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ABSTRACT

Objectives: To compare relative response of enamel, dentin and bone to 

developmental stressors between attritional and catastrophic mortality 

assemblages of pigs. 

Materials and Methods: Heads from 70 Sus scrofa of known sex, weight and age 

comprising an Attritional sample of 50 Sick Pen pigs that died prematurely vs. 20 

Control pigs slaughtered at six months (Catastrophic assemblage).  Hard tissue 

changes (alveolar bone thinning), abnormal bone formation (Harris lines) and re-

modeling (auditory bullae) were recorded. Areas and volumes of coronal enamel 

and dentin were recorded from microCT scans with Avizo 6.3 and Geomagic Wrap. 

Results: Attritional and Catastrophic assemblages are metrically indistinguishable. 

Ages at death and tissue measures in the Sick Pen (SP) pigs are differentially 

distributed, necessitating partition into developmental outcome cohorts. SP ‘late 

death’ pigs are of lesser physiological maturity than expected, free of disease, with 

large dental tissue dimensions, comparable to  ‘Controls’.  SP ‘early death’ pigs have 

5% less dentin and enamel and chronic bone infection. Older cohorts of the SP ‘early 

deaths’ mortality assemblage show progressively reduced enamel. SP pigs show 

dental evidence of reduced bone mass in the maxilla.

Discussion: Bone, dentin and enamel tissues, each, respond distinctively to 

developmental stressors. Bone mass evinces malnutrition not disease. Both dental 

tissue reduction and abnormal bone formation link to chronic infection. 

Paradoxically, reduced dentin mass signals lower survivorship while reduced 

enamel signals enhanced survivorship. Meaningful comparison of Attritional and 
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Catastrophic assemblages necessitates recognition of developmental outcome 

cohorts, stratified by age at death and physiological maturity, to reveal 

heterogeneity of survivorship, tissue measures and lesions. 

Key words: enamel, dentin, pathology, survivorship, osteological paradox

Introduction

A generation of bioarchaeologists has grappled with the provoking article by 

Wood et al (1992) that expressed fundamental concerns with the meaning of hard 

tissue lesions in archaeological skeletons for reconstructing health in a once-living 

assemblage (DeWitte and Stojanowski 2015). The challenge of the osteological 

paradox, paraphrased simplistically as ‘bad health makes for good skeletons’ or -

equally- ‘sick skeletons signal a healthy response’, has been distilled to the 

realization that we need to link hard tissue lesions, convincingly, to survivorship 

(Temple and Goodman 2014). Doing so is indeed a challenge. However, the 

emergence of sophisticated and nuanced methods applied to archaeological 

assemblages suggest these difficulties can be overcome. For example, the linkage of 

famine-related deaths to paleo-pathological markers suggests that linear enamel 

hypoplasia signals heightened frailty while bone pathologies (e.g., cribra orbitalia) 

do not (Yaussy and DeWitte 2018).  The authors conclude that not all skeletal or 

dental lesions are equally sensitive or reliable gauges of frailty. 

Skeletal and dental lesions reflect the response of the individual to stressors. 

Stress, per se, is not directly measurable in hard tissues (Hillson 2017).  Most 

developmental hard tissue defects are non-specific “generalized” responses to any 
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number and variety of stressors (Goodman and Rose 1990); consequently, use of the 

term ‘stress’ is often simply a frank acknowledgment of ignorance as to etiology. 

Consequently, we define stress simply as physiological disruption (Temple and 

Goodman 2014) sufficient to affect hard tissue formation. 

In our view, in the absence of any ability to measure actual reproductive 

success in skeletal samples of individuals, the best measure of biological fitness is 

staying alive. The growing organism, faced with developmental stressors is, in effect, 

faced with the decision of whether to grow or conserve. Naturally, there are 

consequences for the individual. 

“…humans differentially allocate energy budgets to essential tissue 
growth and maintenance during periods of stress. However, the process 
is not without consequence as these energetic allocations reduce 
investment in future growth and maintenance as well as other functions 
such as reproduction and disease resistance… These individuals are 
frequently stunted in size, reach reproductive maturity at earlier ages 
and die younger”(Temple and Goodman 2014) (p. 189). 

In this study, we examine the link between survivorship and developmental 

stress early in life using two cohorts of domestic pigs (Sus scrofa) whose ages at 

death are known and whose cranio-dental features preserve a record of a variety of 

developmental stressors (some of which overlapped in time with dental crown 

formation). The first cohort is those that died prematurely (hereafter referred to as 

Sick Pen (SP) pigs, and are thus considered to have experienced developmental 

stress. The second cohort is a Control group that survived until normal slaughter 

age. We determine whether pigs with more, or more severe, lesions die at younger 

ages and whether their hard tissues (bone, enamel and dentin mass) are metrically 

affected in ways consistent with survivorship (Temple and Goodman 2014). Here 
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we will use the phrases ‘tissue volume’ and ‘tissue mass’ interchangeably. Firstly, we 

will briefly review studies of the effect of environmental stressors on tooth size as 

well as the challenge of the osteological paradox.  

Dental tissue volumes and developmental stressors 

As estimates of the heritability of tooth size have reduced over the years, the 

potential of dental tissues to reflect environmental influence has correspondingly 

increased. Tooth size has long been an important subject of study in dentistry and 

anthropology. Orthodontists require knowledge of the predictability of tooth size 

(Osborne et al. 1958; Townsend and Brown 1978; Kabban et al. 2001) while 

anthropologists use tooth size for phylogenetic reconstructions and biological 

distance analysis (Pilloud and Kenyhercz 2016). However, over the past half 

century, estimates of the genetic contribution to tooth size have dropped from 0.9 

(Garn et al. 1965) to roughly 0.64 (Osborne et al. 1958; Townsend and Brown 1978; 

Townsend et al. 2009). Environmental effects are now thought to account for about 

one-third of variation in tooth size; thereby providing a metrical means of studying 

the impact of social, nutritional and medical factors as these vary among human 

populations over space and time. 

There are numerous studies of the effect of mal-, under and improved 

nutrition on tooth size in humans and animals (Shaw and Griffiths 1963; Keene 

1971; DiOrio et al. 1973; Guagliardo 1982; Harris et al. 2001). In such studies, dental 

crowns are usually treated as homogenous structures (Potter et al. 1968; Kabban et 

al. 2001), with no concern for potential differences in tissue response to 

developmental stress, even though enamel and dentin develop from different germ 
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layers over contrasting periods of time (Osborn 1981). This perspective may derive 

from studies such as Holloway et al.’s containing the assertion that smaller molars in 

the offspring of mother rats fed a ‘low protein: high sucrose’ diet, nevertheless, 

showed no difference in enamel thickness (1961). However, the plentiful literature 

on enamel thinning, arising from studies of enamel hypoplasia, (Boyde 1970; El-

Najjar et al. 1978; Goodman and Armelagos 1985; Suckling et al. 1986; Goodman 

and Armelagos 1988; Goodman and Rose 1990; Goodman et al. 1991; Skinner and 

Goodman 1992; Eckhardt and Protch von Zieten 1993; Blakey et al. 1994; Ensor and 

Irish 1995; Duray 1996; Guatelli-Steinberg 1998; Goodman and Song 1999; Lukacs 

et al. 2001; King et al. 2002; Chollet and Teaford 2010; Guatelli-Steinberg et al. 

2012; McGrath et al. 2015; Hillson 2017) suggests that the comparative response of 

enamel to stress should be re-evaluated. For example, a decrease in porcine enamel 

thickness in the area of ‘depression’ enamel defects has been reported (Witzel et al. 

2008). Also, enamel thickness is an oft-recognized character in hominine 

systematics and dietary reconstructions (Martin 1985; Grine and Martin 1988; 

Olejniczak et al. 2008; Smith et al. 2012; Skinner et al. 2015). Similarly, a decrease in 

dentin volume, producing ‘coronal waisting’ has been linked to nutritional stress in 

chimpanzee infants (Skinner et al. 2012). Consequently, the potential for enamel 

and dentin to respond sensitively and independently to stressors needs to be 

assessed.  

Our earlier study, related to this one, found that sick pigs exhibit thinning 

and fenestration of the molar tooth crypt wall associated with enamel defects 

(Skinner et al. 2014).  Inherent in this conclusion is the assumption that tooth 
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formation is less sensitive to developmental stress than is bone formation.  The 

current study, using the same cohort of animals, asks whether dentin and enamel, 

also, differ in their response to stress. 

A consideration of attritional and catastrophic assemblages 

The living population may be the phenomenon of interest but is preserved only 

rarely, due to catastrophic events such as flash floods, war, or massacre that 

preserve all individuals (Wilson 1988; Margerison and Knusel 2002). A catastrophic 

assemblage is created by an event in which all individuals of a living assemblage die 

(and are preserved) without reference to host characteristics such as age, sex and 

frailty. For example, comparison of two catastrophic assemblages of culled 

elephants with an attritonal assemblage of drought driven die-off of elephants, near 

a dwindling water source, acknowledged that all three populations, sampled in 

death, likely differed (Conybeare and Haynes 1984). Specifically, one should expect 

to observe sub-groups within an attritional assemblage, which reflect heterogeneity 

of thanatic factors or time. The goal of this study is to record and understand 

heterogeneity of an attritional assemblage so as to allow meaningful comparison 

with a catastrophic assemblage. 

A notable study of the difference between those that die and those that 

survive was made long ago by Bumpus in his study of sparrows exposed to a snow, 

rain and sleet storm: “…the former (survivors) are shorter and weigh less (i.e., are of 

smaller body), they have longer wing bones, longer legs, longer sternums and 

greater brain capacity” (Bumpus 1898)(p.213). Later re-analysis reported a bi-

modal distribution of measures among non-surviving females (Johnston et al. 1972). 
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While Bumpus’ influential study is noted as an early recognition of stabilizing 

selection, more importantly for our purposes, the death assemblage he described 

reflects heterogeneity of host vulnerability. In addition to variation in host 

vulnerability, an attritional assemblage is composed of individuals who differ from 

the living assemblage in exposure and response to stressors over time. Not 

surprisingly, an attritional assemblage may misrepresent the live population 

(Conybeare and Haynes 1984).  

This study compares dental tissue volumes in two assemblages: a) pigs that 

died while in a sick pen; versus b) slaughter age (ca. 6 months) pigs that were 

sufficiently heavy (about 109 kg) and healthy to go to slaughter. We consider these 

to be Attritional and Catastrophic assemblages, respectively. The Sick Pen pigs form 

a mortality cohort whose deaths occurred at any time between about three and 

seven months of age. Causes of death are not known but can be assumed to be of 

several kinds (McGee and Martin 1995); that is, there is heterogeneity of stressors 

(not mutually exclusive) some of which may have been chronic while others were 

acute, leading to immediate death. Consequently it would be simplistic to treat the 

Sick Pen sample as a homogenous entity. For the Catastrophic sample, cause of 

death is a known, single event - not several. Any negative events they had 

experienced earlier, including, perhaps, time in the Sick Pen, were insufficient to 

cause them to die. 

The objectives of this study are: a) to measure relative response of forming 

tissue types (bone, enamel, dentin) to developmental stressors, within and between 

cohorts of sick pen (SP) and Control (Control) domestic pigs (Sus scrofa); b) examine 
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whether there is link between tissue mass and survivorship; and c) to evaluate 

etiological influences on reduction of tissue mass.

 (Table 1 about here)

Materials and Methods

The sample of pigs used in this study (Table 1) has been reported in detail 

previously (Skinner et al. 2014). .  No animals were subject to experimental 

procedures; nor were their deaths linked to this research. All animals died or were 

slaughtered as part of the normal operations of hog production independent of the 

conception or conduct of this research. 

Briefly, pigs were obtained from a hog supplier in the Fraser River valley of 

British Columbia, Canada. The heads of 50 successive natural fatalities (termed Sick 

Pen pigs) were procured, deep frozen, and de-fleshed for comparison with 20 pigs, 

from the same source, which survived to slaughter age (termed Control pigs). All 

animals were exposed to the same husbandry practices (Supplementary Materials). 

Weight and age at death of the mortality cohort animals were recorded. No records 

were kept of which were littermates, nor of size at birth. None was likely to have 

been a runt (Widdowson 1971) since newly-born pigs with birth weights of less 

than approximately one kg are not kept 

Heterogeneity in the Sick Pen assemblage: Developmental Outcomes

Marked variation in developmental fate of these animals necessitated the 

creation of mortality sub-groups in order to make meaningful comparisons of 

dental measures both within and between the attritional and catastrophic 

assemblages (Fig. 1). 
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Figure 2 illustrates the relationship of weight and age at death or slaughter age for 

our sample in comparison to the Garth Standards (Carr 1998). Some SP pigs (green 

squares in Figure 2) failed to reach a minimum weight (85 kg) sufficient for 

slaughter despite remaining in the Sick Pen for weeks and months beyond normal 

slaughter age (ca. 6 months) presumably because of permanent damage to vital 

tissues. These pigs are classified as Sick Pen ‘late deaths’. Such animals may have 

been switched into and out of the Sick Pen more than once in the hopes they would 

grow sufficiently for slaughter. 

The remaining Sick Pen pigs died prior to normal slaughter age, anywhere 

between 0.22 to 0.43 years. These pigs are classified as Sick Pen ‘early deaths’. Sick 

Pen ‘early death’ pigs were further subdivided into four groups based on age and 

physiological maturity. The latter evaluation is based on the averaged rank position 

of each pig in terms of three seriated physiological variables: dental formation (from 

radiographs), skull length, and weight at death (acknowledging that the last 

measure may have changed dramatically in the days leading up to death). We term 

this an overall Developmental Rank. The four groups are created from a simple 

dichotomization of age at death (above and below median age) and Developmental 

Rank (above and below mid-rank).  These groups are deemed to reflect decreasing 

‘felt stress’ and ordered as follows: low age/low rank (SP 1); low age/high rank (SP 

2); high age/low rank (SP 3); high age/high rank (SP 4). These are conceptualized as 

‘developmental outcomes’; they are used as analytical units to test for heterogeneity 

within the Attritional assemblage.

Dental measures
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Dental formation for the maxillary and mandibular cheek teeth was recorded 

radiographically with a Fisher Portable 200 x-ray machine using standard 

procedures. Simple measures of the cranium, as well as mesio-distal length and 

bucco-lingual width for the third and fourth deciduous molars, were taken with 

Mitutoyo digital calipers. Mandibular first molar (usually left) tissue volumes were 

measured from microCT scans (Diondo, 130 kV, 130 mA, 0.5mm brass filter, 3060 

projections, 2 frame averaging, isometric voxel resolution of 20-25 microns). 

Reconstructed TIFF image stacks of each first molar tooth were filtered with 

a macro that utilizes a three-dimensional median and a mean of least variance filters 

with a kernel size of 1 to 3 (Wollny et al. 2013). Filtering facilitates the manual 

segmentation of dental tissues and improves tissue grey-scale homogeneity, while 

preserving the morphology of dental structures. The filtered image stacks were 

imported into Avizo 6.3 and segmented semi-automatically, after which enamel 

volumes for each tooth were calculated from the segmentation.   

Because cracks may display the same greyscale values as dentin, the enamel-

dentin junction was extracted as a triangulated surface file (PLY format) and 

processed in Geomagic Wrap to remove any surface triangles that represent cracks; 

after which surface area measurements of the models were taken. Dentin volume 

was measured in Geomagic Wrap by sealing the bottom of each EDJ surface model 

with a consideration for the shape of the cervix.

In this study we evaluate the metrics of two dental tissues: enamel and 

dentin. Their apposition starts at the EDJ proceeding in opposite directions. Dentin 

volume is closely related to the size of the EDJ while enamel thickness is a function 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

Enamel cap volume (mm3): tissue segmented digitally above the enamel-

dentin junction

Coronal dentin volume (mm3): pulp chamber is incorporated in this 

dimension 

Enamel-dentin junction (EDJ) surface area (mm2): area of convoluted contact 

between enamel and dentin

Cervical area (mm2): horizontal plane at most cervical extent of enamel

Derived variables

Enamel/dentin volume ratio: dimensionless index intended to detect relative 

sensitivity to stress of the two tissue types

Average enamel thickness (mm): volume ÷ EDJ area

Average coronal dentin thickness (mm): volume ÷ EDJ area

EDJ area ÷ cervical area: dimensionless index intended to detect cervical 

constriction, if any, arising between birth and crown completion 

(ca. 3 months).

Radiography: 
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of the amount and duration of secretion by ameloblasts. These may be considered as 

two independent heterochronological processes (Kono 2004).  In that we judge 

volume measures to be more generally more informative of cellular function than 

are more traditional linear variables, we created four direct measures and four 

indirect measures; as follows; 

Primary variables
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In addition to assessing tooth formation, radiographs were taken of mandibular 

rami to evaluate disturbed bone growth (Harris lines and radiolucencies) and of 

fractured cranio-facial bones (Skinner et al. 2014).

Enamel wear:  

We expect Sick Pen pigs to have reduced dental tissues and reduced survivorship. In 

our study, enamel wear is a confounding variable in that longer-lived animals can be 

expected to have more worn teeth. If, despite this likelihood, it can be shown that 

reduced survivorship is significantly linked to reduced tissue mass, then the finding 

is strengthened; in other words the study design is conservative.  Including animals 

with worn teeth increases the probability of Type II error (failing to detect a real 

difference), a disadvantage offset by an increase in statistical power. Enamel wear is 

recorded as none; trace faceting (indicating gingival eruption) and dentin exposure 

on one or more cups, visible in microCT images, indicating the progressive 

attainment of occlusal eruption. Most of the Control and Sick Pen ‘late deaths’ were 

sufficiently old that their first molars showed some (albeit slight) dentin exposure. 

Predictions and statistical analysis:

Markers of developmental stress are recorded in Table 1. We have no a priori reason 

to expect enamel and dentin to differ quantitatively in response to stress. We 

predict that tissue volumes will be greatest on average in Control pigs and least in 

the lowest age at death/lowest developmental rank cohort among the Sick Pen pigs. 

However, in that crown formation is completed prior to death in our sample, there 

will possibly be some individuals in the Attritional assemblage who had experienced 

little or no developmental stress during crown formation but who died suddenly.
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Specifically, we ask whether dental tissue volumes (enamel and dentin), 

created in the first three months of a pig’s life are linked to survivorship in the 

succeeding months. If the answer is ‘no’, tissue volumes will not differ among 

developmental outcome cohorts in the Attritional assemblage nor in comparison of 

the latter to the Control/slaughter-age pigs. If yes, tissue volumes will differ 

significantly between early and later deaths in the Attritional assemblage; and we 

can ask in what direction (increase or decrease) do the volumes change.  

Evaluation of differences among the developmental outcome groups was 

performed with the non-parametric median test, which tests whether the groups 

are sampled from a population in which the median of the test variable is the same. 

The alternative, Kruskal-Wallis test is sensitive to outliers and less suitable for our 

data.  Alpha was set at 0.05. Strictly speaking, in that we do not consider it 

biologically realistic to expect developmental stress to increase dental tissue 

volumes, we could have used one-tailed tests of significance, since our prediction is 

that the mortality cohort will have lessened tissue volumes; however, we felt it 

would be more conservative to use two-tailed tests. 

Results

Figure 3 shows the relationship of age at death to Developmental Rank and 

illustrates the distribution of SP ‘early death’ cohorts (weight and physiological 

maturation are not recorded for individual Control pigs). As may be seen, Sick Pen 

‘late deaths’, despite being markedly older, have physiological ranks noticeably less 

than expected in comparison to the trend for the Sick Pen ‘early death’ pigs; in other 
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words, as a group, ‘late death’ pigs are dentally immature, small-headed, and/or 

light-weight. 

Comparative development at birth

While weights were not recorded for these animals at birth we do have tooth 

dimensions for teeth formed prenatally and those formed both prenatally and 

postnatally (Skinner et al. 2014) which are not part of this particular study of lower 

first molars whose crown formation is almost entirely (ca. 90%) postnatal  (based 

on location of the neonatal line visible in a thin section). Table 2 compares dental 

areas for deciduous lower third molars (prenatal) and deciduous upper fourth 

molars (both). It can be concluded that the Sick Pen and Control pigs start out with 

similar tooth sizes at birth but later-forming teeth come to differ postnatally. 

(Table 2 about here)

Sex differences

There are equal numbers of males and females in the Control sample while 20 of our 

50 Sick Pen pigs are males. The distribution of sexes between the two Groups (Table 

3) does not differ significantly (Pearson’s Chi Square=0.583, Fisher’s Exact Test

P=0.594). 

Mann-Whitney tests indicated no sex differences in dental volumes and areas 

in the sample as a whole or among the separate groups (similar results were 

obtained with parametric tests). Consequently, later analyses lump the sexes. 

(Table 3 about here)

Comparison of assemblages
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A simple comparison of the two assemblages shows only one statistically significant 

difference; that being the derived variable of average dentin thickness (Table 4). 

Simply put, with only one exception, the Attritional and Catastrophic assemblages 

are statistically indistinguishable. However, it is noteworthy that in every primary 

measure, the Sick Pen tissues are smaller and more variable than are those of the 

Controls. These observations suggest there may be masked heterogeneity in the Sick 

Pen assemblage.

(Table 4 about here)

Heterogeneity within Sick Pen assemblage

Tissues masses are compared among the Sick Pen ‘early deaths’, ‘late deaths’ and 

Controls (Table 5). The ‘late deaths’ cohort has the largest tissue masses and the 

‘early deaths’ group of cohorts, the smallest; Controls have middling values.  Given 

this situation, it is appropriate to ask whether the Sick Pen ‘ early deaths’ are 

statistically distinguishable from either of the other cohorts.  

(Table 5 about here)

In a comparison within the Sick Pen assemblage, statistically significant 

differences in dental measure (ca. 12%) are observed between the ‘early’ and ‘late 

death’ groups in dentin volume and area of the cervix (Table 5). Interestingly, the 

ratio of enamel volume to dentin volume is higher in the SP ‘early deaths’. Clearly, all 

three variables reflect coronal dentin space, which is reduced in those pigs that died 

before slaughter age. 

In a comparison between the ‘SP early deaths’ and ‘Control’ pigs (i.e., 

excluding the ‘late death’ cohort), the former group of cohorts show significantly 
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reduced (ca. 5%) dentin volume and average dentin thickness and, consistently, 

heightened ratio of enamel to dentin volume (Table 5); again, all are attributable to 

reduced coronal dentin in the Attritional mortality cohorts. 

Evaluation of enamel volume and related variables is problematic due to 

small samples, occasioned by enamel wear in the ‘late deaths’ cohort. The Sick Pen 

‘early deaths’ show a statistically non-significant reduction in enamel of about 5% 

compared to the other groups. 

Comparison of developmental outcome cohorts

A finer-grained analysis of median values of tissue masses among developmental 

outcome cohorts indicates that, with the exception of coronal dentin mass, median 

values of all primary and secondary variable measures vary significantly among 

cohorts (Table 6). A graphical depiction of these results is shown in Figures 5 thru 

12. In terms of the primary variables, enamel cap volume (Fig. 5) and EDJ surface

area (Fig. 7) decline with survivorship among the ‘early deaths’ and contrast with 

the ‘late death’ Sick Pen pigs (P=0.038 and O.024, respectively). Volume of coronal 

dentin does not vary significantly among developmental cohorts (P=0.297) but is 

greatest in the SP ‘late deaths’ (Fig. 6).  Area of the cervix (Fig. 8) is significantly 

smaller in the SP ‘early deaths’ compared to the ‘late deaths’ (P=0.048). The derived 

variables confirm these impressions, with the relative proportion of enamel to 

dentin (Fig. 9) and average enamel thickness (Fig. 10) declining with age at death 

among the ‘early deaths’ (P=0.0004 and 0.028, respectively). Interestingly, average 

dentin thickness (Fig. 11) increases significantly among developmental cohorts 

ranged from ‘worst’ to ‘best’ outcome (P=0.004); a result which can come about 
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from reducing EDJ area and/or increasing dentin volume. Cervical constriction (Fig. 

12) is most marked in the two low age Sick Pen cohorts (P=0.043).  Finally and

notably, median values of tissue measures in ‘late death’ pigs exceed those of the 

Control pigs for all primary variables. In conclusion, analysis by developmental 

cohorts reveals marked heterogeneity of both enamel and dentin tissue mass 

measurements among developmental outcome cohorts.

(Table 6 about here)

Survivorship

The Control pigs were all slaughtered at about the same stage of development. 

Consequently the following analysis compares tissue masses and age at death 

among developmental outcome cohorts excluding Controls whose individual age at 

death are not known. The bottom panel of each of Figures 5 thru 12 shows the 

relationship. For most variables the tissue measure changes with age at death in the 

Sick Pen ‘early deaths’ while the ‘late deaths’ cohort’s position is offset and clearly 

does not continue the former group’s trend. 

The most striking contrast in the analysis of all six cohorts together, 

described above, is the behavior of the enamel versus dentin tissues. Enamel volume 

is least in the longest surviving Sick Pen ‘early deaths’ cohort while measures of 

dentin mass either remain constant (volume) or increase (cervix area) in the longer-

lived assemblages. The derived measures remain consistent with the pattern shown 

by the primary variables. These impressions-that the Sick Pen ‘early deaths’ cohorts 

as a group show heterogeneity-are examined next.

Heterogeneity within the Sick Pen ‘early deaths’ grouping
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This grouping is the largest (n≤42) and has the greatest potential for providing 

insights into the response of dental tissues to stress. However, when broken down 

into four separate cohorts the samples are small and the patterns need to be 

scrutinized for consistency (Table 7). 

(Table 7 about here)

Fundamentally, enamel measures (including EDJ surface area) decline with 

increased survivorship while dentin measures remain fairly constant or increase 

non-significantly. These trends are shown most clearly by the reduction of enamel 

to dentin volume ratio (Fig. 9). Average dentin thickness increases with 

survivorship, which seems to be driven by the marked (but not statistically 

significant) reduction in EDJ surface area with increased age at death (Fig. 7). 

The decline of enamel measures with increased survivorship holds even in 

pigs with no wear at all. There is a decline in enamel volume ranging between 10 

and 16% compared among wear groups (Fig. 13).  

Bone mass and developmental outcome

We assess bone mass through a reconsideration of ‘crypt fenestration’, previously 

reported (Skinner et al. 2014), occurring over the forming last molar crypt area of 

the pig maxilla among these pigs. The Sick Pen assemblage showed 82% with bone 

thinning (crypt fenestrations) compared to 55% in the Controls. In a cross-tabs 

analysis, equal proportions (roughly 85%) of both SP ‘early” and ‘late deaths’ show 

crypt fenestrations (Chi square=0.087, P=0.768). Similarly, crypt fenestrations are 

evenly distributed among the four cohorts comprising the SP ‘early deaths’ (Chi 

square =4.987, P=0.173). It can be concluded that bone thinning is more common in 

Page 19 of 61

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

the Sick Pen assemblage as a whole but otherwise does not vary with developmental 

outcome. Bone thinning is common to Sick Pen ‘early’ and ‘late deaths’ groups, both 

of which share a pattern of growth faltering (Fig. 2). 

Summary of results on hard tissue analysis

1. In terms of measures of both enamel and dentin, Controls are virtually 

indistinguishable from the SP mortality assemblage due to marked heterogeneity 

among developmental outcome cohorts. Sick Pen ‘late deaths’, which as a group 

lived beyond customary slaughter age, show significantly larger dentin-related 

measures in comparison to both ‘early deaths’ and Controls. 

2. In terms of the relationship of dental measures to survivorship, SP ‘early deaths’ 

show significantly declining enamel volume and, not surprisingly, decreasing 

enamel to dentin volume ratio. Both enamel and dentin thicknesses increase 

significantly with age at death, which can be attributed to the non-statistically 

significant reducing EDJ surface area. EDJ surface area as a variable behaves more 

like enamel than it does like dentin. This makes sense since enamel extension 

dictates in part the size of the EDJ.

3. Maxillary bone mass in the last molar crypt area is more reduced in the Sick Pen 

mortality assemblage than in the Control pigs. 

Etiological influences on tissue mass

Given the observed patterns of metrical change or stasis in tissue measures, we turn 

now to a consideration of probable causes. We will examine growth attainment, 

bone formation and hard tissue lesions.  All the Sick Pen pigs are light for their ages 

(Fig. 2). It can be assumed that growth faltering has occurred, as further attested by 

Page 20 of 61

John Wiley & Sons, Inc.

American Journal of Physical Anthropology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

the evidence from crypt fenestrations. Although food quality and ration were tightly 

controlled for our sample, malnutrition might occur through social competition or, 

more likely in the case of husbanded pigs, through disease. For example, infection 

can produce malnutrition through diarrhea and anorexia, so clearly the two 

stressors are not mutually exclusive. However, some of the pigs show clear evidence 

of infection-particularly, inflamed and highly remodeled auditory bullae. In our 

experience, pigs affected with chronic middle ear infection thrive (somewhat), 

continue to eat, but are slow growers.

Our approach to elucidating etiology is to compare tissue volumes among 

three groups: those pigs with bone formation problems, those with infection (with 

or without problems of bone formation) and those with no evidence of hard tissue 

pathology. Table 1 lists a variety of hard tissue responses by the pigs to stressors.  It 

is presumed that all the fractured facial bones (with two exceptions-pigs 5 and 9-

which have a well-healed zygomatic and coronoid process fracture, respectively) 

occurred after first molar crown formation was completed since the broken edges 

show little or no remodeling. All fractures are ignored for purposes of analyzing 

tissue mass. Similarly, there are a few instances of infection on crowns or roots that 

are clearly post-eruptive in timing. These are excluded from the ‘infected’ sample in 

the following analyses of tissue mass. For analytical purposes here, we have chosen 

to divide the pigs into the following non-mutually exclusive categories (Table 8): 

a) Pigs with no hard tissue lesions

b) Bone formation lesions; i.e., mandibular ramus abnormalities such as

Harris lines and radiolucent borders (Skinner et al. 2014) (excluding
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facial fractures). Pigs with abnormal rami plus infection are placed in the 

next grouping. 

c) Pigs with well-established hard and soft tissue changes judged to be due

to infection (with or without problems of bone formation) (including

remodeled auditory bullae, bone plaques, eroded TMJ, dental and soft

tissue abscesses).

(Tables 8 and 9 about here)

It can be seen in Table 8, which describes tissue measures for all three groups, that 

the presence of infection only significantly reduces dentin volume and EDJ surface 

area. A simple dichotomization of the sample into uninfected versus infected 

animals shows that the presence of infection is associated, in addition, with a 

reduction in area of the cervix (Table 9). 

The reduction in enamel cap volume of about 11% in the animals with 

chronic infection is not quite statistically significant (two-tailed P=0.091). The 

inclusion of pigs with worn enamel on their first molars increases sample size to the 

point where the ratio of median enamel mass in infected to uninfected pigs parallels 

that for dentin (Fig. 14). As noted earlier, the comparability of enamel volume ratios 

in unworn and worn teeth, boils down to whether infected animals have more worn 

teeth than they should. Average wear score (number of affected cusps, ranging from 

0 to 4) is 1.9 in non-infected animals and 1.4 in infected animals, i.e., infected 

animals had less worn teeth than the uninfected animals. This implies that, if 

anything, inclusion of worn teeth would act to reduce enamel cap volumes more in 

the non-infected animals. Thus, the result-that infected animals showed smaller 
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enamel caps and dentin measures-is believable. We conclude that a marked 

biological significance is being signaled in which infection is the likely cause of 

differences in tissue mass. 

Disease, bone formation, and survivorship

We turn now to a consideration of whether animals with hard tissue lesions 

(diseased) show also reduced bone mass. We test this notion through examination 

of animals, with and without infection, who showed crypt fenestration (bone) and 

crypt fenestration enamel defects (CFEDs-dental hypoplasia due to crypt 

fenestration (Skinner et al. 2016)). Crypt fenestrations, reflecting bone thinning, are 

observed in 75% (9/12) of infected pigs and 76% (44/58) of uninfected pigs while 

CFEDs are found in 75% (9/12) of infected pigs and 84% (49/58) of uninfected pigs. 

The differences are not statistically significant (data not shown). An examination of 

those pigs with diseased auditory bullae (see below) shows that the two pigs with 

most severely affected bullae do not show crypt fenestrations, further negating the 

view that bone mass is affected by chronic disease in these pigs. By sharp contrast, 

abnormal bone formation (as shown by Harris lines and radiolucencies in the 

mandibular rami) is seen in 66% (38/58) of uninfected animals but 92% of infected 

animals (Likelihood ratio=3.911, P=0.048). In this case, disease is linked to 

abnormal bone growth.

Well-established bone infection takes several forms in these pigs but 

inflamed auditory bullae are the most striking (Fig. 15). Severity of the latter was 

judged on the basis of number and size of foramina, cloacae, swelling, shell-like 

formation, and bi-laterality. The relationship between age at death and dental 
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tissues (ratio of enamel to dentin) as well as severity of affected bullae is shown in 

Fig. 16. As survivorship increases, the relative amount of enamel decreases and the 

severity of disease declines. It seems likely that disease is a contributor to earlier 

death and enamel thinning. The likely agents for infection of the auditory bullae are 

oral/aural bacteria (Olson 1981). 

While, as seen, bone mass does not seem to link to disease, bone formation 

does. Likewise, diseased animals show a reduction in enamel and dentin of about 11 

and 9%, respectively (Table 9, Fig. 14).

Discussion

We acknowledge that our sample sizes, especially for sub-divided mortality 

cohorts, are small. We had not anticipated the observed complexity of tissue 

responses to stress and, hence our interpretations are cautious. Nevertheless, the 

general approach of drawing upon readily-available domestic farm animals, whose 

individual development is closely monitored by cost-conscious producers, we would 

argue is an almost untapped resource to address theoretical issues in skeletal 

biology (Skinner 2017). The observed tissue reductions noted above are small in 

absolute terms but in relative terms (ca. 10%) are comparatively quite large; e.g., 

permanent stature reduction resulting from the notoriously severe ‘Dutch famine’ 

amounted to about 2% (Portrait et al. 2017).

Here we will revert to using the terms ‘Attritional’ and ‘Catastrophic’ as one 

of our primary goals in this research was to see if dental tissue masses differed 

between a natural mortality cohort and a living assemblage that had died 
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catastrophically. At the outset of this study, our expectation was that pigs, which had 

experienced sufficient developmental stress to kill them, would show reduced tissue 

volumes. In a crude comparison of the two assemblages (Sick Pen and Control pigs), 

this is not true. Fundamentally, in explanation of this finding, the Sick Pen 

assemblage is markedly heterogeneous both in terms of age at death and in 

measurements of dental tissues. Those Sick Pen pigs who lingered past customary 

slaughter age (so-called ‘late deaths’) had large coronal dentin volume exceeding 

that of Control pigs.  Enamel measures did not differ among the three groups. 

However, with the analytical creation of six developmental cohorts based on 

the combination of age at death and physiological maturation, it became clear that, 

counter-intuitively, enamel volume declined with increasing survivorship among 

the four Sick Pen ‘early death’ cohorts. We will return to this anomaly shortly. 

Dentin showed no such pattern. Estimation of bone mass from crypt fenestration 

indicates that crypt wall thinning is more common in the mortality cohort but does 

not vary within this assemblage.  It can be seen that each of the three tissue types 

(enamel, dentin, bone) responds differently to developmental stress.

In the hope of understanding these contrasts, recourse was made to disease 

history. Chronic disease, as exemplified most dramatically by florid remodeling of 

auditory bullae, is assumed here to have prevailed during dental crown tissue and 

bone formation. Bone mass is not linked to disease in this study. However, the 

presence of disease links significantly with abnormal bone formation and a 

reduction of dental tissue volumes (enamel ca. 11%, dentin ca. 9%). More severe 

chronic infection is linked to a relative decrease in enamel volume and in 
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survivorship. Significantly, neither the ‘late deaths’ nor Controls show infection of 

this nature.

The decline of enamel volume with increased survivorship among cohorts 

within a mortality assemblage is unexpected and requires consideration. As noted in 

this study, enamel thinning is linked to chronic infection.  A cardinal sign of 

inflammation is fever (Kreshover and Clough 1953) and a common explanation for 

enamel thinning in the form known as enamel hypoplasia is fever (El-Najjar et al. 

1978). It would seem that enamel thinning is a positive sign (increased 

survivorship) but also signals the presence of disease. This conundrum can be 

resolved by recourse to the literature on whether fever is adaptive (Kluger 1986). 

This is considered an old dispute (Romanovsky and Szekely 1998) which has been 

largely resolved in the sense that fever is  now considered an adaptive 

thermoregulatory response which, despite being metabolically costly, often leads to 

enhanced immune response, inhibition of a pathogen (Hart 1988) and which confers 

a survival benefit. Fever acts as a systemic alert system for surveillance of invading 

pathogens by enhancing the immune system (Elliot et al. 2002; Evans et al. 2015). 

The latter authors conclude that the survival benefit conferred on the host 

outweighs the metabolic cost of fever. 

In terms of the response of enamel to fever, it has been shown 

experimentally, by injecting turpentine into rats in order to produce a fever, that it 

is the fever itself not the disease that produces enamel defects (Tung et al. 2006). 

Also enamel is more sensitive to fever than is dentin (Kreshover and Clough 1953; 

Ryynänen et al. 2014). The decline in relative proportion of enamel to dentine 
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shown in Figure 16 conforms with experimental evidence that the ratio of enamel to 

dentin height in developing mouse molars reduces with duration of fever (Ryynänen 

et al. 2014). 

Notably, older animals from the Attritional mortality and Catastrophic 

assemblages have no evidence of chronic infection. By inference ‘early deaths’ are 

linked to infection. In our study, infection is associated with reduced dental 

volumes. One would expect the thinnest enamel in the youngest deaths. This is not 

so. Longer-lived ‘early death’ pigs have thinner enamel. In that enamel formation is 

completed before death, their advantage arose during crown formation when 

combatting infection, presumably through the benefits of fever which, inadvertently, 

acted to reduced enamel. 

One of the motives for undertaking this study was to assess whether enamel 

thickness could be used as a proxy for developmental well-being much as stature is 

used in human growth studies. Just as there are myriad factors that can affect 

growth in stature, ranging from genetics to malnutrition and disease, we hoped that 

enamel thickness could be a powerful summation of developmental experience. If 

so, we could draw upon insights taken from the literature of growth studies, 

commencing some two centuries ago, which has so enriched our understanding of 

human biology (Bogin 1999; King and Ulijaszek 1999) and guided our approaches to 

epidemiology (Steckel 1995). Our zeal has been tempered by the results of this 

study which suggest that in domestic pigs, subject to developmental stress, each oral 

hard tissue has a somewhat different story to tell.  The presence of chronic disease, 

likely accompanied by bouts of fever, is a key factor. Simply put, abnormal bone 
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formation and reduced dentin mass are linked to reduced survivorship while 

enamel reduction is linked to enhanced survivorship. 

The other motive for this study was to determine if a domestic pig model 

could contribute to the important debate subsumed under the rubric ‘osteological 

paradox’ which we summarized earlier. We acknowledge that, whatever the findings 

of our research, we have to be cautious about generalizing the results to other 

species. Domestic pigs are selected and husbanded to gain weight extremely fast 

and efficiently. It is not likely that their tissue biology, diseases and relative 

survivorship can be applied directly to ancient humans. 

In our study, we have the advantage of knowing, with precision, age at death 

which allows us to test for differentially distributed measures of dental tissues and 

to evaluate the role of chronic disease. It is very clear from our results that the 

Attritional assemblage is much worse off developmentally and in terms of 

survivorship than are the pigs that make it to slaughter. However, in terms of dental 

tissue measurements, the two groupings are indistinguishable, simply because the 

Attritional assemblage shows marked heterogeneity in survivorship (early and late 

death groups) with notably larger coronal dimensions in the latter cohort. In that 

the Control cohort shows intermediate tissue measures, this cohort may be a 

product of stabilizing selection. 

While most of the Sick Pen ‘early death’ pigs show problems of size and hard 

tissue formation, a notable component (16%) of the Attritional assemblage (the Sick 

Pen ‘late deaths’), if we may generalize, have healthy-looking, large hard tissues, and 

survived longer but, nevertheless, still died. Whether such laggards are a typical 
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component of most Attritional assemblages awaits confirmation. In sum, most of our 

‘early death’ domestic pigs show compromised hard tissues, signaling real problems 

of survivorship. The ‘late deaths’ are developmentally retarded, healthy-looking and 

survived a little longer before becoming part of a mortality cohort. In pigs, 

avoidance of disease, or the ability to overcome infection, is key to longer survival. 

In terms of the ‘osteological paradox’, relatively lesion-free and large-toothed 

cohorts are found in both the Attritional and Catastrophic assemblages. Short-lived 

pigs, as a group, tend to show chronic infection, abnormal bone formation and 

reduced volumes of dentin and enamel. However, diminished enamel per se is 

clearly linked to enhanced survivorship among pigs inferred to have been 

experiencing fever. 

Conclusions

All three oral hard tissues (bone, dentin and enamel) respond in their own 

characteristic way to developmental stressors. We can link clear signs of infection to 

dental tissue reduction and abnormal bone formation. Bone mass is evincing 

primarily malnutrition not disease. Both enamel and dentin are reduced (about 

10%) in response to long-standing disease during crown formation. Paradoxically, 

reduced dentin signals lower survivorship while reduced enamel signals enhanced 

survivorship. Extrapolating from pigs, we conclude that meaningful comparison of 

attritional and catastrophic assemblages necessitates the recognition of 

developmental outcome cohorts to reveal heterogeneity of survivorship, tissue 

measures and lesions. 
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Table 1. Composition of sample separated by group (Control and Sick Pen) and sex, 

seriated by age at death with hard and soft tissue abnormalities indicated.

Hard tissue abnormality
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Control F 53 .49 108 X no
54 .49 108 X
55 .49 108 X
59 .49 108 X X
61 .49 108 X X X
62 .49 108 X X
63 .49 108 X X no X X
64 .49 108 no X
69 .49 108 X X X
70 .49 108 no

M 51 .49 108 X
52 .49 108 X X no
56 .49 108 X
57 .49 108 X X
58 .49 108 X X
60 .49 108 X no
65 .49 108 no
66 .49 108 X X
67 .49 108 X X no X
68 .49 108 X X no

Sick Pen F 12 .25 31.8 X X
13 .25 29.6 X X
36 .25 22.7 X X X X X
18 .27 18.2 X X X
2 .27 31.8 X X
3 .27 31.8 X X
40 .27 25.0 X X
11 .28 40.9 X X
28 .28 45.5 X X
8 .28 38.6 X X X
34 .30 59.1 X X X no X
22 .31 38.6 X X
23 .31 40.9 X
38 .31 40.9 X X no
46 .33 36.4 X X
48 .33 54.6 X X X
6 .33 50.0 X X X X
7 .33 45.5 X X X
47 .34 38.6 X X no X
1 .35 40.9 X X no
15 .39 50.0 X no
29 .39 56.8 X X X X no
25 .42 63.6 X X X
35 .42 63.6 X X X
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26 .43 77.3 X X X X
19 .50 45.5 X X X X
33 .53 68.2 X X X
41 .58 45.5 X X X X
42 .62 79.6 X X X
39 .66 68.2 X X X X

M 30 .22 18.2 X X
16 .25 31.8 X X
37 .25 22.7 X X X
21 .28 31.8 X X X
31 .30 18.2 X X X
20 .31 45.5 X X X X X
24 .33 45.5 X X
27 .33 50.0 X X X X X
45 .35 50.0 X X
49 .35 54.6 X X X no X
9 .35 47.7 X X3 X X X
17 .38 50.0 X X X X X X
50 .38 43.2 X X X no X X
43 .39 54.6 X4 X
5 .39 61.4 X X3 X X
32 .44 59.1 X X X no X
44 .45 72.7 X X X
4 .50 63.6 X X X
10 .58 77.3 X X X
14 .59 95.5 X X

1. Ages at death and weight for Control pigs presumed to be normal age at 
slaughter weight

2. Crypt fenestration enamel defect (Skinner et al. 2014; Skinner et al. 2016)
3. Healing or healed fracture
4. Maggots in mouth
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Table 2. Deciduous molar tooth area (mm2) for molars that form prenatally versus 

those that form both prenatally and postnatally compared between all Sick Pen pigs 

and Control pigs.

Group Tooth type N DM3 area SD ‘t’-value Prob.

Sick Pen Lo DM31 50 49.4 4.6 -0.452 0.653
Control 20 50.0 5.0
Sick Pen Up DM41 49 140.0 13.3 -2.773 0.007
Control 20 149.6 12.7

1. Lo=lower, Up=upper, D=deciduous, M=molar
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Table 3. Male and female unworn enamel and dentin volumes in lower first molars: 

Sick Pen ‘early death’ pigs, Sick Pen ‘late death’ pigs and Control (there are no 

unworn male enamel crowns among the ‘late deaths’ group)

Primary Group Sex N Mean SD Median Mann-Whitney1

measure Z Prob

All Male 8 313.9 55.1 297.3 -0.722 0.470Enamel
Volume2 Female 18 319.5 29.5 323.8

Male 30 422.4 46.2 423.8 -0.332 0.740EDJ area
Female 40 424.2 32.4 424.3

Male 30 617.0 86.7 606.7 -.166 0.868Dentin
volume Female 40 615.0 59.1 612.6

Male 28 138.3 15.2 135.1 -1.148 0.251Cervical
area Female 38 141.9 11.3 140.9

Cohorts
Male 8 313.9 55.1 297.3 -0.722 0.470Sick Pen

Early deaths Female 18 319.5 29.5 323.8
Male 0SP 

Late deaths Female 0
Male 0

Enamel
volume

Control
Female 0

EDJ area Male 17 418.5 52.0 403.9 -0.756 0.450SP
Early deaths Female 25 420.7 31.2 418.7

Male 3 436.7 37.5 432.7 -0.447 0.655SP 
Late deaths Female 5 451.4 43.3 464.3

Male 10 424.7 40.6 427.8 -0.492 0.623Control
Female 10 419.6 25.7 423.4

Male 17 583.5 73.6 571.7 -1.294 0.196SP
Early deaths Female 25 603.4 53.3 607.8

Male 3 669.3 121.2 695.6 -0.149 0.881SP 
Late deaths Female 5 662.4 75.3 679.3

Male 10 658.2 80.0 661.5 -1.134 0.257

Dentin
volume

Control
Female 10 620.5 58.2 606.4

Male 15 133.2 14.9 134.2 -1.389 0.165Cervical
area

SP
Early deaths Female 23 138.9 10.1 134.6

Male 3 145.8 19.1 153.4 -0.149 0.881SP
Late deaths Female 5 151.8 10.6 152.2

Male 10 143.7 12.9 142.8 -0.076 0.940Control
Female 10 143.7 12.0 142.1

1. Parametric tests gave the same results as non-parametric tests
2. Enamel volumes are for molars with no wear 
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Table 4.  Comparison of dental tissue measures between assemblages

Measure Assemblage Statistical test
Sick Pen CV Control CV M-W Z Prob.

n 50 20
Mean 916.8 950.1
SD 102.0 11.1 99.2 10.4

Enamel cap 
volume

Median 920.7 948.4 -1.092 0.275

n 50 20
Mean 606.5 639.4
SD 70.5 11.6 70.8 11.1

Coronal dentin 
volume

Median 604.8 628.6 -1.625 0.104

n 50 20
Mean 424.0 422.1
SD 40.9 9.6 33.2 7.9

EDJ junction 
surface area

Median 420.7 427.8 -0.228 0.820

n 46 20
Mean 138.9 143.7
SD 13.4 9.6 12.1 8.4

Cervical area

Median 135.1 142.2 -1.305 0.192

n 50 19
Mean 0.51 0.49
SD 0.05 10.2 0.05 9.8

Enamel/dentin 
volume ratio

Median 0.51 0.49 -1.599 0.110

n 50 20
Mean 0.73 0.73
SD 0.05 6.8 0.05 6.8

Average enamel thickness

Median 0.73 0.74 -0.176 0.860

n 50 20
Mean 1.43 1.51
SD .08 5.6 0.08 5.3

Average dentin thickness

Median 1.42 1.51 -3.614 0.0003

n 46 20Cervical constriction
Mean 3.02 2.94
SD 0.16 5.3 0.16 5.4
Median 3.03 2.96 -1.702 0.089
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Table 5. Ratios (in bold face) of median dental tissue Primary measures of Sick Pen 

‘early deaths’ or Sick Pen ‘late deaths’ to Control sample (values for enamel based on 

only teeth with no or, at most, one cusp with dentine exposure)

Sick Pen ‘early deaths’ Sick Pen ‘late deaths’ Control 
N Median Ratio to

Late deaths
Ratio to 
Control

N Median Ratio to 
Control

N Median

Enamel volume 36 313.11,9 .95 .94 4 328.01 .99 12 332.79

EDJ area 42 417.42,10 .93 .98 8 450.12 1.05 20 427.810

Dentin volume 42 597.93,11 .87 .95 8 687.53 1.09 20 628.611

Cervix area 42 134.44,12 .88 .95 8 152.84 1.07 20 142.212

E/D ratio 36 0.535,13 1.10 1.04 4 0.485 .94 19 0.5113

Enam thickness 36 .756,14 1.03 .99 4 0.736 .96 20 0.7614

Dentin thickness 42 1.427,15 .97 .94 8 1.477 .97 20 1.5115

Cerv. constriction 42 3.038,16 1.01 1.02 8 3.018 1.02 20 2.9616

1. M-W Z=-0.135, P=0.892
2. M-W Z=-1.773, P=0.076
3. M-W Z=-2.143, P=0.032
4. M-W Z=-2.290, P=0.022
5. M-W Z=-2.570, P=0.006
6. M-W Z=-1.610, P=0.107
7. M-W Z=-1.799, P=0.072
8. M-W Z=-0.725, P=0.469
9. M-W Z=-0.279, P=0.781
10. M-W Z=-0.685, P=0.493
11. M-W Z=-2.108, P=0.035
12. M-W Z=-1.890, P=0.059
13. M-W Z=-2.134, P=0.033
14. M-W Z=-0.143, P=0.886
15. M-W Z=-3.975, P=0.0001
16. M-W Z=--1.750, P=0.080
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Table 6. Comparison of dental tissue measurements (median test) among all six 
developmental cohorts ranging from theoretical worst to best outcome.

Measure Sick Pen ‘early deaths’ ‘Late deaths’ Control Median test
Developmental outcomes from theoretical worst (1) to best (6)
1 2 3 4 5 6 Chi square Prob. 

N 14 12 11 5 8 20
Mean 335.8 298.9 298.6 286.8 313.6 310.7
SD 36.7 33.5 25.4 35.2 52.7 37.9

Enamel cap
volume

Median 329.2 298.2 291.6 275.7 328.0 307.0 11.794 0.038

N 14 12 11 5 8 20
Mean 608.9 578.3 586.8 617.1 665.0 639.4
SD 67.7 66.7 50.5 62.2 86.4 70.8

Coronal dentin
volume

Median 610.3 568.7 610.7 581.6 687.5 628.6 6.091 0.297

N 14 12 11 5 8 20
Mean 440.5 410.0 406.0 416.0 445.7 422.1
SD 46.6 36.1 28.4 40.8 39.1 33.2

EDJ junction 
surface area

Median 438.0 404.4 413.0 403.9 450.1 628.6 12.959 0.024

N 10 12 11 5 8 20
Mean 137.5 133.6 137.8 139.7 149.6 143.7
SD 16.8 12.2 8.8 11.4 13.4 12.1

Cervical area

Median 133.6 132.7 138.2 135.3 152.8 142.2 11.191 0.048

N 14 12 11 5 8 19
Mean 0.55 0.52 0.51 0.47 0.47 0.49
SD 0.04 0.04 0.02 0.04 0.03 0.05

Enamel/dentin 
volume ratio

Median 0.55 0.53 0.51 0.48 0.47 0.49 22.516 .0004

N 14 12 11 5 8 20
Mean 0.76 0.73 0.74 0.69 0.70 0.73
SD 0.04 0.05 0.04 0.04 0.07 0.05

Average enamel
thickness

Median 0.76 0.73 0.73 0.71 0.73 0.74 12.574 0.028

N 14 12 11 5 8 20
Mean 1.38 1.41 1.44 1.48 1.49 1.51
SD 0.07 0.06 0.05 0.04 0.10 0.08

Average dentin 
thickness

Median 1.38 1.40 1.44 1.47 1.47 1.51 17.534 0.004

N 10 12 11 5 8 20
Mean 3.10 3.07 2.95 2.97 2.99 2.94
SD 0.13 0.17 0.18 0.09 0.17 0.16

Cervical
constriction

Median 3.15 3.15 2.91 2.99 3.01 2.96 11.473 0.043
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Table 7. Evaluation (median tests) of heterogeneity within the Sick Pen ‘early 
deaths’ group

Measure Sick Pen ‘early deaths’ Median Test
From theoretical worst to best outcome

1
Low age/low rank

2
low age/high rank

3
High age/low rank

4
High age/high rank

Chi 
square

Prob.

N Median N Median N Median N Median

Enamel cap
volume

14 329.2 12 298.2 11 291.6 275.7 11.094 0.011

Coronal dentin
volume

14 610.3 12 568.7 11 610.7 581.6 2.767 0.429

EDJ junction 
surface area

14 438.0 12 404.4 11 413.0 403.9 3.923 0.270

10 133.6 12 132.7 11 138.2 135.3 5.783 0.123Cervical 
area
Enamel/dentin 
volume ratio

14 0.564 12 0.525 11 0.505 0.481 12.177 0.007

Average enamel
thickness

14 0.76 12 0.73 11 0.73 0.71 10.925 0.012

Average dentin
thickness

14 1.38 12 1.40 11 1.44 1.47 12.177 0.007

Cervical
constriction

10 3.11 12 3.15 11 2.91 2.99 7.006 0.072
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Table 8. Tissue mass compared among pigs with no hard tissue lesions, pigs with 
disturbed growth of the mandibular rami, and pigs with well-established bone or 
soft tissue lesions (thought to have formed during crown formation) (statistically 
significant differences in bold).

1. includes teeth with ‘trace’ enamel wear; i.e., faceting

Kruskal Wallis
Measure Pathology N Mean SD Median Chi square Prob

No lesions 4 323.3 18.5 317.8 0.970 0.616
Bone formation 20 320.1 37.0 318.0

Unworn
Enamel1

Enamel
volume

Infections 9 305.1 39.2 314.7

No lesions 21 307.2 33.6 308.6 3.604 0.165
Bone formation 37 317.0 41.0 319.8

Enamel
volume

Infections 12 295.9 37.5 274.9
No lesions 21 422.3 34.5 426.0 7.318 0.026
Bone formation 37 432.3 39.6 428.6

EDJ area

Infections 12 398.1 32.9 389.9
No lesions 21 624.5 68.7 602.6 6.837 0.033
Bone formation 37 626.9 72.7 620.2

Dentin
volume

Infections 12 566.6 55.7 562.1
No lesions 21 143.2 12.8 141.5 4.899 0.086
Bone formation 34 141.1 13.7 142.2

Unworn
and worn

Cervix
area

Infections 11 132.5 8.9 132.1
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Table 9. Dental tissue masses compared between pigs with and without well-

established hard tissue lesions judged to be of infectious origin (statistically 

significant differences in bold).

1. includes teeth with ‘trace’ enamel faceting

Mann-Whitney test
Measure Pathology N Mean SD Median Z Prob % reduction

No infection 24 320.6 34.3 318.0 -0.970 0.332 1.0Unworn 
Enamel1

Enamel
volume Infection 9 305.1 39.2 314.7

No infection 58 313.4 38.5 310.5 -1.691 0.091 11.5Enamel
volume Infection 12 295.9 37.5 274.9

No infection 58 428.7 37.8 427.0 -2.548 0.011 8.7EDJ area
Infection 12 398.1 32.9 389.9
No infection 58 626.1 70.7 615.8 -2.602 0.009 8.7Dentin

volume Infection 12 566.6 55.7 562.1
No infection 55 141.9 13.3 141.8 -2.159 0.031 6.8

Unworn
and worn

Cervix
area Infection 11 132.5 8.9 132.1
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Figure 1. Organization and terms for analysis of dental measures of mortality cohort sub-groups. Sick pen 
pigs died naturally and are termed the Attritional assemblage.  Control pigs are those that survived to 

slaughter age and are termed the Catastrophic assemblage. The term ‘rank’ refers to relative physiological 
maturity based on combined measures of dental formation, skull length and weight at death (see text for 
further details). Note that some Sick pen pigs survived for a while beyond normal age for slaughter; these 

are considered ‘late deaths’. 
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Figure 2. Relationship of body weight at death and age at death among Sick Pen ‘early death’ pigs, Sick Pen 
‘late death’ pigs, and Control pigs compared to a standard.  Pigs are slaughtered for consumption at a 

typical age (180 days) and weight (108 kg). Note that all Sick Pen pigs are light for age; and ‘late deaths’ 
clearly form a separate cluster. 
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Figure 3. Relationship of Developmental Rank (average seriated maturity markers: dental formation, skull 
length, and body weight) to age at death. Control animals are not included as their individual weights and 
age at death are unknown. The distinctiveness of the Sick Pen ‘late deaths’ is accentuated here; they are 

developmentally retarded for their ages. 
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Figure 4. Screenshots of the youngest and oldest pig lower first molars in our study; Sick Pen pig 30 (aged 
0.22 years, right molar crown complete but not fully mineralized) and 39 (aged 0.66 years, a ‘late death’ pig 

left molar crown), respectively. 
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Figure 5. Enamel cap volume: comparison of median values among cohorts ranged from theoretical worst to 
best developmental outcome. Probability value indicates whether differences in medians are statistically 

significant (alpha is 0.05). Significant pairwise post hoc differences are shown. Lower panel shows 
heterogeneity of the Sick Pen assemblage by graphing the relationship of dental measure to survivorship 
among just the Sick Pen ‘early deaths’ in comparison to the ‘late deaths’ cohort whose median age and 

tissue measure value are indicated by the black square. Progressively older Sick Pen ‘early death’ pigs show 
diminishing volumes with age at death while the Sick Pen ‘late deaths’ show even larger values than the 

Controls. 
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Figure 6. Coronal dentin mass compared among developmental outcome cohorts (as for Figure 5). There are 
no significant differences overall although large size of the Sick Pen ‘late deaths’ coronal dentin is evident. 
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Figure 7. Surface area of the enamel-dentin junction compared among developmental outcome cohorts (as 
for Figure 4). Overall, median values differ significantly, which is driven by a decline in surface area among 
the SP ‘early death’ cohorts. Large size of the ‘late deaths’ cohort is noteworthy as is the similarity of the 

pattern of this variable to that of enamel (Fig. 5) rather than dentin (Fig. 6). 
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Figure 8. Area of the cervix compared among developmental outcome cohorts (as for Figure 5). There is a 
statistically significant difference among medians, which seems to be driven by the comparatively small 

cervices of the SP ‘early death’ cohorts. 
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Figure 9. Ratio of enamel volume to that of dentin compared among developmental outcome cohorts (as for 
Figure 5). The strong statistical trend is a function of slightly increasing dentine volume combined with 

significantly decreasing enamel volume with increasing age at death in the Sick Pen ‘early death’ cohorts. 
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Figure 10. Average enamel thickness compared among developmental outcome cohorts (as for Figure 5). 
The behavior of this variable is a function of relative volume and surface area of the EDJ. The decline in 

enamel thickness shown among the Sick Pen ‘early deaths’ cohorts in the bottom panel, while statistically 
significant, reflects simply enamel cap volume reduction in this group. 
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Figure 11. Average dentin thickness compared among developmental outcome cohorts (as for Figure 5). The 
behavior of this variable is a function of relative volume and surface area of the EDJ. Dentin is progressively 

thicker in longer-surviving cohorts. 
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Figure 12. Cervical constriction (EDJ area/Cervix area) compared among developmental outcome cohorts (as 
for Figure 5). There is a statistically significant difference overall among medians driven by a tendency for 

shorter-lived pigs to have more constricted cervices. 
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Figure 13. Enamel cap volume compared among Sick Pen ‘early death’ cohorts illustrating the decline in 
enamel volume with increasing developmental rank regardless of the potential impact of occlusal wear on 

this variable. 
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Figure 14. Percent decrement in tissue measure compared between animals with and without well-
established hard tissue lesions. Sample sizes are shown for affected and unaffected animals. All coronal 

measures are reduced in animals with chronic disease. 
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Figure 15. Examples of abnormal remodeling of auditory bullae. Severity score 6 is the most severe. Note 
shell formation in Pig 47 and lack of involvement of its left bulla. Note Pig 34 with very severe bilateral 

involvement and its early age at death (Fig. 16). 
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Figure 16. Relationship of enamel/dentin ratio to age at death in those pigs with abnormal auditory bullae. 
Note that enamel and coronal dentin formation are completed before death, implying that the disease 

probably existed before crown completion.  Both severity of bone remodeling and enamel thickness decline 
with increasing survivorship. 
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