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A Robust Technique without Additional
Computational Cost in Evolutionary Antenna
Optimization
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Abstract—A robustness-enhancing technique without addition-
al computational cost in antenna optimization design is presented.
The robustness is implemented by minimizing the variances of
the gains, axial ratios and VSWRs over the required frequency
band. It is demonstrated that the new technique has two obvious
advantages. One is that it can ensure the antenna robustness
without the extra computational overhead. The other one is
that it is possible to broaden the bandwidth of the antenna. We
apply this technique to design a microstrip antenna at 2.4GHz.
Experimental results show that, by adopting this new technique,
the evolved antenna is more robust than by using two other
techniques.

Keywords: evolutionary algorithms, antenna design, robust opti-
mization, constrained optimization.

I. INTRODUCTION

NTENNA design problems are usually modeled as con-

strained optimization problems (COPs) [1, 2], which is
usually solved by evolutionary algorithms (EAs), including
Genetic Algorithms (GAs) [3], Differential Evolutions (DEs)
[4], Evolution Strategies (ESs) [5], Particle Swarm Optimiza-
tions (PSOs) [6] and other evolutionary techniques.

EAs are widely applied to optimize geometric shape of
antennas, mainly including the shape of an antenna and the
space between antenna elements of an array. It is worth noting
that most evolutionary antenna researches are mainly involved
in optimizing the space between antenna elements of an array
while optimizing the shape of an antenna is relatively few. This
is mainly because optimizing the shape of an antenna is very
expensive due to the time-consuming electromagnetic simula-
tion while optimizing the space between antenna elements of
an array is cheap for the analytical array factor. This paper
focuses on only the optimization of the shape of an antenna.

In optimizing the shape of an antenna, EAs begin with a
randomly initialized parent population of antennas with arbi-
trary shapes within the first generation. In each iteration during
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middle generations, an offspring population is generated via
a number of variation operators and each individual in it is
evaluated by electromagnetic simulate software, after which
the new parent population for the next iteration is selected from
the offspring population or a combination of the parent and
offspring population. In the last generation, the optimization
result is selected from the current population. The general
process of evolutionary antenna optimization is shown in Fig.
1. There are some literatures work on this topic. GAs are often
used to optimize the shape of an antenna. Patch antennas in [7]
obtained a pentaband design covering G.SM 1800, GSM 1900,
UMTS, LT E2300 and Bluetooth bands with fractional bands
about 38%. Wire antenna in [8] obtained a good result that
quality factors (()s) obtained has increased from 15.8 to
590. Also, the evolved wire antennas achieved a high gain
across a wider range of elevation angles in [9], etc; Similarly,
ESs also perform well on the issue. A patch antenna has
been successfully optimized in [10] which achieved a good
impedance matching and radiation characteristics in the entire
band of WLAN (IEEE 802.11 protocol). The performances
of patch antenna in [11] have been improved, etc; Also, PSOs
do well in this aspect. The bandwidth of patch antenna in
[12] was broadened by 54%. The bandwidth and gain of
planar antenna in [13] have been promoted, etc; Moreover,
DEs are no exception. Patch antenna in [14] achieved an
effective bandwidth of 9%. Wire antenna in [15] achieved a
good impedance matching. The curve fitting based DE and the
cuckoo search optimization focused on enhancing bandwidth
of microstrip patch antenna in [16]. Compact MIMO antennas
provided isolation higher than 30dB in a relative bandwidth
of 40% in [17], etc.

Robust design is very important in engineering fields. It
is a hot topic in evolutionary computation. Some previously
published methods on robust evolutionary optimization have
been presented in [18-25]. In [18], the method of adopting
the average fitness value of an individual’s neighbors instead
of the fitness value of that individual. It applied normal
distribution to generate neighbors. Thus the cost of assessing
each individual increases several times. Another robust method
was proposed by Zeng in [19], which adopted orthogonal
array to generate neighbors and also used the average fitness
value of the neighbors as the individual’s objective value.
The obvious advantage is the number of neighbors is less
than in [18]. Both above methods need neighbors for the
individual’s assessment, which increases time cost. Besides
that, Paenke in [20] suggested to construct computationally
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Fig. 1.
select the optimized antenna in the last generation.

efficient models associated with available solutions to replace
the expensive fitness function in calculating the mean and
variance of neighbors. However, the process of modeling still
took extra time. In paper [21], an active robust optimization
was presented as a new robust optimization approach. It
considered products that are able to adapt to environmental
changes. But, for a proper evaluation of an adaptive solution,
it has to be assessed for each scenario with its best possible
performance. Authors proposed to find robust solutions for
DOPs to account for a solution’s future fitness explicitly in
[22], which were formulated as the robust optimization over
time (ROOT) problem. In order to find optimal robust solutions
in terms of average fitness or survival time, a solution’s future
fitness needs to be predicted, it is important to build a learning
model for predictive tasks, but it needs additional computation-
al cost. In paper [23], the random solutions were generated
using the Latin Hyper Sphere (LHS), it also did not solve the
problem of reducing additional computational cost. Authors
proposed robust optimization, which considered an efficient
means to identify the set of tradeoff robust solutions with
an affordable computational cost in [24]. However, reduced
computational cost is a less important factor to consider.
A generic multi-objective optimization framework for robust
optimization over time that simultaneously maximizes the
robustness and minimizes the switching cost was proposed in
[25]. The predicted fitness of the current solutions in a future
environment according to their fitness values in the current and
previous, based on which the predictor can be constructed,
however, predictor construction also need additional time in
the paper. Notably, we did not find any evolutionary robust
optimization of antennas.

The above robustness techniques require additional compu-
tational overhead. The reason why evolutionary optimization
of antennas is usually very expensive is that the antenna
simulation is very expensive. The evolutionary robust opti-
mization of antenna shapes is even more expensive with the
additional computational overhead. That is why we could
find no evolutionary robust optimization of antennas. In this
paper, we propose a technique to enhance robustness technique
for evolutionary antenna design without extra computational
overhead. The electromagnetic characteristics (the shape of the
directive pattern, the front-to-rear ratio, the input impedance,
and so on) vary significantly with frequency. A higher frequen-
cy antenna usually requires a smaller size of the geometrical
structure. To some extent, the smaller variances of electro-
magnetic characteristics over frequency band mean that the
electromagnetic characteristics have a weaker dependence on
the frequency and the geometrical structure. An antenna with
such a weak dependence can have a broad frequency band and

Middle generations

Last generation

Sequence of process for evolutionary antenna optimization:EAs begin with arbitrary antennas in the first generation, iterate during middle generations,

be insensitive to the geometrical structure, which means this
antenna is robust. Minimizing these variances can achieve a
weakest dependence. So the antenna with minimum variances
can be the one with a broad frequency band and robustness. To
obtain such an antenna, the sum of these variances is chosen as
the objective function of the constrained optimization problem
modeled for antenna design in this paper.

The rest of this paper is structured as follows. Section II
introduces some related work. Section III proposes our robust
technique. We compare the performance of the proposed
objective technique with other two objective techniques in
section IV. Finally, Section V summarizes the conclusion of
this paper.

II. RELATED WORK

An antenna problem is usually modeled as a constrained
optimization problem (COP), which is classified as a non-
linear problem. Traditional optimizers could not solve the
problem well while evolutionary algorithms have potentiality
in solving such complex problem. Differential evolution (DE)
is employed in this paper.

We provide a review over the concept of the COP and also
the differential evolution (DE).

In this paper, we suppose the COP as Minimize Optimiza-
tion.

Definition 1: (Constrained
(COP))

A general COP includes an objective function, a set of m
constraints and a set of n variables. The objective function
and constraints are functions of the variables. A COP can be
mathematically defined as:

Optimization Problem

min y = f(Z) B

st 7@ = (01(%), 62(E), ..., g (7)) < 0

where T = (xl,xg, v tp) €X (D
X = {:v|l <z <}
f— <l17127 ,l ) U= (ul,u2, ...,un)

where f(&) is the objective function, ¢ (Z) < 0 is the
constraint, 0 is the constrained boundary. & is the solution
vector and X denotes the solution space, I'and i are the lower
bound and upper bound of the solution space.

Definition 2: (Feasible solution and Feasible set )

A solution ¥ = (z1,z2,...,x,) € X is said feasible, if
?(f) < 0. The Feasible set of a COP is defined as:

Sp={Z:#eX,¢(# <0} )

Definition 3: (Constrained Violation )
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Given a solution Z, the Constrained Violation of a constraint
in Eq. (1) is usually defined as:

G;(¥) = max{g;(¥),0},i =1,2,...,m. 3)

Definition 4: (Solution Violation )
Given a solution &, the Solution Violation (&) is defined
as:

1 & Gi(Z)
Y(E@) = — = “4)
@) m ; maxze p(0){ G (%)}
Where P(0) is the initial population of an EA, if
maxzepo)1Gi(¥)} < 1,4 = 1,2,..,m, we replace the

maxze p(0){Gi(Z)} with 1.
The order of two solutions is usually given as the Algorithm
1.

Algorithm 1 Comparison of 77 and &y

Casel Both are feasible, then the one with smaller objective
f wins

Case2 One is feasible and the other is infeasible, then the
feasible one wins

Case3 Both are infeasible, then the one with smaller viola-
tion ¥ wins.

The differential evolution (DE) has many different schemes.
The basic DE strategy DE/rand/1/bin is adopted in this paper.
The performance of the differential evolution and its other
versions were tested by 24 benchmark problems [26]. The
results were competitive to state-of-the-art algorithms in solv-
ing continuous constrained problems. In this paper, differential
evolution with the strategy DE/rand/1/bin is employed to the
problem.

The comparison operator is to determine which one is better
in comparison of two solutions which is shown as Algorithm
1.

III. PROPOSED ROBUST TECHNIQUE

We present a microstrip planar dipole antenna to illustrate
our technique. The microstrip antenna design is modeled as
a COP. Our robust technique is presented in constructing the
objective function in the COP.

A. Design requirements of the microstrip patch antenna

The requirements of microstrip planar dipole antenna are
shown in Table I:

TABLE I
DESIGN REQUIREMENTS OF MICROSTRIP PLANAR DIPOLE ANTENNA
Frequency 2400 £ 50M H z
Input Impedance 509
VSWR <2
Polarization Mode linear polarization
Gain > 0dB
—180° < 6 < 180°,¢ = 90°

In general, the antenna design when the smaller VSWR
accompanied with higher gain is the better design.

B. Parametric antenna structure

The parametric structure of the microstrip planar dipole
antenna is shown in Fig. 2:

- 25

Unil:mm/

(x4,12.5)

’/Y

Fig. 2. Parametric structure of microstrip patch antenna

(x3,12.5)

FR4 substrate

Er=q2

As shown in Fig. 2, the planar dipole antenna contains three
parts: the substrate, the metal patch printed on the top side
of the substrate, and the metal microstrip line printed on the
bottom side of the substrate.

The substrate is a cuboid with a size of 25mm x 25mm x
1.6mm and the relative permittivity is 4.2. Starting from the
front edge of the top metal patch, two adjacent rectangles are
cut in the patch. The metal microstrip line is a narrow long
rectangle. The feed point is at the center of the right edge of
the antenna. Both the location and the size of the patch and
the microstrip line are parameterized.

C. Solution vector and solution space

The shape of the top patch is determined by four points
(z1,91), (z2,y2), (x3,12.5) and (x4,12.5), and the shape
of the bottom microstrip line is determined by sl and sw as
shown in Fig. 2.

All these eight variables Z=(sl, sw,x1,y1,Z2, Y2, 23, T4q)
make up of the solution vector, and the solution space is the
ranges of the eight variables, see Eq. (5).

X = {#l < &<}

'Z_j:: (Sl7Sw?xlaylax%y%x?nxél) (5)
I'=(2,2,-11.5,—11.5,0,0,—11.5,0)

i = (25,6,0,0,11.5,11.5,0,11.5)

Ranges of these structure variables, i.e., the solution space, are
shown in Table II.

D. Objective and Constraints

1) Objective and Details of Our technique: In this paper,
our technique is to construct an objective function to enhance
the robustness of the antenna. The objective f(Z) is defined
as the sum of variances over frequency band, see Eq. (6):

(@) =>, ZW(Gvariance((;,w)

+ ARvariance g, ) + V SW Rvariance ©

where (6, ) represents one direction in spherical coordi-
nates. 0 is the elevation and ¢ is the azimuth. Ranges of 6
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TABLE I
RANGES OF STRUCTURE VARIABLES

variables ranges of variables

sl (unit: mm) [2, 25]

sw (unit: mm) [2, 6]

1 (unit: mm) [-11.5, 0]
y1(unit: mm) [-11.5, 0]
To(unit: mm) [0, 11.5]
yo(unit: mm) [0, 11.5]
x3(unit: mm) [-11.5, 0]
z4(unit: mm) [0, 11.5]

and ¢ are given in the design requirements of the antenna.
Guariance g, ), ARvarianceq .y and V.SW Rvariance are
the variances of gain, axial ratio and VSWR respectively over
the frequency band.

In order to ensure the robustness of antenna, according to
mathematical theory, we take the variance of each antenna
performance in every direction and over the frequency band
as objective. The smaller the variances are, the more robust
the antenna is.

Therefore, details of the objective are shown as follows:

Guariance g, )
= len%fr) Zfr(Gain(ev%fr)
MeanG g
a'LTL(g f7)
- Zf?“ len fi)
ARvamtlmce(g#,)) .
= len(fr) Z fT(Aanal(Gﬁ%f’")
MeanAR g,
Azialg o, )
- Zf’f len f:)
V SW Rvariance
= ety 2 (VSW Ry, — MeanV SW Rj,.)?

MeanVSW Ry, = Zfr %

— MeanG(97¢))2

— MeanARy ,))*  (7)

where fr stands for a single frequency point, and len( g,
is the number of points over frequency band. Therefore,
Gaing,e,fry » Axialg, rry and VSW Ry, represent the
gain, axial ratio and VSWR respectively in direction (6, ¢)
and at frequency point fr.

The microstrip antenna design problem in this paper only
involve gain and VSWR. Thus, the detail of objective is shown
in Eq. ()., .

f?:z:) = VSW Rvariance

6=180°
+ > 91800 (Guariance(g goe))

®)

_where )
¥ 1s the solution vector;

© =90°;

0 = —180°,—175°,...,175°,180°;

fr = 2350MHz, 2400MHz, 2450MHz;
Details of Gvariance(g ggey and V.SW Rvariance are given
in Eq. (7).

2) Constraints: According to Table I, we also set con-
straints on the gain and VSWR of the antenna design problem
as shown in Eq. (9):

9Gaing gge, 1) (T) = —Gaing goo vy < 0

gVSWR,,(7) = VSW Ry, —2 < 0 ©)

3) COP of Antenna Problem: From the above, the antenna
design problem is converted to a COP as follows:
min  f(Z) = VSW Rvariance
+ 22_17810800 (Guarianceg,g00))
st: gGaing goe 5, (T) = —Gaing,gpe, 1ry <0
gVSWR_fT(f) =VSWR; —2<0
X={#Fl <Z<u}
T = (sl, sw, x1, Y1, T2, Y2, T3, Ta)
I'=(2,2,-11.5,—-11.5,0,0,—11.5,0)
= (25,6,0,0,11.5,11.5,0,11.5)

(10)

I'V. VERIFYING THE ROBUST TECHNIQUE

A. Setting DE Parameters

Differential evolution with the strategy DE/rand/1/bin is
employed to solve the problem. The algorithm parameter
settings are listed as follows:.

(1) Evolutionary generations T = 500.
(2)Population size NP = 50.
(3)Crossover rate CR = 0.9.

(4) Scaling factor F = 0.5.

B. Results and Discussion

The electromagnetic simulation software Ansoft HESS is

adopted for evaluating the antenna performance during the run
of the DE.

Here, we apply two other objective techniques, which are

usually adopted to generate feasible solutions for antenna
problems, to compare with our objective technique. These two
objective techniques are shown as follows:
(1) The objective is defined as the sum of gain results over
the directional region and the frequency band [27]. Therefore,
when the solution satisfies constraints, this objective continues
to find a solution with bigger gain results, see Eq. (11):

0=180° 2450M H =z

Z Z —Gaing,g00, 1)

6=—180° 2350 M H z

(1)

(2)The objective is zero. When the solution fits constraints,
the evolutionary process stops, see Eq. (12):

f(#) =0
In short, we denote our objective technique variance_tec in
Eq. (6) and other two objective techniques max_gain_tec in
Eq. (11), feasible_only_tec in Eq. (12) respectively.
Differential evolution runs for the three objective tech-
niques variance_tec, max_gain_tec and feasible_only_tec.
The geometric structures of the three evolved antenna solu-
tions are shown in Fig. 3, Fig. 4 and Fig. 5, respectively.
And the variable values are (17.2,2.5,-11.2,-1.5,6.1,9.1,-6,7.6),
(16.1,2.3,-7.8,-3,8.6,7.4,-8.3,9.5) and (16.9,2,-7.9,-2.9,7.8,1.3,-
8.4,9.2), respectively.

(12)
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Geometric structure of the evolved antenna with variance_tec
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Fig. 3.
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Fig. 4. Geometric structure of the evolved antenna with max_gain_tec

Unit:mm

(7.8,1.3)

e

Geometric structure of the evolved antenna with feasible_only_tec

’ (9.2,12.5)

FR4 substrate
(e,24.2)

Fig. 5.

1) Performances of evolved antennas: VSWRs of the three
evolved antennas by the three objective technologies vari-
ance_tec, max_gain_tec and feasible_only_tec are all less
than 2 in Fig. 6, and gains are greater than O in Fig. 7. All
of the three evolved antennas satisfy the requirements. Fig.
8 shows the radiation patterns with the co-polarization and
cross-polarization components of the three evolved antennas.
Note the differences among the three patterns are very small
since all antennas in the solution space in Eq. 5 are planar
dipole antennas and with a fixed size 25mm*25%1.6mm, in
this way, they have roughly fixed patterns.

24 -~ feasible_only
maz_gain

— wariance

1.0
2340 2360 2380 2400 2420
Freauencv(MHz)

2440 2460

Fig. 6.  VSWRs of evolved antennas at 2350MHz, 2400MHz and 2450MHz
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Gains of evolved antennas at 2350MHz, 2400MHz and 2450MHz
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—— dB(GainTheta)
Setup - LastAdapfive
Freq=245GHz Phi=90deg"

HFSSDesign! LA,
Curve Info

—— dB(GainPhi)
Setup: LastAdaptive
Freq="2 45GHz Phi=80deg"
—— dB(GainTheta)
Setup : LastAdaptive
Freq="2 45GHz Phi=50deg’

max_gain_tec

HFSSDesign1 L&,

Curve Info
—— dB(GainPhi)

Setup1 : LestAdaplive
Frag=2.45GHz Phi=90deg’
—— oB(GainTheta)
Setup : Lastadaptive
Freg=2 45GHz' Phi=90deg’

feasible_only_tec

Fig. 8. Radiation patterns of evolved antennas with the co-polarization and
cross-polarization components.

2) Comparison of VSWR bandwidth: We assume that the
antenna can work in a real environment when its VSWR is
less than 3. Based on this assumption, obtaining bandwidth
from variance_tec, max_gain_tec and feasible_only_tec are
430MHz, 320MHz and 380MHz respectively as shown in Fig.
9. It indicates that the antenna evolved by the proposed tech-
nique variance_tec has broader bandwidth than the two others.
Note that VSWRs shown in Fig. 9 have slight differences with
those in Fig. 6 at same frequency points. The differences are
caused by the numerical computation of electromagnetic field
in Ansoft HFSS, and it is trivial.
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feasible_anly
mazx_gain

— wariance

430MHz
4 380MHz

320MHz

%
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2300 2400 2500 2600 2700
Frequency(MHz)

Fig. 9. Comparison of VSWR bandwidth among variance_tec,max_gain_tec
and feasible_only_tec from 2200MHz to 2700MHz

3) Comparison the robustness of three solutions: To verify
the effectiveness of the proposed objective technoque in en-
hancing the robustness, we compare the robustness of the three
antennas evolved by the three objective technologies vari-
ance_tec, max_gain_tec and feasible_only_tec respectively.
The tolerance error of fabricating a patch antenna is usually
about +0.1mm. In the paper, we suppose that the tolerance
error is £1mm, that is, the range of perturbation of each
design variable is 2mm. Four perturbations 0.5mm, 1mm,
1.5mm and 2mm are adopted to simulate the range of 2mm
perturbation in the engineering fabrication. We apply the
orthogonal experiment design method [19] to simulate the per-
turbation distribution for these four perturbations. The solution
vector of antenna design problem has eight design variables
and we use two levels in this paper, sixteen perturbed antennas
are generated in each orthogonal experiment according to
L16(2%) orthogonal array. Altogether we generated sixty four
perturbed antennas in the perturbation distribution simulation.
The perturbation distribution simulation is performed on the
three evolved antennas respectively. The average deviation of
each performance (VSWR, gain, and so on) of the perturbed
antennas from each of the evolved antenna is calculated to
show the robustness of the evolved antenna. Formulations of
the average deviations are shown as follows:

VSW R_avg_deviation s,

64
Gain_avg_deviation g, ry

16 : )
2 —0.5,1,1.5,2 2in1 |G‘“"(9,9O° i fr) —Gain_evolved g 900, rr)

where

VSWR(,; ¢ry is the VSWR of the perturbed antenna with
perturbation range r at ith perturbation at frequency fr.
VSW R_evolvedy, is the VSWR of evolved solution at fre-
quency fr.

Gaingg,goo i, fr) 1s the gain of the perturbed antenna with
perturbation range r at ith perturbation at frequency fr in
direction (6,90°).

Gain_evolvedg goo ¢ry is the gain of evolved solution at
frequency fr in direction (6,90°).

6 = —180°,—175°, ...,175°,180°.

Note The smaller the avg_deviation are, the more robust the
solution is.

e—e variance_tec
-+ feasible_only_tec
+—+ max_gain_tec

avg_deviation
s
5

o
©

0.8

03 4 2.36 2.38 2.42 244 246

2.4(
Frequency(GHz)

Fig. 10. Comparison of VSWR avg_deviation

TABLE III
QUANTITATIVE RESULT OF VSWR

2.35GHz | 2.40GHz | 2.45GHz
variance_tec 0.7301 0.7067 0.7458
max_gain_tec 1.0523 1.1165 0.9384
feasible_only_tec| 1.1116 1.2060 0.7445

VSWR_avg_deviations of the perturbed antennas from
the three evolved antennas are calculated respective-
ly. They are listed in Table III and plotted in Fig.
10. The VSWR_avg deviations from the proposed tech-
nique(variance_tec), are smaller than the other two objective
techniques(max_gain_tec and feasible_only_tec). It demon-
strates that the proposed objective technique can generate a
more robust solution than the other two techniques in VSWR.

Fregenncy is 2.40GHz

e—e variance_tec
-+ max_gain_tec
+— feasible_only_tec

avg_deviation

o
°
=

0.02

0'0—0200 -150 -100 =50 50 100 150 200

0
Theta

(13)
Fig. 11. Gain avg_deviation of perturbed antennas among three objectives
at 2.40GHz
TABLE IV
THE AVERAGE DEVIATION VALUE OF GAIN OVER THE PERTURBATION
RANGE
variance_tec | max_gain_tec | feasible_only_tec
0.0273 0.0249 0.0251
240GHz  i5604p) -16.0(dB) -16.0(dB)

Notably, all antennas in the solution space in Eq. 5, which
are planar dipole antennas with a fixed size 25mm*25*1.6mm,
have a roughly fixed pattern. The evolved antennas by the three
objective techniques and the perturbed antennas around the
evolved antennas both belong to the solution space. They all
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have the roughly fixed pattern. In this way, it is easy to deduce
that the three evolved antennas have very small differences of
gain deviations, which means that the gains of the evolved
antennas are all robust in this sense. To verify this deduction,
the average deviations of gains of the perturbed antennas from
the three evolved antennas are also calculated respectively at
2.40GHz. Fig. 11 show the Gain_avg_deviations over the
range ¢ € [—180°,180°] at 2.40GHz. The average values
of Gain_avg_deviation over § € [—180°,180°] are listed
in Table IV. It can be observed that there are very small
differences among three techniques in gain deviations, which
are all less than —15dB. That is, the gains of the evolved
antennas by the three objective techniques are all robust at
2.40GHz.

Suppose that the size of the antennas in the solution space
is changeable, not with the fixed size 25mm*25*1.6mm, and
the shape of the antennas is arbitrary, not the planar dipole
antennas. Then the radiation patterns of the antennas are no
longer fixed. The gain robustness of the evolved antennas
are no longer definite. Therefore, the robustness-enhancing
technique should still be applicable to gain on the above
supposition, but which is not verified due to the time-expensive
in this paper. The verification and the challenge of the time-
expensive will be our future work.

C. Discussion of computational cost

In an evolutionary robust optimization , evaluation of a
solution x¢ is usually implemented by evaluating a number
of perturbed solutions 7T ( e.g., the perturbations 7" = 64
in this paper ) around the solution xo. The average ( or
the worst, etc ) value of evaluations of perturbed solutions
is usually considered as the evaluation value of the solution
Xgo. Therefore, an evolutionary robust optimization consumes
T times computational cost of an optimization without robust
consideration ( denoted as evolutionary non-robust optimiza-
tion ). The proposed technique variance_tec in this paper
is actually an evolutionary non-robust optimization without
additional computation. However, it can evolve a more robust
antenna than other evolutionary non-robust optimization tech-
niques, such as max_gain_tec and feasible_only_tec.

In the paper, only the microstrip planar dipole antennas
with a size 25mm*25mm*1.6mm was used to verify the
robustness-enhancing technique since evolutionary antenna
optimization is time-expensive. The experiments were run on
a PC with 32-bit Intel(R)Core(TM) processor 2.33GHz, Quad-
Core, Memory 4G, and EAs evaluated the antennas by using
HFSS 14.0 simulation software. An evolutionary non-robust
optimization of microstrip planar dipole antenna in this paper
consumed about 625 hours(nearly a month) and occupied
about 210M B memory to run smoothly. For optimizing an
antenna with more complex shape, months even years are
needed. An evolutionary robust optimization of antenna would
greatly multiply the time. In this way, the verification of the
robustness-enhancing technique applicable to gain and axial
ratio has to be our future work. Notably, some of our current
works focused on the challenge of time-expensive optimization
(e.g.[28]), which are helpful to the future work.

V. CONCLUSION

This paper proposes a new technique to enhance the ro-
bustness of antennas by minimizing the variances of the
gain, VSWR and so on over the required frequency band.
Optimization of a microstrip planar dipole antenna is presented
to illustrate the technique. Two other techniques have been
used to compare the proposed technique. It has been shown
that

1) The proposed technique is actually an evolutionary non-
robust optimization one without the extra computation-
al overhead. However, it can generate a more robust
antenna in VSWR than other evolutionary non-robust
optimization techniques.

2) At the same time, the robust antenna evolved by the
proposed technique has a broader frequency bandwidth
than others.

We would like to pursue several topics in the future:

1) The robustness-enhancing technique is verified to be
applicable to gain and axial ratio.

2) The proposed technique is applied to design robust
antennas and fabricate them.
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