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Essential Spectrum for Maxwell’s Equations

Giovanni S. Alberti, Malcolm Brown, Marco Marletta
and Ian Wood

Abstract. We study the essential spectrum of operator pencils associated
with anisotropic Maxwell equations, with permittivity ε, permeability μ
and conductivity σ, on finitely connected unbounded domains. The main
result is that the essential spectrum of the Maxwell pencil is the union of
two sets: namely, the spectrum of the pencil div((ωε + iσ)∇ · ), and the
essential spectrum of the Maxwell pencil with constant coefficients. We
expect the analysis to be of more general interest and to open avenues
to investigation of other questions concerning Maxwell’s and related sys-
tems.

Mathematics Subject Classification. 35Q61, 35P05, 35J46, 78A25.

1. Introduction

In this paper we consider the essential spectrum of linear operator pencils
arising from the Maxwell system{

curl H = −i(ωε + iσ)E in Ω,
curl E = iωμH in Ω, (1)

where Ω ⊆ R
3 is a finitely connected domain, with boundary condition

ν × E = 0 on ∂Ω

if Ω has a boundary. In these equations ω is the pencil spectral parameter, ε the
electric permittivity, μ the magnetic permeability and σ is the conductivity; ν
is the unit normal to the boundary.

Lassas [15] already studied this problem on a bounded domain with C1,1

boundary, so in this article our primary concern is to treat unbounded domains
which provides additional sources for essential spectrum. However, even for
bounded domains, we are able to relax the required boundary regularity to
Lipschitz continuity. Like Lassas we allow the permittivity, permeability and
conductivity to be tensor valued (i.e., we allow anisotropy); however, we make
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the physically realistic assumption that, at infinity, these coefficients approach
isotropic constant values.

Maxwell systems in infinite domains are usually studied in the context
of scattering, with a Silver–Müller radiation condition imposed at infinity, see,
e.g., [17, p. 10] and [5,6]. Scattering theory is sometimes regarded as the study
of solutions when the spectral parameter lies in the essential spectrum, though
the fact that the Maxwell system already has non-trivial essential spectrum in
bounded domains indicates that such an interpretation involves local condi-
tions as well as the study of radiation to infinity. The case of zero conductivity
σ ≡ 0 is substantially simpler, both for bounded and unbounded domains.
However, it is also physically unrealistic in numerous applications, including
imaging [7,11,13,14].

The main technical difficulty in dealing with the essential spectrum of
Maxwell systems in infinite domains is the fact that compactly supported per-
turbations to the coefficients do change the essential spectrum, as is clear even
for bounded domains from [15]. This means that techniques such as Glaz-
man decomposition, useful for Schrödinger operators, are no longer helpful.
We use instead a Helmholtz decomposition inspired by [1,3] together with fur-
ther decompositions of the resulting 2 × 2 block-operator matrices. As in [2],
this approach allows us to substantially reduce Maxwell’s system to an elliptic
problem. The main result is stated in Theorem 6: the essential spectrum of
the Maxwell pencil is the union of two sets: namely the spectrum of the pencil
div((ωε + iσ)∇· ) acting between suitable spaces, together with the essential
spectrum of the Maxwell pencil with constant coefficients. The spectral geo-
metric question of how the topology of Ω at infinity is reflected in the essential
spectrum of a constant coefficient Maxwell operator is also interesting, and an
avenue for future work.

Our original motivation for the investigations in this paper came from our
study of inverse problems in a slab for the Maxwell system with conductivity.
However, knowledge of the essential spectrum has much more fundamental
importance. It is a first step toward determination of the absolutely continuous
subspace of an operator and hence the behavior of its semi-group, as required,
e.g., for the study of Vlasov–Maxwell systems. It can also be a key component
in the analysis of certain types of homogenization problem.

2. Main Result

We shall study the Maxwell system on a finitely connected domain Ω ⊆ R
3.

Prototype examples include exterior domains Ω := R
3\Ω′ in which Ω′ has

finitely many simply connected components; the case of an infinite slab, Ω =
R

2 × (0, 1), or a half space Ω = R
2 × (0,∞); domains with cylindrical ends,

such as waveguides; and indeed the case Ω = R
3 (see Assumption 14 and

Proposition 15 below for more details). The boundary ∂Ω, if non-empty, will
be of Lipschitz type, and the coefficients ε, σ and μ will be assumed to be
symmetric matrix-valued functions in L∞ (Ω;R3×3

)
such that for some Λ > 0

and every η ∈ R
3
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Λ−1|η|2 ≤ η · εη ≤ Λ|η|2, Λ−1|η|2 ≤ η · μη ≤ Λ|η|2, 0 ≤ η · ση ≤ Λ|η|2
(2)

almost everywhere in Ω.
As already mentioned, the case of bounded domains was treated by Lassas

[15] under slightly stronger regularity assumptions; for infinite domains we
assume that all the coefficients have a ‘value at infinity’ in the precise sense
that

lim
x→∞ μ(x) = μ0I, lim

x→∞ ε(x) = ε0I, lim
x→∞ σ(x) = σ0I, (3)

for some scalar values μ0 > 0, ε0 > 0 and σ0 ≥ 0. To allow a unified treatment
of unbounded and bounded domains, it is convenient to assign values to ε0,
μ0 and σ0 when Ω is bounded, and we choose

ε0 := 1, μ0 := 1; σ0 := 0, (Ω bounded). (4)

Several function spaces arise commonly in the study of Maxwell systems;
to fix notation, we denote

H(curl,Ω) := {u ∈ L2(Ω;C3) : curlu ∈ L2(Ω;C3)},

H(div,Ω) := {u ∈ L2(Ω;C3) : div u ∈ L2(Ω)},

equipped with the canonical norms

||u||2H(curl,Ω) = ||u||2L2(Ω;C3) + || curl u||2L2(Ω;C3),

||u||2H(div,Ω) = ||u||2L2(Ω;C3) + ||div u||2L2(Ω;C).

If ∂Ω is non-empty, then we let ν denote the outward unit normal vector, and
define

H0(curl,Ω) = {u ∈ H(curl,Ω) : ν × u|∂Ω = 0},

with the understanding that when Ω = R
3 then H0(curl,Ω) = H(curl,Ω).

We start by considering, in the Hilbert space

H1 := H0(curl,Ω) ⊕ H(curl,Ω), (5)

the operator pencil ω 
→ Vω defined from (1) in the space H1 by

Vω : H1 −→ L2(Ω;C3)2,

(E,H) 
−→ (curlH + i(ωε + iσ)E, curl E − iωμH).
(6)

Our aim is to study the essential spectrum of the pencil Vω.

Definition 1. Let H1 and H2 be two Hilbert spaces. For each ω ∈ C, let
Lω : H1 → H2 be a bounded linear operator. Adapting the definitions in [9,
Ch. I, §4], we say that ω ∈ C lies in the

1. essential spectrum σe,1 of the pencil ω 
→ Lω if Lω is not semi-Fredholm
(an operator is semi-Fredholm if its range is closed and its kernel or its
cokernel is finite-dimensional);

2. essential spectrum σe,2 of the pencil ω 
→ Lω if Lω is not in the class F+

of semi-Fredholm operators with finite-dimensional kernel;
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3. essential spectrum σe,3 of the pencil ω 
→ Lω if Lω is not in the class F
of Fredholm operators with finite-dimensional kernel and cokernel;

4. essential spectrum σe,4 of the pencil ω 
→ Lω if Lω is not Fredholm with
index zero, where ind Lω = dim ker Lω − dim coker Lω.

When these essential spectra coincide, we shall use the notation σess. With an
abuse of terminology, we shall refer to the essential spectrum of Lω and write
ω ∈ σe,k(Lω).

For the Maxwell pencil Vω, all essential spectra σe,k(Lω), k = 1, . . . , 4,
coincide.

Lemma 2. We have

σe,1(Vω) = σe,2(Vω) = σe,3(Vω) = σe,4(Vω).

Proof. By definition, we always have

σe,1(Vω) ⊆ σe,2(Vω) ⊆ σe,3(Vω) ⊆ σe,4(Vω).

It remains to prove that σe,4(Vω) ⊆ σe,1(Vω).
Take ω /∈ σe,1(Vω). Thus Vω is semi-Fredholm, namely the range of Vω is

closed and its kernel or its cokernel is finite-dimensional. A direct calculation
using integration by parts yields, thanks to the symmetry of the coefficients ε,
μ and σ,

〈Vω(u), u′〉L2(Ω;C3)2 = 〈u, Vω(u′)〉L2(Ω;C3)2 , u, u′ ∈ H1.

Thus, since H1 is dense in L2(Ω;C3)2, for u ∈ H1 we have

u ∈ ker Vω ⇐⇒ 〈Vω(u), u′〉L2(Ω;C3)2 = 0 for all u′ ∈ L2(Ω;C3)2

⇐⇒ 〈Vω(u), u′〉L2(Ω;C3)2 = 0 for all u′ ∈ H1

⇐⇒ 〈u, Vω(u′)〉L2(Ω;C3)2 = 0 for all u′ ∈ H1

⇐⇒ 〈u, Vω(u′)〉L2(Ω;C3)2 = 0 for all u′ ∈ H1

⇐⇒ u ∈ coker Vω.

Hence, ker Vω = coker Vω, and so

dim ker Vω = dim coker Vω = dim coker Vω,

implying that Vω is a Fredholm operator with index zero, namely ω /∈ σe,4(Vω).
�

Remark 3. When H1 and H2 are separable, infinite-dimensional Hilbert spaces,
the statement ω ∈ σe,2(Lω) is equivalent to the statement that there exists a
Weyl singular sequence (un) in H1 with ‖un‖H1 = 1 and un ⇀ 0 in H1 such
that ||Lωun||H2 → 0. This follows from [9, Ch. IX, Thm. 1.3], which covers the
case H1 = H2, by using a straightforward argument involving the isomorphism
between H1 and H2.

Finally, we introduce some homogeneous Sobolev spaces which are re-
quired for the Helmholtz decomposition for unbounded domains. For bounded
domains, these coincide with the usual Sobolev spaces.
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Definition 4. (1) (Ω unbounded) The homogeneous Sobolev spaces Ḣ1
0 (Ω)

and Ḣ1(Ω) are the completions of the Schwartz spaces D(Ω) and D(Ω),
respectively, with respect to the norm ‖u‖ := ‖∇u‖L2(Ω).

(2) (Ω bounded) In this case we define the homogeneous Sobolev spaces to
coincide with the usual Sobolev spaces: Ḣ1

0 (Ω) = H1
0 (Ω) and Ḣ1(Ω) =

H1(Ω).

Remark 5. (a) Note that this definition does not coincide with Definition
1.31 in [4], which uses Fourier transforms to define Ḣs(Rd) and results in
spaces which are not complete if s ≥ d/2. Our definition follows Dautray
and Lions [8]. For clarity, we use our definition directly in “Appendix A”.

(b) If K is any compact subset of Ω with non-empty interior and Ω is
bounded, then the usual H1-norm is equivalent to

‖u‖2 := ‖u‖2
L2(K) + ‖∇u‖2

L2(Ω), (7)

see Maz’ya [16]. In the case when Ω is unbounded, the norms on Ḣ1 and
Ḣ1

0 may be shown to be equivalent to the norm defined in (7), for any
compact K ⊂ Ω with non-empty interior. Thus an equivalent definition
of Ḣ1(Ω), valid for bounded and unbounded Ω, is the closure of D(Ω)
in the norm (7). However, for unbounded Ω, this is no longer equivalent
to the H1-norm; e.g., the function given in polar coordinates by u(r) =
1/(r + 1)3/2 does not lie in H1(R3) but lies in Ḣ1(R3).

We are now ready to state our main result.

Theorem 6. Let Ω ⊆ R
3 be a Lipschitz domain satisfying Assumption 14 (given

below) and ε, σ, μ ∈ L∞(Ω;R3×3) satisfy (2). Assume (3) if Ω is unbounded,
and (4) if Ω is bounded. We have

σess(Vω) = σess

(
div((ωε + iσ)∇· )) ⋃ σess(V 0

ω ),

where div((ωε + iσ)∇· ) acts from Ḣ1
0 (Ω;C) to its dual Ḣ−1(Ω;C) and V 0

ω is
the Maxwell pencil with constant coefficients ε0, μ0 and σ0.

Thanks to this result, the essential spectrum of the Maxwell pencil is
decomposed into two parts.

• The essential spectrum of the operator div((ωε+iσ)∇· ): this component
depends on the coefficients ε and σ directly. In particular, in the case when
the coefficients ε and σ are continuous, it consists of the closure of the
set of ω = iν, ν ∈ R, for which νε + σ is indefinite at some point in Ω:
see Proposition 27. As in Lemma 2, a direct calculation shows that for
this operator all essential spectra coincide, and so the notation σess is
unambiguous.

• The essential spectrum of the constant coefficient Maxwell pencil,

V 0
ω (E,H) = (curlH + i(ωε0 + iσ0)E, curl E − iωμ0H),

which is determined by the geometry of Ω. This can be computed explic-
itly in many cases of interest: we provide several examples below. It is



G. S. Alberti et al. Ann. Henri Poincaré

worth observing that 0 always belongs to σess(V 0
ω ), since {0}⊕∇Ḣ1(Ω) ⊆

ker V 0
0 .

In the next examples, we will calculate the essential spectrum of V 0
ω , for

different choices of domains Ω.

Example 7. The simplest case to consider in the calculation of σess(V 0
ω ) is

when Ω is bounded. By (4) we have ε0 = μ0 = 1 and σ0 = 0. Thus, the pencil
is self-adjoint, and we have

σess(V 0
ω ) = {0},

see [12,15,17].

Example 8. We consider here the case of the full space Ω = R
3. We can make

use of the Fourier transform to obtain a simple expression of this operator.
Writing E(x) =

∫
R3 Ê(ξ)eix·ξ dξ, the expression of the operator curlE in the

Fourier domain is given by the multiplication operator iC(ξ)Ê(ξ), where

C(ξ) =

⎛
⎝ 0 − ξ3 ξ2

ξ3 0 − ξ1

− ξ2 ξ1 0

⎞
⎠ . (8)

Writing curlH in a similar way, we immediately see that V 0
ω is represented, in

the Fourier domain, by the multiplication by the matrix

Aω(ξ) =
(

i(ωε0 + iσ0)I iC(ξ)
iC(ξ) − iωμ0I

)
.

A direct calculation gives

det (Aω(ξ)) = kω(|ξ|2 − kω)2, kω = ωμ0(ωε0 + iσ0).

By a standard argument, σess(V 0
ω )={ω ∈ C : det(Aω(ξ))=0 for some ξ ∈ R

3},
so that

σess(V 0
ω ) = {ω ∈ C : kω ≥ 0} =

{
a − σ0

2ε0
i : a ∈ R

}
∪
{

ib : b ∈
[
−σ0

ε0
, 0
]}

.

In the particular case, when the conductivity at infinity is zero, i.e., σ0 = 0,
we simply have σess(V 0

ω ) = R.

Example 9. Let us look at the case of the slab Ω = {x = (x′, x3) ∈ R
3 : 0 <

x3 < L}, for some L > 0. The derivation is very similar to the one presented
above for the full space, the only difference being that the continuous Fourier
transform in the third variable becomes a Fourier series. As a consequence,
the continuous variable ξ3 is replaced by a discrete variable n = 0, 1, . . .. More
precisely,

Ej(x) =
∞∑

n=1

∫
R2

Êj(ξ′, n)eix′·ξ′
sin
(nπ

L
x3

)
dξ′, j = 1, 2,

E3(x) =
∞∑

n=0

∫
R2

Ê3(ξ′, n)eix′·ξ′
cos
(nπ

L
x3

)
dξ′,
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and, analogously,

Hj(x) =
∞∑

n=0

∫
R2

Ĥj(ξ′, n)eix′·ξ′
cos
(nπ

L
x3

)
dξ′, j = 1, 2,

H3(x) =
∞∑

n=1

∫
R2

Ĥ3(ξ′, n)eix′·ξ′
sin
(nπ

L
x3

)
dξ′;

the range of n in each summation has been determined by the boundary con-
ditions on x3 = 0 and x3 = L. Compared to the full space in Example 8, the
continuous frequency variable ξ ∈ R

3 has become ξ := (ξ′, nπ
L ) ∈ R

2 × ( π
LN).

By calculations similar to those for the full space, we see that the essential
spectrum is the set of ω ∈ C such that for some ξ ∈ R

2 × ( π
LN)

kω(|ξ|2 − kω)2 = 0, kω = ωμ0(ωε0 + iσ0),

and it is easy to see that this coincides with the essential spectrum for the full
space problem.

Example 10. We now compute the essential spectrum of V 0
ω in a cylinder

Ω = {x ∈ R
3 : 0 < x2 < L1, 0 < x3 < L2}. As above, let us expand E and H

in Fourier coordinates as

E1(x1, x2, x3) =
∑

n∈N2

∫
R

Ê1(n, ξ) sin
(πn1

L1
x2

)
sin
(πn2

L2
x3

)
eiξx1 dξ,

E2(x1, x2, x3) =
∑

n∈N2

∫
R

Ê2(n, ξ) cos
(πn1

L1
x2

)
sin
(πn2

L2
x3

)
eiξx1 dξ,

E3(x1, x2, x3) =
∑

n∈N2

∫
R

Ê3(n, ξ) sin
(πn1

L1
x2

)
cos
(πn2

L2
x3

)
eiξx1 dξ

and

H1(x1, x2, x3) =
∑

n∈N2

∫
R

Ĥ1(n, ξ) cos
(πn1

L1
x2

)
cos
(πn2

L2
x3

)
eiξx1 dξ,

H2(x1, x2, x3) =
∑

n∈N2

∫
R

Ĥ2(n, ξ) sin
(πn1

L1
x2

)
cos
(πn2

L2
x3

)
eiξx1 dξ,

H3(x1, x2, x3) =
∑

n∈N2

∫
R

Ĥ3(n, ξ) cos
(πn1

L1
x2

)
sin
(πn2

L2
x3

)
eiξx1 dξ.

In order to guarantee uniqueness of the expansions, set

Ĥ2(0, n2, ξ) = 0, Ĥ3(n1, 0, ξ) = 0, Ê1(0, n2, ξ) = 0,

Ê1(n1, 0, ξ) = 0, Ê2(n1, 0, ξ) = 0, Ê3(0, n2, ξ) = 0,
(9)

for every n ∈ N
2 and ξ ∈ R.

A direct calculation gives that the operators E 
→ curlE and H 
→ curlH
may be written in Fourier coordinates as the multiplication operators by the
matrices

C
(
iξ, π

L1
n1,

π
L2

n2

)
and C

(
iξ,− π

L1
n1,− π

L2
n2

)
,
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respectively, where the matrix C is defined in (8). As a consequence, in the
Fourier domain, V 0

ω is a multiplication operator represented by the matrix

Aω(n, ξ) =

(
i(ωε0 + iσ0)I C(iξ,− π

L1
n1,− π

L2
n2)

C(iξ, π
L1

n1,
π
L2

n2) − iωμ0I

)
.

A further calculation yields

det (Aω(n, ξ)) = kω(ξ2 + π2

L2
1
n2

1 + π2

L2
2
n2

2 − kω)2, kω = ωμ0(ωε0 + iσ0).

If ω is such that det (Aω(n, ξ)) �= 0 for every n ∈ N
2 and ξ ∈ R, then ω does

not belong to the essential spectrum of V 0
ω . On the other hand, suppose that

ω is such that det (Aω(n, ξ)) = 0 for some n ∈ N and ξ ∈ R. If n1 = n2 = 0, it
is easy to see that there are no nonzero elements of ker Aω(n, ξ) satisfying (9).
On the other hand, the vector (0, ωμ0L2, 0, πi, 0, ξL2) belongs to ker Aω(0, 1, ξ)
and satisfies (9) (and similarly if n1 = 1 and n2 = 0). As a consequence, we
have that

σess(V 0
ω ) = {ω ∈ C : kω = 0 or kω ≥ π2

L2 }, L = max(L1, L2).

In the particular case when σ0 = 0, this set takes the simpler form

σess(V 0
ω ) =

(
−∞,− π

L
√

ε0μ0

]
∪ {0} ∪

[
π

L
√

ε0μ0
,+∞

)
.

Note that this set approaches the essential spectrum for the slab as L → +∞.
This is expected: as L increases the cylinder becomes larger and larger in one
direction.

3. Helmholtz Decomposition and Related Operators

We shall treat both bounded and unbounded Lipschitz domains Ω ⊆ R
3. The

latter are our primary interest, as the bounded case has already been studied
by Lassas [15], albeit under slightly stronger assumptions on the boundary
regularity. However, in the definitions which follow, we deal with both cases.

The first decomposition result which we require is true without restric-
tions on the topology of Ω. Although it is standard, we present a proof since
it shows how the homogeneous Sobolev spaces arise in a natural way.

Lemma 11. Let Ω ⊆ R
3 be a Lipschitz domain.

1. The space L2(Ω;C3) admits the following orthogonal decompositions:

L2(Ω;C3) = ∇Ḣ1
0 (Ω) ⊕ H(div 0,Ω), (10a)

L2(Ω;C3) = ∇Ḣ1(Ω) ⊕ H0(div 0,Ω), (10b)

in which

H(div 0,Ω) =
{
u ∈ L2(Ω;C3) : div u = 0

}
,

H0(div 0,Ω) =
{
u ∈ L2(Ω;C3) : div u = 0, ν · u|∂Ω = 0

}
.
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2. The spaces H0(curl,Ω) and H(curl,Ω) admit the orthogonal decomposi-
tions

H0(curl,Ω) = ∇Ḣ1
0 (Ω;C) ⊕ (H0(curl,Ω) ∩ H(div 0,Ω)), (11a)

H(curl,Ω) = ∇Ḣ1(Ω;C) ⊕ (H(curl,Ω) ∩ H0(div 0,Ω)). (11b)

Proof. (1) The operator ∇ : Ḣ1
0 (Ω) → L2(Ω;C3) is an isometry, and so ∇Ḣ1

0 (Ω)
is closed in L2(Ω;C3). It remains to prove that (∇Ḣ1

0 (Ω))⊥ = H(div 0,Ω). Sup-
pose that φ ∈ (∇Ḣ1

0 (Ω))⊥; then 〈φ,∇v〉 = 0 for all v ∈ D(Ω), which means that
〈div φ, v〉 = 0 for all v ∈ D(Ω). This proves that φ ∈ H(div 0,Ω). Conversely, if
φ ∈ H(div 0,Ω) then for any v ∈ D(Ω) we have 0 = 〈div φ, v〉 = 〈φ,∇v〉. Taking
the closure in the Ḣ1

0 (Ω)-topology shows that 〈φ,∇v〉 = 0 for all v ∈ Ḣ1
0 (Ω),

which proves (10a).
Analogously, ∇Ḣ1(Ω) is closed in L2(Ω;C3). To prove (10b) suppose that

φ ∈ (∇Ḣ1(Ω))⊥; then certainly div φ = 0 since (∇Ḣ1(Ω))⊥ ⊆ (∇Ḣ1
0 (Ω))⊥.

Thus for all v ∈ D(Ω), we have 0 = 〈φ,∇v〉 =
∫

∂Ω
(ν · φ)v ds. This means that

ν · φ = 0 on ∂Ω and so φ ∈ H0(div 0,Ω). The proof that any φ ∈ H0(div 0,Ω)
lies in (∇Ḣ1(Ω))⊥ is straightforward.

(2) The decompositions (11) follow immediately from (10) by taking the
appropriate subspaces. �

To decompose the Maxwell pencil we need to decompose the spaces
H(div 0,Ω) and H0(div 0,Ω) further, by using vector potentials in some suit-
able spaces, which we now introduce.

Definition 12. Let Ω ⊆ R
3 be a Lipschitz domain.

• The space ẊT (Ω) is the completion of H(curl,Ω) ∩ H0(div 0,Ω) with re-
spect to the seminorm ‖u‖ := ‖ curl u‖L2(Ω) + ‖div u‖L2(Ω)

+ ‖u · ν‖H−1/2(∂Ω).
• The space ẊN (Ω) is the completion of H0(curl,Ω) ∩ H(div 0,Ω) with re-

spect to the seminorm ‖u‖ := ‖ curl u‖L2(Ω) + ‖div u‖L2(Ω)

+ ‖u × ν‖H−1/2(∂Ω).
• The space KT (Ω) is the kernel of the curl operator restricted to ẊT (Ω),

namely

KT (Ω) = {u ∈ ẊT (Ω) : curlu = 0}.

• The space KN (Ω) is the kernel of the curl operator restricted to ẊN (Ω),
namely

KN (Ω) = {u ∈ ẊN (Ω) : curlu = 0}.

The spaces KT (Ω) and KN (Ω) are closed in ẊT (Ω) and in ẊN (Ω), re-
spectively, and so we can consider the quotient spaces

ẊT (Ω)/KT (Ω), ẊN (Ω)/KN (Ω).

The curl operator is well-defined and injective on these spaces. To avoid cum-
bersome notation, we will in the following identify curlψ for ψ ∈ ẊT (Ω)/KT (Ω)
or ψ ∈ ẊN (Ω)/KN (Ω) with the vector in L2(Ω;C3) given by curl acting on any
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representative of the equivalence class ψ. The curl operator maps these quo-
tient spaces into the space of divergence-free fields, with appropriate boundary
conditions.

Lemma 13. Let Ω ⊆ R
3 be a Lipschitz domain.

1. The space curl(ẊT (Ω)/KT (Ω)) is contained in H(div 0,Ω).
2. The space curl(ẊN (Ω)/KN (Ω)) is contained in H0(div 0,Ω).

Proof. Part (1) follows immediately from div ◦ curl = 0. Part (2) follows from
the identities div ◦ curl = 0 and (curlu)·ν = div∂Ω(u×ν) on ∂Ω [17, (3.52)]. �

We make the following assumption.

Assumption 14. The spaces KT (Ω) and KN (Ω) are finite-dimensional and

H(div 0,Ω) = curl(ẊT (Ω)/KT (Ω)) ⊕ KN (Ω), (12a)

H0(div 0,Ω) = curl(ẊN (Ω)/KN (Ω)) ⊕ KT (Ω). (12b)

This assumption is verified in many cases of theoretical and practical
interest.

Proposition 15. Assumption 14 is verified in any of the following cases:
1. Ω = R

3 (with KT (Ω) = KN (Ω) = {0});
2. Ω is a bounded Lipschitz domain, satisfying Hypothesis 3.3 of [4];
3. Ω is a C2 exterior domain, satisfying assumptions (1.45) of [8, Chapter

IXA];
4. Ω is the half space {(x1, x2, x3) ∈ R

3 : x3 > 0} (with KT (Ω) = KN (Ω) =
{0});

5. Ω is the slab {(x1, x2, x3) ∈ R
3 : 0 < x3 < L} for some L > 0 (with

KT (Ω) = KN (Ω) = {0});
6. Ω is a cylinder R × Ω′, where Ω′ ⊆ R

2 is a simply connected bounded
domain of class C1,1 or piecewise smooth with no re-entrant corners (with
KT (Ω) = KN (Ω) = {0}).

Remark 16. We have decided not to provide the details of the assumptions
of parts (2) and (3), since they are rather lengthy and are not needed for
the rest of the paper. In simple words, these assumptions require ∂Ω to be a
finite union of connected surfaces and that there exist a finite number of cuts
within Ω which divide it into multiple simply connected domains. The number
of cuts is given by dimKT (Ω), and the number of connected components of
∂Ω by dimKN (Ω) + 1. Thus, for simply connected domains with connected
boundaries, the decomposition is even simpler: KT (Ω) and KN (Ω) are trivial
and can be omitted.

Proof. (1) The decompositions (12a) and (12b) coincide, and sim-
ply follow from the identity û(ξ) = −ξ × ( ξ×û

|ξ|2 ), valid for every
divergence-free field u (which implies ξ · û = 0), where û denotes
the Fourier transform of u. Alternatively, this is also a consequence
of Proposition 29 and Lemma 30.
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(2) This part is proved in [4] (see also [8, Chapter IXA] and [10, Chap-
ter I, §3] for the smooth case). The construction of the spaces
KT (Ω) and KN (Ω) is described explicitly.

(3) The decompositions in this case are proved in [8, Chapter IXA].
(4)–(5)–(6) The arguments are standard and explicit, but it is not easy to find

precise statements in the literature. We detail the derivation in
“Appendix A”, which contains a general construction for a larger
class of cylinders.

�
Combining (10) and (12), we obtain that the space L2(Ω;C3) admits the

following orthogonal decompositions:

L2(Ω;C3) = ∇Ḣ1
0 (Ω;C) ⊕ curl(ẊT (Ω)/KT (Ω)) ⊕ KN (Ω), (13a)

L2(Ω;C3) = ∇Ḣ1(Ω;C) ⊕ curl(ẊN (Ω)/KN (Ω)) ⊕ KT (Ω). (13b)

In view of these decompositions, to every vector field in L2(Ω;C3), we can
associate the unique vector potentials in ẊT (Ω)/KT (Ω) and in ẊN (Ω)/KN (Ω).

Lemma 17. Let Ω ⊆ R
3 be a Lipschitz domain satisfying Assumption 14.

There exist bounded operators TN : L2(Ω;C3) → ẊN (Ω)/KN (Ω) and TT :
L2(Ω,C3) → ẊT (Ω)/KT (Ω) such that

TN curl Φ = Φ, Φ ∈ ẊN (Ω)/KN (Ω),
TN∇q = 0, q ∈ Ḣ1(Ω;C); TNf = 0, f ∈ KT (Ω);
TT curl Φ = Φ, Φ ∈ ẊT (Ω)/KT (Ω),
TT ∇q = 0, q ∈ Ḣ1

0 (Ω;C); TT f = 0, f ∈ KN (Ω).

(14)

Proof. In view of (13b), every F ∈ L2(Ω,C3) admits a unique decomposition
into three orthogonal vectors,

F = ∇q + curl Φ + f,

with q ∈ Ḣ1(Ω,C), Φ ∈ ẊN (Ω)/KN (Ω) and f ∈ KT (Ω). We define TN by
TNF = Φ, so that TN curl Φ = Φ for all Φ ∈ ẊN (Ω)/KN (Ω). By the closed
graph theorem, TN is bounded. The definition of TT follows similarly by using
the other Helmholtz decomposition (13a). �

4. Proof of the Main Result

In a first part, we introduce a series of equivalent reformulations of our problem
to obtain a form where the two contributions to the essential spectrum in our
main result can easily be separated.

Decomposing H1 using (11) and (12) allows us to transform the Maxwell
operator Vω. More precisely, for E ∈ H0(curl,Ω) and H ∈ H(curl,Ω) consider
the decompositions

E = ∇qE + ΨE + hN , H = ∇qH + ΨH + hT , (15)

where qE ∈ Ḣ1
0 (Ω;C), qH ∈ Ḣ1(Ω;C), ΨE ∈ H0(curl,Ω)∩curl(ẊT (Ω)/KT (Ω)),

ΨH ∈ H(curl,Ω) ∩ curl(ẊN (Ω)/KN (Ω)), hT ∈ KT (Ω) and hN ∈ KN (Ω). We
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now wish to discard the contribution coming from KT (Ω) and KN (Ω). To this
end, we introduce the space

H2 = ∇Ḣ1
0 (Ω) × ∇Ḣ1(Ω) × H0(curl,Ω) ∩ curl(ẊT (Ω)/KT (Ω))

×H(curl,Ω) ∩ curl(ẊN (Ω)/KN (Ω))

equipped with the canonical product norm

||(u1, u2,Ψ1,Ψ2)||2H2
= ||u1||2L2(Ω) + ||u2||2L2(Ω) + ||Ψ1||2H(curl,Ω)

+||Ψ2||2H(curl,Ω). (16)

Define the projection map

W : H1 → H2, W (E,H) = (∇qE ,∇qH ,ΨE ,ΨH),

where E,H are given by (15), and its right inverse W−1 : H2 → H1 by

W−1(∇qE ,∇qH ,ΨE ,ΨH) = (∇qE + ΨE ,∇qH + ΨH).

Since the decompositions in (11) and (12) are orthogonal, for any (E,H) ∈ H1

we have

||(E,H)||2H1
= ||W (E,H)||2H2

+ ||(hN , hT )||2L2(Ω)2 . (17)

Instead of the operator Vω, we consider

Ṽω = Vω ◦ W−1 : H2 → L2(Ω;C3)2.

This does not change the essential spectrum, as the following lemma shows.

Lemma 18. We have σe,2(Vω) = σe,2(Ṽω).

Proof. Using that W−1 is an isometry we immediately obtain that σe,2(Ṽω) ⊆
σe,2(Vω). It remains to show the reverse inclusion.

Let ω ∈ σe,2(Vω). By Remark 3, there exists a sequence of functions
un = (∇qE,n+ΨE,n+hN,n,∇qH,n+ΨH,n+hT,n) in H1, ‖un‖H1

= 1, un ⇀ 0 in
H1 such that ‖Vωun‖L2 → 0. Then there exists c > 0 such that ||Wun||H2 ≥ c
for all sufficiently large n. This follows from the fact that otherwise by (17) we
would have that, at least on a subsequence, PNT un := (hN,n, hT,n) satisfies
||PNT un||H1 → 1. However, the range of PNT is the finite-dimensional space
KN (Ω) × KT (Ω). This contradicts that un ⇀ 0 in H1, which implies that
(hN,n, hT,n) → 0 in H1.

Set ũn = Wun/||Wun||H2 . Then, ||ũn||H2 = 1 and

Ṽωũn =
Vω(∇qE,n + ΨE,n,∇qH,n + ΨH,n)

||Wun||H2

=
Vωun − Vω(hN,n, hT,n)

||Wun||H2

−→ 0

in L2(Ω;C3)2. Finally, for any ϕ ∈ (H2)′ we have ϕ ◦ W ∈ (H1)′, so

ϕ(ũn) =
(ϕ ◦ W )un

||Wun||H2

→ 0,

and hence ω is in the σe,2 essential spectrum of Ṽω. �
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By definition of Ṽω and (6), we obtain

Ṽω(∇qE ,∇qH ,ΨE ,ΨH) =
(

curlΨH + iMω∇qE + iMωΨE

curl ΨE − iωMμ∇qH − iωMμΨH

)
, (18)

where MωF = (ωε + iσ)F and MμF = μF .
In order to simplify this operator even further, we need the following

elementary result.

Lemma 19. Let PH denote the orthogonal projection onto the space H.
1. The map ζ1 : L2(Ω;C3) → Ḣ−1(Ω;C)×(ẊT (Ω)/KT (Ω))×KN (Ω) defined

by

F 
−→ (div F, TT F, PKN (Ω)F )

is an isomorphism, where Ḣ−1(Ω;C) denotes the dual of Ḣ1
0 (Ω;C).

2. The map ζ2 : L2(Ω;C3) →
(
∇Ḣ1(Ω;C)

)′
× (ẊN (Ω)/KN (Ω)) × KT (Ω)

given by

F 
−→ (h(F ), TNF, PKT (Ω)F ),

where h : L2(Ω;C3) →
(
∇Ḣ1(Ω;C)

)′
is defined by

〈h(F ),∇q〉 :=
∫

Ω

F · ∇q dx, (19)

is an isomorphism.

Proof. (1) Take (φ,Φ, f) ∈ Ḣ−1(Ω;C) × (ẊT (Ω)/KT (Ω)) × KN (Ω). We need
to show that there exists a unique F ∈ L2(Ω;C3) such that ζ1(F ) = (φ,Φ, f).
We use the Helmholtz decomposition (13a) and look for F of the form F =
∇q + curl Φ̃ + fN , with q ∈ Ḣ1

0 (Ω;C), Φ̃ ∈ ẊT (Ω)/KT (Ω) and fN ∈ KN (Ω).
First, since PKN (Ω)F = fN , choose fN = f . Now note that

div F = φ ⇐⇒ Δq = φ,

which is uniquely solvable for q ∈ Ḣ1
0 (Ω;C) by the Lax–Milgram theorem.

Further,

TT F = Φ ⇐⇒ Φ̃ = Φ,

which is clearly uniquely solvable for Φ̃ ∈ ẊT (Ω)/KT (Ω). This shows that
ζ1(∇q + curl Φ̃ + fN ) = (φ,Φ, f), as desired.

(2) The map ζ2 is well-defined since ∇Ḣ1(Ω) ⊆ L2(Ω;C3). We now show
that ζ2 is an isomorphism. Take

(ϕ,Φ, f) ∈
(
∇Ḣ1(Ω;C)

)′
× (ẊN (Ω)/KN (Ω)) × KT (Ω).

We use the Helmholtz decomposition (13b) and look for F of the form F =
∇p + curl Φ̃ + fT , with p ∈ Ḣ1(Ω;C), Φ̃ ∈ ẊN (Ω)/KN (Ω) and fT ∈ KT (Ω).
Then TNF = Φ̃ and PKT (Ω)F = fT , and so Φ̃ and fT are uniquely determined
by Φ̃ = Φ and fT = f .
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It remains to show that p can be chosen so that ∇p + curl Φ + f = ϕ or

∇p = ϕ − curl Φ − f in
(
∇Ḣ1(Ω;C)

)′
. Thus we need to find p such that∫

Ω

∇p · ∇q dx =
∫

Ω

(ϕ − curl Φ − f) · ∇q dx, q ∈ Ḣ1(Ω;C).

Using that L2(Ω;C3) ⊆
(
∇Ḣ1(Ω)

)′
, this is uniquely solvable for p using the

Lax–Milgram theorem.
This shows that ζ2(∇p + curl Φ + f) = (ϕ,Φ, f), as desired. �

Now, define ζ =
(

ζ1 0
0 ζ2

)
and ζ̃(F1, F2) = (div F1, h(F2), TNF2, TT F1),

i.e., ζ̃ contains the parts of ζ not in KN (Ω) ⊕ KT (Ω). Let

H3 = Ḣ−1(Ω;C) ×
(
∇Ḣ1(Ω;C)

)′
× (ẊN (Ω)/KN (Ω)) × (ẊT (Ω)/KT (Ω)).

Set
˜̃Vω = ζ̃ ◦ Ṽω : H2 → H3.

Lemma 20. We have σe,2(Ṽω) = σe,2(
˜̃Vω).

Proof. We use the characterization of the essential spectrum by Weyl singular
sequences given in Remark 3.

Since ζ̃ is continuous, the inclusion σe,2(Ṽω) ⊆ σe,2(
˜̃Vω) is immediate. Let

us now show the reverse inclusion.
Take ω ∈ σe,2(

˜̃Vω). Let (un)n ⊆ H2 be a singular sequence, namely
||un||H2 = 1, un ⇀ 0 in H2 and ζ̃(Ṽω(un)) → 0 in H3. Since KN (Ω) ⊕ KT (Ω)
is finite-dimensional, we have π(Ṽω(un)) → 0, where π is the projection onto
KN (Ω) ⊕ KT (Ω), since π ◦ Ṽω is compact. This implies that ζ(Ṽω(un)) →
0, whence Ṽω(un) → 0 since ζ is an isomorphism. Thus (un)n is a singular
sequence for Ṽω, and so ω ∈ σe,2(Ṽω). �

Combining Lemmata 18 and 20, we obtain σe,2(Vω) = σe,2(
˜̃Vω). The

corresponding identity for the essential spectrum σe,4 follows from the following
abstract result.

Lemma 21. Let X, Y and Z be Hilbert spaces with dim Y < +∞ and T : X ⊕
Y → Z ⊕ Y be a bounded linear operator. Define T ′ : X → Z by

T ′ = PZ ◦ T ◦ iX ,

where PZ : Z ⊕ Y → Z is the orthogonal projection (z, y) 
→ z and iX : X →
X ⊕ Y is the canonical immersion x 
→ (x, 0). Then T is a Fredholm operator
with index 0 if and only if T ′ is a Fredholm operator with index 0.

Proof. Observe that
T (x, y) = (PZT (x, y), PY T (x, y))

= (PZT (x, y), 0) + (0, PY T (x, y))

= (PZT (x, 0), 0) + (PZT (0, y), 0) + (0, PY T (x, y)).
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Since the index is invariant under compact perturbations and the operator
(x, y) 
→ (PZT (0, y), 0) + (0, PY T (x, y)) is finite rank (dimY < +∞), we have
that T is Fredholm with index 0 if and only if

T ′′ : X ⊕ Y → Z ⊕ Y, (x, y) 
→ (PZT (x, 0), 0),

is Fredholm with index 0.
Let T ′′′ = T ′′ ◦ iX : X → Z ⊕ Y . Since dim kerT ′′ = dim ker T ′′′ + dim Y

and dim coker T ′′ = dim coker T ′′′ we have that T ′′ is Fredholm with index 0
if and only if T ′′′ is Fredholm with

ind(T ′′′) = dim kerT ′′′ − dim coker T ′′′ = −dim Y.

Finally, observe that T ′ = PZ ◦T ′′′. Since the range of T ′′′ is contained in
Z ⊕ {0} we have dim ker T ′′′ = dim kerT ′ and dim coker T ′′′ = dim coker T ′ +
dim Y . Hence, T ′′′ is Fredholm with ind(T ′′′) = −dim Y if and only if T ′ is
Fredholm with index 0. This concludes the proof. �

Lemma 22. We have σe,4(Vω) = σe,4(
˜̃Vω).

Proof. Recall that Vω : H1 → L2(Ω;C3)2. By (11) and (12), we have H1 =
H2 ⊕ (KN (Ω) ⊕ KT (Ω)). By Lemma 19, we can identify

L2(Ω;C3)2 = H3 ⊕ (KN (Ω) ⊕ KT (Ω)),

(disregarding isomorphisms). Since KN (Ω) ⊕ KT (Ω) is finite-dimensional, the
result is an immediate consequence of Lemma 21 applied with X = H2, Z =
H3, Y = KN (Ω) ⊕ KT (Ω), T = Vω and T ′ = ˜̃Vω. �

Now, recalling that ΨH ∈ ẊT (Ω) and ΨE ∈ ẊN (Ω), by (14) and (18) we
have that

˜̃Vω(∇qE ,∇qH ,ΨE ,ΨH) = ζ̃

(
curl ΨH + iMω∇qE + iMωΨE

curlΨE − iωMμ∇qH − iωMμΨH

)

=

⎛
⎜⎜⎜⎝

idiv(Mω∇qE) + idiv(MωΨE)
−iωh(Mμ∇qH) − iωh(MμΨH)

[ΨE ] − iωTNMμ∇qH − iωTNMμΨH

[ΨH ] + iTT Mω∇qE + iTT MωΨE

⎞
⎟⎟⎟⎠ ,

(20)

in which [·] denotes the equivalence class in the appropriate quotient space.
In order to compute the essential spectrum of ˜̃Vω we now decompose the

coefficients in the Maxwell system. As a consequence of our Hypotheses (3, 4),
whether Ω be bounded or unbounded, for each δ > 0 the Maxwell coefficients
admit a decomposition

μ = μ0 + μc + μδ, ε = ε0 + εc + εδ, σ = σ0 + σc + σδ, (21)

in which the terms μ0, ε0 and σ0 are constant and do not depend on δ, the
terms μc, εc and σc are compactly supported, and the terms μδ, εδ, σδ are
essentially bounded, with

mδ := max(‖μδ‖L∞(Ω), ‖εδ‖L∞(Ω), ‖σδ‖L∞(Ω)) < δ; (22)
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here the norms are defined by ||a||L∞(Ω) := ess supx∈Ω||a(x)||2 for a ∈ L∞

(Ω;R3×3), where ||A||2 denotes the induced norm supv∈R3\{0}
|Av|
|v| for A ∈

R
3×3.

In the expression for ˜̃Vω appearing in (20) the Maxwell coefficients ap-
pear linearly in the multiplication operators Mμ (multiplication by μ) and
Mω (multiplication by ωε + iσ). The decomposition (21) of the coefficients is
partially reflected in the following decomposition of ˜̃Vω:

˜̃Vω = ˜̃Vω,0 + ˜̃Vω,c + ˜̃Vω,δ,

in which

˜̃Vω,0

⎛
⎜⎜⎝

∇qE

∇qH

ΨE

ΨH

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

i div((ωε + iσ)∇qE)

−iωh(μ∇qH)

−iωTN (μ∇qH) + [ΨE ] − iωTN (μ0ΨH)

iTT ((ωε + iσ)∇qE) + iTT ((ωε0 + iσ0)ΨE) + [ΨH ]

⎞
⎟⎟⎟⎠ , (23)

˜̃Vω,c

⎛
⎜⎜⎝

∇qE

∇qH

ΨE

ΨH

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

idiv((ω(ε0 + εc) + i(σ0 + σc))ΨE)
−iωh((μ0 + μc)ΨH)

−iωTN (μcΨH)
iTT ((ωεc + iσc)ΨE)

⎞
⎟⎟⎟⎠

and

˜̃Vω,δ

⎛
⎜⎜⎝

∇qE

∇qH

ΨE

ΨH

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

idiv((ωεδ + iσδ)ΨE)
−iωh(μδΨH)

−iωTN (μδΨH)
iTT ((ωεδ + iσδ)ΨE)

⎞
⎟⎟⎟⎠ .

Note that the operator ˜̃Vω,0 is independent of δ. Further, the operator ˜̃Vω,c is

compact and the operator ˜̃Vω,δ is O(δ)-small in a suitable norm, as we show
in the following two lemmata.

Lemma 23. The operator ˜̃Vω,c : H2 → H3 is compact.

Proof. By a direct calculation it is easy to see that div((ωε0 + iσ0)ΨE) = 0
and h(μ0ΨH) = 0, using that ε0, σ0 and μ0 are scalar. Since the operators

div : L2(Ω;C3) → Ḣ−1(Ω;C), TT : L2(Ω;C3) → ẊT (Ω)/KT (Ω),

h : L2(Ω;C3) → (∇Ḣ1(Ω;C)
)′

, TN : L2(Ω;C3) → ẊN (Ω)/KN (Ω),
(24)

are bounded, it is enough to show that the operators

FT : H0(curl,Ω) ∩ curl(ẊT (Ω)/KT (Ω)) → L2(Ω;C3), ΨE 
→ (ωεc + iσc)ΨE ,

FN : H(curl,Ω) ∩ curl(ẊN (Ω)/KN (Ω)) → L2(Ω;C3), ΨH 
→ μcΨH ,

are compact. We now prove that FT is compact, the other proof is completely
analogous. Let R > 0 be big enough so that K := supp(ωεc+iσc) ⊆ B(0, R)∩Ω
and χ ∈ C∞(Ω) be a cutoff function such that χ ≡ 1 in K and suppχ ⊆
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B(0, R) ∩ Ω. Setting ΩR = B(0, R) ∩ Ω, the operator FT may be expressed via
the following compositions

H0(curl,Ω) ∩ curl(ẊT (Ω)/KT (Ω)) ΨE

↓ ↧

H0(curl,ΩR) ∩ H(div,ΩR) (χΨE)|ΩR↪→

↧

L2(ΩR;C3) (χΨE)|ΩR

↓ ↧

L2(ΩR;C3) ((ωεc + iσc)ΨE)|ΩR↪→

↧

L2(Ω;C3) (ωεc + iσc)ΨE

,

where the third operator is the multiplication by ωεc + iσc and the fourth
operator is simply the extension by zero. Therefore, since the embedding
H0(curl,ΩR) ∩ H(div,ΩR) ↪→ L2(ΩR;C3) is compact [19] (see also [4, The-
orem 2.8]), the operator FT is compact. �

Lemma 24. There exists a constant C > 0 depending only on Ω and on the
coefficients μ, ε and σ, such that for each δ > 0 we have

‖ ˜̃Vω,δ‖H2→H3 ≤ C(1 + |ω|)δ.
Proof. Note that by (16) we have

‖(∇qE ,∇qH ,ΨE ,ΨH)‖L2(Ω;C3)4 ≤ ‖(∇qE ,∇qH ,ΨE ,ΨH)‖H2 .

Thus, since the four operators in (24) are bounded, there exists a constant
C > 0 depending only on Ω and on the coefficients μ, ε and σ, such that

‖ ˜̃Vω,δ(∇qE ,∇qH ,ΨE ,ΨH)‖H3 ≤ C(1 + |ω|)mδ‖(∇qE ,∇qH ,ΨE ,ΨH)‖L2(Ω;C3)4

≤ C(1 + |ω|)δ‖(∇qE ,∇qH ,ΨE ,ΨH)‖H2 ,

where the second inequality follows from (22). This concludes the proof. �

It is helpful to recall that ˜̃Vω : H2 → H3, where

H2 = ∇Ḣ1
0 (Ω) × ∇Ḣ1(Ω) × H0(curl,Ω) ∩ curl(ẊT (Ω)/KT (Ω))

×H(curl,Ω) ∩ curl(ẊN (Ω)/KN (Ω))

and

H3 = Ḣ−1(Ω;C) ×
(
∇Ḣ1(Ω;C)

)′
× (ẊN (Ω)/KN (Ω)) × (ẊT (Ω)/KT (Ω)).

Proposition 25. The σe,2 essential spectrum of ˜̃Vω is the union of the σe,2

essential spectra of the two block operator pencils

Aω : ∇Ḣ1
0 (Ω) × ∇Ḣ1(Ω) → Ḣ−1(Ω;C) ×

(
∇Ḣ1(Ω;C)

)′

Dω : H0(curl,Ω) ∩ curl(ẊT (Ω)/KT (Ω)) × H(curl,Ω) ∩ curl(ẊN (Ω)/KN (Ω))

→ (ẊN (Ω)/KN (Ω)) × (ẊT (Ω)/KT (Ω))
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determined by the expressions

Aω =

(
i div((ωε + iσ) ·) 0

0 − iωh(μ ·)
)

, Dω =

(
IN − iωμ0TN

i(ωε0 + iσ0)TT IT

)
. (25)

Here the operators IN and IT are the canonical mappings from ẊN (Ω) and
ẊT (Ω) to the quotient spaces ẊN (Ω)/KN (Ω) and ẊT (Ω)/KT (Ω), respectively.

Proof. By inspection of (23), the operator pencil ˜̃Vω,0 may be written as the
block lower triangular operator matrix pencil

˜̃Vω,0 =
(Aω 0

Cω Dω

)
, (26)

in which Aω and Dω are as in Eq. (25) and the off-diagonal component
Cω : ∇Ḣ1

0 (Ω) × ∇Ḣ1(Ω) → (ẊN (Ω)/KN (Ω)) × (ẊT (Ω)/KT (Ω)) is given by

Cω =
(

0 − iωTN (μ · )
iTT ((ωε + iσ)·) 0

)
.

The proof is divided into several steps.

1. σe,2(
˜̃Vω,0) ⊆ σe,2(Aω) ∪ σe,2(Dω).

Let us prove the claim. Take ω ∈ σe,2(
˜̃Vω,0). Keeping in mind the block

structure (26) of ˜̃Vω,0, let (un, vn)n be a singular sequence for ˜̃Vω,0. If
un → 0, then at least some subsequence of vn/||vn|| is a singular sequence
for Dω, and so ω ∈ σe,2(Dω). Otherwise, at least some subsequence of
un/||un|| is a singular sequence for Aω, and so ω ∈ σe,2(Aω).

2. σe,2(Dω) ⊆ σe,2(
˜̃Vω,0).

In order to prove the claim, it is enough to observe that if (vn)n is a
singular sequence for Dω, then (0, vn) is a singular sequence for ˜̃Vω,0.

3. σ*
e,2(

˜̃Vω) ⊆ σe,2(
˜̃Vω).

Recall that σ*
e,2(

˜̃Vω) is the set of ω for which ˜̃Vω is not in the class F− of
semi-Fredholm operators with finite-dimensional cokernel. By [9, Chapter
IX, section 1] (the relevant argument is valid also if the domain and the
codomain of the operators are different, as in our case), we have

σe,2
∗( ˜̃V ω) = σe,2(

˜̃V
∗
ω), σe,4(

˜̃V
∗
ω) = σe,4(

˜̃V ω).

Further, combining Lemmata 2, 18, 20 and 22 we have

σe,2(
˜̃Vω) = σe,4(

˜̃Vω).

Thus, the claim follows using the inclusion σe,2(
˜̃V

∗
ω) ⊆ σe,4(

˜̃V
∗
ω).

4. σe,2(
˜̃Vω) = σe,2(

˜̃Vω,0).

Take ω ∈ C. Recall that ˜̃Vω = ˜̃Vω,0 + ˜̃Vω,c + ˜̃Vω,δ, in which ˜̃Vω and ˜̃Vω,0

are independent of δ. By Lemma 24 we have

lim
δ→0

||( ˜̃Vω − ˜̃Vω,0) − ˜̃Vω,c||H2→H3 = 0.
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In other words, ˜̃Vω − ˜̃Vω,0 is the operator norm limit of the compact

operators ˜̃Vω,c, and is therefore compact. Thus ˜̃Vω = ˜̃Vω,0 + Kω for some
compact operator Kω. Hence, the claim follows by the invariance of σe,2

under compact perturbations.
5. σ*

e,2(
˜̃Vω) = σ*

e,2(
˜̃Vω,0).

The proof is completely analogous to that of the previous claim.
6. σ*

e,2(Aω) = σe,2(Aω).
For u, u′ ∈ Ḣ1

0 (Ω), by integrating by parts we obtain

〈idiv((ωε + iσ)∇u), u′〉 = 〈idiv((ωε + iσ)∇u′), u〉
where 〈·, ·〉 denotes the duality product between Ḣ−1(Ω;C) and Ḣ1

0 (Ω;C).
This shows that u′ belongs to the cokernel of the operator idiv((ωε+iσ) ·)
if and only if ∇u′ belongs to its kernel, hence

σ*
e,2(idiv((ωε + iσ) ·)) = σe,2(idiv((ωε + iσ) ·)).

By a similar argument based on the definition of h given in (19), we
obtain

σ*
e,2(−iωh(μ ·)) = σe,2(−iωh(μ ·)).

Combining these two identities yields the claim.
7. σ*

e,2(Aω) ⊆ σ*
e,2(

˜̃Vω,0).

Take ω ∈ σ*
e,2(Aω) = σe,2(A∗

ω). Thus there exists a singular sequence
(un)n for A∗

ω. By (26), we have

˜̃V ∗
ω,0 =

(A∗
ω C∗

ω

0 D∗
ω

)
,

and so (un, 0)n is a singular sequence for ˜̃V ∗
ω,0. Thus ω ∈ σe,2(

˜̃V ∗
ω,0) =

σ*
e,2(

˜̃Vω,0).
Let us now conclude the proof. By items 1. and 4. we obtain

σe,2(
˜̃Vω) ⊆ σe,2(Aω) ∪ σe,2(Dω).

By items 2. and 4. we have

σe,2(Dω) ⊆ σe,2(
˜̃Vω).

By items 3., 5., 6. and 7. we have

σe,2(Aω) ⊆ σe,2(
˜̃Vω).

This concludes the proof. �

Remark 26. The text [18] contains many interesting results on essential spectra
of block-operator matrices and pencils; Theorem 2.4.1 is very close to what
we would need, but our pencil ˜̃V ω,0 is lower triangular rather than diagonally
dominant.

We are now ready to prove our main result.



G. S. Alberti et al. Ann. Henri Poincaré

Proof of Theorem 6. We commence the proof by observing the following iden-
tity:

σe,2(Vω) = σe,2(Aω) ∪ σe,2(Dω). (27)

This is an immediate consequence of Lemmas 18 and 20 and of Proposition 25.
We now consider σe,2(Aω) and σe,2(Dω) in more detail.

The essential spectrum of Aω consists of the point {0}, arising from the
(2, 2) diagonal entry of Aω, which has ω = 0 as an eigenvalue of infinite
multiplicity and is otherwise invertible; and of the essential spectrum of the
pencil in the (1, 1) entry, which is as stated in the theorem, namely

σe,2(Aω) = {0} ∪ σe,2(div((ωε + iσ)∇· )). (28)

In order to deal with the essential spectrum of Dω we observe that if
we replace Vω by a new pencil V 0

ω in which the coefficients have the constant
values ε0, μ0 and σ0, then Dω will be unchanged while Aω will be replaced
by a pencil Aω,0 in which all the coefficients are constant. For the constant
coefficient pencil Aω,0 we see that 0 lies in the σe,2 essential spectrum as we
reasoned before, while the (1, 1) term is invertible and Fredholm precisely when
ωε0 + iσ0 �= 0, by the Babuška–Lax–Milgram theorem; hence σe,2(Aω,0) =
{0,−iσ0/ε0}. Using (27) for the constant coefficient pencil, we now have

σe,2(V 0
ω ) = {0,−iσ0/ε0} ∪ σe,2(Dω). (29)

We now prove that the σe,2 essential spectrum of Aω already contains
the set {0,−iσ0/ε0}. The (2, 2) component has 0 as an eigenvalue of infinite
multiplicity. If Ω is bounded, we have σ0 = 0 and so the claim is proven.
Otherwise, for the point −iσ0/ε0 we observe that by the Hypothesis (3), given
n > 0 there exists Rn > 0 such that if ω0 := −iσ0/ε0 then

sup
|x|≥Rn

‖ω0ε(x) + iσ(x)‖2 <
1
n

.

Choosing any function φn ∈ C∞
0 (Ω) with support in {x ∈ Ω : |x| > Rn}, with

‖∇φn‖L2(Ω) = 1, we see that

‖div((ω0ε + iσ)∇φn)‖Ḣ−1(Ω) ≤ 1
n

.

Since the supports of the sequence (∇φn)n∈N move off to infinity, the sequence
converges weakly to zero; it is therefore a singular sequence in ∇Ḣ1

0 (Ω) for
the (1, 1) element of Aω0 . Thus ω0 lies in the σe,2 essential spectrum of Aω.
Combining the observations (27), (28) and (29) with the fact that σe,2(Aω) ⊇
{0,−iσ0/ε0} completes the proof. �

We conclude this section with a more explicit description of the essential
spectrum of the divergence form operator div((ωε + iσ)∇· ) in the case of
continuous coefficients.
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Proposition 27. When the coefficients ε and σ are continuous in Ω, the σe,2

essential spectrum of div((ωε + iσ)∇· ), acting from Ḣ1
0 (Ω;C) to Ḣ−1(Ω;C),

consists of the closure of the set of all ω = iν, ν ∈ R, such that νε + σ is
indefinite at some point in Ω. Equivalently, when Ω is bounded, it is the set of
ω = iν, ν ∈ R, such that νε + σ is indefinite at some point in Ω.

Proof. If �(ω) �= 0 then the real part of ωε+iσ is definite, and the result follows
by the Lax–Milgram theorem. If ω = iν is purely imaginary, this reasoning
still works if νε + σ is uniformly definite in Ω. It remains only to show that if
νε + σ is indefinite at some point x0 ∈ Ω, then 0 lies in the essential spectrum
of div((ωε + iσ)∇· ).

We prove the result by constructing a Weyl singular sequence. Define
a := νε + σ and a0 := a(x0). Let χ : [0,∞) 
→ [0, 1] be a smooth cutoff
function such that χ(t) = 1 for 0 ≤ t ≤ 1 and χ(t) = 0 for all t ≥ 2. Let θ ∈ R

3

be a unit vector chosen such that θT a(x0)θ = 0. For each sufficiently small
δ > 0 and large r > 0 let

χδ(x) :=
1

δ3/2
χ

( |x − x0|
δ

)
, ur,δ(x) := χδ(x)r−1 exp(irθ · x). (30)

A direct calculation shows that ∇ur,δ in sup-norm is O(r−1δ−5/2) +
O(δ−3/2). We suppose that rδ

5
2 � 1, so that the δ−3/2 term dominates; we

have ‖∇ur,δ‖L∞(B2δ(x0)) = O(δ−3/2) and ‖ur,δ‖Ḣ1
0 (Ω) ≥ c for some c > 0 inde-

pendent of r and δ. If v is any smooth test function then

|〈∇ur,δ,∇v〉| ≤ Cδ3‖∇ur,δ‖L∞(B2δ(x0))‖∇v‖L∞(B2δ(x0))

≤ C‖∇v‖∞δ3δ−3/2 = O(δ3/2),

so that the ur,δ tend to zero weakly in H1
0 (Ω) as r ↗ +∞ and δ ↘ 0, with

r ≥ δ− 5
2 .

To complete the proof that 0 lies in the essential spectrum of our operator
we show that ‖div(a∇ur,δ)‖H−1(Ω) can be made arbitrarily small. It is easy
to see that

‖div(a∇ur,δ)‖H−1(Ω) ≤ ‖a − a0‖L∞(B2δ(x0)) + sup
v∈H1

0 (Ω)\{0}

|〈a0 ∇ur,δ,∇v〉|
‖v‖H1

0 (Ω)

.

(31)

We compute ∇ur,δ by direct differentiation of eqn. (30) and deduce that for
each v ∈ H1

0 (Ω),

|〈a0 ∇ur,δ,∇v〉| ≤
∣∣∣∣
〈

a0
1

rδ
5
2

x − x0

|x − x0|χ
′
( |x − x0|

δ

)
exp(irθ · x),∇v

〉∣∣∣∣
+
∣∣〈χδ a0∇

(
r−1 exp(irθ · x)

)
,∇v

〉∣∣
≤ C

|a0|
rδ

‖v‖H1
0 (Ω) +

∣∣〈div(χδ a0 ∇ (r−1 exp(irθ · x)
)
, v
〉∣∣

= C
|a0|
rδ

‖v‖H1
0 (Ω) +

∣∣〈(∇χδ) · a0 ∇ (r−1 exp(irθ · x)
)
, v
〉∣∣ ;
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in the last step we have used the fact that div
(
a0 ∇ (r−1 exp(irθ · x)

))
= 0,

which follows immediately from θT a0θ = 0. Integration by parts yields

|〈a0 ∇ur,δ,∇v〉| ≤ C
|a0|
rδ

‖v‖H1
0 (Ω) +

∣∣〈r−1 exp(irθ · x),div(vaT
0 ∇χδ)

〉∣∣ .
We estimate the final inner product by observing that χδ is O(δ−3/2), its
gradient is O(δ−5/2) and its second derivatives O(δ−7/2), while its support is
a ball whose volume is O(δ3): thus

|〈a0 ∇ur,δ,∇v〉| ≤ C
|a0|
r

{
1
δ

+
1
δ2

}
‖v‖H1

0 (Ω),

for some constant C > 0. Substituting this back into (31) we obtain

‖div(a∇ur,δ)‖H−1(Ω) ≤ ‖a − a0‖L∞(B2δ(x0)) + C
|a0|
r

{
1
δ

+
1
δ2

}
.

Letting r ↗ ∞ and then letting δ ↘ 0 we obtain the required result. �

Acknowledgements

The authors express their sincere thanks to Dr. Pedro Caro of BCAM, who
visited us on several occasions and provided a lot of helpful comments and use-
ful insights. We are also very grateful to the two referees whose exceptionally
careful reading of our first draft enabled us to make substantial improvements.
We gratefully acknowledge the financial support of the UK Engineering and
Physical Sciences Research Council under Grant EP/K024078/1 and the sup-
port of the LMS and EPSRC for our participation in the Durham Symposium
on Mathematical and Computational Aspects of Maxwell’s Equations (Grant
EP/K040154/1).

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Appendix A: The Helmholtz Decomposition for Cylinders

This appendix is devoted to the study of the decompositions (12a) and (12b)
for a large class of cylinders of the form Ω = R × Ω′, with Ω′ ⊆ R

2. We
will then show that this class includes the full space, the half space, the slab,
and the cylinders with bounded sections as in Proposition 15 part(6), thereby
providing a proof to the corresponding parts of Proposition 15.

We denote coordinates in Ω by (x1, x
′) where x′ = (x2, x3) ∈ Ω′, with

similar conventions for components of vectors and operators, such as gradient

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and Laplacian. For simplicity of notation, we shall write a � b to mean a ≤ Cb
for some positive constant C depending only on Ω′. We assume that the cross-
section Ω′ satisfies the following additional hypothesis.

Assumption 28. Let g, h ∈ L2(Ω′). If ψ′ ∈ D′(Ω′) satisfies⎧⎨
⎩

curl′ ψ′ = g in Ω′,
div′ ψ′ = h in Ω′,
ψ′ · ν′ = 0 or ψ · τ ′ = 0 on ∂Ω′,

(32)

where ν′ = (ν2, ν3) and τ ′ = (−ν3, ν2) denote the unit normal and tangent
vectors to ∂Ω′, respectively, then

||∇′ψ′||L2(Ω′) � ||g||L2(Ω′) + ||h||L2(Ω′).

This assumption guarantees the existence of the decompositions (12a)
and (12b) with the spaces KT (Ω) and KN (Ω) (Definition 12) both trivial.

Proposition 29. Let Ω = R×Ω′, where Ω′ ⊆ R
2 is a Lipschitz domain satisfying

Assumption 28. Then KN (Ω) = KT (Ω) = {0} and
(a) H(div 0,Ω) = curl{ψ ∈ Ḣ1(Ω) : div ψ = 0 in Ω, ψ · ν = 0 on ∂Ω},
(b) H0(div 0,Ω) = curl{ψ ∈ Ḣ1(Ω) : div ψ = 0 in Ω, ψ × ν = 0 on ∂Ω}.

Proof. We divide the proof into three steps.
1. First, we prove that every function f in H0(div 0,Ω) may be written as

the curl of a unique divergence-free function ψ such that ψ × ν = 0 on
∂Ω. In particular, this implies that the space KN (Ω) is trivial.

2. Second, we prove that every function f in H(div 0,Ω) may be written as
the curl of a unique divergence-free function ψ such that ψ ·ν = 0 on ∂Ω.
In particular, this implies that the space KT (Ω) is trivial.

3. Third, we prove that the potentials ψ constructed in steps (1) and (2)
belong to Ḣ1(Ω).
Step (1) Given f ∈ H0(div 0,Ω), we look for ψ such that

curl ψ = f in Ω, (33)

div ψ = 0 in Ω, (34)

ψ × ν = 0 on ∂Ω. (35)

Since ν1 = 0, the second and third components of (35) yield ψ1ν3 = 0 and
ψ1ν2 = 0, giving ψ1 = 0 on ∂Ω. Taking the curl of Eq. (33) we obtain

−Δψ1 = ∂2f3 − ∂3f2 in Ω;

upon taking the Fourier transform with respect to the first coordinate x1 we
obtain the boundary value problem{−Δ′ψ̂1 + ξ2ψ̂1 = ∂2f̂3 − ∂3f̂2 in Ω′,

ψ̂1 = 0 on ∂Ω′,
(36)

in which Δ′ denotes the Laplacian with respect to x′ ∈ Ω′ and ξ ∈ R is the
dual variable of x1 under Fourier transformation. For almost every ξ ∈ R, this
Dirichlet boundary value problem admits a unique solution ψ̂1(ξ) ∈ Ḣ1

0 (Ω′)



G. S. Alberti et al. Ann. Henri Poincaré

by the Lax Milgram theorem, and so ψ1 is uniquely determined. To obtain the
remaining components of ψ we rewrite (33) and (34) as

∂2ψ3 − ∂3ψ2 = f1, ∂3ψ1 − ∂1ψ3 = f2, ∂1ψ2 − ∂2ψ1 = f3,

∂1ψ1 + ∂2ψ2 + ∂3ψ3 = 0.

Again take the Fourier transform with respect to x1 and obtain

∂2ψ̂3 − ∂3ψ̂2 = f̂1, ∂3ψ̂1 − iξψ̂3 = f̂2, iξψ̂2 − ∂2ψ̂1 = f̂3,

iξψ̂1 + ∂2ψ̂2 + ∂3ψ̂3 = 0. (37)

Using the second and third identities in (37) yields

ψ̂2 = −i
∂2ψ̂1 + f̂3

ξ
, ψ̂3 = i

f̂2 − ∂3ψ̂1

ξ
, for a.e. ξ ∈ R.

It remains to check the first and fourth identities in (37) and the first compo-
nent of (35). For the first identity in (37) we observe that

∂2ψ̂3 − ∂3ψ̂2 =
i

ξ

(
∂2f̂2 − ∂23ψ̂1 + ∂32ψ̂1 + ∂3f̂3

)
=

i

ξ
(−iξf̂1) = f̂1.

Here we have used, for the second equality, the fact that div f = 0. For the
fourth identity in (37), by (36) we have

iξψ̂1 + ∂2ψ̂2 + ∂3ψ̂3 = iξψ̂1 +
i

ξ

(
−∂2

2 ψ̂1 − ∂2f̂3 + ∂3f̂2 − ∂2
3 ψ̂1

)

=
i

ξ

(
(ξ2ψ̂1 − ∂2

2 ψ̂1 − ∂2
3 ψ̂1) − (∂2f̂3 − ∂3f̂2)

)

= 0.

Finally, for the first component of (35), using F to denote the Fourier trans-
form,

ν3ψ̂2 − ν2ψ̂3 =
i

ξ

(
−∂2ψ̂1ν3 − f̂3ν3 − f̂2ν2 + ∂3ψ̂1ν2

)
=

i

ξ
F(∇′ψ1 · τ − f · ν) = 0,

where we have used the fact that ψ1 = 0 and f · ν = 0 on ∂Ω in the last step.
Step (2) The only difference between this case and the one above lies in

the boundary conditions. We no longer have f · ν = 0 on the boundary. This
time f ∈ H(div 0,Ω) and we seek ψ such that

curl ψ = f in Ω, (38)

div ψ = 0 in Ω, (39)

ψ · ν = 0 on ∂Ω. (40)

The calculations follow as above except that problem (36) is replaced by{
−Δ′ψ̂1 + ξ2ψ̂1 = div′(f̂3,−f̂2) in Ω′,

−∇′ψ̂1 · ν′ = (f̂3,−f̂2) · ν′ on ∂Ω′,
(41)

in which the reason for the slightly curious Neumann boundary condition will
become clear shortly. As above, for almost every ξ ∈ R, this problem admits
a unique solution ψ̂1(ξ) ∈ Ḣ1(Ω′) by the Lax Milgram theorem. Having found
ψ1, we construct ψ̂2 and ψ̂3 as before, and the verification of (38) and (39) is
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similar to the calculations for (33) and (34). This leaves the boundary condition
(40): since ψ̂ · ν = ψ̂2ν2 + ψ̂3ν3, we have

ψ̂ · ν =
−i

ξ

{
(∂2ψ̂1 + f̂3)ν2 − (f̂2 − ∂3ψ̂1)ν3

}
=

−i

ξ

{
∇′ψ̂1 · ν′ + (f̂3, −f̂2) · ν′

}
= 0,

the equality at the last step coming from the boundary equation in (41).
Step (3) We now verify that ψ lies in Ḣ1(Ω) in both cases. From (36, 41)

we have {
−Δ′ψ̂1 + ξ2ψ̂1 = div′(f̂3,−f̂2) in Ω′,

ψ̂1 = 0 or − ∇′ψ̂1 · ν′ = (f̂3,−f̂2) · ν′ on ∂Ω′.
(42)

An integration against ψ̂1 gives

||∇′ψ̂1||2L2(Ω′) + ξ2||ψ̂1||2L2(Ω′) = (
(
−f̂3, f̂2),∇′ψ̂1

)
L2(Ω′)

whence

||∇′ψ̂1(ξ)||L2(Ω′) ≤ ||f̂ ′(ξ)||L2(Ω′), ||ψ̂1(ξ)||L2(Ω′) ≤ ||f̂ ′(ξ)||L2(Ω′)

|ξ| . (43)

From the first and fourth identities of (37) we get, for almost every ξ ∈ R,

curl′ ψ̂′ = f̂1 in Ω′,
div′ ψ̂′ = − iξψ̂1 in Ω′.

We also have the desired boundary conditions:

ψ̂′ · τ ′ = 0 on ∂Ω′ for (b), or ψ̂′ · ν′ = 0 on ∂Ω′ for (a).

By Assumption 28 we have

||∇′ψ̂′(ξ)||L2(Ω′) � ||f̂1(ξ)||L2(Ω′) + ||ξψ̂1(ξ)||L2(Ω′) � ||f̂(ξ)||L2(Ω′), (44)

the last inequality following from the second inequality in (43).
We now regularize ψ̂i for ξ → 0. Define, for ε > 0,

ψ̂i,ε(ξ, x′) =
|ξ|

|ξ| + ε
ψ̂i(ξ, x′), i = 1, 2, 3.

By a direct calculation we have ∇′ψ̂i − ∇′ψ̂i,ε =
ε

|ξ| + ε
∇′ψ̂i, and so we get

||∇′ψ̂i − ∇′ψ̂i,ε||L2(Ω′) =
ε

|ξ| + ε
||∇′ψ̂i||L2(Ω′) ≤ ||∇′ψ̂i||L2(Ω′) � ||f̂(ξ)||L2(Ω′),

where the last inequality follows from (43) for i = 1 and (44) for i = 2, 3. By
the Dominated Convergence Theorem, therefore,

lim
ε→0

||∇′ψ̂i − ∇′ψ̂i,ε||L2(Ω) = 0.

By direct calculation,

||ξψ̂i − ξψ̂i,ε||L2(Ω′) =
|ξ|ε

|ξ| + ε
||ψ̂i||L2(Ω′). (45)
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Now, using (43) for i = 1 and the two identities

ξψ̂2 = −i(∂2ψ̂1 + f̂3), ξψ̂3 = i(f̂2 − ∂2ψ̂1),

together with (43) for i = 2, 3, we have |ξ| · ||ψ̂i||L2(Ω′) � ||f̂ ||L2(Ω′), whence
||ξψ̂i − ξψ̂i,ε||L2(Ω′) � ||f̂ ||L2(Ω′). Taking inverse Fourier transforms in (45),
dominated convergence yields

lim
ε→0

||∂1ψi,ε − ∂1ψi||L2(Ω) = 0.

Altogether we have that ||∇ψi,ε − ∇ψi||L2(Ω) → 0 as ε → 0, namely

lim
ε→0

||ψi,ε − ψi||Ḣ1(Ω) = 0. (46)

Since |ψ̂i,ε(ξ, x′)| ≤ ε−1|ξψ̂i(ξ, x′)| we have that ||ψi,ε||L2(Ω) ≤ ε−1||∂1ψi||L2(Ω)

< +∞, and so ψi,ε ∈ H1(Ω). Since H1(Ω) is dense in Ḣ1(Ω), by (46) we
conclude that ψ ∈ Ḣ1(Ω). �

We now observe that Assumption 28 is verified in many situations of
interest.

Lemma 30. Assumption 28 is verified in each of the following cases:

1. Ω′ is the full space R
2;

2. Ω′ is the half space {(x2, x3) ∈ R
2 : x3 > 0};

3. Ω′ is a strip {(x2, x3) ∈ R
2 : 0 < x3 < L} for some L > 0;

4. Ω′ is a simply connected bounded domain of class C1,1 or piecewise smooth
with no re-entrant corners.

Proof. (1) Taking Fourier transforms in (32) we obtain

iξ2ψ̂
′
3 − iξ3ψ̂

′
2 = ĝ, iξ2ψ̂

′
2 + iξ3ψ̂

′
3 = ĥ,

with unique solution

ψ̂′
2 =

−iξ2ĥ + iξ3ĝ

|ξ′|2 , ψ̂′
3 =

−iξ3ĥ − iξ2ĝ

|ξ′|2 .

Hence |ξ2ψ̂′
2| = |ξ2

2 ĥ|
|ξ′|2 + |ξ2ξ3ĝ|

|ξ′|2 ≤ |ĥ| + |ĝ|, so that

||∂2ψ
′
2||L2(R2) ≤ ||ĝ||L2(R2) + ||ĥ||L2(R2),

and similarly for the other conditions.
(2) In this case the boundary condition is either ψ′

2 = 0 or ψ′
3 = 0 on

{x3 = 0}. We study the case ψ′
2 = 0; the other is similar.

Taking Fourier transforms we get

ψ′
2(x2, x3) =

∫
R

∫
R+

ψ̂′
2(ξ2, ξ3)eiξ2x2 sin(ξ3x3)dξ3dξ2,

ψ′
3(x2, x3) =

∫
R

∫
R+

ψ̂′
2(ξ2, ξ3)eiξ2x2 cos(ξ3x3)dξ3dξ2,
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g(x2, x3) =
∫
R

∫
R+

g(ξ2, ξ3)eiξ2x2 cos(ξ3x3)dξ3dξ2,

h(x2, x3) =
∫
R

∫
R+

h(ξ2, ξ3)eiξ2x2 sin(ξ33x3)dξ3dξ2.

The equations in (32) become

iξ2ψ̂′
3 − ξ3ψ̂′

2 = ĝ, iξ2ψ̂′
2 − ξ3ψ̂′

3 = ĥ,

and then everything proceeds as for the case Ω′ = R
2.

(3) This follows by using the Fourier transform with respect to the vari-
able x2 and the Fourier series in the variable x3, as in cases (1) and (2) above;
the calculations are completely analogous.

(4) This part was proven in [10, Chapter 1, Remark 3.5]). �
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