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Abstract

In this thesis I will look at how large, complex structures can be interpreted and

evaluated using an information theoretic approach. The work specifically investigates

techniques to understand disordered materials. It explains a novel framework using

statistical methods to investigate structural information of very large data sets. This

framework facilitates understanding of complex structures through the quantification of

information and disorder. Large scale structures including granular media and amor-

phous atomic systems can also be processed. The need to deal with larger complex

structures has been driven by new methods used to characterise amorphous materials,

such as atomic scale tomography. In addition, computers are allowing for the creation

of larger and larger data sets for researchers to analyse, requiring new techniques for

storing and understanding information.

As it has become possible to analyse large complex systems there has been a correspond-

ing increase in attempts to scientifically understand these systems. New, man-made,

complex systems have emerged such as the stock market and on-line networks. This has

boosted interest in their interpretation, with the hopes they can be more easily manip-

ulated or controlled. Crystallography has been applied to great effect in biology, having

been used to discover the structure of DNA and develop new drugs (UNESCO, 2013).

However it only describes crystal structure, which can be a drawback as a large major-

ity of matter is amorphous. As such it is hoped that interpreting and understanding

disorder may lead to similar breakthroughs in disordered materials.

Entropic measures such as the mutual information and Kullback Leibler Divergence are
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used to investigate the nature of structural information and its impact on the system.

I examine how this information propagates in a system, and how it could quantify the

amount of organisation in a system that is structurally disordered. The methodology

introduced in this thesis extracts useful information from large data sets to allow for a

quantification of disorder. The calculated entropy for amorphous packings is generally

less than 1 bit with Mutual information between 0 and 0.1 bits. The results verify direct

correlation between Mutual Information and the correlation coefficient using various

techniques. The Mutual information shows most information is obtained where sphere

density is highest, following a similar trend to that of the Radial distribution function,

and generally increasing for higher packing fractions. Evidence of the Random Close

Packed (RCP) and Random Loose Packed (RLP) limits in two dimensions is shown, as

well as evidence of both phases in time-lapsed 3D packings.

The Kullback Leibler Divergence is also explored as a relative measure of disorder. This

is achieved by calculating redundant information in packings so that areas of low and

high order can be shown. Results present colour maps displaying relative information

in random disk packings from which motifs can be identified. For higher packing

fractions distinct borders form for areas of low and high information, particularly where

crystallisation has occurred. Again, these results show an increase in information for

more densely packed structures, as expected, with a Kullback Leibler divergence of

between 0 and 1 bits.

Finally I introduce the concept of self-referential order which provides a way to quantify

structural organisation in non-crystalline materials, by referencing part of the system

in a similar way to a unit cell. This allows a step forward in understanding and char-

acterising disorder, helping to develop a framework to encode amorphous structures in

an efficient way. These results show increasing information for higher packing fractions

as well as further evidence of RLP and RCP limits around packing fractions of 0.54

and 0.64 respectively.



Contents

Declaration i

Acknowledgements ii

Abstract iii

List of Tables xi

List of Figures xviii

List of Acronyms xix

1 Introduction 1

2 Background 4

2.1 Packing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 The Kepler Conjecture . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1.1 Solving the Kepler Conjecture . . . . . . . . . . . . . . 6

2.1.2 Foams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Granular Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3.1 Jammed Packings . . . . . . . . . . . . . . . . . . . . . 11

2.1.3.2 The Jamming Limit . . . . . . . . . . . . . . . . . . . . 13

2.2 Self Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Self Assembly in Disordered Structures . . . . . . . . . . . . . . 16

v



CONTENTS vi

2.3 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Conditional Probabilities . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4.1 The Central Limit Theorem . . . . . . . . . . . . . . . 24

2.3.5 Correlation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5.1 Pearson Correlation Coefficient . . . . . . . . . . . . . . 25

2.3.5.2 Co-variance . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Data Compression and Kolmogorov Complexity . . . . . . . . . . 26

2.4.1.1 Data Compression . . . . . . . . . . . . . . . . . . . . . 26

2.4.1.2 Kolmogorov Complexity . . . . . . . . . . . . . . . . . . 27

2.4.1.3 Non-Computability of the Kolmogorov Complexity . . . 30

2.4.2 Shannon Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Methodology - Generating Packings 38

3.1 Random Sequential Addition (RSA) . . . . . . . . . . . . . . . . . . . . 38

3.2 Molecular Dynamics Codes . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Lubachevsky-Stillinger algorithm . . . . . . . . . . . . . . . . . . 40

3.2.2 Creating Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Statistically Driven Data Generation . . . . . . . . . . . . . . . . . . . . 49



CONTENTS vii

4 Methodology - Framework for Characterisation of Structures 52

4.1 Description of Packing Structures . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . 53
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Chapter 1

Introduction

The aim of this thesis is to investigate methods to quantify structural disorder using

a statistical approach. Understanding disordered structures falls into the area of com-

plexity theory and relies upon knowledge in information theory and statistics. While

research into complex systems is relatively new, there is a great amount of interest in

their study (Wang & Chen, 2003; Newman, 2003).

Complex systems occur throughout nature and man-made systems, from worldwide

networks on-line to the microscopic cells that make up all life on earth. Understanding

these systems is key to describing the world around us. The relatively well understood

crystalline structures that make up around ∼ 30% of all matter only provide part of the

picture. The majority (around ∼ 70%) are amorphous materials that are constructed

by atoms in a disordered arrangement. This disordered state is not well understood

with some debate around its very definition. Even the term disorder can be thought

of as negative, being a disturbance of order. This definition of order comes from the

perspective of crystalline structures. This is not surprising considering the progress

that has been made in the field of crystallography (Knight, 2008). X-ray diffraction

has been the main tool for studying atomic structures since its creation at the start of

the 1900’s. Unfortunately this only allows for study of the average relative positions

of atoms (Butler et al., 2013). This drawback puts a natural emphasis on crystal

1
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structures, leaving amorphous structures ill-understood. Structure became described

by its relation to this ’perfect’ form of matter.

Despite a focus on crystalline structures, amorphous materials have been shown to

have their own forms of organisation. These forms should be better understood to take

full advantage of the fabrication of new functional materials. It has proven difficult

to encode this information because, in absence of a compact way to encode structural

complexity, the processing of this amount of information is still beyond the capability

of the world’s largest supercomputers. Remarkably, it should be noted that there is not

the digital storage capacity to hold all the information from even one gram of matter.

This is because all the hard disks and other digital media storage would ’only’ store a

currently estimated 1020 bits (Baez, 2015).

It has been shown that ‘order’ in amorphous structures can be identified by looking at

motifs that are more common or descriptive than others, and thus encodes more infor-

mation about the system (Kurchan & Levine, 2011). This approach reveals diverging

correlation lengths at glass transition (Sausset & Levine, 2011) providing insight on

the relations between thermal glass transition and athermal jamming of discrete mat-

ter (Biroli & Garrahan, 2013). The method itself can be compared to simplifying data

in a crystalline structure to the unit cell. This leads to the concept of finding motifs in

a structure that best describes the whole system. With a set of motifs and assembly

rules, a shape-filling tessellation can be formed. In this process, a compression in the

amount of information required to describe the system can be achieved.

Given the development of new technology such as atomic scale tomography, data sets

from amorphous materials could soon be studied on a large scale. Such research would

require new techniques to identify structure and statistics in these materials. My thesis

focuses on developing a broad framework for dealing with disordered structures, and

other complex systems, by incorporating an information theoretic approach to the

problem. The general case of hard sphere packings is taken as an example of how this

could be achieved allowing for analogy with atomic structures (Frank & Kasper, 1958).
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Additionally, this encourages overlapping techniques in the field of packing problems

(including the areas of granular and foam materials). These benefits create a dynamic

framework which can be applied to such problems.

Amorphous and granular structures can be considered analogous, particularly when

looking at their statistics. This is an important connection as such research is well

established and gives a basis for developing a broad framework, and dealing with gran-

ular materials experimentally is much easier than trying to determine the structure of

an amorphous material. In recent years X-ray CT has been used to characterise the

structure of 3D random packings of beads (Aste et al., 2007). Such experimentally gen-

erated data will be looked at in the final chapters of this thesis. Granular systems have

also been likened to foam materials and importantly for this research, atomic packings

(Frank & Kasper, 1958) (Biroli & Garrahan, 2013).

The thesis has taken techniques used and developed in a number of scientific fields

such as Biology, Physics, Mathematics and Computer Science and hopes to develop a

statistical framework for dealing with a large number of problems found across many

scientific fields.



Chapter 2

Background

2.1 Packing Problems

Packing problems have been pondered for hundreds of years One can imagine why

someone transporting goods would probably want to fit them into the smallest space

possible, maximising the amount they could carry, while ancient merchants might try

to fill a bag with the minimum amount of produce to maximise profits.

Scientific exploration of packing problems didn’t really kick off until much later in

our civilisation, towards the end of the renaissance in the 17th century. While many

people were involved, it is perhaps the work of Johannes Kepler (figure 2.1) that is

most celebrated today. Best known for his laws of planetary motion, Kepler did in

fact devote time to studying packing problems. This led to the well known Kepler

conjecture published in ”On the six-cornered snowflake” in 1611, where he theorises on

why snowflakes have hexagonal symmetry (Ball, 2011).

4
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2.1.1 The Kepler Conjecture

The Kepler conjecture states (in his words) the packing obtained by a hexagonal close

packed structure “will be the tightest possible, so that in no other arrangement could

more pellets be stuffed into the same container”.

Figure 2.1: Johannes Kepler
(1571-1630)

In short, it describes the most efficient packing possible,

whereby, the packing fraction is a maximum (Aste &

Weaire, 2000). The packing he proposed was the hexag-

onal close packed structure (figure 2.3). This gives a

packing fraction, the ratio of filled space to all the space

in the system, of 0.74, or in other words, leaving 26% of

the space empty. The packing fraction is denoted with

Φ, and is the sum of the volume of the particles in the

system divided by the complete volume of that system.

It would be unfair not to mention the mathematician

and Oxford graduate, Thomas Harriot, who, some years

previous, in 1606, had been asked by explorer Walter

Raleigh the most efficient way to stack cannonballs upon his ship’s deck. Naturally as

a mathematician he reduced this to a more generic problem, the close packing of equally

sized spheres. This had the added bonus of relating it to the discussion of atomic theory,

more than two hundred years before it was to be proved. Through the work of Kepler

and Rene-Just Hauy it formed some of the framework for crystallography (Ball, 2011;

Kunz, 1918). Harriot was most certainly a big influence on Kepler’s work on packing

problems having discussed his ideas at length in correspondence, which ultimately lead

to the formation of the Kepler conjecture.
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2.1.1.1 Solving the Kepler Conjecture

While it seemed at first like quite a simple conjecture, proving it was a lot harder,

even appearing in the famous 1900 Hilbert list of unsolved mathematical problems.

Many scientists devoted not inconsiderable amounts of time in an attempt to find a

rigorous mathematical proof. Real progress was made when Carl Friedrich Gauss,

200 years after Kepler’s work, managed to prove the conjecture true (well not quite).

By placing kissing spheres on a lattice, the conjecture simplifies to an optimisation

problem for which the solution can easily be seen as the face centre cubic (FCC) lattice.

However, this is obviously not a proof for all cases, and only holds up for any regular

lattice arrangement, as it discounts the possibility of the most efficient packing being

disordered.

Axel Thue (Born 1863) reduced the problem to two dimensions, much as Joseph Louis

Lagrange had done (but like Gauss only proving it for a lattice) in 1773. Thue used

triangulation and optimisation showing a hexagon inscribed by a circle, in which no

other circles could appear without displacing another. The largest density can then be

shown to be the area of the circle divided by the area of the hexagon or

πr2

2
√

3r2
=

π

2
√

3
= 0.9069 (2.1)

where r is the radius of the circle. It should be stated that other more modern proofs

exist using Delaunay triangulation and density analysis for dense hard sphere packings

(Chang & Wang, 2010).

While it is argued whether or not Thue’s argument constitutes a proof, it leads on

to later work in three dimensions using the same principles, where the more formal

Voronöı analysis is used (see section 4.1.2), with truncation of the Voronöı cells the

optimisation parameter (University of Pittsburgh, 2001). This gives the solution as a
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dodecahedron, for which the packing fraction is

Φ =
4
3πr

3

1
4(15 + 7

√
5)a3

≈ 0.755 (2.2)

where r is the radius of the circle, a is the edge length and by trigonometry r = 1.1135a

This is interesting as, for comparison, the packing fraction for FCC is Φ = 0.740,

the same as for hexagonal close packed lattice (HCP). These are the highest packing

fractions that have been observed in nature. So was this it, a theoretical maximum that

Figure 2.2: Example of an FCC Packing Figure 2.3: Example of an HCP Packing

had just not been observed? Well probably not, as the dodecahedron does not tile in 3D,

and so the local maximum Φ is not equatable to the global maximum Φ, therefore some

correction term must be used to take this into account. Fejes Toth made an important

step to a solution in 1953 by showing the problem could be solved as a minimisation

of a function with a finite number of variables, by taking into account the relative

position and volume of the various cells (Fejes, 1964). While this proved promising

for a solution to the Kepler conjecture, the calculation was far too computationally
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demanding to be completed. While simplifications of this problem allowed bounds

to be set, then tightened as computers became more and more powerful, a complete

solution was not made until quite recently.

In 1998, Thomas Hales claimed to have finally solved the problem by using a hybrid

Delaunay and Voronöı decomposition approach and building greatly on the work of

Toth, combining work in optimisation, linear programming and interval arithmetic

(Hales, 2005). While it is generally accepted to be correct, it is an extremely complex

proof and in 2003 Hale began work on the ”Flyspeck project” or ”Formal proof of

Kepler”, which involves the use of computers to automatically verify the proof but is

still an ongoing work (Weisstein, 2014).

2.1.2 Foams

While sphere packing was obviously important for Greengrocers and Admirals alike, a

study of spheres alone is not a complete picture, especially if one is a librarian stacking

books or instead of oranges the Greengrocer has cake. Research on how poly disperse

shapes fit together was perhaps best done experimentally by using foams and, has such,

been an area of great interest. A foam is composed mostly of air with liquid interfaces

forming a shape filling arrangement of polyhedra (see figure 2.5), and are very common,

ranging from our evening bubble bath to the fabric of the universe (like the hypothetical

”quantum foam” (Wheeler, 1998)).
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Figure 2.4: Lord Kelvin
(1824-1907)

The earliest scientific research again goes back to the

renaissance, with work looking at simple foams done

by Leonardo da Vinci and Robert Boyle (Weaire et al.,

2007). Later on, Gottfried Leibniz, laid the foundation

of topology, allowing a mathematical basis for the study

of structures composed of individual cells (von Leibniz,

1976). Another well known name who worked on pack-

ing problems was Lord Kelvin (figure 2.4), who in 1887

asked, what structure, with similar cells of equal volume

gives the smallest surface area. This can more easily

be thought as cubes. The more cubes are stacked, the

larger the surface area becomes disproportionately to the increase in volume. Kelvin

proposed a structure to minimise this area, a truncated tetrakaidecahedron (14-sized

polyhedron)(Lord Kelvin, 1887). To ensure it conformed to a space filling foam, the

hexagonal faces needed to be rounded, as a consequence of Plateau’s law for soap films,

which define all stable foams (Morgan, 1994).

It was only recently this structure was succeeded by the Weaire-Phelan structure (figure

2.6), which is composed of two different cells. The first is an irregular dodecahedron

with pentagonal faces, possessing tetrahedral symmetry. The other being a tetrakaidec-

ahedron, with two hexagonal and twelve pentagonal faces, possessing antiprismatic

symmetry (Weaire & Phelan, 1994). This structure was used in the design process of

the Beijing National Aquatics Centre, built for the 2008 Olympics. The engineering of

such shaped structures, due to the minimised surface area, would require less material

compared to a similarly sized building, and yet still be a robust and sturdy structure.

Other recent examples of foam research are found in Biology, including the study of

structures in nature such as beehives (section A.1) in which topology plays an important

role in function. These studies allow insight for the development of optimal structures

in human engineering (Park & Han, 2013). Intriguingly, cell topology has also been

shown to be important, and the use of foam research have allowed insights into how
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Figure 2.5: A typical foam, comprising
air sacs with liquid interfaces

Figure 2.6: The
Weaire-Phelan structure

larger cellular structures evolve (Gibson et al., 2011), how tumours may develop and

more importantly, why.

2.1.3 Granular Materials

Granular materials became of greater interest due to their similarity to the hard sphere

packings described earlier. They are examples of packings of hard non-overlapping

entities. However, they are subject to physical forces such as gravity and friction. The

easiest examples to think of would be sand on a beach, or sugar in a bowl (I prefer

thinking of the latter). Some examples are shown in figures (2.7) and (2.8). Granular

materials are of interest in a wide range of fields, from shock waves and explosives to

tectonics and other geophysical phenomena. They are also dealt with in large quantities

in industry, from salt mines to sugar factories, so understanding their behaviour is of

particular importance.

Again a number of well known scientists played at least some part in the story. Charles-

Augustin de Coulomb’s work on friction was partly based on granular systems (Coulomb,

1821; Rodhes, 1997). Osborne Reynolds did extensive work on the subject, even going

so far as saying “it is shown that there is one, and only one conceivable purely mechan-

ical system capable of accounting for all the physical evidence, as we know it, in the

Universe” (Reynolds, 1903) in reference to the ’granular’ structure of the fabric of the
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Figure 2.7: Several examples of everyday
granular media

Figure 2.8: A jammed and
disordered packing of mono-disperse

hard spheres

universe (i.e. the aether). He was known for eye-catching experiments using granular

systems, such as filling a container with sand and water and observing it go rigid. This

was to show the principle of ’dilatancy’ where a rigid granular material must dilate in

order to deform (Aste & Weaire, 2000). This also allows us to start forming a concept

of jamming, where the granular material becomes rigid as the sand particles can no

longer move freely.

2.1.3.1 Jammed Packings

Packings of particles can be considered in a ’jammed’ state when the particles no longer

have enough freedom to displace the others around it, and so the relative position of the

particles becomes fixed, leading to the whole structure becoming rigid. This typically

occurs as a system is driven towards increasing density or higher packing fractions.

Local jamming may also occur when one or more particles become trapped, but others

around it can still be displaced. The density and configuration a packing jams in is

highly dependent on the environment, the main ones being:

• The energy in the system, and how equilibrium is achieved, which can have a

drastic impact on the arrangement

• Forces applied externally (i.e shearing, straining) can cause or prevent jamming
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(Kumar & Luding, 2014)

• The shape of the object (wonderfully portrayed in the M&M’s experiment by

Paul Chaikin (Donev et al., 2004)) determines its properties

• The poly-dispersity of the objects, where each particle can have a different size.

Both the ratio of the sizes, and the relative numbers of particles for each size, are

important

• The shape and size of the container; boundaries in particular can encourage cer-

tain specific arrangements (Aste et al., 2004)

Current research is ongoing on how these sort of criteria affect packing, and is quite

wide ranging. Examples of how spheres pack in cylinders may give insights into ar-

rangements of particles in channels (Chan, 2011). Some research has been done on

adjusting aspect ratios of packed spheres (Donev et al., 2004), creating packings of

ellipsoids on lattices, while others have created spiky particles, by adding ellipsoids to

spheres to explore packings of non-convex particles (Malinouskaya et al., 2009). It is

clear from these studies that altering the shape of the particles drastically changes their

packing characteristics.

What is still not clear is whether the jamming of amorphous structures, whereby they

effectively become a solid, actually corresponds to a phase transition. For example

jamming occurs in glassy systems, however, the glass transition is not considered a

phase change as it is a gradual and ill-defined change over a range of temperatures. By

comparison first-order phase transitions are marked by rapid changes in the structure

and properties of a material, which are far easier to define in the well understood

crystalline phase. It is important to note that crystalline structures are only exhibited

in a small number of the materials around us.

While there are certainly differences, it can be argued the lack of consensus on the issue

is simply a lack of understanding of the amorphous phase, and much effort has been

placed on better understanding the jammed state. While much modern work is done
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using computer simulations, many experiments have been carried out to verify their

accuracy, for example diffusing wave spectroscopy of granular systems (Kim & Pak,

2010) and the computerised x-ray tomography (CT) of foam balls (Aste et al., 2004).

Further research has provided insight into granular systems, for example spacial hetero-

geneity, where predictable structures arise in a granular media such as bridges (chains

of particles supporting each other), as well as various characteristic structures (Ed-

wards & Oakeshott, 1989a). Other researchers have used a myriad of variables, such as

the compactivity (Edwards & Oakeshott, 1989b) and anisotropy (Schrder-Turk et al.,

2013). While it is clear from this research that there are changes happening at the

jamming limit, it has been difficult to locate an ”abrupt change” that one might wish

to see for a clear phase transition.

2.1.3.2 The Jamming Limit

The jamming limit is the point at which the packing fraction cannot be driven higher

before crystallisation must occur. There is also a lower limit, below which the packing

is never dense enough to jam. By extension the jamming limits show the bounds of Φ

for which jammed amorphous packings can occur. Investigating these limits has been

of particular interest in the field of packing problems.

Auguste Bravais (Bravais, 1949), showed crystal phases can be characterised as a lattice.

This restricted the points at which particles could be placed and reduced the number

of configurations considerably. Unfortunately for the densest random packings we still

have many possible configurations, meaning the problem cannot be simplified as was

done for the Kepler conjecture.

Perhaps the most extensive work was initially undertaken by Desmond Bernal (figure

2.9) who created large models, painstakingly assembled by hand (shown in figure 2.10).

Despite the perhaps, ’crude nature’, by today’s standards at least, of the experiments he

did show for mono-disperse spheres the random packing fraction did not exceed ≈ 0.64,
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now known as the random close packed limit (RCP). Beyond this limit crystallisation

must occur, and is an intermediary phase between the RCP limit and an HCP structure.

Below this limit local crystallisation may occur, but is never certain, as configurations

will always exist without it.

Bernal also found a lower bound for jammed states, known as the random loose packing

limit (RLP) showing Φ ≈ 0.55. However, it is difficult to achieve jamming at the

RLP limit, requiring constant pressure. Therefore external forces such as shearing and

gravity must be eliminated (Aste & Weaire, 2000). These forces are large compared to

the effects of temperature, which has little impact due to the macroscopic nature of the

particles. This minimal change in energy means the particles are essentially athermal

(Mehta, 2010). These limits also change depending on the shape of the particles as

previously seen (Donev et al., 2004).

Figure 2.9: Desmond Bernal working
on one of his large scale models of

amorphous structures

Figure 2.10: Model showing random
close-packing by built by Bernal by hand to

further understand packing problems

It is clear these materials are complex, sometimes exhibiting liquid and solid character-

istics, and certainly their configuration is highly dependent on initial conditions, along

with what forces are used to drive a system to equilibrium, and how fast. But it is
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important to note that strong links have been suggested between hard sphere packing,

foams, granular materials, (Weaire et al., 2007) and atomic systems (Frank & Kasper,

1958), and so developing a statistical framework for dealing with one can afford us tools

to understand the others.

In 2D the packing limits are less well defined. The maximum packing fraction for any

2D structure is the hexagonal packed structure with Φ ≈ 0.92, however the RLP limit

is unconfirmed, with little evidence it even exists (Meyer et al., 2005). The RCP, while

not as well understood as for the 3D case, is known to be Φ ≈ 0.82 (Meyer et al., 2005).

2.2 Self Assembly

Self assembly is where a group of building blocks assemble themselves into some pat-

tern based on matching rules, for example, in molecular scale physics the blocks are

molecules and the rules are electromagnetic forces. There are many other examples

such as DNA and other protein complexes in biology. Depending on the scale these

rules can simply be topological (like a jig saw puzzle), but others can be driven by

more complex quantities (such as energy). The number of blocks and rules can be

related to complexity, and searching for these ’motifs’ can help us describe the system,

potentially reducing the amount of information needed to describe the system. The

perfect example is that of a unit cell describing an entire crystalline structure. Self

assembly takes place on many scales from nanoparticles to entire galaxies (Krasnogor

et al., 2011). It is also important that self assembly is only considered to have occurred

when order is gained in the assembled structure (Ahnert et al., 2010). Its main areas

of application have been within chemistry and biology.
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2.2.1 Self Assembly in Disordered Structures

The thesis started by looking at the idea of self assembly which based a measure of

structural disorder on the amount of information required to build the system, built by

a set of self-assembly rules. This approach started by dividing a system into building

blocks and ’colours’. Colours are the different types of interfaces to which the assembly

rules would apply for example colour 1 attaches to colour 3. A set of colours and rules

are called an assembly kit. From these colours an interaction matrix could be created

which contained the rules (Ahnert et al., 2010). Such a technique was presented in

the paper ”Self-assembly, modularity and physical complexity” (Ahnert et al., 2010)

(figure 2.11) and was based upon ideas of self-assembly (Rothemund & Winfree, 2000)

and molecular biology (Adleman, 1994). This research allowed the authors to assign a

value to the disorder of their own structures (i.e. cell proteins). I realised that such a

method could be used to quantify disorder using a similar methodology outlined below.

The method applied to disordered structures could follow a plan like this:

• Divide structure into building blocks, which would require finding a motif or

motifs that describe the system, and then defining the building blocks;

• Create a contact graph, showing the building blocks and what structures they are

in contact with;

• Characterise these contacts to create building rules, describing how these blocks

link together;

• Attempt to reduce the complexity by looking at subgroups of the main graphs,

essentially scanning at different resolutions;

• Quantify disorder by reducing the information required to a minimum.

In this case the idea can be formalised in relation to the Kolmogorov complexity (dis-



2.2 Self Assembly 17

cussed in section 2.4.1) of structure A as:

K(A) = I(S̃A) = min
SA

I(SA) (2.3)

where I(SA) is the information needed to encode the assembly kit S of structure A and

S̃A is the minimum assembly kit (Ahnert et al., 2010).

Figure 2.11: An image created to show the concept of modularity and complexity. As the number of
colours and rules increases, so does the complexity.

However, for disordered structures it is difficult to divide the structure, as one would

either have the number of blocks or the number of colours tending to the number of

objects and no information would be saved. Despite this I decided it would be possible

to use the amount of information required to store a structure as a basis to measure

disorder. Modifying the use of an interaction matrix to one of probabilities could

provide insight, based on statistical information gathered from topological techniques.

This technique became the foundation of my thesis. While no piece could offer enough

information to encode an entire system, it may be possible that some could describe
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the system better than others.

2.3 Probability Theory

Before we go on to talk about Complexity and Information Theory it is useful to define

a few quantities and rules from probability theory.

2.3.1 Probabilities

Probability measures the chance of an event occurring and can be mathematically

described as

p(X) =
number of occurrences of specific event

Total number of events

let’s take the example of a coin flip

p(X = heads) =
number of times heads occurs

Total number of coin flips

for one flip p(X) = 0 or 1

but, as most people know, the probability should be 0.5, so as the number of

events N becomes large, lim
N→∞

p(X)→ 0.5

Figure 2.12: Values of a fair six sided die, up to 100
rolls, overlapped with the expectation value given N

rolls

This leads to the concept of conver-

gence, that a large enough data set

is needed to find a close approxima-

tion to the real probability distribu-

tion function.

As an example take a six-sided dice,

you must roll either a 1,2,3,4,5 or

6. The probability of all the possi-

ble events summed together must be
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one, in other words it is certain at least one of the possibilities will occur. In the same

way any probability must be between zero and one, as you can not be more than cer-

tain something will occur than certain, and analogously, you can be no more certain

something will not occur than knowing it will not occur. Formally we can write this as

1. 0 ≤ p(x) ≤ 1 and

2.
N∑
n=1

p(x) = 1 or in the continuous case
∫∞
−∞ f(x)dx = 1

In the case of a continuous function we must bin our data to compute the probability

p(X ∈ A) = P (a < X < b) =

∫ b

a
f(x)dx (2.4)

where A is an interval defined between some two values a and b, and f(x) is a continuous

function. Here f(x) must also be a probability density function, meaning it follows the

same rules as any probability and the integral over the whole function must equal one.

In this thesis most data sets have been normalised to achieve this by adding a factor

of
1∫∞

−∞ f(x)

2.3.2 Conditional Probabilities

Data was examined using several different statistical techniques, and for this reason they

will be presented in the results sections. However conditional entropy is an important

quantity for many techniques in information theory. Therefore some general points will

be made here, beginning by defining some additional terms.

The joint probability is the chance of finding two variables with specific values. Let

us take the example of two Bernoulli variables where x, y ∈ {0, 1} if the probability of

being either zero or one is equal for both x and y, then there are four equally likely

values, meaning p(x, y) = 0.25. So

p(x, y) = p(x = X & y = Y ) (2.5)
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Let us assume x is always 1, then p(x = 0, y) = 0, regardless of the value of y. From

the above example it can be obtained for x = 1 the p(x = 1, y = 0) = p(y = 0) = 0.5 as

for y = 1. These values are typically obtained through a two fold matrix of frequency

values, such as the co-occurrence matrix.

The second quantity is the conditional probability p(x|y), this measures the probability

of an event x given some other event y. Conditional probability is quite useful when dis-

cussing dependency. For example, let us take two independent, identically distributed

(iid) variables. As the two events are independent, no information about the second

event is gained from the first and p(x|y) = p(x), proven by simple application of Bayes

theorem:

p(x|y) =
p(y|x)p(x)

p(y)
(2.6)

where p(y) 6= 0. Using Bayes theorem it is also possible to show that p(x|y) 6= p(y|x),

which is important when thinking about false positives.

2.3.3 Expected Values

Let us take a discrete random variable x. We now define its expectation value as E(x),

or the mean value. Generically this is described as

E(x) =

I∑
i=1

xipi (2.7)

where pi is the probability of outcome i. Obviously this is for a discrete case, in the

continuous case one would integrate over the values by using the probability density

function f(x) as shown in equation (2.8).

E(x) =

∫ ∞
−∞

xf(x)dx (2.8)
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Notice in figure (2.12) that it takes around twenty rolls for the expectation value to

converge to its true value of 3.5, this is also interesting as you can not roll a 3.5! This

shows the principle of the law of large numbers, where the expected value tends to the

average, as N , the number of events, becomes very large. In terms of the probability

this can be written as:

p(x) = lim
N→∞

N(x)

N
(2.9)

Here N(x) is the frequency for a given event x. This directly relates the probability as

the relative frequency of an event.

The expected value allows us to calculate deviations in the data, helps us to form a

model of the data, and provides tools to quantify uncertainty. Let us again take the

example of a discrete variable x which has been modelled by a function f(x). If the

data is well defined by f(x), less information is required to express the data. In the

perfect case one equation could be used to replace a large number of values, reducing

information to a minimum. The first four central moments are most useful to define

in this case, the first is the centralised expected value, which must be zero. For clarity

µk will be used for the kth centralised moment and µx will be used for the mean. The

standard deviation and 2nd, 3rd and 4th central moments are listed below respectively;

• The Standard Deviation σ =
√
E[(x− µx)2] (so the average difference a value

has from the mean µ), expanding the bracket then gives rise to σ =
√
E(x2)− µ2

x

• The Variance is then simply µ2 = σ2 = 〈x2〉−µ2
x. These give us a quantifiable way

to measure the uncertainty and have been used to understand complex systems

with popular applications including Chebyshev’s Inequality

• The Skewness µ3 = 〈x3〉 − µ3
x is a measure of how weighted a function is to one

side of the mean, in other words is zero for a completely symmetric function, and

can be positive or negative depending on the direction of the skew

• The Kurtosis µ4 = 〈x4〉−µ4
x measures how unevenly spread the data is, this makes

it sensitive to the width and height of the peak/s and tails and high Kurtosis often
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suggest complex behaviour1

• From these first four important moments it can be seen that for the kth central

moment is σk = 〈xk〉 − µkx

Figure 2.13: Gaussian distribution with % number of values for a given nσ away from the mean

2.3.4 The Normal Distribution

If states of the systems are taken as variables, we can begin to build a statistical picture

to describe them. This is useful for when we want to define complex systems, at least

from the macroscopic perspective. One of several distributions can be used to describe

most data, but the most common is the aptly named Normal distribution (figure 2.13)

or Gaussian distribution:

p(x) =
1√

2πσ2
exp(−(x− µx)2

2σ2
) (2.10)

where σ2 is the variance = 〈[(x− µx)2]〉 and µx is the mean value of x. The bi-variate

form is plotted in figure (2.14) and stated below:

p(x, y) =
1

2πσxσy
√

1− ρ2
exp(− 1

2(1− ρ2)
[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

−2ρ(x− µx)(y − µy)
σxσy

])

(2.11)

1It is important to note that the normalised 4th moment µ̃4 = µ4
σ4

is more commonly used as the
Kurtosis, and was the formula used in this work.
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where ρ is the Pearson correlation coefficient

ρ =
〈[(x− µx)(y − µy)]〉

σxσy
(2.12)

Figure 2.14: An example of a bi-variate Gaussian with a relatively low σ of 0.3

I have stated these quantities implicitly as they are all used later in the text, but, for

completeness here I will also include the generalised form of the multi-variate Gaussian

which is expressed as:

p(x1, ..., xn) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(x̄− µ̄)TΣ−1(x̄− µ̄)) (2.13)

where x̄ is a vector containing (x1, ..., xn), µ̄ is the vector containing (µx1 , ..., µxn) and Σ

is the covariance matrix and |Σ| is its determinate. Σ takes on the size n by n, being the

covariance between all elements of x̄, so that Σij = E[(xi−µi)(xj−µj)]. Some complex

systems show statistics that follow a normal distribution except in the tails, making

extreme events far more likely. These functions are called fat-tailed distributions and

will be talked about a little later, as it is important to understand why these functions
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tend to behave ’normally’ first.

2.3.4.1 The Central Limit Theorem

The Central limit theorem states the sum of independent, identically distributed (i.i.d.)

variables will tend to be normally distributed (Feller, 1945) (figure 2.15), when the

variance is finite and each variable is not dependent on any other. Let us again take the

example of dice, which individually have a uniform distribution. By taking additional

dice as new variables, it can be shown the sum quickly approaches a normal distribution.

Figure 2.15: An image showing the central limit theorem, using dice as variables, the graphs show
sum total score vs frequency

A number of formal proofs have been made of the Theorem including the use of Taylor

expansion, cumulants and moments (Filmus, 2010). Since the proof is quite long, I will

simply outline the proof made by (Weisstein, 2015). This involves taking the inverse

Fourier transform of some arbitrary probability function for i.i.d. points. Allowing

the series of points to be substituted in, after much rearrangement and expansion,

the Fourier transform can be taken restoring a probability function for the summed

variables. After further substitution an answer is obtained in the form of the normal

distribution.
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The Berry Esseen theorem (Berry, 1941) then states how quickly these i.i.d. variables

converge: assuming a zero mean and positive variance, the convergence is 1√
N

2.3.5 Correlation Techniques

It is also important to introduce some methods of correlation, which shows how related

data is to itself, or other sets of data. For example, take 500 points xi, which would

be completely correlated if all produced from the equation y = 2x + 5. Equally two

completely random numbers should have no correlation. Many sets of data, in reality,

lie between these two extremes.

2.3.5.1 Pearson Correlation Coefficient

The Pearson Correlation Coefficient has already been introduced in equation (2.12). It

is an important quantity which, as the name suggests, measures correlation. While it is

only sensitive to linear correlation, and is not as general as Mutual Information, it is an

absolute quantity, with zero being no correlation, and ρ = 1 and −1 being completely

correlated or anti-correlated respectively. It is in-variate, only being sensitive to how

the data is related. This makes it a useful tool as it assumes no apriori information.

2.3.5.2 Co-variance

Many fitting measures use the co-variance, cov, to measure the correlation between two

sets of data. It is defined by the equation

cov(x, y) =

N∑
i=1

(xi − µx)(yi − µy)
N

(2.14)

This gives a value of zero for uncorrelated variables.

A number of fitting algorithms have built in correlation methods to either improve
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or confirm a fit. The most common examples of these include linear regression and

least squares methods. They do require some assumption that the data are correlated,

measuring the difference away from the mean. This is usually done by calculating the

vertical offsets leading to a regression coefficient β based on x:

β =
cov(x, y)

σ2
x

(2.15)

which in terms of fitting is used in the optimisation solution. Mutual Information is

given special attention in the methodology, and will only be mentioned here as an

entropy based measure of correlation, that calculates shared information between two

sets of variables.

2.4 Information Theory

Information theory is, as the name might suggest, the study of information. It aims to

understand and quantify information, including its storage, how it’s transmitted and

received, as well as how we measure uncertainty and disorder. This is particularly

important as it shows that the more complex and disordered the data is, the greater

the amount of information needed to store it. While information theory is arguably

most widely used in the computer sciences today, study is rooted in mathematics, with

important applications in statistical physics, biology and even linguistics, as well as an

assortment of others (Mezard & Montanari, 2009).

2.4.1 Data Compression and Kolmogorov Complexity

2.4.1.1 Data Compression

Data compression is important to understanding disorder, as the more compressible the

information describing an object, the less disorder is associated to it; again an example
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can be made from a crystalline structure, where the data can be compressed down from

describing every atom in a large structure, to a simple unit cell.

Many data compression techniques assign smaller quantities to the most common fea-

tures, such as Huffman coding (Huffman, 1952). This is a form of lossless coding,

meaning no information is lost in compression, and a perfect copy of the original can

be recovered from the compressed form. These forms of compression involve a ’key’, in

which common elements are described by the shortest possible string. Let us take the

example of this thesis, if I made the word disorder = d. I now save myself seven letters

everytime I need to write disorder. Over the dozens of times it is mentioned in my

thesis, I will have saved myself a few bits of information. This, however, requires the

information to encode the ’key’ to be taken into account. If we took a more outrageous

example and said ’all the information in the universe’ = U , the information to store U

is now tiny, but of course to map the output, one needs to store ’all the information in

the universe’.

A number of factors effect compression, including computational time and if there is

any loss of information. It effectiveness is measured by a compression ratio, the ratio

of information needed to store the compressed data, to the uncompressed data.

2.4.1.2 Kolmogorov Complexity

Let us take a perfect compression, which will always give the minimum amount of

information needed to describe some alphanumeric string, s. This compression can be

referred to as the Kolmogorov Complexity K (Kolmogorov, 1965), a measure of the

least amount of information required to store an object.

Let us take the example of two alphanumeric strings;

s1 = [apv8jhsa646135a9] and s2 = [a1a1a1a1a1a1a1a1]

While they are both 16 bits long, it can be seen that s2 is easily described as ”a1 8
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times”. This is a shorter description and as such s2 now requires less information to

encode than the more complex s1. However, s2, could be described in another language

with fewer letters, as could s1. We need to define a universal language that also encodes

all objects in the shortest possible length. Using such a language would mean the

information required to describe the object is intrinsically an expression of the objects

complexity. Therefore we compute the Kolmogorov Complexity as the information

associated to an object, using the shortest possible program on a universal Turing

machine. A Turing machine (Turing, 1937) has a finite program which manipulates a

linear list of cells one at a time, which can take values of zero or one (or be blank). This

allows a Turing machine to perform basic operations (Li & Vitanyi, 1993). For true

Kolmogorov Complexity the language should be the shortest possible, while maintaining

its universality. This is generally accepted to be binary/machine code.

Let us formalise this definition, by using a universal language D, where D : {0, 1}.

Given some object x there exists a descriptor y in language D, so that D(y) = x, for

all possible x. This follows the idea of data compression where D would be the ’key’.

Therefore we can define y : D(y) = x as the set of all possible descriptors of x in

language D.

Finally, we wish to find the descriptor y, with the shortest length, to find the Kol-

mogorov complexity K. This can be expressed as:

KD(x) = min
y
{|y| : D(y) = x} (2.16)

where K(x) is the Kolmogorov complexity for x for the shortest length of |y|, such that

D(y) = x.

We can relate our universal language D, to an arbitrary description language by means

of the invariance theorem. Let us take two description methods D1 and D2. The invari-

ance theorem states there is a universal description using a universal Turing machine
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U such that

KUD1
(x) ≤ KUD2

(x) + c (2.17)

where c is a constant that is independent of x. This also shows an upper bound on

K(x), by considering the constant c as the length of the program that translates UD2

to UD1 . As U is universal, c is only dependent on the descriptor (Li & Vitanyi, 1993).

It follows that KD(x) ≤ |x|+ c.

The conditional Kolmogorov Complexity gives the minimum descriptor of x, based on

information in z.

KD(x|z) = miny(|y|) : D(y, z) = x) (2.18)

And is the complexity remaining in x given information of y. Therefore when x and z

are completely independent

KD(x|z) = KD(x)

as no information was saved by knowing z. By the same logic it can also be seen that

KD(x|z) ≤ KD(x) + c

Kolmogorov randomness states that for a completely random variable r, it is not pos-

sible to describe r in a program smaller than the length of itself (n).

KD(x) ≥ n = |x| (2.19)

Equation (2.19) is a result of the pigeonhole principle (Herstein, 1964), and shows that

the complete randomness of r is expressed in the Kolmogorov complexity. This leads

to the non-computability of K.

It can be shown that Kolmogorov complexity is related to Shannon entropy, and by

extension mutual information (Grunwald & Vitanyi, 2004). By using the chain rule it

can also be shown Kolmogorov complexity is analogous to mutual information. Further

discussion on this can be found in section (7.1.2).
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2.4.1.3 Non-Computability of the Kolmogorov Complexity

Figure 2.16: A
practical application of

Kolmogorov complexity!
(xkcd.com, 2013)

Unfortunately Kolmogorov Complexity is incalculable due to

the halting problem, namely the inability to determine if a pro-

gram will continue to run forever, or finish with an output.

Let us assume a program computes K so that x 7→ K(x). Using

this fact we design a program P , that calculates if a string x,

is Kolmogorov random i.e. that is it satisfies equation (2.19).

Here x ∈ {0, 1}n and requires log2(n) bits of information to

encode.

The program outputs the first value of x it finds satisfies equa-

tion (2.19), so that P (n) = xn, and is only dependant on P

and n. Here the information of program P is fixed and can be

considered a constant, c. This leads to the equation:

K(xn) ≤ log2(n) + c (2.20)

where log2(n) + c is the information needed to recover xn using program P and input

n. Therefore it must be a maximum for K. This results in the equality

n ≤ log(n) + c (2.21)

As c is finite, it can be seen the inequality in equation (2.21) can not be true for all

values of n (Trevisan, 2015).

As disorder can be related to the amount of information needed to store an object,

this leads to a measure of complexity. Put simply, the more complex a system is the

greater the information required to store it, which can be measured using the quantity

of entropy (Kaltchenko, 2004; Grunwald & Vitanyi, 2004).
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2.4.2 Shannon Entropy

Perhaps the most important quantity in information theory is informational entropy or

Shannon entropy, H. Named for Claude Shannon and developed in his seminal paper

”A Mathematical Theory of Communication” (Shannon, 1948), it set the groundwork

for much of the development of information theory since. It is given by:

H(X) = −
∑
x∈X

p(x) log2 p(x) (2.22)

for discrete variables. In the continuous case the entropy can be estimated to

H(X) = −
∫
X
f(x) log2 f(x)dx (2.23)

where f(x) is the probability density function. In both cases using log to the base

two means the entropy is expressed in bits. The following convention is also always

used, that 0 log 0 = 0. In this way entropy can be thought of as a measure of a

system’s uncertainty, measuring the unknown information in x, based on its probability

distribution.

Let us consider a Bernoulli process, where a single variable can take one of two values,

let us say zero and one. If we know the value will be, let’s say zero, there is no

uncertainty and H = 1 log2 1 = 0. If the probability of it being zero or one is equal, for

example like a coin toss, we are most unsure, we could guess heads or tails, it wouldn’t

matter. Here H = −2(0.5 log2 0.5) = 1bit. If we generalise this we get the equation

H = −p log2 p− (1− p) log2(1− p) (2.24)

where p is the probability of event A (i.e. heads), and is the only variable. The entropy

of the second possibility is fully expressed in terms of the first as (1 − p), simply as

a consequence that
∑
p(x) = 1, as with all probability functions. Equation (2.24) is

plotted in figure (2.17) for clarity.
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Figure 2.17: Plot of the entropy of a Bernoulli process, with dependant variable being the
probability that x takes a particular value, such as in equation (2.24)

A distinction should be drawn with the more commonly known thermodynamic entropy

where ∆S =
∫ dQrev

T (where Q is heat and T is temperature), described in statistical

physics as the Gibbs entropy S = −kB
∑
px ln px (where kB is the Boltzmann constant).

As px is also a probability function based on the number of states in the system,

it is easy to see comparisons between the two. These two forms of entropy drifted

apart, but have seen renewed interest in their joint use in recent years (Mezard &

Montanari, 2009). A notable example in their use is maximum entropy techniques used

to create distribution functions and models of a variety of physical phenomena as well

as construction in image processing (Stern et al., 2002; Jaynes, 1957). Use has also

been seen in biology, in particular the mutual information, and as mentioned has been

most widespread in the area of computer science with work on error correcting codes

and data compression (Mezard & Montanari, 2009). According to Shannon himself, the

entropy of the English letter is 4.14 bits (Shannon, 1951), although I fear the entropy

of this thesis will be a lot higher!
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2.5 Complexity Theory

2.5.1 Complex Systems

While complex systems have been studied for hundreds of years, the actual science

of what a complex system is, and how it behaves, is a relatively new subject. Several

examples can be seen in figure (2.18). I like to summarise complex systems with the old

saying ”the whole is more than the sum of it parts”, which is saying that the behaviour

of the system cannot be predicted from information of its individual components alone.

This is called ’emergence’ and is an important property of complex systems.

(a) A group of Human Cells under a
microscope

(b) A network comprising of names as
vertexes and friendships shown as edges

(c) BT’s share price over the course of a
year

Figure 2.18: Examples of real world complex systems

Complex systems are often unpredictable and many statistical methods have arisen to

attempt to describe these systems. There is particular interest in finance, but applica-

tions started in biology and moved on to other areas such as chemistry and physics. The
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science of complex systems is applied to help understand how the stock market behaves

(Aste & Matteo, 2010; Magtegna & Stanley, 2000), how cancer cells divide (Rivier &

Lissowski, 1982; Gibson et al., 2011), (in the hope of leading to new cures) and show

how real world networks behave (Watts & Strogatz, 1998), (i.e. social networks, to un-

derstand how information or disease is passed through a network). Complex systems

are made up of many parts and are very sensitive to external and internal fluctuations

leading to adaptive and unpredictable behaviour, therefore the methods used are based

in probability. While research into the financial markets depends on understanding

behaviour at the extremes, such as fat-tailed distributions (Mandelbrot, 1963) (where

the probability of extreme events behaves as a power law, and thus are much more

likely than a normal distribution), research into granular systems has not shown this

behaviour in the Voronöı cell volumes, and so do not well describe them. This is im-

portant when considering the behaviour of the probability distribution function when

calculating quantities like the mutual information based on the statistics of such sys-

tems. Recently there has been increased levels of interest because of their wide range of

impact, from physics and biology to finance and mathematics, and particularly chaos

theory (Newman, 2010). It is worth noting that it is a common misconception the two

are analogous, with all Chaotic systems being complex systems but not vice versa, for

example stock prices in the financial market. This occurs most often in systems that

exhibit simple macroscopic behaviour, but have complex components. A good example

of this is a crowd of people, its motion is far easier to predict than that of a single

individual. This is because of the inherent rules which make a complex system, these

can include some or all of the following:

• Emergence, as previously stated, as a consequence of this the system shows sur-

prising behaviours and is thus unpredictable.

• History, the way the system looks and will look, is highly dependent on the history

of the system. This shows the system is non-convergent and will be very sensitive

to initial conditions, even small changes in the system can lead to large changes
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Figure 2.19: A storm on Saturn taken by Cassini, weather patterns are commonly studied as
Chaotic systems

in outcome.

• Disorder, special consideration is given to this case in the next section.

• Non-linearity, the effect of small changes are themselves unpredictable, and as

stated can have large effects on the system, or none at all!

2.5.2 Networks

Networks are ubiquitous in complex systems. Their study can help to understand how

disease is spread through a population, determine the resiliency of computer networks,

and how the stock market interacts. It can be helpful to visualise complex systems

as networks so I will define some of the terms used in my work here. A network,



2.5 Complexity Theory 36

which can also be referred to as a graph, are a number of objects connected by some

relationship. In figure (2.20) the objects, in this case people, are called vertices or

Figure 2.20: An example of a network, in this case a social network with lines showing connections
between people

nodes, and the connections between them are called edges. The number of edges

connected to a vertex is called its degree. In a directed edge or graph these links can be

unidirectional, for example, in financial transactions money usually only goes one way!

In more complicated cases, edges can be weighted, meaning there is a probability of

movement, in a vertex with only one edge, for example, the traffic can only move down

that edge, so its weight or probability is 1. A connected graph is where all vertexes are

connected. The distance has the normal meaning, only it is the sum distances of the

edges assuming the shortest route possible. A Walk is a graph which comprises a set of

nodes connected by a single path of edges. Graph theory contains many other useful

definitions for networks but the last one I will mention here is a very useful statistical

tool for graphs called the adjacency matrix Maj . This is a V by V matrix (where V is the

number of vertexes) and each element corresponds to a potential connection between

vertexes, either being a zero for no edge, or a one for a connection. As nodes cannot

connect to themselves zeros line the diagonal, and undirected graphs have symmetric

adjacency matrices, with the sum of all the elements of matrix Maj being twice the

number of edges. Adjacency matrices also have a set of eigenvalues, solutions to the
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equation AX̄ = λX̄ where A is a matrix ascribing a linear transformation, and λ

is the scalar eigenvalue solutions (Biggs, 1993). The full set of eigenvalues gives the

spectrum of the graph, as these are scalars they are usually easier to manipulate than

the adjacency matrix itself.

2.6 Programming Languages

As this work has roots in computer science it required some knowledge of programming.

Two programming languages were used; Matlab (Mathworks, 1984) and C++. While

no knowledge has been assumed on the part of the reader, some information of these

languages may be useful when referring to the coding itself, and as such details can be

found in the appendix (B.2).



Chapter 3

Methodology - Generating

Packings

Generating Packings refers to the techniques used in this thesis to create structures of

disks, spheres or hyper-spheres with various properties. Generally packing generation

was achieved by computer simulation with one exception shown in section (3.3). There

were three main methods used to create packings with their own advantages, which I

will outline below.

3.1 Random Sequential Addition (RSA)

The first method used was naturally the easiest and was all accomplished within the

Matlab software package itself. The principle was to place a disk randomly in a bounded

object and to continue placing disks until there was no more room (as shown in figure

3.1). While this had the advantage of generating simple packings with no need for

complex starting conditions, it was a slow method because of the way it looked for new

places to put disks, requiring more and more time to find a space for a new disk. The

time scaling for a given number of disks N , was approximately O(N2), although the

38



3.1 Random Sequential Addition (RSA) 39

program was not optimised.

The lack of any real physics made the packings unrealistic, while the theoretical maxi-

mum packing fraction for the Random Sequential Addition (RSA) method is the pack-

ing maximum Φ = 0.92 (for mono-disperse disks in two dimensions), the probability of

finding this randomly is extremely low, as only one configuration exists among a huge

number of possible configurations. Practically the RSA algorithm never went much

above Φ = 0.52 being that most allowed configurations are expressed within this range.

This limitation meant that the algorithm was only used early on. It should be noted

that more optimised RSA algorithms can produce higher packing fractions by rejecting

sphere placement which maximises the size of unfillable gaps.

Figure 3.1: A mono-disperse disk packing of around 100 disks using the RSA algorithm

The program itself simply operated on three inputs, the size of the boundary, the

number of disks to be placed (at a maximum) and the diameter of those disks. In

practice the number of disks (N) would usually be defined as larger than that which

would fit to allow maximum saturation of the boundary object. Using these inputs

an initial disk was placed by a uniformly distributed pseudo-random number, after

which more disks were inserted in the same way, provided they did not overlap with
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any existing disks. After either N disks are inserted, or a location to place new disks

cannot be found given a reasonable number of iterations, the program terminates,

outputting the number of disks, packing fraction, and a Nx3 matrix (M) with all disk

coordinates n = (x, y, d) where d is the diameter of that disk (important for the case

of poly-disperse disks). This can be shown as

M = {n1, n2, n3...ni} assuming ni+1 /∈M calculated as | n∀ini |≥ d (3.1)

The program can be found in Appendix B. While a modified version was created for

3D packings, in practice it was never used.

3.2 Molecular Dynamics Codes

In general terms Molecular Dynamics (MD) codes apply the physical laws to simulate

how a time-dependent system of particles will evolve. This involves accounting for

interactions between particles as well as forces involved in the environment including

pressure, temperature, exchanged momentum, kinetic energy and of course, time. In

most cases, including this one, these simulations run according to Newtonian physics

taking into account the equations of motion to determine the behaviour of each indi-

vidual particle.

3.2.1 Lubachevsky-Stillinger algorithm

The code tasked to generate our packings uses the Lubachevsky-Stillinger algorithm

(LSA) (Lubaehevsky & Stillinger, 1990), a popular algorithm for sphere packings. The

LSA, in general, uses an increase in pressure leading to compression and a subsequent

increase in packing fraction as shown in figure (3.2). Under the right conditions (as

discussed in section 3.2.2) the LSA leads to a jammed state. The increase in pressure

is achieved by either introducing an increasing pressure from the boundary, or, as in
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Figure 3.2: An example of a packing of 10,000 disks generated by a LSA, creating a crystallisation
with high packing fraction (Φ ≈ 0.9)

this case, growing the objects within the boundary giving an increasing density. The

boundary used was always a unit cube.

As this algorithm is interested in rigid spheres, a singular interaction potential is ap-

plied. This reduces the problem to binary collisions between particles, meaning the

code becomes event-driven. Event driven codes are more accurate than time-driven

codes (Donev et al., 2005), and advance time by calculating the next event (in this

case a collision). That said, the time parameter is still important in predicting the

next event, as events are calculated by the equations of motion and growth rates of

particles, both being time dependent. To allow calculation of hard sphere packings in

MD simulations it is common to give overlapping spheres an infinite repulsive force as

used in this code.

To begin, the LSA initially creates some packing using a Poisson distribution by RSA,



3.2 Molecular Dynamics Codes 42

with a low density of Φ ≈ 0.35. Given no termination conditions, the program starts

at t = 0 with object diameter D → 0, and continues to t→∞ and D →∞, governed

by the equation D(t) = r+γt. This growth rate (γ) is user defined and is critical when

creating jammed packings (section 3.2.2). In practice there is of course a maximum

diameter, dependent on the size of the particle, the number of particles and the size of

the container. In this limit, pressure and collision rate both diverge with little change

to the configuration of the packing.

It should be noted that due to the expansion, collisions are not energy conserving,

adding a small amount of energy each time. Velocity is therefore rescaled after each

cycle (Skoge et al., 2006b), by calculating the average kinetic energy (Ek). The trans-

lation and angular velocities are then rescaled by a factor c =
√

dkT
2Ek

, (Donev et al.,

2005), where T is the desired temperature and is usually user-defined. A cycle is a given

number of events, and is also user-defined. Velocity rescaling is not a perfect solution

and is not always suitable (Harvey et al., 1998). The initial velocities are taken from a

Maxwell-Boltzmann distribution.

In addition to growth, the particles evolve by Newtonian mechanics. Position, momen-

tum, collisions and subsequent transfer of momentum between particles are all governed

by Newtons laws. Therefore relative positions are calculated by using a quadratic in t,

where collisions are expressed as positive roots. This allows an event list to be created,

which gives a list of collisions due to occur at time te with partner pe. The event list

contains all the ’impending’ events. An impending event is the next event for a given

particle and is written as (te, pe). As such the event list is N long, where N is the num-

ber of particles in the system. Time is advanced after each event by assigning t = te.

After time is advanced the particles are also moved and the collision is processed. The

displacement vectors, exchanged momentum and velocities are calculated, followed by

an update to the event list. Events are processed until one of the termination criteria

are met, usually the maximum pressure (user-defined) as a consequence of the particles

increasing size.
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Figure 3.3: Example of linked cell method, only
cells within a certain radius of the target particle

are considered

The code also takes advantage of the

linked cell method (Figure 3.3) which sig-

nificantly improves calculation time. By

dividing up the volume into cubic cells of

equal size we can ensure only the neigh-

bouring particles are used to calculate

event possibilities. In the example of fig-

ure (3.3), the dark dot is our reference

particle, with the lighter grey circle being

the interaction distance or cutoff. Any

box that falls within that circle is consid-

ered as having an effect on the reference particle. This allows collisions to be calculated

giving a time scaling of O(N), instead of O(N2) when predicting collisions for all par-

ticles (Sun & Lou, 2008). In the LSA, the boxes are reduced to the minimum size

possible, while maintaining the condition that only adjacent cells have any effect.

One of the most useful features of the program is the ability to use a periodic bound-

ary condition, which significantly reduces interaction of the boundary. This will be

discussed in more detail with Mutual Information (chapter 6). The two most com-

mon boundaries are hardwall and periodic. A hypercubic cell is used to apply these

boundary conditions along each dimension (Skoge et al., 2006b).

Applying a hardwall boundary condition gives the container a solid, rigid edge, from

which particles interact directly. In the LSA, hardwall interactions are calculated as col-

lisions, as such they are added to the event list. Hardwall conditions may be considered

more realistic, they distort particle cell statistics at the edge.

For investigations concerning sphere packings it is usually far more helpful to limit the

effects of the boundary. To this end, a periodic boundary condition (PBC) was usually

used. PBCs ’wrap’ the packings so that each edge is connected to its opposite side.

Opposite sides are defined as being the left and right side faces in each dimension. An
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Figure 3.4: Example of how a structure is replicated for a periodic boundary condition

example is given in figure (3.4). In the LSA this is achieved by tiling the packing so

that the area under investigation is surrounded by copies of itself. PBCs also introduce

another type of event called a transfer, whereby a particle leaves one cell and enters

another. As with other events, time is advanced and the new positions and impending

events calculated.

3.2.2 Creating Disorder

For my purposes, where we wish to create disordered systems, it is important for

jamming to take place while still in the amorphous state. To achieve jamming a slow

growth rate must be used, with a high pressure, to allow a sufficiently high packing

fraction. In addition the expansion must be initially fast to suppress crystallisation,
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then slowed to allow a maximally jammed state to be reached (Figure 3.5). The slower

the growth rate, the higher the packing fraction, tending to the RCP limit of 0.64 before

local crystallisation begins to occur.

Figure 3.5: An example of a packing of 10,000 disks generated by an LSA, creating a disordered
packing at Φ ≈ 0.6

The relevant inputs for the code allow for changes to the number of objects inserted,

termination pressure and collision rates, and maximum or termination packing fraction.

It is important to define some inputs as terminators, in the sense that they are stop

commands in the syntax. This is because significantly different properties can arise

depending on what parameter has ended the program. For example, if the maximum

packing fraction ends the simulation, the system may not have achieved an equilibrium
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state. Further examples will be investigated in the results, and will, therefore, be

discussed in Chapter 6.

As the program is dealing with rigid spheres the temperature has little effect on the

final state. To create disordered jammed packings, the expansion rate must be initially

high in relation to average thermal velocity (Skoge et al., 2006b), otherwise, the system

may crystallise. Therefore, to simplify the parameters, the temperature is kept low and

a lower growth rate can be used, giving a range of packing fractions up to and including

the packing limit.

The program also allows for the definition of a hardwall boundary condition in addition

to the periodic boundary. As mentioned hardwall boundary conditions affect how a

packing evolves and can distort statistics at their edge, so the PBC was always used.

In addition, the events per cycle can be modified, which is the events (collisions) pro-

cessed between each sphere expansion. Increasing the number of events, with an ap-

propriate growth rate, creates higher packing fractions at the cost of time.

Finally the output names can be changed, however naming is not dynamic, so a modified

version of the program made allowances to create names based on ”in code” collected

statistics. This was of particular importance when modifications were made to allow

the program to print multiple packings and various packing fractions throughout a

simulation. The change did not affect how packings were generated.

A minor rewrite allowed changes to the dimensionality. While the change only required

the modification of one number, the program lacked the ability to process it as an

input, requiring it to be recompiled.

The output consisted of two main parts. The first part dealt with the statistics, which

showed the evolution of the system in terms of its packing fraction, pressure and collision

rate. The second was the packing itself, which included the coordinates of each particle

in a NxD matrix of values [i.e.
x1 y1 z1

x2 y2 z2

] as well as the sphere diameters, and
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some general information about the whole packing.

One further change allowed an additional output for each packing containing the sphere

coordinates, but in a slightly different format. This was so that it matched the input

characteristics for the Minkowski tensor creation program presented in the next chapter.

The change didn’t modify any of the original code and only made cosmetic changes to

a new output file. Later this modification was expanded to include a loop that printed

out the current state of the packing, allowing snapshots to be taken as the system

evolved. Again, this change did not affect how the code was processing each cycle, nor

could it affect the final configuration. The full changes to the code are shown in the

appendix. An unmodified version is available from the link in the reference for (Skoge

et al., 2006a). The code was written in the programming language C++.

3.3 Experimental Results

A number of previously experimentally created packings were used, generated by T.

Aste, M. Saadatfar, and T. J. Senden at the Australian National University. The

packings themselves were composed of mono-sized acrylic beads poured into a container.

The container was a cylinder with an internal diameter of 0.075m and the data was

collected using x-ray computerised tomography (xCT) with a spatial resolution of 0.03

mm and 0.06mm depending on the sample (Figure 3.6).

Due to the manufacturing process there was poly-dispersity, but only within the bound

of 0.05mm. In addition an attempt to mitigate the effects of the hardwall boundary

(the cylinder) was taken by random attachment of beads to the inner surface, and

consequently when the loose beads are poured a disordered packing results.

The xCT produced some distortion of around 1-2 voxels at the bead boundaries. The

bead positions themselves were ascertained from image processing, using convolution

to scan the image with a pre-defined sphere. The centres were found when a maximum

overlap was detected, this allowed a good estimate of the bead positions (Aste et al.,



3.3 Experimental Results 48

2005) Several examples were created with various packing fractions and sizes. The

Figure 3.6: X-CT image of ∼ 150000 acrylic balls packed in a cylindrical container

larger packings contained ∼ 150000 beads and four smaller packings of ∼ 35000 with

d = 1.000mm and d = 1.59mm respectively. Given the spatial resolution was 0.03 mm,

the precision of the centroids was within 3%, making the results extremely accurate

(Aste et al., 2005). The packing fractions ranged from 0.586 to 0.640.

The least dense packings used a technique of inserting a stick into the centre of the

container before pouring, then removing it. The other four were created by: simply

pouring the beads in slowly, pouring the beads in quickly, gently tapping the cylinder

walls after pouring, and a combination of tapping and compression from above after

pouring, from lowest to highest packing fraction respectively. It should be noted, where

compression was applied, it was only used to alter the packing fraction, and was not

continually applied.



3.4 Statistically Driven Data Generation 49

3.4 Statistically Driven Data Generation

Statistically driven data generation is used to describe a number of methods in which

correlated and noisy, semi-correlated data is generated. Most trivially the Matlab

functions rand, and randn were used to generate uniformly and normally distributed

random numbers, respectively. The Statistically Driven Data Generation method does

not create disk packings per se, only creating lists of numbers. I have termed it here

so it is clear when referenced in the results.

A set of independent identically distributed (iid or i.i.d.) numbers are created using a

pseudo-random number generator. A dependent variable could then be calculated using

these numbers. Several equations were used, including linear, quadratic, cubic and

exponential relationships, as well as simply generating a second string of iid numbers.

Noise was then added to the dependent variable with varying degree and type.

Let x be a string of iid numbers created using a pseudo-random number generator.

To allow a comparison, a second string, y, needs to be created with some defined

correlation. Lastly a third variable is added, c, which is a random number generated

within the same set as x. c acts as noise and is used to test the sensitivity and accuracy

of the various correlation measures. n is simply a defined multiplier to control the

amount of noise added and its effects are shown in figure (3.7). For contrast of the

various correlation measures, six different correlation types were used and are listed

below:

• Linear relationship in the form y = mx+ nc where m is some fixed constant

• Quadratic relationship in the form y = x2 + nc

• Cubic relationship in the form y = x3 + nc

• Exponential relationship in the form y = ex + nc

• Multivariate Gaussian (MVG), shown in equation (3.2)
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• No relationship, where y is another set of iid numbers. In most cases the distribu-

tion of the numbers were uniform, however in some specified cases the distribution

was normal. In both cases y used the same set as x

(a) No noise (b) 10% added noise

(c) 100% added noise (d) 1000% added noise

Figure 3.7: Linearly correlated data with m = 2 and various amounts of Gaussian noise added

Scripts were used to generate multivariate Gaussian (Hernadvolgyi, 1998) data (figure

3.8), which allowed the generation of multiple strings of data related by a known corre-

lation coefficient (in this case the co-variance Σ). This created an excellent groundwork

for testing how sensitive new methods were to even loosely correlated data, or if they

could be used to quantify correlation a-priori.

The Multivariate Gaussian (equation 3.2) was used to create values of x and y.

fx(x1, ..., xk) = (1/
√

(2π)d|Σ|)e−
1
2

(x−µ)TΣ−1(x−µ) (3.2)
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where x̄ is a vector containing (x1, ..., xn), µ̄ is the vector containing (µx1 , ..., µxn) and

Σ is the covariance matrix and |Σ| is its determinate. ()T denotes a matrix transpose.

Σ takes on the size n by n, being the covariance between all elements of x̄, so that

Σij = E[(xi − µi)(xj − µj)]. In the bi-variate case x̄ becomes (x, y), µ =
(
µX
µY

)
and

Σ =
(

σ2
X ρσXσY

ρσXσY σ2
Y

)
. Σ, µ and the length of (x, y) are all user-defined.

While not producing ’real’ data, the advantages are the generation of large, easily

manipulated data sets very quickly, with a time scaling no more than O(N). This

would allow the testing of different correlation methods with pre-defined correlation,

increasing confidence that the methods were accurate, robust, or perhaps both.

Figure 3.8: A graph of points generated by a multivariate Gaussian function



Chapter 4

Methodology - Framework for

Characterisation of Structures

4.1 Description of Packing Structures

Figure 4.1: A typical two-dimensional packing,
blue spots are disk positions with the yellow

border outlining the inner edge of the padding.
Red lines separate disks into local boxes, green

circles show central boxes used as reference
samples.

Most packings are generated by placing

particles in a bounded area (such as fig-

ure 4.1), typically a box or a cube, with

some boundary conditions. At this point

we can start to extract helpful quantities,

most importantly the shape, size, and po-

sitions of the particles. In a dynamic

system other physical quantities become

meaningful such as velocity and momen-

tum. The kissing number is the number

of spheres a reference sphere is in contact

with.

To begin applying a framework to help quantify and understand the disorder some

52
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useful statistics need to be extracted. The current section outlines the main techniques

and statistics used.

4.1.1 Delaunay Triangulation

Delaunay Triangulation from a set of points in two-dimensions is a space filling triangu-

lation where the circumcircle of each triangle has no other points within its perimeter.

In other words only the closest neighbours are used to create the edges from each

point, invariably ending with a triangulation (figure 4.2). Delaunay triangulations can

be extended to higher dimensions.

Figure 4.2: A Delaunay Triangulation showing circumcircles for each triangle

While it would of course be possible using these rules to solve a triangulation from brute

force (attempting configurations until the conditions are met), it would be a laborious

task. The program used, solved the problem by using Qhull. Qhull is a popular c
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library and computes, amongst other things, convex hulls. Qhull can be found at

http://www.qhull.org/, and is also used by Matlab to create Delaunay triangulations

and Voronöı diagrams.

By assigning the coordinates a value based on the addition of the squares of the coor-

dinates (z = x2 + y2 in the 2D case), the program creates a set of points in 3D. These

points sit on a paraboloid which is used to calculate the convex hull of lifted sites as

shown in figure (4.3). The convex hull becomes a list of facets that enclose a region

that contains all the points. The lower convex hull is projected to the input, the facet

of which creates the Delaunay triangulation (Qhull, 1995; Mathworks, 2015a). As we

have dealt with a parabola, the upper convex hull would simply be the furthest site

Delaunay triangulation, or a triangle with no points outside its interior. The Delaunay

triangulation is relatively fast with a computational time scaling given a number of

points (p) as O(p log p).

Figure 4.3: An image showing points projected into 3D to allow a convex hull to be created. Source:
(Gold, 2006)
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4.1.2 Voronöı Space Partition

Voronöı Space Partition, otherwise referred to as Voronöı tessellation or Voronöı anal-

ysis, is a powerful tool which can be used to add a shape-filling tessellation of complex

polygons to any disk packing. Voronöı partitions can be extended to higher dimensions

making them easily adaptable. In order to facilitate creating a Voronöı tessellation it

is necessary to reduce a packing to a set of coordinates, achieved by calculating the

sphere centroids. A Voronöı polygon or ’cell’ can then be constructed around each disk,

using the others as a reference to create the edges, such as those shown in figure (4.4).

After all the edges have been added a shape-filling tessellation has been created (figure

4.6). Nearest neighbours are defined as any cell in contact with the reference cell. It

is worth noting that for a regular arrangement the Voronöı cells will be homogeneous,

and in cases such as a HCP arrangement of objects, the cells will be regular polygons

(in this case hexagons).

Voronöı tessellations have been widely studied and applied in a number of fields, dating

back to Descartes in 1644. Peter Gustav Lejeune Dirichlet was the first to use them

in published material in 1850 studying quadratic forms. A famous example of their

use was during the Soho cholera epidemic, where the physician John Snow showed the

number of infections around the Broad Street pump was much higher than elsewhere,

effectively tracking down the source of the infection. Voronöı tessellations have use in

many other scientific fields, including geometry, hydrology, materials science, chemistry,

biology (including epidemiology) as well as computation and robotics (Aste & Weaire,

2000; Bock et al., 2010).

Let us take four points pk in space S (as shown in figure 4.4) with coordinates (i, j).

For ease p1 will be taken as the central disk. A Voronöı cell is described as

P1 = [p1 ∈ S | d(p1, pn) ≤ d(p1, pk)] (4.1)

where d is the Euclidean distance between disk centroids. A more complete description
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Figure 4.4: A Voronöı Tessellation with four disks and one complete cell, outlined by the thick black
lines, other lines connect nearest neighbours creating a Delaunay Triangulation

on constructing Voronöı tessellations can be found in Appendix C.

Note in figure (4.4) that cells on the boundary are not closed, giving them a volume

(V ) = ∞. Computationally they are considered closed by the boundary, however,

this significantly skews the statistics, especially in smaller data sets. A border must

be created for any packing with a boundary to discount cells on or near to the edge,

usually several disk diameters. While several disk diameters may seem arbitrary it will

be given scrutiny later in the section on Mutual Information.

Voronöı analysis can be used in any number of spatial dimensions, in higher dimen-

sions the method is analogous, giving perpendicular planes slicing a midpoint, then

calculating the edges, essentially decomposing it to a two-dimensional problem, then

building each cell back up to the n-th dimension. However, higher dimensions require

far more computational resources, becoming very difficult in higher dimensions (Math-

works, 2015c).



4.1 Description of Packing Structures 57

Figure 4.5: A Voronöı tessellation in three dimensions, created by qhull for Knauss Oesterle

4.1.2.1 Properties of Voronöı Tessellations

Voronöı tessellations follow a number of basic rules. Certain values simply scale de-

pending on the size of the particles, such as perimeter, area and volume, however other

values such as the number of average edges < e > are fixed.

In two-dimensions < e >≤ 6, this can be shown as a consequence of the Euler char-

acteristic, stating that for any polyhedral Tessellation χ = v − e + f , where v is the

vertexes and f are the number of faces. For convex polyhedra such as the Voronöı

Tessellation, χ = 2. As the minimum number of edges for a polygon is 3 and each edge

is shared by 2 cells, it follows

∑
V ∀v

EV = 2e and
∑
V ∀v

EV ≥ 3v ∴ 2e ≥ 3v (4.2)
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where
∑
V ∀v

EV is the sum of all the vertexes degrees (or their number of edges). It

follows that as

(v + 1)− e+ f = 2 (4.3)

(here one has been added to the number of vertexes as a pseudo-vertex to allow all cells

on the boundary to be unique to each point as they must for Euler’s characteristic (van

Kreveld & Loffler, 2015)) that

v ≥ 2f − 5 and e ≥ 3f − 6 (4.4)

furthermore if we can assume 3v = 2e, as for a Delaunay triangulation, and use equation

(4.3) we can show

f = 2 +
e

3
(4.5)

and given

2e = f < e > (4.6)

where < e > is the average number of sides per cell then

< e >= 6− 12

f
so as f →∞, < e >= 6 Q.E.D. (4.7)
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Figure 4.6: A disk packing showing a Voronöı tessellation (bold black lines) with labels showing the
number of edges with each cell. The packing was generated using RSA.

As previously stated, all cells are convex. In addition, for d = 2 each vertex meets

three polygons, with 2 at each edge, for d = 3, each vertex meets 4 polyhedra, with 3

meeting at an edge, and can even be extended to non-euclidean spaces (Aste & Weaire,

2000; Isokawa, 2000). For the purposes of programming it is much easier to consider

the dual Voronöı tessellation of Delaunay tessellation, whereas the Delaunay triangula-

tion is overlapped on a Voronöı tessellation. Calculating the Voronöı tessellation from

Delaunay triangulation tends to give the user more freedom (Mathworks, 2015c). It

also allows certain quantities to be obtained more readily, such as the number of edges

(figures 4.6 and 4.7).

4.2 Extracting Structural Information

As we have seen a well understood quantity for Voronöı cells is the number of sides,

which is typically expressed by a normal distribution with µ = 6 in 2 dimensions. The
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quantity itself is calculated by counting the number of nearest neighbours, which is

computed using the Delaunay triangulation.

Figure 4.7: A dense packing with Voronöı cells labelled with number of adjacent cells

From raw data several other statistics can be readily extracted such as volume, surface

area, and number of faces (analogous to number of sides in three-dimensions). The

area (A) is again calculated using Qhull (Qhull, 1995) and can be found by using the

coordinates of the vertexes of the Voronöı cell in question. The calculation is then the

same for any convex polygon, using a determinant as shown in equation (4.8) with xnyn

being the coordinates of the vertexes for cell P . Unlike number of faces, which is an

integer, area creates continuous statistics that must be binned to create appropriate

probabilities for use with entropic measures.

AP =
1

2
det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1

x2 y2

...
...

xn yn

x1 y1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2
[(x1y2 +x2y3 + · · ·+xny1)− (y1x2 + y2x3 + · · ·+ ynx1)] (4.8)

In my thesis, global values refer to a quantity obtained using statistics gathered over the
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whole packing. In the case where a sample is used to create statistics, the convention

is to call the quantity local.

4.2.1 Adjacency and Correlation Matrices

In section (2.2) it was shown that matching rules or interaction matrices could be used

to create a measure of disorder. This approach inspired a similar use with the extracted

structural information, in the form of correlation and adjacency matrices.

In order to create a probability density function from this data I first create a correlation

matrix, consisting of ≈ 6N
2 x 2 elements, where N is the number of cells. Each cell

is analysed sequentially, and their nearest neighbours added. For p1, in the example

of figure (4.4), the entries are the first three elements of equation (4.9). For Mcor I

have omitted the symmetrical connections. However, in a true adjacency or correlation

matrix all connections are listed twice.

Mcor =



p1 p2

p1 p3

p1 p4

p2 p3

p2 p4

p3 p4


(4.9)

Equation (4.9) shows the completed correlation matrix from figure (4.6), with every

connection being expressed. By calculating the mean value and standard deviation of

each column, the Pearson correlation coefficient, equation (2.12), can be calculated. In

addition the matrix is also used to create probability functions by taking a histogram,

which is analogous to a co-occurrences matrix described below.

An adjacency matrix (also referred here as a co-occurrences matrix) uses a correlation

matrix and then tallies up all the co-occurrences. To create a co-occurrences matrix
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for number of sides, for example, the number of times a six sided object occurs next to

a five sided object is counted, continuing for all n-sided objects. Over the range of all

values this leads to

Maj(i, j) =
∑
p

∑
n

{
+1, if f(p) = i and f(n) = j

+0, otherwise
(4.10)

where f(p) is the number of sides of point p and f(n) is the number of sides of its nth

nearest neighbour. In this case, where number of sides is used, n = [1, 2, ..., f(p)].

In cases of continuous data, such as the area, the data must be binned. Therefore

bounds are used to tally the data i.e how often a cell with an area in the range A1 to

A2 lies next to one with an area of A2 to A3. The co-occurrences matrix is also square,

as the distribution of values in the first set of variables will have the same range as the

second (by symmetry). Simply dividing a co-occurrences matrix by its sum the gives

the probability distribution.

Calculating the frequency of co-occurrences is done sequentially for each cell over the

whole packing. A typical example from two-dimensional packing data would look like:

Maj =



0 1 17 25 10 0

1 154 519 458 58 0

17 519 1176 700 59 0

25 458 700 292 23 1

10 58 59 23 4 0

0 0 0 1 0 0


(4.11)

where each row or column corresponds to i = j = (4, 5, 6, 7, 8, 9). It should be noted

that as co-occurrences are counted twice, just as adjacency matrices. Therefore, co-

occurrence matrices satisfy Maj = MT
aj . Matrix (4.11) was taken from early results for

the number of sides, the highest value being the (6, 6) occurrence, as one would expect.

The data follows a similar shape to the multi-variate Gaussian, this is much clearer for
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the example of areas in figure (4.8) and the relationship is formally shown in Chapter

6.

Figure 4.8: A three-dimensional histogram with a bin of [50x50] showing a frequency of cell area
co-occurrences taking the form of a multivariate Gaussian distribution. Created using an RSA disk

packing of 73076 disks. The disk diameter was set to 1.

4.3 Minkowski Tensors

To allow for the creation of the best statistics possible, a method that completely

described the packing would obviously be best. This was found in the Minkowski Tensor

(MT or W ) approach (Schrder-Turk et al., 2013). Minkowski tensors are a relatively

new set of measures used to describe the shape of any three-dimensional object. These

tensors are described as generalisations of the scalar Minkowski functionals and allows

many characteristics of a generic shape to be extracted as individual scalar, vector and

matrix values, building the set that allows a complete description of the morphology.

They include values such as surface area and volume, as well as position vectors and

the more specific surface integrals and shape descriptors. Some combinations allow



4.3 Minkowski Tensors 64

for the moment of Inertia to be calculated as well as anisotropy, by taking ratios

of eigenvalues for the various surface integrals. Minkowski tensors are often used to

describe porous systems, foams, cellular structures and disordered systems, and are

very useful in describing Voronöı tessellations.

The tensors were created using the Karambola package (Schaller et al., 2011). The

program used a different file format and so results from the RSA and LSA programs

had to be modified and a translation program had to be written. Fortunately Matlab

had the necessary functions to do this. There are three main sets calculated, including a

scalar set (the Minkowski functionals), a set of vectors, and one of tensors. Additionally

a set of eigenvalues, calculated from the tensorial measures, formed a fourth set of

Minkowski tensors. These values, respectively, were as follows: given a cell K with a

boundary δK (in 3 dimensions),

W 0,0
0 =

∫
K

dV

W 0,0
1 =

1

3

∫
δK

dA

W 0,0
2 =

1

3

∫
δK
G2dA

W 0,0
3 =

1

3

∫
δK
G3dA

(4.12)

These would roughly equate to volume, surface area, mean curvature and Gaussian

curvature respectively and take the form of a scalar. V is the space bounded by δK

in K, or the volume. A is the surface of the boundary δK or the surface area of

K. G2 = 1
2(κ1 + κ2) and G3 = κ1 · κ2 where κ are the principal curvatures. The

principal curvatures are the values of maximum and minimum curvature at a point on

the boundary as shown in figure (4.9).
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Figure 4.9: Image showing the normal vector for a point on a saddle surface. The normal planes
shown also correspond to the planes of principal curvature for that point. Image credit: (Gaba, 2006)

(W 1,0
0 )i =

∫
K

xidV

(W 1,0
1 )i =

1

3

∫
δK

xidA

(W 1,0
2 )i =

1

3

∫
δK
G2xidA

(W 1,0
3 )i =

1

3

∫
δK
G3xidA

(4.13)

These again would roughly equate to the centre of mass, and three curvature cen-

troids and take the form of a vector. xi and xj are position vectors of δK where

i, j, k ∈ {x, y, z}.
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(W 2,0
0 )ij =

∫
K

xixjdV

(W 2,0
1 )ij =

1

3

∫
δK

xixjdA

(W 2,0
2 )ij =

1

3

∫
δK
G2xixjdA

(W 2,0
3 )ij =

1

3

∫
δK
G3xixjdA

(W 0,2
1 )ij =

1

3

∫
δK

ninjdA

(W 0,2
2 )ij =

1

3

∫
δK
G2ninjdA

(4.14)

And again these can be roughly equated to the cell volume, three curvature weighted

surface integrals and two surface integrals (Schrder-Turk et al., 2013) respectively.

These take the form of a set of 3 vectors for which eigenvalues are also calculated.

ni and nj are normal vectors of δK.

The breakdown of the cell description into MTs allow for testing of different metrics

and properties of a structure, making it a very useful technique in creating a framework

for characterisation of structures.
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4.3.1 Radial Distribution Function

Figure 4.10: Demonstration of the
RDF, showing a centre reference sphere

and the area dr bounded by two
concentric circles. These circles

determine n.

The Radial Distribution Function (RDF) mea-

sures the distribution of particles from a central

reference point (figure 4.10). More specifically it

is the likelihood of finding a particle for some given

distance from a central point, relative to the over-

all (global) density.

The RDF is commonly used in physics to deter-

mine the density of points in atomic systems when

calculating potentials, molecules in gases and liq-

uids, as well as larger objects such as granular ma-

terials. The general form of the RDF g(r) in three-

dimensions is

g(r) =
n(r)

Φ4πr2δr
(4.15)

where δr is the width of the shell bounded by two concentric circles r and (r + δr)

away, and n(r) is the number of points within the shell. Φ is the density, in most cases

the packing fraction. The RDF tends to a value of one, as the global density tends to

the local density and the terms cancel out.
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Figure 4.11: Example of an RDF for the densest known packing of tetrahedra, with rin being the
radius of the insphere of a tetrahedron created by Torquato and Jiao (Torquato & Jiao, 2009)

An example of the RDF is shown in figure (4.11) for a dense packing of octahedra. In

this case we can see the RDF g2(r) → 1 as r increases, showing a lack of long-range

information being carried through the system (Torquato & Jiao, 2009).



Chapter 5

Methodology - A Statistical

Approach

5.1 Entropic Measures of Information

In section (2.4.2) Shannon entropy was discussed as a measure for the information

stored in a system. The more configurations there are in a system, the greater the

uncertainty, and in turn the greater the entropy.

In order to calculate how information is passed through a system, it becomes neces-

sary to compare disparate parts of that system. In section (2.3.2) it is discussed how

knowledge of an event A, may change the probability of an occurrence in event B.

By combining conditional probability and entropy it becomes possible to quantify the

information shared by two parts. In essence we are comparing two variables and quan-

tifying the uncertainty left in event B, given event A. Take the example of a packing

structure, we can draw a comparison to knowing the unit cell of a crystalline structure,

which in turn gives all the information needed about the system. To measure this

shared information we introduce conditional and joint entropy.

69
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The joint entropy is the uncertainty for a set of variables. This, like the entropy, can

be thought of in terms of Kolmogorov complexity. Therefore, the more well defined the

quantities are, the more certain we are about their values and the more compressible

the information. The joint entropy is described by the equation:

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log[p(x, y)] (5.1)

The conditional entropy is the uncertainty of x when we know y

H(X|Y ) = −
∑
y∈Y

∑
x∈X

p(x, y) log
p(y)

p(x, y)
(5.2)

and thus gives us a measure of the information given to x by knowing y. This is the

remaining joint entropy, therefore the conditional entropy can be written as:

H(X|Y ) = H(X,Y )−H(Y ) (5.3)

If no information is gained by knowing y then H(X|Y ) = H(X). This can also be

implied following Bayes Theorem giving

H(X|Y ) = H(Y |X)−H(Y ) +H(X) (5.4)

which also shows H(X|Y ) ≤ H(X).

While the Kolmogorov complexity is uncomputable, it is important to state that by

using the entropy to quantify complexity we are no longer using a universal language.

This is because entropy is a relative measure based on probability theory, and while it

is a very useful quantity it is not a perfect descriptor of complexity in the same way

Kolmogorov complexity is.
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5.2 Mutual Information

To start analysing multi-variate data, approaches beyond Shannon’s entropy need to

be explored. Mutual Information (MI or I) or Mutual Entropy describes the amount

of information contained in one variable that relates to the other or, alternatively, how

well variable A describes variable B (figure 5.1). This simple quantity gives us a robust

method for quantifying the correlation in a system and by extension its complexity. The

MI is robust as it does not assume any apriori information about the type of correlation

in the system being used in a number of fields, most notably in Biology and Computing

(Steuer et al., 2002; R., 1994). MI measures the difference between the configurational

and conditional entropies and thus mathematically quantifies the difference between

the joint probability and the conditional probability shown below as:

I(X,Y ) =
∑
yεY

∑
xεX

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(5.5)

where p(x, y) is the joint probability of x and y. Log to the base 2 has been used so

that the MI is always expressed in bits. There is also the convention that, as with the

entropy, 0 log 0 = 0;

Equation (5.6), equation (5.5) and the previously defined Jensen’s Inequality (Jensen,

1906), show that I(X,Y ) ≥ 0. This does not hold true for multi-variate cases which are

less well defined (de Cruys, 2011). By extension MI is also symmetric I(x; y) = I(x; y),

and concave.

I(X,Y ) ≥ − log

∑
yεY

∑
xεX

p(x, y) log2

p(x, y)

p(x)p(y)

 = − log

∑
yεY

∑
xεX

p(x)p(y)

 = 0

∴ I(x, y) ≥ 0 (5.6)

MI can be further understood by application of Bayes Theorem which states the joint

probability is equal to the product of the two single probabilities if and only if the two
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variables are independent:

p(x, y) = p(x)p(y) (5.7)

therefore if two variables are independent

(
p(x, y)

p(x)p(y)

)
= 1 ∴ I(X,Y ) = p(x, y) log 1 = 0 (5.8)

This means if no information about x can be taken from y, I = 0.

It is also very useful to define the mutual information in terms of entropies. It can be

shown using equation (5.5) that

I(X,Y ) =
∑

xεX,yεY

p(x, y) log2(p(x))

+
∑

xεX,yεY

p(x, y) log2(p(y))

+
∑

xεX,yεY

p(x, y) log2

(
1

p(x, y)

)
=
∑
xεX

p(x) log2(p(x)) +
∑
yεY

p(y) log2(p(y))−
∑
yεY

∑
xεX

p(x, y) log2(p(x, y))

by substituting in equation (2.22), the Shannon entropy, and equation (5.1) we find

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (5.9)

given that

H(X|Y ) = H(X,Y )−H(Y ) and conversely H(Y |X) = H(X,Y )−H(X)

it can also be shown that

I(X,Y ) = H(X)−H(X|Y ) or I(X,Y ) = H(Y )−H(Y |X) (5.10)



5.2 Mutual Information 73

Figure 5.1: Image explaining the concept of information and entropy on a Venn diagram (Voelkel,
1998)

Now some useful bounds can be defined. It has already been shown that for two

completely independent variables I(X,Y ) = 0 (equation 5.8). This is the lower bound

for MI previously stated in equation (5.6). Therefore using equation (5.9), H(X) ≥

H(X|Y ). Extending this to two completely dependent variables, it can be seen that

H(X|Y ) = 0 if and only if the value of x is completely determined by the value of y.

Conversely, H(X|Y ) = H(Y ) if and only if x and y are independent random variables,

leading to

I(X,Y ) ≤ H(X) (5.11)

and can be thought of as I(X,X) as no variable can give more information than to itself.

A kernel density estimator is also used (section 5.2.2). The Kernel method approximates

the discrete data to a function by creating a polyfit of the co-occurrences matrix, thus

creating a probability density function (pdf). The pdf can then be integrated over as

defined by the continuous equation for MI:

I(X,Y ) =

∫
yεY

∫
xεX

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
dxdy (5.12)
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5.2.1 Statistical Approaches to Quantifying Disorder

To understand how the mutual information behaved for normally distributed variables,

I implicitly calculated MI using the well-defined normal probability density function:

p(x) =
1√

2πσ2
exp(−(x− µx)2

2σ2
) (5.13)

By substituting in to

H(X) = −
∫

x∈X

p(x) log2 p(x) (5.14)

and integrating (by parts) over all values of x, it is shown

−
∫
p(x) log2 p(x) =

[
−1

2
ln(2πσ2

x)− σ2
x

2σ2
x

]
∴ H(X) = −1

2
ln 2π − lnσx −

1

2

(5.15)

From here it can be found that the MI relates to the Pearson correlation coefficient

directly in the bi-variate case. Usefully this will allow a way to calculate MI independent

of any probabilities.

As we have already seen the MI can be expressed as I(X,Y ) = H(X,Y )−H(X)−H(Y ),

leading to

∫ ∫
I(X,Y )dxdy =

∫ ∫
ln[p(x, y)]− ln[p(x)]− ln[p(y)]dxdy (5.16)

Here we require the additional substitution of the bi-variate normal distribution p(x, y)

=
1

2πσxσy
√

1− ρ2
exp(− 1

2(1− ρ2)
[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)
σxσy

])

(5.17)



5.2 Mutual Information 75

Finally, by substituting equation (5.17) in to equation (5.16) we find

∫ ∫
ln[p(x, y)]dxdy =

∫ ∫
ln
( 1

2πσxσy(1− ρ2)
1
2

)
+

2ρ(x−µx)(y−µy)
σxσy

− x−µx
σ2
x
− y−µy

σ2
y

−2ρ2
dxdy

(5.18)

and given that ρ =
〈[(x−µx)(y−µy)]〉

σxσy
and by using the result shown in equation (5.15) it

can be shown after simplification that

I(X,Y ) = −1

2
log2(1− ρ2) (5.19)

The result is analogous for H(y), and can also be proved in the same way by using

equation (5.5) directly.

The result was important, as it showed, for normally distributed data, that the MI was

independent of the number of data points (i.e. the number of disks in a packing). The

only variable quantity was the correlation coefficient. As entropic measures such as the

MI measure uncertainty, and ρ uses standard deviation from a mean value to measure

correlation, it was not surprising that the two could be related in some way.

5.2.2 Probability Binning

’Binning’ is the term used to describe the act of placing data in the intervals of a

histogram. A ’bin’ refers to one interval. To calculate probabilities it is required to

bin data so that the correct frequency of an occurrence can be calculated. In some

cases this is implied, such as with integer quantities. In the case of continuous data the

interval bounds are defined i.e. the frequency of data lying in the range b1 and b2. If

n is the total number of data points, k is the total number of bins and m is a discrete

histogram then mi is the total number of points falling in bin i and n =
∑k

i=1mi. The

bounds are decided on a number of factors including the desired size of the bins, or the

number of bins required. In rarer cases the binning may be adaptive, with various sizes

of bins that are dynamic.



5.2 Mutual Information 76

The choice of binning is important when dealing with entropic measures as it is well

documented that this affects the value (Miller, 1955; Paninski, 2003; Schurmann, 2004;

Grassberger, 1998). Specifically a characteristic bias can occur as a result of changes

to the probability function. Bias can significantly skew the value of the entropy and

MI.

Let us take an extreme example for a random string of N values. As the number of

bins→∞ data becomes extremely sparse, with most bins having an occupancy of zero.

The average occupancy of occupied bins will → 1. In this case the entropy will tend to

H(X)→ log
1

N
(5.20)

which is not the case for non-uniform data. Conversely taking the number of bins → 1

results in p(x)→ 1 therefore H(X)→ 0. In both cases the MI becomes invariant and

provides no useful information. The goal therefore is to minimise the bias so relevant

and reliable information can be extracted. The bias of information measures is well

known and there have been a number of proposed solutions that will be given further

attention later.

In the same way as the entropy, the MI shows a bias dependent on the size and occu-

pancy of the probability bins, with the added issue of two or more variables. This can

be clearly seen in figure (5.2) where a low Φ packing has been used so that I → 0 for

larger box sizes.

A number of attempts were made to characterise the bias using nth neighbour boxes.

This was because their MI should be close to zero allowing a good model for testing.

I began with a polynomial fit in the form f(x) = g1x
n + g2x

n−1 + ... + gnx + gn−1.

After some trial and error and experimenting with log(I), the relationship appeared to

be exponential in the form I = ec1 log(b)+c2 with b the size of the box. c1 tended to be

between 3.5 and 3.9. Polynomial fitting still made assumptions and so a comparison

was made for the calculated value of MI for Gaussian data as shown in section (5.2.1).
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Figure 5.2: A graph of MI (in bits) vs box size (in units of disk diameter) taken to large box sizes to
show MI bias. Here a 50,000 disk packing generated by RSA is used. Blue circles represent 1st

neighbour boxes, with red crosses showing boxes further away. The pink line characterises the bias by
using a polynomial fit of MI for 4th neighbour boxes

This was useful in cases of statistically driven data, but was not useful in the case of

packing, as ρ is not sensitive to non-linear correlation (Cellucci et al., 2005).

The best binning was empirically found to be
√

1
N in the case of statistically driven

data sets, and held true for packing data. MI performed well as a relative measure when

binning occupancy remained within an order of magnitude or so. Wherever possible

binning was fixed as to minimise any bias. This seemed sufficient in the case of packings

as the number of disks remained within an order of magnitude without the need for

adjustment. Still, it is important to be aware of information bias when interpreting the

MI. In summery the bias is dependent on the statistics and the properties of a packing,

meaning the MI could not be relied upon as an absolute value of disorder.
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Figure 5.3: Bias of Shannon entropy given a number of bins, with constant N = 1000 for normally
distributed random points, the bias tended towards log

(
1
b

)
A number of other methods were attempted to address the bias issue. The first attempt

at quantifying the bias used

σ2

B2
≈ N(log b)2

b2
(5.21)

proposed by (Paninski, 2003), where B is the Bias and b is the number of bins. From

equation (5.21) it can be seen that bias is effected when N is too small, or b too

large, particularly in the case σ2

B2 < 1. This property was important when finding a

good binning for packing data. While equation (5.21) is well understood in the range

N � b, it is not as useful in the range N ≈ b (Paninski, 2003). Other more general

approaches were also tested, including the long standing Miller-Madow Entropy:

Hmm(x) = H(x) +
b− 1

2N
(5.22)

Here a correcting function is added to the Shannon entropy, and is dependent on the

number of bins and the number of data points. It would therefore be useful for smaller

sample sizes or packing structures.

Clustering MI (Slonim et al., 2005) was another attempted solution, in which informa-
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tion is binned by making as few assumptions as possible. Let us take N data points

(i = 1, 2, ..., N) and Nc clusters (the bins, C = 1, 2, ..., Nc). Also let us take an arbi-

trary similarity measure for some given elements ir to be s(i1, i2, ..., ir). Slonim et. al.

proposed the average similarity of a cluster as

s(C) =
N∑
i1=1

· · ·
N∑
ir=1

P (i1|C) · · · P (ir|C)s(i1, ..., ir) (5.23)

where P (i|C) is the probability that element i is in cluster C.

This allows for the formation of an optimisation problem expressed by maximising the

average similarity < s >=
∑Nc

C=1 P (C)s(C) (where P (C) =
∑N

i=1 P (C|i)P (i) and is

the total probability of finding any element in cluster C and P (i) is the probability

of element i occurring) and minimising the amount of information taken to store the

clusters:

I(C, i) =
1

N

N∑
i=1

Nc∑
C=1

P (C|i) log

(
P (C|i)
P (C)

)
(5.24)

The cluster MI method seemed promising as it could be likened to Kolmogorov com-

plexity, however it was found to be difficult to implement using packing data giving out

of bound results. With some minor adjustment Cluster MI did work for statistically

generated results, but bias was still present in the data, similar in magnitude to the

unaltered methodology.

An estimator proposed by Grassberger et al. was also considered, specifically one using

a Gamma function to estimate the bias H(x) = 1
N−1

∑
log(p(x) + Γ1 − ΓN ) with Γ1

being the Euler-Mascheroni Constant (Grassberger, 1998). This was an extension of

the Renyi Entropy, which was also used, expressed as

H(q) =
1

1− q log

M∑
i=1

pqi (5.25)

where q is the order of information. In the linear case q → 1 and the Renyi entropy

can be shown to tend to the Shannon entropy (Schurmann, 2004). This worked well
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over the range b� N , but was less reliable in the preferred case of b ∼ N .

Kernel density estimators (KDE) are also used. The technique is not ideal but allows for

a more consistent approach (Moon et al., 1995) while minimising any binning bias. The

KDE took the place of a histogram, creating a mesh which values fell in. For bi-variate

data this mesh was simply a 2-fold matrix defining the bin locations. An identically

sized matrix then contained the frequency measures for each bin, effectively making

it a 3-dimensional histogram. The KDE data was then passed through a piecewise

interpolation to create a smooth function that fit the original data. This function was

a probability density function, allowing an integration using the continuous form of MI

(equation 5.12).

This being a well understood problem of entropic estimators mean there are a huge

number of other proposed solutions. As a summary, these tend to fall into these cate-

gories, including those above;

• Correcting the entropy with an added term, in some cases a constant, in others a

term dependent on the number of bins or the number of data points, and in some

cases both;

• Methods that modify the binning. This may include methods that define a bin-

ning size or number, while others use an adaptive partition such as the Fraser

Swinney algorithm (Cellucci et al., 2005);

• Substituting terms to eliminate binning altogether, such as probability, as in the

case of equation (5.19).

While all these methods had merit, they did not solve the immediate problem and

tended to only apply for specific ranges to N , which itself was variable.

As the results will show later, it was possible to compare and contrast these techniques.

This allowed an empirical binning to be set which worked well for packing data. By

comparing MI calculated with probabilities against MI calculated by equation (5.19),
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it was possible to create a more dynamic binning with the drawback of being less

accurate when using data that was not linearly correlated. One advantage was that

generally data sets had the same range, meaning binning could be kept constant over

both variables.

Ultimately the binning was kept around ∼
√

1
N , and adjusted as needed. Wherever

possible the binning was kept consistent to allow some comparison. Issues with the

binning led the research towards more relative measures, such as the Kullback Leibler

Divergence discussed next, however work continues on a solution to the bias problem.

5.3 Kullback Leibler Divergence

MI shows how information between two pieces of a system can be quantified. This

allowed a relative measure of information, but did not give data regarding the whole

system, or even where more information might be found. To this end, a completely

relative measure based on statistics for the whole system was used.

Kullback Leibler Divergence (KLD or DKL) proved to be a good tool in this endeavour.

The KLD takes two probability distributions and compares them giving a measure of

how much information is required to encode one from the other. It is traditionally used

as a tool to compare scientific models and experimental data allowing for an absolute

value measuring their ’closeness’.

MI and KLD are similar quantities both rooted in information theory, and both re-

quiring the same sort of information, notably probability distributions. It made KLD

a good choice as it could be adapted to the current framework without changing how

statistics are extracted.

Mathematically the KLD can be described by the equation (in the discrete case)

DKL(P |Q) =
∑
xεX

P (x) log2

(
P (x)

Q(x)

)
(5.26)
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giving a mathematical measure of how much extra information is required to code Q

from P (shown in figure 5.4). This can be extended to the continuous case but taking

the indefinite integral instead of the sum. For two identical distributions where the

Figure 5.4: Example showing how information from Q can encode information from P, given some
uncertainty expressed in the KLD

sample exactly describes the model, DKL(P |Q) = 0. It can then be proven to always

be greater than zero by applying Jensen’s Inequality which states that for a function

f(x)

〈f(x)〉 ≥ f(〈x〉) (5.27)

therefore

DKL(P |Q) ≥ log
(∫

p(x)
Q(x)

P (x)
dx
)

= log
( ∫

Q(x)dx
)

= 0 ∴ DKL(P |Q) ≥ 0 (5.28)

this solution is referred to as the Gibb’s inequality. For the purpose of computing the

KLD it was easier to calculate a sum of entropies, therefore a new quantity must be

defined called the cross entropy (equation 5.29). This quantity measures the amount

of information in Q, given P (similar to conditional entropy).

H(P,Q) = −
∑
x∈X

P (x) log[Q(x)] (5.29)
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Given this and equation (2.22) it is found that

DKL(P |Q) = Hx(P,Q)−Hx(P ) (5.30)

KLD is also non-symmetric and convex, as log x is convex (Mezard & Montanari, 2009).

It is a quantity that can be thought a little as a convolution of images giving a value

of their overlap, in this case the overlap of their combined area.

5.3.1 Finding Motifs

The KLD allows a technique of scanning structures looking for areas of high and low

information. This is achieved by moving the sample area across the packing given some

arbitrary interval (shown in figure 5.5).

Figure 5.5: A disk packing generated by the
LSA, showing where statistics are taken for
P , and how the packing is then scanned for
local statistics Q. These are then used to

calculate the KLD.

By searching for low KLD, it was possible to

find areas information is more likely to be

stored, that is, areas that have more infor-

mation about the whole system. By changing

the sample size of Q, it was possible to look

for motifs. Of course in a disordered system

there is no pre-defined size for a motif, but

some local configurations give more informa-

tion about a system than others.

Motifs are those parts of the structure that

give more information about the rest of the

system. This is usually because they are com-

monly found, or their statistics fit the system

well. In the example of a crystal there is only one motif, the unit cell.
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It is possible to build a picture for a given system using the KLD by visualising the

information in a colour map, such as in figure (5.6). In this case, instead of scanning,

a grid was overlaid on a structure, where P (x) is the statistics for the whole packing,

and Qn(x) describes the statistics in each sample where n denotes the grid samples

sequentially. Therefore Qn ⊂ P and
∑n

1 Qx(n) = P (x).

DKLn(P |Qn) =
∑
xεX

p(x) log2

(
P (x)

Qn(x)

)
DKL(P |Q) =

1

N

N∑
0

∑
xεX

p(x) log2

(
P (x)

Qn(x)

)
(5.31)

DKLn becomes a matrix of n elements to which a colour map can be superposed on to

the packing, just as seen in figure (5.6). The white boxes show common motifs in low

entropy areas. In these early results they are simply added by inspection.

(a) Φ = 0.9 (b) Φ = 0.4

Figure 5.6: Images showing early work identifying motifs using the KLD, with blue areas having the
lowest entropy

By adjusting the sample size, the resolution and sensitivity of the KLD can be changed.

For most sample sizes this is a cosmetic change only, however certain ranges are im-

portant for finding motifs. Too large a sample describes the system but saves no

information, too small and you do not gain specific information about how the system

is assembled. Initially the sample size was decided by a user-defined box size. Inves-

tigations with the KLD included results showing how sample size affected the KLD.

During experiments on structure the size was held between 2-4, as many motifs are
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tetrahedral this was the most range interesting. Other sizes were used in an attempt to

find larger structures that might repeat, but generally no significant motifs were found.

5.3.2 Self Referential Order

While the KLD did identify structures, it did not offer the quantitative information the

MI did. This will be seen in the results, where the global MI offers more information

about structural changes than the KLD. Work was made towards a new quantity that

could combine the best of both the MI and the KLD, leading to the concept of Self

Referential Order (SRO):

s(X;Y ) = 1− H(X|Y )

H(X)
. (5.32)

I propose it as a novel measure to quantify the amount of information one part of a

structure has about other parts. This can be again thought of trivially in terms of unit

cells and crystalline packings. This is achieved by comparing the conditional entropy

of a system, given some information about itself, with the overall entropy of a system.

This is useful as it depends on no outside information, and Y must be a subset of X

(equation 5.32).

Due to the importance of the SRO, it will be given far more scrutiny in chapter 7. I

will simply provide some technical data here. The software package Matlab 2012 using

the Statistics, parallel computing and image processing toolboxes was used to create

the program that calculated the SRO. All the results were carried out using packings

created by the LSA and statistics created by the Karambola program.



Chapter 6

Results - Quantifying Disorder

6.1 Entropy and Disorder

The main goal of this chapter was to test the viability of the new framework outlined

in the methodology. Disordered structures were chosen due to their similarity with

amorphous packings. I will look at how entropy can be used to characterise disorder,

and apply it to known quantities in the field of packing problems.

It is important to see how entropic measures behaved for single variables before moving

on to quantities such as the MI. Indeed in some cases it was useful to use the quantities

either to calculate or create statistics for the MI and KLD. To begin with the global

entropy of loose packings generated by RSA was calculated with results being generated

by taking Voronöı cell volumes with a constant binning.

Figure (6.1) shows how entropy changed with growing sample size, achieved by taking

statistics from a central region and then growing it to include more information. In

such cases the results show a decreasing entropy, confirming larger sample sizes pro-

vided more information and therefore less uncertainty. Low entropy is expected for

global statistics as the volume metric followed a normal distribution with low kurtosis,

therefore trends observed shows high entropy only where the statistics are still sparse.

86
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Figure 6.1: Results showing how entropy changed with growing sample size (box size) for a number
of samples generated with the RSA

Sparse statistics don’t allow enough information to describe the system, and in some

cases data could be missing completely, creating a zero probability for common events.

Instead of changing sample size, it was also possible to take several samples in the same

system. This was useful for comparison. Figure (6.2) shows a grid that corresponds to

the actual sample size on a 2D mono-disperse disk packing. This grid is overlaid but

the packing structure is not shown for clarity. For each box in the grid the entropy and

number of particles were calculated. The entropy for figures (6.1) and (6.2) is mea-

sured using probabilities calculated from the adjacency matrix of volumes for nearest

neighbours given a reference Voronöı cell. The adjacency matrix is defined as

Maj(i, j) =
∑
p

∑
n

{
+1, if f(p) = i± δb and f(n) = j ± δb

+0, otherwise

where f(p) is the volume of cell p and f(n) is the volume of its nth nearest neighbour. i,

j and δb are all determined by the desired binning and range of cell volumes, therefore

they define the bin centres and intervals (or rather size) respectively. Note the bin size
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is equal for all bins, which is the case throughout the results.

The results also showed the entropy did differ between packings, especially for changing

packing fractions, however, it was clear for any single packing the magnitude remained

close. While this doesn’t mean anything in and of itself the similar values of entropy

amongst samples taken from the same packing opens the possibility of shared informa-

tion that could be measured between samples.

Figure 6.2: An image showing the entropy of various separated statistics of a single loose packing,
where S is entropy, H is conditional entropy and N is the number of particles in the box

6.2 Mutual Information

To begin with Mutual Information was used to look at how information was translated

through a packing. There has been much interest in the idea of long and short ranged

disorder, which determines how the position of one or more particles effects those

around it, and to what distance. This was important for two reasons: (1) To see how

dependent the structure was on local formations, for example during crystallisation and

(2) Gave advice on how packings should be created; how sensitive they are to initial

conditions, how the boundary might affect a packing, and how large any ’null’ border
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should be.

6.2.1 MI for Statistically Generated Data

There have been a number of papers demonstrating validation of MI for the use of

quantifying correlation (Cellucci et al., 2005). These papers report on several quantities

including Pearson’s correlation coefficient and the MI. These reports show high values

for most measures in linearly correlated data, generally tending to 1 as expected. MI is

an exception as it is not bounded between zero and one, nor is it defined as completely

correlated at one. Therefore the MI usually tends to around three bits for linear data.

In the normally distributed case these same measures would not detect any correlation,

with values tending to zero, the only exception being the MI. The MI remains small

compared to its value for linearly correlated data (between 0.1 and 0.2 bits). This,

however, is significant, as the statistics used to describe disordered structures follow

similar correlations, and so changes in packing structures would remain dectectable.

Finally, parabolically correlated data is presented, produced by applying y = x2 + c

where x is a set of i.i.d. variables and c is some added noise. This is where MI is

distinctive, with it remaining high (again close to three bits) but with other correlation

values remaining close to zero (Cellucci et al., 2005). I verified that my methodol-

ogy reproduced these results closely, giving confidence in the overall soundness of my

approach.

Equation (6.1) shows how MI can be related to the Pearson correlation coefficient for

normally distributed i.i.d. variables. This calculation in itself is interesting as it does

not display bias and gives us a second way to calculate the mutual information. In order

to calculate the mutual information in both ways efficiently a new code was created.

I(x, y) = −1

2
log2(1− ρ2) (6.1)
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Instead of directly calculating the mutual information from a probability matrix, the

new code created a 2x2N correlation matrix showing all pairs of correlated values.

From the correlation matrix, the correlation coefficient could be calculated to check the

results. Using equation (6.1) had the drawback of working only for normally distributed

i.i.d. variables, however, this was accounted for when interpreting the results. A multi-

variate Gaussian random number generator (MVG) (Hernadvolgyi, 1998) was used to

create inputs for the validation of the MI with statistically generated data, as it was

far more easily controlled, and as such, verifiable. MVG data was not created for any

of the structural data.

Figure 6.3: This figure shows the MI of statistically generated data for some standard deviation,
giving a measured correlation coefficient (shown as the independent variable). The MI is calculated

using a number of techniques as shown in the legend

The MVG allowed normally distributed data to be used with different values of co-

variance. This created two sets of points which were normally distributed, but with

a known correlation between them. The correlation was recalculated each time using

the correlation matrix as small fluctuations had to be accounted for (caused by the

random nature of the variables). A histogram was then created following the general
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form n =
j∑
i=1

Mi where k is the number of bins and Mi is the number of occurrences

in each bin (i.e. the histogram). This means n is the total number of data points

and allows probabilities to be expressed simply as p(i) = Mi
n . The probabilities are

then used to calculate the MI in 5 different ways for a comprehensive test of various

methods. These are listed below:

• Computed using MI estimated for a Gaussian as calculated in equation (6.1)

• Entropy estimated MI as calculated in equation (5.9)

• Discrete MI as shown in equation (5.5)

• Continuous MI using the kernel density estimator to approximate the discrete

probabilities as a function, then applying equation (5.12)

• MI calculation based on clustering MI program created by (Slonim et al., 2005)

This list is relative to the legend in figure (6.3).

The results in figure (6.3) show that the MI did not change drastically with each

method. That said, there are a few notable differences. The discrete MI, despite being

close in values to the entropy based equation, fluctuated away from it. This is probably

due to its highly sensitive nature, picking up on even small fluctuations. It suggests

particular problems when dealing with fat-tailed distributions, where unlikely events

add disproportionally to the MI. The clustering MI calculation didn’t change at all

remaining close to zero, as the program was not designed for structural data, and so I

will dismiss it as an error.

Contrary to the known rules for MI, it can be seen the continuous MI becomes negative,

dropping below zero for the range ρ ≈ −0.45→ 0.45. This is because the probabilities

are now estimated and do not necessarily sum to one, therefore Jensen’s Inequality

breaks and the MI can be negative. Practically this means H(X,Y ) ≥ H(X) +H(Y )

and the MI becomes negative, albeit for ranges where the data is less correlated and
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therefore the estimation error is relatively large. A second normalisation would have

prevented such a problem, but was not done in this case for clarity when comparing

the methods.

Figure 6.4: Figure showing spread of points
generated by the MVG with ρ = 0.9 and with y
being the second set of related points squared so

they are parabolically related

Figure 6.5: This figure shows the MI of
statistically generated data for some standard
deviation which has been parabolically related

(figure 6.4). The MI is calculated using a number
of techniques as described in the legend

Results in figure (6.5) show the trend of MI for the parabolically related data in figure

(6.4), as described by y = x2 + c, seen earlier in this section. The correlation coefficient

is expressed for the independent variable x. However, it has been recalculated for y,

defined simply as Rho, and added as a cyan line to figure (6.5). This describes, as one

would expect, a very low value of ρ and consequently a very low value for the Guassianly

approximated MI. This is also true of the experimental data with the values of ρ being

very low compared to the discrete MI. The continuous MI is again shown to be the

most sensitive in these results. The binning for these results was set at 15 bins.

It was useful to compare statistically generated results, as it was also possible to change

the binning of the probability matrix while keeping the correlation constant, thereby

allowing a comparison of the methods outlined in section (5.2.2). This was unfortu-

nately only of limited use as packing data generally exhibits little linear correlation,

therefore the correlation measures tended to vary by three orders of magnitude making

an exact comparison difficult.
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6.2.2 MI for Mono-disperse Hard Disk Packings

This section deals with data generated with structural information extracted from

disk packings made with the LSA and RSA programs. Datasets are generated by

taking statistics for samples inside boxes overlaid on mono-disperse hard disk packings

(example 6.6). The results shown in the following figures use discrete data, and as such

the discrete form of the MI is applied:

I(x, y) =
∑
yεY

∑
xεX

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(6.2)

As with most results a padding was included to compensate for the fact a hardwall

boundary condition had been used in their creation, set at 10% the width of the con-

tainer (ensuring a minimum of several disk widths were excluded). The results pre-

sented were taken from packings made using RSA but were later revised using the LSA.

One such set of results is presented for comparison in figure (6.9). The padding was

given as d ≥ a−3
2 with a as the frequency of boxes and d is distance in units of boxes.

To allow for a simple case of expressing the boundary in disk diameters all points were

normalised to give their radius as 1 so that:

Mi

2r
∀i (6.3)

where Mi is the entry for the ith point and contains three numbers: two for the coordi-

nates of the disk, and one defining the disk diameter. All three numbers for all i points

are divided by 2r or two times the disk radius.

6.2.2.1 Mutual Information for nth neighbour samples

In these two-dimensional cases statistics are extracted by splitting up the packing into

boxes, this allows a simple grid to be imposed of which the size is also more easily

manipulated. Boxes are also trivial to extend to the three-dimensional case. A reference



6.2 Mutual Information 94

Figure 6.6: Example showing how mutual information is calculated. One variable being taken from
the reference box ’C’ while the other is taken from nth neighbour boxes.

box is selected (labelled C in figure 6.6), while boxes of the same size are constructed

around it. As can be seen in figure (6.6) subsequent boxes are constructed so the

distance between their centres is an integer number of box lengths. The boxes labelled

one, have centres one box length away, and are the 1st neighbours. Some 2nd and 3rd

neighbours have been added as well.

(a) Graph relating MI to distance (in
units of disk diameter) for a packing

consisting of 58884 disks with a packing
fraction of 0.52 where d=1 refers to 1st

neighbour boxes d=2 to the second
neighbour boxes and so on

(b) Graph relating MI to distance (in
units of disk diameter) for a packing

consisting of 26457 disks with a packing
fraction of 0.52 where d=1 refers to 1st

neighbour boxes d=2 to the second
neighbour boxes and so on

Figure 6.7: A comparison of MI results using different statistics for the probability function. Figure
(a) uses number of disks per sample, while (b) uses the number of neighbours per disk.
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Three sets of data were extracted from each box; the number of disks n, the numbers

of Voronöı neighbours (calculated as the degree of that disk, based on the Delaunay

triangulation), and the Shannon entropy. These all give similar trends in MI as shown

in figure (6.7), so unless stated otherwise the initial results are given for the disk

occupancy case. The results in figure (6.7) and others show little difference in MI for

the given statistics, as well as suggest the shared information between boxes diminishes

rapidly. This suggests perhaps sensibly that the positions in one area do not have much

influence on any but their closest neighbours. Different statistics will be given further

consideration in the next chapter with the use of Minkowski tensors.

After the packing was placed into regions created by a grid the occupation number was

calculated as well as the global covariance and covariance distances. This allowed the

N × N adjacency matrix M to be created by adding each cells co-occurrence to the

correct line.

Ci,j has neighbours Ci+1,j+1Ci+1,j−1Ci−1,j+1Ci−1,j−1

with occupancy values n0, n1, n2, n3 and n4, then

Mn0,nm = Mn0,nm + 1 where m∀n given 0 ≤ n ≤ N

(6.4)

In addition to this twoN×1 matrices were created for the frequency of occupancy, as the

number of boxes in x and y is equal the frequency vector F for each follows Fx = (Fy)
T .

By dividing through each matrix by the sum of its elements
∑
M =

∑
i∈I

∑
j∈J

Mi,j , the

values of p(x) and p(y) can be found from the frequency matrix, and p(x, y) from the

co-occurrence matrix.
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6.2.2.2 Mutual Information for varying sample size of 1st neighbours

Figure 6.8: Example showing how
mutual information is calculated. The
two boxes both offer one probability

distribution. The distance between them
(d), and their size (b), can be adjusted

as needed.

The program was created to allow for different box

sizes. This was to see how larger samples effected

the entropy (as seen previously). It became ap-

parent however, that it would be more desirable

to alter the distance by function of box size. The

program ran as before but the dependent value be-

came the box size. Taking figure (6.8) as an exam-

ple, the distance d remained the same at d = 0 (for

1st neighbours). However the distance between the

box centres, and by extension the mean distance

between the disks in each sample increased with

box length b.

(a) N = 10000 disks with Φ = 0.60 (b) N = 50000 disks with Φ = 0.53

(c) N = 100000 disks with Φ = 0.53

Figure 6.9: MI for nearest neighbours (blue points) as a function of box size with various numbers of
particles (N) created using the LSA, red crosses show MI for additional nth neighbour boxes
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It was apparent that looking at boxes far away

from the reference sample was not significant (figure 6.7), therefore figure (6.9) and

subsequent results only shows nearest boxes that have been grown in size (although

others were calculated). The smaller box sizes show how the statistics of the reference

box rely greatly on those around it (figure 6.7). Indeed when compared to the other

neighbours it is shown they offered very little information, for example in figure (6.9)

and (6.10).

These results, showing that the information only travels a short distance through a

structure, confirms the padding is more than sufficient to remove any skewed cell statis-

tics caused by the container boundary.

Figure 6.10: MI for nearest neighbours (in blue) as a function of box size for a packing of 58884
disks with a packing fraction of 0.52. Red crosses show 2nd, 3rd and 4th neighbours.

The graphs in figure (6.9) show little change in trend or absolute value of the MI between

packing comprised of differing numbers of disks, depending more on the packing fraction

as seen in (6.11) and (6.12). The smallest box sizes give a close to binary state, with

boxes either occupied by one or no disks. For box sizes ≥ 0.707 this is trivially always
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true as disks do not overlap and 2a2 = 2r ∴ a =
√

1
2 where r is the radius of the

disks set to 0.5. Therefore the optimal method for setting a box size is to define the

box occupancy or sample size. This should be generally a minimum of one to avoid a

sparse matrix, but not be so large as to allow the sample to describe the whole system,

typically a few disks.

(a) Φ = 0.52 (b) Φ = 0.53

(c) Φ = 0.58 (d) Φ = 0.63

(e) Φ = 0.65 (f) Φ = 0.72
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(g) Φ = 0.81 (h) Φ = 0.82

(i) Φ = 0.86 (j) Φ = 0.90

Figure 6.11: Various sets of packings generated by the LSA. Each packing consisted of 100000 disks.
Points show box sizes where the MI has been calculated. The smooth line shows how MI increases

due to the probability binning

Using the LSA for results in figure (6.11) allowed much higher packing fractions than

the RSA. These results look at the relationship of MI given some box size, used as a

unit of distance.

Let us look first at the lower packing fractions shown in figure (6.11a) (b) and (c), these

confirm the previous results that MI drops off quite quickly with increasing distance.

This makes logical sense, the further away something is in a physical system the less

effect it should have. What is most interesting is the maximums, with a primary peak

∼ 0.5 to 0.7d and a secondary peak ∼ 1.5.

Looking back at figure (4.11), the radial distribution function, there is a close resem-

blance in form, in respect to the peak locations. While we could modify the RDF
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for these packings by taking Φ = N
V and modify the RDF for two dimensions, giving

g(r) = n(r)
Φπ2rδr there is still some disagreement in x values. An explanation can be found

in our definition of the shell dr, which would not be a circle (as for the RDF), but a

square.

The results in figure (6.11) show us that as the sample box length is grown there is

no information before d ≈ 0.5 as, like for the RDF, no other disks are present. As

the border of the sample box encounters new disks there are jumps in the information

about the packing. During intermediate expansion phases the boxes are growing into

empty space, offering no information about the position of additional disks and most

importantly giving no mutual information based on the reference box.

The value of the peaks is also important, as it can be thought of as the true MI for

that system. Higher values for the MI maximum means more information is available

in that system, therefore the MI can be thought of in relation to the height of these

peaks.

The other maximums provide insight into how information is moving through a system.

The greater the subsequent peaks are, the more information is being carried through

the system. This effectively shows a range of influence. In the case of the last four

graphs it can be seen that the MI actually grows larger in some peaks. Larger peaks

may be the result of increased statistical data and a well defined distribution. Because

of dislocations in data beyond the RCP limit, some data describes the crystal structure

well and others don’t, leading to distorted peaks. This is probably due to the use of a

fixed reference cell. As work with the KLD has shown, the reference sample location

should not be arbitrary chosen. Combining the two techniques for this purpose could

be interesting for future work.
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Figure 6.12: Figure showing MI vs Packing fraction, for RSA created packings of 73076 disks with
varying disk diameters

6.2.2.3 MI for Mono-disperse Hard Disk Structures with a Static Sample

Size

Turning our attention back to the first three results in figures (6.11a), (b) and (c), the

same maximums show a different trend, with a well defined first peak, some information

from the second peak, and almost none from subsequent peaks.

It is interesting to plot these changes in absolute value over packings with different

values of Φ, as shown in figure (6.12). In this figure several packing have been generated

using the RSA that comprise the same number of disks. Therefore to achieve changes

in packing fraction the size of the whole structure must be reduced. At the same time

the sample size is kept static. The MI is calculated as before, by taking statistics from

these sample boxes and comparing two neighbours. The results then show how MI

changes as a system moves from a gaseous like state to a solid one.

As can be seen in figure (6.12) the value of the MI trends upward as we move towards

a less disordered system, revealing more information is carried through the system as it

becomes better defined in terms of a single cell. That is to say that a local configuration

is affected by, and effects, parts of the system far away. This shows long-range order,

just like a unit cell does for a crystal structure.
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Figure (6.12) again shows packings with different boundary sizes, allowing the packing

fraction to change but leaving the total number of disks static. The graph shows how

the MI decreases with less dense structures for 1st neighbours with a constant box size.

1st neighbours refer to the sample boxes touching, with their centres being one box

length away. These results were quite limited as they were produced with the RSA.

They can be extended by using LSA generated data as shown in figure (6.13).

Figure 6.13: Results showing peak MI for various packings generated using the LSA, with increasing
values of Φ and a fixed sample size.

Figure (6.13) presents data collected from multiple packings generated with the LSA,

which has allowed a much greater range of packing fractions than in figure (6.12). The

number of disks has been kept constant. The MI was calculated using Voronöı cell

statistics, specifically the number of edges. From these, the co-occurrences for each

cells nearest neighbours was calculated. This gave a probability distribution for each

sample. The MI was then calculated for a set distance of 1 box length (the diameter

of one disk).

As discussed in section (2.1.3.2) the RCP in two dimensions is believed to be close to

Φ ≈ 0.82 and the RLP limit has not been proven as of yet (Meyer et al., 2005). In
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figure (6.13) we can see an increasing trend in MI as expected, however a turning point

is clearly observed at Φ ≈ 0.8, before a slight drop, after which the MIs upward trend

resumes. This suggests evidence of the RCP limit in 2D disk packings. As crystallisation

begins beyond the RCP limit the system has two distinct phases, a disordered phase

and a crystallised phase. While this initially reduces the ’shared’ information in the

system, once the crystallised phase becomes dominant it quickly and easily describes

the system causing a rapid increase in MI. As the system crystallises a drop in the MI

is observed because the crystallised phase is seen as an aberration, this is clear evidence

of a change in structure.

Given these interesting results the peak MI was also investigated to see how information

is passing through the system. As we have already seen in figure (6.11) the MI has

several maximums when measured for increasing distance. These peaks follow the form

of the RDF, but there value has not been investigated. By measuring the maximum

values for MI between d = 0 and d = 1 we can find the value of the MI for the 1st

peak. This was done for several ranges as can be seen in figures (6.14), (6.15), (6.16)

and (6.17). Taking the maximum MI in a range does mean the results presented here

have slightly differing sample sizes, albeit in a constrained range.
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Figure 6.14: Figure showing value for 1st MI
peaks, corresponding to a distance of ≈ 1 disk

diameter from the reference object

Figure 6.15: Figure showing value for 2nd MI
peaks, corresponding to a distance of ≈ 2 disk

diameters from the reference object

Figure 6.16: Figure showing value for 3rd MI
peaks, corresponding to a distance of ≈ 3 disk

diameters from the reference object

Figure 6.17: Figure showing value of maximum
MI for a large range of distance from the centre

In figure (6.17) we can see little information is gained before Φ ≥ 0.86 when long range

order from crystallisation sets in. That said, if we look at figures (6.14), (6.15) and

(6.16) some very interesting results can be seen. The growth in MI is seen in the 1st,

2nd and 3rd MI peaks, the farther away we get from the reference, the shallower the

gradient at low packing fractions (as one would expect given the previous results in

figures (6.10), (6.11) and (6.12)).

There also seems to be a change in gradient at around Φ ∼ 0.85, although this isn’t as

clear as in figure (6.13) which shows the overall trend in MI. There is, however, a clear

change in MI between 0.7 and 0.8. This appears as a broadening of the data in the

1st MI peak (Figure 6.14), but a clear change in figures (6.15) and (6.16). This could
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be strong evidence of an RLP limit at Φ ∼ 0.7, while it is a little outside the scope of

this project as a proof of concept, it is something that may warrant further attention

in future work.

6.3 Results - Kullback Leibler Divergence

Kullback Leibler divergence (KLD) as discussed in section (5.3) is a relative measure

of information. KLD can be used to calculate the information one part of a structure

gives to its whole. This makes it very useful in looking for motifs, areas containing high

amounts of information about the structure. The KLD also quantifies the remaining

information for a given motif.

Another compelling reason for using the KLD over the MI is the absences of bias,

discussed earlier in section (5.2.2). As we are dividing one distribution by another

(equation 5.26), the binning can be fixed for any given sample size. Unfortunately this

presented another issue, as in early results the KLD was found to violate the condition

DKL(P |Q) ≥ 0.

After investigation, it became apparent that binning was again to blame. For small

sample sizes of Q(x) gaps could be present in the discrete probability matrix. Because

the KLD is only defined if P (x) 6= 0 ∀ Q(x) 6= 0 a sparse matrix for Q(x) could cause

problems. Put simply you can not compare probabilities if you have holes in your

model. Therefore a kernel density operator had to be applied allowing for smooth

statistics, and the continuous form of the KLD was used (equation 6.5).

DKL(P |Q) =

∫ ∞
−∞

P (x) log
Q(x)

P (x)
dx (6.5)

Two types of interpolation where used when creating fit functions to the probability

density functions P (x) and Q(x). The first was a piecewise linear interpolation in which
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Figure 6.18: Fit of Voronöı
cell area data using a Gaussian

interpolation with large
meshgrid, boxsize = 10

Figure 6.19: Fit of Voronöı
cell area data using a piecewise

interpolation, boxsize = 10

Figure 6.20: Histogram of
Voronöı cell area data overlaid
with a piecewise interpolated

surface, boxsize = 10

the closest known points are taken to evaluate the function using straight lines (linear)

between points. The second is a cubic piecewise interpolation which does much the

same thing, only using a cubic to fit between points. Cubic interpolation takes much

longer, a standard run taking t = 1522 seconds compared to t = 360 seconds for linear

interpolation. As the time taken for the whole program is linear (that is to say, time

= number of loops x time taken for one loop), this means cubic interpolation typically

takes 4 times longer.

The method was again checked with known values for statistically generated data which

shows that normally distributed random data has the least amount of shared informa-

tion present. For statistically generated polynomial distributions (including linear,

quadratic and cubic) a similar value of the KLD is measured, showing the method is

sensitive to all polynomial correlation as one would expect.

6.3.1 Motifs

As we have seen (section 5.3.1), motifs are the set of local structures from which the

whole structure can be most efficiently encoded. A number of factors affect how de-

scriptive a single motif might be including: frequency of occurrence, fluctuations in

that motif, and the number of rules need for self-assembly. The fewer motifs that de-

scribe the structure the more efficiently it can be coded, similar to how information is

compressed by describing it with the shortest code possible (Kolmogorov complexity).
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The amount of disorder can then be quantified based on the number of motifs. This

requires identifying common motifs and the rules governing their combination into a

space-filling network.

Figure 6.21: Plot mapping the value of the
KLD using a colour map, with blue being low
KLD, Q(x) taken from a box size of 10. Each
box was then compared to the whole packing

P (x)

Figure 6.22: Plot mapping the value of the
KLD using a colour map, with blue being low
KLD, Q(x) taken from a box size of 4. Each
box was then compared to the whole packing

P (x)

The first efforts to find motifs were also done using a kernel density estimator to cal-

culate the KLD. After a correlation matrix was created using Voronöı cell areas two

sets of data were extracted, the first was the probability distribution for the whole

packing, the second was based on a sample of the packing, serving as P(x) and Q(x)

respectively (equation 5.26). While a number of fit types where used, a piecewise linear

interpolation was found to be best, although there was not much difference. This cre-

ated a fit object, which was a surface, that could be used to create a function that was

an estimate of the probability density function. Therefore no binning was needed for

the probability, and the KLD was computed by evaluating the new function directly.

The sensitivity of the kernel was decided by a meshgrid, which effectively changed the

resolution of the plot as shown in figure (6.18). It had the disadvantage of being quite

slow compared to the discrete methods.
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(a) Sample taken from a
boxsize of 4

(b) Sample taken from a
boxsize of 10

(c) Sample taken from a
boxsize of 50

Figure 6.23: KLD colour maps for various sample sizes, all samples are given on the same scales for
comparison

As figures (6.21), (6.22) and (6.23) show the smaller sample size increased resolution,

and a greater range of values by keeping statistics low. This would be necessary to find

useful motifs as large sample sizes would require more information to encode. In other

words, as Q(x) → P (x) no useful information would be gained as the alphabet would

be as large as the encoded object.
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6.3.2 Relative Measures

(a) Packing of disks with Φ = 0.4 (b) KLD colour map of figure (a)

(c) Packing of disks with Φ = 0.5 (d) KLD colour map of figure (c)

(e) Packing of disks with Φ = 0.6 (f) KLD colour map of figure (e)

Figure 6.24: Colour maps for various RSA packings of differing packing fractions (Figure 1 of 2)
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(a) Packing of disks with Φ = 0.7 (b) KLD colour map of figure (a)

(c) Packing of disks with Φ = 0.8 (d) KLD colour map of figure (c)

(e) Packing of disks with Φ = 0.9 (f) KLD colour map of figure (e)

Figure 6.25: Colour maps for various RSA packings of differing packing fractions (Figure 2 of 2)

To compare packings variables such as the sample size and meshgrid can be held. By

constraining these properties it was possible to look at various different packings as
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shown in figures (6.24) and (6.25). These images paint a picture of how the KLD and

the structure change, from the seemingly random fluctuations for low packing fractions

to the stark contrast of Φ = 0.9 with clear areas of crystallisation. In these high Φ

structures areas of high KLD are located only at the dis-joints.

It can also be seen from the colour map keys how the KLD decreases as the packing

fraction is increased. This can be seen much clearer in figure (6.26), and shows more

information is found in one sample of the structure if the density higher. The results

also show the KLD tending to zero as the comparison sample Q(x) is itself taken from

the final packing, showing rapid crystallisation after Φ ∼ 0.7 The average KLD could

be calculated for the colour maps, thus giving a value of the KLD for the whole packing,

using equation (5.31).

Figure 6.26: The average KLD for several sets of RSA packings with similar numbers of disks, but
with different packing fractions where Q(x) is a constant taken from a crystalline packing

Larger sample sizes causes Q(x) → P (x), this can be seen clearly in figure (6.27). It

can be seen as Q(x) goes to 100% of the container size the KLD→ 0. Figure (6.27) also

demonstrates that the number of disks has little effect on the KLD. Given significant

differences, it could skew the statistics, however this is mitigated by use of the kernel
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density filter.

Figure 6.27: A figure of the KLD for two RSA packings with different number of spheres but similar
Φ, where the sample size is grown in both packings



Chapter 7

Results - Self Referential Order

in 2D

7.1 Proof of Concept

7.1.1 Self Referential Order

Development of information theoretic approaches showed it was possible to quantify

disorder in some manner. However it was clear that refinement was needed, in the

hopes of combining the most useful elements of all the methods tried so far. Work with

the KLD had lead to the idea of self reference, the idea that in the absence of a single

descriptive structure (i.e. the unit cell), it was still possible to use part of the material

to characterise the rest.

A way to quantify this was required, leading to a definition of self-referential order. In

the case of a crystalline structure, it can be seen that the unit cell is a very effective

descriptor. Instead of requiring data from the whole packing, it can be encoded as a

much smaller quantity, the unit cell. The question then becomes is such a compression

possible for disordered structures.

113
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A number of paragraphs in the next chapter are excerpts from the paper Self-Referential

Order (Butler et al., 2013) which can be found in the appendix. This applies to some

parts of Sections (7.1), (7.2) and (7.3).

In this chapter a simple case of self-referential description is proposed. The SRO iden-

tifies highly descriptive local motifs, akin to the unit cell, which becomes sufficient to

describe the whole structure. Even in the absence of any previous knowledge of crystal-

lography it is still rather straightforward to identify the unit cell from the information

about the positions of all atoms. Indeed, it is sufficient to take a portion of the struc-

ture, translate it in space and see when and where it perfectly overlaps with another

part of the structure. The smallest portion of the structure that periodically overlaps

with all other parts of the structure is the unit cell.

7.1.2 A Mathematical Description

Let us start as before by taking a structure S composed of hard spheres. By defining

X as the information from S, and Y as the information from a small portion of S

we have S = X ∪ Y . To measure the amount of self-referential order we need to

be able to quantify how the knowledge about the portion Y reduces the amount of

information needed to encode X. Formally we need a measure of information content

such as described by the Kolmogorov complexity K (Kolmogorov, 1968; Solomonoff,

1964, 1960; Li & Vitanyi, 1993). This also allows a quantity that still falls within the

realm of information theory, allowing similar techniques as those used in chapter 6.

In other words, the quantity K(X) is the amount of information necessary to describe

X. Its conditional counterpart, K(X|Y ), is the amount of information necessary to

describeX, given the full knowledge of Y . When the knowledge about a portion Y of the

structure is sufficient to describe the rest of the structure we must have K(S) = K(Y )

and K(X|Y ) = 0. Conversely, when the knowledge about a portion does not add

any knowledge about the rest of the structure we must have K(X|Y ) = K(X) > 0.
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X

K(Y )

K(X)

Y

S

K(S)

K(X |Y )
K(Y | X)

Figure 7.1: In absence of a pre-defined template reference structure, one can use a portion (Y ) of
the structure to describe the whole structure S = X ∪ Y . The knowledge about the portion Y can

reduce the uncertainty about the rest of the structure X. Kolmogorov complexity, here denoted with
K(X) and K(Y ), measure the information contained in X and Y respectively. For instance, in the

case in which the rest of the structure X is completely determined by the knowledge of the portion Y ,
we have K(S) = K(Y ). In this case, the conditional information about X given Y , K(X|Y ), is equal

to zero.

While this is similar to entropic measures it is important to point out here the ’perfect’

solution of Kolmogorov complexity is used.

Given these quantities it is possible to define a self-referential order parameter

s(X;Y ) = 1−
(
K(X|Y )

K(X)

)
, (7.1)

which is equal to one if the system is fully self-referentially ordered and it is equal to zero

if completely random. This approach mathematically defines ’perfect’ self-referential

order. However here we hit the same problem as before because the Kolmogorov com-

plexity is not a computable quantity, as stated in previous chapters (section 2.4.1).
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7.1.3 An Entropic Approach

As we have seen it is possible to look for the information about X provided by the

knowledge of Y using entropic measures. When the portion Y encodes the full in-

formation about X then H(X) = H(Y ). The remaining entropy of variable X when

variable Y is known is quantified by the conditional entropy H(X|Y ). Therefore, an

entropic measure of self-referential order is:

s(X;Y ) = 1− H(X|Y )

H(X)
. (7.2)

By using the identity H(X|Y ) = H(X,Y ) − H(Y ) and obtaining the equivalent ex-

pression

s(X;Y ) = 1− H(X,Y )−H(Y )

H(X)
, (7.3)

which also reads

s(X;Y ) =
H(X) +H(Y )−H(X,Y )

H(X)
. (7.4)

One may notice that the quantity on the numerator is the mutual information: I(X;Y ) =

H(X) +H(Y )−H(X,Y ), therefore this measure quantifies the relative mutual depen-

dence between structures X and Y .

s(X;Y ) =
I(X,Y )

H(X)
(7.5)

It can be seen the SRO should always be between zero and one. Let us demonstrate

this by taking the bounds for y completely encoding information for x. Therefore

H(x|y) = 0 i.e there is no uncertainty knowing y. So by equation (7.2) it is found:

s(X;Y ) = 1− 0

H(x)
= 1. (7.6)
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In the case where no information is given by y to x we find:

H(x|y) = H(x) ∴ s(X;Y ) = 1− H(x)

H(x)
= 0 (7.7)

As we have already seen both the MI and entropy must be ≥ 0 and therefore s(X;Y ) ≥

0. As always the convention 0log0 = 0 is used. To show the SRO must remain in these

bounds, we can alternatively take the fact that 0 ≤ H(X|Y ) ≤ H(X). Taking equation

(7.2) we can see quantity is defined in the interval 0 ≤ s(X;Y ) ≤ 1 where 0 is associated

to a random state and 1 is instead observed for perfect self-referential order.

7.2 Characterisation of Structures

As results in chapter 6 show, parts of the structure can carry larger amounts of informa-

tion about the whole structure with respect to others. These high information-content

portions are repeated similarly in the structure more often than others and therefore

they are of particular relevance. We look for local sub-structures containing maximal

relative information. We shall call them ‘motifs’ these are equivalent to the ‘patches’

used in (Kurchan & Levine, 2011). In general, more than one motif is necessary to en-

code a disordered structure. Furthermore, these motifs do not repeat perfectly across

the structure and therefore they must be described in statistical terms.

7.2.1 Motifs and Self-Referential Order

As we saw with the KLD, it is possible to identify areas giving more information to

the whole structure. Here I present similar results generated by the more robust SRO

parameter.

Motifs can be identified from equations (7.1) or (7.2) by looking at the local parts that

maximally contribute to the information about the whole structure, i.e. the portions Y

associated with the largest s(X;Y ). Once the motifs are identified, one must quantify
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their recurrence in the structure. This can be done in three steps:

1. Count the relative frequency of occurrence of each local motif;

2. Compute the probability distribution of its fluctuations;

3. Estimate the entropy.

A number of challenges need to be addressed before completely describing a structure

the first being a fast and efficient way to search for structural motifs, particularly in

sparse disordered systems. This section will attempt to address the problem, however

other challenges exist in terms of rebuilding a structure which must be accounted for in

future work. This includes the possible overlaps between motifs that make their unique

identification ambiguous and requires the introduction of ’exclusion rules’ (i.e. when

two motifs overlap, only one must be counted at the time) and statistical ensemble

analysis (i.e. all encodings resulting from the different exclusions) must be considered.

This would require the use of a more dynamic search algorithm using SRO, rather than

the simple overlapping grid presented here.

Some work has already begun looking at motifs in disordered sphere packings (Delaney

et al., 2010; Aste & Matteo, 2008; Aste et al., 2006). The work suggests that in these

systems the number of motifs m is of the order of 102, and the matching rules are of the

order of 104. This may seem like a large number but it should be pointed out that in

terms of information compression we are passing from an information size of the order

of 1020 (hundreds of billions of gigabytes), which is certainly beyond computable sizes,

to a size of 104 bytes (tens of kilobytes), which is computationally insignificant.

It should also be stated that for many practical purposes a precise definition of the

local geometrical configuration is often irrelevant and the information can therefore

be further reduced (Anikeenko et al., 2008). This thesis shows that local tetrahedral

motifs are related to the description of a structural transition at the Random Close

Packing limit. This can be described in terms of motifs. Given that each tetrahedron
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has six edges and each edge has two states we can count m = 26 = 64 relevant motifs.

To compute the matching rules we must then consider that tetrahedra match face by

face and they have 4 faces giving (4× 26)2/2 ∼ 33, 000 matching rules. However, these

number can be greatly reduced, for instance, in (Anikeenko et al., 2008), it was shown

that the most relevant motifs were only 2: all-short-edges or not. And the relevant

matching statistics was given by the chains of all-short-edges tetrahedra.

7.3 Results

In this section the preliminary investigation about the quantification of self-referential

order in two-dimensional disks packings generated by the LSA. The results are for 15

samples comprising 5,000 disks representing a range of packing fractions between 0 to

∼ 0.9.

Figure 7.2: Colour maps (where blue is low SRO with red being high) created by scanning a
packing using the self-referential order parameter with a boxsize = 5 and packing fraction Φ. The

colour map is rescaled for each image.

The SRO parameter in these two-dimensional packings is calculated by looking at the
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Voronöı volumes around each disk and identifying a set of m = 500 kinds of motifs

classified in terms of their different volumes. This is used to verify that the method is

robust against this choice with analogous results obtained for m = 100 or m = 2, 000.

A local sample Y of the packing is taken and used to compute sX(Y ) by applying

equation (7.4). The process is then repeated for 10,000 different samples regularly

displaced across each sample. Figure (7.2) shows the SRO values over a grid of samples

to build a picture in the same way as was done for the KLD. These images are similar

in pattern with the SRO being low (opposite to the KLD) at lower packing fractions,

and offering a lot of contrast for high packing fractions where the packing crystallises.
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Figure 7.3: Global values of the self-referential order parameter ŝ vs. packing fraction displayed in
both linear and semi-logarithmic scale. Different curves (�, ◦ or � symbols) correspond to different

sizes of the local portion Y , which are squares respectively with edges equal to 3, 5 or 10
disk-diameters.

The absolute value for the SRO is shown in figure (7.3). Here the global measure of

SRO parameter (ŝ(X;Y )) is shown by finding the joint probability for given fractions

of Voronöı volumes simultaneously present in any of the portions Y and in the rest of

the sample X = S ∩ Y . One can see that the self-referential order parameter increases

with packing fraction to reach a maximum at the largest packing of Φ ∼ 0.9. From the

semi-log plot in figure (7.3) we can note that this parameter ranges over 4 orders of

magnitude, with an interesting plateau appearing between packing fractions ∼ 0.4 and

∼ 0.7. As previously stated the largest packing fraction that can be achieved for hard

mono-disperse disks is Φ = π/
√

12 ' 0.907 (Aste & Weaire, 2000), which corresponds

to a perfectly ordered, crystalline packing.
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The densest packing has some defects as creating perfect crystalline packings in the LSA

takes specific conditions with a very long run-time. For this reason, the highest packing

fractions are not the theoretical maximum. This is true for all results presented with

the LSA regardless of spatial dimension. These defects are clearly visible in figure (7.2).

At these disjoints the structure is skewed, along with the statistics. As these statistics

are very different to the rest of the structure the SRO is much lower in these regions.

These ’defective’ regions are less representative of the sample. Conversely, at lower

packing fractions the most representative local portions are not compact configurations

with crystalline symmetry but rather more complex and less compact configurations.

This leads to an increase in both number and complexity of motifs, so again the SRO

is much lower.
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Figure 7.4: Average maximum local values of the self-referential order parameter for each sample.
The average is over the 10% largest s(X;Y ). Different curves (�, ◦ or � symbols) correspond to

different sizes of the local portion Y , which are squares respectively with edges equal to 3, 5 or 10
disk-diameters.

In general, at different packing fractions different local configurations carry more or less

information about the rest of the sample structure. This can be thought of in terms

of different phases of matter. For gases, the placement of a single atom has little or no
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effect on those around it. As structures become denser displacement can affect local

parts of the structure. In the densest cases, small fluctuations can have an effect at

long range, such as the disjoints seen in figure (6.25f).

The investigation goes on to show the presence of highly referential motifs by looking

at the maximum values of s(X;Y ) in each sample. I was not directly responsible for

this part of the work, but it is continued in the paper Self-Referential Order found

in appendix 1. The investigation specifically quantifies the portions of sub structures

carrying the largest information by identifying the 10% largest s(X;Y ) per each sam-

ple. In figure (7.4) we show the values of the average self-referential order parameter

s(X;Y ) in this top 10% subset of most representative configurations. One can note

that at large packing fractions, where the structure is essentially crystalline, only a few

configurations carry all structural information. Interestingly, also at very low packing

fractions, where the structure is essentially random, again a small part of the most

informative configurations characterise well the whole structure. On the other hand,

at intermediate packing fractions (around Φ ' 0.6) the structure is more complex and

even the most informative local configurations carry, in average, a smaller amount of

information about the rest of the system.



Chapter 8

Results - Self Referential Order

in 3D

8.1 Characterisation of Three Dimensional Structures

Data for three dimensions was generated as before using the LSA. For these results,

several sets of packings were used. A set refers to a single run of the LSA program

in which many packings are generated from an initial random loose packing. These

packings are then processed by the Karambola package (Schaller et al., 2011), and the

Minkowski tensors created. As for the two-dimensional case, a grid composing of cubes

was overlaid onto the packing and calculations were made for various box sizes and

statistics. A binning was created for each statistic, taking into account its range of

values and the number of particles. The number of bins went through some trial and

error and was eventually set at 20 by 20 bins, then kept constant for all the results.

123
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8.1.1 Characterisation of Structures with Minkowski Tensors

There had already been investigations of hard sphere packings using Minkowski ten-

sors (Schrder-Turk et al., 2010) by calculating Anisotropy. Figure (8.1) shows the

anisotropy of a poly-disperse sphere packing, taken from Disordered spherical bead

packs are anisotropic (Schrder-Turk et al., 2010).

Figure 8.1: A poly-disperse packing of objects
with varying anisotropy as shown by a colour

map. The black outlines shown the Voronöı cell
frames

Anisotropy is a measure of how non-

uniform a shape is, most commonly re-

ferred to as directional dependence. For

example, an isotropic shape, one that is

uniform independent of direction, would

be a sphere or dodecahedron. Anisotropy

of such a shape is equal to one with the

magnitude of deviations from one showing

the magnitude of anisotropy. By taking

the convention of always using the min-

imum and maximum eigenvalue for each

cell, the range of values is confined between zero and one. This leads to a formal

definition of anisotropy using Minkowski tensors as:

αW = 〈|µmin
µmax

|〉 (8.1)

where µ are the eigenvalues of the Minkowski metric W over all cells K. It is important

to note not all Minkowski Tensor metrics are symmetric matrices therefore not all have

eigenvalues. These results used jammed packings between Φ = 0.55 and 0.72. To

validate the code we were using these tests were rerun and show very similar results

with a change in gradient at the Φ = 0.64 mark. However, a further step was taken

by running the same experiment on non-jammed packings by taking snapshots of an

evolving system. This had the added benefit of giving a much greater range of packing
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fractions with interesting results.

The results presented in figure (8.2) show the results generated by my own program

using equation (8.1). Anisotropy changes at the RCP limit are well reported and easily

reproduced. However, the results in figure (8.2) show the RLP as a clear disjoint at

Φ = 0.54, which is of some interest as it was not reported in the original work. All six

eigenvalue sets of the MT are shown, as indicated by the legend. In these results the

RCP limit is not present, which is due to the way the packings have been generated.

This phenomenon is investigated further in the next section and shows the importance

of understanding the evolution of these packings.

Figure 8.2: Results showing anisotropy for non-jammed snapshots of an evolving system. The
results shown are for a packing evolving with increasing pressure
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(a) SRO generated by using
data for the W 0,0

0 MT, with a
sample size of 10

(b) SRO generated by using
data for the W 0,0

0 MT, with a
sample size of 4

(c) SRO generated by using
data for the W 1,0

1 MT, with a
sample size of 10

(d) SRO generated by using
data for the W 1,0

1 MT, with a
sample size of 4

(e) SRO generated by using
data for the W 1,0

2 MT, with a
sample size of 10

(f) SRO generated by using
data for the W 1,0

2 MT, with a
sample size of 4

(g) SRO generated by using
data for the W 0,2

1 MT, with a
sample size of 10

(h) SRO generated by using
data for the W 0,2

1 MT, with a
sample size of 4

(i) SRO generated by using
data for the W 1,0

0 MT, with a
sample size of 10

Figure 8.3: Figures show global SRO on structures with packing fractions between Φ ∼ 0.35 and
∼ 0.7. These structures have been generated using snapshots of an evolving system using the LSA.

8.1.2 Characterisation of Structures with Self Referential Order

Results in this section were created by the self-referential order parameter (equation

7.4). The results in figure (8.3) show data generated from a variety of statistics. The

packings themselves were made individually with a number of settings for the LSA, and

given the sensitivity of the SRO can appear quite noisy. They are shown to contrast

the information from the various Minkowski Tensors (reported in section 4.3).
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Generally results in figure (8.3) show that many of the extracted MT statistics have

similar trends, there are some differences such as those shown in figure (8.3[i]). The

differences suggest that different Minkowski tensors offer different information, with

studies on other structures confirming this (figure 8.6). These differences require fur-

ther investigation as some MT values may give better information than others in par-

ticular circumstances. For example, shape may give more information on poly-disperse

packings than volume, and comparing these quantities could produce new data on the

nature of certain structures.

A definite change can be seen in the SRO at 0.54, showing the RLP limit. It is very

interesting to also see evidence of a gradient change at Φ ≈ 0.64 for data using larger

sample sizes. This would be very important, as it shows the SRO is sensitive to both

the RLP and RCP limits, most methods are only sensitive to one or the other, relying

on a posteriori information, or looking for one particular change in structure. So far

as I know, no other method is capable of creating data sensitive to both, particularly

a-priori.
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(a) SRO generated by using data for the W 0,0
0

MT
(b) SRO generated by using data for the W 0,2

2

MT, taking the highest eigenvalue

(c) SRO generated by using data for the W 1,0
0

MT, taking the sum of the square of their
values

(d) SRO generated by using data for the W 2,0
2

MT, taking the ratio of eigenvalues

(e) SRO generated by using data for the W 2,0
3

MT, taking the middle eigenvalue
(f) SRO generated by using data for the W 2,0

3

MT, taking the maximum eigenvalue

Figure 8.4: Figures show global SRO on structures with packing fractions between Φ ∼ 0.35 and
∼ 0.7. These un-jammed packings have been generated using the LSA and are composed of 10000
spheres with modified growth rates. The program terminated when a user-defined packing fraction
was reached. A number of samples sizes of between 1 and 25 are also presented and shown in the

legend.



8.1 Characterisation of Three Dimensional Structures 129

It can be seen in figure (8.4) how some MTs detect the RLP limit, but others do

not. This is far clearer in the jammed examples in figure (8.6). Jammed examples are

generated when the program creating them can no longer compress the structure. In

real terms they cannot be compressed as no particles can move enough to affect the

global structure. The unjammed results are created when the program terminates due

to another condition (for example reaching a particular packing fraction). While the

unjammed packings in figure (8.6) are far more sparse than those in figure (8.3), show

some of the same noise for unjammed packings. This said it is still clear there is some

change in gradient around Φ = 0.64. In figure (8.4[d]) and ([f]) a dip in the SRO can

be observed around the RLP limit, however this may be due to noise and the increased

density of data points.

One can notice the contrast between unjammed data sets. In the snapshot case the

RLP is well defined and the RCP is not. For the case where growth rate is modified and

a termination point is defined the opposite appears to be true. As there is a difference

in how the structure evolves in these two cases it is perhaps not surprising that the

results would show this. The exact reasons for the change require further research into

how time-lapsed packings evolve.

In addition the results in figure (8.3), and more clearly in figure (8.5), it is shown how

the number of spheres in each sample (sample size) does have an effect on the magnitude

of the SRO, however the trend is generally not affected. Due to the resolution in the

data the graph looks quite noisy, this is due in part to the sensitivity of the SRO given

each packing is unique, regardless of packing fraction.

Figures (8.5) and (8.6) display jammed packings achieved through a changing collision

rate. The results show the same SRO change at ∼ 0.54, but more intriguingly, the RCP

limit is far more clearly defined than in figure (8.3). A drop can be observed, similar

to the 2 dimensional MI case, in the SRO around Φ ∼ 0.56. However a change can be

observed over the range Φ ∼ 0.54 →∼ 0.60. This could be interpreted in one of two

ways. Firstly as one change in the data with increased SRO over the range starting at
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Figure 8.5: SRO generated by using data for the maximum eigenvalue of W 2,0
3 with a number of

jammed packings (N = 10000). The samples sizes of between 1 and 25 are also shown in the legend.

Φ = 0.54 and ending midway between Φ ∼ 0.54 and 0.64 i.e. the two proposed limits,

with a dip in SRO centred at around Φ = 0.56. The second is to consider it as two

separate peaks at Φ ∼ 0.54 and Φ ∼ 0.57. Further investigation is required, with a

greater density of points and more packings, but given the data shown in figure (8.3) it

could be hypothesised that this trend is due to the RLP limit which as stated would be

a very interesting result, given the addition of a clearly defined transition at the RCP

limit of Φ = 0.64 shown by a clear change in gradient.

This, however, leads to the question of why we see such a transition in the case of figure

(8.3). While both sets of data were generated by the LS algorithm, the sets shown in

figure (8.3) are snapshots of an evolving system. Most importantly this means that they

are not jammed over the range they are evolving and thus only the last snapshots can

be considered jammed. To allow snapshots over a complete range of packing fractions

the last snapshots are all at very high values of Φ. In figures (8.5) and (8.6) the data

is taken from separate runs which have been allowed to jam, by changing the growth

and collision rates to adjust the final packing fraction. Further results must take into

account carefully how packings have evolved. This may also have implications for how

the RLP and RCP limit can be understood structurally as a quantification has taken

place.
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(a) SRO generated by using data for the W 0,0
0

MT
(b) SRO generated by using data for the W 0,2

2

MT, taking the highest eigenvalue

(c) SRO generated by using data for the W 0,2
2

MT, taking the ratio of eigenvalues
(d) SRO generated by using data for the W 2,0

2

MT, taking the ratio of eigenvalues

(e) SRO generated by using data for the W 2,0
3

MT, taking the middle eigenvalue
(f) SRO generated by using data for the W 2,0

3

MT, taking the minimum eigenvalue

Figure 8.6: Figures show global SRO on structures with packing fractions between Φ ∼ 0.35 and
∼ 0.7. These jammed packings have been generated using the LSA and are composed of 10000

spheres. A number of samples sizes of between 1 and 25 are also presented and shown in the legend.
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Further experiments were carried out on jammed packing sets in figure (8.6). Like in

previous results a variety of MTs were used producing some different and interesting

results. While all the MTs show a large a distinct change in gradient at the RCP limit

but many offer little or no change around the RLP limit.

The most sensitive MT’s to the RLP limit tended to be the surface integrals however

the most notable results are those that took the eigenvalue ratios. These ratios can be

recognised as the cell anisotropies as outlined in section (8.1.1). The difference here

being the sensitivity to both changes in jammed packings. The different information

offered by the MTs may allow us to probe what structural changes are taking place at

the RLP limit. From the perspective of the Voronöı cells, it is clear some change in

shape is occurring.

It can also be noted that there is a change in the magnitude of the SRO depending on

sample size and MT. While these may seem like independent quantities they are not.

The binning number remains constant but the range of the different MTs does not,

leading to larger bin sizes. This leads to some data sets having a more or less sensitive

resolution leading to a similar change in magnitude as observed by the different values

in figure (8.4) and (8.6).
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8.1.3 Experimental Data

The SRO data for the experimental data is published here for reference. While the

values tally close to the SRO for packings, the range of these results makes it difficult

to make statements about the trend, particularly around the RLP and RCP limits.

The data is for all twelve packings described in section (3.3) and for six sample sizes.

It is displayed in table (8.1) with the average sample occupancy listed along the top

row and packing fraction the left column. The scaling is present for all the packings,

increasing in a similar trend to each other and the results shown in the previous section.

Sample Size
pf 1 2 4 6 10 25

0.56822 0.0011 0.0018 0.0034 0.0050 0.0081 0.0192
0.57072 0.0010 0.0017 0.0033 0.0048 0.0078 0.0184
0.57302 0.0012 0.0020 0.0039 0.0057 0.0093 0.0219
0.56664 0.0010 0.0017 0.0034 0.0050 0.0081 0.0189
0.56616 0.0010 0.0017 0.0033 0.0048 0.0078 0.0183
0.57531 0.0010 0.0017 0.0033 0.0049 0.0079 0.0185
0.57096 0.0011 0.0019 0.0037 0.0054 0.0088 0.0206
0.57923 0.0011 0.0018 0.0034 0.0051 0.0083 0.0195
0.58233 0.0012 0.0021 0.0040 0.0059 0.0097 0.0227
0.59056 0.0012 0.0020 0.0038 0.0057 0.0093 0.0218
0.59955 0.0012 0.0021 0.0040 0.0060 0.0097 0.0227
0.60033 0.0012 0.0021 0.0041 0.0060 0.0098 0.0229

Table 8.1: Table showing SRO for twelve experimental packings generated by using XCT



Chapter 9

Conclusion

9.1 Conclusions

9.1.1 Self Referential Order

Several interesting developments have been reported in this thesis. A new mathematical

framework has been proposed for use in characterising disordered structures. This

framework introduces a new quantity, the self-referential order, as a way to quantify

information in a system and probe important characteristics of the structure.

The self-referential order is a novel and robust quantity as presented in chapters 7

and 8. It has been derived from entropic measures (equation 7.2) making it useful for

measuring information.

Investigation of the RCP and RLP limit has shown the quantity to be sensitive and

robust enough to detect both transitions without alteration as displayed in figures

(8.4) and (8.5). Extensive testing using a variety of statistics shows it capable of

distinguishing a number of structural details (Figures 8.4, 8.6).

Through the use of colour maps the SRO has produced striking images (Figure 7.2)

of how information is dispersed in a system. These images show how information

134
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evolves through the process of jamming and crystallisation. SRO has also allowed the

identification of motifs that hold more information about the system, and importantly

is capable of quantifying this information and expressing it in a meaningful way.

9.1.2 Mutual Information and the Kullback Leibler Divergence

Results in chapter 6 regarding the MI are currently unpublished. That said they are

original and quite interesting. Studies of 2D mono-disperse disk packings have shown

clear evidence of structure changes akin to transitions such as the RCP and RLP

limits. Several other correlation techniques were examined to validate the MI as shown

in section (6.2.1). It should be noted, however, that the entropy bias was never fully

resolved. While the entropy bias did lead to the concept of SRO, it also meant MI

could not be used as an absolute measure of disorder.

Results shown in figure (6.13) as well as figures (6.14), (6.15), (6.16), (6.17) all show

evidence of a structural change with MI peaking at Φ ≈ 0.79 ∼ 0.83. The RCP limit

in 2D is considered to be Φ ≈ 0.82, which suggests the MI is providing evidence of the

limit. This is an interesting find as the RCP limit can be difficult to obtain in 2D. It is

particularly intriguing here due to its clarity, being clear and giving insight in to how

the system is evolving around it. Additionally there is possible evidence of the RLP

limit at Φ ≈ 0.7 seen in figure (6.14), however, due to the lack of literature this would

require more research and is a possible direction for future work.

Using MI to quantify information in structures has also led to several other results

that show how information is carried through a system. MI showed for loosely packed

systems only short range influence but was none the less still present (Figures 6.10

and 6.11). In densely packed structures information propagated through the system to

much larger distances. This was imaged by the KLD for crystallising packings such as

those seen in figure (6.25).



9.1 Conclusions 136

9.1.3 Information and Disorder

At the beginning of my work I set out to find a measure that could quantify disorder.

The SRO gives a measure of order that only requires information about the system it

is defining, thus creating an independent measure. Studies involving the MI and KLD

show that these ’disordered’ systems are not devoid of order and that they have their

own rules, requiring a reinterpretation of what we might consider order.

The new mathematical framework for understanding disorder presented in this thesis

extracts information using a variety of different methods relating to sphere packings.

That information has then been interpreted and encoded to a set of statistics that could

describe the system without having to store it in its entirety. Ultimately, the framework

has produced results showing what statistics may be useful, and by interpreting this

data it can provide knowledge to the understanding and encoding of the structure. By

quantifying the information the framework has shown how the properties of the system

may be compressed, allowing it to be studied using the techniques and equipment

available today.

By finding motifs and measuring self-referential order within a system it has been shown

how some parts of the system are more representative of the global statistics. The

frequency of some motifs allows a further compression with a reduction of information

needed to encode that system. This is quantified in the SRO, in turn quantifying

the disorder in a way which has not previously been used in packing problems. The

framework does not directly allow for the compression and subsequent decoding of a

structure but identifies motifs and structures that may be used to that end.

The method presented both sensitivity and flexibility. This in addition to results at

low packing fractions suggested it was not dependent on local crystallisation to detect

order. Again lending credence to the idea that disorder is not simply a degenerate

form of order as previously believed. It shows sensitivity to structural changes in these

packings caused by changes in evolution parameters and packing fraction, going so far
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as to suggest an RLP limit in 2D, although further research is needed.

By incorporating other methods the application of the framework can be broadened, as

achieved in the case of Minkowski tensors with some interesting results (which have not

been published as of this conclusion). It can be further developed for uses in computer

science (particularly networks), in research into gene co-expression in biology and even

be extended to higher dimensions in packing problems (Aste et al., 2010; Pozzi et al.,

2013; Song et al., 2012).

The framework developed in this thesis is not limited to structure and could potentially

be applied to many complex mathematical systems. For example, the framework could

be applied to financial markets, identifying links between companies and showing how

stock price fluctuations propagate through a market. One way this might be achieved

is by creating conditional probabilities of stock market prices over a given time period,

and then quantifying the uncertainty. In a similar way neural activity or gene expression

could be explored in biology. Other approaches might include the use of Markov chains

to generate probabilities (Markov, 1906).

9.1.4 Future Work

Future work should include first and foremost a further look at the proposed RLP limit

in 2D by taking packings created using a variety of methods including experimentally

generated results. Further work should include a generalisation to higher dimensions

which could be achieved non-trivially through multivariate mutual information esti-

mates. In addition different types of packings could be generated including those with

non-spherical particles or poly-disperse spheres. Such an expansion is a logical step as

many of the same statistics used in mono-disperse packings could be used to generate

new results. This could include Minkowski tensors and Voronöı analysis to explore

structural changes, investigating long-range order, changes in local structure, and dif-

ferences in packing behaviour including changes to the RCP limit (Donev et al., 2004).
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It would also be possible to explore interactions of more complex structures using

the multi-variate form of MI, and, by extension, self-referential order. For example

by building a 3-fold co-occurrence matrix of both 1st and 2nd neighbour cell area co-

occurrences, then generating three probability functions based on the distribution of:

reference cell areas, 1st neighbour cell areas, and, as the additional quantity, 2nd neigh-

bour cell areas, over the whole packing. This method could potentially be used to

investigate more complex behaviours and include more dynamic systems (by selecting

appropriate variables to build the co-occurrence matrix). However, such an approach

would require significant research.

Many of the techniques seen have been developed not in physics but biology for a

number of reasons including epidemiology and histology (Gibson et al., 2011; Bock

et al., 2010). It would be of great interest to see how this development may assist in

such fields using biological data. Incorporation of an image processing program designed

to extract topological data from structures may prove to be a dynamic expansion to

the framework, but was not required for my work. This could be achieved using Matlab

as it is already optimised for image processing allowing for easier compatibility.

While some potential applications of this framework are discussed, the original aim was

to quantify structural disorder using a statistical approach. The methodology lays out

the proposed approach, and was tested using applications to disk and sphere packings.

The results showed the framework was able to quantify disorder and was sensitive

enough to produce interesting results.
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Appendix A

A.1 Introduction

Appendix A shows some of the presented material relevant to this thesis, starting with

posters, a paper and two abstracts from talks.
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What is the Mutual Information? 
 

Mutual information (MI) measures the difference between the configurational and 

conditional entropies and it quantifies the difference between the joint probability 

and the conditional probabilities. 

 

 

|If log to the  base 2 is used then the mutual information is given in units of bits 

As the Configurational entropy is; 

 

 

 

And the conditional entropy for y given a value of x is; 

It can be shown then that  
 

 

 

 

We can also write 

 

How we apply the Mutual Information? 

 
First we generate a disordered packing, by placing disks at random positions in a 

predefined space, after which Voronoi cells statistics is applied (as shown in fig-

ure 1). From this, the number of sides for each cell can be calculated and an adja-

cency matrix can be constructed for the nearest neighbours and a statistical picture 

of the packing can be created including the entropy, probabilities, occupancy, ect 

 

The packing is then split into squares and the Mutual information is calculated in 

two ways. In the first case, the occupancy of the disks in each box is used; in the 

second, the number of Voronoi sides is used. The below graphs were calculated 

using the first method. 

Why Mutual Information? 

 
We use mutual information as it shows how the configuration of one part of a 

system depends on a second. This is because of the relation 

 

 

 

When and only when x and y are independent quantities. From this it can be 

seen when two quantities are independent  

 

 

 

 

Figure 1—Example of a random packing complete with Voronoi cells and number of sides for each cell. 

           Results 
 

The results below show the MI related to distance by varying the box size. These 

start at 0.25 the size of a single disk and peaks around 0.6 before dropping back 

off towards zero. Ignoring the smallest sizes (which contain a large number of 

empty boxes) it shows as the boxes contain more disks, there is less dependency 

of the structure of the neighbouring boxes due to increasing distance between the 

disks themselves. 

 

 

 

 

 

 

 

 

 

 

 

 

For a crystal lattice simulations showed the MI does not depend on distance and 

remains close to zero (<0.005) 

 

Packings with different disk sizes and with the same number of disks were used 

to simulate the MI change with the packing fraction. The graphs below show 

how the MI decreases for more gaseous like structures with low packing       

fractions for 1st neighbours for a constant box size. The clustered points with 

lower MI show the 2nd to 8th neighbours for comparison. 

Figure 4—Graph relating MI to distance (in units of disk 

diameter) for a packing consisting of 26457 disks with a pack-

ing fraction of 0.524 where d=1 refers to 1st neighbour boxes 

d=2 to the second neighbour boxes and so on 

Figure 3—Graph relating MI to distance (in units of disk 

diameter) for a packing consisting of 58884 disks with a pack-

ing fraction of 0.517 where d=1 refers to 1st neighbour boxes 

d=2 to the second neighbour boxes and so on  

Abstract:  

We investigate the use of an information theory measure to quantify the different degrees of disorder in structures.  Specifically we 

use mutual information (or mutual entropy) to measure the similarity between different parts of a simulated disk packing. We re-

trieve that the greater the distance between two parts of a packing, the lower the mutual information between the two parts. Further-

more, we observe a meaningful trend with the packing fraction with increasing mutual information for denser packings.  

Authors : Paul Butler[1], Tomaso Aste[1] 

School of Physical Sciences, Department of Science, Technology and Medical studies, 

University of Kent 

Figure 6—Graph showing the MI for nearest neighbours (in blue) as a 

function of box size for a packing of 58884 disks with a packing frac-

tion of 0.517 

Figure 7—Graph showing MI based on occupancy of boxes for 

samples of 73076 with varying packing fractions. (Box Size = 2d) 

Figure 8—Graph showing MI based on counting Voronoi sides in 

boxes for samples of 73076 with varying packing fractions. 

Figure 5—Graph showing the MI for nearest neighbours (in blue) as a 

function of box size for a packing of 73076 disks with a packing frac-

tion of 0.519 
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quasi-Regular tetrahedra      Polytetrahedral aggregate      

Minkowsky measures of  structural changes 
occurring at jamming 

Investigating how tightly objects can pack in space is a very long standing

problem in discrete mathematics which, despite the simplicity of the system,

turns out to be surprisingly hard to tackle. This topic is of great relevance in

a broad range of domains from the theory of glasses to the shipping industry.

Here we report on the fundamental yet so far overlooked geometric property

that disordered mono-disperse bead packs have significant structural anisotropy

manifest in the shape of the free space associated with each bead. The anisotropy

is characterized by a robust method based on tensorial Minkowski functionals.

Disordered packings from several types of experiments and simulations reveal

very similar values of the anisotropy across all different jammed configurations,

showing a common linear decreasing trend with the packing fraction. Strong

deviations from this trend are observed for unjammed configurations and for

partially-crystalline packings at packing fractions above 64%. The anisotropy

of the pore space shape is an intrinsic packing effect without significant align-

!n
!r

!0

FIG. 1: (a) Voronoi diagram of a disk packing in two dimensions. (b) A subset of a

jammed disordered packing of beads in 3D with the corresponding Voronoi diagram.

The Voronoi cell is the region of space closest to the given bead center than to any

other in the packing. Surface normals !n, position vector !r and bead centers !O for the

calculation of Minkowski functionals are graphically represented in the 2-dimensional example (a).

For the Minkowski analysis, the origin of a Voronoi cell is the bead center.

2

ment with the vertical or horizontal axes. These findings suggest an inherent

geometrical reason why in disordered packings anisotropic shapes can fill space

more efficiently than spheres and have implications for packing effects in non-

spherical liquid crystals, granular aggregates and foams. The robust anisotropy

characterization based on Minkowski tensors is a novel and versatile method

applicable to any spatial structure.

When spheres of equal size are packed disorderly they can form mechanically stable

‘jammed’ configurations, which occupy a fraction of the available volume in the range be-

tween 0.55 and 0.64. Although these limits are mathematically not precisely defined they

are empirically well established and precisely reproducible with a wide range of prepara-

FIG. 2: A subset of the Voronoi diagrams of the bead centers of the DA dataset with

φ = 0.586 (the same portion as in Fig. 1). Ellipsoids with the same anisotropy of the

Voronoi cells are dawns with colors representing the ratio of the shortest and longest

axis of the ellipsoid. Anisotropy of the Voronoi cell is measured here from the index β20
0 which

is the ratio of the largest µmax and smallest µmin eigenvalues of the tensorial Minkowski functional

W 20
0 . An isotropic cell has β20

0 = 1 and deviations from 1 quantify anisotropy. In the figure,

Voronoi cells and ellipsoids have matching eigenvalue ratios and eigen-directions. [???? GERD is

this correct??? WHICH EIGEN-DIRECTION ????]

3

Disordered Spherical Bead Packs are Anisotropic

n(r)

0

r

Fig. 3: A 2D solid body, a hollow body, and a body made of
disks at the vertices of a convex polygon. Also shown is the
position vector r, with respect to a given origin 0, and the
surface normal vector n. For all data in this article the origin
0 is chosen as the sphere centre. The corresponding 3D cases
are a solid filled body, a hollow body with solid facets, a body
made of a wire frame along the polytope edges, and a body
made of spheres at the vertices.

relevance of Minkowski tensors is underlined by Alesker’s
theorem stating that any additive motion-covariant con-
tinuous functional f(K) is a linear combination of these six
Minkowski tensors and scalar Minkowski functionals [9].
The exact computation of all Minkowski tensors is fast
and simple, corresponding to sums of edge angles, normal
and position vectors and triangle areas [15].

Anisotropy of spherical bead packs. – Figure 4a
shows the anisotropy indices 〈βrs

ν 〉 as a function of φ for
jammed bead configurations, both experimental and sim-
ulated. The average eigenvalue ratio 〈βrs

ν 〉 demonstrates
that there is a significant degree of anisotropy for packings
with φ < 0.64 that decreases approximately linearly with
increasing φ. There is no significant difference between the
experimental data from the different preparation methods
and the simulated data both with and without gravity.
The coincidence between the datasets with friction (DA,
FB, DEM) and the simulations without friction (LS) sug-
gests that this result is independent of friction. The fact
that this behaviour is similar for all six anisotropy mea-
sures βrs

ν demonstrates that the anisotropy is a robust fea-
ture of the Voronoi cells, independent of the specific way
of determining the corresponding ellipsoid. The data in
fig. 4 also shows that anisotropy as a function of packing
fraction has a change in slope near φ ≈ 0.64. This is the
packing fraction at which crystalline nuclei start to form
in the LS system. (This transition is even more evident in
fig. 5 where the thick + symbols represent the same data
for β02

1 as above with the linear trend below φ $ 0.64
substracted.)

For all jammed data sets with φ < 0.64 the scaled distri-
bution of the anisotropy indices is similar for all samples
and all βrs

ν , and resembles a Gamma distribution (fig. 4b).
This is similar to what is observed for the distribution of
Voronoi volumes [3]. Notably, the probability of isotropic
Voronoi cells, i.e. with βrs

ν = 1, is close to zero for disor-
dered jammed data sets (fig. 4b). Conversely, the distri-
butions for the LS configurations with φ > 0.64, shown in
Figure 4c, depend on φ and reveal a finite probability for
isotropic Voronoi cells. This is the signature of the pres-
ence of crystalline regions above φ ≈ 0.64 that increases
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Fig. 4: (a) Average anisotropy of the Voronoi cells, mea-
sured by averaged eigenvalue ratios 〈βrs

ν 〉 of Minkowski ten-
sors Wrs

ν , as function of packing fraction φ for jammed bead
configurations. Isotropic cells have βrs

ν = 1 and deviations
from 1 measure the degree of anisotropy. The straight lines
are linear fits for φ < 0.64 and φ > 0.64. (b) Rescaled dis-
tribution of all six anisotropy indices βrs

ν for all experimen-
tal and simulated bead packs with 0.55 < φ < 0.64, with
r = (1/βrs

ν − 1)/(1/〈βrs
ν 〉 − 1)), showing a vanishing proba-

bility for isotropic cells (r = 0). (c) The same distribution
(with identical axes) for β20

0 of the Lubachevsky-Stilinger con-
figurations only with packing fractions φ = 0.644, 0.679, 0.698.
The finite probability for isotropic cells is an indication of the
presence of semi-crystalline regions.

with the packing fraction.

The analysis in fig. 5 of unjammed data sets generated
with LS and MC shows that these configurations are signif-
icantly more isotropic than the jammed ones at the same
packing fraction. At their respective jamming point these
configurations are maximally anisotropic. Further, for
a sequence of unjammed configurations that approaches
its jamming point and then continues through increas-
ingly dense jammed configurations, 〈β〉(φ) shows a distinct
change in trend at the jamming point. Note that 〈β〉(φ)
for unjammed configurations must be process-dependent.
A description of the functional form of βrs

ν (φ) for the un-
jammed datasets as φ approaches the respective jamming
points φj may contain useful information for the inter-
pretation of βrs

ν as a structural order parameter, but is
beyond the scope of this article.
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Fig. 5: Anisotropy index 〈β02
1 〉 for jammed and unjammed con-

figurations generated by the LS algorithm, after subtraction of
the linear trend below φ = 0.64. The symbols (+) correspond
to jammed LS configurations, the same as in fig. 4, minus the
linear fit T (φ) to all data points of 〈β02

1 〉 with 0.55 ≤ φ ≤ 0.64.
A distinct change of the slope d〈β02

1 〉/dφ is evident at φ ≈ 0.64.
Squares and circles correspond to unjammed configurations for
different growth rates g of the LS algorithm. Also shown are
unjammed configurations from MC simulations (%). Data for
all other 〈βrs

ν 〉, not shown for the sake of clarity, are qualita-
tively similar. Anisotropy is closely tied to jamming whilemore
isotropic configurations exist at the same packing fraction.

A correlation between the anisotropy of a Voronoi cell
and its volume exists and appears to be the same for all
jammed configurations and all volume fractions 0.55 <
φ < 0.64. It becomes evident when introducing a local
packing fraction ϕ(K) = Vsp/W0(K) for each Voronoi cell,
with the sphere volume Vsp = π/6, and considering aver-
ages of the anisotropy measures βrs

ν over all cells with a
given local volume fraction. Figure 6 shows the average
〈β20

0 〉ϕ of the anisotropy index β20
0 over all Voronoi cells

with local packing fraction in the interval [ϕ, ϕ + ∆ϕ] as
a function of ϕ (with a small ∆ϕ ≈ 0.01). The values
of 〈β20

0 〉ϕ for six different data sets (with different global
packing fraction φ) fall onto a common, approximately lin-
ear, curve. Also shown in fig. 6 are the probability distri-
butions P (ϕ) of the local packing fractions of the Voronoi
cells (that coincide with the distributions given in [3]).
The conclusion of these data is that increased anisotropy
in looser jammed datasets is a consequence of an increased
number of larger Voronoi cells (that have larger degree of
anisotropy). Note that the linear trend of 〈β20

0 〉φ vs. ϕ in
fig. 6 does not extrapolate to 1 for the packing fraction
ϕicos ≈ 0.7546 that corresponds to the local icosahedral
configuration (i.e. the locally densest possible configura-
tion).

While this analysis demonstrates that the Voronoi cells
have a substantial degree of shape anisotropy, an analysis
of the average angle between the eigenvectors with max-
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Fig. 6: Relationship between local packing fraction ϕ =
(π/6)/W0 and anisotropy index β20

0 . At the bottom (and us-
ing the right-hand scale) the distributions P (ϕ) of the local
packing fractions are plotted. At the top, the gray scattered
points are coordinate pairs

`

ϕ(K), β20
0 (K)

´

plotted individu-
ally, i.e. without any averaging, for each Voronoi cell K in the
six samples. The top data points with errorbars represent the
averages 〈β20

0 〉ϕ, computed individually for each of the six data
sets with a binning of ∆φ ≈ 0.01. The error bars represent the
standard deviations, i.e. the width of the distributions of β20

0 ,
and not the negligeably small error of the average. The six
datasets shown here have global packing fractions φ = 0.567
(FB), 0.598 (FB), 0.636 (DEM), 0.630 (DA), 0.617 (DA) and
0.585 (LS). Note that the global packing fraction φ is given as
the average 〈(π/6)/W0〉 over all Voronoi cells.

imal or minimal eigenvalue and the vertical axis shows
that there is no significant alignment of the cells with
the vertical or a horizontal direction, even for the experi-
mental bead packs where gravity is present. The average
angle 〈ξ20

0 〉 between the vertical axis and the eigenvec-
tor to the maximal eigenvalue of W20

0 (that corresponds
for an ellipsoid to the longest axis) is π/4 for a uniform
random distribution of this eigenvector (by convention,
eigenvectors point into the upper hemisphere). Consis-
tently, the LS data sets, without gravity, have no sta-
tistically significant deviation from the random distribu-
tion. Similarly, the DEM, DA and FB data sets yield
values of ξ20

0 in the interval [0.23, 0.25]π, indicating only
a very slight preference for horizontal orientation of the
cells. These deviations from the random orientation are
small, in absolute terms and compared to the standard
deviation [〈(ξrs

ν )2〉−〈ξrs
ν 〉2]1/2 ∈ [0.142, 0.146]π for all FB,

DA and DEM data sets. Hence, the bead packs are essen-
tially globally isotropic structures composed of anisotropic
Voronoi cells with random orientation.

Packings of non-spherical particles. – The ob-
served anisotropy in jammed bead packs suggests that
packings of non-spherical bodies should fill space more
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We investigate the structural organization of very large datasets acquired 
experimentally by means of tomographic techniques.  
We aim to extract the ‘genetic code’ of the material that determines its 
functional properties.  
We look directly at the positions and interrelations of very large numbers of 
particles and use an information filtering approach to encode the 
overwhelming structural information into a space-filling network of local 
motifs.  

The key-idea is very simple: in absence of a pre-definite template reference structure, we can use a part 
of the material as a reference structure for another part.  
Structural motifs are identified as substructures, M, with minimum entropy H(M) but with maximum 
mutual information: 

      I(P,M) = H(P)- H(P |M)       

Conditional entropy (remaining uncertainty)   

Our approach: 
1.  find the local structural motifs; 
2.  measure their statistical recurrences; 
3.  identify matching rules; 
4.  build a space-filling network of motifs; 
5.  link structural encoding with functional properties. 

Example: jamming at 64% 

Entropic measures of  structural changes occurring 
at jamming 
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Three-dimensional Atom Probe Tomography of phase separated Fe-Cr system 
(MEMIKA Laboratory) 
For the first time, atomic-scale tomography techniques are providing us a way to 
directly “see” the complex atomic architectures inside materials. In the next few years 
we will witness to a large production of experimental data concerning large-scale 
complex atomic aggregates that will demand the development of specific tools and a 
novel theoretical framework for their interpretation and use.  
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We introduce the concept of self-referential order which provides a way to
quantify structural organization in non-crystalline materials. The key idea consists
in the observation that, in a disordered system, where there is no ideal, reference,
template structure, each sub-portion of the whole structure can be taken as refer-
ence for the rest and the system can be described in terms of its parts in a self-
referential way. Some parts carry larger information about the rest of the structure
and they are identified as motifs. We discuss how this method can efficiently reduce
the amount of information required to describe a complex disordered structure
by encoding it in a set of motifs and matching rules. We propose an information-
theoretic approach to define a self-referential-order-parameter and we show that,
by means of entropic measures, such a parameter can be quantified explicitly. A
proof of concept application to equal disk packing is presented and discussed.

Keywords: self-referential order; disordered structure; information theory; order;
structural encoding

1. Introduction

Complex, non-crystalline materials are everywhere and the capability of understanding and
mastering disordered atomic packings is crucial to enhance properties of materials. The
quest for understanding the internal structure of matter has been central to human curiosity
since the beginning of science and, despite the remarkable achievements obtained since
the Platonic theory of matter (Timaeus ∼ 360 BC), still we are only able to describe the
structure of a very special class of materials where regular periodic (or quasi-periodic)
arrangements of atoms are present. However, disorder is not randomness and nor it is
a defective, degenerate form of order, real disordered structures show high degrees of
organization that can propagate hierarchically through the material. Nonetheless, these
structures do not present any periodic, predictable pattern and the absence of such regularity
is precisely what makes disorder difficult to describe and encode in a way that is both accurate
and compact. Science is measurement, but disorder is difficult to quantify. For instance,
in an ordered, crystalline, system one can introduce a quantity called ‘order parameter’
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© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

80
.2

.1
20

.3
8]

 a
t 0

8:
32

 1
7 

Se
pt

em
be

r 
20

13
 



2 T. Aste et al.

that measures how close the system is to the perfect crystalline reference structure. This
parameter is extremely useful to predict the properties of the material. But in a disordered
system, there is not a unique, ideal, reference structure and a simple parameter that quantifies
the kind and amount of disorder cannot be used. Even common language lacks of terms to
define non-ordered structures. Indeed, we are limited to the use of negative identifications:
disorder (i.e. disturbance of order) or amorphous (i.e. absence of shape). Such a lack of
vocabulary is probably consequence of the fact that the classification of crystalline structures
has been one of the great success stories of modern science which has induced us to overlook
the evidence that “disordered” and “amorphous” materials are everywhere and the mastering
of good techniques to describe atomic disorder is crucial to enhance material performances.
It has been recently shown that ‘order’in amorphous structures can be identified by looking at
‘patches’ that repeat more often than typical [1]. This approach reveals diverging correlation
lengths at glass transition [2] shading light on the relations between thermal glass transition
and athermal jamming of discrete matter [3]. In this paper, we follow a similar approach
to [1] using information-theoretic methods to quantify, in a self-referential way, an ordered
parameter and identifying the locally most referential structures.

There are two main technical challenges that have so far slowed down the progress in
this field. The first has been the lack of experimental data. Indeed, until recently, diffraction
techniques have been the main experimental tools to study atomic structures inside the
bulk of materials. However, diffraction gives insights only on the average relative positions
of the constituents and the reconstruction of the structure from diffraction data becomes
very hard in absence of regularly repeated local units. Now, for the first time, atomic-
scale tomography techniques are providing us a way to directly “see” the complex atomic
architectures inside materials. Indeed, in the last few years, techniques such as Atom Probe
Tomography and Electron Tomography have started to provide direct information about
the position of millions of atoms in the bulk of materials [4–9]. In the next few years,
we will witness a large production of experimental data concerning large-scale complex
atomic aggregates. However, this brings up the second technical challenge concerning the
huge size of data to process demanding the development of specific tools and a novel
theoretical framework for their interpretation and use. Indeed, in absence of a compact way
to encode structural complexity, the processing of this amount of information is still beyond
the capability of the world’s largest supercomputers. The total world information storage
capacity, currently estimated 1020 bits, would not be enough to encode the structure of a gram
of disordered matter. There is therefore a demand to develop a general approach to encode
complex structures and reduce the amount of information to the relevant part related to the
material’s functional properties. In principle, in a disordered material positions, properties
and the interactions of every atom must be recorded independently. In some special cases,
when the structure is a regular periodic repetition of identical parts (i.e. crystals), the
problem can be reduced to the study of the unit cell: a local sub-structure that repeats
periodically in space, however this cannot be directly extended to non-crystalline materials.
Nonetheless, even in these ‘disordered’ materials, geometrical, physical and chemical laws
impose local regularities that spontaneously develop into a structural organization spanning
the whole system. In this paper, we show that these regularities can be identified as a set
of local motifs that combine together into a hierarchically organized space-filling complex
network in a analogous way as an alphabet combines into words which assemble into phrases
forming the whole text. Retrieving the ‘alphabet’, identifying the ‘words’, uncovering the
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Philosophical Magazine 3

Figure 1. (colour online) In the absence of a pre-defined template reference structure, one can use
a portion (Y ) of the structure to describe the whole structure S = X ∪ Y . The knowledge about the
portion Y can reduce the uncertainty about the rest of the structure X . Kolmogorov complexity, here
denoted with K (X) and K (Y ), measure the information contained in X and Y , respectivelly. For
instance, in the case in which the rest of the structure X is completely determined by the knowledge
of the portion Y , we have K (S) = K (Y ). In this case, the conditional information about X given Y ,
K (X |Y ), is equal to zero.

‘grammatical’ rules and ultimately, decoding the ‘syntax’ is the key to describe the structure
of non-crystalline matter.

2. Describing the structure in terms of itself: self-referential order

The key-idea at the basis of the present work is very simple: in the absence of a pre-definite
template reference structure, we can use a part of the material as a reference structure
for another part. The structure is consequently encoded with a self-referential description.
For instance, from a general information-theoretic perspective, we can re-interpret the
identification of the unit cell of a crystalline structure has a very efficient way to encode
a structure with the amount of data required to encode the structure passing from order
n to order 1. Even in the absence of any previous knowledge of crystallography it is still
rather straightforward to identify the unit cell from the information about the positions of
all atoms. Indeed, it is sufficient to take a portion of the structure, translate it in space and
see when and where it perfectly overlaps with another part of the structure. The smallest
portion of the structure that periodically overlaps with all other parts of the structure is the
unit cell. In the context of this paper, this is the simplest case of self-referential description
where only one local motif -the unit cell- is sufficient to entirely describe the whole crystal.

2.1. An ideal approach

Let us consider a structure S and let us consider it as composed of a large portion X and
a smaller portion Y , so that S = X ∪ Y . To measure the amount of self-referential order,
we need to be able to quantify how the knowledge about the portion Y reduces the amount
of information needed to encode X . Formally, we need a measure of information content
such as the Kolmogorov complexity K [10–13]. In simple terms, the quantity K (X) is the
amount of information necessary to describe X . Its conditional counterpart, K (X |Y ), is
the amount of information necessary to describe X , given the full knowledge of Y . When
the knowledge about a portion Y of the structure is sufficient to describe the rest of the
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4 T. Aste et al.

structure, we must have K (S) = K (Y ) and K (X |Y ) = 0. Conversely, when the knowledge
about a portion does not add any knowledge about the rest of the structure we must have
K (X |Y ) = K (X) > 0.

We could therefore introduce the self-referential order parameter

sX(Y ) = 1 −
(

K (X |Y )

K (X)

)
, (1)

which is equal to one if the system is fully self-referentially ordered and it is equal to zero
if completely random. This approach formally defines self-referential order and it would
solve the problem. However, –unfortunately– Kolmogorov complexity is not a computable
quantity.

2.2. The entropic way

A computable quantity that measures information content is the entropy that, in the Shannon
formulation [14], can be written as:

H(X) = −
∑
rX

pX (rX ) log2 pX (rX ), (2)

where pX (rX ) is the probability of occurrence, in X , of a configuration with a given
set of structural properties, denoted with rX . Entropy is everywhere in physics; it is a
thermodynamic state variable and the Shannon formula coincides with the Gibbs derivation
(with base-e log and multiplied by kB [15]) of the entropy for the canonical ensemble. Here,
we shall use entropy for its information significance: H(X) is the amount of information
encoded into a structure X when its properties rX are considered. We shall therefore use
entropic measure of information instead of the Kolmogorov complexity. Let us note that
Kolmogorov complexity of X is the size of the smallest programme that generates X , instead
Shannon entropy measures smallest number of bits required, on average, to describe X
[13]. The two measures can coincide in some special cases (signals computable by a Turing
machine) but not in general, though they are related [16].

In analogy with the previous section, we can therefore look for the information about
X provided by the knowledge of Y . The remaining entropy of variable X when variable Y
is known is quantified by the conditional entropy H(X |Y ). Therefore, an entropic measure
of self-referential order is:

sX(Y ) = 1 − H(X |Y )

H(X)
. (3)

We have 0 ≤ H(X |Y ) ≤ H(X), therefore this quantity is defined in the interval
0 ≤ sX(Y ) ≤ 1 where 0 is associated to a random state and 1 is instead observed for perfect
self-referential order. We can use the identity H(X |Y ) = H(X, Y ) − H(Y ) obtaining the
equivalent expression

sX(Y ) = 1 − H(X, Y ) − H(Y )

H(X)
, (4)

which also reads

sX(Y ) = H(X) + H(Y ) − H(X, Y )

H(X)
. (5)
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Philosophical Magazine 5

One may notice that the quantity on the numerator is the mutual information: I (X; Y ) =
H(X)+ H(Y )− H(X, Y ), therefore this measure quantifies the relative mutual dependence
between structures X and Y .

3. Motifs

There must be parts of the structure that carry larger amount of information about the
whole structure with respect to others. These high information-content portions are repeated
similarly in the structure more often that others and therefore they are of particular relevance.
We look for local sub-structures containing maximal relative information. We shall call
them ‘motifs’ these are equivalent to the ‘patches’ used in [1]. In general, more than one
motif is necessary to encode a disordered structure. Furthermore, these motifs do not repeat
perfectly across the structure and therefore they must be described in statistical terms.
Motifs are the set of local structures from which the whole structure can be most efficiently
encoded. Frequency of occurrence, fluctuations and relations between motifs characterize
and quantify the kind and amount of disorder in the structure. We then use these motifs as an
encoding alphabet and we search for an efficient description of the entire structure with the
shortest code-length. By identifying the recurrent structural motifs and by uncovering the
rules governing their combination into a space-filling network, we can encode the structure
of complex materials into a compressed format.

Motifs can be identified from Equations 1 or 3 by looking at the local parts that maximally
contribute to the information about the whole structure, i.e. the portions Y associated with
the largest sX(Y ). Once the motifs are identified, one must quantify their recurrence in the
structure. This can be done in three steps: (i) count the relative frequency of occurrence
of each local motif; (ii) compute the probability distribution of its fluctuations; and (iii)
estimate the entropy. A computationally fast identification of the motifs in presence of
structural fluctuations is a very challenging task. Another challenge is associated with
possible overlaps between motifs that makes their unique identification ambiguous and
requires the introduction of “exclusion rules” (i.e. when two motifs overlap, only one must
be counted at the time) and statistical ensamble analysis (i.e. all encodings resulting from
the different exclusions) must be considered.

Motifs are building blocks that connect to each-other forming a space-filling
three-dimensional structure. When described in terms of motifs, the structure is char-
acterized by two aspects: (1) topology – a network of interconnected motifs; and (2)
geometry, where position and orientation of each motif is specified. Due to the possible
overlaps between motifs, there can be more than one network for a given structure, the
ensamble all these networks must be considered. For a given network, the matching rules
can be identified from a statistical study of local co-occurrences. Matching rules are both
topological and geometrical. Indeed, motifs can join together only in specific relative
positions and orientations.

The description of a structure in terms of the network of motifs and their matching rules
provides a compact encoding of the structure. For example, a crystal is reduced to only
one motif (a parallelepipedal unit cell), one topological matching rule (6 neighbors) and
one geometrical matching rule (unit cells join by opposite faces). In general, for a complex
structure we have a large – but finite and non-scaling – number of motifs m and a order
O(m2) of matching rules. Therefore, the amount of information required to encode the
structure is of the order O(m2). A-priori it is quite hard guesswork to estimate the size of m,
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6 T. Aste et al.

Figure 2. (colour online) Snapshots of the local self-referential order parameter sX (Y ). The local
portion Y is a square of edge 5 disc diameters. The pictures are a heat map (blue low red high,
color online) representing the relative values of sX (Y ) for a portion centred in each given part of the
packing. � indicates the packing fraction of each sample. Colourmap is rescaled for each image.

which -of course- varies from system to system. The experience acquired with disordered
sphere packings [17–19] suggests us that in these systems m is of the order of 102, and the
matching rules are of the order of 104 (note that resolving all the reciprocal orientations
can be demanding). This may seem a large number but it must be pointed out that in terms
of information compression, we are passing from an information size of the order of 1020

(hundreds of billions of gigabytes), which is certainly beyond computable sizes, to a size
of 104 bytes (tens of kilobytes), which is computationally insignificant. Furthermore, for
many practical purposes, a precise definition of the local geometrical configuration and
its orientation is often irrelevant and the information can therefore be further reduced. Let
us here explain this point with an example from the results on sphere packings in [20]
where it was shown that local tetrahedral motifs are related to the description of a structural
transition at the Random Close Packing limit. In that paper, it was shown that the controlling
parameter were the length of the tetrahedral edges with an effective differentiation between
“short” or “long” edges. In terms of motifs, given that each tetrahedron has six edges and
each edge has two states, in this special case we can count m = 26 = 64 relevant motifs. To
compute the matching rules, we must then consider that tetrahedra match face by face and
they have 4 faces giving (4 × 26)2/2 ∼ 33, 000 matching rules. However, these numbers
can be greatly reduced, for instance, in [20], it was shown that the most relevant motifs
were only 2: all-short-edges or not. And the relevant matching statistics was given by the
chains of all-short-edges tetrahedra.

4. Results

In this paper, we report a preliminary investigation about the quantification of self-referential
order in two-dimensional disks packings generated via molecular dynamic simulations.
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Figure 3. Global values of the self referential order parameter ŝ vs. packing fraction displayed in both
linear and semi-logarithmic scale. Different curves (�, ◦ or � symbols) correspond to different sizes
of the local portion Y , which are squares, respectively, with edges equal to 3, 5 or 10 disk-diameters.

The results presented here are a ‘proof of concept’ demonstrating that this method can be
used quantitatively. Extended applications to three-dimensional structures from simulations
and experiments are under investigation.

We generate several packings of disks at various packing fractions by using the algorithm
proposed by [21], which is a molecular dynamic simulation with constant compression rate.
We terminate the simulation when a desired packing fraction is reached, before the reach
of (local) jamming. We report results for 15 samples comprising 5,000 disks representing a
range of packing fractions between 0 to ∼ 0.9.

We compute the self referential order parameter by looking at the Voronoï volumes
around each disk and identifying a set of m = 500 kinds of motifs classified in terms
of their different volumes. We verify that the method is robust against this choice with
analogous results obtained for m = 100 or m = 2, 000. We then take a local square portion
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Figure 4. Average maximum local values of the self referential order parameter for each sample.
The average is over the 10% largest sX (Y ). Different curves (�, ◦ or � symbols) correspond to
different sizes of the local portion Y , which are squares, respectively, with edges equal to 3, 5 or 10
disk-diameters.

Y of the sample and compute sX (Y ) by applying Equation 5. We repeat the process in 10,000
different portions regularly displaced across each sample.

In Figure 2, distributions of the local self-referential order parameter sX (Y ) inside each
sample and across the samples are shown. One can note that the values are low at low
packing fractions where the system is essentially in a random state. Conversely, they are
large at high packing factions where the system starts nucleating crystalline regions. This is
quantified and shown in Figure 3 where we report a global measure of self referential order
parameter (ŝX (Y )) computed by estimating the joint probability to have given fractions of
Voronoï volumes simultaneously present in any of the portions Y and in the rest of the
sample X = S ∩ Y . One can see that the self referential order parameter increases with
packing fraction to reach a maximum at the largest packing of � ∼ 0.9. From the semi-log
plot in Figure 3, we can note that this parameter ranges over 4 order of magnitude, with an
interesting plateau appearing between packing fractions ∼ 0.4 and ∼ 0.7. Let us note that
the largest packing fraction attainable for equal disks is � = π/

√
12 
 0.907 [22], which

corresponds to a perfectly ordered, crystalline, triangular packing. Our densest packing has
still some defects that lower slightly its packing fraction. These defects are clearly visible
in Figure 2 where one can appreciate that in correspondence with miss-alignment of the
crystalline order we observe lower values of sX (Y ). Indeed, these defective regions are less
representative of the sample. We can also note that, conversely, at lower packing fractions the
most representative local portions are not compact configurations with crystalline symmetry
but rather more complex and less compact configurations. In general, at different packing
fractions different local configurations carry more or less information about the rest of the
sample structure. We investigated the presence of highly referential motifs by looking at
the maximum values of sX (Y ) in each sample. Specifically, we quantified the portions of
sub structures carrying the largest information by identifying the 10% largest sX (Y ) per
each sample. In Figure 4, we show the values of the average self referential order parameter
sX (Y ) in this top 10% subset of most representative configurations. One can note that at

D
ow

nl
oa

de
d 

by
 [

80
.2

.1
20

.3
8]

 a
t 0

8:
32

 1
7 

Se
pt

em
be

r 
20

13
 



Philosophical Magazine 9

large packing fractions, where the structure is essentially crystalline, only few configurations
carry all structural information. Interestingly, also at very low packing fractions, where the
structure is essentially random, again a small part of the most informative configurations
characterize well the whole structure. On the other hand, at intermediate packing fractions
-around � 
 0.6 – the structure is more complex and even the most informative local
configurations carry, in average, a smaller amount of information about the rest of the
system.

5. Conclusion

We addressed the intriguing question concerning how atoms organize themselves inside
non-crystalline, complex materials and how to extract, filter and encode this information
in an efficient and meaningful way. To this purpose we introduced the concept of self-
referential-order and we proposed a method to quantify it from entropic measures. There
are over one billion trillion atoms in a gram of matter, and in the absence of a regular, ordered
arrangement, the characterization of an amorphous structure would require accounting for
the position of every atom. This is an impossible task that would require over a billion
terabytes. However, the material functional properties are associated with a much smaller
amount of information. In this paper, we have illustrated a general approach to encode
complex structures and to reduce this overwhelming amount of information to the relevant
part related to the material’s functional properties. Our method can be used to select the
most informative portions of the material, the ‘motifs’, and encode the complex structure
in a set of motifs and matching rules reducing dramatically the amount of information
required. In this paper, we present a ‘proof of concept’ with application to equal disk
packing at different packing fractions. We found that the self-referential-order parameter
well characterizes globally the transition towards crystallization, but also it identifies locally
the emergence of an increasing complexity at intermediate packing fractions. Future studies
will be dedicated to the analysis of three-dimensional structures from experiments and large
scale simulations. Our information filtering and encoding techniques can be directly applied
to very different kinds of complex structures which are defined in high-dimensional phase-
spaces: the study of the structure of dependency in financial systems [23,24] or the structure
of gene co-expressions in biological systems [25].
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Imaging Order in Complex Structures 

Paul Butler 

In this talk I will discuss the application of information theory to the study of complex structures by 

looking at random monodisperse sphere packings. I will demonstrate how using entropy driven 

measurements like the Kullback Leibler divergence we can show local motifs in these structures. The 

talk will include methodology on how we extract statistics by Voronoi analysis, and how to calculate 

the redundant information in a structure so we can show areas of low and high order. This will be a 

step forward in understanding how we can characterise disorder, and how we might encode 

disordered structures in the most efficient way. 

I will show colour maps showing relative information in random disk packings and use them to 

visualise local motifs for disordered loose packing up to highly ordered crystal structures with 

various packing fractions. We will finish with how the absolute value depends on the information in 

the system, and how this might improve our definition of disorder. 

 

  

 



The use of Information Theory to describe disordered structures 

 

In this talk we will look at an information theoretic approach to characterising disordered systems, 

including the use of computer models and granular systems as an approximation of amorphous 

atomic systems. We will discuss extracting statistical information from said systems after which the 

entropy can be calculated, and how this leads to a formal description in the amount of information 

in a system. From this other quantities can be calculated, such as the mutual information, which can 

be quantified, to give a description of the dependency of one part of the system to the rest, which 

allows us to find how much shared statistical information is held in the system (how much 

redundant information there is). For example in a crystalline packing, almost all the information is 

contained in the unit cell. We shall explore mutual information in the Gaussian case, and how this 

can be applied to atomic packings. 



Appendix B

B.1 Introduction

Appendix B shows a number of codes that were used for calculation of various results

shown in this thesis. All Matlab codes were written by myself and Tomaso Aste except

where stated otherwise. C++ code shows modification of original code which can be

found in the Bibliography. Descriptions can be found in the table of contents. These

codes are modified depending on the experiments and so may not function correctly

when applied to different data. If there are any questions about the code or how to

modify it please feel free to contact me.

B.2 Programming Languages

A programming language, broadly speaking, is a library of terms which can be compiled

into instructions a computer can use and carry out. While ultimately this means it is

converted into binary code, only ”1st level” programming languages directly do this,

programs built only on these libraries are called ”2nd level” languages, programs built

on the first two are called ”3rd level” and so on. Compiling refers to the ’translation’

of a program into Binary. Errors in libraries on lower levels can cause major issues,

for example, in one function in Matlab that was used, there existed a memory leak,

meaning memory was not cleared properly, filling up more and more space. After so

many loops the program fails, due to insufficient room.
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B.2.1 Matlab

Despite these issues, Matlab (Mathworks, 1984), short for matrix laboratory, is a widely

used and reliable program based on codes from C, Java, Fortran and a number of others,

making it a fourth level language. Matlab is created and maintained by Mathworks.

It was created in the 1980’s, with its latest version being released this year as Matlab

R2015a. Mainly used in the sciences for visualising and manipulating large sets of

data and functions, it is programmed with many high-level commands, such as being

able to create Voronöı tessellations and random data sets as seen in section 4.1.2. It

is capable of using multiple CPUs and GPU arrays for parallel computing. There

are a number of toolboxes to add functions for Curve fitting, optimisation, networks,

image processing, data acquisition, finance, bio-informatics as well as many others

(Mathworks, 2015b). All of the codes used to calculate entropy were created in Matlab.

Hybrid codes also ran from the Matlab environment. Hybrid codes simply refer to where

multiple programming languages are used. In this case, codes are called individually

after being compiled in their respective languages, and run using a shell command. This

way quantities are available in Matlab, and the programs can be loops and modified as

required.

B.2.2 C++

C++ is a far more general programming language. While used to manipulate and

present data, it is used to program device firmware, runs a variety of computer pro-

grams and many others. It is even a standard by the International Organisation for

Standardisation (ISO) (ISO, 2015). It was based upon the language C and began use

in 1983 and is used on a variety of operating systems. Many of the packing programs

found are based on C++ including the Molecular Dynamics Codes used in this work.

The Minkowski tensor programs were also written in C++.



%calc ent of eig values and anistropy (whole packings not cells and boxes!) 

  
clear all 
close all 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PROGRR = ('/spheres'); %sphere creation exe %3D @ moment 
PROGMT = ('/karambola'); %MT creation exe 

  
path = ('/media/LinuxExtension/Anisotropy'); 

%('/home/paul/Work/MyFiles/C++Code'); %path for files to be used in 
Rpath = ('/ComplexSpheres'); %additional folders for the sphere and MT 

programs 
Mpath = ('/karambola-1.5'); 
Vpath = ('/karambola-1.5/demo/pointpattern2voronoi3d'); 

  
PROGV = ('/pointpattern2voronoi3d'); 

  
%parameters for sphere generation 
numberofspheres = 10000; %default is 100 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%creates voronio polygons for MT to read using demo karambola program 
system('find write*.xyz > filenamesxyz'); 
system('find write*.dat > filenamesdat'); 
namesdat = importdata('filenamesdat');      
namesxyz = importdata('filenamesxyz'); 
for ii = 1:1:length(namesxyz) 
    name = namesxyz{ii}; 

  
    OUT = [' -o ','hs-

',num2str(numberofspheres),'_',name(6),'.',name(7:12),'.xyz2']; %don't define 

output to keep same name with .poly 
    INOUT = [' -i ',name, OUT]; %options and input 
    VVpath = [path Vpath PROGV INOUT]; 

  
    system(VVpath); 
end 

  
system('rename s/\.xyz2$/.poly/ *.xyz2 '); %for use when defining output 
system('mv *.poly ./polys'); 

  

  
system('./run_karambola.sh'); 
system('find ./polys/hs*val -prune > folders') 
MTfolders = importdata('folders'); 

  
MTnames = cell(6); 
MTnames{1} = 'w020_eigsys'; %%%% 
MTnames{2} = 'w102_eigsys'; %%%% 
MTnames{3} = 'w120_eigsys';  
MTnames{4} = 'w202_eigsys'; 
MTnames{5} = 'w220_eigsys'; 
MTnames{6} = 'w320_eigsys'; 



  
w020e = zeros(numberofspheres,3); 
w102e = zeros(numberofspheres,3); 
w120e = zeros(numberofspheres,3); 
w202e = zeros(numberofspheres,3); 
w220e = zeros(numberofspheres,3); 
w320e = zeros(numberofspheres,3); 

  
TMT = cell(length(MTfolders),1); 
for ii = 1:1:length(MTfolders) 
    folder = MTfolders{ii}; 
    DELIMITER = ' '; 
    HEADERLINES = 100000; 
    xw020e = importdata([folder, '/', MTnames{1}], DELIMITER, HEADERLINES); 
    xw102e = importdata([folder, '/', MTnames{2}], DELIMITER, HEADERLINES); 
    xw120e = importdata([folder, '/', MTnames{3}], DELIMITER, HEADERLINES); 
    xw202e = importdata([folder, '/', MTnames{4}], DELIMITER, HEADERLINES);     
    xw220e = importdata([folder, '/', MTnames{5}], DELIMITER, HEADERLINES); 
    xw320e = importdata([folder, '/', MTnames{6}], DELIMITER, HEADERLINES); 
    for jj = 1:numberofspheres    
        w020e(jj,1) = str2num(xw020e{jj+1}(22:41)); 
        w020e(jj,2) = str2num(xw020e{jj+1}(102:122)); 
        w020e(jj,3) = str2num(xw020e{jj+1}(183:202)); 
        w102e(jj,1) = str2num(xw102e{jj+1}(22:41)); 
        w102e(jj,2) = str2num(xw102e{jj+1}(102:122)); 
        w102e(jj,3) = str2num(xw102e{jj+1}(183:202));     
        w120e(jj,1) = str2num(xw120e{jj+1}(22:41)); 
        w120e(jj,2) = str2num(xw120e{jj+1}(102:122)); 
        w120e(jj,3) = str2num(xw120e{jj+1}(183:202)); 
        w202e(jj,1) = str2num(xw202e{jj+1}(22:41)); 
        w202e(jj,2) = str2num(xw202e{jj+1}(102:122)); 
        w202e(jj,3) = str2num(xw202e{jj+1}(183:202));    
        w220e(jj,1) = str2num(xw220e{jj+1}(22:41)); 
        w220e(jj,2) = str2num(xw220e{jj+1}(102:122)); 
        w220e(jj,3) = str2num(xw220e{jj+1}(183:202)); 
        w320e(jj,1) = str2num(xw320e{jj+1}(22:41)); 
        w320e(jj,2) = str2num(xw320e{jj+1}(102:122)); 
        w320e(jj,3) = str2num(xw320e{jj+1}(183:202));        
    end 
pf = folder(18:25); 

  
save([folder(9:24),'.mat'],'w220e','pf','w320e','w120e','w202e','w020e','w102

e'); 
TMT{ii} = load([folder(9:24),'.mat']); 
end 

  
clear pf Z2 Y2 U2 D2 P2 Q2 

  
for f = 1:length(TMT) 

       
    Z = TMT{f}.w320e; %curve weighted surface intergral 
    Z1 = abs(Z(:,1)./Z(:,3));     
    Z2(f) = mean(Z1); 
    Y = TMT{f}.w220e; 
    Y1 = abs(Y(:,1)./Y(:,3));   
    Y2(f) = mean(Y1); 



    U = TMT{f}.w202e; 
    U1 = abs(U(:,1)./U(:,3));   
    U2(f) = mean(U1); 
    D = TMT{f}.w120e; 
    D1 = abs(D(:,1)./D(:,3));   
    D2(f) = mean(D1);     
    P = TMT{f}.w020e; 
    P1 = abs(P(:,1)./P(:,3));   
    P2(f) = mean(P1); 
    Q = TMT{f}.w102e; 
    Q1 = abs(Q(:,1)./Q(:,3));   
    Q2(f) = mean(Q1); 

     
    pf(f) = str2double(TMT{f}.pf); 

  
end 
%  
% figure 
% plot(pf,Z2) 
% figure 
% plot(pf,Y2) 
% figure 
% plot(pf,U2) 
% figure 
% plot(pf,D2) 
% figure 
% plot(pf,Q2) 
% figure 
% plot(pf,P2) 

  
figure(10) 
plot(pf,Z2,'ro') 
hold on 
plot(pf,Y2,'g+') 
plot(pf,U2,'b*') 
plot(pf,D2,'cdiamond') 
plot(pf,P2,'k.') 
plot(pf,Q2,'ysquare') 
xlabel('Packing Fraction') 
ylabel('Mean Eigenvalue Difference') 
legend('W_{3}^{(2,0)} Eigenvalues','W_{2}^{(2,0)} Eigenvalues','W_{2}^{(0,2)} 

Eigenvalues','W_{1}^{(2,0)} Eigenvalues','W_{0}^{(2,0)} 

Eigenvalues','W_{1}^{(0,2)} Eigenvalues','Location','northwest') 

 

 



clear all 
close all 

  
ii=0; 
Nt = 50000; 
    bestbin = 15; 
for a = [0.899:0.1:0.999]; %then make a constant and change no of elements 

each method 
    ii = ii+1; 
    %bestbin = 10; 

  
    %Calculte Packing 
    RR = MVG([0 0]',[1 a; a 1],Nt)'; 
    %RR = MVG([0 0]',[1 a; a 1],Nt)'; 
    %RR(:,2) = b.*RR(:,1) + (RR(:,1)); %linear 
    RR(:,2) = (RR(:,2)).^2; 
    %RR(:,2) = b.*RR(:,2) + log2(RR(:,1)); %log 

     
    %plot(RR(:,1),RR(:,2),'.') 

     
    roe1t = corrcoef(RR); 
    roe1(ii) = roe1t(1,2); 

  
    %Calculate best binning 
    %bestbin = ceil(sqrt(sqrt(Nt).*0.3))+1; 

  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %calc stats 
    bin = [bestbin, bestbin]; 
    [fxy,bxby] = hist3(RR,bin); 
    fxy2 = reshape(fxy,[],1); 
    hisN = histc(fxy2,[min(fxy2):max(fxy2)]); %histc(A,[min(A):max(A)]) 

%%prob of a number occuring 

  
    px = sum(fxy)./sum(sum(fxy)); 
    py = sum(fxy')./sum(sum(fxy)); 
    pxy = fxy./sum(sum(fxy)); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %calc MI 
    Sxy = sum(pxy(pxy>0).*log(pxy(pxy>0))); 
    Sx  = sum(px(px>0).*log(px(px>0))); 
    Sy  = sum(py(py>0).*log(py(py>0))); 
    MIdiscrete(ii) = Sxy-Sx-Sy; 

  
    x = pxy.*(log((pxy./(px'*py)))); 
    MIdiscrete2(ii) = sum(x(isfinite(x))); %check using MI eq. 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %kernal MI 
    [bandwidth,F,X,Y] = kde2d(RR,64); 
    F(F<=0) = 10^(-99); 
    x = RR(:,1); 



    y = RR(:,2); 
    hxy_fun = @(xm,ym)(interp2(X,Y,F,xm,ym)).*(log2(interp2(X,Y,F,xm,ym))); 
    hxy(ii) = -(dblquad(hxy_fun,min(X(1,:)),max(X(1,:)), min(Y(:,1)), 

max(Y(:,1)))); 

     
    dy = ksdensity(y,Y(:,1)); 
    dy(dy<=0) = 10^(-99); 
    dy_fun = @(ym)interp1((Y(:,1)),dy,ym).*(log2(interp1((Y(:,1)),dy,ym))); 
    hy(ii) = -(quad(dy_fun,min(Y(:,1)),max(Y(:,1)))); 

     
    dx = ksdensity(x,X(1,:)); 
    dx(dx<=0) = 10^(-99); 
    dx_fun = @(xm)interp1((X(1,:)),dx,xm).*(log2(interp1((X(1,:)),dx,xm))); 
    hx(ii) = -(quad(dx_fun,min(X(1,:)),max(X(1,:)))); 

     
%     dy = ksdensity(y,Y(:,1)); 
%     dy(dy<=0) = 10^(-99); 
%     dx = ksdensity(x,X(:,1)); 
%     dx(dx<=0) = 10^(-99); 
%     [bandwidth,F,X,Y] = kde2d(RR,64); 
%     F(F<=0) = 10^(-99); 
%     x = RR(:,1); 
%     y = RR(:,2); 
%     MI_fun = 

@(xm,ym)(interp2(X,Y,F,xm,ym)).*(log2(interp2(X,Y,F,xm,ym)./(dx.*dy))); 
%     MIkernal(ii) = (dblquad(MI_fun,min(X(1,:)),max(X(1,:)), min(Y(:,1)), 

max(Y(:,1)))); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %cluster MI 
    [Res] = Find_MI_relationsoriginal(RR'); 
    MIcluster(ii) = Res.I(2,1); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Grassberger MI 
   %[MIg] = reGrassberger(RR); 
   %MIgrass(ii) = MIg; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 
A = [0.899:0.005:0.999]; %roe1; 
%A = 30.*(1./A); 
MIkernal2 = hxy - hy - hx; 
MIroe = -0.5.*log2(1-(roe1.^2)); 

  
figure(2) 
plot(A,MIroe,'g') 
hold on 
plot(A,MIdiscrete,'r') 
%plot(A,MIdiscrete2,'r') 
plot(A,(-MIkernal2)) 
plot(A,roe1,'c') 
%plot(A,MIgrass) 
%title('MI vs Rho') 
xlabel('Correlation Coefficient of data') 



ylabel('Value of MI') 
legend('MI based on Rho','MI based on Entropy','Continuous MI using 

estimator','Rho','Location','NorthWest') 

  

 

 



function [y,varargout] = mvg(mu,Sigma,N) 
%   MVG    Multivariate Gaussian random number generator. 
% 
%   y = mvg(mu,Sigma,N), where mu is mx1 and Sigma is mxm and SPD, produces  
%   an mxN matrix y whose columns are samples from the multivariate  
%   Gaussian distribution parameterized by mean mu and covariance Sigma. 
% 
%   [y,R] = mvg(mu,Sigma,N) also returns the Cholesky factor of the 
%   covariance matrix Sigma such that Sigma = R'*R. 
% 
%   See also RAND, RANDN, SPRANDN, SPRANDN, RANDPERM. 

  
%   Chad Lieberman, MIT 2008. 
%   Questions/Comments:  celieber@mit.edu 
%   $Revision: 1.0.0 $  $Date: 2008/09/01 $ 
%   $Revision: 1.0.1 $  $Date: 2008/09/03 $ 

  
%   References:   
%   [1] I.T. Hernadvolgyi (1998) "Generating random vectors from the  
%       multivariate normal distribution." 
%   Available on-line at http://www.csi.uottawa.ca/~istvan/work.html. 
% 
%   Acknowledgements:   
%       I would like to acknowledge John D'Errico for his helpful comments  
%       and suggestions. 

  
if nargin<3 
  error('MVG must be called with three arguments.'); 
elseif nargin>4 
  error('MVG called with too many arguments.'); 
end 
if length(mu)~=size(Sigma,1) 
  error('Length(mu) must equal size(Sigma,1).'); 
end 
if size(Sigma,1)~=size(Sigma,2) 
  error('Sigma must be square.');  
end 
if norm(Sigma-Sigma')>1e-15 
  error('Sigma must be symmetric.'); 
end 
try 
  R = chol(Sigma); 
catch 
  error('Sigma must be positive definite.'); 
end 
if (N<1 || mod(N,1)~=0) 
  error('A positive integer number of samples must be requested.'); 
end 
m = length(mu); 
y = R'*randn(m,N) + repmat(mu,1,N); 
if nargout>1 
  varargout{1} = R; 
end 

 

 



%function [RR,incidence] = EqualSizedCirclePackS2 

  
%clear 

  
RR =[]; 
A = []; 

  
Nt = 1000; % number of circles that will be attempted to insert 
L = 30;   % size of the box 
d = 1;   % diameter of the circle 
if isempty(RR) 
    RR = [rand(1,2)*(L-d) d] + [1/2 1/2 0]*d; 
%     fnplt(fncmb(rsmak('circle',RR(1,3)/2,[RR(1,1) RR(1,2)]))) 
%     hold on 
else 
%     for ii = 1:size(RR,1) 
%         fnplt(fncmb(rsmak('circle',RR(ii,3)/2,[RR(ii,1) RR(ii,2)]))) 
%         hold on 
%     end 
end 
%drawnow 
kk =0; 
while(size(RR,1)<=Nt & kk < Nt*100) 
    kk =kk+1; 
    r = [rand(1,2)*(L-d) d] + [1/2 1/2 0]*d ; 
    if sum( ( (RR(:,1) - r(1)).^2 + (RR(:,2) - r(2)).^2 ) < (d + 

RR(:,3)).^2/4 ) == 0 
       RR(size(RR,1)+1,:) = [r]; 
%        fnplt(fncmb(rsmak('circle',d/2,[r(1) r(2)]))) 
%        drawnow 
         if (size(RR,1)/1000-floor(size(RR,1)/1000))==0  
               fprintf('Pack S2 %d  spheres inserted \n',size(RR,1)) 
               % save_on_file(RR,'RRS2.dat','w'); 
         end 
    end 
end 
size(RR) 
fprintf('Packing of equal disk done with %d disks, packing fraction 

%f\n',size(RR,1),size(RR,1)*pi*d^2/4/(L-d).^2) 

 

 



function drawVoronoi(RR) 
% 
% draws a set of N circles 
% R must be a 3xN vector containing X Y r 
% 
circles(RR(:,1),RR(:,2),RR(:,3)/2); 
hold on 
TRI = delaunay(RR(:,1),RR(:,2)); 
[vx, vy] = voronoi(RR(:,1),RR(:,2),TRI); 
plot(RR(:,1),RR(:,2),'bx'); 
plot(vx,vy,'k-','LineWidth',2);  
triplot(TRI,RR(:,1),RR(:,2),'-r') 
axis([min(RR(:,1))-max(RR(:,3)),max(RR(:,1))+max(RR(:,3)),min(RR(:,2))-

max(RR(:,3)),max(RR(:,2))+max(RR(:,3))]) 

 

function circle(x,y,r) 

  
t = 0:pi/200:2*pi; 
for ii = 1:length(x) 
    patch(x(ii)+r(ii)*sin(t),y(ii)+r(ii)*cos(t),'c') 
end 
box 
axis equal 
hold off 

 



clear all 
close all 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load('58884 30 01 (1)') 
padding = 15; 
boxsize = [7 8 9 10 12 15 20 25 50 70 100 150 200]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
a = 0; 
RR = RR(:,1:2)./repmat(RR(:,3),1,2); 

  
% calculate Voronoi cells properties 
[v, C] = voronoin([RR(:,1),RR(:,2)]); % v = verticies 
TRI = delaunay(RR(:,1),RR(:,2)); 
for ii = 1:length(C) %ii = number of cells 
    n_n(ii) = length(C{ii}); %Number of Voronoi neighbours 
    [i,j]=find(TRI == ii); %coordinates in TRI 
    incidence{ii}=setdiff(unique(TRI(i,:)),ii); %all neighbours of ii 
    A(ii) = polyarea(v(C{ii},1),v(C{ii},2)); % computes Voronoi areas  
end 

  
%create boundry (ignore anythingthing with RR(:,4) = 0; 
xm = min(RR(:,1))+padding; 
xM = max(RR(:,1))-padding; 
ym = min(RR(:,2))+padding; 
yM = max(RR(:,2))-padding; 
intervals = find(RR(:,1) > xm & RR(:,1) < xM & RR(:,2) > ym & RR(:,2) < yM);  
RR(:,3) = 0;  
RR(intervals,3)=1;  %if x or y coord is less than the padding away from box 

edge set RR(;,4) = 0 

  
%create stats for whole sample 
cor = []; 

  
for ii = 1:1:length(C); 
    k = incidence{ii}; 
    k = k(RR(k,3)==1);  
    c = A(k); 
    d = repmat((A(ii)),1,length(c)); 
    cor = [cor ; d'  c']; %slow 
end 

  
fprintf('number of disks included in large box \n') 
size((find(RR(:,3)==1)),1) 

  
%discrete KLD 

  
%KLD stats 
a = min(min(cor)); 
b = max(max(cor)); 
d = ((b-a)/10); 
for ii = 1:1:10 
    c(ii) = a-(d/2) + ii*d; 
end 



C = [c; c]; 
D = cell(2,1); 
D{1} = C(1,:); 
D{2} = C(2,:); 

  
pxh = hist3(cor,D); 
px = pxh./sum(sum(pxh)); 
p1 = corrcoef(cor); 

  
% %Continuous KLD 
% [bandwidth,F1,X1,Y1] = kde2d(cor,128); 
% F1(F1<=0) = 10^(-99); 
%  
% Ent_fun = 

@(xm,ym)((interp2(X1,Y1,F1,xm,ym)).*(log2(interp2(X1,Y1,F1,xm,ym)))); 
% EntX = -(dblquad(Ent_fun,min(X1(1,:)),max(X1(1,:)), min(Y1(:,1)), 

max(Y1(:,1)))); 

  
%create box 
b = 0; 
for BSa = boxsize; 
    BS = BSa + padding; 
    b=b+1; 
    ind = find(RR(:,1) < BS & RR(:,2) < BS & RR(:,1) > padding & RR(:,2) > 

padding); 
    cc = C(ind);    %replaces C 

     
    %create stats 

  
    cor = []; 
    for ii = ind';  
        k = incidence{ii}; 
        k = k(RR(k,3)==1);  
    c = A(k); 
    d = repmat((A(ii)),1,length(c)); 
    cor = [cor ; d'  c']; %slow 
    end 

     
    pyh = hist3(cor,D); 
    py = pyh./sum(sum(pyh)); 
    p2(:,:,b) = corrcoef(cor); 

     
    x = px./py; 
    kl = px.*log2(x); 
    KLDdis(b) = sum(sum(kl(isfinite(kl)))); 

     
    %cont case 
    [bandwidth,F2,X2,Y2] = kde2d(cor,128); 
    F2(F2<=0) = 10^(-99); 

     
    %xx = rr(:,1); 
    %yy = rr(:,2); 
    CrossEnt_fun = 

@(xm,ym)((interp2(X1,Y1,F1,xm,ym)).*(log2(interp2(X2,Y2,F2,xm,ym)))); 



    KLDkernal2(b) = -(dblquad(CrossEnt_fun,min(X2(1,:)),max(X2(1,:)), 

min(Y2(:,1)), max(Y2(:,1)))); 

     
    fprintf('number of disks included in small box \n') 
    size((find(RR(ind,3)==1)),1) 
end 

  
KLDkernal = KLDkernal2 - EntX; 

  
figure(1) 
hold on 
plot(boxsize,KLDdis,'bl') 
figure(2) 
hold on 
plot(boxsize,KLDkernal,'bl') 

 

 



clear all 
close all 

  
load('73076 30 009') 
RR = RR(:,1:2)./RR(1,3); 
padding = 15;  

  
% calculate Voronoi cells properties 
[v, C] = voronoin([RR(:,1),RR(:,2)]); % v = verticies 
TRI = delaunay(RR(:,1),RR(:,2)); 
vormax = 1:1:length(C); 
for ii = vormax 
    n_n(ii) = length(C{ii}); %Number of Voronoi neighbours 
    [i,j]=find(TRI == ii); %coordinates in TRI 
    incidence{ii}=setdiff(unique(TRI(i,:)),ii); %all neighbours of ii 
    A(ii) = polyarea(v(C{ii},1),v(C{ii},2)); % computes Voronoi areas  
end 

  
%create boundry (ignore anythingthing with RR(:,4) = 0; 
xm = min(RR(:,1))+padding; 
xM = max(RR(:,1))-padding; 
ym = min(RR(:,2))+padding; 
yM = max(RR(:,2))-padding; 
intervals = find(RR(:,1) > xm & RR(:,1) < xM & RR(:,2) > ym & RR(:,2) < yM);  
RR(:,3) = 0;  
RR(intervals,3)=1;  %if x or y coord is less than the padding away from box 

edge set RR(;,4) = 0 

  
RR2 = RR(intervals,1:2); 

  
cor = []; 
for ii = 1:1:length(C); 
    k = incidence{ii}; 
    k = k(RR(k,3)==1);  
    c = A(k); 
    d = repmat((A(ii)),1,length(c)); 
    %indexx = repmat(ii,1,length(c)); 
    cor = [cor ; d'  c']; %indexx']; %slow 
end 

  
a = min(min(cor)); 
b = max(max(cor)); 
f = ((b-a)/10); 
e = zeros(10,1); 
for ii = 1:1:10 
    e(ii) = a-(f/2) + ii*f; 
end 
E = [e e]; 
F = cell(2,1); 
F{1} = E(:,1); 
F{2} = E(:,2); 

  
pxh = hist3(cor,F); 
px = pxh./sum(sum(pxh)); 
p1 = corrcoef(cor); 



  
boxsize2 = 10; 
sampsize = boxsize2 + padding; %only changes endpoint 
maxoffset = ceil(max(max(RR))) - sampsize - padding; 
offset = 0:1:maxoffset; 
KLDd = zeros(maxoffset + 1,1); 
KLDstore = zeros(maxoffset + 1,maxoffset + 1) 
for xoffsets = offset; 
    xoffsets 
    for yoffsets = offset; 
        %if in 10's use yoffset.*10 and offset./10 
        ind = find((RR2(:,1) > padding + xoffsets) & (RR2(:,1) < sampsize + 

xoffsets) & (RR2(:,2) > padding + yoffsets) & (RR2(:,2) < sampsize + 

yoffsets));  
        cor1 = []; 
        for ii = ind'; 
            k = incidence{ii}; 
            k = k(RR(k,3)==1); 
            c = A(k); 
            d = repmat((A(ii)),1,length(c)); 
            cor1 = [cor1 ; d'  c']; 
        end 
        pyh = hist3(cor1,F); 
        py = pyh./sum(sum(pyh)); 
        [KLD] = createFitDis(px, py); 
        KLDd(yoffsets + 1) = KLD; 
    end 
    KLDstore(:,xoffsets + 1) = KLDd; 
end 
%do 1 for 10! 
save('10') 

  
imagesc(real(KLDstore)) %KLDstore(16:end,16:end) 
colormap('jet') %gray %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
find(KLDstore == 0) 

 



% function autoreferentialOrder_KLD 

  
clear all 
close all 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
boxsizes  = [2 2.5 3 3.5 4]; %[1 3 5] %[1 1.5 2 2.5 3 4 5]; 
padding   = max(boxsizes)+3; 
step      = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%files = {'2D_Pack_0.9_5k.mat'}; 

  
% files = {'2D_Pack_0.4_5k.mat',... 
%          '2D_Pack_0.5_5k.mat',... 
%          '2D_Pack_0.6_5k.mat',... 
%          '2D_Pack_0.7_5k.mat',... 
%          '2D_Pack_0.8_5k.mat',... 
%          '2D_Pack_0.9_5k.mat'}; 

  
files = {'2D_Pack_0.4_5k.mat',... 
         '2D_Pack_0.5_5k.mat',... 
         '2D_Pack_0.55_5k.mat',... 
         '2D_Pack_0.6_5k.mat',... 
         '2D_Pack_0.65_5k.mat',... 
         '2D_Pack_0.7_5k.mat',... 
         '2D_Pack_0.75_5k.mat',... 
         '2D_Pack_0.8_5k.mat',... 
         '2D_Pack_0.85_5k.mat',... 
         '2D_Pack_0.9_5k.mat'}; 

      
for b = 1:length(boxsizes) 
    boxsize = boxsizes(b); 
    lgd{b} = ['box sz.  ' num2str(boxsize)];  
    for f=1:length(files) 
        load(files{f}) 
        RR = RR(:,1:2); 
        % calculate Voronoi cells properties 
        [v, C] = voronoin([RR(:,1),RR(:,2)]); % v = verticies 
        TRI = delaunay(RR(:,1),RR(:,2)); 
        for ii = 1:length(C) 
            n_n(ii) = length(C{ii}); %Number of Voronoi neighbours 
            [i,j]=find(TRI == ii); %coordinates in TRI 
            incidence{ii}=setdiff(unique(TRI(i,:)),ii); %all neighbours of ii 
            A(ii) = polyarea(v(C{ii},1),v(C{ii},2)); % computes Voronoi areas  
        end 

  
        %create boundry (ignore anythingthing with RR(:,4) = 0; 
        xm = min(RR(:,1))+padding; 
        xM = max(RR(:,1))-padding; 
        ym = min(RR(:,2))+padding; 
        yM = max(RR(:,2))-padding; 
        internals = find(RR(:,1) > xm & RR(:,1) < xM & RR(:,2) > ym & RR(:,2) 

< yM);  
        RR(:,3) = 0;  
        RR(internals,3)=1;  %if x or y coord is less than the padding away 

from box edge set RR(:,3) = 0 



  
        max_xy = ceil(max(RR)) -padding-boxsize; 
        min_xy = floor(min(RR))+padding; 
        xx = min_xy(1):step:max_xy(1); 
        yy = min_xy(1):step:max_xy(1); 

  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %%% Kullback-Leibler divergences   %%% 
        [a,bin_v]=hist(A(internals),10); 
        q_v = a/sum(a); 
        % 
        

[a,bin_n]=hist(n_n(internals),[min(n_n(internals)):max(n_n(internals))]); 
        q_n = a/sum(a); 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        KLD_v = zeros(length(xx),length(yy)); 
        iKLD_v= zeros(length(xx),length(yy)); 
        H_v   = zeros(length(xx),length(yy)); 
        %KLD_n = KLD_v; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        ix = 0; 
        for x = xx 
            ix=ix+1; 
            iy =0; 
            for y = yy 
                iy=iy+1; 
                box = find((RR(:,1) >= x) & (RR(:,1) < (x+boxsize)) & 

(RR(:,2) >= y) & (RR(:,2) < (y+boxsize)));  
                % length(box) 
                a     = hist(A(box),bin_v); 
                p_v   = a/sum(a); 
                if sum(p_v>0&q_v>0)>0 
                    KLD_v(ix,iy) = 

sum(p_v(p_v>0&q_v>0).*log2(p_v(p_v>0&q_v>0)./q_v(p_v>0&q_v>0))); 
                end 
    %            H_v(ix,iy)   = -sum(p_v(p_v>0).*log2(p_v(p_v>0))); 
    %             a   = hist(n_n(box),bin_n); 
    %             p_n   = a/sum(a); 
    %             KLD_n(ix,iy) = 

sum(p_n(p_n>0&q_n>0).*log2(p_n(p_n>0&q_n>0)./q_n(p_n>0&q_n>0))); 
            end 
        end 
        pf(f,b) = pi/4/mean(A(internals)); 
        meK_v(f,b) = mean(KLD_v(KLD_v>0)) 
        moK_v(f,b) = mode(KLD_v(KLD_v>0)) 
        a = hist(KLD_v(KLD_v>0),40); 
        maK_v(f,b) = max(a)/size(KLD_v,1)/size(KLD_v,2) 
    %    sR_v(f) = sum(KLD_v(KLD_v>0 & 

H_v>0)./H_v(H_v>0&H_v>0))/sum(KLD_v(:)>0&H_v(:)>0) 
    %    sK_n(f) = sum(KLD_n(KLD_n>0))/sum(KLD_n(:)>0) 
%         figure 
%         imagesc(iKLD_v) 
%         colorbar 
%         axis image   
%         set(gca,'visible','off') 
%         print(['KLD_image',num2str(pf(f)),'.eps'],'-depsc2') 



%         figure 
%         imagesc(KLD_v) 
%         hold on 
%         colorbar 
%         axis image   
%         drawCircles([RR(internals,2)-min_xy(2)-boxsize/4,RR(internals,1)-

min_xy(2)-boxsize/4],0.5,10,2,[1 1 1]*0)         
%         axis('equal')   
%         set(gca,'visible','off') 
%         print(['packs',num2str(pf(f)),'.png'],'-dpng') 
    end 
end 

  
figure 
plot(pf,meK_v,'o-') 
% plot(pf,meK_v-moK_v,'o-') 
% hold on 
% axis([min(pf) 1 0 max(sK_v)]) 
% hold on 
% plot(pf,sK_n,'s-r') 
% axis([min(pf) 1 0 max([sK_v,sK_n])]) 
set(gca,'linewidth',1,'fontsize',24) 
legend(lgd,'fontsize',18) 

  
figure 
plot(pf,1-maK_v,'o-') 
set(gca,'linewidth',1,'fontsize',24) 
legend(lgd,'fontsize',18) 

  

  
% figure 
% plot(pf,sR_v,'o-b') 
% axis([min(pf) 1 0 max(sR_v)]) 

  
return 

  
figure 
hist(KLD_v(KLD_v>0),40) 

  
figure 
imagesc(KLD_v) 
colorbar 
axis image   
%axis('equal') 
set(gca,'visible','off') 
hold on 
patchCircles([RR(internals,2)-min_xy(2)-boxsize/4,RR(internals,1)-min_xy(2)-

boxsize/4],0.5,20,[1 1 1],0.5,[1 1 1]*.3,0.7,1) 

  

  
figure 
patchCircles(RR(internals,1:2),0.5,20,[0 0 1],1,[0 0 1],1,1) 
hold on 
patchCircles(RR(setdiff([1:length(RR)],internals),1:2),0.5,20,[0 0 1],0.5,[0 

0 1],0.7,1) 



plot([min_xy(1) min_xy(1)],[min_xy(2) max_xy(2)],'r') 
plot([max_xy(1)+boxsize max_xy(1)+boxsize],[min_xy(2) max_xy(2)+boxsize],'r') 
plot([min_xy(1) max_xy(1)+boxsize],[min_xy(2) min_xy(2)],'r') 
plot([min_xy(1) max_xy(1)+boxsize],[max_xy(2)+boxsize max_xy(2)+boxsize],'r') 

  

  
% figure 
% imagesc(KLD_n) 
% colorbar 
% axis image   
% %axis('equal') 
% set(gca,'visible','off') 
% hold on 
% patchCircles([RR(internals,2)-min_xy(2)-boxsize/4,RR(internals,1)-

min_xy(2)-boxsize/4],0.5,20,[1 1 1],0.5,[1 1 1]*.3,0.7,1) 

 

 



function [KLD] = createFitDis(px, py) 

  
x1 = (1:length(px))'; 
y = x1; 

  
[xData, yData, zData] = prepareSurfaceData( x1, y, px ); 
[xData2, yData2, zData2] = prepareSurfaceData( x1, y, py ); 

  
% Set up fittype and options. 
ft = 'linearinterp'; %'cubicinterp'; %'linearinterp'; %'cubicinterp';  
opts = fitoptions( ft ); 
opts.Normalize = 'on'; 

  
% Fit model to data. 
[fitresult, gof] = fit( [xData, yData], zData, ft, opts ); 

  
[fitresult2, gof2] = fit( [xData2, yData2], zData2, ft, opts ); 

  

  
fun1 = @(p,q)(fitresult(p,q)).*(log2((fitresult(p,q) + 10.^(-

99))./(fitresult2(p,q)+ 10.^(-99)))); 
%fun1 = @(p,q)(((fitresult(p,q)).*(log2(fitresult(p,q) + 10.^(-99))))) - 

(((fitresult(p,q)).*(log2(fitresult2(p,q) + 10.^(-99))))); 

  
% for eval = 1:1:max(xData) 
%     for pq = 1:1:max(yData) 
%         px(eval,pq) = fitresult(eval,pq); 
%         py(eval,pq) = fitresult2(eval,pq); 
%     end 
% end 

         
for eval = 1:1:max(xData) 
    for pq = 1:1:max(yData) 
        KLD(eval,pq) = fun1(eval,pq); 
    end 
end 
KLD = sum(sum(KLD)); 

 

 



%function [RR,incidence] = EqualSizedCirclePackS2 

  
clear all 
close all 
%return 
bb=0; 
%%%%%%% parameters to change %%%%%%%%%%%%%%%%%%%%%%% 
maxDistance = 8; % distance in unit of boxes 
BS = 0.25:0.1:10; % dimension of the box in units of d 
BSS = BS;%.*(1./0.707106781); 
for boxSize = BS 
    bb=bb+1; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    clear pnm mi mi1 covarDist 
    load('082.mat'); 
    d = RR(1,3);   % diameter of the circle 
    RR(:,1:2) = RR(:,1:2)/d;  %scale all sizes in unit of d 
    N = length(RR); 
    % 
    % two choices for the padding 
    padding = 30; % layer of padding to take off the boundaryes (in units of 

d) 

  
    %boundares  
    xm = min(RR(:,1))+padding; 
    xM = max(RR(:,1))-padding; 
    ym = min(RR(:,2))+padding; 
    yM = max(RR(:,2))-padding; 

  
    Dx = (ceil((xM-xm)/boxSize)-2*maxDistance)*boxSize; 
    Dy = (ceil((yM-ym)/boxSize)-2*maxDistance)*boxSize; 
    internalRegion = [xm,xm+Dx,ym,ym+Dy]+maxDistance*boxSize; 

  
    figure(1) 
    clf 
    plot(RR(:,1),RR(:,2),'o') 
    hold on 
    plot([xm xm],[ym yM],'-k') 
    plot([xM xM],[ym yM],'-k') 
    plot([xm xM],[ym ym],'-k') 
    plot([xm xM],[yM yM],'-k') 

  
    if ((padding-maxDistance) < 2) | (xm >xM) | (ym >yM)  
        fprintf('change parameters!\n') 
        return 
    end 
    fprintf('Statistics over a central region of %d cells containaing %d 

disks\n',floor((xM-xm)/boxSize)*floor((xM-

xm)/boxSize),length(find(RR(:,1)>=xm & RR(:,1)<=xM & RR(:,2)>=ym & 

RR(:,2)<=yM)) ) 

  
    iii=0; 
    RRR = []; 
    freqN = sparse(length(RR),1); 
    X = (internalRegion(1)-

maxDistance*boxSize):boxSize:(internalRegion(2)+maxDistance*boxSize); 



    Y = (internalRegion(3)-

maxDistance*boxSize):boxSize:(internalRegion(4)+maxDistance*boxSize); 
    % creates the cell-list giving to each disk the cell address 
    for i = 1:(length(X)-1) 
        RR( RR(:,1)>=X(i), 4 ) = i; 
        plot([X(i),X(i)],[min(Y),max(Y)],'-r') 
    end 
    RR( RR(:,1)>=X(end), 4 ) = 0; 
    for i = 1:(length(X)-1) 
        RR( RR(:,2)>=Y(i), 5 ) = i; 
        plot([min(X),max(X)],[Y(i),Y(i)],'-r') 
    end 
    RR( RR(:,2)>=Y(end), 5 ) = 0; 
    axis equal 
    % ij = find(RR(:,4)==1 & RR(:,5)==1) 
    % plot(RR(ij,1),RR(ij,2),'+k','MarkerSize',100) 

  
    plot([min(X),min(X)],[min(Y),max(Y)],'-y','LineWidth',3) 
    plot([max(X),max(X)],[min(Y),max(Y)],'-y','LineWidth',3) 
    plot([min(X),max(X)],[min(Y),min(Y)],'-y','LineWidth',3) 
    plot([min(X),max(X)],[max(Y),max(Y)],'-y','LineWidth',3) 

  
    for i = 1:(length(X)-1) 
        x = find(RR(:,4)==i); 
        for j=1:(length(Y)-1) 
            cij = find(RR(x,5)==j); % cell i,j 
            n(i,j) = length(cij); %occupation number of cell i,j 
            %plot(X(i)+boxSize/2,Y(j)+boxSize/2,'+g') 
        end 
    end 
    fprintf('The internal part contains %d cells\n',(length(X)-maxDistance-

1)*(length(Y)-maxDistance-1)) 

  
    for dis =1:maxDistance 
        nn = n(1:(end-dis),1:end); 
        mm = n((dis+1):end,1:end); 
        cx=cov(nn(:),mm(:)); 
        nn = n(1:end,1:(end-dis)); 
        mm = n(1:end,(dis+1):end); 
        cy=cov(nn(:),mm(:)); 
        covarDist(:,:,dis)=(cx +cy )/2; 
    end; 

  
    freqN = zeros(max(max(n))+1,1); 
    coOccurences = zeros(max(max(n))+1,max(max(n))+1,maxDistance); 
    for i = 1:(length(X)-maxDistance-1) 
        for j=1:(length(Y)-maxDistance-1) 
            nij = n(i,j); 
            freqN(nij+1) =  freqN(nij+1) +1; 
            for dis =1:maxDistance 
                nij1= n(i,j+dis); 
                ni1j= n(i+dis,j); 
                

coOccurences(nij+1,nij1+1,dis)=coOccurences(nij+1,nij1+1,dis)+1; 
                

coOccurences(nij+1,ni1j+1,dis)=coOccurences(nij+1,ni1j+1,dis)+1;             



            end 
            %plot(X(i)+boxSize/2,Y(j)+boxSize/2,'og') 
        end 
    end 
    pn = freqN/sum(freqN); 
    distance = (1:maxDistance)*boxSize; 

  
    % mutual information 
    for ii =1:length(distance) 
        pnm(:,:,ii) =  coOccurences(:,:,ii)/sum(sum(coOccurences(:,:,ii))); 
        x = pnm(:,:,ii).*log(pnm(:,:,ii)./(pn*pn')); 
        mi(ii) = sum(x(~isnan(x))); %% this gives often numerical 

problems!!!!! 
        x = 

pnm(:,:,ii).*log(pnm(:,:,ii)./(sum(pnm(:,:,ii),2)*sum(pnm(:,:,ii),1))); 
        mi1(ii) = sum(x(~isnan(x))); %% this works well!!!! 
        % entropy 
        x = pnm(:,:,ii).*log(sum(pnm(:,:,ii),2)*sum(pnm(:,:,ii),1)); 
        s(ii) = -sum(x(~isnan(x))); 
        % entropy ratio 
        rmi(ii) = mi1(ii)/s(ii); 
    end 
    probn = [find(pn>0),pn(pn>0)]; 
    probn = [[probn(1,1)-2;probn(:,1)-1;probn(end,1)] , [0;probn(:,2);0]]; 
    probn = probn(probn(:,1)>=0,:); 

  
    figure(2) 
    bar(find(freqN>0)-1,full(freqN(freqN>0))) 

  
    figure(3) 
    plot(probn(:,1),probn(:,2),'ok-') 

  
    figure(4) 
    plot(distance,mi,'ob-') 

  
    figure(5) 
    plot(distance,mi1,'sr-') 

  
    figure(6) 
    plot(distance,-reshape(covarDist(1,2,:),1,size(covarDist,3)),'sb-') 

  
    % entropy ratio 
    fnrmi(bb)    = rmi(1); 
    allrmi(bb,:) = rmi; 
    figure(7) 
    clf 
    plot(BS(1:bb),allrmi,'+r') 
    hold on 
    plot(BS(1:bb),fnrmi,'-ob') 
    % average Mutual info 
    ami(bb)=mean(mi1(2:end)) 

  
    %fist neighbours Mutual info 
    fnmi(bb)    = mi1(1); 
    allmi(bb,:) = mi1; 



    figure(8) 
    clf 
    %plot(BSS(1:bb),allmi,'-c') 
    hold on 
    plot(BSS(1:bb),fnmi,'-ob') 
    xlabel('Distance in units of disk diameter') 
    ylabel('Value of the Mutual Information in bits') 
end 
cc=polyfit(log(BS(BS>3)),log(ami(BS>3)),1) 
plot(BS,exp(cc(1)*log(BS)+cc(2)),'-m') 

 

 



clear all 
close all 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PROGRR = ('/spheres'); %sphere creation exe %3D @ moment 
PROGMT = ('/karambola'); %MT creation exe 
PROGV = ('/pointpattern2voronoi3d'); % voronoi creation exe 

  
path = ('/home/paul/Desktop/3D_Packs_and_Codes'); 

%('/home/paul/Work/MyFiles/C++Code'); %path for files to be used in 
Rpath = ('/ComplexSpheres'); %additional folders for the sphere and MT 

programs 
Mpath = ('/karambola-1.5'); 
Vpath = ('/karambola-1.5/demo/pointpattern2voronoi3d'); 

  
%parameters for sphere generation 
growthrate = 0.16; %default is 0.001 
numberofspheres = 10000; %default is 100 
eventspercycle = 20; %default is 20 
maxcollisions = 5000000; %default is 100000 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% IN = ('input.txt'); 
% input = [' ./',IN]; 
% RRpath = [path Rpath PROGRR input]; %forms linux command for spheres 
%   
% for growthrate = 0.001; %loops for varible to create multiple packings 
%    %creates input file 
%    fid = fopen(IN,'w'); 
%    fprintf(fid,['int eventspercycle = ',num2str(eventspercycle),'; \nint N 

= ',num2str(numberofspheres),'; \ndouble initialpf = 0.01; \ndouble maxpf = 

0.99;v\ndouble temp = 0;\ndouble growthrate = ',num2str(growthrate),'; 

\ndouble maxpressure = 100000; \ndouble maxcollisionrate = 

',num2str(maxcollisions),'; \ndouble bidispersityratio = 1;\ndouble 

bidispersityfraction = 1; \ndouble massratio = 1.; \nint hardwallBC = 0; 

\nchar* readfile = new \nchar* writefile = write.dat \nchar* datafile = 

stats.dat \n']); 
%    fclose(fid); 
%    %creates output in 2 forms (1 for MT program) 
%    system(RRpath); 
% end 

  
%creates voronio polygons for MT to read using demo karambola program 
system('find write*.xyz > filenamesxyz'); 
system('find write*.dat > filenamesdat'); 
namesdat = importdata('filenamesdat');      
namesxyz = importdata('filenamesxyz'); 

  
for ii = 1:1:length(namesxyz) 
    name = namesxyz{ii}; 

  
    OUT = [' -o ','hs-

',num2str(numberofspheres),'_',name(6),'.',name(7:12),'.xyz2']; %don't define 

output to keep same name with .poly 
    INOUT = [' -i ',name, OUT]; %options and input 



    VVpath = [path Vpath PROGV INOUT]; 

  
    system(VVpath); 
end 

  
system('rename s/\.xyz2$/.poly/ *.xyz2 '); %for use when defining output 
system('mv *.poly ./polys'); 

  
%reads in file names for MT exe 
% system('find *.poly > filenames'); %finds .poly files 
% names = importdata('filenames'); %and reads the in 
%  
% for ii = 1:1:length(names) 
%     name = names{ii}; 
%      
%     OUT = ['./polys/hs-

',num2str(numberofspheres),'_',num2str(name(9:16)),'_mink_val']; %temp for 

cheat minkval and dir 
%     INOUT = [' -i ',name,' --labels -o ',OUT]; %options and input 
%     MMpath = [path Mpath PROGMT INOUT]; 
%  
%     system(MMpath); 
% end 
%  

  
system('./run_karambola.sh'); 
system('find ./polys/hs*val -prune > folders') 
MTfolders = importdata('folders'); 

  
MTnames = cell(14); 
MTnames{1} = 'w000_w100_w200_w300'; 
MTnames{2} = 'w010_w110_w210_w310'; 
MTnames{3} = 'w020'; 
MTnames{4} = 'w020_eigsys'; 
MTnames{5} = 'w102'; 
MTnames{6} = 'w102_eigsys'; 
MTnames{7} = 'w120'; 
MTnames{8} = 'w120_eigsys'; 
MTnames{9} = 'w202'; 
MTnames{10} = 'w202_eigsys'; 
MTnames{11} = 'w220'; 
MTnames{12} = 'w220_eigsys'; 
MTnames{13} = 'w320'; 
MTnames{14} = 'w320_eigsys'; 

  
w000 = zeros(numberofspheres,1); %volume per cell 
w100 = w000; %surface area per cell (all facets) 
w200 = w000; %mean curvature 
w300 = w000; %guass mean curvature 
w010 = zeros(numberofspheres,3); % moment of inertia 
w020 = zeros(numberofspheres,9); % volume intergral 
w120e = zeros(numberofspheres,3); 
w202e = zeros(numberofspheres,3); 
w220e = zeros(numberofspheres,3); 
w320e = zeros(numberofspheres,3); 



  
TMT = cell(length(MTfolders),1); 
for ii = 1:1:length(MTfolders) 
    ii 
    folder = MTfolders{ii}; 
    DELIMITER = ' '; 
    HEADERLINES = 100000; 
    wx00 = importdata([folder, '/', MTnames{1}], DELIMITER, HEADERLINES); 
    wx10 = importdata([folder, '/', MTnames{2}], DELIMITER, HEADERLINES); 
    w020x = importdata([folder, '/', MTnames{3}], DELIMITER, HEADERLINES);     
    xw120e = importdata([folder, '/', MTnames{8}], DELIMITER, HEADERLINES); 
    xw202e = importdata([folder, '/', MTnames{10}], DELIMITER, HEADERLINES);     
    xw220e = importdata([folder, '/', MTnames{12}], DELIMITER, HEADERLINES); 
    w320x = importdata([folder, '/', MTnames{13}], DELIMITER, HEADERLINES); 
    xw320e = importdata([folder, '/', MTnames{14}], DELIMITER, HEADERLINES); 

     
    for jj = 1:numberofspheres 
        w000(jj) = str2num(wx00{jj+1}(22:41)); %infact all character lie 

between 23 and 40 
        w100(jj) = str2num(wx00{jj+1+numberofspheres}(22:41)); 
        w200(jj) = str2num(wx00{jj+1+(2*numberofspheres)}(22:41)); 
        w300(jj) = str2num(wx00{jj+1+(3*numberofspheres)}(22:41)); 
        w010(jj,1) = str2num(wx10{jj+1}(22:41)); 
        w010(jj,2) = str2num(wx10{jj+1}(42:61)); 
        w010(jj,3) = str2num(wx10{jj+1}(62:81)); 
        w120e(jj,1) = str2num(xw120e{jj+1}(22:41)); 
        w120e(jj,2) = str2num(xw120e{jj+1}(102:122)); 
        w120e(jj,3) = str2num(xw120e{jj+1}(183:202)); 
        w202e(jj,1) = str2num(xw202e{jj+1}(22:41)); 
        w202e(jj,2) = str2num(xw202e{jj+1}(102:122)); 
        w202e(jj,3) = str2num(xw202e{jj+1}(183:202));    
        w220e(jj,1) = str2num(xw220e{jj+1}(22:41)); 
        w220e(jj,2) = str2num(xw220e{jj+1}(102:122)); 
        w220e(jj,3) = str2num(xw220e{jj+1}(183:202)); 
        w320e(jj,1) = str2num(xw320e{jj+1}(22:41)); 
        w320e(jj,2) = str2num(xw320e{jj+1}(102:122)); 
        w320e(jj,3) = str2num(xw320e{jj+1}(183:202)); 
    end 
pf = folder(19:25); 
%read in postions(RR) 
DELIMITER = ' '; 
HEADERLINES = 2; 
newData10 = importdata(namesxyz{ii}, DELIMITER, HEADERLINES); 
RR = newData10.data; 
RRd = importdata(namesdat{ii}); 
RR = RR./(RRd(6)); %normalizes sphere diameters to be 1 

  
save([folder(9:24),'.mat'],'w120e','w202e','w220e','w000','w100','w200','w300

','w010','pf','RR','w320e'); 
TMT{ii} = load([folder(9:24),'.mat']); 
end 

  
%calculate Self-Referencial Order 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
boxoccupancy  = [1 2 4 6 10 25];% 100 500 2000 5000];%[0.05 0.1 0.2 0.3]; 

%LARGE BOXSIZE IS ONE  



ngrid = [30000 30000 30000 25000 23000 20000]; %30000 (1000 equivilant in 

3D); % number of positions in which the cube is placed 
bin_p = 20; 
bin = 500; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
grid2 = ngrid.^(1/3); %grid in 1D 
resultsMV = cell(length(TMT),length(boxoccupancy)); 
resultsPF = cell(length(TMT),length(boxoccupancy)); 

  
clear pf 
for f = 1:length(TMT) 

         
    RR = TMT{f}.RR; 
    Z = TMT{f}.w320e; %curve weighted surface intergral 
    Z2 = abs(Z(:,3)-Z(:,1)); 
    Z3 = abs(Z(:,3)+Z(:,1)); 
    Z4 = Z2./Z3;  
    Z1 = abs(Z(:,1)./Z(:,3));       
    Y = TMT{f}.w010; 
    Y = sqrt((Y(:,1).^2)+(Y(:,2).^2)+(Y(:,3).^2)); 
    AAA = TMT{f}.w000; %volume         
    X = TMT{f}.w120e; %curve weighted surface intergral 
    X = abs(X(:,1)./X(:,3)); 
    W = TMT{f}.w202e; %surface intergral 
    W2 = abs(W(:,3)-W(:,1)); 
    W3 = abs(W(:,3)+W(:,1)); 
    W4 = W2./W3;  
    W1 = abs(W(:,1)./W(:,3));     
    V = TMT{f}.w220e; %curve weighted surface intergral 
    V = abs(V(:,1)./V(:,3)); 

     
    T = 

{Z(:,1),Z2,Z3,Z4,Y,AAA,X,W(:,1),W1,W2,W3,W4,V,Z(:,2),Z(:,3),W(:,2),W(:,3)}; 

        
    max_xyz = ceil(max(RR)); 
    min_xyz = floor(min(RR)); 

     
    for b = 1:length(boxoccupancy) % loops over different box sizes 
        lgd{b} = ['box average occupancy.  ' num2str(boxoccupancy(b))]; 
        %%%  packing fraction 
        grid = grid2(b); 
        pf(f,b) = str2double(TMT{f}.pf); 
        [b f] 
        %load   
        boxsize = ((boxoccupancy(b)*pi)/(6*pf(f,b)))^(1/3); 
        lgd2{f} = ['pf. ' num2str(pf(f,b))]; 
        %%%% sqrt to cube root 
        stepX = (max_xyz(1)-min_xyz(1))/grid; 
        stepY = (max_xyz(2)-min_xyz(2))/grid; 
        stepZ = (max_xyz(2)-min_xyz(2))/grid; 
        xx = min_xyz(1):stepX:max_xyz(1)-boxsize; 
        yy = min_xyz(2):stepY:max_xyz(2)-boxsize; 
        zz = min_xyz(3):stepZ:max_xyz(3)-boxsize; 

  



        % right binning for v 

         
        edges = cell(1,length(T)); 
        m12=quantile(Z(:,1),[0,1-1/bin]); 
        edges{1}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(Z2,[0,1-1/bin]); 
        edges{2}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(Z3,[0,1-1/bin]); 
        edges{3}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(Z4,[0,1-1/bin]); 
        edges{4}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(Y,[0,1-1/bin]); 
        edges{5}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(AAA,[0,1-1/bin]); 
        edges{6}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(X,[0,1-1/bin]); 
        edges{7}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(W(:,1),[0,1-1/bin]); 
        edges{8}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf];  
        m12=quantile(W1,[0,1-1/bin]); 
        edges{9}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(W2,[0,1-1/bin]); 
        edges{10}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(W3,[0,1-1/bin]); 
        edges{11}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(W4,[0,1-1/bin]); 
        edges{12}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(V,[0,1-1/bin]); 
        edges{13}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(Z(:,2),[0,1-1/bin]); 
        edges{14}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(Z(:,3),[0,1-1/bin]); 
        edges{15}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(W(:,2),[0,1-1/bin]); 
        edges{16}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m12=quantile(W(:,3),[0,1-1/bin]); 
        edges{17}=[m12(1):(m12(2)-m12(1))/(bin-2):m12(2),Inf]; 
        m_v  = nan(length(xx),length(yy),length(zz),length(T)); 
        pfLoc = nan(length(xx),length(yy),length(zz)); 
        FXY = cell(1,length(T)); 
        for i = 1:length(T) 
            FXY{1,i} = zeros(bin_p,bin_p); 
        end 

         
        ix = 0; 
        for x = xx 
            ix=ix+1; 
            iy =0; 
            for y = yy 
                iy=iy+1; 
                iz = 0; 
                for z = zz %3D parameter 
                    iz = iz+1; 
                    box = find((RR(:,1) >= x) & (RR(:,1) < (x+boxsize)) & 

(RR(:,2) >= y) & (RR(:,2) < (y+boxsize)) & (RR(:,3) >= z) & (RR(:,3) < 

(z+boxsize))); 



                    if ~isempty(box) 
                        for ii = 1:length(T) 
                            A = T{ii}; %A is everything is whole sample 
                            AA = A; %AA is everything outside of box 
                            AA(box) = []; 
                            %matching every x to every y (why are we matching 
                            %them like this? 
                            fx = histc(A,edges{ii}); 
                            ppx = fx/sum(fx(:)); %probability of all 
                            fy  = histc(A(box),edges{ii}); 
                            if size(fy,1) == 1 
                                fy = fy'; 
                            else 
                            end 
                            ppy = fy/sum(fy(:)); 
                            fxy =  hist3([ppx,ppy],[bin_p,bin_p]); 
                            FXY{1,ii} = FXY{1,ii} + fxy; 
                            n = sum(fxy(:)); 
                            pxy = fxy/n;     
                            px  = sum(fxy,1)/n; 
                            py  = sum(fxy,2)/n; 
                            Sxy = -sum(pxy(pxy>0).*log2(pxy(pxy>0)));  
                            Sx  = -sum(px(px>0).*log2(px(px>0))); 
                            Sy  = -sum(py(py>0).*log2(py(py>0))); 
                            m_v(ix,iy,iz,ii)= (Sx+Sy-Sxy)/Sx; 
                            pfLoc(ix,iy,iz,ii) = pi/4/mean(A(box)); 
                        end 
                    end 
                end 
            end 
        end 
        resultsMV{f,b} = m_v; %local 
        resultsPF{f,b} = pfLoc; 
        for iii = 1:length(T) 
            FXYs = FXY{1,iii}; 
            n = sum(FXYs(:)); 
            pxy = FXYs/n;     
            px  = sum(FXYs,2)/n; 
            py  = sum(FXYs,1)/n; 
            Sxy = -sum(pxy(pxy>0).*log2(pxy(pxy>0)));  
            Sx  = -sum(px(px>0).*log2(px(px>0))); 
            Sy  = -sum(py(py>0).*log2(py(py>0))); 
            I(iii,f,b) =  Sx+Sy-Sxy; 
            m(iii,f,b) = (Sx+Sy-Sxy)/Sx; %global 
            %save 
        end 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
return 

  
diversity_v1 = zeros(length(TMT),length(boxoccupancy),length(T)); 
bins = 50; 
for b=1:length(boxoccupancy) 
    for f=1:length(TMT) 



        m_v = (results{f,b}); %abs 
        for Mts = 1:length(T) 
            m_v2 = m_v(:,:,:,Mts); 
            a = hist(m_v2(:),bins); 
            pxx = a./sum(a); 
            cc = log2(pxx); 
            diversity_v1(f,b,Mts) = -

sum(sum(pxx(isfinite(cc)).*cc(isfinite(cc)))); 
        end 
    end 
end 
div3 = div3./(log2(bins)); %normalisation 

  
for gg=1:17; 
figure 
plot(pf,m(gg,:,1),pf,m(gg,:,2),pf,m(gg,:,3),pf,m(gg,:,4),pf,m(gg,:,5),pf,m(gg

,:,6),'d-') %plots 1st tensor 
set(gca,'linewidth',1,'fontsize',24) 
legend(lgd,'fontsize',18,'location','northwest') 
ylabel('Self-Referential Order') 
xlabel('Packing Fraction') 
end 

  
% figure 
% 

plot(pf,m(2,:,1),pf,m(3,:,1),pf,m(4,:,1),pf,m(5,:,1),pf,m(6,:,1),pf,m(1,:,1),

'd-') %plots 1st tensor 
% set(gca,'linewidth',1,'fontsize',24) 
%  
% figure 
% plot(pf,diversity_v1(:,:,1),'s-') %plots 1st tensor diversity(ent) 
% set(gca,'linewidth',1,'fontsize',24) 
% legend(lgd,'fontsize',18) 
%  
% hold on 
%  
% plot(pf,diversity_v1(:,:,2),'gs-') %plots 1st tensor diversity(ent) 
% set(gca,'linewidth',1,'fontsize',24) 
% legend(lgd,'fontsize',18) 
%  
% plot(pf,diversity_v1(:,:,1),'ks-') %plots 1st tensor diversity(ent) 
% set(gca,'linewidth',1,'fontsize',24) 
% legend(lgd,'fontsize',18) 
%  
% plot(pf,diversity_v1(:,:,1),'rs-') %plots 1st tensor diversity(ent) 
% set(gca,'linewidth',1,'fontsize',24) 
% legend(lgd,'fontsize',18) 

 

 



//=========================================================== 

//=========================================================== 

//=========================================================== 

// 

//  Molecular dynamics simulation of hardspheres 

// 

//=========================================================== 

//=========================================================== 

//=========================================================== 

 

#include <iomanip> 

#include <locale> 

#include <sstream> 

#include <string> 

 

#include <iostream> 

#include <math.h> 

#include <fstream> 

#include <vector> 

#include <time.h> 

#include <string.h> 

 

#include <stdlib.h> 

 

#include "box.h" 

#include "sphere.h" 

#include "event.h" 

#include "heap.h" 

#include "read_input.h" 

 

 

int main(int argc, char **argv) 

{ 

  read_input input; 

  int error = input.read(argc, argv); 

  if (error) return error; 

 

  double d, r;   // initial diameter and radius of spheres 

 

  if(strcasecmp(input.readfile, "new")==0) 

    input.readfile[0]=0; 

 

  if (input.readfile[0]) // read in existing configuration 

    { 

      // read the header 

      std::ifstream infile(input.readfile); 

      if (!infile) 

 { 

   std::cout << "error, can't open " << input.readfile  << 

std::endl; 

   exit(-1); 

 } 



      else 

 { 

   int dim; 

   infile >> dim; infile.ignore(256, '\n'); 

   if (dim != DIM)  // quit if dimensions don't match 

     { 

       std::cout << "error, dimensions don't match" << std::endl; 

       exit(-1); 

     } 

   infile.ignore(256, '\n');  // ignore the N 1 line 

   infile >> input.N; infile.ignore(256, '\n'); 

   std::cout << "N = " << input.N << std::endl; 

   infile >> d; infile.ignore(256, '\n'); 

   std::cout << "d = " << d << std::endl; 

   r = d/2.; 

   std::cout << "r = " << r << std::endl; 

 } 

    } 

  else // create a new configuration 

    { 

      r = pow(input.initialpf*pow(SIZE, DIM)/(input.N*VOLUMESPHERE), 

1.0/((double)(DIM))); 

    } 

 

//me messing around 

int loopers; 

for(loopers=1;loopers<=1;loopers++) 

{ 

input.N = (loopers + 2); 

//norm 

  

  box b(input.N, r, input.growthrate, input.maxpf, 

input.bidispersityratio,  

 input.bidispersityfraction, input.massratio, input.hardwallBC); 

   

  std::cout << "ngrids = " << b.ngrids << std::endl; 

  std::cout << "DIM = " << DIM << std::endl; 

 

  if(input.readfile[0]) 

    { 

      std::cout << "Reading in positions of spheres" << std::endl; 

      b.RecreateSpheres(input.readfile, input.temp); 

    } 

  else  

    { 

      std::cout << "Creating new positions of spheres" << std::endl; 

      b.CreateSpheres(input.temp); 

    }  

   

  std::ofstream output(input.datafile); 

  output.precision(16);   

   



  while ((b.collisionrate < input.maxcollisionrate) && (b.pf < 

input.maxpf) && (b.pressure < input.maxpressure))  

    { 

      b.Process(input.eventspercycle*input.N); 

      output << b.pf << " " << b.pressure << " " <<  

 b.collisionrate << " " << b.neventstot << " " << std::endl; 

 

      b.Synchronize(true); 

    } 

   

  output.close(); 

 

//end norm 

 

std::string Result1; 

std::ostringstream convert; 

int pf2 = (b.pf)*1000000; 

convert << pf2; 

Result1 = convert.str(); 

 

std::string Result0 = "write0"; 

std::string Result2 = ".dat"; 

std::string overall = Result0 + Result1 + Result2; 

//std::cout << overall << std::endl; 

 

//sleep(10); 

//const char* writefile = "write.dat"; 

//const char* writefile = Result0 + Result1 + Result2; 

const char* writefile; 

writefile = overall.c_str(); 

 

  b.WriteConfiguration(writefile);//(input.writefile); 

  std::cout << "b.pf = " << b.pf << std::endl; 

  std::cout << "b.pressure = " << b.pressure << std::endl; 

  std::cout << "b.collisionrate = " << b.collisionrate << std::endl; 

////////////////// 

std::string Result3 = ".poly"; 

std::string overall2 = Result0 + Result1 + Result3; 

const char* writefile2; 

writefile2 = overall2.c_str(); 

////////////////// 

std::ofstream output54; 

output54.open (writefile2); 

std::ifstream input1 (writefile); 

output54 << "POINTS" << std::endl; 

std::string line; 

input1.ignore(256, '\n');  // ignore the dim line 

input1.ignore(256, '\n');  // ignore the #sphere 1 line 

input1.ignore(256, '\n');  // ignore the #sphere line 

input1.ignore(256, '\n');  // ignore the diameter line 

input1.ignore(1000, '\n'); // ignore the 100 010 001 line 

input1.ignore(256, '\n');  // ignore the T T T line 



 

int looper = 0; 

while ( input1.good() ) 

{ 

looper++; 

std::getline (input1,line); 

if (line.length() > 1) 

{ 

output54 << looper << ": " << line << std::endl; 

} 

} 

///////////////////   

 

//end norm 

std::cout << input.N << std::endl; 

std::cout << loopers << std::endl; 

sleep(2); 

}   

  return 0; 

} 

 

 



Appendix C

C.1 Creating Voronöı Tessellations

To construct a Voronöı tessellation a minimum of 4 points are required when working

in two-dimensions, as the minimum number of sides to any polygon is 3. Here I will

take this simple case of four points to demonstrate the construction of a Voronöı cell

(please refer to figure C.1). I will label the four points pk in space S with coordinates

(i, j). For ease p1 will be taken as the centre disk, that is the only disk that will form

a complete cell. Lines will connect all the disk centroids to the others, defined pnpm,

with euclidean distances

d(pn, pm) =
√

(pn(i)− pm(i))2 + (pn(j)− pm(j))2 (C.1)

These lines, for all intents, gives the Delaunay triangulation.

Only the nearest neighbours affect the shape of the relevant cell, as no points should lie

in the circumcircle of any Delaunay triangle (see figure 4.2). Consequently the Voronöı

cell boundaries will always encompass only one disk, as seen for all three Delaunay

triangles (p1, p2, p3), (p1, p2, p4) and (p1, p3, p4) in figure (C.1). The boundary will

never overlap, as the distance away from the centroids is defined by their distance from

each other.

To obtain the edges of the cell, the bisections (E) of these lines are taken. To obtain
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Figure C.1: A Voronöı Tessellation with four disks and one complete cell, outlined by the thick
black lines, other lines connect nearest neighbours creating a Delaunay Triangulation

the bisection the midpoint must be calculated

(p1pn)m = [
p1(i) + p2(i))

2
,
p1(j) + p2(j))

2
] (C.2)

The edge can then be found by calculating the negative reciprocal of the two points, giv-

ing a perpendicular line segment, to ensure the midpoint is cut, the point is substituted

into the linear equation, giving the perpendicular line section

E(p1pn) =
p1(j) + pn(j))

2
+ [

pn(i)− p1(i)

pn(j)− p1(j)
∗ p1(i) + pn(i))

2
]− pn(i)− p1(i)

pn(j)− p1(j)
x (C.3)

This is rather inelegant and can be simplified to a cell description:

P1 = [p1 ∈ S | d(p1, pn) ≤ d(p1, pk)] (C.4)

which effectively ’sketches’ out the area of S which is closer to p1 than any other centroid
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(Voronoi, 1908).
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