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 Abstract 

The two most widely used locking bandwidth equations for injection locked oscillators, 

Adler’s and Kurokawa’s equations, are compared for the first time. Three differences are 

pointed out from the comparison: first, the absence of the factor θcos1  in Adler’s 

equation; secondly, larger bandwidth is predicted by Kurokawa’s equation; and thirdly, a 

difference in the Q factors used. It is shown that Kurokawa’s locking bandwidth equation 

is suitable for high-Q reflection-type electrically injection-locked oscillators employing a 

circulator, while Adler’s equation is suitable for reflection-type injection-locked 

oscillators not employing a circulator. Experimental results from measurements on an 

optically injection-locked oscillator show that the loaded-Q varies with injection power, 

and demonstrate that both Kurokawa’s and Adler’s equations, which treat the Q as a 

constant, are not accurate for predicting the locking bandwidth of wide locking 

bandwidth, injection-locked oscillators. Finally, a theoretical analysis of the optimum 

photodetector insertion point for a wide locking bandwidth, transmission-type indirect 

optically injection-locked oscillator is presented. 

1. Introduction 
 

The injection-locking of an electrical oscillator was first described by Van Der Pol in 

1927 [1], and the first locking bandwidth equation for electrically injection-locked 
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oscillators was developed by Adler in 1946 [2]. A vacuum tube transistor was used in 

Adler’s oscillator model. The most comprehensive theoretical review for the injection-

locking of solid-state injection-locked oscillators was given by Kurokawa in 1973 [3]. 

The locking bandwidth equation of such oscillators was also derived in Kurokawa’s 

paper. Compared with Adler’s oscillator model, an additional circulator at the oscillator 

output in Kurokawa’s model was used to separate the injection signal and the oscillator 

output signal. Adler’s and Kurokawa’s equations have been used widely to calculate the 

locking bandwidth for injection-locked oscillators [4, 5]. Kurokawa’s theory was also 

used to develop a locking bandwidth equation for transmission type injection-locked 

oscillators [6]. Further, equations for such electrically injection-locked oscillators have 

been used for predicting the locking bandwidth of optically injection-locked oscillators 

[4]-[5]. In recent years, optically injection-locked oscillators have attracted great interest 

because of their possible use in future optical communication systems, in applications 

ranging from microwave and millimetre-wave signal reception, phased array systems and 

optoelectronic clock recovery [7]-[12]. Locking bandwidth is one of the major design 

parameters in these types of injection-locked oscillator. 

In this paper, Kurokawa’s and Adler’s locking bandwidth equations are first compared. 

The models, assumptions, and analyses used by Kurokawa and Adler are described. Then 

the differences between the two equations, the factor 1/cosθ, the calculated locking 

bandwidth, and the Q factor are identified.  The causes for these differences are discussed 

in detail. 

Results from an experiment designed to investigate the dependence of oscillator loaded Q 

on the injection signal power using an optically injection-locked oscillator are then 

presented. One of the limitations of the locking bandwidth equations, the constant value 

of Q assumed, was investigated based on these results. 

Transmission type indirect optically injection-locked oscillators potentially offer higher 

locking bandwidth than other types of optically injection-locked oscillator [7]. An 

optimum photodiode insertion point design is required by this type of oscillator for a 
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wide locking bandwidth. A theoretical analysis for the optimum photodiode insertion 

point is presented at the end of this paper.   

2. Kurokawa’s locking bandwidth equation 

A simple series resonant model of the microwave resonator was introduced by Kurokawa 

[3] to model the reflection type injection-locked oscillator. This model, shown in Fig 1, is 

based on the assumptions of reflection type injection-locking and small injection signal 

power compared with the oscillator free running output power. The oscillator active 

device is modelled as a negative impedance (Zd(A)). A series LC resonator is used to 

model the resonator. The resonator resistance is represented as Ra. The injection signal is 

applied to the oscillator output (a-a’) through a circulator. The oscillator output voltage 

and current at the injection point are V and I respectively. The injection signal voltage is 

Ei, and the load resistance is RL. In order to match the output, Kurokawa supposed the 

injection source resistance was RL as well. The quality factor of a resonator is very high 

(>1000) for conventional oscillators, which means the resonator resistance Ra is very 

small compared to the load resistance. So, Kurokawa ignored the injection power loss 

within the resonator. Based on the assumptions above, Kurokawa calculated the injection 

signal current to be Li RE 2 , see Fig 1. However, this assumption is not exactly correct 

for injection-locked oscillators when the resonator quality factor is quite low. The 

resonator circuit impedance as a function of frequency is written as: 

   ( ) Lac RR
C

LjZ ++⎟
⎠
⎞

⎜
⎝
⎛ −=

ω
ωω 1     (1) 

Assuming the free-running frequency is approximately the same as the resonance 

frequency of the resonator ωr, a Taylor expansion of (1) is performed to give: 

   ( ) ( ) Larc RRLjZ ++−≈ ωωω 2     (2) 
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where: 

   
LCr
1

=ω  

   and ω is the instantaneous frequency 

The locking bandwidth is calculated using the impedance graph [3].  Here ω0 is the 

oscillator free-running frequency, the locking bandwidth of the oscillator B is equal to 

2∆ωm, Ei is the injection signal amplitude, θ is the angle between the resonator 

impedance locus and the device line, and A0 is the RF current amplitude. The distance 

between ω0+∆ωm and ω0-∆ωm on the resonator locus is calculated using (2), 
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The relation between the injection vector and the locking bandwidth at the maximum 

locking frequency as shown in Fig 2 is, 

   
0

cos2
A
E

L i
m =∆ θω       (4) 

The oscillator free-running output power (the power that a free-running oscillator delivers 

to the load) can be calculated as: 

   2
00 2

1 ARP L=  ,  

such that, 

LR
P

A 0
0

2
=        (5) 
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where RL is the load resistance. The injection signal power at the point of injection is, 

  L
L

i
Lii R

R
E

RIP ⋅⎟
⎟
⎠

⎞
⎜
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⎝

⎛
==

2

2

22
,  

such that, 

Lii RPE ⋅⋅= 22       (6) 

The external quality of the resonator is calculated by [3], 

   
L

r

L
ext R

L
R

L
Q ωω

≈= 0  , 

giving, 

   
ext

L

QL
R 0ω

=        (7) 

Substituting (5), (6), and (7) into (4), the locking bandwidth equation can be written as: 

   
θ
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From (8), it can be seen that when 2πθ = , the resonator locus overlays the device line, 

and B is infinite. When 0=θ , the resonator locus is perpendicular to the device line, and 

the locking bandwidth reaches the minimum value: 

 
0

0
min

2
P
P

Q
B i

ext

ω
=       (9) 

Normally, (9) is used for the theoretical prediction of the oscillator locking bandwidth 

because the angle between the resonator locus and the device line is difficult to calculate.  
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The resonator loss does not affect the locking bandwidth in Kurokawa’s equation. Qext in 

Kurokawa’s equation is treated as a constant.  

3. Adler’s locking bandwidth equation 

Fig 3 shows the circuit model used by Adler [2]. A parallel RLC resonator was used for 

the resonator model, where R is a resistance, giving the resonator loss. A tube transistor 

was used as the active device of the oscillator. E0 is the free-running output voltage 

amplitude, Ei is the injection signal voltage amplitude, and Eg is the amplitude of the total 

voltage generated across the load after the application of the external signal. 

A vector diagram of the signals within an injection-locked oscillator was presented by 

Adler, see Fig. 4 [2]. The oscillator instantaneous output is represented by the vector E 

rotating clockwise with an angular frequency of ω (the instantaneous output frequency 

after injection locking) while the injection signal vector of amplitude, Ei, rotates 

clockwise with an angular frequency of ωi (the injection signal frequency). The 

instantaneous phase difference between these vectors is α. The phase difference between 

the instantaneous output frequency and the total voltage (of amplitude Eg) generated 

across the load, φ , was given as [2], 

αφ sin
E
Ei−=        (10) 

φ  can also be written as [2],  

 ( ) ( ) ( )[ ] [ ]000 ωω
ω
φωωωω

ω
φωω

ω
φφ ∆−∆=−−−=−=
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d

d
d

d
d

ii     (11) 

where ω0 is the oscillator free-running output frequency, idt
d ωωαω −==∆ is the 

instantaneous beat frequency,  and iωωω −=∆ 00 is the undisturbed beat frequency. 
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Substituting (11) into (10), we have [2], 

   ⎥⎦
⎤

⎢⎣
⎡ ∆−=− 0sin ωα

ω
φα

dt
d

d
d

E
Ei      (12) 

For a single tuned resonator, the quality factor is [2]: 

   
ω
φω

d
dQ 05.0=       (13) 

Substituting (13) into (12), we have [2], 

   ⎥⎦
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ω
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dt
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E
Ei     (14) 

where dtdα  must be zero when the injection locked oscillator reaches a stable state. So 

in the steady state, (14) becomes [2] 

   0
0

2sin ω
ω

α ∆⋅=
Q

E
Ei , 

giving, 
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B ii ωωω =⋅=∆=          (15) 

   

4 Differences between Adler’s and Kurokawa’s locking 
bandwidth equation 

There are three differences between Alder’s locking bandwidth equation (15) and 

Kurokawa’s locking bandwidth equation (8).  

1.  The absence of θcos1  in Adler’s equation.  
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The reason for this is that Adler’s equation corresponds to the minimum locking 

bandwidth case (Kurokawa’s equation (9)), and is only suitable for predicting the 

minimum locking bandwidth ( 0=θ ).   

2. Larger bandwidth is predicted by Kurokawa’s equation 

Under the same conditions, the locking bandwidth predicted by Kurokawa is two times 

larger than Adler’s prediction. To find the reason for this difference, we need to 

investigate the models that Kurokawa and Adler used to derive their locking bandwidth 

equations.  As a circulator is included in Kurokawa’s model (Fig. 1), the output power is 

dissipated only at the load, and the external quality factor is given as, 

    
L

ext R
LQ 0ω=       (16) 

With no such circulator assumed in Adler’s model (Fig. 3), the output power is dissipated 

in both the injection source resistor and the load in his analysis. 

If the circulator is omitted from Kurokawa’s model, the output power will be dissipated at 

both the load and source resistor, and the injection source resistor should be included for 

calculation of the oscillator’s external quality factor: 

    
L

ext R
LQ
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Substituting (17) into (8), we have: 
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0

0
min P

P
Q

B i

ext

⋅=
ω

      (19) 

We can conclude that (19) is identical to Adler’s locking equation (15) except for the 

difference in Q factor which is discussed below.   

3. The Q factor.  

In Adler’s equation the Q is the resonator loaded Q instead of the external Q. Looking at 

Kurokawa’s model in Fig 1, the injection signal current generated by the injection source 

is injected into the oscillator output via a circulator. This injection signal flows through 

the active device and the resonator, and is mixed with the oscillator free-running signal. 

The injection-locked oscillator free-running output signal containing the injection signal 

is applied to the load through the circulator. All resistors within this injection loop will 

cause a voltage drop and should be included in the calculation. These resistors include the 

injection source resistance (assumed to be RL), the load resistance RL, and the resonator 

resistance Ra. We can rewrite the equations in terms of the injection power Pi,  
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The loaded Q of the resonator is: 

   
aL RR

LQ
+

= 0ω , 
QL

RR aL 0ω=+      (21) 

 
Substituting (5) and (20) into (4), we obtain: 
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Substituting (21) and (7) into (23), we have: 
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The locking bandwidth B is: 
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⎠
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PB 00

0cos
12 ωω
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The omission of Ra in Kurokawa’s calculation is accurate for conventional oscillators 

(high Q), as Ra is small compared with RL. However, for wideband injection locked 

oscillators, where Ra is designed to be large and cannot be ignored, (25) should be used to 

calculate the correct locking bandwidth. 

When the circulator is omitted, the output signal is dissipated at the injection source as 

well as the load, and the oscillator loaded Q can be rewritten as: 

   
aL RR

LQ
+

=
2

0ω , 
QL

RR aL 02 ω
=

+     (26) 

Substituting (26) in to (23), we have 

   
0

0
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Q
i

m
ω

θ
ω ⋅⋅=∆      (27) 

and the minimum locking bandwidth is then: 

   
0

02
P
P

Q
B i

m ⋅=∆=
ωω       (28) 

This equation is identical to Adler’s locking bandwidth equation (15). Adler’s equation is 

thus correct for predicting the minimum locking bandwidth of reflection type injection-

locked oscillators without a circulator. 
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5. Dependence of oscillator loaded Q on the injection signal 
power  

A millimetre-wave transmission-type optically injection-locked oscillator [7] was used to 

investigate the dependence of the oscillator loaded Q on the injection signal power.  

The loaded Q for the reflection-type injection-locked oscillator was measured using the 

experimental setup shown in Fig.5. The oscillator was locked electrically by the 

injection-source. The injection signal was applied through a 25.6 - 40 GHz circulator 

from Midisco (Isolation:  14 dB, Insertion loss: 0.8 dB). The oscillator output was 

connected with one of the circulator ports, and the injection signal from an HP 83640L 

10MHz – 40 GHz signal source was injected into the oscillator through the circulator. 

The locking bandwidth was measured by an electrical spectrum analyser (HP8563E).  

As the resonator loss is small, the difference between loaded Q and external Q is 

small, extQQ ≈  and, therefore, (9) is used to calculate the oscillator loaded Q. 

Table 1 shows the calculated loaded Q. The locking bandwidth increased with injection 

power. The loaded Q of the oscillator varies from 240 to 550 depending on the injection 

signal power. The higher the injection signal power, the lower the loaded Q.  The reason 

for this is that the oscillator Q is also dependent on the active device (HEMT) 

characteristics and these change with signal power. 

6. Photodiode insertion point 
 
For wide locking bandwidth transmission type indirect optically injection-locked 

oscillators, the photodiode insertion point needs to be optimised for maximum injection 

signal power.  

For the analysis, see Fig 6, it is assumed that one end of the resonator is short-circuited, 

and the other is connected with the active device of the oscillator. RL is used to model 
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loading effect of the active device. The power delivered to RL needs to be maximised for 

wide locking bandwidth (maximum current flow through RL). The characteristic 

impedance of the resonator is Z1. The photodiode is modelled by a current source, ip. 

Photodiode capacitance and resistance are ignored for simplicity. The photodiode is 

inserted at a distance x from the RF short. The distance between the insertion point and 

the load is y. Zinput is the impedance looking from the insertion point to the RF short, and 

Zoutput is the input impedance looking from the insertion point to the load. The output 

current ioutput, is: 

   
inputoutput

input
poutput ZZ

Z
ii

+
⋅=       (30) 

where 

   ( )xjZZinput βtan1=       (31) 

   
( )
( )yRjZ
yjZRZZ

L

L
output β

β
tan

tan

1

1
1 ⋅⋅+

+
=     (32) 

and 

   
gλ
πβ 2

=        (33) 

λg is the wavelength in the transmission line guide at the design frequency. Consider both 

Zinput and Zoutput are positive; then it is not difficult to conclude from (31), that Zoutput 

should be as small as possible to maximise ioutput. Minimum Zoutput, (=RL), is obtained 

when y = 0 in (30); then (30) becomes, 

   
inputL

input
poutput ZR

Z
ii

+
⋅=      (34) 

If we fix the length x to a quarter-wavelength ( 4πβ =x ), Zinput will be infinity, and RL in 

the denominator of (34) can be ignored, and the maximum output current, poutput ii =  is 
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obtained. Therefore, to maximise the output current, the resonator length should be a 

quarter-wavelength and the photodiode should be inserted at the load end of the resonator.  

Another explanation of this quarter wavelength configuration resonator is that the 

quarter-wavelength resonator transforms the RF short circuit to open circuit. The 

photocurrent from the photodiode that is inserted at the end of the resonator will flow to 

the load instead of to the high-impedance RF open circuit. 

In the real oscillator design where the photodiode capacitance can not be ignored, the 

photodiode capacitance can be matched by the bondwire inductance. 

7. Conclusion 

Three differences between Kurokawa’s and Adler’s locking bandwidth equations have 

been presented. These are: 

1) The factor 1/cosθ. 

2)  The calculated locking bandwidth 

3)  Q factor. 

It has been shown that Kurokawa’s equation is only applicable to high Q reflection type 

electrical injection-locked oscillators that employ circulators. Even though Adler’s 

locking equation is developed for reflection type electrical injection-locked oscillators, 

his equation is not suitable for such oscillators, as the circulator required for these types 

of oscillator to isolate the injection and oscillator free-running signals is not included in 

his model. However, his equation is a good theoretical basis for developing the locking 

bandwidth equation for reflection type injection-locked oscillators which do not require 

circulators, such as reflection type optically injection-locked oscillators. 

It has been demonstrated that the loaded Q of an optically injection-locked oscillator 

changes with the injection signal power. Both Adler’s and Kurokawa’s equations treat the 

Q as a constant.  New locking bandwidth analyses including the effect of changing Q 
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with injection power need to be developed for predicting the locking bandwidth with 

good accuracy. 

The analysis of optimum photodiode insertion point for a transmission type indirect 

optically injection-locked oscillator employing a short-circuited resonator has been 

presented. For a wide locking bandwidth design the injection signal power must be 

maximised, and it has been shown that the resonator length should be a quarter-

wavelength and the photodiode should be inserted at the load end of the resonator. 
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LIST OF FIGURE CAPTIONS 
 
 

Fig 1 The equivalent circuit of an injection-locked oscillator with a single tuned resonator as 
presented by Kurokawa [3]. 

 
 

Fig 2 Calculation of the locking bandwidth as presented by Kurokawa [3]. 

 
 

Fig 3 Injection-locked oscillator circuit as presented by Adler [2] 

 
 

Fig 4 Vector diagram of the injection-locked oscillator as presented by Adler [2]. 

 
 

Fig 5 Measurement of the loaded Q of a transmission-type optically injection-locked oscillator  

 
 

Fig 6 Circuit model for a short-circuited resonator with photodiode. 

 

 

TABLE CAPTION 

Table 1 Loaded Q of the optically injection-locked oscillator. 
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Free running 
frequency (Hz) 

Locking 
bandwidth (Hz) 

Injection signal 
power (dBm) 

Free running signal 
power (dBm) Loaded Q 

3.13E+10 3.80E+06 -26.5 -3 550.1525721 
3.13E+10 2.76E+07 -16.5 -3 239.6819092 
3.13E+10 7.57E+07 -6.5 -3 276.3429937 

 

 
 


