 2q13. 

c Balanced translocation of 1p and 16p. 

d Microdeletion of one copy less than 100 Kb (no further information available)  

e Spontaneous rupture of membranes (SRM) at 23 weeks leading to neonatal death 

of both babies, which showed no other physiological abnormalities upon examination 
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Table 2.  

 Analysis of mosaic parameters affecting clinical outcomes  

a Compared to the ‘Euploid All’ group. 

b Compared to previous row (intra-group comparison) 

c Multi-biopsy analysis. Square brackets indicate the estimated degree of 

mosaicism observed in the karyotype profile. 

 

 

Supplemental Table 1. List of double embryo transfers using one mosaic and 

one euploid blastocyst 

 

Supplemental Table 2. Age of oocyte at retrieval affects clinical outcome in all 

types of mosaic embryo transfers  
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FIGURE LEGENDS 

Figure 1.  

Validation of PGT-A method in accurate identification of mosaicism. 

 

(A) Results from cell mixtures using a total of 10 cells per reaction.  

 

(B) Composite image from spike-in experiments with varying ratios of 

purified DNA from two aneuploid cell lines. Amounts of DNA mimic 

contents of single cells (6.6pg), resulting in 66pg per reaction. 

Results depict karyotype patterns consistent with the expected 

presence of mosaicism using NGS-based PGT-A. Note for example 

that the aneuploid region on chr5 is at ~50% loss when solely using 

DNA from cell line B, suggesting that each incremental mix with 

DNA from cell line A translates into a ~5% difference.  

 

 

Figure 2.  

Quantitation of cell proliferation and death in blastocysts. 

 

(A) Left column shows representative immunofluorescent images of a 

hatching blastocyst classified as mosaic by PGT-A. Right column 

shows method of computational detection and quantitation. Note 
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that the image analysis software detects the concrete number 

(count) of nuclei, ICM cells, and cells in mitosis. Apoptosis is 

measured as arbitrary units (AU) of fluorescence in regions 

displaying the signal in order to capture all apoptotic bodies, 

including remaining vesicles of fractioned cells. Scale bar = 20μm 

 

(B) Scatter dot plots depicting quantitation of mitosis and apoptosis in 

TE and ICM. Each symbol represents one blastocyst. Lines indicate 

mean with standard deviation. Sample size of each blastocyst group 

is n=5 Euploids, n=11 Mosaics, n=14 Aneuploids. *, P < 0.05; **, P 

< 0.01; ***, P < 0.001; ns (not significant), P ≥ 0.05. 

 

Supplemental Figure 1. 
 
Analysis of tissue relatedness in serial biopsies of blastocysts 
 
 
Graph depicting log-likelihood ratios of relatedness. In green, controls comparing 

biopsies from embryos derived from unrelated patients, showing negative values. In 

red, control comparison between biopsies from blastocysts derived from the same 

patient (full-sibs) showing positive values. In purple, comparisons between paired 

biopsies for each blastocyst analyzed in the study, showing positive log-likelihood 

ratios of relatedness. 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

FandS26828.R1 Style Revision  
 

32 

 

VIDEO LEGENDS 

Supplemental Video 1. Video of confocal microscopy-imaged embryo after 

immunofluorescence staining, displaying quantitation method. This 

representative sample was classified as mosaic with PGT-A. Note that the image 

analysis software detects the concrete number (count) of nuclei (blue), ICM cells 

(green), and cells in mitosis (red). Apoptotic signal (white) is a measure of volume in 

regions displaying the signal in order to capture all apoptotic bodies, including 

remaining vesicles of fractioned cells. 
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Click here to download high resolution image

http://ees.elsevier.com/fns/download.aspx?id=1267996&guid=d542927d-d11b-4acc-8070-81c26b46ac21&scheme=1


TABLE 1             
Embryo 
Number Classification Reported Summary Beta-hCG +  Sac 

(Implantation) 
Fetal 
Heart
beat 

Birth Mosaic 
Level1 

Embryo 
Evaluation 

Oocyte 
Age 

Age 
Embryo 

Recipient 

Number of 
Previous 

FETs 
Post implantation Testing 

             
Single Mosaic FETs            

1 Single Seg mos(+9p) Y N N N 50% 5BB 30 30 0   
2 Single Seg mos(-9p) N N N N 40% 5BB 37 37 3   
3 Single Seg mos(-14q31.1q32.33) N Y N N 35% 6BB 37 37 1   
4 Single Seg mos(-9q21.33q34.3) Y Y Y Y 50% 5BC 43 43 1   
5 Single Seg mos(+5q12.3q35.3) N N N N 20% 5BC 40 40 0   
6 Single Seg mos(+9q21.13q34.3) Y Y Y Y 30% 5BB 39 39 1   
7 Single Seg  mos(-4q22.2q35.2) Y N N N 20% 5BB 36 36 0   
8 Single Seg mos(+3p24.1p21.1) N N N N 25% 5CC 41 41 1   
9 Single Seg  mos(+21p11.1q22.11) Y Y Y ongoing 30% 5BB 37 34 0 NIPT:Normal 
10 Single Seg mos(+19p) N N N N 30% 5BB 42 42 1   
11 Single Seg mos(+Xq22.3q28) Y Y Y ongoinga 50% 5BB 42 42 0 NIPT:Normal 
12 Single Seg mos(-Xq) N N N N 25% 5BC 39 42 0   
13 Single Seg mos(+1p36.33p34.3) Y Y Y ongoing 70% 5BC 33 33 0   
14 Single Seg mos(-7q) Y N N N 35% 5BB 39 39 2   
15 Single Seg mos(-Xq21.1q28) Y Y Y ongoing 30% 5BB 40 33 0   
16 Single Seg mos(-5q14.3q35.3) N N N N 20% 5BB 39 39 1   
17 Multiple Seg mos(-2p25.3p24.1,-21q22.1q22.3) Y Y Y Y 40% 5AB 33 33 2 Amnio:Normal 
18 Multiple Seg mos(+4q22.1q32.3,-4q32.3q35.2) N N N N 60% 5BC 39 39 0   
19 Multiple Seg mos(-1p36.11p32.3,-5p13.3q14.3) N N N N 40% 6CC 40 40 0   
20 Multiple Seg mos(-4p16.3q22.1,+4q22.1q35.2) N N N N 50% 6CB 39 39 1   
21 Multiple Seg mos(-2p25.3p23.1,-8p) N N N N 30% 5BC 36 42 2   
22 Multiple Seg  mos(-1q,-9q21.2q31.2) N N N N 50% 5BB 34 34 1   
23 Multiple Seg mos(+4q32.3qter,-10q22.2qter) Y Y Y ongoing 40% 5AB 24 36 6 NIPT:Normal 
24 1 or 2 whole mos(+14) N N N N 50% 5CC 31 31 1   
25 1 or 2 whole mos(-15) N N N N 30% 5BB 36 36 0   
26 1 or 2 whole mos(-20) Y N N N 20% 6BC 31 52 3   
27 1 or 2 whole mos(+6) N N N N 20% 5BC 38 38 1   
28 1 or 2 whole mos(+3) Y Y Y Y 60% 5BC 33 26 3 NIPT:Normal; Amnio:Normal 
29 1 or 2 whole  mos(-13) N N N N 50% 4BB 37 37 0   
30 1 or 2 whole mos(+3) N N N N 25% 4CC 39 39 1   
31 1 or 2 whole mos(-3) N N N N 35% 4BB 34 34 0   
32 1 or 2 whole mos(+17) N N N N 25% 5BC 42 42 0   
33 1 or 2 whole mos(-X) Y N N N 25% 5BB 33 33 3   
34 1 or 2 whole mos(-11) Y Y N N 40% 5BB 38 38 3   
35 1 or 2 whole mos(+9) N N N N 40% 4BC 44 44 0   
36 1 or 2 whole mos(-6) N N N N 50% 5BC 37 37 0   
37 1 or 2 whole mos(+14) N N N N 20% 5BB 43 43 1   
38 1 or 2 whole mos(-18) Y Y Y ongoing 20% 6BA 43 25 0 NIPT:Normal 
39 1 or 2 whole mos(-7,+22) N N N N 45% 6AA 35 35 3   
40 1 or 2 whole mos(+2,-15) Y N N N 25% 5BC 43 43 0   
41 1 or 2 whole mos(-2,-8) Y Y Y ongoing 30% 5BB 34 34 2 Amnio: microdeletionb 
42 1 or 2 whole mos(+1,-20) Y Y Y ongoing 60% 5BB 39 39 2 NIPT:Normal 
43 1 or 2 whole mos(+22) Y N N N 30% 5BB 41 41 2   
44 Complex  mos(+1,+20,-22) Y Y N N 30% 5BB 34 34 1   
45 Complex mos(-9,-11,-18;+19) Y Y Y Y 40% 6BC 34 34 0 NIPT:Normal 
46 Complex mos(-3,+4,+16) Y N N N 30% 5BC 35 35 0   
47 Complex mos(-3,-6,-8,-15,-18) N N N N 40% 5BC 38 38 1   
48 Complex  mos(+3,+5p15q14.3,+19) Y Y Y Y 35% 5BC 42 42 0   
49 Complex mos(-1p,+13,+14,+15,+20,+22) Y Y N N 50% 5BC 41 41 0   
50 Complex mos(+1,-7,-16,+17,+21q22.12q22.3,+22) Y Y Y ongoing 30% 3BB 26 45 0   

             
Double FET (1 Mosaic transferred together with 1 Euploid Embryo)           

51 Single Seg mos(+11p) Y N N N 30% 5CC 41 41 0   
52 Single Seg mos(+12q14.1q24.31) Y Y Y Y 30% 5BC 37 37 0   
53 Single Seg mos(-5q) N N N N 45% 5BB 34 34 1   
54 Single Seg mos(-1p36.33p31.1) Y Y Y Y 25% 5AB 34 34 2 Amnio:Normal 
55 Single Seg mos(+1p36.31p32.2) N N N N 40% 5BB 35 35 1   
56 Single Seg mos(-10q23.1q26.3) N N N N 30% 5BB 41 41 1   
57 Single Seg mos(+6q22.31qter) (Y) N N N 40% 5BC 37 37 1   
58 Single Seg mos(-Xq) (Y) (Y) (Y) (ongoing) 25% 3BB 42 42 1   
59 Multiple Seg mos(-1q21.3qter,-21p11.1q21.2) N N N N 30% 5BB 31 31 1   
60 1 or 2 whole  mos(-17) Y Y Y Y 30% 6BB 39 39 1 Amnio: translocationc  
61 1 or 2 whole mos(-14) N N N N 20% 5BC 29 29 0   
62 1 or 2 whole mos(+17) N N N N 25% 5CC 39 39 1   
63 1 or 2 whole mos(-16) Y Y Y ongoing 40% 5BB 24 46 0   
64 1 or 2 whole mos(-21) (Y) N N N 25% 5BB 38 38 3   
65 1 or 2 whole mos(+15q14q22.31,+21) N N N N 35% 5CC 35 35 2   
66 1 or 2 whole mos(-17p13.2q25.3,+1p31.3p21.3) N N N N 45% 6CB 40 40 2   
67 1 or 2 whole mos(-10,+5) Y Y Y Y 20% 5BB 33 33 1 Amnio:Normal 
68 Complex mos(-14,-18q,+18p) N N N N 65% 4CC 40 40 0   

             
             

Double FET (2 Mosaic)             
69 Complex mos(-1,+13,-20) Y Y Y Y 20% 5BC 34 34 1 Amnio:Normal 
70 1 or 2 whole mos(-2) N N N N 25% 5CC 34 34 1   
71 Multiple Seg mos(-3p;+21p11.1q21.2) (Y)* (Y)* N N 40% 5BC 26 32 2   
72 1 or 2 whole mos(-11) (Y)* (Y)* N N 25% 5BC 26 26 2   
73 1 or 2 whole mos(+3p14.3p12.1,+7) (Y)* (Y)* (Y)* (Y)* 35% 5BB 33 33 1 (Amnio:Normal)* 
74 1 or 2 whole mos(+22) (Y)* (Y)* (Y)* (Y)* 30% 5BB 33 33 1 (Amnio:Normal)* 
75 Single Seg mos(+16p) Y Y Y Y 30% 5BB 32 32 1 Amnio: microdeletiond 
76 1 or 2 whole mos(-19) Y Y Y Y 30% 5BC 32 32 1   
77 Multiple Seg mos(+1p,-1q) Y Y Y Ye 30% 5AB 34 35 2   
78 Single Seg mos(+11p11.2q14.1) Y Y Y Ye 30% 6BA 34 35 2   
79 Complex mos(+12,+14,+16,+18,+19,-X) (Y)* (Y)* (Y)* (Y)* 50% 3BC 36 36 5 (Amnio:Normal)* 
80 1 or 2 whole mos(+16) (Y)* (Y)* (Y)* (Y)* 40% 5CB 36 36 5 (Amnio:Normal)* 
81 Single Seg mos(-2q35q37.3) (Y)* (Y)* N N 50% 5BC 36 42 1   
82 1 or 2 whole mos(-4) (Y)* (Y)* N N 25% 5BB 36 42 1   
83 Complex mos(+3,+6,-14,-15,+20) N N N N 60% 5CC 27 39 0   
84 Complex  mos(+8,+12,-21) N N N N 50% 4BC 27 39 0   
85 Single Seg mos(+10q21.3q26.3) Y Y Y Y 45% 5BB 36 36 1 Amnio:Normal 
86 Single Seg mos(-1p36.33p32.3) Y Y Y Y 60% 5BB 36 36 1 Amnio:Normal 
87 Single Seg mos(-2p25.3p24.3) (Y)* (Y)* N N 25% 4BB 34 34 0   
88 1 or 2 whole mos(+2) (Y)* (Y)* N N 25% 5CB 34 34 0   
89 Complex mos(+11p11.2q12.2,+20,+22) (Y)* N N N 25% 5CC 38 28 7   
90 1 or 2 whole mos(+19) (Y)* N N N 30% 5BB 38 28 7   
91 Single Seg mos(-5p) N N N N 40% 3CC 39 39 0  
92 Single Seg mos(+14q32.12q32.33) N N N N 35% 5CB 39 39 0  
93 Multiple Seg mos(+3p14.2p14.1,+16p13.3p12.1,+18q11.2q24.3

) 
(Y)* (Y)* (Y)* (onging)* 50% 5CC 42 42 1   

94 1 or 2 whole mos(-3,-X) (Y)* (Y)* (Y)* (onging)* 20% 5BC 42 42 1  
             

Triple FET (3 Mosaic)            
95 Single Seg mos(+13q13.3q33.3) (Y)# N N N 20% 5CC 40 40 1  
96 1 or 2 whole mos(+5,+20) (Y)# N N N 40% 5CC 40 40 1  
97 1 or 2 whole mos(+19) (Y)# N N N 50% 5BC 40 40 1   
98 1 or 2 whole  mos(-7,-17) (Y)# (Y)# N N 50% 5BB 40 40 3  
99 1 or 2 whole mos(-4) (Y)# (Y)# N N 30% 5BB 40 40 3  

100 1 or 2 whole  mos(+21) (Y)# (Y)# N N 40% 5BB 40 40 3  
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TABLE 2            
            

Type Embryos 
Transferred Beta-hCG + Sac 

[Implantation] 
Fetal 

Heartbeat 
Beta-hCG + 

(%) 
Sac (%) 

[Implantation] 
Fetal Heartbeat  

(%) 
P Value Sac 
[Implantation] 

P Value Fetal 
Heartbeat 

Average 
Age 

Average 
Mosaicism 

Euploid All 478 296 237 225 61.9% 49.6% 47.1%   37.4 N/A 
Euploid No Selection 109 68 49 46 62.4% 45.0% 42.2% 0.3974 (ns) a 0.3949 (ns) a 36.9 N/A 

Mosaic All 100 49 37 30 49.0% 38.0% 30.0% 0.0273 (*) a 0.0019 (**) a 36.4 36% 

            
Mos. Single Segmental 33 19 15 13 57.6% 45.5% 39.4% 0.7203 (ns) a 0.4717 (ns) a 37.6 35% 

Mos. Multiple Segmental 11 4 4 3 36.4% 36.4% 27.3% 0.5446 (ns) a 0.2331 (ns) a 34.4 42% 
Mos. 1 or 2 Whole Chr. 43 18 12 10 41.9% 27.9% 23.3% 0.0067 (**) a 0.0035 (**) a 36.6 33% 
Mos. Complex (>2 Chr) 13 8 6 4 61.5% 46.2% 30.8% 1.0000 (ns) a 0.2748 (ns) a 34.7 40% 

            
            

Level Range of Mosaicism Embryos 
Transferred Beta-hCG + Sac 

[Implantation] 
Fetal 

Heartbeat 
Beta-hCG + 

(%) 
Sac (%) 

[Implantation] 
Fetal Heartbeat  

(%) 
P Value Sac 
[Implantation] 

P Value Fetal 
Heartbeat 

Average 
Age  

20% – 50% 78 39 28 23 50.0% 35.9% 29.5%   36.4 - 
50% – 80% 22 10 9 7 45.5% 40.9% 31.8% 0.8031 (ns) b 0.7992 (ns) b 36.5 - 
20% – 40% 58 32 21 16 55.2% 36.2% 27.5%   36.7 - 
40% – 80% 42 17 16 14 40.5% 38.1% 33.3% 1.0000 (ns) b 0.6590 (ns) b 36.0 - 

            
            

Age of Oocyte (years) Embryos 
Transferred Beta-hCG + Sac 

[Implantation] 
Fetal 

Heartbeat 
Beta-hCG + 

(%) 
Sac (%) 

[Implantation] 
Fetal Heartbeat  

(%) 
P Value Sac 
[Implantation] 

P Value Fetal 
Heartbeat  

Average 
Mosaicism 

≤34 Euploid 141 95 72 69 67.4% 51.1% 48.9%   - N/A 
>34  Euploid 337 201 165 156 59.6% 49.0% 46.2% 0.6893 (ns) b 0.6164 (ns) b - N/A 

≤34 Mosaic All 34 21 19 16 61.8% 55.9% 47.1%   - 35% 
>34 Mosaic All 66 28 18 14 42.4% 27.3% 21.2% 0.0082 (**) b 0.0111 (*) b - 36% 

            
            

Mosaic Abnormality Embryos 
Transferred Beta-hCG + Sac 

[Implantation] 
Fetal 

Heartbeat 
Beta-hCG + 

(%) 
Sac (%) 

[Implantation] 
Fetal Heartbeat  

(%) 
P Value Sac 
[Implantation] 

P Value Fetal 
Heartbeat 

Average 
Age 

Average 
Mosaicism 

Gain 38 18 13 12 47.4% 34.2% 31.6%   37.8 35% 
Loss 42 20 16 11 47.6% 38.1% 26.2% 0.8172 (ns) b 0.6296 (ns) b 36.2 33% 

            
            
            
 

cBlastocysts with PGT-A Classification: Mosaic Only     
 

  
 Blastocyst 1  Blastocyst 2  Blastocyst 3  Blastocyst 4  Blastocyst 5   

Clinical TE Biopsy XY, mos(-10 [50%]) XY, mos(+15 [50%]) XX, mos(-3 [65%]) XY, mos(+3 [65%], +9 [40%], +11 [45%]) XX, mos(-12 [40%], +18 [45%], +21[50%])  
ICM Biopsy XY, euploid  XY, mos(-15 [50%]) 

XX, mos(+3 [40%]) 
XX, mos(+3 [40%]) XY, euploid  XX, euploid  

Second TE Biopsy XY, mos(+10 [25%]) XY, mos(-15 [50%]) XX, mos(+3 [75%]) XY, euploid XX, euploid    

            

            

 
cBlastocysts with PGT-A Classification: Uniform Aneuploid and Mosaic       

 Blastocyst 6  Blastocyst 7  Blastocyst 8       
Clinical TE Biopsy XX,+22, mos(+1q21.2-q44 [70%]) XX, -22, mos(-10 [80%]) XX,+14, -21, mos(-16q [30%])        

ICM Biopsy XX, +22 XX, -22, mos(+1 [30%], -X [25%]) 
 

XX,+14, -21, mos(-16q [65%])     
Second TE Biopsy n/a XX, -22, mos(+19 [35%]) XX,+14, -21, mos(-16q [50%]) 

 

Table2



 
 
 

Transfer 
# 

Mosaic 
Embryo 
Grade 

Euploid 
Embryo 
Grade 

Beta-hCG Mosaic 
Sac 

Euploid 
Sac 

Mosaic 
Heartbeat 

Euploid 
Heartbeat 

1 5BC 5AB + Y Y Y Y 
2 5AB 5BB + Y Y Y Y 
3 5BB 5BB + Y Y Y Y 
4 6BB 4CC + Y N Y N 
5 5BB 5CC + Y N Y N 
6 5CC 5CB + N N N N 
7 3BB 6CB + (Y) (Y) (Y) (Y) 
8 5BC 5BC + N N N N 
9 5BB 5BB + (Y) (Y) N N 

10 5CC 5CC - N N N N 
11 6CB 5BB - N N N N 
12 5BB 5CC - N N N N 
13 5BB 5CC - N N N N 
14 4CC 5CC - N N N N 
15 5CC 5BB - N N N N 
16 5BB 5BB - N N N N 
17 5BC 4CC - N N N N 
18 5BB 5BC - N N N N 
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Age of Oocyte (years) Embryos 
Transferred Beta-hCG + Sac 

[Implantation] 
Fetal 

Heartbeat 
Beta-hCG + 

(%) 
 Sac (%) 

[Implantation] 

Fetal 
Heartbeat  

(%) 

P Value Sac 
[Implantation] 

P Value 
Fetal 

Heartbeat  
Average Mosaicism 

≤34 Euploid 141 95 72 69 67.4% 51.1% 48.9%     N/A 

 >34  Euploid 337 201 165 156 59.6% 49.0% 46.2% 0.6893 (ns) b 0.6164 (ns) b N/A 

 ≤34 Mosaic All 34 21 19 16 61.8% 55.9% 47.1%     35% 

 >34 Mosaic All 66 28 18 14 42.4% 27.3% 21.2% 0.0082 (**) b 0.0111 (*) b 36% 

           
≤34 Mos. Single Segm. 7 6 5 4 85.7% 71.4% 57.1%     39% 

>34 Mos. Single Segm. 26 13 10 9 50.0% 38.5% 34.6% 0.2028 (ns) b 0.3926 (ns) b 34% 

≤34 Mos. Multi Segm. 6 3 3 3 50.0% 50.0% 50.0%     38% 

>34 Mos. Multi Segm. 5 1 1 1 20.0% 20.0% 20.0% 0.5455 (ns) b 0.5455 (ns) b 46% 

≤34 Mos. 1 or 2 Whole Chr. 15 9 7 6 60.0% 46.7% 40.0%     31% 

>34 Mos. 1 or 2 Whole Chr. 28 9 5 4 32.1% 17.9% 13.0% 0.0739 (ns) b 0.0726 (ns) b 34% 

≤34 Mos. Complex 6 4 4 3 66.7% 66.7% 50.0%     38% 

>34 Mos. Complex 7 4 2 1 57.1% 28.5% 14.3% 0.2861 (ns) b 0.2657 (ns) b 42% 
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